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Abstract

Log messages (generated by logging code) contain rich information about the run-

time behavior of software systems. Although more logging code can provide more

context of the system’s behavior, it is undesirable to include too much logging code.

Yuan et al. performed the first empirical study on characterizing the logging. In the

first part of the thesis, we conduct a large-scale replication study on characterizing

the logging practices on Java-based open source projects. A significantly higher

portion of log updates are for enhancing the quality rather than co-changes with

feature implementations. However, there are no well-defined coding guidelines for

performing effective logging. In the second part, we studied the problem of char-

acterizing and detecting the anti-patterns in the logging code. We have encoded

these anti-patterns into a static code analysis tool, LCAnalyzer. Case studies show

that LCAnalyzer has an average recall of 95% and precision of 60% .
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1 Introduction

Logging code refers to debug statements that developers insert into the source code.

Log messages are generated by the logging code at runtime. Log messages contain

rich information about the runtime behavior of software projects. Log messages are

used extensively for monitoring [63], remote issue resolution [3], test analysis [40,

41], and legal compliance [13]. Logging practice is a common programming practice

that developers use to record the runtime behavior of a software system.

Recent empirical studies show that there are no well-established logging prac-

tices in industry [32, 53]. Developers usually need to rely on their common sense

to perform their logging actions. In general, there are three challenges associated

with establishing effective logging practices:

1. The problem of where-to-log is about deciding the appropriate logging

points. Snippets of logging code can be inserted at various locations in the

source code (e.g., inside the try & catch exception blocks, inside the condition

blocks, etc.) to provide insights into the system’s runtime behavior. How-
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ever, excessive logging can bring additional maintenance overhead and cause

performance slow-downs [28]. Hence, developers need to be selective when

choosing the logging points.

2. The problem of what-to-log is about providing sufficient information in the

logging code. The static texts provide a short description of the execution

context and the dynamic contents indicate the current execute state. When

composing a snippet of logging code, the static texts should be clear and

easy to understand and the dynamic contents should be coherent and up-to-

date [42, 66].

3. The problem of how-to-log is about developing and maintaining high qual-

ity logging code. Logging is a cross-cutting concern, as the logging code is

scattered across the entire system and tangled with the feature code [46]. Al-

though there are language extensions (e.g., AspectJ [14]) to support better

modularization of the logging code, many industrial and open source systems

still choose to inter-mix the logging code with the feature code [53, 26, 77].

Hence, it is difficult to develop and maintain high quality logging code, while

the system evolves.

In this case, it is necessary to understand the state of art logging practices. The

work done by Yuan et al. [77] is the first work that empirically studies the logging
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practices in different open source software projects. They studied the development

history of four open source software projects (Apache httpd, OpenSSH, PostgreSQL

and Squid) and obtained ten interesting findings on the logging practices. Their

findings can provide suggestions for developers to improve their existing logging

practices and give useful insights for log management tools.

However, the four studied projects are server-side projects written in C/C++.

It is not clear whether their findings are applicable to other software projects. The

logging practices may not be the same for projects from other application categories,

or projects written in other programming languages.

In the first part of the thesis, we have replicated this study by analyzing the log-

ging practices of 21 Java projects from the Apache Software Foundation (ASF) [2].

The studied 21 Java projects are selected from the following three different cat-

egories: server-side, client-side, and support-component. Our goal is to assess

whether the findings from the original study would be applicable to our selected

projects.

Based on the findings from the replication studies in part one, we have found a

large portion of logging code have been updated during the software maintenance

process due to various reasons. Unfortunately, there are no well-defined coding

guidelines for performing effective logging, i.e. the how-to-log problems.

In the second part of the thesis, we studied the logging anti-patterns and how

3



to improve related logging issues. We have conducted a comprehensive study on

characterizing anti-patterns in the logging code by manually going through more

than six years of the logging code changes of three popular open source software

systems (ActiveMQ, Hadoop and Maven). Our study has resulted in six anti-

patterns in the logging code. To demonstrate the usefulness of our findings, we

have developed a tool, called LCAnalyzer, which can automatically detect these

anti-patterns in the source code.

The contributions of the thesis are:

1. This contains the first empirical study (to the best of our knowledge) on

characterizing the logging practices in Java-based software projects. Each of

the 21 studied projects is carefully selected based on its revision history, code

size and category. This also contains the first systematic study on providing

guidelines on developing and maintaining high quality logging code. Case

studies show that the characterized six anti-patterns in the logging code are

general and exist in many open source software systems.

2. When comparing our replication findings against the original study, the results

are analyzed in two dimensions: category (e.g., server-side vs. client-side) and

programming language (Java vs. C/C++). Our results show that certain

aspects of the logging practices (e.g., the pervasiveness of logging and the

4



bug resolution time) are not the same as those in the original study. To allow

for easier replication and to encourage future research on this subject, we

have prepared a replication package [11].

3. To assess the bug resolution time with and without log messages, the authors

from the original study manually examined 250 randomly sampled bug re-

ports. In this replication study, we have developed an automated approach

that can flag bug reports containing log messages with high accuracy and an-

alyzed all the bug reports. Our new approach is fully automated and avoids

sampling bias [24, 55].

4. We have extended and improved the taxonomy of the evolution of logging

code based on our results. For example, we have extended the scenarios of

consistent updates to the log printing code from three scenarios in the original

study to eight scenarios in our study. This improved taxonomy should be

very useful for software engineering researchers who are interested in studying

software evolution and recommender systems.

5. LCAnalyzer has been applied on the most recent releases of ten different open

source software systems and revealed many previously unknown instances of

the anti-patterns in the logging code. We have filed a few representative

instances from each system to gather feedback. 71% and 100% of the reported

5



instances from Hadoop and Tomcat, respectively, have been already confirmed

or fixed by the developers. This has demonstrated the importance and the

impact of our work.

6. To evaluate the performance of LCAnalyzer, we have developed a benchmark

dataset which contains the verified anti-pattern instances [25]. This dataset is

the first of its kind, and can be useful for other researchers who are interested

in studying the logging practices.

Thesis Organization:

The thesis is organized as follows: Chapter 2 introduces the first part of the

thesis. Chapter 3 introduces the second part of the thesis. Chapter 4 introduces

the related work, and Chapter 5 concludes the thesis and discusses some future

work.
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2 The Replication Study

In this chapter, we will present an empirical study characterizing the logging prac-

tices in Java-based software systems from Apache software foundation.

2.1 Introduction

Logging code refers to debug statements that developers insert into the source code.

Log messages are generated by the logging code at runtime. Log messages, which

are generated in many open source and commercial software projects, contain rich

information about the runtime behavior of software projects. Compared to program

traces, which are generated by profiling tools (e.g., JProfiler or DTrace) and contain

low level implementation details (e.g., methodA invoked methodB), the information

contained in the log messages is usually higher level, such as workload related

(e.g., “Registration completed for user John Smith”) or error related (e.g., “Error

associated with adding an item into the shopping cart: deadlock encountered”).

Log messages are used extensively for monitoring [63], remote issue resolution [3],
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test analysis [40, 41] and legal compliance [13]. There are already many tools

available for gathering and analyzing the information contained in log messages

(e.g., logstash [9], Nagios [10] and Splunk [12]). According to Gartner, tools for

managing log messages are estimated to be a 1.5 billion market and have been

growing more than 10% every year [5].

There are three general approaches to instrumenting the projects with log mes-

sages [73]:

1. Ad-hoc logging: developers can instrument the projects with console output

statements like “System.out” and “printf”. Although ad-hoc logging is the

easiest to use, extra care is needed to control the amount of data generated

and to ensure that the resulting log messages are not garbled in the case of

concurrent logging.

2. General-purpose logging libraries: compared to ad-hoc logging, instrumenta-

tion through general-purpose logging libraries provides additional program-

ming support like thread-safe logging and multiple verbosity levels. For exam-

ple, in log4j [8], developers can set their logging code with different verbosity

levels like TRACE, DEBUG, INFO, WARN, ERROR, and FATAL, each of

which can be used to support different development tasks.

3. Specialized logging libraries: these libraries can be used to facilitate recording

8



particular aspects of the system behavior at runtime. For example, ARM

(Application Response Measurement) [36] is an instrumentation framework,

that is specialized at gathering performance information (e.g., response time)

from the running projects.

The work done by Yuan et al. [77] is the first work that empirically studies the

logging practices in different open source software projects. They studied the de-

velopment history of four open source software projects (Apache httpd, OpenSSH,

PostgreSQL and Squid) and obtained ten interesting findings on the logging prac-

tices. Their findings can provide suggestions for developers to improve their existing

logging practices and give useful insights for log management tools. However, it

is not clear whether their findings are applicable to other software projects, as

the four studied projects are server-side projects written in C/C++. The logging

practices may not be the same for projects from other application categories, or

projects written in other programming languages. For example, would projects de-

veloped in managed programming languages (e.g., Java or C#) log less compared

to projects developed in unmanaged programming languages (e.g., C or C++) due

to their additional programming constructs (e.g., automated memory management)

and enhanced security? As log messages are used extensively in servers for mon-

itoring and remote issue debugging [38], would server-side projects log more than

client-side projects?

9



Replication studies, which are very important in empirical sciences, address

one of the main threats to validity (External Validity). Recent replication study

in psychology has found that the findings in more than fifty out of the previous

published one hundred studies did not hold [16]. Replication studies are also very

important in empirical software engineering, as they can be used to compare the

effectiveness of different techniques or to assess the validity of findings across various

projects [18, 58]. There have been quite a few replication studies done in the

area of empirical software engineering (e.g., code ownership [35], software mining

techniques [34] and defect predictions [54, 68]).

In this chapter, we have replicated this study by analyzing the logging practices

of 21 Java projects from the Apache Software Foundation (ASF) [2]. The projects

in ASF are ideal case study subjects for this chapter due to the following two

reasons: (1) ASF contains hundreds of software projects, many of which are actively

maintained and used by millions of people worldwide; (2) the development process

of these ASF projects is well-defined and followed [47]. All the source code has

been carefully peer-reviewed and discussed [57]. The studied 21 Java projects are

selected from the following three different categories: server-side, client-side or

support-component-based projects. Our goal is to assess whether the findings from

the original study would be applicable to our selected projects. The contributions

of this chapter are as follows:

10



1. This is the first empirical study (to the best of our knowledge) on character-

izing the logging practices in Java-based software projects. Each of the 21

studied projects is carefully selected based on its revision history, code size

and category.

2. When comparing our findings against the original study, the results are ana-

lyzed in two dimensions: category (e.g., server-side vs. client-side) and pro-

gramming language (Java vs. C/C++). Our results show that certain aspects

of the logging practices (e.g., the pervasiveness of logging and the bug res-

olution time) are not the same as in the original study. To allow for easier

replication and to encourage future research on this subject, we have prepared

a replication package [11].

3. To assess the bug resolution time with and without log messages, the authors

from the original study manually examined 250 randomly sampled bug re-

ports. In this replication study, we have developed an automated approach

that can flag bug reports containing log messages with high accuracy and an-

alyzed all the bug reports. Our new approach is fully automated and avoids

sampling bias [24, 55].

4. We have extended and improved the taxonomy of the evolution of logging

code based on our results. For example, we have extended the scenarios of

11



consistent updates to the log printing code from three scenarios in the origi-

nal study to eight scenarios in our study. This improved taxonomy should be

very useful for software engineering researchers who are interested in studying

software evolution and recommender systems.

Chapter Organization

The rest of the chapter is organized as follows. Section 2.2 summarizes the original

study and introduces the terminology used in this chapter. Section 2.3 provides an

overview of our replication study and proposes five research questions. Section 2.4

explains the experimental setup. Sections 2.5, 2.6, 2.7, 2.8 and 2.9 describe the

findings in our replication study and discuss the implications. Section 2.10 discusses

the threats to validity. Section 2.11 concludes this chapter.

2.2 Summary of the Original Study

In this section, we give a brief overview of the original study. First, we introduce

the terminologies and metrics used in the original study. These terminologies and

metrics are closely followed in this chapter. Then we summarize the findings in the

original study.
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2.2.1 Terminology

Logging code refers to the source code that developers insert into the software

projects to track the runtime information. Logging code includes log printing

code and log non-printing code. Examples of non-log printing code can be log-

ging object initialization (e.g., “Logger logger = Logger.getLogger(Log4JMetri-

csContext.class)”) and other code related to logging such as logging object operation

(e.g., “eventLog.shutdown()”). The majority of the source code is not logging code

but code related to feature implementations.

Log messages are generated by log printing code, while a project is running.

For example, the log printing code “Log.info(‘username ’ + userName + ‘ logged

in from ’ + location.getIP())” can generate the following log message: “username

Tom logged in from 127.0.0.1” at runtime. As mentioned in Section 2.1, there

are three approaches to add log printing code into the systems: ad-hoc logging,

general-purpose logging libraries and specialized logging libraries.

There are typically four components contained in a piece of log-printing code:

a logging object, a verbosity level, static texts and dynamic contents. In the above

example, the logging object is “Log”; “info” is the verbosity level; “username” and

“ logged in from ” are the static texts; “userName” and “location.getIP()” are

the dynamic contents. Note that “userName” is a variable and “location.getIP()”

13



is a method invocation. Compared to the static texts, which remain the same

at runtime, the dynamic contents could vary each time the log-printing code is

invoked.

Taxonomy of the Evolution of the Logging Code

Figure 2.1 illustrates the taxonomy of the evolution of the logging code. The most

general concept, the evolution of logging code, resides at the top of the hierarchy. It

refers to any type of changes on the logging code. The evolution of logging code can

be further broken down into four categories: log insertion, log deletion, log move

and log update as shown in the second level of the diagram. Log deletion, log move

and log update are collectively called log modification.

The four types of log changes can be applied on log printing code and non-log

printing code. For example, log update can be further broken down into log printing

code update and log non-printing code update. Similarly, log move can be broken

into log printing code move and log non-printing code move. Since the focus of the

original study is on updates to the log printing code, for the sake of brevity, we do

not include further categorizations on log insertion, log deletion, and log move in

Figure 2.1.

There are two types of changes related to updates to the log printing code:

consistent update and after-thought update, as illustrated in the fourth level of
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Figure 2.1: Taxonomy of the evolution of the logging code
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Figure 2.1. Consistent updates refer to changes to the log printing code and changes

to the feature implementation code that are done in the same revision. For example,

if the variable “userName” referred to in the above logging code is renamed to

“customerName”, a consistent log update would change the variable name inside log

printing code to be like “Log.info(‘customername ’ + customerName + ‘ logged in

from ’ + location.getIP())”. We have expanded the scenarios of consistent updates

from three scenarios in the original study to eight scenarios in our study. For details,

please refer to Section 2.8.

After-thought updates refer to updates to the log printing code that are not con-

sistent updates. In other words, after-thought updates are changes to log-printing

code that do not depend on other changes. There are four kinds of after-thought

updates, corresponding to the four components to the log printing code: verbosity

updates, dynamic content updates, static text updates and logging method invocation

updates. Figure 2.2 shows an example with different kinds of changes highlighted

in different colours: the changes in the logging method invocation are highlighted

in red (System vs. Logger), the changes in the verbosity level in blue (out vs.

debug), the changes in the dynamic contents in italic (var1 vs. var2 and a.invoke()

vs. b.invoke()), the changes in static texts in yellow (“static content” vs. “Revised

static content”). A dynamic content update is a generalization of a variable update

in the original study. In this example, the variable “var1” is changed to “var2”. In
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System.out.println(var1 + “static content” + a.invoke());

a).Logging code in previous revision

Logger.debug(var2 + “Revised static content” + b.invoke());

b).Logging code in current revision

Figure 2.2: Log printing code update example

the original study, such an update is called variable update. However, there is the

case of “a.invoke()” getting updated to “b.invoke()”. This change is not a variable

update but a string invocation method update. Hence, we rename these two kinds

of updates to be dynamic content updates. There could be various reasons (e.g.,

fixing grammar/spelling issues or deleting redundant information) behind these

after-thought updates. Please refer to Section 2.9 for details.

Metrics

The following metrics were used in the original study to characterize various aspects

of logging:

� Log density measures the pervasiveness of software logging. It is calculated

using this formula: Total lines of source code (SLOC)
Total lines of logging code(LOLC)

. When measuring SLOC and

LOLC, we only study the source code and exclude comments and empty lines.

� Code churn refers to the total number of lines of source code that is added,
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removed or updated for one revision [49]. As for log density, we only study

the source code and exclude the comments and empty lines.

� Churn of logging code, which is defined in a similar way to code churn, mea-

sures the total number lines of logging code that is added, deleted or updated

for one revision.

� Average churn rate (of source code) measures the evolution of the source

code. The churn rate for one revision (i) is calculated using this formula:

Code churn for revision i
SLOC for revision i

. The average churn rate is calculated by taking the

average value of the churn rates across all the revisions.

� Average churn rate of logging code measures the evolution of the logging code.

The churn rate of the logging code for one revision (i) is calculated using this

formula: Churn of logging code for revision i
LOLC for revision i

. The average churn rate of the logging

code is calculated by taking the average value among the churn rate of the

logging code across all the revisions.

2.2.2 Findings from the Original Study

In the original study, the authors analyzed the logging practices of four open-source

projects (Apache httpd, OpenSSH, PostgreSQL and Squid). These are server-side

projects written in C and C++. The authors of the original study reported ten
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major findings. These findings, shown in the second column of Table 2.1 as “F1”,

“F2”, ..., “F10”, are summarized below. For the sake of brevity, F1 corresponds to

Finding 1, and so on.

First, they studied the pervasiveness of logging by measuring the log density of

the aforementioned four projects. They found that, on average, every 30 lines of

code contained one line of logging code (F1 ).

Second, they studied whether logging can help diagnose software bugs by ana-

lyzing the bug resolution time of the selected bug reports. They randomly sampled

250 bug reports and compared the bug resolution time for bug reports with and

without log messages. They found that bug reports containing log messages were

resolved 1.4 to 3 times faster than bug reports without log messages (F2 ).

Third, they studied the evolution of the logging code quantitatively. The average

churn rate of logging code was higher than the average churn rate of the entire code

in three out of the four studied projects (F3 ). Almost one out of five code commits

(18%) contained changes to the logging code (F4 ). Among the four categories of

log evolutionary changes (log update, insertion, move and deletion), very few log

changes (2%) were related to log deletion or move (F6 ).

Fourth, they studied further one type of log changes: the updates to the log-

printing code. They found that the majority (67%) of the updates to the log-

printing code were consistent updates (F5 ).
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Finally, they studied the after-thought updates. They found that about one

third (28%) of the after-thought updates are verbosity level updates (F7 ), which

were mainly related to error-level updates (and F8 ). The majority of the dynamic

content updates were about adding new variables (F9 ). More than one third (39%)

of the updates to the static contents were related to clarifications (F10 ).

The authors also implemented a verbosity level checker which detected incon-

sistent verbosity level updates. The verbosity level checker is not replicated in this

chapter, because our focus is solely on assessing the applicability of their empirical

findings on Java-based projects from the ASF.

2.3 Overview

This section provides an overview of our replication study. We propose five research

questions (RQs) to better structure our replication studies. During the examination

of these five RQs, we intend to validate the ten findings from the original study. As

shown in Table 2.1, inside each RQ, one or multiple findings from the original study

are checked. We compare our findings (denoted as “NF1”, “NF2”, etc.) against

the findings in the original study (denoted as “F1”, “F2”, etc.) and report whether

they are similar or different.

RQ1: How pervasive is software logging? Log messages have been used
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widely for legal compliance [13], monitoring [12, 50] and remote issue res-

olution [38] in server-side projects. It would be beneficial to quantify how

pervasive software logging is. In this research question, we intend to study

the pervasiveness of logging by calculating the log density of different software

projects. The lower the log density is, the more pervasive software logging is.

RQ2: Are bug reports containing log messages resolved faster than

the ones without log messages? Previous studies [23, 80] showed that

artifacts that help to reproduce failure issues (e.g., test cases, stack traces) are

considered useful for developers. As log messages record the runtime behavior

of the system when the failure occurs, the goal of this research question is to

examine whether bug reports containing log messages are resolved faster.

RQ3: How often is the logging code changed? Software projects are con-

stantly maintained and evolved due to bug fixes and feature enhancement [56].

Hence, the logging code needs to be co-evolved with the feature implemen-

tations. This research question aims to quantitatively examine the evolution

of the logging code. Afterwards, we will perform a deeper analysis on two

types of evolution of the log printing code: consistent updates (RQ4) and

after-thought updates (RQ5).

RQ4: What are the characteristics of consistent updates to the log
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printing code? Similar to out-dated code comments [69], out-dated log

printing code can confuse and mislead developers and may introduce bugs. In

this research question, we study the scenarios of different consistent updates

to the log printing code.

RQ5: What are the characteristics of the after-thought updates to the

log printing code? Ideally, most of the changes to the log printing code

should be consistent updates. However, in reality some changes in the logging

printing code are after-thought updates. The goal of this research question is

to quantify the amount of after-thought updates and to find out the rationales

behind them.

Sections 2.5, 2.6, 2.7, 2.8, 2.9 cover the above five RQs, respectively. For each

RQ, we first explain the process of data extraction and data analysis. Then we

summarize our findings and discuss the implications. As shown in Table 2.1, each

research question aims to replicate one or more of the findings from the original

study. Our findings may agree or disagree with the original study, as shown in the

last column of Table 2.1.
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Table 2.1: Comparisons between the original and the current study

Research
Questions (RQs)

Finding Comparison Implications Similar or
Different

(RQ1:) How per-
vasive is
software
logging?

F1: On average, every 30 lines of
source code contains one line of
logging code in server-side projects.
NF1: On average, every 51 lines of
source code contains one line of log-
ging code in server-side projects. The
log density is different among server-
side, client-side and supporting-
component based projects.

The pervasiveness of logging varies from
project to project. The correlation between
SLOC and LLOC is strong, which implies
that larger projects tend to have more log-
ging code. However, the correlation be-
tween SLOC and log density is weak. It
means that the scale of a project is not an
indicator of the pervasiveness of logging.
More research like [32] is needed to study
the rationales for software logging.

Different

(RQ2:) Are bug
reports
containing log
messages
resolved faster
than
the ones
without log
messages?

F2: Bug reports containing log mes-
sages are resolved 1.4 to 3 times faster
than bug reports without.
NF2: Bug reports containing log mes-
sages are resolved slower than bug re-
ports without log messages for server-
side and Supporting-component based
projects.

Although there are multiple artifacts (e.g.,
test cases and stack traces) that are consid-
ered useful for developers to replicate is-
sues reported in the bug reports, the fac-
tor of logging was not considered in those
works. Further research is required to re-
visit these studies to investigate the impact
of logging on bug resolution time.

Different

(RQ3:) How of-
ten is the
logging code
changed?

F3 and NF3: The average churn rate
of logging code is almost two times
(1.8) compared to the entire code.

There are many log analysis applications
developed to monitor and debug the health
of server-based projects [50]. Additional
research is required to study the co-
evolution of logging code and log monitor-
ing/analysis applications.

Similar

F4 and NF4: Logging code is modified
in around 20% of all committed revi-
sions

Similar

F6: Deleting or moving log printing
code accounts for only 2% of all log
modifications
NF6: Deleting and moving log printing
code accounts for 26% and 10% of all
log modifications, respectively

Deleting/moving logging code may hinder
the understanding of runtime behavior of
these projects. New research is required to
assess the risk of deleting/moving logging
code for Java-based systems.

Different

(RQ4:) What are
the characteris-
tics of consistent
updates to
the log printing
code?

F5: 67% of updates to the log printing
code are consistent updates.
NF5: 41% of updates to the log print-
ing code are consistent updates.

There are many fewer consistent updates
discovered in our study compared to the
original study. We suspect this could
be mainly attributed to the introduc-
tion of additional program constructs in
Java (e.g., exceptions and class attributes).
This highlights the need for additional re-
search and tools for recommending changes
in the logging code during each code com-
mit.

Different

(RQ5:) What are
the characteris-
tics of the after-
thought updates
to
the log printing
code?

F7: 26% of after-thought updates are
verbosity level updates, 72% of ver-
bosity level updates involve at least
one error event.
NF7: 21% of after-thought updates
are verbosity level updates, 20% of
verbosity level updates involve at least
one error event.

Contrary to the original study, which found
that developers are confused by verbosity
level, we find that developers usually have
a better understanding of verbosity lev-
els in Java-based projects in ASF. Further
qualitative studies (e.g., developer surveys)
are required to understand the rationales
behind such differences.

Different

F8: 57% of non-error level updates are
changing between two non-default lev-
els.
NF8: 15% of non-error level updates
are changing between two non-default
levels.

Different

F9: 27% of the after-thought updates
are related to variable logging. The
majority of these updates are adding
new variables.
NF9: Similar to the original study,
adding variables into the log print-
ing code is the most common after-
thought update related to variables.
Different from the original study, we
have found a new type of dynamic con-
tents, which is string invocation meth-
ods (SIMs).

Research on log enhancement should not
only focus on suggesting which variables to
log (e.g., [78, 79]) but also on suggesting
string invocation methods.

Different

F10 and NF10: Fixing misleading
information is the most frequent up-
dates to the static text.

Log messages are actively used in practice
to monitor and diagnose failures. However,
out-dated log messages may confuse devel-
opers and cause bugs. Additional research
is needed to leverage techniques from nat-
ural language processing and information
retrieval to detect such inconsistencies au-
tomatically.

Similar
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2.4 Experimental Setup

This section describes the experimental setup for our replication study. We first

explain our selection of software projects. Then we describe our data gathering and

preparation process.

2.4.1 Subject Projects

In this replication study, 21 different Java-based open source software projects from

Apache Software Foundation [2] are selected. All of the selected software projects

are widely used and actively maintained. These projects contain millions of lines of

code and three to ten years of development history. Table 2.2 provides an overview

of these projects including a description of the project, the type of bug tracking

systems, the start/end code revision date and the first/last creation date for bug

reports. We classify these projects into three categories: server-side, client-side,

and supporting-component based projects:

1. Server-side projects: In the original study, the authors studied four server-

side projects. As server-side projects are used by hundreds or millions of

users concurrently, they rely heavily on log messages for monitoring, failure

diagnosis and workload characterization [50, 63]. Five server-side projects

are selected in our study to compare the original results on C/C++ server-
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Table 2.2: Studied Java-based ASF projects

Category Project Description Bug
Track-
ing
Sys-
tem

Code History
(First, Last)

Bug History
(First, Last)

Server

Hadoop Distributed computing system Jira (2008-01-16,
2014-10-20)

(2006-02-02,
2015-02-12)

Hbase Hadoop database Jira (2008-02-04,
2014-10-27)

(2008-02-01,
2015-03-25)

Hive Data warehouse infrastructure Jira (2010-10-08,
2014-11-02)

(2008-09-11,
2015-04-21)

Openmeetings Web conferencing Jira (2011-12-9,
2014-10-31)

(2011-12-05,
2015-04-20)

Tomcat Web server Bugzilla (2005-08-05,
2014-11-01)

(2009-02-17,
2015-04-14)

Client

Ant Building tool Bugzilla (2005-04-15,
2014-10-29)

(2000-09-16,
2015-03-26)

Fop Print formatter Jira (2005-06-23,
2014-10-23)

(2001-02-01,
2015-09-17)

JMeter Load testing tool Bugzilla (2011-11-01,
2014-11-01)

(2001-06-07,
2015-04-16)

Rat Release audit tool Jira (2008-05-07,
2014-10-18)

(2008-02-03,
2015-09-29)

Maven Build manager Jira (2004-12-15,
2014-11-01)

(2004-04-13,
2015-04-20)

SC

ActiveMQ Message broker Jira (2005-12-02,
2014-10-09)

(2004-4-20,
2015-3-25)

Empire-db Relational database abstraction
layer

Jira (2008-07-31,
2014-10-27)

(2008-08-08,
2015-03-19)

Karaf OSGi based runtime Jira (2010-06-25,
2014-10-14)

(2009-04-28,
2015-04-08)

Log4j Logging library Jira (2005-10-09,
2014-08-28)

(2008-04-24,
2015-03-25)

Lucene Text search engine library Jira (2005-02-02,
2014-11-02)

(2001-10-09,
2015-03-24)

Mahout Environment for scalable algo-
rithms

Jira (2008-01-15,
2014-10-29)

(2008-01-30,
2015-04-16)

Mina Network application framework Jira (2006-11-18,
2014-10-25)

(2005-02-06,
2015-03-16)

Pig Programming tool Jira (2010-10-03,
2014-11-01)

(2007-10-10,
2015-03-25)

Pivot Platform for building installable
Internet applications

Jira (2009-03-06,
2014-10-13)

(2009-01-26,
2015-04-17)

Struts Framework for web applications Jira (2004-10-01,
2014-10-27)

(2002-05-10,
2015-04-18)

Zookeeper Configuration service Jira (2010-11-23,
2014-10-28)

(2008-06-06,
2015-03-24)
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side projects. The selected projects cover various application domains (e.g.,

database, web server and big data).

2. Client-side projects: Client-side projects also contains log messages. In this

study, five client-based projects, which are from different application domains

(e.g., software testing and release management), are selected to assess whether

the logging practices are similar to the server-based projects.

3. Supporting-component based (SC-based) projects: Both server and

client-side projects can be built using third party libraries or frameworks.

Collectively, we call them supporting components. For the sake of complete-

ness, 11 different SC-based projects are selected. Similar to the above two

categories, these projects are from various applications domains (e.g., net-

working, database and distributed messaging).

2.4.2 Data Gathering and Preparation

Five different types of software development datasets are required in our replication

study: release-level source code, bug reports, code revision history, logging code

revision history and log printing code revision history.
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2.4.2.1 Release-level source code

The release-level source code for each project is downloaded from the specific web

page of the project. In this chapter, we have downloaded the latest stable version of

the source code for each project. The source code is used for the RQ1 to calculate

the log density.

2.4.2.2 Bug Reports

Data Gathering: The selected 21 projects use two types of bug tracking sys-

tems: BugZilla and Jira, as shown in Table 2.2. Each bug report from these two

systems can be downloaded individually as an XML file. These bug reports are

automatically downloaded in a two-step process in our study. In step one, a list

of bug report IDs are retrieved from the BugZilla and Jira website for each of the

project. Each bug report (in XML format) corresponds to one unique URL in these

systems. For example, in the Ant project, bug report 8689 corresponds to https:

//bz.apache.org/bugzilla/show_bug.cgi?ctype=xml&id=8689. Each URL for

the bug reports is similar except for the “id” part. We just need to replace the

id number each time. In step two, we automatically downloaded the XML format

files of the bug reports based on the re-constructed URLs from the bug IDs. The

Hadoop project contains four sub-projects: Hadoop-common, Hdfs, Mapreduce and
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Yarn, each of which has its own bug tracking website. The bug reports from these

sub-projects are downloaded and merged into the Hadoop project.

Data Processing: Different bug reports can have different status. A script is

developed to filter out bug reports whose status are not “Resolved”, “Verified” or

“Closed”. The sixth column in Table 2.2 shows the resulting dataset. The earliest

bug report in this dataset was opened in 2000 and the latest bug report was opened

in 2015.

2.4.2.3 Fine-Grained Revision History for Source Code

Data Gathering: The source code revision history for all the ASF projects is

archived in a giant subversion repository. ASF hosts periodic subversion data

dumps online [4]. We downloaded all the svn dumps from the years between 1999

(the earliest) and 2014 (the latest). A local mirror of the software repositories is

built for all the ASF projects. The 64 GB of dump files result in more than 200

GB of subversion repository data.

Data Processing: We use the following tools to extract the evolutionary

information from the subversion repository:

� J-REX [62] is an evolutionary extractor, which we use to automatically extract

the source code as well as meta information (e.g., committer names, commit

logs, etc.) for all the revisions of the 21 projects. Different revisions of
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the same source code files are recorded as separate files. For example, the

source code of the first and the second revisions of Foo.java are recorded as

Foo v1.java, Foo v2.java, respectively.

� ChangeDistiller (CD) [30] parses two adjacent revisions (e.g., Foo v1.java and

Foo v2.java) of the source code into Abstract Syntax Trees (ASTs), compares

the ASTs using a tree differencing algorithm and outputs a list of fine-grained

code changes. Examples of such changes can be updates to a particular

method invocation or removing a method declaration.

� We have developed a post-processing script to be used after CD to measure

the file-level and method-level code churn for each revision.

The above process is applied to all the revisions of all the Java files from the

selected 21 projects. The resulting dataset records the fine-grained evolutionary

information. For example, for Hadoop, there are a total of 25,944 revisions. For

each revision, the name of the committer, the commit time, commit log, the code

churn as well as the detailed list of code changes are recorded. For example, revision

688920 was submitted by omalley at 19:33:43 on August 25, 2008 for “HADOOP-

3854. Add support for pluggable servlet filters in the HttpServers.”. In this revi-

sion, 8 Java files are updated and no Java files are added or deleted. Among the 8

updated files, four methods are updated in “/hadoop/core/trunk/src/core/org/a-
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pache/hadoop/http/HttpServer.java”, along with five methods that are inserted.

The code churn for this file is 125 lines of code.

2.4.2.4 Fine-Grained Revision History for the Logging Code

Based on the above fine-grained historical code changes, we applied heuristics

to identify the changes of the logging code among all the source code changes.

Our approach, which is similar to previous work [32, 65, 77], uses regular expres-

sions to match the source code. The regular expressions used in this chapter

are “.*?(pointcut|aspect|log|info|debug|error |fatal|warn |trace|(system\.out)|(syst-

em\.err)).*?(.*?);”:

� “(system\.out)|(system\.err))” is included to flag source code that uses stan-

dard output (System.out) and standard error (System.err).

� Keywords like “log” and “trace” are included, as the logging code, which uses

logging libraries like log4j, often uses logging objects like “log” or “logger”

and verbosity levels like “trace” or “debug”.

� Keywords like “pointcut” and “aspect” are also include to flag logging code

that uses the AspectJ [14].

After the initial regular expression matching, the resulting dataset is further

filtered to removed code snippets that contain wrongly matched words like “login”,
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“dialog”, etc. We manually sampled 377 pieces of logging code, which corresponds

to a 95% of confidence level with a 5% confidence interval. The accuracy of our

technique is 95%, which is comparable to the original study (94% accuracy).

2.4.2.5 Fine-Grained Revision History for the Log Printing Code

Logging code contains log printing code and non-log printing code. The dataset

obtained above (Section 2.4.2.4) is further filtered to exclude code snippets that

contain assignments (“=”) and does not have quoted strings. The resulting dataset

is the fine-grained revision history containing only the log printing code. We also

manually verified 377 log printing code from different projects. The accuracy of

our approach is 95%.

2.5 (RQ1:) How pervasive is software logging?

In this section, we studied the pervasiveness of software logging.

2.5.1 Data Extraction

We downloaded the source code of the recent stable releases of the 21 projects and

ran SLOCCOUNT [72] to obtain the SLOC for each project. SLOCCOUNT only

counts the actual lines of source code and excludes the comments and the empty

lines. A small utility, which uses regular expressions and JDT [7], is applied to
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automatically recognize the logging code and count LOLC for this version. Please

refer to Section 2.4.2.4 for the approach to automatically identify logging code.

2.5.2 Data Analysis

Log density is defined as the ratio between SLOC and LOLC. Smaller log density

indicates higher likelihood that developers write logging code in this project. As we

can see from Table 2.3, the log density value from the selected 21 projects varies.

For server-side projects, the average log density is bigger in our study compared to

the original study (51 vs. 30). In addition, the range of the log density in server-

side projects is wider (29 to 83 in our study vs. 17 to 38 in the original study). The

log density is generally bigger in client-side projects than server-side projects (63

vs. 51). For SC-based projects, the average log density is the lowest (48) among

all three categories. The range of the log density in SC-side project is the widest

(6 to 277). Compared to the original study, the average log density across all three

categories is higher in our study.

The Spearman rank correlation is calculated for SLOC vs. LOLC, SLOC vs.

log density, and LOLC vs. log density among all the project. Our results show

that there is a strong correlation between SLOC and LOLC (0.69), indicating that

projects with bigger code-base tend to have more logging code. However, the density

of logging is not correlated with the size of the system (0.11).
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Table 2.3: Logging code density of all the projects

Category Project Total lines of Total lines of Log density
source code (SLOC) logging code (LOLC)

Server

Hadoop (2.6.0) 891,627 19,057 47
Hbase (1.0.0) 369,175 9,641 38
Hive (1.1.0) 450,073 5,423 83

Openmeetings (3.0.4) 51,289 1,750 29
Tomcat (8.0.20) 287,499 4,663 62

Subtotal 2,049,663 40,534 51

Client

Ant (1.9.4) 135,715 2,331 58
Fop (2.0) 203,867 2,122 96

JMeter (2.13) 111,317 2,982 37
Maven (2.5.1) 20,077 94 214
Rat (0.11) 8,628 52 166
Subtotal 479,604 7,581 63

SC

ActiveMQ (5.9.0) 298,208 7,390 40
Empire-db (2.4.3) 43,892 978 45
Karaf (4.0.0.M2) 92,490 1,719 54

Log4j (2.2) 69,678 4,509 15
Lucene (5.0.0) 492,266 1,779 277
Mahout (0.9) 115,667 1,670 69

Mina (3.0.0.M2) 18,770 303 62
Pig (0.14.0) 242,716 3,152 77
Pivot (2.0.4) 96,615 408 244
Struts (2.3.2) 156,290 2,513 62

Zookeeper (3.4.6) 61,812 10,993 6
Subtotal 1,688,404 35,414 48

Total 4,217,671 81,435 50

2.5.3 Summary

NF1: Compared to the original result, the log density for server-side projects is

bigger (51 vs. 30). In addition, the average log density of the server-side, client-

side and SC-base projects are all different. The range of the log density values

varies dramatically among different projects.

Implications: The pervasiveness of logging varies from projects to projects. Al-

though larger projects tend to have more logging code, there is no correlation

between SLOC and log density. More research like [32] is needed to study the

rationales for software logging.
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2.6 (RQ2:) Are bug reports containing log messages re-

solved faster than the ones without log messages?

Bettenburg et al. [23, 80] have found that developers preferred bug reports that

contain test cases and stack traces, as these artifacts help reproduce the reported

issues. However, they did not look into bug reports that contain log messages. As

log messages may provide useful runtime information, the goal of this RQ is to

check if bug reports containing log messages are resolved faster than bug reports

without.

In the original study, the authors randomly sampled 250 bug reports and cat-

egorized them into bug reports containing log messages (BWLs) or bug reports

not containing any log messages (BNLs). Then they compared the median of the

bug resolution time (BRT) between these two categories. In this RQ, we improved

the original technique in two ways. First, rather than manual sampling, we have

developed a categorization technique that can automatically flag BWLs with high

accuracy. Our technique, which analyzes all the bug reports, can avoid the potential

risk of sampling bias [24, 55]. Second, we carried out a more thorough statistical

analysis to compare the BRT between BWLs and BNLs.
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2.6.1 Data Extraction

The data extraction process of this RQ consists of two steps: we first categorized

the bug reports into BWLs and BNLs. Then we compared the resolution time for

bug reports from these two categorizes.

Automated Categorization of Bug Reports

The main objective of our categorization technique is to automatically recognize log

messages in the description and/or comments sections of the bug reports. Figure 2.3

illustrates the process. We provide a step-by-step description of our technique using

real-world examples illustrated in following figures(the texts highlighted in blue are

the log messages):

� bug reports that contain neither log messages nor log printing code (Fig-

ure 2.4(a));

� bug reports that contain log messages not coming from this project (Fig-

ure 2.4(b));

� bug reports that contain log messages in the Description section (Figure 2.5(a));

� bug reports that contain log messages in the Comments section (Figure 2.5(b));
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Figure 2.3: An overview of our automated bug report categorization technique

� bug reports that do not contain log messages but only the log printing code(in

red) (Figure 2.6(a));

� bug reports that contain both the log messages and log printing code(in red)

(Figure 2.6(b));

� bug reports that do not contain log messages but contain the keywords(in

red) from log messages in the textual contents (Figure 2.7).

Our technique uses the following two types of datasets:

� Bug Reports: The contents of the bug reports, whose status are “Closed”,

“Resolved” or “Verified”, from the 21 projects have been downloaded and

stored in the XML file format. Please refer to Section 2.4.2.2 for a detailed

description of this process.

36



In HBASE-10044, attempt was made to filter attachments according to known file extensions.

However, that change alone wouldn't work because when non-patch is attached, QA bot doesn't 

provide attachment Id for last tested patch.This results in the modified test-patch.sh to seek 

backward and launch duplicate test run for last tested patch. If attachment Id for last tested patch

 is provided, test-patch.sh can decide whether there is need to run test.

(a) A sample of bug report with no match to logging code or log messages [Hadoop-10163]

This happens when we terminate the JT using control-C. It throws the following exception

Exception closing file my-file

java.io.IOException: Filesystem closed        

at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:193)

at org.apache.hadoop.hdfs.DFSClient.access$700(DFSClient.java:64)       

at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.closeInternal(DFSClient.java:2868)        

at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.close(DFSClient.java:2837)        

at org.apache.hadoop.hdfs.DFSClient$LeaseChecker.close(DFSClient.java:808)        

at org.apache.hadoop.hdfs.DFSClient.close(DFSClient.java:205)        

at org.apache.hadoop.hdfs.DistributedFileSystem.close(DistributedFileSystem.java:253)       

at org.apache.hadoop.fs.FileSystem$Cache.closeAll(FileSystem.java:1367)        

at org.apache.hadoop.fs.FileSystem.closeAll(FileSystem.java:234)        

at org.apache.hadoop.fs.FileSystem$ClientFinalizer.run(FileSystem.java:219)

Note that my-file is some file used by the JT.Also if there is some file renaming done, then the 

exception states that the earlier file does not exist. I am not sure if this is a MR issue or a DFS 

issue. Opening this issue for investigation.

(b) A sample of bug report with unrelated log messages [Hadoop-3998]

Figure 2.4: Sample bug reports with no related log messages
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Description: A job with 38 mappers and 38 reducers running on a cluster with 36 slots.

All mapper tasks completed. 17 reducer tasks completed. 11 reducers are still in the running state

and one is in the oending state and stay there forever.

Comments: The below is the relevant part from the job tracker:

2008-11-09 05:09:16,215 INFO org.apache.hadoop.mapred.TaskInProgress: Error from 

task_200811070042_0002_r_000009_0:

java.io.IOException: subprocess exited successfully ...

(a) A sample of bug report with log messages in the description section [Hadoop-10028]

Description:

The ssl-server.xml.example file has malformed XML leading to DN start error if the example file is 

reused.

2013-10-07 16:52:01,639 FATAL conf.Configuration (Configuration.java:loadResource(2151)) - error 

parsing conf ssl-server.xmlorg.xml.sax.SAXParseException: The element type "description" must be 

terminated by the matching end-tag "</description>".        

at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(DOMParser.java:249)       

at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(DocumentBuilderImpl.java:284)       

at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.java:153)        

at org.apache.hadoop.conf.Configuration.parse(Configuration.java:1989)

Comments:

The patch only touches the example XML files. No code changes.

(b) A sample of bug report with log messages in the comments section [Hadoop-4646]

Figure 2.5: Sample bug reports with log messages

I'm occasionally (1/5000 times) getting this error after upgrading everything to hadoop-0.18:

08/09/09 03:28:36 INFO dfs.DFSClient: Exception in createBlockOutputStream java.io.IOException: 

Could not read from stream

08/09/09 03:28:36 INFO dfs.DFSClient: Abandoning block blk_624229997631234952_8205908

DFSClient contains the logging code:

LOG.info("Exception in createBlockOutputStream " + ie);

This would be better written with ie as the second argument to LOG.info, so that the stack trace could be 

preserved. As it is, I don't know how to start debugging.

Looking at my Jetty code, I see this code to set mime mappings. public void addMimeMapping(String 

extension, String mimeType){ log.info("Adding mime mapping " + extension + " maps to " + 

mimeType); MimeTypes mimes = getServletContext().getMimeTypes(); 

mimes.addMimeMapping(extension, mimeType); }Maybe the filter could look for text/html and text/

plain content types in the response and only change the encoding value if it matches these types.

(a) A sample of bug report with only log printing code [Hadoop-6496]

(b) A sample of bug report with both logging code and log messages [Hadoop-4134]

Figure 2.6: Sample bug reports with logging code
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1. Incorporated Hairong's review comments. getPriority() now handles the case when there is 

only one replica of the file and that node is beingdecommissioned.

2. Enhanced the test case to have a test case for decommissioning a node that has the only replica 

of a block.

3. Removed the checkDecommissioned() method from the ReplciationMonitor because there is 

already a separate thread that checks whether the decommissioning was complete.

4. Fixed a bug introduced in hadoop-988 that caused pendingTransfers to ignore replicating 

blocks that have only one replica on a being-decommissioned node.

(g) An example of bug report with textual contents mistakenly matched to logging patterns  

[Hadoop bug report ID 1184]

Figure 2.7: A sample of bug report with textual contents mistakenly matched to

logging patterns [Hadoop-1184]

� Evolution of the Log Printing Code: A historical dataset, which con-

tains the fine-grained revision history for the log printing code (log update,

log insert, log deletion and log move), has been extracted from the code

repositories for all the projects. For details, please refer to Section 2.4.2.5.

Pattern Extraction: For each project, we extract two types of patterns: static

log-printing code patterns and log message patterns. Static log-printing code pat-

terns refer to all the snippets of log printing code that ever existed throughout the

development history. For example, “log.info(‘Adding mime mapping ’ + extension

+ ‘ maps to ’ + mimeType’)” in Figure 2.6(a) is a static log-printing code pattern.

Subsequently, log message patterns are derived based on the static log-printing code

patterns. The above log printing code pattern would yield the following log mes-

sage pattern: “Adding mime mapping * maps to *”. The static log-printing code

patterns are needed to remove the false alarms (a.k.a., all the log printing code)

in a bug report, whereas the log message patterns are needed to flag all the log
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messages in a bug report.

Pre-processing: Only bug reports containing log messages are relevant for

this RQ. Hence, bug reports like the one shown in Figure 2.6(a) should be filtered

out. However, the structure and the content of the logging code are very similar

to the log messages, as log messages (e.g., “Tom logged in at 10:20”) are gener-

ated as a result of executing the log printing code (“Log.info(user + ‘logged in at

’+ date.time())”). We cannot directly match the log message patterns with the

bug reports, as bug reports containing only the logging code (e.g., Figure 2.6(a))

would be also mistakenly matched. Hence, if the contents of the description or

the comments sections match the static log-printing code patterns, they are re-

placed with empty strings. Take Hadoop bug report 4134 (shown in Figure 2.6(b))

as an example. The static log-printing code patterns can only match the logging

code “LOG.info(‘Exception in createBlockOutputStream’ + ie);”, but not the log

message “Exception in createBlockOutputStream java.io.IOException ... ”.

Pattern Matching: In this step, a bug report is selected, if its textual con-

tents from the description or the comments sections match any of the log message

patterns. The selected bug reports are the likely candidates for BWLs. In this step,

bug reports like the ones shown in Figure 2.4(b), Figure 2.5(a), (b), and Figure 2.7

are selected.
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Data Refinement: However, there could still be false positives in the resulting

bug report dataset. One of the main reasons is that some words used in the log

messages may overlap with the textual content. For example, although “block

replica decommissioned” in Figure 2.7 matches one of the log message patterns, it

is not a log message but part of the textual contents of this bug report. To further

refine the dataset, a new filtering rule is introduced so that bug reports without

any timestamps are excluded, as log messages are usually printed with timestamps

showing the generation time for the log messages. Various format of timestamps

used in the selected projects (e.g. “2000-01-02 19:19:19” or “2010080907”, etc.)

are included in this filter rule. In this step, bug reports in Figure 2.7 are removed.

The remaining bug reports after this step are BWLs. All the other bug reports are

BNLs.

To evaluate our technique, 370 out of 9,646 bug reports are randomly sampled

from the Hadoop Common project (which is a sub project of Hadoop). The samples

correspond to a confidence level of 95% with a confidence interval of ± 5%. The

performance of our categorization technique is: 100% recall, 96% precision and

99% accuracy. Our technique cannot hit 100% precision as some short log message

patterns may frequently appear as the regular textual contents in the bug report.

Figure 2.8 shows one example. Although Hadoop bug report 11074 contains the

date string, the textual contents also match the log pattern “adding exclude file”.
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The test build seems to have failed:

[INFO] ------------------------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] ------------------------------------------------------------------------

[INFO] Total time: 4.490 s

[INFO] Finished at: 2014-09-10T01:50:39+00:00

[INFO] Final Memory: 20M/911M

[INFO] ------------------------------------------------------------------------

[WARNING] The requested profile "native" could not be activated because it does not exist.

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-enforcer-plugin:1.3.1:enforce (depcheck) on project hadoop-tools-dist: Some

Enforcer rules have failed. Look above for specific messages explaining why the rule failed. -> [Help 1]

I guess create a "native" profile for the new subproject.

I'll file a follow-on JIRA to address the findbugs issues here - they ostensibly already existed (I made no code changes), and instead of just adding a

findbugs exclude file, perhaps someone can try to squash some of the bugs.

Since you're only moving the code (not creating new code) this seems reasonable. Can you link that JIRA to this one?

An example of bug report we can not avoid identifying mistakenly [Hadoop bug report ID 11074]

Figure 2.8: A sample of falsely categorized bug report [Hadoop-11074]

However, these texts are not log messages but build errors.

2.6.2 Data Analysis

Table 2.4 shows the number of different types of bug reports for each project. Over-

all, among 81,245 bug reports, 4,939 (6%) bug reports contain log messages. The

percentage of bug reports with log messages varies among projects. For example,

16% of the bug reports in HBase contain log messages but only 1% of the bug

reports in Tomcat contain log messages. None of the bug reports from Pivot and

Rat contain log messages.

Figure 2.9 plots the distribution of BRT for BWLs and BNLs. Each plot is a

beanplot [44], which visually compares the distributions of BRT for bug reports

with log messages (the left part of the plot) and the ones without (the right part

of the plot). The vertical scale is shown in the natural logarithm of days. The
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Table 2.4: The number of BNLs and BWLs for each project.

Category Project # of Bug reports # of BNLs # of BWLs

Server

Hadoop 20,608 19,152 (93%) 1,456 (7%)

HBase 11,208 9,368 (84%) 1,840 (16%)

Hive 7,365 6,995 (95%) 370 (5%)

Openmeetings 1,084 1,080 (99%) 4 (1%)

Tomcat 389 388 (99%) 1 (1%)

Subtotal 40,654 36,983 (91%) 3,671 (9%)

Client

Ant 5,055 4,955 (98%) 100 (2%)

Fop 2,083 2,068 (99%) 15 (1%)

Jmeter 2,293 2,225 (97%) 68 (3%)

Maven 4,354 4,299 (99%) 55 (1%)

Rat 149 149 (100%) 0 (0%)

Subtotal 13,934 13,696 (98%) 238 (2%)

SC

ActiveMQ 5,015 4,687 (93%) 328 (7%)

Empire-db 205 204 (99%) 1 (1%)

Karaf 3,089 3,049 (99%) 40 (1%)

Log4j 749 704 (94%) 45 (6%)

Lucene 5,254 5,241 (99%) 13 (1%)

Mahout 1,633 1,603 (98%) 30 (2%)

Mina 907 901 (99%) 6 (1%)

Pig 3,560 3,188 (90%) 372 (10%)

Pivot 771 771 (100%) 0 (0%)

Struts 4,052 4,007 (99%) 45 (1%)

Zookeeper 1,422 1,272 (89%) 150 (11%)

Subtotal 26,657 25,627 (96%) 1,030 (4%)

Total 81,245 76,306 (94%) 4,939 (6%)
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21 selected projects have very different distributions of BRT for BNLs and BWLs,

except a few ones (e.g., Pig and Zookeeper). For example, BRT for BWLs has a

much wider distribution than BNLs for EmpireDB. We did not show the plots for

Pivot and Rat, as they do not have any bug reports containing log messages.

Table 2.5 shows the median BRT for both BNLs and BWLs in each project.

For example, in ActiveMQ, the median of BRT for BNLs is 12 days and 57 days for

BWLs. The median BRTs for BNLs and BWLs are split across the 21 projects: 8

projects have longer median BRTs for BNLs and 10 projects have shorter median

BRTs for BNLs. The other two projects (Pivot and Rat) do not contain any BWLs,

as none of their bug reports contain log messages. For server-side and SC-based

projects, the median of BRT of BNLs is shorter than that of BWLs, whereas the

median of BRT of BNLs is longer than that of BWLs for client projects. Our

finding is different from that of the original study, which shows the BRT is shorter

in BWLs for server-side projects.

To compare the BRT for BWLs and BNLs across all the projects, the original

study calculated the average of the median BRT for all the projects. The result is

shown in the brackets of the last row of Table 2.5. In our selected 21 projects, Ant

and Fop have very long BRT in general (>1000 days). Taking the average for all

the median BRTs from all the projects could result in a long BRTs overall (around

200 days). This number is not representative of all the projects, as most projects
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Figure 2.9: Comparing the bug resolution time between BWLs and BNLs for each

project.
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have a median BRT smaller than 30 days. Hence, we introduce a new metric in our

study, which is the median of the BRT for all the projects. The results of this new

metric are shown in the last row of Table 2.5. The overall median BRT for BNLs

(14 days) is shorter than BWLs (17 days) across all the projects.

We performed the non-parametric Wilcoxon rank-sum test (WRS) to compare

the BRT for BWLs and BNLs across all the projects. Table 2.5 shows our results.

The two-sided WRS test shows that the BRT for BWLs is significantly different

from BRT for BNLs (p <0.05) in nearly half (10/21) of the studied projects. Among

three categories, the BRT for BWLs is statistically significant in server-side and SC-

based projects. When we aggregate the data across 21 projects, the BRT between

BNLs and BWLs is also different.

To assess the magnitude of the differences between the BRT for BNLs and

BWLs, we have also calculated the effect sizes using Cliff’s Delta (only for the

projects of which the BRT for BWLs and BNLs are significantly different according

to WRS result) in Table 2.5. The strength of the effects and the corresponding range

of Cliff’s Delta (d) values [59] are defined as follows:
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Table 2.5: Comparing the bug resolution time of BWLs and BNLs. The p-values

for WRS are bolded if they are smaller than 0.05. The values for the effect sizes

are bolded if they are medium or large.

Category Project BNLs BWLs p-values for WRS Cliff’s Delta (d)

Server

Hadoop 16 13 <0.001 0.07 (negligible)

HBase 5 4 <0.001 0.12 (negligible)

Hive 7 7 <0.001 0.25 (small)

Openmeetings 3 8 0.51 0.19 (small)

Tomcat 3 2 0.86 -0.11 (negligible)

Subtotal 10 14 <0.001 0.08 (negligible)

Client

Ant 1,478 1,665 <0.05 0.16 (small)

Fop 2,313 2,510 0.35 0.13 (negligible)

Jmeter 24 19 0.50 -0.05 (negligible)

Maven 46 4 <0.05 -0.25 (small)

Rat 8 N/A N/A N/A

Subtotal 548 499 0.50 -0.03 (negligible)

SC

ActiveMQ 12 57 <0.001 0.23 (small)

Empire-db 13 3 0.50 -0.39 (medium)

Karaf 3 12 <0.05 0.22 (small)

Log4j 4 23 <0.05 0.26 (small)

Lucene 5 1 0.29 -0.16 (small)

Mahout 15 31 0.05 0.20 (small)

Mina 12 34 0.84 0.05 (negligible)

Pig 11 20 <0.001 0.13 (negligible)

Pivot 5 N/A N/A N/A

Struts 20 13 0.6 -0.04 (negligible)

Zookeeper 24 40 <0.05 0.14 (negligible)

Subtotal 9 28 <0.001 0.20 (small)

Overall 14(192) 17(236) <0.001 0.04 (negligible)
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effect size =



negligible if |d| ≤ 0.147

small if 0.147 < |d| ≤ 0.33

medium if 0.33 < |d| ≤ 0.474

large if 0.474 < |d|

Our results show that the effect sizes for majority of the projects are small or

negligible. Across the three categories and overall, the effect sizes of BRT between

BNLs and BWLs are also small and negligible.

2.6.3 Summary

NF2: Different from the original study, the median BRT for BWLs is longer than

the median BRT for BNLs in server-side projects and SC-based projects. The

BRT for BNLs is statistically different from the BRT for the BWLs in nearly half

of the studied projects (10/21). However, the effect sizes for BRT between the

BNLs and BWLs are small.

Implications: As shown in the previous studies [23, 80], multiple factors (e.g.,

test cases and stack traces) are considered useful for developers to replicate issues

reported in the bug reports. However, the factor of software logging was not

studied in those works. Further research is required to re-visit these studies to

examine the impact of various factors on bug resolution time.
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2.7 (RQ3:) How often is the logging code changed?

In this section, we quantitatively analyze the evolution of the logging code. We

measure the churn rate for both the logging code and the entire source code. We

compare the number of revisions with and without log changes. We also categorize

and measure the evolution of the logging code (e.g., the amount of insertion and

deletion of the logging code).

2.7.1 Data Extraction

The data extraction step for this RQ consists of four parts: (1) calculating the

average churn rate of source code, (2) calculating the average churn rate of the

logging code, (3) categorizing code revisions with or without log changes, and (4)

categorizing the types of log changes.

Part 1: Calculating the Average Churn Rate of Source Code

The SLOC for each revision can be estimated by measuring the SLOC for the

initial version and keeping track of the total number of lines of source code that

are added and removed for each revision. For example, the SLOC for the initial

version is 2,000. In version 2, two files are changed: file A (3 lines added and 2

lines removed) and file B (10 lines added and 1 lines removed). Hence, the SLOC
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for version 2 would be 2000 + 3− 2 + 10− 1 = 2010. The churn rate for version 2 is

3+2+10+1
2010

= 0.008. The average churn rate of the source code is calculated by taking

the churn rate for all the revisions. The resulting average churn rate of source code

for each project is shown in Table 2.6.

Table 2.6: Average churn rate of source code vs. average churn rate of logging

code for each project

Category Project Logging code Entire source code

Server

Hadoop 8.7% 2.4%

HBase 3.2% 2.4%

Hive 3.9% 2.1%

Openmeetings 3.7% 3.0%

Tomcat 2.6% 1.7%

Subtotal 4.4% 2.3%

Client

Ant 5.1% 2.4%

Fop 5.5% 3.4%

Jmeter 2.6% 2.0%

Maven 7.0% 4.0%

Rat 7.4% 4.1%

Subtotal 5.5% 3.2%

SC

ActiveMQ 5.4% 3.1%

Empire-db 5.0% 2.4%

Karaf 11.7% 4.7%

Log4j 6.1% 2.8%

Lucene 3.4% 2.0%

Mahout 10.8% 4.0%

Mina 7.0% 3.2%

Pig 4.3% 2.3%

Pivot 7.0% 2.0%

Struts 4.3% 2.8%

Zookeeper 5.2% 3.4%

Subtotal 6.4% 3.0%

Total 5.7% 2.9%
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Part 2: Calculating the Average Churn Rate of the Logging Code

The average churn rate of the logging code is calculated in a similar manner as the

average churn rate of source code. First, the initial set of logging code is obtained

by writing a parser to recognize all the logging code with JDT. Then, the LLOC

is calculated by keeping track of lines of logging code added and removed for each

revision (please refer to Section 2.4.2.4 for details). Afterwards, the churn rate of

the logging code for each revision is calculated. Finally, the average churn rate of

the logging code is obtained by taking the average of the churn rates for all the

revisions. The resulting average churn rate of logging code for each project is shown

in Table 2.6.

Part 3: Categorizing Code Revisions with or without Log Changes

We have already obtained a historical dataset that contains the revision history for

all the source code (Section 2.4.2.3) and another historical dataset that contains all

the revision history just for the logging code (Section 2.4.2.4). We write a script to

count the total number of revisions in the above two datasets. Then we calculate

the percentage of code revisions that contain changes in the logging code.
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Table 2.7: Committed revisions with or without logging code.

Category Project

Revisions with
Total

Percentagechanges to

logging code Revisions

Server

Hadoop 8,969 25,944 34.5%

Hbase 4,393 12,245 35.8%

Hive 1,053 4,047 26.0%

Openmeetings 861 2,169 39.6%

Tomcat 4,225 26,921 15.6%

Subtotal 19,501 71,326 27.3%

Client

Ant 1,771 11,331 15.6%

Fop 1,298 6,941 18.7%

Jmeter 300 2,022 14.8%

Maven 5,736 29,362 19.5%

Rat 24 825 2.9%

Subtotal 9,129 50,481 18.1%

SC

ActiveMQ 2,115 9,677 21.9%

Empire-db 123 515 23.9%

Karaf 802 2,730 29.3%

Log4j 1,919 6,073 31.5%

Lucene 2,946 28,842 10.2%

Mahout 573 2,249 25.4%

Mina 486 3,251 14.9%

Pig 470 2,080 22.5%

Pivot 280 3,604 7.76%

Struts 712 5,816 12.2%

Zookeeper 499 1,109 44.9%

Subtotal 10,925 65,946 16.6%

Total 39,555 187,753 21.1%

Part 4: Categorizing the Types of Log Changes

In this step, we write another script that parses the revision history for the logging

code and counts the total number of code changes that have log insertions, deletions,

updates and moves. The results are shown in Table 2.7.
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2.7.2 Data Analysis

Code Churn: Table 2.6 shows the code churn rate for the logging code and

the entire code for all the projects. For server-side projects, the churn rate of the

logging code is 1.9 times higher than that of entire code. This result is similar to

the original result. The churn rate of logging code in client-side projects and SC

based projects is also higher than that of the entire code. The highest churn rate

of the logging code is from Karaf (11.7%) and the lowest from Tomcat and JMeter

(2.6%). Across all the studied projects, the logging code churn rate is higher than

the source code churn rate. Similar to the original study, the average churn rate

of the logging code for all the projects is 2.3 times higher than the churn rate of

source code.

Code Commits with Log Changes: Table 2.7 tabulates the number of

revisions that contain changes to the logging code, the total number of revisions,

and the percentage of revisions containing log changes for each project and each

category. The percentage of code revisions containing log changes varies among

different projects and categories. Compared to the original study, the server-side

projects in our study have a slightly higher percentage of revisions with changes to

logging code (27.3% vs. 18.1%). This percentage for client-side (18.1%) and SC-

based (16.6%) projects is similar to the original study. Overall, 21.1% of revisions
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Table 2.8: Breakdown of different changes to the logging code

Category Project Log insertion Log deletion Log update Log move

Server

Hadoop 16,338 (32%) 13,983 (28%) 15,324 (30%) 5,205 (10%)

HBase 7,527 (32%) 6,042 (26%) 7,681 (33%) 2,113 (9%)

Hive 2,314 (39%) 1,844 (31%) 1,331 (21%) 515 (9%)

Openmeetings 1,545 (32%) 1,854 (38%) 1,027 (22%) 429(8%)

Tomcat 5,508 (36%) 4,120 (27%) 4,215 (28%) 1,409 (9%)

Subtotal 33,232 (33%) 27,843 (27%) 29,578 (30%) 9,671 (10%)

Client

Ant 2,331 (28%) 2,158 (26%) 3,217 (39%) 588 (7%)

Fop 1,707 (29%) 1,859 (32%) 1,776 (31%) 484 (8%)

Jmeter 202 (34%) 115 (19%) 207 (35%) 74 (12%)

Rat 14 (30%) 7 (15%) 21 (45%) 5 (10%)

Maven 6,689 (33%) 5,810 (29%) 5,583 (27%) 2,265 (11%)

Subtotal 10,943 (31%) 9,949 (28%) 10,804 (31%) 3,416 (10%)

SC

ActiveMQ 2,295 (32%) 1,314 (19%) 2,978 (42%) 489 (7%)

Empire-db 181 (35%) 129 (25%) 161 (31%) 53 (9%)

Karaf 998 (26%) 817 (21%) 1,542 (40%) 521 (13%)

Log4j 2,740 (27%) 2,101 (20%) 4,698 (46%) 722 (7%)

Lucene 6,119 (36%) 4,175 (25%) 4,737 (28%) 1,801 (11%)

Mahout 698 (18%) 754 (19%) 2,122 (55%) 306 (8%)

Mina 608 (29%) 518 (25%) 759 (36%) 220 (10%)

Pig 394 (32%) 392 (32%) 315 (26%) 127 (10%)

Pivot 239 (41%) 215 (37%) 116 (20%) 16 (2%)

Struts 718 (27%) 718 (27%) 879 (33%) 345 (13%)

Zookeeper 778 (35%) 575 (26%) 626 (28%) 239 (11%)

Subtotal 15,768 (31%) 11,708 (23%) 18,933 (37%) 4,839 (9%)

Total 59,943 (32%) 49,500 (26%) 59,315 (32%) 17,926 (10%)

contain changes to the logging code.

Types of Log Changes: There are four types of changes on the logging code:

log insertion, log deletion, log update and log move. Log deletion, log update and

log move are collectively called log modification. Table 2.8 shows the percentage

of each change operation among all the projects and all categories. In general, log

insertion and log update are the most frequent log change operations across all the

projects (32% for both operations), followed by log deletion (26%) and log move
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(10%). Our results are different from the original study, in which there are very few

(2%) log deletions and moves. We manually analyzed a few commits which contain

log deletion and move. We found that they are mainly due to code refactorings and

to changes in testing code.

2.7.3 Summary

F3 and F4: Similar to the original study, the logging code churn rate is two times

higher than that of the entire code base and around 20% of the code commits

contain log changes.

Implications: Similar to C/C++ projects in the original study, the logging code

in Java projects in our study is also actively maintained. The evolution and

maintenance of the logging code is a crucial activity in the evolution of software

projects. There are many log analysis applications developed to monitor and

debug the health of server-based projects [50]. The frequency of changes in the

logging code bring great challenges in maintaining these log analysis applications.

Additional tools and research are required to manage the co-evolution of logging

code and log monitoring applications.
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NF6: There are much more log deletions and moves (36% vs. 2%) across all three

categories in our study.

Implications: Deleting and moving logging code may hinder the understanding

of runtime behavior of these projects. New research is required to assess the risk

of deleting and moving logging code for Java-based systems.

2.8 (RQ4:) What are the characteristics of consistent up-

dates to the log printing code?

Both our results and the original study show that changes (churn) to the logging

code are more frequent than changes to the source code. Among all the changes

to the logging code, log update is one of the most frequent operations. As log

messages are generated by the log-printing code at runtime, it is important to

study the developers’ behavior on updates to the log printing code. The updates

to the log printing code can be further classified into consistent updates and after-

thought updates. An update to the log printing code is a consistent update, if this

piece of log printing code is changed along with other non-log related source code.

Otherwise, the log update operation is an after-thought update. In this RQ, we

study the characteristics of the consistently updated log printing code. In the next

section, we will study the after-thought updates.
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2.8.1 Data Extraction

The original study classified consistent updates to the log printing code into three

scenarios: log update along with changes to condition expressions, log update along

with variable re-declaration, and log update along with method renaming. Based on

manual investigation on some code revisions, we have identified a few additional

scenarios (e.g., log update following changes to the method parameters). This man-

ual investigation was repeated by the author of the thesis in this chapter, until no

new scenarios of consistent updates were found. As a result, we have identified

eight in our study. We wrote a Java program that automatically parses each code

revision using JDT and categorized the log printing code according to one of the

aforementioned eight scenarios.

Below, we explain these eight scenarios of consistent update using real-world

examples. For the sake of brevity, we do not include “log update along with” at

the beginning of each scenario. The scenario is indicated as “(new)” if it is a new

scenario identified in our study.

1. Changes to the condition expressions (CON) In this scenario, the log printing

code is updated along with the conditional expression in a control state-

ment (e.g., if/else/for/while/switch). The second row in Figure 2.10 shows

an example: the if expression is updated from “isAccessTokenEnabled” to
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“isBlockTokenEnabled”, while the static text of the log printing code is up-

dated from “Balancer will update its access keys every ” to “Balancer will

update its block keys every”.

2. Changes to the variable declarations (VD) is a modified scenario of variable

re-declaration in the original study. In Java projects, the variables can be

declared or re-declared in each class, method or any code block. For example,

the third row of Figure 2.10 show that the variable “bytesPerSec” is changed

to “kbytesPerSec”. The static text of the log message is updated accordingly.

3. Changes to the feature methods (FM) is an expanded scenario of method

renaming in the original study. We expand this scenario to include not only

method renaming, but also all the methods updated in the same revision. In

the example, the static text is added “Sending SHUTDOWN signal to the

NodeManager.”, and the method “shutdown” is changed in the same revision

according to our historical data.

4. Changes to the class attributes (CA)(new) In Java classes, the instance vari-

ables for each class are called “class attributes”. If the value or the name of

the class attribute gets updated along with the log printing code, it falls into

this scenario. In the example shown in the fourth row of Figure 2.10: both

the log printing code and the class attributes are changed
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from “AUTH SUCCESSFULL FOR” to “AUTH SUCCESSFUL FOR”.

5. Changes to the variable assignments (VA)(new) In this scenario, the value of

a local variable in a method has been changed along with the log printing

code. For the example shown in the sixth row of Figure 2.10: variable “fs” is

assigned to a new value in the new revision, while the log printing code adds

“fs” to its list of output variables.

6. Changes to the string invocation methods (MI) (new) In this scenario, the

changes are in the string invocations of the logging code. For the example

shown in the seventh row of Figure 2.10: a method name is updated from

“getApplicationAttemptId” to “getAppId”, and the change is also made in

the log printing code.

7. Changes to the method parameters (MP)(new) In this scenario, the changes

are in the names of the method parameters. For the example shown in the

eighth row of Figure 2.10: there is an added variable “ugi” in the list of

parameters for the “post” method. The log printing code also adds “ugi” to

its list of output variables.

8. Changes to the exception conditions (EX)(new) In this scenario, the changes

reside in a catch block and record the exception messages. For the exam-

ple shown in the ninth row of Figure 2.10: the variable in the log printing
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code is also updated due to changes in the catch block from “exception” to

“throwable”.

2.8.2 Data Analysis

Table 2.9 shows the breakdown of different scenarios for consistent updates and the

total number of the remaining updates, i.e., after-thought updates, for each project.

To conserve space, we use the short names introduced above for each scenario.

Within consistent updates, the frequency of each scenario is also shown. Around

50% of all the updates to the log printing code for server-side projects are consistent

updates. This percentage of consistent updates for server-side projects is much

lower in our study compared to the original study. This number is even smaller

for client-side (37.8%) and SC-based (28.5%) projects. Out of all the updates to

the log printing code, 41% of the updates on the log printing code are consistent

updates.

When we examine the different scenarios of the consistent updates, changes to

the condition expressions are the most frequent scenarios across all three categories.

This finding is similar to the original study. However, the portion of this scenario

is much lower in our study (13% vs. 57%).

Compared to the original study, the amount of after-thought updates is much

higher in our study (59% vs. 33%). Through manual sampling of a few after-
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Scenarios Examples 

Changes to 

the condition 

expressions 

Balancer.java 

 

  

 

 

Revision: 1077252 

 

 

 

 

Changes to 

the variable 

declarations 

TestBackpressure.java 
 

 

 

 

Changes to 

the feature 

methods 

ResourceTrackerService.java 
 

 
 

Changes to 

the class 

attributes 

Server.java 

 

 

 

Changes to 

the variable 

assignment 

DumpChunks.java 

 

 

Changes to 

the  string 

invocation 

methods 

CapacityScheduler.java 

 

 

 

Changes to 

the method 

parameters 

DatanodeWebHdfsMethods.java 

 

 

 

 

Changes to 

the exception 

conditions 

ContainerLauncherImpl.java  

 

 

 

 

 

 

Revision: 

1077137 

Revision: 

1077252 

if (isAccessTokenEnabled) { 

... 

LOG.info(“Balancer will update its access keys every ” + keyUpdaterInterval / (60 * 1000) + 

“ minute(s)”); … } 

if (isBlockTokenEnabled) { 

... 

LOG.info(“Balancer will update its block keys every ” + keyUpdaterInterval / (60 * 1000) + 

“ minute(s)”); 

… } 

long bytesPerSec = Long.valueOf(stat.split(" ")[3]) / SLEEP_SEC / 1000; 

System.out.println("data rate was " + bytesPerSec + " kb /second"); 

long kbytesPerSec = Long.valueOf(stat.split(" ")[3]) / TEST_DURATION_SECS / 1000; 

System.out.println("data rate was " + kbytesPerSec + " kb /second"); 

LOG.info("Disallowed NodeManager from  " + host); 

 

LOG.info("Disallowed NodeManager from  " + host + ", Sending SHUTDOWN signal to the 

NodeManager."); (Method shutdown has been changed) 

private static final String AUTH_SUCCESSFULL_FOR = "Auth successfull for "; 

AUDITLOG.info(AUTH_SUCCESSFULL_FOR + user); 

private static final String AUTH_SUCCESSFUL_FOR = "Auth successful for "; 

AUDITLOG.info(AUTH_SUCCESSFUL_FOR + user); 

dump(args, conf, System.out); 

fs = FileSystem.getLocal(conf); 

dump(args, conf, fs, System.out); 

LOG.info("Skipping scheduling since node " + nm + " is reserved by application " + 

node.getReservedContainer().getContainerId().getApplicationAttemptId()); 

LOG.info("Skipping scheduling since node " + nm + " is reserved by application " + 

node.getReservedContainer().getContainerId().getAppId()); 

public Response post( final InputStream in, ...){… 

   LOG.trace(op + ": " + path + Param.toSortedString(", ", bufferSize)); …} 

public Response post( final InputStream in, @Context final UserGroupInformation ugi, ...){... 

   LOG.trace(op + ": " + path + ", ugi=" + ugi + Param.toSortedString(", ", 

bufferSize)); …} 

try {...} catch (Exception e) { ... 

  LOG.warn("cleanup failed for container " + event.getContainerID() , e); …} 

try {...} catch (Throwable t) {... 

  LOG.warn("cleanup failed for container " + event.getContainerID() , t); …} 

Revision: 

803762 

Revision: 

806335 

Revision: 

1179484 

Revision: 

1196485 

Revision: 

1329947 

Revision: 

1334158 

Revision: 

796033 

Revision: 

797659 

Revision: 

1169485 

Revision: 

1169981 

Revision: 

1189411 

Revision: 

1189418 

Revision: 

1138456 

Revision: 

1141903 

Figure 2.10: Examples of the eight scenarios of consistent updates to the log

printing code
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Table 2.9: Detailed classifications of log printing code updates for each scenario

Category Project CON VD FM CA VA MI MP EX After-
thought

Server

Hadoop 13.1% 12.6% 3.9% 2.8% 2.5% 8.6% 6.3% 0.4% 49.7%
HBase 10.2% 13.3% 4.0% 4.4% 1.9% 11.4% 4.8% 0.2% 49.7%
Hive 9.8% 8.1% 3.8% 16.3% 1.9% 5.5% 2.7% 0.4% 51.5%

Openmeetings 7.9% 5.6% 18.3% 0.1% 2.7% 3.2% 13.9% 0.1% 48.2%
Tomcat 21.7% 7.4% 5.4% 4.2% 1.9% 4.0% 5.3% 1.0% 49.1%

Subtotal 13.0% 11.6% 4.8% 3.9% 2.3% 8.3% 6.0% 0.4% 49.7%

Client

Ant 12.9% 4.9% 34.1% 8.2% 3.6% 5.5% 4.1% 0.0% 26.6%
Fop 19.8% 6.6% 2.0% 2.0% 1.5% 4.3% 5.2% 0.1% 58.6%

JMeter 13.8% 7.7% 0.5% 11.7% 3.1% 1.5% 4.6% 0.0% 57.1%
Maven 14.3% 5.8% 1.6% 0.4% 1.6% 2.8% 3.7% 0.1% 69.6%

Rat 11.1% 22.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 66.7%
Subtotal 15.5% 6.1% 4.0% 1.9% 1.8% 3.3% 4.1% 0.2% 63.2%

SC

ActiveMQ 14.4% 4.3% 1.1% 2.0% 0.7% 1.9% 0.8% 0.0% 74.6%
Empire-db 8.0% 7.3% 0.0% 0.0% 0.7% 2.7% 3.3% 0.0% 78.0%

Karaf 8.4% 6.1% 1.3% 2.0% 0.2% 1.2% 1.7% 0.0% 79.0%
Log4j 4.9% 3.2% 3.6% 1.9% 0.9% 2.7% 5.1% 0.2% 77.6%

Lucene 7.8% 9.4% 6.3% 2.5% 2.1% 5.5% 4.4% 1.5% 60.4%
Mahout 8.1% 1.6% 0.5% 0.0% 0.2% 1.7% 4.4% 0.1% 83.4%

Mina 26.1% 6.1% 0.7% 0.3% 1.3% 2.5% 0.7% 0.2% 62.3%
Pig 15.4% 11.1% 4.7% 1.7% 0.0% 0.4% 7.3% 0.0% 59.4%

Pivot 4.8% 0.0% 3.2% 0.0% 3.2% 9.5% 4.8% 0.0% 74.6%
Struts 33.0% 3.9% 4.5% 0.3% 0.3% 2.2% 2.5% 0.5% 52.7%

Zookeeper 18.7% 6.8% 1.2% 4.4% 0.5% 6.8% 4.9% 1.0% 55.8%
Subtotal 11.9% 5.2% 2.6% 1.6% 0.9% 2.8% 3.1% 0.4% 71.5%

Total 13.0% 8.7% 3.9% 2.8% 1.7% 5.7% 4.8% 0.3% 59.0%

thought updates, we find that many after-thoughts are related to the changes in

logging style. For example, the Karaf project contains a very high portion (79%)

of after-thought updates. The static texts are updated in many updates to the

log printing code for logging style changes. For example, the log printing code

“LOGGER.warn(“Could not resolve targets.”);” from revision 1171011 of Obr-

BundleEventHandler.java, is changed to “LOGGER.warn(“CELLAR OBR: could

not resolve targets”);” in the next revision. In this same revision, “CELLAR OBR”

is added as a prefix in four other updates to the log printing code. These changes

are made to reflect the addition of the “CELLAR ORB” component.

We further group the data from each project into their corresponding categories.
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For server-side projects, the frequency of consistent updates is higher than for the

other two categories. This result suggests that developers of server-side projects

tend to maintain log printing code more carefully, as log messages play an important

role in monitoring and debugging server-side systems. For SC-based projects, the

frequency of after-thought updates is the highest (71%). We will further investigate

the characteristics of after-thought updates in the next section.

2.8.3 Summary

NF5: We have identified more scenarios of consistent updates (8 vs. 3 scenarios)

in our study compared to the original study. However, the percentage of consistent

updates of the log printing code is much smaller (50% vs. 67%). The percentage

of consistent updates is even smaller in client-side (38%) and SC-based (29%)

projects. Similar to the original study, CON is the most frequent consistent

update scenario across all three categories of projects.

Implications: As there are more programming constructs (e.g., exception and

class attributes) in Java, there are more scenarios related to consistent updates in

our study. More consistent update scenarios bring additional challenges for Java

developers to maintain the logging code. This highlights the need for additional

research and tools for recommending changes in the logging code during each code

commit.
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2.9 (RQ5:) What are the characteristics of after-thought

updates on log printing code?

Any log printing code updates that do not belong to consistent updates are after-

thought updates. For after-thought updates, there are four scenarios depending

on the updated components in the log printing code: verbosity level updates, static

text updates, dynamic content updates and logging method invocation updates. In

this section, we first conduct a high level quantitative study on the scenarios of

after-thought updates. Then we perform an in-depth study on the context and

rationale for each scenario.

2.9.1 High Level Data Analysis

We write a small program that automatically compares the differences between two

adjacent revisions of the log printing code. For each snippet of the after-thought

updates, this program outputs whether there are verbosity level updates, static

texts updates, dynamic content updates or logging method invocation updates.

Within the dynamic contents updates, we further separate them into whether the

differences are changes in variables or changes in string invocation methods.

Table 2.10 shows the frequency of each scenario of the after-thought updates.

The total percentage from each scenarios may exceed 100%, as a snippet of log
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Table 2.10: Scenarios of after-thought updates

Category Project Total Verbosity Dynamic Static Logging method

level contents texts invocation

Server

Hadoop 4,821 1,076 (22.3%) 2,259 (46.9%) 2,587 (53.7%) 705 (14.6%)

HBase 2,176 312 (14.3%) 1,155 (53.1%) 1,391 (63.9%) 99 (4.5%)

Hive 436 178 (40.8%) 147 (33.7%) 186 (42.7%) 42 (9.6%)

Openmeetings 423 160 (37.8%) 125 (29.6%) 179 (42.3%) 99 (23.4%)

Tomcat 1,056 276 (26.1%) 423 (40.1%) 390 (36.9%) 334 (31.6%)

Subtotal 8,912 2,002 (22.5%) 4,109 (46.1%) 4,733 (53.1%) 1,279 (14.4%)

Client

Ant 97 33 (34.0%) 22 (22.7%) 14 (14.4%) 54 (55.7%)

Fop 725 148 (16.1%) 138 (15.0%) 179 (19.5%) 452 (39.3%)

JMeter 112 26 (23.2%) 36 (32.1%) 58 (51.8%) 10 (8.9%)

Maven 2,203 535 (24.3%) 444 (20.2%) 888 (40.3%) 892 (40.5%)

Rat 6 2 (33.3%) 0 (0.0%) 2 (33.3%) 2 (33.3%)

Subtotal 3,335 742 (22.2%) 642 (19.3%) 1,141 (34.2%) 1,410 (42.3%)

SC

ActiveMQ 2,053 423 (20.6%) 408 (19.9%) 437 (21.3%) 1,433 (69.8%)

Empiredb 117 40 (34.2%) 69 (59.0%) 43 (36.8%) 22 (18.8%)

Karaf 1,118 243 (21.7%) 132 (11.8%) 729 (65.2%) 236 (21.1%)

Log4j 1,213 99 (8.2%) 237 (19.5%) 300 (24.7%) 892 (73.5%)

Lucene 1,300 357 (27.5%) 599 (46.1%) 791 (60.8%) 317 (24.4%)

Mahout 1,459 146 (10.0%) 183 (12.5%) 373 (25.6%) 1,049 (71.9%)

Mina 380 77 (20.3%) 89 (23.4%) 107 (28.2%) 196 (51.6%)

Pig 139 28 (20.1%) 24 (17.3%) 51 (36.7%) 46 (33.1%)

Pivot 47 23 (48.9%) 24 (51.1%) 19 (40.4%) 24 (51.1%)

Struts 337 39 (11.6%) 91 (27.0%) 141 (41.8%) 166 (49.3%)

Zookeeper 230 70 (30.4%) 106 (46.1%) 146 (63.5%) 10 (4.3%)

Subtotal 8,393 1,545 (18.4%) 1,962 (23.4%) 3,137 (37.4%) 4,391 (52.3%)

Total 20,640 4,289 (20.8%) 6,713 (32.5%) 9,011 (43.7%) 7,080 (34.3%)
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printing code may be updated in multiple components (e.g., in both the logging

method invocations and the static text). Similar to the original study, we find

that the most frequent after-thought scenario for server-side projects is static text

changes (53% vs. 44%). The dynamic content updates come next with 46%. In

addition, we also study the portion of updates to the invocation of the logging

method (e.g., changing from “System.out.println” to “LOG.ERROR”). This is a

new scenario introduced in our study. This scenario only accounts for 14.4%, which

is the lowest in all three categories.

The results for client-side projects and SC-based projects have a similar trend.

But they are quite different from server-side projects. Logging method invocation

updates are the most frequent scenario (42% and 52%). We manually sampled a few

such updates and checked their commit logs. They are all due to switching from ad-

hoc logging to the use of general-purpose logging libraries. For example, there are 95

logging method invocation updates in revision 397249 from ActiveMQ. As indicated

in the commit log, the purpose was to transform “a bunch of System.out.println()

to log.info()”. The static text updates are the second most frequent scenario (34%

and 37%). Dynamic content updates come in third and the verbosity level updates

are last.

66



2.9.2 Verbosity Level Updates

Similar to the original study, we separate the verbosity level updates into two types:

(1) error-level updates refer to log updates in which the verbosity levels are updated

to/from error levels (a.k.a., ERROR and FATAL); and (2) non-error level updates,

refer to log updates in which the verbosity levels of neither the previous nor the

current revision are error levels (e.g., DEBUG to INFO). In non-error level updates,

for each project we first manually identify the default logging level, which is set in

the configuration file of a project. Then we further break non-error level updates

into two categories depending on whether they involve the default verbosity level

or not.

The results are shown in Table 2.11. The majority (76%) of the verbosity level

updates for server-side projects are non-error event updates. Our finding is the

opposite of the original study, which reported that only 28% of verbosity level

updates are non-error level updates.

In our results, all three categories have the similar trend. Verbosity level updates

containing the default level is the most frequent one (around 65%). In the original

study, developers updating logging levels among non-default levels accounts for 57%

of the verbosity level changes. These changes are called as logging trade-offs, as the

authors of the original study suspect the cause is no clear boundary among multiple
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Table 2.11: Scenarios related to verbosity-level updates.

Category Project Total Non-default From/To Default Error

Server

Hadoop 1,076 147 (13.7%) 717 (66.6%) 212 (19.7%)

HBase 312 50 (16.0%) 193 (61.9%) 69 (22.1%)

Hive 178 9 (5.1%) 134 (75.3%) 35 (19.7%)

Openmeetings 160 54 (33.8%) 12 (7.5%) 94 (58.8%)

Tomcat 276 35 (12.7%) 179 (64.9%) 62 (22.5%)

Subtotal 2,002 295 (14.7%) 1,235 (61.7%) 472 (23.6%)

Client

Ant 33 1 (3.0%) 28 (84.8%) 4 (12.1%)

Fop 148 38 (25.7%) 78 (52.7%) 32 (21.6%)

JMeter 26 2 (7.7%) 8 (30.8%) 16 (61.5%)

Maven 535 69 (12.9%) 375 (70.1%) 91 (17.0%)

Rat 0 0 0 0

Subtotal 742 110 (14.8%) 489 (65.9%) 143 (19.3%)

SC

ActiveMQ 423 67 (15.8%) 312 (73.8%) 44 (10.4%)

Empire-db 40 1 (2.5%) 10 (25.0%) 29 (72.5%)

Karaf 243 129 (53.1%) 83 (34.2%) 31 (12.8%)

Log4j 99 23 (23.2%) 37 (37.4%) 39 (39.4%)

Lucene 357 13 (3.6%) 300 (84.0%) 44 (12.3%)

Mahout 146 5 (3.4%) 140 (95.9%) 1 (0.7%)

Mina 77 3 (3.9%) 65 (84.4%) 9 (11.7%)

Pig 28 4 (14.3%) 22 (78.6%) 2 (7.1%)

Pivot 23 0 (0.0%) 23 (100.0%) 0 (0.0%)

Struts 39 10 (25.6%) 16 (41.0%) 13 (33.3%)

Zookeeper 70 9 (12.9%) 29 (41.4%) 32 (45.7%)

Subtotal 1,545 264 (17.1%) 1,037 (67.1%) 244 (15.8%)

Total 4,289 669 (15.6%) 2,761 (64.4%) 859 (20.0%)

verbose levels, taking use, benefit, and cost into consideration. In our study, this

number drops to only 15% in general and there are no much differences among

the three categories. This finding probably implies that in the Java projects, the

logging levels, which often come from common logging libraries like log4j, are better

defined compared to the C/C++ projects.
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Summary

NF7: Contrary to the original study, the majority (80%) of the verbosity level

modifications are between non-error levels.

NF8: Contrary to the original study, the majority (65%) of the non-error ver-

bosity level updates involve the default level.

Implications: Contrary to the original study, we find that verbosity levels of

Java projects in the ASF are less frequently updated among non-default levels.

Further qualitative studies (e.g., developer surveys) are required to understand

the rationales behind such differences.

2.9.3 Dynamic Content Updates

Based on our definition, there are two kinds of dynamic contents in log printing

code: variables (Var) and string invocation methods (SIM). Each change can be

classified into three types: added, updated or deleted. The details of the variable

updates and string invocation method updates are shown in Table 2.12.

In our study, the percentage of added dynamic contents, updated dynamic con-

tents, and deleted dynamic contents are similar among all three categories. Nearly

half (42%) of the updates are added dynamic content updates, followed by deleted

dynamic content updates (33%) and updated dynamic content updates (23%).

Similar to the original study, added variables are the most common changes

in variable updates. Since we have introduced a new category (SIM), the added
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Table 2.12: Dynamic content updates

Category Project Added dynamic contents Updated dynamic contents Deleted dynamic contents

Var SIM Var SIM Var SIM

Server

Hadoop 745 (33.0%) 256 (11.3%) 244 (10.8%) 280 (12.4%) 235 (10.4%) 499 (22.1%)

HBase 269 (23.3%) 178 (15.4%) 148 (12.8%) 145 (12.6%) 149 (12.9%) 266 (23.0%)

Hive 68 (46.3%) 15 (10.2%) 2 (1.4% ) 18 (12.2%) 13 (8.8% ) 31 (21.1%)

Openmeetings 36 (28.8%) 17 (13.6%) 19 (15.2%) 16 (12.8%) 11 (8.8% ) 26 (20.8%)

Tomcat 126 (29.8%) 65 (15.4%) 43 (10.2%) 45 (10.6%) 48 (11.3%) 96 (22.7%)

Subtotal 1,244 (30.3%) 531 (12.9%) 456 (11.1%) 504 (12.3%) 456 (11.1%) 918 (22.3%)

Client

Ant 2 (9.1% ) 2 (9.1% ) 4 (18.2%) 2 (9.1% ) 4 (18.2%) 8 (36.4%)

Fop 49 (35.5%) 14 (10.1%) 24 (17.4%) 8 (5.8% ) 16 (11.6%) 27 (19.6%)

JMeter 6 (10.0%) 14 (23.3%) 2 (3.3% ) 8 (13.3%) 3 (5.0% ) 27 (45.0%)

Maven 97 (21.8%) 82 (18.5%) 28 (6.3% ) 76 (17.1%) 56 (12.6%) 105 (23.6%)

Rat 2 (100.0%) 0 (0.0% ) 0 (0.0% ) 0 (0.0% ) 0 (0.0% ) 0 (0.0% )

Subtotal 156 (24.3%) 118 (18.4%) 58 (9.0% ) 91 (14.2%) 79 (12.3%) 140 (21.8%)

SC

ActiveMQ 107 (26.2%) 120 (29.4%) 19 (4.7% ) 27 (6.6% ) 88 (21.6%) 47 (11.5%)

Empiredb 31 (44.9%) 5 (7.2% ) 1 (1.4% ) 1 (1.4% ) 2 (2.9% ) 29 (42.0%)

Karaf 70 (53.0%) 24 (18.2%) 7 (5.3% ) 5 (3.8% ) 9 (6.8% ) 17 (12.9%)

Log4j 80 (33.8%) 24 (10.1%) 41 (17.3%) 11 (4.6% ) 28 (11.8%) 53 (22.4%)

Lucene 276 (46.1%) 89 (14.9%) 50 (8.3% ) 28 (4.7% ) 77 (12.9%) 79 (13.2%)

Mahout 25 (13.7%) 3 (1.6% ) 74 (40.4%) 12 (6.6% ) 49 (26.8%) 20 (10.9%)

Mina 9 (10.1%) 19 (21.3%) 4 (4.5% ) 12 (13.5%) 23 (25.8%) 22 (24.7%)

Pig 6 (25.0%) 4 (16.7%) 8 (33.3%) 1 (4.2% ) 0 (0.0% ) 5 (20.8%)

Pivot 4 (16.7%) 5 (20.8%) 8 (33.3%) 0 (0.0% ) 5 (20.8%) 2 (8.3% )

Struts 22 (24.2%) 16 (17.6%) 12 (13.2%) 2 (2.2% ) 26 (28.6%) 13 (14.3%)

Zookeeper 36 (34.0%) 11 (10.4%) 16 (15.1%) 15 (14.2%) 13 (12.3%) 15 (14.2%)

Subtotal 666 (33.9%) 320 (16.3%) 240 (12.2%) 114 (5.8% ) 320 (16.3%) 302 (15.4%)

Total 2,066 (30.8%) 969 (14.4%) 754 (11.2%) 709 (10.6%) 855 (12.7%) 1,360 (20.3%)

variable updates account for 30% in server-side projects, which is much less than

that in the original study (62%). The percentage of added variable updates in

client-side projects is 24% and 33% in SC-based projects.

Among string invocation method updates, deleted SIM updates are the most

common (20%). The added and updated SIM update account for 14% and 10% of

all dynamic updates, respectively. For server-side and client-side projects, deleted

SIM updates are the most common scenario. In SC based projects, the added SIM

update is the most common scenario. In addition, among all three categories, the

updated SIM update is the least common scenario.
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Summary

NF9: Similar to the original study, adding variables into the log printing code is

the most common after-thought change related to variables. Different from the

original study, SIM is a new type of dynamic content update identified in our

study. The majority of the changes to the SIMs (20%) are deleted SIMs.

Implications: Among all the after-thought updates, there are much more dy-

namic content updates compared to the original study. This is due to the addition

of SIMs for Java-based projects. Research on log enhancement should not only

focus on suggesting which variables to log (e.g., [78, 79]) but also on suggesting

updates to the string invocation methods.

2.9.4 Static-text Updates

44% of the after-thought updates change the static text. Similar to the original

study, we manually sample some static text changes to understand the their ratio-

nales.

In the original study, the authors manually sampled 200 static text changes. In

this chapter, we used the stratified sampling technique [37] to ensure representative

samples are selected and studied from each project. Overall, a total of 372 static

text modifications are selected from the 21 projects. This corresponds to a confi-

dence level of 95% with a confidence interval of ± 5%. The portion of the sampled
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static text updates from each project is equal to the relative weight of the total

number of static text updates for that project. For example, there are 437 static

text updates of ActiveMQ out of a total of 9,011 updates from all the projects.

Hence, 18 updates from ActiveMQ updates are picked. As a result, six scenarios

are identified in our study. Below, we explain each of these scenarios using real

world examples.

1. Adding textual descriptions of the dynamic contents : When dynamic contents

are added in the logging line, the static texts are also updated to include the

textual description of the newly added dynamic contents. The first scenario

in Figure 2.11 shows an example: a string invocation method called “trans-

actionContext.getTransactionId()” is added in the dynamic contents, since

developers need to record more runtime information.

2. Deleting redundant information refers to the removal of static text due to

redundant information. The second scenario in Figure 2.11 shows an example:

the text “block=” is deleted, since “at” and “block=” mean the same thing.

3. Updating dynamic contents refers to the changing of dynamic content like

variables, string invocation methods, etc. The third scenario in Figure 2.11

shows an example: the variable “locAddr” is replaced with string invocation

method “server.getPort()” and the static text is updated to reflect this change.
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Scenario Examples 

1.Adding the 

textual 

description of  

the dynamic 

contents 

ActiveMQSession.java from ActiveMQ 

 

 

2.Deleting 

redundant 

information 

DistributedFileSystem.java from Hadoop 

 

 

3.Updating 

dynamic 

contents 

ResourceLocalizationService.java from Hadoop 

4.Spell/grammar 

changes 

HiveSchemaTool.java from Hive 

 

5.Fixing 

misleading 

information 

CellarSampleDosgiGreeterTest.java from Karaf 

 

 

6.Format & 

style changes 

DataLoader.java from Mahout 

 

7.Others 

StreamJob.java from Hadoop 
 

 

LOG.debug(getSessionId() + " Transaction Rollback"); 

LOG.debug(getSessionId() + " Transaction Rollback, txid:" + 

transactionContext.getTransactionId()); 

Revision: 

1071259 

Revision: 

1143930 

LOG.info("Found checksum error in data stream at block=" + dataBlock + " on datanode=" + 

dataNode[0]); 

LOG.info("Found checksum error in data stream at " + dataBlock + " on datanode=" + 

dataNode[0]); 

Revision: 

1390763 

Revision: 

1407217 

Revision: 

1087462 
LOG.info("Localizer started at " + locAddr); 

LOG.info("Localizer started on port " + server.getPort()); Revision: 

1097727 

Revision: 

1529476 
System.out.println("schemaTool completeted"); 

Revision: 

1579268 
System.out.println("schemaTool completed"); 

Revision: 

1239707 System.err.println(("Child1:" + node1)); 

System.err.println(("Node1:" + node1)); 
Revision: 

1339222 

log.error(id + ": " + string); 

log.error("{}: {}", id, string); 

Revision: 

891983 

Revision: 

901839 

Revision: 

681912 

Revision: 

696551 

System.out.println("  -jobconf dfs.data.dir=/tmp/dfs"); 

System.out.println("  -D stream.tmpdir=/tmp/streaming"); 

Figure 2.11: Examples of static text changes
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4. Fixing spelling/grammar issues refers to the change in the static texts to fix

the spelling or grammar mistakes. The fourth scenario in Figure 2.11 shows

an example: the word “completed” is misspelled and so it is corrected in the

revision.

5. Fixing misleading information refers to the change in the static texts due to

clarifications of this piece of log printing code. This scenario is a combination

of the two scenarios (clarification and fixing inconsistency) proposed in the

original study, as we feel both of them are related to fixing misleading infor-

mation. The fifth scenario in Figure 2.11 shows an example: the developer

thinks that “Node” instead of “Child” better explains the meaning of the

printed variable.

6. Formatting & style changes refer to changes to the static texts due to format-

ting changes (e.g., indentation). The sixth scenario in Figure 2.11 shows an

example: the code changes from string concatenation to the use of a format

string output while the content stays the same.

7. Others Any other static text updates that do not belong to the above scenarios

are labeled as others. One example shown in the last row Figure 2.11 is for

updating command line options.

Figure 2.12 shows the breakdown of different types of static text changes: the
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18% 

3% 

12% 

30% 

8% 

24% 

5% 

Adding textual descriptions for

dynamic contents

Updating dynamic contents

Deleting redundant information

Fixing misleading information

Spell/grammar

Formats & style change

Others

Figure 2.12: Breakdown of different types of static content changes

most frequent scenario is fixing misleading information (30%), followed by format-

ting & style changes (24%) and adding the textual description of the dynamic

contents (18%).
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Summary

F10: Similar to the original study, fixing misleading changes account for nearly

one third of the static text updates. There is also a significant portion of textual

changes due to the formatting & style changes and adding the textual description

of the dynamic contents.

Implications: The static contents of log printing code is actively maintained to

properly enhance the execution contexts. Misleading or outdated static contents

of log printing code confuse developers and cause bugs. Currently, developers

tend to manually update these contents to ensure log messages properly reflect

the execution contexts. Additional research is needed to leverage techniques from

natural language processing and information retrieval to detect such inconsisten-

cies automatically.

2.10 Threats to Validity

In this section, we will discuss the threats to validity related to this study.

2.10.1 External Validity

Subject Systems

The goal of this chapter is to validate whether the findings in the original study

can be applicable to other projects or projects written in Java. In this study, we
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have studied 21 different Java-based projects, which are selected based on different

perspectives (e.g. categories, sizes, development history and application domains).

Based on our study, we have found that many of our results do not match with some

of the findings in the original study, which was done on four C/C++ server-based

projects. In addition, the logging practices in server-side projects are also quite

different than those in client-side and SC-based projects. However, our results may

not be generalizable to all the Java-based projects since we only studied projects

from Apache Software Foundation. Additional empirical studies on the logging

practices are needed for other Java-based projects (e.g., Eclipse and its ecosystem,

Android related systems, etc.) or projects written in other programming languages

(e.g., .NET or Python).

Sampling Bias

Some of the findings from the original study are based on random sampling. How-

ever, the sizes of the studied samples were not justified. In this chapter, we have

addressed this issue in several aspects.

� Analyzing all instances in a dataset: in the case of RQ2 (bug resolution time

with and without log messages), we have studied all the bug reports instead

of the selected samples.

77



� Data-aware sampling: Whenever we are doing random sampling, we have

always ensured that the results fall under the confidence level of 95% with

a confidence interval of ± 5%. For sampling across multiple projects (e.g.,

RQ5), we have used stratified sampling, so that a representative number of

subjects is studied from each projects.

2.10.2 Internal Validity

In our study, we have found that bug reports containing log messages often take a

shorter time to be resolved than bug reports without log messages for Java-based

projects. Since there are many additional factors (e.g., the severity, the quality of

bug descriptions and the types of bugs), which are not assessed in this study, we

cannot extend the correlation between log messages and long bug resolution time

to causation.

2.10.3 Construct Validity

In this study, we have used J-REX and CD to extract the code revision history.

Both tools are very robust and have been used in quite a few other studies (e.g., [33,

34, 63, 65]). For most of our developed programs (e.g., for bug categorization or for

categorizing consistent updates of log printing code), we have performed thorough

testing to ensure our results are correct.
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2.11 Conclusion

Yuan et al. [77] conducted the first work that empirically studies the logging prac-

tices in different open source software projects. They studied the development

history of four open source software projects and obtained ten interesting findings

on the logging practices. We performed a large-scale replication study to check

whether their findings can be applicable to 21 Java project in Apache Software

Foundation. We found that some findings are similar while others are not. In par-

ticular, the portion of after-thought updates is much bigger. Since after-thought

updates often address previous logging anti-pattern issues, we want to further study

the logging anti-patterns to avoid recurrent issues and provide logging suggestions.

In the next chapter, we will present our findings.
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3 Characterizing and Detecting Anti-patterns

in the Logging Code

In the last chapter, we have studied the evolution of the log printing code. For

those after-thought updates, most of them are trying to address certain issues in

the log printing code. Hence, in this chapter, we will study the anti-patterns in

the log printing code. In terms of simplicity, all the “logging code” referred in this

chapter means “log printing code”.

3.1 Introduction

Logging is a common programming practice that developers use to record the

runtime behavior of a software system. Logs have been used widely in industry

for a variety of tasks (e.g., monitoring [63], debugging [76], remote issue resolu-

tion [50], test analysis [41], security and legal compliance [50, 13], and business

decision making [17]). Logs are generated by the logging code that developers in-

sert into the system. There are typically four components in a snippet of logging
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HBASE-750 
public void updateReaders() throws IOException { 
    this.lock.writeLock().lock(); 
    try { 
      // The keys are currently lined up at the next row to fetch.  Pass in 
      // the current row as 'first' row and readers will be opened and cue'd 
      // up so future call to next will start here. 
      ViableRow viableRow = getNextViableRow(); 
      openReaders(viableRow.getRow()); 
      LOG.debug("Replaced Scanner Readers at row " + 
        Bytes.toString(viableRow.getRow())); 
    } finally { 
      this.lock.writeLock().unlock(); 
    } 
  } 
 
 

public void updateReaders() throws IOException { 
    this.lock.writeLock().lock(); 
    try { 
      // The keys are currently lined up at the next row to fetch.  Pass in 
      // the current row as 'first' row and readers will be opened and cue'd 
      // up so future call to next will start here. 
      ViableRow viableRow = getNextViableRow(); 
      openReaders(viableRow.getRow()); 
      LOG.debug("Replaced Scanner Readers at row " + 
        Bytes.toString(viableRow.getRow())); 
    } finally { 
      this.lock.writeLock().unlock(); 
    } 
  } 

 
 
 
public void updateReaders() throws IOException { 
    this.lock.writeLock().lock(); 
    try { 
      …  
      ViableRow viableRow = getNextViableRow(); 
      openReaders(viableRow.getRow()); 
      LOG.debug("Replaced Scanner Readers at row " + 
        Bytes.toString(viableRow.getRow())); 
    } finally { 
      this.lock.writeLock().unlock(); 
    } 
  } 

 

 

 

 

Figure 3.1: An example of low quality logging code which caused crash of the

HBase server due to a NullPointerException [6].

code: a logging object, a verbosity level, static texts and dynamic contents. Fig-

ure 3.1 shows an example. The logging object is LOG, the verbosity level is debug,

the static texts are Replaced Scanner Readers at row and dynamic contents are

Bytes.toString(viableRow.getRow()).

Unlike other aspects in the software development process (e.g., code refactor-

ing [31] and release management [39]), recent empirical studies show that there are

no well-established logging practices in industry [32, 53]. Developers usually need

to rely on their common sense to perform their logging actions. In general, there

are three challenges associated with establishing effective logging practices:

1. The problem of where-to-log is about deciding the appropriate logging

points. Snippets of logging code can be inserted at various locations in the

source code (e.g., inside the try & catch exception blocks, inside the condition

blocks, etc.) to provide insights into the system’s runtime behavior. How-
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ever, excessive logging can bring additional maintenance overhead and cause

performance slow-downs [28]. Hence, developers need to be selective when

choosing the logging points.

2. The problem of what-to-log is about providing sufficient information in the

logging code. The static texts provide a short description of the execution

context and the dynamic contents indicate the current execute state. When

composing a snippet of logging code, the static texts should be clear and

easy to understand and the dynamic contents should be coherent and up-to-

date [42, 66].

3. The problem of how-to-log is about developing and maintaining high qual-

ity logging code. Logging is a cross-cutting concern, as the logging code is

scattered across the entire system and tangled with the feature code [46]. Al-

though there are language extensions (e.g., AspectJ [14]) to support better

modularization of the logging code, many industrial and open source systems

still choose to inter-mix the logging code with the feature code [53, 26, 77].

Hence, it is difficult to develop and maintain high quality logging code, while

the system evolves.

Existing log characterization studies focus on addressing the challenges of “where-

to-log” [32, 28, 79] and “what-to-log” [78]. There are very few works tackling the
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problem of “how-to-log” except partially in [77]. In [77], Yuan et al. developed a

verbosity level checker to detect inconsistent verbosity levels using clone detection

techniques. As there are already many lines of logging code in the open source

and industrial systems, low quality logging code can hinder program understand-

ing [66] and cause unexpected system failures [6]. Figure 3.1 shows a real-world bug

in the logging code that caused the crash of the HBase system. Since the object

ViableRow or the return value of the method call viableRow.getRow() can be null,

HBase was crashed once the NullPointerException was thrown. Hence, in this

chapter, we study the problem of “how-to-log” by focusing on characterizing and

detecting anti-patterns in the existing logging code.

In this chapter, we have conducted a comprehensive study on characterizing

anti-patterns in the logging code by manually going through more than six years of

the logging code changes of three popular open source software systems (ActiveMQ,

Hadoop and Maven). Our study has resulted in six anti-patterns in the logging

code. To demonstrate the usefulness of our findings, we have developed a tool,

called LCAnalyzer, which can automatically detect these anti-patterns in the source

code. The contributions of this chapter are:

1. This is the first systematic study on providing guidelines on developing and

maintaining high quality logging code. Case studies show that the character-

ized six anti-patterns in the logging code are general and exist in many open
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source software systems.

2. LCAnalyzer has been applied on the most recent releases of ten different open

source software systems and revealed many previously unknown instances of

the anti-patterns in the logging code. We have filed a few representative

instances from each system to gather feedback. 71% and 100% of the reported

instances from Hadoop and Tomcat, respectively, have been already confirmed

or fixed by the developers. This has demonstrated the importance and the

impact of our work.

3. To evaluate the performance of LCAnalyzer, we have developed a benchmark

dataset which contains the verified anti-pattern instances [25]. This dataset is

the first of its kind, and can be useful for other researchers who are interested

in studying the logging practices.

Chapter Organization

The rest of the chapter is organized as follows. Section 3.2 introduces the our pro-

cess of characterizing the anti-patterns in the logging code. Section 3.3 explains

the resulting anti-patterns and discusses our static analysis tool, LCAnalyzer. Sec-

tion 3.4 evaluates the performance of LCAnalyzer. Section 3.5 describes the results

after applying LCAnalyzer on ten different open source software systems and the
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initial developer feedback. Section 3.6 presents the threats to validity. Section 3.7

concludes this chapter.

3.2 Our Process of Characterizing Anti-patterns in the Log-

ging Code

In this section, we will explain our process of characterizing anti-patterns in the log-

ging code. As the majority of the logging code is changed together with the feature

code for various software maintenance tasks (e.g., renaming of functions or class

attributes, changing condition expressions, etc.) [26, 77], the independent logging

code changes are likely the fixes to the anti-patterns. Hence, in order to charac-

terize the anti-patterns in the logging code, we focus on isolating and analyzing

the logging code changes, which occur independently of the feature code changes.

Figure 3.2 shows our process. First, we extract the fine-grained code changes from

the historical code repositories. Second, we apply heuristics to automatically iden-

tify the extracted code changes which contain changes to the logging code. Then,

we use program analysis techniques to automatically categorize the logging code

changes into two types: (1) logging code changes due to co-changes in the feature

code; and (2) independent logging code changes. Finally, we conduct manual anal-

ysis on the independent logging code changes to characterize the anti-patterns in
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Figure 3.2: Our process of characterizing anti-patterns in the logging code.

the logging code.

In this chapter, we will analyze the independent logging code changes from

three popular open software systems: ActiveMQ, Hadoop and Maven as shown in

Table 3.1. These systems are from different application domains: ActiveMQ is a

message broker middleware; Hadoop is a distributed BigData compute platform;

and Maven is a client application used for build management and build automation.

We pick these systems as our study subjects because of their popularity (used

by millions of people worldwide) and rich development history (six to ten years).

Each of the changes has been carefully peer-reviewed and discussed before they are

accepted into the repository [57]. We have built a local mirror of the three systems

using the online data dumps [4].

3.2.1 Extracting Fine-Grained Code Changes

First, we run J-REX [62] on the historical code repository of these three systems to

extract the source code and the meta information of each commit (e.g., commit ID,
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Table 3.1: The three studied systems used in our characterization process.

System Code history Total Logging Indep.

(begin, end) revisions changes logging changes

ActiveMQ (12/02/2005, 9,677 2,757 571

10/19/2014) (20.7%)

Hadoop (01/06/2008, 25,944 10,077 2,843

10/20/2014) (28.2%)

Maven (12/15/2004, 29,362 3,164 943

11/01/2014) (29.8%)

commit logs, etc.). Different revisions of the same source code files are recorded

separately. For example, the source code of the first and the second commits

of Foo.java are recorded as Foo v1.java, Foo v2.java, respectively. Then we use

ChangeDistiller (CD) [30] to extract the fine-grained source code changes between

each pair of the adjacent revisions (e.g., code changes between Foo v1.java and

Foo v2.java). CD first parses the two file revisions into two Abstract Syntax Trees

(ASTs), then compares them using the tree differencing algorithm. The output from

CD is a list of fine-grained code changes (e.g., a method invocation in a function is

updated or a class attribute is renamed).

3.2.2 Identifying Logging Code Changes

We apply heuristics to automatically identify the code revisions containing logging

code changes. Our approach uses regular expressions to identify logging code using

keywords (e.g., “log”, “trace”, “debug”, etc.) in the code snippets. After the
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Revision: 806335 
Revision: 806335 

 

 
 

(a) An Example of the logging code co-changed with feature code 

ActiveMQSession.java 
Revision:1071259 

 
 

Revision: 1143930 

 

 
 
 

(b) An Example of independently changed logging code 

 

 

long bytesPerSec = Long.valueOf(stat.split(" ")[3]) / SLEEP_SEC / 1000; 

System.out.println("data rate was " + bytesPerSec + " kb /second"); 

 

LOG.debug(getSessionId() + " Transaction Rollback"); 

 
LOG.debug(getSessionId() + " Transaction Rollback, txid:" + 

          transactionContext.getTransactionId()); 

 

long kbytesPerSec = Long.valueOf(stat.split(" ")[3]) / TEST_DURATION_SECS / 1000; 
System.out.println("data rate was " + kbytesPerSec + " kb /second"); 

long bytesPerSec = Long.valueOf(stat.split(" ")[3]) / SLEEP_SEC / 1000; 

System.out.println("data rate was " + bytesPerSec + " kb /second"); 

 

LOG.debug(getSessionId() + " Transaction Rollback"); 

 
LOG.debug(getSessionId() + " Transaction Rollback, txid:" + 

          transactionContext.getTransactionId()); 

 

long kbytesPerSec = Long.valueOf(stat.split(" ")[3]) / TEST_DURATION_SECS / 1000; 
System.out.println("data rate was " + kbytesPerSec + " kb /second"); 

Figure 3.3: Examples of co-changed and independently changed logging code.

initial regular expression matching, the resulting dataset is further filtered to remove

code snippets that contain mismatched words like “login”, “dialog”, etc. We then

remove the logging code (e.g., the code snippets for logging object initializations)

which do not generate logs. We achieve this by excluding code snippets that contain

assignments (“=”). Our approach, which is similar to [32, 26, 77, 65], can correctly

identify logging code changes based on our manual random sampling of the results.

The fourth column in Table 3.1 shows the total number of logging code changes for

the three systems. For example, there are 2,757 snippets of logging code changes

in ActiveMQ.
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3.2.3 Categorizing Logging Code Changes

In general, there are two types of logging code changes: (1) changes in the logging

code due to co-changes in the feature code; and (2) independently changed logging

code. We have developed a program to automatically identify the co-changed log-

ging code. Our program, which uses JDT [7], identifies the logging code and the

feature code co-changes using program dependency analysis. We will explain our

technique using a running example shown in Figure 3.3.

First, the program analyzes the changed feature code to identify the modified

entities (e.g., updates to function Foo or renaming of local variable bar, etc.). For

example, the variable bytesPerSec is updated to kbytesPerSc in Figure 3.3(a).

Then, the program categorizes various changed components of the logging code. In

Figure 3.3(a), only the dynamic content, variable bytesPerSec, is updated. Finally,

the program tries to match the categorized changed components in the logging

code to the modified entities in the feature code. If all the changed components

in a snippet of logging code can be matched to the modified entities in the feature

code, this snippet of logging code is considered as being co-changed with the feature

code. For changes in the static texts, after filtering out the common words (e.g.,

“the”, “a”, etc.), we tokenize the changes into an array of words. If we can match

all the changed words in the static texts and all the changed components in the
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dynamic contents to modified feature code entities, we consider this code snippet

as co-changed logging code. For the logging code example show in Figure 3.3(a),

as the only change in the logging code is a variable update and we can find the

matching modified entity in the feature code, it is considered to be a snippet of

co-changed logging code.

The remaining set of logging code changes are independently changed logging

code, as one or multiple changed components cannot be matched with correspond-

ing modified feature code entities. In Figure 3.3(b), variable locAddr is changed

to a method invocation server.getPort() to provide more execution context. As

there is no corresponding feature code changes, it is a snippet of independently

changed logging code. We have randomly sampled 377 instances of logging code

changes which corresponds to a 95% confidence level and ±5% confidence interval.

Our method achieves a precision of 97%. The reason for the 3% misclassification

is mainly due to some co-changed textual changes cannot matched exactly word-

b-word to the modified changed entities. For example, the words “resizable” and

“array” in the static texts cannot be exactly matched with the updated variable

“resizeableArray”. The last column in Table 3.1 shows the number of independently

changed logging code and their percentage with respect to the total number of log-

ging code changes. For example, there are only 2,843 instances of independently

changed logging code in Hadoop. This corresponds to 28.2% ( 2843
10077

× 100%) of the
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total logging code changes.

3.2.4 Manual Analysis

Our hypothesis is that such independently changed logging code is usually for ad-

dressing anti-patterns issues. To validate our hypothesis, we have manually gone

through 352 pairs of independently changed logging code. This corresponds to a

confidence level of 95% with a confidence interval of ± 5%. We use the stratified

sampling technique [37] to ensure representative samples are selected and studied

from each project. The portion of the sampled code snippets from each project is

equal to the relative weight of the total number of independently changed logging

code for that project. For example, there are 943 snippets of independently changed

logging code in Maven out of a total of 4,357 from all three projects. Hence, 76

( 943
4357
× 352) snippets are selected for Maven. For each of the selected code snippet,

we have carefully compared the selected and the previous revisions to understand

the rationales behind the logging code changes.

Table 3.2 shows the results of our manual analysis. It contains a total of nine

reasons for independently changing the logging code. Each row in the table cor-

responds to one particular type of rationale. It contains the description and the

number of instances found in the three studied systems. If we cannot find any

instances of one rational for that system, we indicate that cell as “-”. The nine
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different rationales belong to two different categories: “what-to-log” and “how-to-

log”. As this dataset only contains the changes to the existing logging code, there

are no logging code changes in the category of “where-to-log”. There are a few

instances in the row of “Others”, as we cannot find the reasons for those changes.

We have found four rationales of logging code changes in the category of “what-to-

log”. They take up more than 70% of the sampled code snippets. This shows the

importance of studying the problem of “what-to-log” [78, 43]. Since this is not the

focus of this chapter, we will not further expand our analysis in this category.

There are five rationales in the category “how-to-log”. Each corresponds to

the different fixes to the anti-patterns in the logging code. Among these three

systems, Hadoop has the largest number of instances in each rationale. This is not

an indication of lower quality logging code in Hadoop, as the logs from Hadoop are

actively being monitored and analyzed [10]. Rather, it is because the size of LOC

and LLOC1 in Hadoop is much bigger than ActiveMQ and Maven. In Section 3.5,

we have investigated in more details on the relation among LOC, LLOC and the

number of anti-pattern instances. Log refactoring is a common rationale among all

three systems. This shows that developers from all three systems are making an

effort to improve the maintainability of their logging code.

To characterize the anti-patterns in the logging code, we have analyzed the

1In this chapter, LOC means “lines of code” and LLOC means “lines of logging code”.
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Table 3.2: Our manual analysis results on the independently changed logging

code.
Category Rationale Hadoop ActiveMQ Maven

What-to-log

Adding more context 81 27 31

Clarifying/correcting

contents

62 7 17

Fixing typos in the static

texts

14 2 11

Removing redundant info 13 4 3

How-to-log

Checking nullable

variables

12 - -

Removing object casting 3 - -

Correcting logging levels 3 - 2

Refactoring logging code 33 4 7

Changing output format 3 - -

Others - 6 2 5

Total - 230 46 76

code revisions before the independently changed logging code. We will describe the

details of these anti-patterns in the next section.

3.3 Anti-patterns in the Logging Code

In the previous section, we have found five different rationales dedicated for fixing

and improving the maintainability of the logging code (“How-to-log”). In this

section, we will describe the anti-patterns in the logging code by studying the source

code before these fixes. In general, as shown in Figure 3.4, there are five categories

of anti-patterns in the logging code, corresponding to the five rationales that we

have found. For each category of anti-patterns, we show an example code snippet
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extracted from real-world systems. There is one anti-pattern in each category,

except in “Logging code smells”, as there are two different types of logging code

smells found in our manual analysis. Hence, in total, there are six anti-patterns in

the logging code.

In sections 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5, we will describe the symptoms, the

impacts, and the fixes of each anti-pattern. To ease explantation, we will use the

code snippets shown in Figure 3.4 as our running examples. In section 3.3.6, we will

discuss about our logging code analysis tool, LCAnalyzer, which can automatically

detect the six anti-patterns.

3.3.1 Nullable Objects

In the logging code, the dynamic contents are generated during runtime. However,

in some cases, the objects used in the dynamic contents can be null. If not being

careful, such snippet of logging code would cause a NullPointerException and cause

the system to crash. In the else block of Figure 3.4(a), the object proxy can be null.

Although this example will not cause a NullPointerException, the logging code is

not informative regarding nullablity of proxy. The fix in this case is to check the

nullability of proxy and handle the output differently.

94



Name Example 

 

 

 

Nullable 

objects 

 
 
 
 
 

(a) RPC.java in Hadoop (Revision: 1177399) 
 

(a) RPC.java (Revision: 1177399) 
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(c) FifoScheduler.java (Revision:1178631)  

Logging  
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Duplication with a method’s definition (Dup1) 
 

 

 

 

 

 

 

 

 
 

(d) SocketTransceiver.java (Revision:798646) 

 Duplication with a local variable’s definition (Dup2) 
 

 

 

 

 

 

(e) DataXceiver.java (Revision: 802264) 

 

 

 

Malformed 

output 

 

 

 

 

 

 

 
 

(f) HTable.java (Revision: 656868) 

 

protected ClientScanner(final byte[][] columns, final byte [] startRow, … ){ 

  … 

  LOG.debug("Creating scanner over " + Bytes.toString(tableName) +  

            " starting at key '" + startRow + "'");  

  … 
} 

if (proxy != null && invocationHandler != null && invocationHandler instanceof Closeable) { 

  … 

} else { 

  LOG.error("Could not get invocation handler " + invocationHandler + 

            " for proxy " + proxy + ", or invocation handler is not closeable."); 

  … 

} 

LOG.info("DEBUG --- Container FINISHED: " + containerId); 

DataNode.LOG.warn("Added missing block to memory " + (Block)diskBlockInfo); 

 

remoteAddress = s.getRemoteSocketAddress().toString(); 

… 

LOG.warn("Invalid access token in request from " 

         + s.getRemoteSocketAddress() + " for replacing block " + block); 

 

public String getRemoteName() { 

  return channel.socket().getRemoteSocketAddress().toString(); 

} 

… 

public SocketTransceiver(SocketChannel channel) { 

  this.channel = channel; 

  LOG.info("open to -"+channel.socket().getRemoteSocketAddress()); 

} 

Figure 3.4: Code snippet examples of anti-patterns in the logging code.
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3.3.2 Explicit Cast

Explicit casting informs the system to forcibly convert an object into a partic-

ular type. It might cause runtime type conversion errors and system crash. In

Figure 3.4(b) diskBlockInfo was explicitly casted as the Block type. The fix is

to remove the explicit cast and let the system decide during runtime the type of

diskBlockInfo.

3.3.3 Wrong Verbosity Level

Many systems use verbosity level to control the types of information recorded into

log files. For example, the log4j framework [8] provides multiple verbosity levels:

FATAL, ERROR, WARN, INFO, DEBUG and TRACE. Each of these verbosity

levels can be used for different software development activities. For example, if the

verbosity level is set to be INFO, all the logs instrumented with INFO and higher

levels (a.k.a., FATAL, ERROR, WARN) are printed whereas lower level logs (a.k.a.,

DEBUG and TRACE) are discarded. Although there are recommended guidelines

on what types of information to record at each verbosity level [1], they are not

strictly followed by developers. This anti-pattern may cause logging overhead and

large volumes of redundant logs during log analysis. In Figure 3.4(c), although

the verbosity level is set to be INFO, the static texts suggest that this snippet of
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logging code is used for debugging purposes. The fix is to change the logging level

to “DEBUG”.

3.3.4 Logging Code Smells

Code smells are symptoms of bad design and implementation choices [31]. In addi-

tion to code smells, researchers define test smells to be poor design and implemen-

tation choices when developing test cases [27]. In a similar fashion as code smells

and test smells, in this chapter, we define logging code smells to be poor design

and implementation choices when developing the logging code. As one snippet of

effective logging code contains clear and easy to understand static texts, and co-

herent and up-to-date dynamic contents, the resulting logging code can be very

long. Long logging snippets would hinder understanding and increase maintenance

overhead. Hence, efforts are made to reduce the length of some long logging code

snippets. Below we describe two particular anti-patterns:

� Duplication with the Definition of Another Method (Dup1): In Fig-

ure 3.4(d), the method call channel.socket().getRemoteSocketAddre-

ss() is functionally equivalent as getRemoteName(). The fix is to replace

this method call sequences with a shorter method call (getRemoteName()).

� Duplication with the Definition of a Local Variable (Dup2): In Fig-
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ure 3.4(e), the local variable remoteAddress and the method call

s.getRemoteSocketAddress() point to the same contents in memory. The

fix here is to replace the method call sequences with the local variable

remoteAddress.

The result after the change is functionally equivalent, but shorter logging code.

3.3.5 Malformed Output

Some objects do not have a human readable format defined. If they are printed

directly, the logs can be malformed. In Figure 3.4(f), the variable startRow is

a byte array, which does not have human readable format defined. The fix is to

call Bytes.toString() method to properly format the variable startRow before

printing.

3.3.6 LCAnalyzer

To evaluate the usefulness of our findings, we have implemented a tool called LCAn-

alyzer, which automatically scans the source code to detect the six aforementioned

anti-patterns in the logging code. LCAnalyzer, which is a static code analyzer im-

plemented using JDT [7], flags the anti-patterns in the logging code using ASTs.

For example, to check whether one logging code snippet contains the Dup2 anti-

pattern: we first identify the method which contains this logging code. Then, in
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this method we extract all the variable declaration statements and variable as-

signment statements before this logging code. If there are at least one method

invocation sequences in this logging code snippet matched with one of the variable

declarations or assignments, this code snippet will be flagged as containing the

Dup2 anti-pattern.

We have conducted two different case studies in this chapter. In section 3.4, we

evaluate the performance of LCAnalyzer. In section 3.5, we have applied LCAna-

lyzer on the most recent releases of ten different open source software systems to

evaluate the generalizability of our anti-patterns and to gather developer feedback.

3.4 Evaluating the Performance of LCAnalyzer

Here we present our first case study, which is to evaluate the performance of LC-

Analyzer. Sections 3.4.1 and 3.4.2 describe our process of evaluating the recall and

the precision of LCAnalyzer, respectively.

3.4.1 Evaluating the Recall of LCAnalyzer

Constructing the Oracle Dataset

Unfortunately, there is no readily available oracle dataset which contains the veri-

fied instances of the anti-patterns in the logging code. To evaluate the performance
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Figure 3.5: The precision and recall of LCAnalyzer.

of LCAnalyzer, we have built an oracle dataset by ourselves. The author or this the-

sis randomly selected a set of files from historical releases of three studied projects

(ActiveMQ, Hadoop and Maven). Some of these files contain snippets of the veri-

fied anti-patterns (fixed by developers in the later revisions). In addition to these

verified code snippets, the author of the thesis also manually went through every

line of logging code in case there are any missing anti-patterns instances that are

not addressed by the open source developers. The process was repeated until there

are at least three verified instances of each type of anti-patterns. This process lasted

for 2 weeks. Then, this set of files were handed over to a Master student (MSc1),

who has no prior knowledge of logging code anti-patterns. Before MSc1 started

examining the content of these files, he was only presented with the definitions of
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LOG.info("Caught an AmazonClientException, which means the client encountered " +  
          "a serious internal problem while trying to communicate with S3, " +  
          "such as not being able to access the network.");  

 
 

Figure 3.6: An example code snippet that is a logging anti-pattern but

LCAnalyzer fails to flag.

six anti-patterns of logging code. The anti-pattern detection algorithm and the goal

of the experiment were not disclosed to him. The results between the author of

the thesis and the MSc1 were compared and reconciled. The final resulting oracle

dataset contains over 60 verified instances of anti-patterns.

Recall Results

We have applied LCAnalyzer on the oracle dataset. The blue dotted bars in Fig-

ure 3.5 shows the recall results. In general, LCAnalyzer can detect many anti-

pattern instances, as the recalls among all types of anti-patterns are pretty high.

In particular, LCAnalyzer can detect all the instances in four anti-patterns.

In one logging code snippet, it includes a function call from one external li-

brary. As LCAnalyzer cannot extract the definition of that function, it misses two

instances of Dup1. The reason for 80% recall in “Wrong verbosity level” is because

LCAnalyzer uses an AST-based detection approach and it cannot understand the

sentiment of the logging code. Figure 3.6 shows one such example. Although the

verbosity level is INFO, the static texts (“a serious internal problem”) suggest

101



Name Example 
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(a) JobImpl.java 

 

 

Intentional 

printing 

 

 

 

 

 

 

 

(b) BackupImage.java  

 

 

 
 
 
 

 

 

 
 
 

(a) Unexpected variable update 
 

 

 

 

 

 

 

(b) Intentional logging of byte arrays  

 

 

JobState oldState = getState(); 

try { 

    getStateMachine().doTransition(event.getType(), event); 

} catch (InvalidStateTransitonException e) { 

  … 

  LOG.info(jobId + "Job Transitioned from " + oldState + " to " + getState()); 
} 

private void logEditsLocally(long firstTxId, int numTxns, byte[] data) { 

  … 

  editLog.logEdit(data.length, data); 

  … 
} 

JobState oldState = getState(); 

try { 

    getStateMachine().doTransition(event.getType(), event); 

} catch (InvalidStateTransitonException e) { 

  … 

  LOG.info(jobId + "Job Transitioned from " + oldState + " to " + getState()); 
} 

private void logEditsLocally(long firstTxId, int numTxns, byte[] data) { 

  … 

  editLog.logEdit(data.length, data); 

  … 
} 

Figure 3.7: Code snippets that LCAnalyzer mistakenly flags as logging

anti-patterns.

that the verbosity level should be WARN, ERROR or FATAL instead.

We have also calculated the average recall of LCAnalyzer, by averaging the

recall values across six anti-patterns. The overall average recall for LCAnalyzer is

95%.

3.4.2 Evaluating the Precision of LCAnalyzer

To calculate the precision, we have manually examined all of our detected anti-

pattern instances from our oracle dataset. The bars with red diagonal lines in

Figure 3.5 show the precision results. There are two main reasons for the relative

low precision for LCAnalyzer:

1. Unexpected variable update: Although some variables are defined in the

same way as the method invocation sequences contained in the logging code,
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the values of these variables were modified. oldState in Figure 3.7(a) is

defined as getState() at the beginning. However, it was later modified by

the method sequences getStateMachine().doTransition(event.

getType(), event). Hence, getState() cannot be replaced by oldState in

the logging code.

2. Intentional logging: Although some snippets of logging code contain the

symptoms of the anti-patterns, developers perform these actions intentionally.

For example, although data in Figure 3.7(b) is a byte array, developers intend

to output binary data in this case.

We have also calculated the average precision of LCAnalyzer in a similar manner

as the average recall. The average precision for LCAnalyzer is 60%.

Case study on a verified dataset shows that our logging code analyzer, LCAnalyzer

can be used to successfully detect anti-pattern instances in the logging code.

To further improve the performance of our tool, researchers can look into other

techniques (e.g., data flow analysis or natural language processing) to encode and

detect the anti-patterns.
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3.5 Detecting Anti-patterns in the Open Source Software

Systems

As the case study in the previous section shows satisfactory performance of LCAn-

alyzer, we apply this tool on the latest releases of ten different open source software

systems. Our goal is to see how generalizable our characterized anti-patterns are.

Table 3.3 shows the list of studied releases and their details. All these systems are

actively maintained and used by millions of users worldwide. We have included

the three studied systems in Section 3.2, as we want to check whether the six anti-

patterns still exist in their latest releases. In addition, we have also included other

systems, especially systems not from Apache Software Foundation, to check the

generalizability of our anti-patterns. Among these ten selected systems, four sys-

tems belong to the Server domain, three systems are from the Client domain and

the remaining three systems are from the Middleware/framework domain.

The last two columns in Table 3.3 show the total lines of source code (LOC)

and lines of logging code (LLOC) for each system. In general, the systems in

the Server and the Middleware/framework domains contain more LOC and LLOC

than systems in the Client domain. In addition, there is a strong correlation (a

Spearman correlation value of 0.71) between LOC and LLOC indicating that larger

code base implies more logging code. Three (CloudStack, ArgoUML and Camel)
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Table 3.3: The ten studied open source systems and their release information.

Domain Name Version LOC LLOC AspectJ?

Server

CloudStack 4.9.0 572,461 11,433 Yes

Hadoop 2.7.2 954,484 12,570 No

HBase 1.2.2 433,709 7,466 No

Tomcat 8.5.4 303,922 2,927 No

ArgoUML 0.35.1 198,035 1,400 Yes

Client jEdit 5.3.1 122,061 752 No

Maven 3.3.9 78,525 400 No

Middleware/ ActiveMQ 5.14.0 385,293 6,211 No

framework Camel 2.17.3 803,039 7,369 Yes

GWT 2.8.0RC2 756,374 1,550 No

out of the ten studied systems also use AspectJ as part of their logging solutions.

However, these systems still contain hundreds or thousands of lines of logging code.

There is no relation between the amount of logging code and whether the systems

use AspectJ or not.

We have applied LCAnalyzer on the latest releases of the aforementioned ten

systems. Our detection results are tabulated in Table 3.4. Each row corresponds

to one system and each column refers to the number of instances for that anti-

pattern. For example, Hadoop contains 8 instances of “Wrong verbosity level”

which is 3.8% ( 8
210
∗ 100%) of the total number of detected anti-patterns instances

(210). In general, all ten systems contain anti-pattern instances. In particular,

the two anti-patterns (Dup1 and Dup2) in the category of “Logging code smells”

contain the biggest number of instances in nine out of ten systems (except Maven).
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Although developers have already addressed many of the past anti-pattern instances

in Hadoop, ActiveMQ and Maven, there are still many instances in their latest

releases.

The systems in the Server and Middleware/Framework domains contain more

anti-pattern instances than systems in the Client domain. However, these systems

also contain more lines of code. Hence, in order to investigate the relation between

the amount of anti-pattern instances and the size of systems, we have calculated

the Spearman correlation values between the total number of anti-pattern instances

for each type of anti-pattern and LLOC. We denoted this as corr(LLOC, x) in the

second last row of Table 3.4, in which “x” refers to a particular type of anti-pattern.

For example, the correlation between LLOC and Dup1 is 0.87. This correlation

value is bolded due to its statistical significance (a.k.a., p-value < 0.05). Similar

calculations are done between the anti-patterns and LOC. The results are shown

in the last row of Table 3.4. There are medium to strong correlations between the

number of anti-pattern instances and LLOC in five out of the six anti-patterns. This

means that the larger the amount of logging code is, the harder it is to maintain.

However, we do not see a clear connection between the anti-pattern instances and

the overall system sizes (LOC).
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Table 3.4: Our detection results on the latest release of ten open source software

systems. The Spearman correlation numbers in the last two rows are shown in

bold if they are statistically significant (p < 0.05).
Category System Wrong Dup1 Dup2 Nullable Malformed Explicit Total

verbosity objects outputs cast
level

Server

ClouStack 0 (0.0%) 125 (42.7%) 91 (31.1%) 17 (5.8%) 57 (19.5%) 3 (1.0%) 293
Hadoop 8 (3.8%) 113 (53.8%) 59 (28.1%) 10 (4.8%) 5 (2.4%) 15 (7.1%) 210
HBase 0 (0.0%) 95 (61.7%) 36 (23.4%) 7 (4.5%) 15 (9.7%) 1 (0.6%) 154
Tomcat 2 (6.5%) 8 (25.8%) 12 (38.7%) 3 (9.7%) 3 (9.7%) 3 (9.7%) 31

Client

ArgoUML 0 (0.0%) 4 (20.0%) 6 (30.0%) 8 (40.0%) 0 (0.0%) 2 (10%) 20
jEdit 0 (0.0%) 2 (20.0%) 5 (50.0%) 3 (30.0%) 0 (0.0%) 0 (0.0%) 10
Maven 4 (28.6%) 8 (57.1%) 1 (7.1%) 1 (7.1%) 0 (0.0%) 0 (0.0%) 14

Middleware/ ActiveMQ 4 (5.3%) 31 (41.3%) 26 (34.7%) 10 (13.3%) 3 (4.0%) 1 (1.3%) 75
Framework Camel 2 (2.7%) 21 (28.4%) 21 (28.4%) 5 (6.8%) 20 (27.0%) 5 (6.8%) 74

GWT 4 (7.0%) 41 (71.9%) 11 (19.3%) 1 (1.8%) 0 (0.0%) 0 (0.0%) 57

corr(LLOC,
x) - 0.27 0.87 0.90 0.78 0.65 0.71

corr(LOC, x) - 0.53 0.61 0.54 0.29 0.29 0.70

Our characterized anti-patterns are general, as we can find their instances across

various types of systems. There is a medium to strong correlation between the

amount of logging code and the number of anti-pattern instances. As many

industrial and open source systems contain large volumes of logging code [17,

32, 26, 77], this motivates the needs of further research into best practices of

developing and maintaining high quality logging code.

Initial Feedback from Developers

We have selected a few representative instances from each system and filed online

issue reports to gather developer feedback. So far, 71% of filed anti-pattern in-

stances in Hadoop have been accepted by the Hadoop developers. The reasons for

the rejected instances in Hadoop are similar to the case of “Intentional logging”.
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/** 

  * Dump out contents of $CWD and the 

  * environment to stdout for debugging 

  */ 

private void dumpOutDebugInfo() { 

  … 

  LOG.info("Dump debug output"); 

  … 

} 

Figure 3.8: LCAnalyzer considers this snippet of logging code as an anti-pattern

instance. But the Hadoop developer considered it as “intentional logging” and

rejected the issue [15].

Figure 3.8 shows one such example. The INFO level logging code contains the

debug message. However, the Hadoop developer rejected this instance, as she in-

dicated this was done intentionally (“Not sure if this should change to debug level,

since the function is called intentionally ... ”). 100% of the reported instances from

Tomcat8 are already accepted by their developers. The developer of jEdit rejected

all of the filed anti-patterns instances. But it was for a different reason: “Please do

not submit code analysis tool results as bug.”. The status of the other filed issues

are still pending.

Initial feedback from open source developers are very positive. This has clearly

demonstrated the importance and the value of this research.
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3.6 Threats to Validity

In this section, we will discuss the threats to validity.

3.6.1 Internal Validity

We characterize the anti-patterns in the logging code by focusing on independently

changed logging code, as these changes are likely the fixes to the existing logging

code. Our approach may miss some instances of logging code fixes, as some of

the co-changed logging code may be doing logging code fixing and feature code

co-evolution in one commit. However, this might be a minor case, as previous

studies [26, 77] show that most of the logging code co-changes are for co-evolution

with feature code.

We have developed a dependency-based approach to automatically select inde-

pendently changed logging code. If we can find corresponding modified entities in

the feature code for all the changed components in the logging code in one code

commit, this snippet of logging code is considered as co-changed with the feature

code. Otherwise, it is a snippet of independently changed logging code. As our ap-

proach has yield a relatively high precision 97%, we believe that we have obtained

most of the independently changed logging code.
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3.6.2 External Validity

We have characterized six different anti-patterns in the logging code by studying

the historical changes in three popular open source systems: ActiveMQ, Hadoop

and Maven in Apache Software Foundation. We have picked these systems due to

the following two reasons: (1) they come from different application domains (Mid-

dleware, Server and Client) and (2) these three systems are actively maintained.

All the committed source code has been carefully peer-reviewed [57]. We start our

anti-pattern characterization process from Hadoop, and then move on to ActiveMQ

and Maven. We have noticed that no additional anti-patterns have been identified

in ActiveMQ and Maven. Furthermore, case study in Section 3.5 shows that these

anti-patterns also exist in many other non-Apache open source systems. This gives

us some confidence in terms of the generalizablility of the anti-patterns. However,

our catalog of anti-patterns may not be complete. We plan to address this problem

by studying more systems in the future.

We have focused on characterizing and detecting logging anti-patterns in Java-

based systems. Some of our derived findings and code anti-patterns may not be

directly applicable to systems implemented in other programming languages. How-

ever, we feel that our approach to characterize logging anti-patterns is generic and

can be used to study the anti-patterns in the logging code developed in other pro-
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gramming languages (e.g., C or .NET).

3.6.3 Construct Validity

As there is no existing benchmarking dataset for anti-patterns in the logging code,

we have built an oracle dataset ourselves to evaluate the performance of LCAna-

lyzer. The dataset, which has been compiled and verified by two different persons,

contains the verified instances of anti-patterns in the logging code. Our process of

building the oracle dataset is similar to many other papers (e.g., [61, 52, 48]). How-

ever, we acknowledge that our oracle dataset may be incomplete (a.k.a., missing

some anti-pattern instances).

3.7 Conclusion

In this chapter, we manually characterized some of the logging anti-patterns and

encoded them into rules. Leveraging these rules, we designed and implemented

a research tool LCAnalyzer, which can automatically detect those anti-patterns.

Based on our results, LCAnalyzer achieves 95% recall and 60% precision.We have

filed a few selective instances to their issue tracking systems. So far, we have

received very positive feedback from the Hadoop and the Tomcat developers.

In the next chapter, we will discuss about related work.
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4 Related Work

In this chapter, we discuss five areas of related work on software logging: (1)

research done on logging code, (2) research done on log messages, (3) empirical

studies on the existing logging practices, (4) tools for understanding, developing

and maintaining logging code, and (5) code smells and refactoring.

4.1 Logging Code

We define several criteria (Table 4.1) to summarize the differences among previous

empirical studies on logs.

� Main focus presents the main objectives for each work;

� Projects show the programming languages of the subject projects in each

work; and

� Studies log modifications indicates whether the work studied modifications

on logs.
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Table 4.1: Empirical studies on logs

Previous work [32, 79] [77] [65]

Main focus

Categorizing logging code snip-

pets

Characterizing logging prac-

tices

Studying the relation between

logging and post-release bugs

Predicting the location of log-

ging

Predicting inconsistent ver-

bosity levels

Proposing code metrics related

to logging

Projects
Industry and GitHub projects

in C#

Open-source projects in

C/C++
Open-source projects in Java

Studies log

modifications
No Yes Yes

The work done by Yuan et al. [77] is the first empirical study on characterizing

the logging practices. The authors studied four different open-source applications

written in C/C++. Fu et al. studied the location of software logging [32, 79]

by systematically analyzing the source code of two large industrial systems from

Microsoft and two open source projects from GitHub. All these projects are written

in C#. Shang et al. [65] found that log related metrics (e.g., log density) were strong

predictors of post release defects. Ding et al. [29] tried to estimate the performance

overhead of logging.

Two works have proposed techniques to assist developers in adding additional

logging code to better debug or monitor the runtime behavior of the systems. Yuan

et al. [78] use program analysis techniques to automatically instrument the appli-

cation to diagnose failures. Zhu et al. [79] use machine leaning techniques to derive

common logging patterns from the existing code snippets and provide logging sug-

gestions to developers in similar scenarios.
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Most of the studies [32, 77, 78, 79] are done in C/C++/C# projects except the

work of Shang et al. [65]. First part of the thesis is a replication study of Yuan et

al. [77]. The goal of our study is to check whether their empirical findings can be

generalizable to software projects written in Java.

4.2 Log Messages

Log messages are the messages generated by the log printing code at runtime. Log

messages have been used and studied extensively to diagnose field failures [50, 75],

to understand the runtime behavior of a system [21, 22], to detect abnormal run-

time behavior for big data applications [64, 74], to analyze the results of a load

test [40, 41] and to customize and validate operational profiles [38, 67]. Shang

et al. [63] performed an empirical study on the evolution of log messages and

found that log messages change frequently over time. There are also many open

source and commercial tools available for gathering and analyzing log messages

(e.g., logstash [9], Nagios [10] and Splunk [12]).

4.3 Empirical studies on the existing logging practices

Industry studies show that there are no well-defined best practices to guide develop-

ers on developing and maintaining the logging code [32, 53]. Hence, it is worthwhile
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to study the logging practices of existing systems and learn from them.

Yuan et al. [26, 77] conducted a quantitative study on the logging code of sev-

eral large-scale open source software systems. They have found that developers are

constantly making an effort to improve the quality of their logging code. Shang

et al. [65] studied the relation between the spread of the logging code and system

quality. They found that log related metrics (e.g., log density) were strong pre-

dictors of post release defects. Kabinna et al. [43] performed a quantitative study

on the rationale of logging code changes. They built a data mining classifier to

model the historical logging code changes. Their study showed that file ownership,

developer experience, log density, and SLOC are important factors for deciding

whether a snippet of logging code needs to be changed. Kabinna et al. [42] studied

the migrations of logging libraries of several systems. They found that systems

migrate their logging libraries to gain additional functionalities, to improvement

maintainability, and to enhance performance. Over 70% of the migrated systems

suffer from migration bugs afterwards.

Our work is different from the above works, as we focus on studying the ra-

tionales behind independently changed logging code. Our qualitative study on the

logging code has resulted in six anti-patterns in the logging code, which can be used

to detect and improve the quality of existing logging code.
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4.4 Tools for better understanding, developing and main-

taining logging code

We further divide this area of research into three categories:

� Where-to-log tackles the problem of where to place the logging points. Yuan

et al. [76] proposed a program analysis-based approach to inferring additional

logging points to assist debugging. Fu et al. [32, 79] used a data mining-

based approach to automatically identifying the important factors impacting

the locations of the logging points. Ding et al. [28] used a constraint solving-

based method to determine, during runtime, the optimal logging points which

incur minimum performance overhead but maximum runtime information.

� What-to-log tackles the problem of adding sufficient runtime execution infor-

mation. Yuan et al. [78] proposed a program analysis-based approach to

suggesting additional variables to be added into the existing logging points

to facilitate error diagnosis.

� How-to-log tackles the problem of developing and maintaining high quality

logging code. Kiczales et al. [46] proposed Aspect Oriented Programming

(AOP) to automatically develop and maintain the logging code. However,

there are still many open source and industry systems which place the log-

ging code along side with the feature code. In this aspect, only Yuan et al.
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partially studied this problem in [77]. They used a clone detection-based ap-

proach to automatically identifying inconsistent verbosity levels. Our thesis

is the first work which systematically studies the problem of “How-to-log” by

characterizing and detecting the anti-patterns in the logging code.

4.5 Code smells and refactoring

Code smells are symptoms of bad design and implementation choices [31]. Code

smell can increase change/fault proneness and decrease program understandabil-

ity [45, 71]. There are various approaches to automatically detecting code smells in

the source code (e.g., AST-based approach [48, 70]), history-based approach [52, 51]

and text mining-based approach [19]).

In addition to code smells, researchers define test smells to be poor design and

implementation choices when developing test cases [27]. Studies also show that

test smells have a strong negative impact on program comprehension and software

maintenance [20]. Van Rompaey et al. [60] proposed a metric-based technique to

detect test smells.

In this thesis, we have found that one of the top rationales of independently

changed logging code is about log refactoring. Hence, we define the logging code

smells as poor design and implementation choices when developing the logging code.

We have proposed two symptoms of the logging code smells: Dup1 and Dup2. Both
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symptoms are to address the problems of: (1) duplication in logging code, and (2)

long logging code. This thesis is the first work which proposes the idea of logging

code smells and their symptoms.
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5 Conclusions and Future Work

This chapter concludes the thesis and introduces some future work.

Log messages have been used widely for developers, testers and system ad-

ministers to understand, debug and monitor the behavior of systems at runtime.

Yuan et al. reported a series findings regarding the logging practices based on

their empirical study of four server-side C/C++ projects. In the first part of work

in the thesis, we have performed a large-scale replication study to check whether

their findings can be applicable to 21 Java project in Apache Software Foundation.

In addition to server-side projects, the other projects are client-side projects or

support-component-based projects.

Similar to the replication study in Chapter 2. We found that logging is perva-

sive in most of the software projects and the logging code is actively maintained.

Different from the original study, the median BRT of bug reports containing log

messages is longer than bug reports without log messages. In addition, there are

more scenarios of consistent updates to log printing code while the portion of after-
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thought updates is much bigger. Our study shows that certain aspects of the logging

practices in Java-based systems are different from C/C++ based systems.

Developers instrument their systems with logging code to gain insights about the

systems’ runtime behaviour. It is challenging to develop and maintain high quality

logging code due to the lack of well-defined coding guidelines. In the logging anti-

pattern work (Chapter 3), we have characterized six anti-patterns in the logging

code by carefully studying the development history of three open source software

systems from different application domains: ActiveMQ, Hadoop and Maven. To

demonstrate the usefulness of our findings, we have developed LCAnalyzer, which

statically scans through the source code searching for anti-pattern instances. Case

studies show that LCAnalyzer, which has a high recall (95%) and a satisfactory

precision (60%), can detect many anti-pattern instances in ten different open source

software systems. We have filed a few selective instances to their issue tracking

systems. So far, we have received very positive feedback from the Hadoop and the

Tomcat developers.

In the future, we want to find out the rationales for some of the differences

that we have found in the replication studies. For example, we want to study the

rationale behind bug resolution time by incorporating all the possible features (e.g.,

code, stack traces, log messages, etc.) embedded in the bug reports. In addition,

we also want to improve the precision of LCAnalyzer by incorporating additional
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analysis techniques (e.g., data flow or natural language processing). We also plan to

expand our anti-pattern catalog of logging code by studying the development his-

tory of other systems (e.g., smartphone applications or industry systems). Finally,

we want to solicit more feedback from developers in terms of what other good/bad

logging code practices are.

121



Bibliography

[1] Apache JCL Best Practices. http://commons.apache.org/proper/commons-

logging/guide.html#JCL_Best_Practices. Last accessed: 08/26/2016

[2] ASF Apache Software Foundation. https://www.apache.org/

[3] BlackBerry Enterprise Server Logs Submission. https://www.blackberry.

com/beslog/. Last accessed 05/10/2015

[4] Dumps of the ASF Subversion repository. http://svn-dump.apache.org/.

Last accessed 05/10/2015

[5] Gartner 2014 SIEM Magic Quadrant Leadership Report. http://www.

gartner.com/document/2780017. Last accessed 05/10/2015

[6] HBASE-750: NPE caused by StoreFileScanner.updateReaders. https://

issues.apache.org/jira/browse/HBASE-750/. Last accessed: 08/26/2016

[7] JDT Java development tools. https://eclipse.org/jdt/. Last accessed

10/23/2015

122

http://commons.apache.org/proper/commons-logging/guide.html#JCL_Best_Practices
http://commons.apache.org/proper/commons-logging/guide.html#JCL_Best_Practices
https://www.apache.org/
https://www.blackberry.com/beslog/
https://www.blackberry.com/beslog/
http://svn-dump.apache.org/
http://www.gartner.com/document/2780017
http://www.gartner.com/document/2780017
https://issues.apache.org/jira/browse/HBASE-750/
https://issues.apache.org/jira/browse/HBASE-750/
https://eclipse.org/jdt/


[8] LOG4J a logging library for Java. http://logging.apache.org/log4j/1.2/

[9] logstash - open source log management. http://logstash.net/. Last accessed

04/18/2015

[10] Nagios Log Server - Monitor and Manage Your Log Data. https://exchange.

nagios.org/directory/Plugins/Log-Files. Last accessed 05/10/2015

[11] The replication package. https://www.dropbox.com/s/tf5omwtaylffsbs/

replication_package_major_revision.zip?dl=0. Last accessed

10/23/2015

[12] Splunk. http://www.splunk.com/. Last accessed 04/18/2015

[13] Summary of Sarbanes-Oxley Act of 2002. http://www.soxlaw.com/. Last

accessed 05/10/2015

[14] The AspectJ project. https://eclipse.org/aspectj/. Last accessed

05/10/2015

[15] YARN-5506: Inconsistent logging content and logging level for distributed

shell. https://issues.apache.org/jira/browse/YARN-5506. Last accessed:

08/26/2016

[16] Estimating the reproducibility of psychological science (2015). Open Science

Collaboration

123

http://logging.apache.org/log4j/1.2/
http://logstash.net/
https://exchange.nagios.org/directory/Plugins/Log-Files
https://exchange.nagios.org/directory/Plugins/Log-Files
https://www.dropbox.com/s/tf5omwtaylffsbs/replication_package_major_revision.zip?dl=0
https://www.dropbox.com/s/tf5omwtaylffsbs/replication_package_major_revision.zip?dl=0
http://www.splunk.com/
http://www.soxlaw.com/
https://eclipse.org/aspectj/
https://issues.apache.org/jira/browse/YARN-5506


[17] Barik, T., DeLine, R., Drucker, S., Fisher, D.: The Bones of the System: A

Case Study of Logging and Telemetry at Microsoft. In: Companion Proceed-

ings of the 38th International Conference on Software Engineering) (2016)

[18] Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of ex-

periments. IEEE Transactions on Software Engineering 25(4), 456–473 (1999)

[19] Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D., Lucia, A.D.: Method-

book: Recommending Move Method Refactorings via Relational Topic Models.

IEEE Transactions on Software Engineering (TSE) (2014)

[20] Bavota, G., Qusef, A., Oliveto, R., Lucia, A.D., Binkley, D.: Are test smells

really harmful? An empirical study. Empirical Software Engineering (2015)

[21] Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Inferring models

of concurrent systems from logs of their behavior with csight. In: Proceedings

of the 36th International Conference on Software Engineering (ICSE) (2014)

[22] Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging

existing instrumentation to automatically infer invariant-constrained models.

In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-

ropean Conference on Foundations of Software Engineering, ESEC/FSE ’11

(2011)

124
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