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Abstract 

 The visual system recruits the oculomotor system to enhance processing at a particular 

location of interest with the use of saccadic eye movements. This involves the transfer of visual 

information from the visual system to the oculomotor system so that the correct location or 

object may be fixated at the expense of all others—a process called target selection. However, 

the relative extent of visual processing between the visual and oculomotor systems to facilitate 

this process is disputed. Here, this question is examined by specifically investigating the extent 

of oculomotor processing prior to a saccade. First, the nature of object representations in the 

ventral stream of the visual system is examined to gain insight into how complex visual 

representations are encoded. Next, target selection was examined in a visual context requiring 

extremely complex visual computations in order to select the correct stimulus. Last, the temporal 

factors that affect oculomotor target selection were examined.  

This research demonstrated that objects of considerable complexity elicit similar 

perceptual behaviours as do simple visual features. This elucidates that there are very robust 

modes of encoding object representations, which generalize to objects of varying complexity and 

familiarity. Furthermore, when these same complex visual representations were utilized on a 

target selection task (visual search), there was evidence of oculomotor competition between 

them. Given the complexity of these stimuli and the limitations of oculomotor visual processing, 

it was reasoned that the visual system performed these computations, as observed in the previous 

experiment, and the results of this computation were output to the oculomotor system. Finally, an 

analysis of the target selection time course suggested that the oculomotor competition observed 

previously is likely due to cortical top-down input, further elucidating the role of the visual 

system in mediating oculomotor target selection. 
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Chapter 1. Overview of the Oculomotor and Visual Systems 

1.1 Introduction 

Humans rely heavily on their sense of vision to navigate and interact with the 

environment. This reliance is reflected by the fact that perhaps as much as 50% of the human 

cortex contributes to visual processing in at least some capacity (DeYoe & van Essen, 1988; van 

Essen, Felleman, DeYoe, Olavarria, & Knierim, 1990). Critically, it is an active process by 

which we construct a visual representation of the environment, as our visual system selectively 

prioritizes a subset of the incoming visual information for preferential processing in the 

following two ways: (1) Visual attention—a covert, cognitive mechanism with diverse 

anatomical substrates (Bisley, 2011; Moore, Armstrong, & Fallah, 2003)—enhances processing 

at selected locations in the environment (Carrasco, 2011; Posner & Petersen, 1990). (2) Overt 

saccadic eye movements—rapid ballistic movements of the eyes (Becker, 1989)—place the 

fovea centralis on selected locations in the environment, which enhances processing at this 

location because the density of photoreceptor cells on the retina is greatest at the fovea and 

rapidly decreases at greater eccentricities away from the fovea (Curcio, Sloan, Kalina, & 

Hendrickson, 1990). Saccadic eye movements are planned and executed by the oculomotor 

system (Becker, 1989). Although there is a great deal of anatomical overlap with the visual 

system (Awh, Armstrong, & Moore, 2006; Corbetta et al., 1998), there is a meaningful 

functional distinction between the visual and oculomotor systems: the visual system processes 

visual information and constructs a representation of the environment. On the other hand, the 

oculomotor system outputs behaviour (e.g., saccades). However, it also processes visual 

information to some extent, but the extent of this processing remains contentious. The current 

thesis examines the universality of object representations in the visual system, the extent of 
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visual processing by the oculomotor system, and the temporal factors pertaining to the flow of 

visual information from the visual system into the oculomotor system. In the next section is a 

brief functional and anatomical overview of the visual system followed after by a more detailed 

functional and anatomical overview of oculomotor system in section 3. 

 1.2 The Visual System 

 The following section contains a very brief overview of the major nodes in the visual 

processing network with an emphasis on the hierarchical transitions from the early to late stages 

of visual processing as well as the two streams of visual processing and their associated features. 

Figure 1.1 provides the reader with a visual depiction of the anatomical substrates with added 

functional notations of the two visual processing streams from the early stages of processing 

through to the cortical stages of processing. 

 



3 

Figure 1.1: Anatomical substrates with associated feature representations for the visual 

processing hierarchy. Depicted are magno cells (black circles); parvo cells (white circles); the 

laminar cytoarchitecture of the LGN, V1, and V2; anatomical connections between structures; 

and visual feature representations associated with the layers in each structure. Note: this figure 

does not include the medial superior temporal lobe or the inferior temporal lobe, which are 

discussed in the text. Reprinted from Livingstone, M. & Hubel, D. H. (1988). Segregation of 

form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–

749. 

1.2.1 Early Visual Processing 

 Visual processing begins in the retina, where specialized cells called photoreceptors 

transduce visual stimulation into electrochemical signals in the form of graded potentials (Wald, 

1968). There are two types of photoreceptors that have different functions and whose names are 

based on their morphology: cones cells, which are active under photopic conditions; and rod 

cells, which are active under scotopic conditions (Rodieck, 1998); therefore further discussion on 

rod cells will be omitted. Cone cells project encoded visual information to other specialized cells 

called retinal ganglion cells (RGCs) (Polyak, 1957). Beginning with RGCs, is the introduction of 

action potentials (Rodieck, 1998) and separate visual processing streams, as they project to the 

lateral geniculate nucleus (LGN) of the thalamus where they selectively terminate in either the 

magnocellular layers (1-2) or parvocellular layers (3-6), which are anatomically and 

physiologically distinct (van Essen, Anderson, & Felleman, 1992; Zeki, 1993). LGN magno cells 

have fast responses with high contrast sensitivity, but are colourblind and demonstrate poor 

acuity; conversely, parvo cells have slow(er) responses with low contrast sensitivity, but are 

colour sensitive and demonstrate high acuity (Livingstone & Hubel, 1988). This functional 
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distinction is preserved throughout higher levels of visual processing. Optic radiations are 

projected from LGN into the primary visual cortex (V1) where magnocelluar radiations 

terminate in layer 4Cα and parvocellular radiations terminate in layer 4Cβ (Livingstone & Hubel, 

1988). This projection from LGN to V1 is referred to as the geniculostriate pathway. From each 

specialized layer in V1, this information is projected forward along two specialized, hierarchical 

visual processing streams (Ungerleider & Mishkin, 1982).  

1.2.2 The Ventral Stream 

The ventral processing stream is mainly allocated for the perception and recognition of 

objects that vary in complexity, and is therefore often referred to as the “what” pathway 

(Goodale & Milner, 1992; Ungerleider & Mishkin, 1982). According to Livingstone and Wiesel, 

(1988), feedforward projections in the ventral stream start in the 4Cβ layer of V1 and project to 

the blob and interblob layers 2, 3, and 4A of V1, which encode colour and form information 

respectively. Colour and form information is then projected to the thin stripes and pale 

interstripes in visual area 2 (V2) respectively. From V2, colour and form information are 

projected forward into visual area 4 (V4) where more complex representations emerge, such as 

perceived colour (Schein & Desimone, 1999) and shape primitives like curvatures and angles,  

(Pasupathy & Connor, 1999; Yau et al., 2012). V4 projects forward to the interior temporal 

cortex (IT), which is often divided into posterior and anterior portions (PIT and AIT 

respectively) (Felleman & van Essen, 1991) since the complexity of visual representations 

increases from posterior to anterior portions (Logothetis & Sheinberg, 1996). Neurons in the AIT 

are selective for visual representations at the highest levels of complexity, such as complex 

shapes and even faces (Desimone, Albright, Gross, & Bruce, 1984; Gross, Rocha-Miranada, & 

Bender, 1972). Furthermore, these complex selectivities can develop over time with practice 
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(Baylis & Rolls, 1987; Fahy, Riches, & Brown, 1993; Riches, Wilson, & Brown, 1991), 

implicating the role of the temporal lobe in memory formation. These complex representations 

emerge as the concatenation of the underlying constituent visual features represented posteriorly 

(Brincat & Connor, 2004, 2006). Cognitive psychologists refer to the concatenation of visual 

features as “feature binding” (Treisman, 1996).  

1.2.3 The Dorsal Stream 

 Dorsal stream processing is mainly allocated for processing motion and other object 

attributes that help guide motor behaviours such as manual reaches or pursuit eye movements 

(Goodale & Milner, 1992; Ungerleider & Mishkin, 1982). Given these functional properties, this 

processing stream is often referred to as the “how” pathway (Goodale & Milner, 1992). As 

summarized by Livingstone and Hubel (1988), feedforward projections in the dorsal stream start 

in layer 4Cα of V1 and project to layer 4B in V1, encoding movement and binocular-disparity 

related information, which is then projected to the thick striped layer in V2. This information is 

then projected to the middle temporal visual area (MT), which is specialized for motion and 

stereoscopic depth processing. From MT, visual information is sent to the medial superior 

temporal area (MST), which performs complex motion processing, such as optic flow and self-

motion (Duffy & Wurtz, 1997, 1991a, 1991b). Interestingly, although discussed in terms of 

anatomically and functionally distinct processing streams here, there is growing evidence that 

feature representations in the ventral stream is integrated with visual processing performed in the 

dorsal stream (reviewed by Perry & Fallah, 2014). 

 Critically, the orderly structure of visual processing from simple to complex 

representations observed in both cortical visual processing streams is often referred to as the 

visual hierarchy (thoroughly documented by Felleman & van Essen, 1991). However, visual 
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processing is not exclusively feedforward as most connections between cortical visual areas are 

reciprocal (van Essen & Maunsell, 1983). In fact, recurrent feedback projections are necessary 

for higher cognitive functions such as attention (Connor, Gallant, Preddie, & van Essen, 1996; 

Reynolds & Chelazzi, 2004) and conscious perception (Lamme & Roelfsema, 2000; Tononi & 

Koch, 2008). 

1.3 The Oculomotor System 

 The next section contains a detailed overview of the anatomy, physiology, and 

functionality of two critical nodes in the oculomotor network that have been thoroughly 

investigated: the superior colliculus (SC) and the frontal eye fields (FEF). Furthermore, this 

overview specifically highlights the target selection behaviour of neurons in these structures. 

Although these two structures are the focus of this overview, the oculomotor system contains 

many important nodes—many of which are mentioned given their connections to SC and FEF. 

Figure 1.2 has been provided to graphically depict this complicated set of connections. Finally, 

this section ends with a review of behavioural data linked to competitive oculomotor processing 

during target selection. 
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Figure 1.2: The major nodes in the oculomotor system. The role of the SC in this circuit is 

emphasized as SC inputs are depicted as red lines and SC outputs are depicted as blue lines. 

Also, excitatory connections are depicted as triangles, while inhibitory connections are depicted 

with circles. This circuit diagram is not anatomically to scale. Furthermore, the text refers to the 

PFC, LIP, and MD, which are located respectively in the structures frontal cortex, parietal 

cortex, and anterior thalamus represented in this diagram. Acronyms not defined in text: OPN: 

omni-pause neurons (i.e., neurons in the brainstem that suppress saccades and ensure fixation); 

RF: reticular formation (i.e., the location of the saccadic pulse generators discussed in text). 

Reprinted from Boehnke, S. E., & Munoz, D. P. (2008). On the importance of the transient visual 

response in the superior colliculus. Current Opinion in Neurobiology, 18(6), 544–551. 
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1.3.1 The Superior Colliculus 

 The superior colliculus is a deep, midbrain structure bilaterally occupying the tectum 

(Afifi & Bergman, 2005). It consists of 7 anatomically distinct layers, which are divided into two 

functional groups: the superficial layers (SCs) and the intermediate layers (SCi) (Edwards, 

1980). The SCs is topographically organized with a retinotopic visual map (Goldberg & Wurtz, 

1972; Schiller & Koerner, 1971), while the SCi is topographically organized with a retinotopic 

motor map (Robinson, 1972; Wurtz & Goldberg, 1971, 1972). Critically, these maps are highly 

correlated (Marino, Rodgers, Levy, Munoz, 2008). SCs receives direct excitatory visual input 

from the retina (i.e., the retinotectal pathway) (Cowey & Perry, 1980; Hubel, LeVay, & Wiesel, 

1975; Perry & Cowey, 1984; Schiller & Malpeli, 1977) and visual cortex (Cynader & Berman, 

1972; Harting, Updyke, Van Lieshout, 1992; Schiller, Stryker, Cynader, & Berman, 1974), and it 

projects indirectly back to the visual cortex through the magnocellular layer of the LGN 

(Harting, Casagrande, & Weber, 1978) and directly to SCi (Isa, 2002; Isa & Saito, 2001). SCi 

receives direct excitatory inputs from a variety of cortical sources such as the frontal eye fields 

(FEF) (Künzle & Akert, 1977; Künzle, Akert, & Wurtz, 1976; Stanton, Bruce, & Goldberg, 

1995; Stanton, Goldberg, & Bruce, 1988b), lateral intraparietal area (LIP) (Lynch, Graybiel, & 

Lobeck, 1985), and the dorsolateral prefrontal cortex (DFPFC) (Goldman & Nauta, 1976), and 

receives inhibitory input from the substantia nigra pars recticulata (SNr) nucleus of the basal 

ganglia (Hikosaka & Wurtz, 1983, 1985; Hikosaka, Takikawa, & Kawagoe, 2000). There is also 

evidence for local, lateral inhibitory circuits in SCi (McPeek & Keller, 2002; Munoz & Istvan, 

1998). 

 The SCi is a critical oculomotor substrate because it projects directly to the brainstem 

saccadic pulse generators for horizontal and vertical saccades in the paramedian potine reticular 
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formation (PPRF) and the rostral interstitial medial longitudinal fasciculus (riMLF) respectively 

(Moschovakis, Karabelas, & Highstein, 1988). SCi visual and visuo-movement (VM) neurons 

elicit a visual transient onset burst ~55 after the onset of a visual stimulus (Basso & Wurtz, 1998; 

Boehnke & Munoz, 2008; Mays & Sparks, 1980; McPeek & Keller, 2002), while SCi movement 

and VM neurons elicit a perisaccadic burst of activity ~20 ms prior to the initiation of a saccade 

(Glimcher & Sparks, 1992; McPeek & Keller, 2002; McPeek, Han, & Keller, 2003; Munoz & 

Wurtz, 1995; Port & Wurtz, 2003; Wurtz & Goldberg, 1971, 1972). However, both visual 

transient onset bursts and perisaccadic bursts may be sufficient to elicit a saccade (Boehnke & 

Munoz, 2008; Dorris, Paré, & Munoz, 1997; Edelman & Keller, 1996; Sparks, Rohrer, & Zhang, 

2000), as a saccade is elicited simply when SCi activity reaches a threshold (Robinson, 1972). 

The control signal for the perisaccadic burst of activity, and thus for saccade initiation, is 

contentious but it may be received via excitatory projections from FEF as this structure can 

indirectly elicit saccades via SCi (Dassonville, Schlag, & Schlag-Rey, 1992; Everling & Munoz, 

2000; Schlag-Rey, Schlag, & Dassonville, 1992; Segraves & Goldberg, 1987) or via 

disinhibition of the tonic GABAnergic inhibition imposed on SCi by the SNr, as SNr activity 

pauses prior to saccade initiation (Hikosaka et al., 2000; Hikosaka & Wurtz, 1983, 1985). An 

important feature of the SCi motormap is spatial-averaging, as activity is averaged across the 

motormap prior to saccade initiation (Aizawa & Wurtz, 1998; Glimcher & Sparks, 1993; Lee, 

Rohrer, & Sparks, 1988; McPeek et al., 2003; Ottes, Van Gisbergen, & Eggermont, 1986; Port & 

Wutz, 2003; Robinson, 1972; Van Gisbergen, Van Opstal, & Tax, 1987; Van Opstal & 

Gisbergen, 1990), which can elicit a saccade that is the vector average of two potential saccade 

goals encoded by the SCi weighted by the neuronal activity at each locus (Port & Wutz, 2003; 

Van Gisbergen et al., 1987). 
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 The SCi has been heavily implicated in saccadic target selection, the process by which a 

target is discriminated from a distractor(s) (Basso & Wurtz, 1997, 1998; Carello & Krauzlis, 

2004; Horwitz & Newsome, 1999, 2001; Kim & Basso, 2008; Li & Basso, 2005; McPeek & 

Keller, 2002, 2004; Shen & Paré, 2007, 2014), suggesting that potential saccade goal 

representations in SCi are competitive. Some authors have argued that SCi functionally 

contributes to the visual processing required for target selection (Basso & Wurtz, 1997, 1998; 

Horwitz & Newsome, 1999, 2001; McPeek & Keller, 2004), however it is unclear whether SCi 

passively receives target and distractor information or functionally contributes to this processing 

(e.g., McPeek & Keller, 2002). 

1.3.2 The Frontal Eye Fields 

The frontal eye fields (FEF) are bilaterally located in the anterior bank of the arcuate 

sulcus of the frontal lobes (Bruce & Goldberg, 1985; Bruce, Goldberg, & Bushnell, & Stanton, 

1985). FEF has reciprocal connections with a distributed network of cortical visual and 

oculomotor areas associated with high-level cognitive functions, encoding complex visual 

representations, and attentional/spatial visual processing: the prefrontal cortex, superior temporal 

sulcus (STS), and the lateral bank of the intraparietal sulcus (LIP) respectively (Felleman & Van 

Essen 1991; Huerta, Brubitzer, & Kaas, 1987; Künzle & Akert, 1977; Stanton et al., 1995; 

Schall, Morel, King, & Bullier, 1995). FEF also has a rich set of subcortical connections: FEF 

has reciprocal connections with the SC, receives input from the mediodorsal nucleus of the 

thalamus (MD) and substantia nigra pars compacta (SNc), and projects directly to the brainstem 

(Huerta, Krubitzer, & Kaas, 1986; Künzle & Akert, 1977; Künzle et al., 1976; Lynch, Hoover, & 

Strick, 1994; Lynch & Tian, 2006; Moschovakis & Highstein, 1994; Sommers & Wurtz, 1998, 

2004a; Stanton et al., 1988a, 1988b; Tian & Lynch, 1997). 
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Like SCi, FEF has highly ordered, overlapping retinotopic visual and movement maps 

(Bruce & Goldberg, 1984, 1985; Bruce et al., 1985; Mohler, Goldberg, & Wurtz, 1973; 

Robinson & Fuchs, 1969; Schall, 1991; Thompson, Hanes, Bichot, & Schall, 1996; Wurtz & 

Mohler, 1976) and there is evidence that activity on the FEF motor map is also spatially 

averaged (McPeek, 2006; Robinson & Fuchs, 1969). FEF contains different proportions of 

visual, movement, and VM neurons, which discharge after a visual onset and prior to saccades 

with a similar temporal profile as neurons in SCi (Bruce & Goldberg, 1985; Bruce et al., 1985; 

Schall, 1991). Additionally, FEF contains neurons that reach peak activity post-saccade and 

encode the sensory consequences of a saccade by subtracting the saccade vector from the target 

position (Goldberg & Bruce, 1990). This computation is facilitated by a corollary discharge 

signal received from SCi indirectly via MD before an impending saccade (Sommer & Wurtz, 

2004b, 2006, 2008). Furthermore, there is evidence that FEF controls the initiation of voluntary 

saccades as on an anti-saccade task, neuronal motor activity increases towards a elicitation 

threshold, but then decreases after the onset of a countermanding stimulus (Hanes & Schall, 

1996; Hanes, Patterson, & Schall, 1998). Finally, there is strong evidence for target selection 

behaviour in FEF neurons (Bichot & Schall, 1999; Bichot, Schall, & Thompson, 1996; Sato & 

Schall, 2003; Sato, Watanabe, Thompson, & Schall, 2003; Thompson et al., 1996; Wurtz & 

Mohler, 1976). The available evidence demonstrates that higher-cognitive processing is 

integrated with visual information in FEF to guide the control of voluntary saccades.  

1.3.3 Target Selection and Behavioural Metrics 

Due to the spatial averaging principle observed on oculomotor maps (Aizawa & Wurtz, 

1998; Glimcher & Sparks, 1993; Lee et al., 1988; McPeek, 2006; McPeek et al., 2003; Ottes et 

al., 1986; Port & Wutz, 2003; Robinson, 1972; Robinson & Fuchs, 1969; Van Gisbergen et al., 
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1987; Van Opstal & Gisbergen, 1990), target selection on oculomotor maps is reflected 

behaviourally by the global effect and distractor modulation of saccade curvatures. The global 

effect is characterized by saccade endpoints landing at the so-called “center of gravity”, which is 

the geometric center between a target and one or more irrelevant distractors (Coren & Hoenig, 

1972). On a saccade task, the global effect is typically observed when targets and distractors are 

within a specific range of angular separation, which has been estimated between 20° (Walker, 

Deubel, Schneider, & Findlay, 1997) and 45° (Van der Stigchel & Nijboer, 2013). However, 

previous experiments have also demonstrated that the center of gravity is not exclusively 

determined by the spatial arrangement of display elements, but by a combination of bottom-up 

and top-down factors: the center of gravity can be biased towards stimuli with the greatest size 

(Findlay, 1982), luminance (Deubel, Wolf, & Hauske, 1984), or target probability (He & 

Kowler, 1989). Furthermore, the global effect can be eliminated by top-down control (Findlay & 

Blythe, 2009; Findlay & Kapoula, 1992; Heeman, Theeuwes, & Van der Stigchel, 2014). Similar 

to the global effect, it has been observed on visual search tasks with multiple distractors 

separated by 90° that saccades often land between the target and a single distractor (Godijn & 

Theeuwes, 2002; McPeek et al., 2003; McPeek & Keller, 2001; McPeek, Skavenski, & 

Nakayama, 2000).  

Saccade curvature is characterized by any deviation from a straight line between the start- 

and endpoint of a saccade (see Ludwig & Gilchrist, 2002 for a review). Although saccade 

trajectories are normally idiosyncratically curved (Bahill & Stark, 1975), several researchers 

report greater saccade curvatures when a distractor is present than when it is absent in both 

humans (Doyle & Walker, 2001; Ludwig & Gilchrist, 2003; McSorley et al., 2004) and monkeys 

(McPeek & Keller, 2001). Similarly, saccades that are erroneously directed towards a distractor 
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sometimes curve towards the target (McPeek & Keller, 2001). As with the global effect, many 

visual and cognitive factors modulate saccade curvatures, which is typically examined using a 

saccade task and manipulating the distractor characteristics. These types of experiments have 

demonstrated that saccades curve away from irrelevant distractors (Doyle & Walker, 2001), 

previous distractor locations (Belopolsky & van der Stigchel, 2013), and the locus of visuospatial 

attention (Sheliga, Riggio, & Rizzolatti, 1994, 1995). Furthermore, saccade curvatures are 

modulated by distance (McSorley et al., 2009; van der Stigchel et al., 2007), salience (van Zoest, 

Donk, & van der Stigchel, 2012), colour contingent capture (Ludwig & Gilchrist, 2003; 

Mulckhuyse, van der Stigchel, & Theeuwes, 2009), target probability (Walker et al., 2006), 

semantic meaning (Weaver, Lauwereyns, & Theeuwes, 2011), emotional valance (Schmidt, 

Belopolsky, & Theewues, 2012), and social relevance (Laidlaw, Badiudeen, Zhu, & Kingstone, 

2015).  The available behavioural evidence suggests that the oculomotor system encodes 

multiple competing saccade vectors in parallel and computes a weighted average of these vectors 

(see Godjin & Theeuwes, 2002; Findlay & Walker, 1999). Furthermore, a combination of 

bottom-up and top-down factors modulates the vector weights used in this computation. 

1.4 The Current Research 

 The purpose of the current research was to answer 3 main questions: Are objects 

represented with a universal perceptual code? Is the SC capable of highly complex visual 

processing? And how do temporal factors contribute to competitive processing in the oculomotor 

system?  

There are very robust perceptual effects observed for objects at the lowest and highest 

ends of the visual hierarchy (e.g., oriented lines and faces respectively) suggesting that these 

classes of objects are perceptually encoded in a similar manner. However, these effects have not 



14 

yet been demonstrated for complex, novel objects. As all three of these object classes are 

encoded in a similar manner neurologically and since our perceptions of objects and object 

features arise from the underlying neurophysiology of the visual system, we hypothesized that 

complex, novel objects should demonstrate similar perceptual effects as other object classes and 

examined this hypothesis in Chapter 2.  

There is extensive evidence that the SC is involved in competitive target selection 

processing. However, as areas such as FEF are also involved in this process and can impose 

saccade goals on SC, it is possible that SC simply encodes saccade vectors and does not process 

visual information at all. In either case, it is unlikely that visual processing in SC is capable of 

the same complex visual-cognitive computations that occur at the highest levels in the ventral 

stream, such as computing the visual similarity between highly complex, novel visual 

representations. Therefore, saccade curvature modulation by these factors would suggest that SC 

simply represents potential saccade vectors and does not functionally contribute to visual 

processing. We examined this possibility in Chapter 3.  

It is unclear whether curved saccades are always elicited from the same temporal profile 

of competitive processing between potential targets. The temporal mechanism for eliciting 

saccades towards a distractor is well understood, while the temporal mechanism for eliciting 

saccades away from a distractor is disputed. If the temporal profile of competitive interactions 

does generalize to these different types of saccades, this would predict that by modeling the 

competitive processes over time for these different types of saccades, the functions should be the 

same. In Chapter 4, we examined whether the same temporal mechanism elicits saccade 

curvature across these two competitive processing contexts.  
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Chapter 2: Nonlinear perceptual similarity encoding of complex, novel objects in object 

space (Manuscript 1) 

 

This manuscript has been submitted to the Journal of Experimental Psychology: 

Human Perception and Performance. The co-author of this manuscript is Dr. Mazyar Fallah. 

Devin Heinze Kehoe and Dr. Mazyar Fallah designed the experiment. Devin Heinze Kehoe 

implemented the experiment and analyzed the data. Our research assistant, Selvi Aybulut, 

collected the data. Devin Heinze Kehoe wrote the manuscript with feedback from Dr. Fallah. 
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2.1 Summary 

Extensive evidence suggests that complex objects are encoded along a series of their 

underlying feature dimensions that situates them at some location in N-dimensional feature 

space. Consequently, the perceptual similarity between two objects corresponds to the inverse of 

the distance between their respective locations. This object property predicts that the similarity 

between objects is an emergent property of the discriminability of their constituent features, 

although this prediction has not yet been examined. Here, we constructed complex, novel objects 

by intersecting 6 or 7 line subunits together at right angles (characters; Experiment 1) or 

embedding them along the medial axes of a circle (wagon wheels; Experiment 2) and 

systematically varied the similarity between stimuli by adding or removing a line. Our data 

indicated that the stimuli constructed with smaller orientations are indeed inherently more 

similar, but that a common similarity computation was utilized for both object classes. By 

estimating the perceptual distance between our stimuli, we observed perceptual saturation after a 

sufficient distance in feature space, consistent with nonlinear neuronal response functions. 

Interestingly, we also observed perceptual repulsion between our character stimuli, which is 

consistent with other psychophysical effects elicited from complex objects like face adaption. 

2.2 Introduction 

Examinations of perceptual similarity have provided insights into how the visual system 

encodes object representations. One influential model of perceptual similarity is the contrast 

model proposed by Tversky (1977). This model conceptualized perceptual similarity processing 

as a weighted comparison between the distinctive and shared features between objects. Tversky 

reported a significant linear relationship between the model and subjective self-reports of 

perceptual similarity. However, the features input into the model were verbal descriptors of 
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visual stimuli that varied in concreteness. Therefore, despite the contrast model being quite 

successful at predicting perceptual data, it does not disentangle the likely separate contributions 

of visual/structural similarity (Biederman, 1987; Humphreys, Riddoch, & Quinlan, 1988; 

Palmer, 1977, 1978), conceptual similarity/categorization (Goldstone, 1994; Laws & Gale, 2002; 

Smith & Heise, 1992), and relational similarity (Gentner, 1983; Goldstone, Medin, & Gentner, 

1991; Medin, Goldstone, & Gentner, 1990). For these reasons, it is not very informative about 

how perceptual similarity relates to the fundamental properties of the human visual system or 

how it is subserved by the nervous system. To overcome this limitation, other researchers have 

specifically examined visual/structural similarity by objectively defining features as the 

geometric subunits of visual stimuli (e.g., Palmer, 1977, 1978).  

Extensive research and theorizing has focused specifically on how the individual 

geometric subunits and structural aspects of objects influence the perceptual similarity between 

respective objects (Biederman, 1987; Biederman & Cooper, 1991; Biederman & Ju, 1988; Marr 

& Nishihara, 1978; Palmer 1977; 1978). This work has lead several researchers to argue that 

object representations that subserve recognition and perception are formed by first detecting the 

basic geometric constituents of an object (Biederman, 1987; Biederman & Cooper, 1991; Marr & 

Nishihara, 1978; c.f. Palmer, 1977, 1978). These so-called “structural description” theories 

(reviewed by Hummel, 2000) were likely influenced by the seminal discovery of orientation and 

edge selective neurons in early visual cortical areas several decades earlier (Hubel & Wiesel, 

1962, 1968) and contour and shape selective neurons in the inferior temporal gyrus (IT) 

(Desimone et al., 1984). Furthermore, structural description theories necessitate feature binding 

as these simple geometric visual features will need to be coherently bound together into an object 

in order for observers to perceive a holistic and unified object rather than disjoint visual features 
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in isolation (Treisman, 1996; Treisman & Gelade, 1980). Decades of research have demonstrated 

that feature representations are distributed throughout the primate cortical visual system 

(reviewed by Perry & Fallah, 2014) and that these feature representations are anatomically 

organized into a hierarchy of feature complexity from posterior to anterior structures (Felleman 

& Van Essen, 1991).  

An alternative to the contrast model conceptualization of perceptual similarity is 

multidimensional scaling (MDS), first proposed by Shepard (1962a, 1962b). MDS models assign 

object representations a location in geometric space with N dimensions where each dimension 

corresponds to a specific visual attribute (e.g., colour, orientation, etc.) and an object’s location 

along that dimension is determined by quantifying the corresponding feature for that visual 

attribute (e.g., red, vertical, etc.). Therefore, MDS space is often succinctly referred to as “feature 

space”.  The utility of MDS is that the perceptual similarity between objects corresponds to the 

inverse of the N-dimensional distance between objects in feature space. The MDS model does 

not treat attribute dimensions hierarchically per se, but it does treat objects as the concatenated 

whole of their individual features. Since these features can vary in complexity, this does not 

preclude them from existing in their respective location in the visual hierarchy upon being 

entered into the MDS model. Furthermore, MDS more closely resembles neurological encoding 

of simple visual features along each respective dimension in feature space as it treats featural 

differences as continuous as supposed to categorical like the contrast model. 

Conceptualizing objects as existing in multidimensional feature space is useful because it 

can be used to objectively quantify the similarity between complex objects with multiple feature 

dimensions. Perhaps the best-studied class of complex objects using this conceptualization is 

faces. Decades of research examining feature space for faces (called “face space”, Valentine, 
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1991) have validated that face space is encoded by the visual system both perceptually 

(Anderson & Wilson, 2005; Bruce, Burton, & Dench, 1994; Bruce, Doyle, Dench, Burton, 1991; 

Johnston, Milne, Williams, & Hosie, 1997; Wilson, Loffler, Wilkinson, 2002) and neurologically 

(Freiwald, Tsao, & Livingstone, 2009; Leopold, Bondar, & Giese, 2006; Leopold, O’Toole, 

Vetter, & Blanz, 2001; Loffler, Yourganov, Wilkinson, & Wilson, 2005). For example, on an 

incidental memory task, humans reported recognizing a prototypical face (i.e., the centroid in 

face space) despite having never been shown that exact face; interestingly, this prototype 

learning was strongest for faces but occurred for other complex objects such as houses (Bruce et 

al., 1991). Furthermore, perceived distinctiveness ratings positively correlate with distances from 

the centroid in face space constructed using both objective physical measurements of facial 

features (Bruce et al., 1994) and subjective similarity reports (Johnston et al., 1997). 

There is also compelling experimental evidence that face space is represented 

neurologically. Leopold et al. (2001) elegantly demonstrated that observers adapted to a face 

after viewing it for several seconds, as psychometric identity functions (i.e., proportion of correct 

face identifications as a function of distance away from the average face) for faces located on the 

same axis in face space were skewed towards the adapted face. These facial aftereffects are 

similar to aftereffects observed for simple visual features represented in early cortical visual 

areas (Leopold, Rhodes, Müller, & Jeffery, 2005) such as the tilt aftereffect for orientations 

(Gibson & Radner, 1937). Given that perceptual aftereffects for simple visual features are due to 

a repulsive shift in neuronal population tunings for the adapted feature (reviewed by Kohn, 

2007), these results therefore suggest neuronal tunings for facial prototypes. Furthermore, such 

neurons would therefore be predicted to exhibit monotonically decreasing firing rates as a face 

moves away from the preferred prototype in face space. Interestingly, neurophysiological 
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experiments have validated these predictions: Neurons in IT (Desimone et al., 1984) and the 

superior temporal sulcus (STS) specifically (Baylis, Rolls, & Leonard, 1985, 1987) are selective 

for faces, can discriminate between faces, and can discriminate between whole faces and facial 

features. Critically, more recent neurophysiological investigations have directly observed face 

space tuning curves: Leopold et al. (2006) observed that the firing rates of IT neurons increased 

as a face moved away from an average face towards a specific identity. A similar investigation 

found that the firing rates for face selective neurons in the middle face patch were tuned to a 

specific subset of face space feature dimensions (Freiwald et al., 2009), therefore also 

strengthening the notion that simple visual features encoded by posterior neurons are projected 

forward and concatenated into complex representations encoded by anterior neurons. 

Experiments examining face space have provided evidence that faces and simple visual 

features may be neurally represented in a similar manner. Such similarity between neural 

encoding of faces and feature singletons is remarkable given the considerable differences in 

visual complexity between these stimuli. However, one commonality between faces and feature 

singletons is that they are both very well practiced visual objects with which observers have 

extensive experience. Interestingly, there are IT neurons selective for complex, novel objects 

(Desimone et al., 1984; Fujita, Tanaka, Ito, & Cheng, 1992; Kobatake & Tanaka, 1994; 

Logothetis, Pauls, Poggio, 1995), which have been differentiated from acquired selectivities for 

complex objects (Baylis & Rolls, 1987; Fahy, Riches, & Brown, 1993; Riches, Wilson, & 

Brown, 1991). As with faces, neurophysiological investigations have also measured IT neurons 

tuning curves for specific geometric feature dimensions in feature space for complex, novel 

objects (Brincat & Connor, 2004, 2006; Kayaert, Biederman, Op de Beeck, & Vogels, 2005). 

This research therefore suggests that tuning curves are a general property for encoding visual 
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objects in the primate visual system. 

If anterior cortical neurons are tuned to complex visual representations as posterior 

cortical neurons tuned to simple visual features, then the tuning curve for neurons encoding 

complex representations should be comparable to those encoding simple features. One property 

of neuronal tuning curves for certain simple visual features, such as contrast (Albrecht & Geisler, 

1991; Albrecht & Hamilton, 1982) and orientation (Hubel & Wiesel, 1968), is saturation: there is 

a linear relationship between neuronal firing rates and feature values within a certain range of the 

represented feature; however, firing rates saturate outside of this range. Single cell neuronal 

tuning curves for face identities (Leopold et al., 2006) or individual feature dimensions in face 

space (Freiwald et al., 2009) are typically linear (no apparent saturation) with few nonlinear 

exceptions (apparent saturation). However, using fMRI, Loffler et al. (2005) observed that tuning 

curves at the population level are clearly sigmoidal. Similarly, single cell tuning curves for 

complex, novel objects can be linear or nonlinear (Brincat & Connor, 2004, 2006; Kayaert et al., 

2005), while at the population level tuning curves for complex, novel objects also appear 

sigmoidal (Brincat & Connor, 2004; Fujita et al., 1992; Logothetis et al., 1995; Panis, 

Vangeneugden, Op de Beeck, Wagemans, 2008). A question that arises is what factors determine 

the saturation point of tuning curves for complex objects. 

Here, we examined these factors by computing the perceptual distances between 

complex, novel, meaningless objects to determine when the perceptual similarity between these 

objects saturate. We utilized a perceptual judgment task where participants were asked to report 

which of two test stimuli are perceptually most similar to a referent stimulus (target) (see 

Sloutsky, Lo, & Fisher, 2001). In two experiments, objective similarity was manipulated by 

systematically varying the number of line subunits shared between the test stimuli and the target 
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(Richards, Tombu, Stolz, & Jolicoeur, 2004; Smilek, Eastwood, & Merikle, 2000). We assumed 

that this manipulation would modulate the perceptual similarity between stimuli and followed up 

on this assumption by investigating the relationship between objective similarity manipulations 

and perceptual similarity reporting. Secondly, the differences in objective similarity between the 

target and each test stimulus were used to construct objective similarity distances in 1-

dimensional objective similarity space. We then used the perceptual data to extrapolate the 

objective similarity distance at which perceptual reporting would become certain (100% 

responding for the objectively most similar stimulus). By fitting a line through the estimated 

point of theoretical, perceptual certainty and the point of theoretical perceptual chance (i.e., 

mathematical origin), we estimated the point of perfect linearity between objective and 

perceptual similarity. Finally, we then estimated perceptual distances by linearly transforming 

each objective similarity distance to this line. 

2.3 Experiment 1: Character Stimuli 

 For experiment 1, we constructed novel, complex, and meaningless character stimuli by 

conjoining individual line subunits together at right angles, similar to those utilized by Palmer 

(1977, 1978). We utilized stimuli that were both novel and meaningless to minimize or eliminate 

the influences of conceptual similarity/categorization (Goldstone, 1994; Laws & Gale, 2002; 

Smith & Heise, 1992) on perceptual judgments of similarity, as participants likely had no prior 

experience with these stimuli. Furthermore, as we were interested in examining the perceptual 

distance at which perceptual similarity saturates, we utilized certain task parameters to maximize 

the likelihood that participants generated a holistic visual perceptual representation of the stimuli 

(Palmer, 1977; Tanaka & Farah, 1993) when making similarity judgments rather than employ a 

simple comparative strategy in which every individual line subunit in the test stimuli is 
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sequentially compared to every line subunit in the target stimulus (we elaborate more on this 

topic in the General Discussion). We examined whether observers utilized a sequential, 

comparative process by analyzing response times (RT) as a function of objective similarity (OS) 

distance since increasing the objective similarity distance would increase the number of line 

segment comparisons required for this process and since RT should increase linearly as a 

function of task set size for a sequential process (Neisser, 1967). 

2.3.1 Methods 

2.3.1.1 Participants 

10 York University undergraduate students (18-20 years old, 4 male) participated in the 

experiment for course credit. Participants had normal or corrected-to-normal vision and were 

naïve to the purpose and design of the experiment. Written consent was obtained prior to 

participation. All research was approved by York University’s Human Participants Review 

Committee. 

2.3.1.2 Stimuli  

2 sets of character stimuli that do not resemble meaningful alphanumerical characters to 

an English speaker were constructed offline using custom algorithms in MATLAB (MathWorks, 

Natick, MA) (see Figure 1). We intersected 6 or 7 vertical and horizontal line segments (1°× 

0.08°) together at right angles, which occupied 1 of 12 possible locations that were embedded in 

an imaginary box (2°× 2°). All line segments intersected with at least one other line segment. By 

adding and/or removing one line segment at a time, we created 6 stimuli that were linearly 

related in objective similarity (OS). The stimuli were grouped into an exhaustive list (n = 120) of 

stimulus triplets in which every stimulus was unique and was from the same stimulus set. In 

every stimulus triplet, one stimulus was assigned as the target, and the remaining two stimuli 
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were assigned as the left and right test stimuli. We then calculated the relative OS (OSR) for each 

triplet. OSR was defined as the absolute OS between the target stimulus and the left test stimulus 

(OSLeft) subtracted by the absolute OS between the target stimulus and the right test (OSRight) 

stimulus, such that OSR = | OSLeft | − | OSRight | . The magnitude of OSR therefore indicates how 

much more objectively similar the most similar stimulus is to the target than the least similar 

stimulus. For each experimental run, we randomly sampled 56 stimulus triplets without 

replacement, while constraining the selection so that there were 8 stimulus triplets selected for all 

relative OS values in the range of −3 to +3. As we were interested in perceptual similarity as a 

function of objective similarity distances, we analyzed perceptual similarity as a function of the 

absolute OSR, which we subsequently refer to as OS distance. 

 

Figure 3.1: Stimulus sets utilized in experiment 1. Stimuli are placed on a conceptual number 

line on which the absolute difference between number line positions corresponds to the number 

of line segment dissimilarities (distance). 

The stimuli were white (x = 119.90, y = 126.02) and were displayed against a black 

background (x = 0.23, y = 0.20) on a 21-inch CRT monitor (60 Hz, 1024 × 768). Participants 

viewed stimuli in a dimly lit room from a viewing distance of 57 cm with a headrest stabilizing 

their head position. 
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2.3.1.3 Apparatus and measurement 

Stimulus presentation was controlled using a computer running Presentation software 

(www.neurobs.com) and a serial response box (Cedrus, San Pedro, CA). Eye position was 

recorded using infrared eye tracking (500 Hz, EyeLink II, SR Research, Ontario, Canada). The 

eye tracker was calibrated at the beginning and halfway point of each experimental session, and 

as needed. 

2.3.1.4 Task procedure 

 Trials were initiated by pressing the center button on the serial response box (see Figure 

2).  After maintaining fixation (within a 1.89° square window) to a white, central fixation cross 

(0.4°× 0.4°) for 200 ms, the fixation cross was replaced with the target stimulus flanked by two 

grey (x = 28.43, y = 29.98) placeholders subtending 2°× 2° and located 7.5° away from the target 

along the horizontal meridian. After 500 ms, the target then reverted back to the fixation cross 

and the placeholders were replaced by the two test stimuli. Participants were instructed to 

discriminate whether the left or right test stimulus was the most perceptually similar to the target 

by pushing the left or right button on the serial response box respectively. Participants were 

required to maintain fixation throughout the trial. The trial ended when a response was made or 

fixation was broken. Participants heard an error tone when fixation was broken and these trials 

were randomly replaced back into the block.  
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Figure 3.2: Example trial sequence. 

Participants completed 1 session with 8 blocks of 56 trials for a total of 448 trials. On the 

first block, the counterclockwise (CCW)/clockwise (CW) ordering of the test stimuli was 

randomized. This ordering was reversed after each subsequent block. 

2.3.2 Results 

 For continuous data, repeated-measures ANOVA and paired-samples Student’s t-tests 

were used to analyze repeated-measures mean differences if a Shapiro-Wilks test provided 

evidence for normally distributed data (p > .05). Otherwise, non-parametric Friedman tests and 

Wilcoxon Signed-Rank tests were used. If Mauchley’s test of sphericity provided insufficient 

evidence for the assumption of sphericity, Greenhouse-Geisser (ε ≤ 0.7) or Huynh-Feldt (ε > 0.7) 

corrections were utilized for ANOVAs. Frequency data were analyzed using Chi-squared tests. 

Bonferroni multiplicity α corrections were utilized for all multiple comparisons. 
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For every trial, we calculated (1) the OS between the selected test stimulus and the target 

(selected) and (2) the OS between the unselected test stimulus and the target (unselected). OS 

was utilized as a manipulation of perceptual distance along 1-dimensional perceptual similarity 

space. These OS distances were subsequently analyzed both as a continuous and categorical 

variable. 

2.3.2.1 OS distances between target and selected and unselected test stimuli  

First, OS distance was treated as a continuous variable. As such, a paired-samples t-test 

between mean selected and unselected test stimulus OS distances to the target demonstrated that 

the OS distance of the selected stimulus (M = 1.99) was reliably lower than the OS distance of 

the unselected stimulus (M = 2.93), t(9) = −7.66, p < .001, d = 2.42. 

Second, OS distance was treated as a categorical variable. After removing trials with 

equal OS distances between the target and both test stimuli (OS distance = 0), we calculated the 

observed and expected frequencies for every categorical selected and unselected OS distance 

(min = 1, max = 5) (see Figure 3). Observed frequencies were calculated as the proportion of 

selected and unselected trials in each OS distance category. Expected frequencies were 

calculated by dividing the total number of trials in each OS distance category by 2 as participants 

were forced to choose one stimulus on every trial. A Chi-squared analysis demonstrated that the 

observed frequencies were not randomly distributed across OS distance, χ2(4, N = 3840) = 

549.99, p < 0.001, Cramer’s φ = 0.19. 
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Figure 2.3: The proportion of selected and unselected trials as a function of OS category. 

Error bars represent standard error (SE). *Significant deviations from chance (.5) using a paired-

samples t-test with Bonferroni multiplicity adjusted p < .05.	 

 For every OS distance, the proportion of selected trials was compared against chance (.5) 

using a paired-samples t-test. A test stimulus with an OS distance of 1 was chosen significantly 

above chance, t(9) = 7.97, p < 0.001, d = 2.52. Conversely, test stimuli with an OS distance ≥ 3 

were selected below chance: OS distance 3, t(9) = −5.26, p = 0.003, d = 1.66; OS distance 4, t(9) 

= −6.73, p < 0.001, d = 2.13; and OS distance 5, t(9) = −6.48, p < 0.001, d = 2.05. A test stimulus 

with an OS distance of 2 was selected at chance level, t(9) = 3.02, p = 0.073, d = 0.95. 

2.3.2.2 RT as a function of OS distance 

Response times (RT) were analyzed as a function of OS distance using a repeated-

measure ANOVA to examine potential mean differences and a linear regression analysis to 

examine a potential linear relationship. These analyses provided insufficient evidence for mean 
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differences between OS distances, F(3,27) = 1.48, p = 0.238, 𝜂!!  = 0.14; and insufficient 

evidence for a linear relationship between RT and OS distance, F < 1. 

2.3.2.3 Accuracy as a function of OS distance 

We calculated the proportion of trials on which the test stimulus that is objectively most 

and least similar to the target was selected for each OS distances. At an OS distance of 0, the 

OSs between the target and both test stimuli were equal. Therefore, the most and least similar 

test stimulus selection frequencies were replaced with the left and right test stimulus selection 

frequencies. This condition serves as a baseline. 

For every OS distance, we subtracted the proportion of trials on which the least similar 

test stimulus was selected from the proportion of trials on which the most similar test stimulus 

was selected and referred to this metric as perceptual similarity (PS). We then analyzed PS as a 

function of OS distance (see Figure 4). A Friedman test provided evidence that there was a 

significant mean difference between OS distances, χ2(3) = 19.73, p < 0.001. Subsequent post-hoc 

analyses examined potential mean differences between all sequential OS distances and found no 

significant difference between OS distance 0 and 1, Z = −1.58, p = 0.341. However, there were 

significant differences between OS distances 1 and 2, Z = −2.70, p = 0.021; and between OS 

distances 2 and 3, Z = −2.50, p = 0.037. This post hoc analysis suggested a linear distribution of 

OS distance means, which was then confirmed by a linear regression F(1,2) = 90.05, p = 0.011, 

R2 = 0.98. 
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Figure 2.4: Perceptual similarities. Differences between the proportion of trials on which the 

least similar test stimulus was selected and the proportion of trials on which the most similar test 

stimulus was selected as a function of OS distance. Error bars represent SE. 

2.3.2.4 Transformations of OS distance to perceptual distances 

Differences between the proportion of trials on which the least similar test stimulus was 

selected and the proportion of trials on which the most similar test stimulus was selected (PS) 

was used to generate estimates of perceptual distance (see Figure 5). First, we fit a Gaussian 

cumulative distribution function (CDF) to the mean PS as a function of OS distance data (µ = 

2.47, σ = 2.46, R2 = .96). Second, we estimated the point of perceptual certainty (i.e., the OS 

distance at which PS theoretically equals 1) by calculating the tangent of the mean Gaussian 

CDF and extrapolated this line to PS = 1. Third, we fit a linear function between the point of 

perceptual certainty (PS = 1) and the point of perceptual chance (PS = 0). Finally, perceptual 

distances were computed by linearly transforming each OS distance to the linear function in step 

3 using the corresponding PS for each OS distance. These transformations provided our estimate 
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of perceptual distances between the target and test stimuli. 

 

Figure 2.5: Perceptual distance estimates. Upright triangles denote the perceptual distance 

estimates superimposed on the OS distance number line used in the current experiment. The 

downward triangle denotes the point of perceptual certainty estimate. The solid black line was 

utilized for the linear transformation of the OS distances. The broken black line is the tangent of 

the mean Gaussian CDF. The solid blue line is the fitted Gaussian CDF. The black circles are the 

mean PS as a function of OS distance. Error bars denote SE. 

2.3.3 Discussion 

 The current results provide compelling evidence that systematically varying the number 

of line subunits shared between our character stimuli modulates the perceptual similarity 
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between them. First, by treating OS distances as continuous, we observed that the distance 

between the target and the selected stimulus was reliably shorter than the distance between the 

target and the unselected stimulus. This result suggests that participants were systematically 

selecting the test stimulus that was closer in similarity space to the target. Second, by treating the 

OS distances as categorical, we observed that when one of the two test stimuli had the shortest 

possible OS distance to the target (i.e., OS distance = 1), it was selected more than is predicted 

by chance alone. Similarly, when one of the two test stimuli had a longer OS distance to the 

target (i.e., OS distance ≥ 3), this test stimulus was chosen less often than is predicted by chance 

alone. Third, we observed that the proportion of trials on which the test stimulus that is 

objectively most similar to the target was selected increased linearly as a function of OS 

distance, where OS distance indicates how much more similar this test stimulus was to the target 

than the objectively least similar stimulus. Taken together, these results validate our approach to 

manipulating perceptual similarity. 

 One possible explanation for these results is that participants sequentially compared each 

individual line segment in the test stimuli to the line segments in the target and counted the 

number of differences between each test stimulus and the target. This account predicts that RT 

should increase linearly as a function of OS distance. However, there was no such relationship 

between RT and OS distance or any mean differences in RT between OS distances. Thus, the 

effects of objective similarity on perceptual similarity cannot be attributed to a sequential 

comparison process and instead likely reflect perceptual judgments based on holistic 

visual/structural representations of perceived similarity (Palmer, 1977; Tanaka & Farah, 1993). 

 We performed a linear transformation on the perceptual reporting for each OS distance to 

convert the OS distances into perceptual distances. This distribution of perceptual distances had 
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three significant characteristics: (1) The distribution of perceptual distances had an 

approximately linear range (OS distances between 0 and 2). (2) However, the perceptual 

distances in the linear range were all rightward shifted (i.e., similarity repulsion). This indicates 

that perceptual distances, and thus the perceived similarity between these character stimuli, were 

less than is predicted by their objective distances. (3) Critically, the perceptual distances of 2 and 

3 were clustered around the OS distance of 3, which suggests that this is the saturation point in 

perceptual similarity space for these stimuli. As stimuli exceed this point in OS distance, the 

perceptual similarity remained constant. As with our neurological predictions, this may be the 

saturation point for neuronal firing rates for this stimulus set, which will be discussed further in 

the General Discussion. 

 Experiment 1 supports our prediction that perceptual distances will saturate after a certain 

point in OS space. Furthermore, we offer a neurological explanation for this observation 

whereby a neuron encodes the target and the firing rates of this neuron monotonically increase as 

a test stimulus placed in its receptive field moves away from the target in feature space, however, 

the firing rates for this neuron will saturate after a certain range of objective similarity. 

Interestingly, a converging piece of evidence for this explanation would be to elicit saturation in 

the opposite direction of perceptual similarity space. If a stimulus set with objects that are highly 

similar is utilized for this task, then a certain point in OS space will likely need be crossed before 

perceptual similarity distances even begin to linearly increase. We examined this prediction in 

Experiment 2. 

3.4 Experiment 2: Wagon Wheel Stimuli 

 We constructed a secondary stimulus set for use in Experiment 2 using the same 6 or 7 

individual line orientations, but instead we embedded them along a medial axis of a 2° circle and 



34 

situated them between the middle and circumference of the circle. We enclosed the circle with a 

line of equal width. As such, we refer to these stimuli as wagon wheels given their shape: The 

line subunits are the “spokes” and the encircling line is the “felloe”. These stimuli were utilized 

because they are likely much more perceptually similar to one another and therefore may elicit a 

saturation at short distances in OS space. Previous research examining perceptual similarity by 

Palmer (1977) demonstrated that figures very similar to those utilized in Experiment 1 could be 

segmented into “good cuts” and “bad cuts” that are determined by Gestalt principles like 

connectedness and overall contours, suggesting that object subparts may give additional 

similarity cues to observers. Similarly, Palmer (1978) demonstrated that perceptual similarity 

judgments between a target and test stimulus with one individual line subunit difference between 

them can systematically increase if the feature difference preserves the overall contour of the 

object. The overall contours of our stimulus sets were not well controlled by the objective 

similarity manipulations utilized in Experiment 1, which could be decreasing the similarity 

between stimuli. By alternatively utilizing these wagon wheel stimuli, we can reduce/eliminate 

the impact of subparts, overall contour, and closedness as the line subunits are uniformly 

encircled. This will therefore ensure that the overall contour is identical between stimuli. 

Furthermore, orientation differences between wagon wheel “axles” can be made very small and 

will therefore be much more difficult to parse from the overall object than the orthogonal 

orientations used for the character stimuli in Experiment 1. Therefore, by utilizing these wagon 

wheel stimuli, we hypothesize that perceptual distances saturate at short OS distances. 

3.4.1 Methods 

3.4.1.1 Participants 

10 York University undergraduate students (19-29 years old, 2 male) participated in the 
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experiment for course credit. Participants had normal or corrected-to-normal vision and were 

naïve to the purpose and design of the experiment. Informed consent was obtained prior to 

participation. All research was approved by York University’s Human Participants Review 

Committee. 

3.4.1.2 Stimuli 

2 sets of wagon wheel stimuli were constructed offline using custom algorithms in 

MATLAB (MathWorks, Natick, MA). Stimuli were constructed by connecting 6 or 7 axial lines 

(1°× 0.08°) from the center of a circle (diameter = 2°, thickness = 0.08°) through a medial axis to 

its circumference at 1 of 12 possible angles that were evenly spaced (interval = (1/12) × 2 × pi 

rad ≈ 0.52 rad) about the circle and included the cardinal axes (see Figure. 6). All other stimulus 

parameters were identical to the character stimuli in Experiment 1. 

 

Figure 2.6. Stimulus sets utilized in the experiment 2. Stimuli are placed on a conceptual 

number line on which the absolute difference between number line positions corresponds to the 

number of line segment dissimilarities (distance). 

3.4.1.3 Apparatus and measurement  

The apparatus and measurement was identical to Experiment 1. 

3.4.1.4 Task procedure 

The task procedure was identical to Experiment 1. 
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2.4.2 Results 

 Identical statistical procedures as those utilized in Experiment 1 were utilized for 

analyzing the data from Experiment 2. 

2.4.2.1 OS distances between target and selected and unselected test stimuli 

First, OS distance was treated as a continuous variable. As such, a paired-samples t-test 

between selected and unselected test stimulus OS distances to the target demonstrated that the 

OS of the selected stimulus (M = 2.26) was reliably lower than the OS of the unselected stimulus 

(M = 2.68), t(9) = −4.93, p < .001, d = 1.56. 

Second, OS distance was treated as a categorical variable. As with Experiment 1, we 

removed trials with equal OS distances between the target and both test stimuli (OS distance = 

0), and then calculated the observed and expected frequencies for every categorical selected and 

unselected OS distance (min = 1, max = 5) (see Figure 7). Observed frequencies were calculated 

as the proportion of selected and unselected trials in each OS distance category. Expected 

frequencies were calculated by dividing the total number of trials in each OS distance category 

by 2 as participants were forced to choose one stimulus on every trial. A Chi-squared analysis 

demonstrated that the observed frequencies were not randomly distributed across OS distance, 

χ2(4, N = 3840) = 103.41, p < 0.001, Cramer’s φ = 0.08. 
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Figure 2.7: The proportion of selected and unselected trials as a function of OS category. 

Error bars represent SE. *Significant deviations from chance (.5) using a paired-samples t-test 

with Bonferroni multiplicity adjusted p < .05.	 

 For every OS distance, the proportion of selected trials was compared against chance (.5) 

using a paired-samples t-test. The selection of test stimuli was not predicted by chance across all 

5 OS distances. A test stimulus with an OS distance ≤ 2 was chosen significantly above chance: 

OS distance 1, t(9) = 4.31, p = 0.009, d = 1.36; OS distance 2, t(9) = 3.33, p = 0.044, d = 1.05. 

Conversely, test stimuli with an OS distance ≥ 3 were selected below chance: OS distance 3, t(9) 

= −3.29, p = 0.047, d = 1.04; OS distance 4, t(9) = −4.29, p = 0.010, d = 1.36; and OS distance 5, 

t(9) = −6.52, p < 0.001, d = 2.06. 

2.4.2.2 RT as a function of OS distance 

Response times (RT) were analyzed as a function of OS distance using a repeated-

measure ANOVA to examine potential mean differences and a linear regression analysis to 
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examine a potential linear relationship. These analyses demonstrated a marginal, but unreliable 

mean difference between OS distances, F(1.38,12.44) = 3.85, p = 0.062, 𝜂!!  = 0.30; and 

insufficient evidence for a linear relationship between RT and OS distance, F < 1. 

2.4.2.3 Accuracy as a function of OS distance 

As in Experiment 1, we calculated the proportion of trials on which the test stimulus that 

is objectively most and least similar to the target was selected for each OS distances. (At an OS 

distance of 0, the OSs between the target and both test stimuli were equal. Therefore, the most 

and least similar test stimulus selection frequencies were replaced with the left and right test 

stimulus selection frequencies. This condition serves as a baseline.) 

We calculated perceptual similarity (PS) in an identical manner as in Experiment 1 and 

analyzed PS as a function of OS distance (see Figure 8). A repeated-measures ANOVA provided 

evidence for a significant mean difference between OS distances with a significant linear 

component, F(1,9) = 10.04, p = 0.011, 𝜂!! = 0.53. This linear trend was further investigated with 

a linear regression, which provided evidence for a significant linear relationship between OS 

distance and perceptual similarity, F(1,2) = 47.58, p = 0.020, R2 = 0.96. 
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Figure 2.8: Perceptual distances. Differences between the proportion of trials on which the 

least similar test stimulus was selected and the proportion of trials on which the most similar test 

stimulus was selected as a function of OS distance. Error bars represent SE. Also depicted is the 

line of best fit, linear regression equation, and coefficient of determination. 

2.4.2.4 Transformations of OS distance to perceptual distances 

Estimates of perceptual distances for the wagon wheel stimuli were generated in an 

identical manner as was used in Experiment 1 (see Figure 9). The Gaussian CDF was fit with µ = 

4.68, σ = 2.84, and R2 = .98. 
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Figure 2.9: Experiment 2 perceptual distance estimates. Upright triangles denote the 

perceptual distance estimates superimposed on the OS distance number line used in the current 

experiment. The downward triangle denotes the point of perceptual certainty estimate. The solid 

black line was utilized for the linear transformation of the OS distances. The broken black line is 

the tangent of the mean Gaussian CDF. The solid blue line is the fitted Gaussian CDF. The black 

circles are the mean PS as a function of OS distance. Error bars denote SE. 

2.4.3 Discussion 

 Consistent with the results from Experiment 1, manipulating the number of line subunits 

shared between stimuli modulates the perceived similarity between them. This result has 

therefore been replicated using two classes of objects with perceptually significant 
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visual/structural differences. However, although the pattern of results between Experiment 1 and 

2 are qualitatively similar, there are notable quantitative differences that suggest that the wagon 

wheel stimuli were inherently more perceptually similar to one another than were the character 

stimuli: (1) When OS distance was analyzed as a continuous variable, the mean difference in OS 

distance between the target and the selected and unselected test stimuli were greater in 

Experiment 1 than in Experiment 2 (MD1 = .94, MD2 = .42; respectively), as were the effect sizes 

(d1 = 2.42, d2 = 1.56; respectively).  (2) Conversely, OS distance was analyzed categorically as 

we calculated the distribution of trials across OS distance categories for the selected and 

unselected test stimuli (see Figure 3 and Figure 7). The data demonstrated that this distribution 

deviated further from chance for the character stimuli than for the wagon wheel stimuli, as 

demonstrated by the effect sizes for a goodness-of-fit analysis (Cramer’s φ1 = 0.19, Cramer’s φ2 

= 0.08; respectively, where N1 = N2). (3) The slope of the linear best fit of perceptual similarity 

as a function of OS distance (see Figure 4 and Figure 8) is twice as steep for the Experiment 1 

data than the Experiment 2 data (slope1 = .14, slope2 = .07; respectively). (4) The mean of the 

Gaussian CDF fit to the perceptual similarity as a function of OS distance data (see Figure 5 and 

Figure 9) was less for Experiment 1 than Experiment 2 (µ1 = 2.47, µ2 = 4.68; respectively) 

despite having similar standard deviations (σ1 = 2.46, σ2 = 2.84; respectively). The inherent 

differences in perceptual similarity between the character and wagon wheel stimuli can be 

explained psychologically by differences in how well the overall contour and closedness is 

preserved across OS distance (Palmer, 1978), which would likely then also minimize or 

eliminate the influence of perceptual subparts (Palmer, 1977), and by the discriminability of the 

individual constituent features of the objects. 

 As in Experiment 1, the current results cannot be attributed to observers utilizing a simple 
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comparative process whereby each individual line subunit in the test stimulus are compared to 

each line subunit in the target as there were no reliable mean RT differences between OS 

distance and no functional relationship between mean RT and OS distance. 

 Critically, the results from the current experiment provide converging evidence that 

perceptual distances saturate outside of a specific range in objective similarity space. As in 

Experiment 1, there was a linear range of perceptual distances (OS distances 1, 2, 3) and outside 

of this range the perceptual distances saturated. However, unlike in Experiment 1, the point of 

saturation actually occurred at early objective similarity distances: the saturation point was 

approximately a perceptual distance of 1 as the perceptual distances of 0 and 1 were clustered 

together. This observation coincides with our efforts to make the wagon wheel stimuli more 

inherently perceptually similar to each other and is consistent with neuronal encoding of 

similarity as is discussed in the next section. 

2.5 General Discussion 

We investigated whether the perceptual distances between complex, novel, and 

meaningless objects would saturate at a certain objective similarity distance as this provides 

insight into the link between perceptual experience and the neural mechanisms that subserve our 

perceptions (Parker & Newsome, 1998). Our elementary assumption was that objectively 

manipulating the number of line subunits shared between our stimuli would modulate the 

perceived similarity between them and we have reported the results of multiple analyses that 

have confirmed this assumption. As such, these results are consistent with highly influential 

structural description theories of visual perception (Biederman, 1987; Biederman & Cooper, 

1991; Marr & Nishihara, 1978) and therefore relate the current observations to foundational 

work in the field. Furthermore, contrasting these results between Experiment 1 and 2 (see 
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Experiment 2 discussion) also confirms that the inherent similarity between the wagon wheel 

stimuli was higher than for the character stimuli. As such, there were notable differences in the 

distribution of perceptual distances between these stimuli, which has implications for the visual 

encoding of these stimuli discussed below. 

In Experiment 1, there were three significant observations pertaining to the distribution of 

perceptual distances between stimuli that merit discussion: (1) There was an approximately 

linear range of perceptual distances for stimuli with an OS distance between 0 and 2. (2) This 

linear range was succeeded by a nonlinear range of perceptual distances for stimuli with an OS 

distance of 2 and 3. (3) The stimuli in the linear range were all rightward shifted along the 

similarity dimension (similarity repulsion).  

A linear and subsequent nonlinear range of perceptual similarities has important 

implications as this is a common characteristic for neuronal tuning curves, which encode the 

physical parameters of visual objects. These nonlinear tuning curves have been observed for 

simple visual features like orientation (Hubel & Wiesel, 1968) and contrast (Albrecht & Geisler, 

1991; Albrecht & Hamilton, 1982), and at the population level, for complex objects such as faces 

(Loffler et al., 2006) and geometric shapes (Brincat & Connor, 2004, 2006; Fujita et al., 1992; 

Logothetis et al., 1995; Panis et al., 2008). The neuronal response function for a sensory stimulus 

is often correlated with or similar in shape to psychometric discrimination functions for that 

stimulus (reviewed by Parker & Newsome, 1998). Given the evidence for nonlinear neuronal 

response functions for complex objects reviewed above, the data from Experiment 1 suggests 

that the perceptual similarity between the character stimuli is determined by an underlying 

neuronal response function tuned in multi-dimensional feature space for complex objects, which 

we will therefore refer to herein as “object space”. 



44 

If a perceptual similarity psychometric function reflects neuronal tuning in object space, 

then the nonlinearity in the perceptual distances would suggest saturation in the neuronal tuning 

function at the corresponding OS distance (approximately 3). This is admittedly speculative 

because of the limited observations in OS distance. At this tentative point of saturation, 

perceptual similarity was approximately .5, which corresponds to 75% responding for the 

objectively most similar stimulus. It could be the case that the psychometric function would 

reach 1 at a sufficient OS distance, and thus an OS distance of 3 does not reflect the true 

saturation point. However, it could also be the case that this is the true saturation point and thus 

perceptual responding would therefore never surpass 75% responding for the objectively most 

similar stimulus if we measured more perceptual similarities at even greater OS distances. This 

account predicts that if we added a scaling parameter to the ogival psychometric function so that 

it reached a maximum height of approximately .5 (as it would if the true saturation point was .5), 

and recalculated the point of perceptual certainty extrapolated to the height of this scaling 

parameter, then the resulting distribution of perceptual distances should be the same. We 

conducted this analysis so to test this assumption and found that the distribution of perceptual 

distances was qualitatively the same (i.e., rightward shifted, linear range between 0 and 2 with a 

nonlinearity at 3), but demonstrated one quantitative exception: the saturated distance was at an 

OS distance of approximately 2.5 as supposed to 3 without this parameter. Given the consistency 

between these results, it appears that the saturation point in perceptual space corresponds to an 

OS distance between approximately 2.5 and 3. 

Our behavioral paradigm involved comparing two spatially balanced test stimuli to a 

target (referent stimulus). Interestingly, we observed perceptual repulsion in the data from 

Experiment 1 as the character stimuli in the linear range were all rightward shifted along the 
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similarity dimensions. This result is similar to perceptual repulsion effects observed when 

humans are required to make perceptual judgments for simple features such as orientation 

(Blakemore, Carpenter, & Georgeson, 1970) or motion direction (Marshak & Sekuler, 1979) in 

the presence of a secondary orientation or motion field. Such perceptual repulsion effects are 

thought to reflect an inhibitory interaction between neurons encoding these visual features, 

where mutual (lateral) inhibition expands the perceived difference between the stimulus 

orientations (Blakemore et al., 1970) or directions (Marshak & Sekuler, 1979). There is 

substantial evidence that the location in object space for complex geometric shapes (Brincat & 

Connor, 2004, 2006; Fujita et al., 1992; Kayaert et al., 2005; Kobatake & Tanaka, 1994) and face 

space (Freiwald et al., 2009; Leopold et al., 2006) are neurologically encoded as with simple 

visual features in 1-dimensional feature space like orientation (Hubel & Wiesel, 1968) and 

contrast (Albrecht & Geisler, 1991; Albrecht & Hamilton, 1982). As such, these complex object 

representations elicit similar, robust psychophysical effects as simple visual features like 

affereffects (Leopold et al., 2001; Anderson & Wilson, 2005). However, our data is the first to 

show perceptual repulsion for a complex class of objects.  

In contrast to Experiment 1, the results of Experiment 2 were qualitatively different: (1) 

the saturation of perceptual distances occurred at the shortest OS distances and (2) there was no 

repulsion of perceptual distances as perceptual distances were actually compressed. The 

saturation point at short perceptual distances (an OS distance of approximately 1) suggests that 

there is an OS distance threshold for observers to perceive dissimilarities between the wagon 

wheel stimuli that was not observed between the character stimuli. This threshold can account 

for the lack of perceptual repulsion observed for the wagon wheel stimuli: if the differences 

between stimuli are below threshold, then repulsion should not occur.  
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Our results clearly demonstrated that the wagon wheel stimuli were inherently more 

similar than the character stimuli. One source of these inherent differences is likely the fact that 

the overall contours of the wagon wheels were always preserved since all orientations were 

symmetrically encircled by the “felloe”, and preserving the overall contour between objects 

increases the perceived similarity between them (Palmer, 1978). Furthermore, this may have also 

reduced the influence of additional perceptual cues afforded by perceptual subparts (Palmer, 

1977). However, a more fundamental explanation for these results is that as discriminability of 

the constituent line subunits decreases, the overall discriminability of the objects also decreases. 

This is consistent with neurophysiological research that has demonstrated that a nonlinear tuning 

curve for a complex, geometric object is an emergent property from the interactions between 

multiple linear tuning curves for the underlying constituent features of the object (Brincat & 

Connor, 2004, 2006). As such, in Experiment 1, stimuli were constructed using just two 

orthogonal orientations (i.e., horizontal/vertical) that were always intersected at right angles, and 

orthogonal orientations should maximize an observer’s discrimination sensitivity (Campbell, 

Kulikowski, & Levinson, 1966). Conversely, we used 6 orientations in Experiment 2 (object 

subunits could be 1 of 12 line orientations evenly spaced by 30°), which should therefore 

decrease observer sensitivity to the orientations. Furthermore, this also introduced orientations 

on the oblique axes, which are inherently more difficult to discriminate (Appelle, 1972). If 

complex object representations are subjected to a similar comparative process across object 

classes, but the discriminability between objects is an emergent property of the discriminability 

of the constituent features of the object, this would predict that the psychometric discrimination 

functions should be the same shape between object classes, but should shift along the axis in 

similarity space. We observed this phenomenon in the current data: the ogival psychometric 
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functions had a similar shape between object classes, but were shifted along the OS distance axis 

(reviewed in Experiment 2 Discussion). These results suggest that a common neural circuit is 

utilized for similarity computations across object classes. 

A possible explanation for the current perceptual reporting results is that observers 

sequentially compared all line subunits between the test stimuli and the target. However, this 

account predicts that RT should increase linearly as a function of OS distance since the number 

of line subunit differences linearly increase as a function of OS distance and since sequential 

processing temporally increases as a function of task set size (Neisser, 1967). The data from both 

experiments did not suppose this linear increase in RT as a function of OS distance, nor were 

there mean differences between OS distances. Furthermore, a serial comparison of the test 

stimuli to the target stimulus would have also been very unlikely as the current task parameters 

impose several cognitive limitations on observers. First, we displayed the target stimulus for 500 

ms and then displayed the two test stimuli afterwards. Therefore, an effective comparative 

strategy would require parsing the target stimulus into its constituent line orientations and 

maintaining each one in visual short-term memory (VSTM). However, the number of individual 

line segments that the target stimulus is comprised of (6 or 7) exceeds the human capacity for 

storing line orientations in VSTM, which is estimated to be 4 (Luck & Vogel, 1997). Second, 

observers were likely unable to rely on a precategorical, iconic memory representation of the 

target for this comparison because iconic memory rapidly decays after only a few hundred 

milliseconds (Sperling, 1960) and observers would therefore rapidly lose access to an exact 

sensory copy of the target stimulus. In fact, for both experiments, mean RTs were always over 

500 ms, at which point iconic memory information available can decay by 50% (Sperling, 1960). 

Third, observers were also likely unable to rely on a precategorical, iconic memory 
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representation of the target for this comparison because the test stimuli were placed outside of 

the fovea (eccentricity = 7.5°) and comparing the similarity of a test stimulus to a referent with 

an iconic memory representation is less effective if the stimuli appear at different locations 

(Phillips, 1974).  

The current experiments provide insight into the perceptual encoding of complex novel 

objects representations. Our data suggest that complex objects are encoded in N-dimensional 

feature space where each dimension corresponds to a constituent feature for a particular object 

and the perceptual similarity between two objects corresponds to the inverse of the distance 

between these objects. This conceptualization of feature space is well supported for both simple 

features and faces. In the current study, we extend this conceptualization to complex, novel 

objects elucidating that this is an underlying tenet of object representation in the visual system. 

As such, we refer to N-dimensional feature space for complex objects as “object space”. 

Consistent with perceptual representations in object space, we observed two robust perceptual 

phenomena for our complex objects that occur for simple visual feature representations: 

nonlinear perceptual encoding (saturation) at long distances in object space and repulsive 

perceptual encoding at short distances in object space. Finally, we show that saturation and 

repulsion of perceived similarity largely depends on the discriminability of the constituent visual 

features of the objects. 
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Chapter 3: Visual Similarity between Complex, Novel Objects Functionally Modulates 

Saccade Curvatures (Manuscript 2) 
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3.1 Summary 

 Oculomotor target selection allows us to select a particular saccade goal at the expense of 

others. The intermediate layers of the superior colliculus (SCi) are a critical neural substrate for 

target selection and saccade curvatures are often utilized as a non-invasive behavioral means to 

study the factors that influence oculomotor target selection. Here, we utilized a visual search 

saccade task in human participants and measured the curvature of saccades made to a target 

bilaterally flanked by equidistant distractors, while systematically varying the relative visual 

similarity between the two distractors and the target. Our results demonstrate that saccades 

systematically curved away from the distractor that is most similar to the target and that there is a 

linear relationship between the magnitude of these saccade curvatures and how similar this 

distractor was to the target. Furthermore, an analysis of saccade curvature as a function of 

saccade amplitude percentage demonstrated that saccades were only curved in the first 60-80% 

of the movement. This corresponded to the first 23-31 ms of the movement and thus is consistent 

with the temporal interval between SCi perisaccadic bursts for parallel-programmed saccades 

(Port and Wurtz, 2003). As the SCi is insufficient to fully process visual similarity in the current 

context given the task and stimulus parameters, we propose instead that similarity is computed 

cortically and mapped onto SCi via top-down inhibition. We elaborate on a model of saccade 

planning and execution that integrates the current results with previous work on oculomotor 

competition. 

3.2 Significance Statement 

We provide new insights into how information in the oculomotor and visual systems is 

integrated in order to select certain targets for fixation at the expense of others and how the 

priority for these potential targets are represented along a continuous dimension. Our research 
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suggests that the oculomotor system, largely subserved by a deep midbrain structure, has a 

passive role in oculomotor target selection, whereas the visual system, widely distributed across 

the cortex, has a more active role, contrary to certain influential views. Furthermore, we applied 

an analytic technique to examine oculomotor data, which yielded insights into the temporal 

factors that influence oculomotor planning and provided converging evidence with 

neurophysiological investigations of the temporal principles that guide the oculomotor system. 

3.3 Introduction 

Saccade deviations elicited in the remote distractor paradigm are commonly examined to 

determine the visual cognitive factors that influence oculomotor planning. Behavioral 

experiments have demonstrated that saccades deviate away from task irrelevant distractors 

(Dolye & Walker, 2001; McSorley et al., 2004, 2006, 2009) and that these saccade deviations are 

greater if the task relevance of the distractor increases such as with color contingency (Ludwig & 

Gilchrist, 2003; Mulckhuyse et al., 2009). These results are often attributed to oculomotor 

competition between parallel planned saccades whereby the competition is modulated by higher 

cognitive factors (see Findlay & Walker, 1999). A critical site of oculomotor competition is in 

the intermediate layers of the superior colliculus (SCi) as it is directly involved in saccadic target 

selection (Horwitz & Newsome, 1999; McPeek & Keller, 2002, 2004; Carello & Krauzlis, 2004; 

Li & Basso, 2005; Shen & Paré, 2007, 2012, 2014). The seminal work of Robinson (1972) 

demonstrated that SCi contains a retinotopic motor map on which a particular SCi locus encodes 

an amplitude and direction specific saccade vector to a corresponding location in contralateral 

space. Critically, when there is activity at two SCi loci, a saccade is elicited with a weighted 

vector-average (WVA) of the two loci. More recent neurophysiological investigations have 

demonstrated that SCi weighted-vector averaging causes saccade curvatures directly via 
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excitation (McPeek et al., 2003; Port & Wurtz, 2003) or inhibition (Aizawa & Wurtz, 1998; 

White et al., 2012) at the distractor locus, whereby saccades curve towards or away from 

distractors respectively. Since task relevance or priority is represented on the SCi oculomotor 

map through connections with various cortical areas (Fecteau & Munoz, 2006), the WVA 

account predicts that there should be a functional relationship between the behavioral relevance 

of distractors and the magnitude of saccade curvatures. 

Neurophysiological studies have also suggested that temporal factors play a critical role 

in eliciting saccade curvature. Port & Wurtz (2003) observed that simultaneous peak activity in 

SCi neurons encoding saccade vectors to two potential targets elicited a straight WVA saccade 

landing between targets, whereas sequential activity offset by ~20 ms elicited saccades that 

landed near one target but were curved towards the other (see also McPeek et al., 2003). 

Critically, the relative timing of peak activity determined the timing of saccade curvatures: 

saccades began to curve when neurons encoding the first target reached their peak level of 

activity and stopped curving when neurons encoding the second target reached their peak level of 

activity ~20 ms later. Similarly, there is evidence that inhibition occurring in this critical epoch 

~20 ms prior to saccade initiation causes saccades to curve away from distractors, but is 

considered more contentious (White et al., 2012). However, this interpretation would be 

strengthened if a similar spatio-temporal profile observed by Port and Wurtz (2003) occurs in 

saccades curved away from distractors (i.e., if saccades are curved away from distractors in only 

the first ~20 ms of their duration). 

The aforementioned neurophysiological results suggest that saccade curvatures result 

from outstanding competitive processing between SCi neurons involved in target selection. SCi 

target selection can be explained by two possible neural mechanisms: (1) SCi neurons encode 
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movement vectors to spatially defined objects and the vector weights are modulated from 

cortical sources or (2) SCi neurons encode object representations with associated features and 

thus dynamically develop feature selectivity over time. Here, we examined these possibilities by 

utilizing a visual search saccade task that required participants to discriminate the target from 

distractors using complex, novel object representations and not simple spatial coordinates. 

Critically, we systematically varied the task relevance of distractors by manipulating the visual 

similarity between targets and distractors (see Palmer, 1978). We reason that the cortical visual 

system was required to compute the visual similarity between our stimuli given their complicated 

and novel visual characteristics. Therefore, the observation of saccade curvatures in this context 

suggested that cortical object representations are projected onto the SCi oculomotor map. 

3.4 Methods 

3.4.1 Participants 

25 York University undergraduate students (18-37 years old, 8 male) participated in the 

experiment for course credit. Participants had normal or corrected-to-normal vision and were 

naïve to the purpose and design of the experiment. Informed consent was obtained prior to 

participation. All research was approved by York University’s Human Participants Review 

Committee. 

3.4.2 Stimuli 

Stimuli were constructed offline using MATLAB (MathWorks, Natick, MA) by 

intersecting 6 or 7 vertical and horizontal line segments (1°× 0.08°) together at right angles in a 

configuration that did not resemble meaningful alphanumerical characters to an English speaker 

(see Figure 1A). Individual line segments occupied 1 of 12 possible locations that were 

embedded in an imaginary box (2°× 2°). Adding and/or removing one line segment at a time 
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ensured that stimuli were linearly related in objective similarity (OS). We created 2 such sets of 

6 stimuli for the experiment. The stimuli were white (x = 119.90, y = 126.02) and were displayed 

against a black background (x = 0.23, y = 0.20) on a 21-inch CRT monitor (60 Hz, 1024 × 768). 

Participants viewed stimuli in a dimly lit room from a viewing distance of 57 cm with a headrest 

stabilizing their head position.  

 

Figure 3.1: Visual search saccade task stimuli and displays. A: Stimulus sets used in the 

current experiment. Stimulus sets have been placed on an objective similarity (OS) number line 

in which the absolute difference between number line positions corresponds to the number of 

line segment differences. B: Trial structure. Participants press a button to preview the target 

stimulus until they are familiar with it. Participants then press the button again to initiate the 

A

B 

C
Pretrial display Target preview Fixation (200 ms) Search display (750 ms) 

D
1   2   3 

Number Line Position 

      CCW       Target       CW  
   Distractor                Distractor          OS Distance (Similarity Condition) 

1   2   5 

| ( | 1 − 2 | ) − ( | 5 − 2 | ) | = 2 (CCW) 

   | ( | 1 − 2 | ) − ( | 3 − 2 | ) | = 0 (Neutral) 
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search trial. After maintaining fixation for 200 ms, the search display is presented for 750 ms or 

until a saccade to one of the stimuli is detected. C: 8 stimulus array locations utilized in the 

current experiment. Stimulus arrays were centered to 1 of 8 locations along the circumference of 

an imaginary circle with 45° of angular separation between them and aligned to the cardinal and 

diagonal axes. D: Similarity conditions in the current experiment determined by relative OS. 

Top: OSCCW and OSCW are equal, therefore the OS distance condition is 0 and the similarity 

condition is neutral. Bottom: OSCCW is less than OSCW by a factor of 2, therefore the OS distance 

condition is 2 and the similarity condition is CCW. 

3.4.3 Apparatus and Measurement  

Stimulus presentation was controlled using a computer running Presentation software 

(www.neurobs.com) and a serial response box (Cedrus, San Pedro, CA). Eye position was 

recorded using infrared eye tracking (500 Hz, EyeLink II, SR Research, Ontario, Canada). The 

eye tracker was calibrated at the beginning and halfway point of each experimental session, and 

as needed. 

3.4.4 Task Procedure 

Trials were initiated by pressing the center button on the response box (see Figure 1B).  

The target appeared as a preview until they pressed the button a second time. A white, central 

fixation cross (0.4°× 0.4°) appeared and after participants fixated it (1.89° square window) for 

200 ms, the target and distractors appeared at 1 of 8 contiguous locations (7.5°eccentricity, see 

Figure 1C).  

The relative OS of the search array was randomly selected on every trial (see Figure 1D). 

Participants were instructed to maintain fixation when the stimuli appeared, use their peripheral 

vision to determine which stimulus was the target, and then make a saccade to it. The trial ended 
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when a saccade was made to the target (correct) or distractor (incorrect) or 750 ms had elapsed 

(time-out). An error tone and message were used to signify incorrect and time-out trials. Time-

out trials were randomly replaced back into the block. Participants received accuracy feedback at 

the end of each block.  

Participants completed 1 session with 8 blocks of 49 trials for a total of 392 trials. On 

each trial, the target location and the distractor positions relative to the target were randomly 

selected. 3 distractors arrangements were utilized: (1) both distractors flanked the target on the 

counterclockwise (CCW) side, (2) the clockwise (CW) side, (3) or bilaterally flanked the target. 

Additionally, baseline trials in which no distractors were embedded in the display were randomly 

interleaved into the blocks. The proportion of each trial type was randomized on every block. 

3.4.5 Saccade Detection and Analysis 

Saccades were detected, visualized, filtered and analyzed offline using customized 

MATLAB algorithms. Trials that contained blinks, endpoint deviations > 3° from the center of 

the target, or a fixation drift > 0.5° during the presaccadic latency period were excluded from 

further analysis.  Saccades were defined as a velocity exceeding 20 deg/s for at least 8 ms and a 

peak velocity exceeding 50 deg/s. Saccades were excluded from further analysis if they were less 

than 100 ms in latency or required corrective-saccades to reach the target (a second saccade >1° 

in amplitude was detected). 

To analyze saccade curvatures, saccade start-points were translated back to the origin and 

then trigonometrically rotated so that the endpoint was aligned to the positive y-axis. Thus, 

positive deviations correspond to CW deviations, while negative deviations correspond to CCW 

deviations. The following 3 metrics were used to quantify global saccade curvatures: (1) sum 

deviation, the sum of all x deviations along the length of the saccade; (2) max deviation, the 
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maximum x deviation along the length of the saccade; (3) max theta, the maximum x deviation 

along the length of the saccade in angular degrees. To examine the time course of saccade 

curvatures, saccades were binned into amplitude quintiles and these same three metrics were 

used to quantify partial saccade curvature between each consecutive quintile (i.e., between n−1 

and n quintiles). To differentiate between the global and partial saccade metrics, the partial 

metrics are referred to as the partial sum, partial max, and partial theta. Two additional metrics 

were used to quantify saccade curvature at each discrete interval: (1) deviation, the x deviation at 

each quintile; and (2) deviation theta, the x deviation in angular degrees at each quintile. Finally, 

the following 2 metrics were used to quantify deviations in the overall saccade vector: (1) 

endpoint deviation, the distance of the saccade endpoint away from the center of the target 

location in degrees; and (2) endpoint deviation theta, the angular deviation of the saccade 

endpoint away from the center of the target location. Saccadic reaction time (SRT) was defined 

as the time between target onset and saccade initiation. All subsequent statistical analyses 

reported were conducted in SPSS (IBM SPSS Statistics; IBM, Armonk, NY). 

3.5 Results 

 The data from 3 participants was removed as Chi-squared goodness-of-fit tests 

determined that they did not discriminate the target above chance (ps > .05). As we were 

interested in examining whether saccade trajectories are functionally related to the relative OS 

between bilateral distractors and the target independent of spatial factors, correct trials with 

bilateral distractors were analyzed. All analyses were collapsed across target location on the 

display. Shapiro-Wilks tests provided insufficient evidence for normally distributed data for 

various analyses (ps < .05). Therefore, non-parametric Friedman tests and Wilcoxon Signed-

Rank tests were used to analyze all repeated-measures mean differences. Bonferroni α 
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corrections were utilized for all multiple comparisons. 

3.5.1 Quantifying Similarity 

The objective similarity (OS) between targets and distractors was manipulated by varying 

the number of line segments shared between targets and distractors (seeure 1A). To examine the 

effect of OS on saccade curvatures, the relative similarity between the bilateral distractors and 

the target (OSR) was calculated by subtracting the absolute counterclockwise (CCW) distractor-

to-target OS (OSCCW) by the clockwise (CW) distractor-to-target OS (OSCW) such that OSR = | 

OSCCW | − | OSCW | with a range of −3 to +3.  

First, to examine whether differential OS between the target and each bilateral distractor 

modulates saccade deviations categorically, trials were categorized based on whether the CCW 

distractor was more similar to the target than the CW distractor (OSCCW < OSCW ; OSR < 0), the 

CW distractor was more similar to the target than the CCW distractor (OSCCW > OSCW; OSR > 0), 

or the CCW and CW distractors were equally similar to the target (OSCCW = OSCW ; OSR = 0). 

This categorization is herein referred to as similarity condition with levels CCW, CW, and 

neutral respectively (see Figure 1D). 

Second, to examine whether saccade curvatures are functionally related to visual 

similarity, the absolute mean saccade curvature was averaged for every positive and 

corresponding negative value of OSR (e.g., −1 and +1) (see Figure 1D). Since each positive and 

negative value of OSR is perceptually matched, this grouping eliminated any potential curvature 

bias in either the CCW or CW direction and provides the average magnitude of saccade 

curvatures as a function of how disproportionately similar one distractor is to the target as 

compared to the other. To further reduce bias, baseline saccade curvatures for each subject and in 

each target location were subtracted from the data. This variable is herein referred to as OS 
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distance with levels 0, 1, 2, and 3. We examined any potential relationship between saccade 

curvatures and visual similarity by fitting first-order polynomials to the data using the least-

squares method. The decision to use a linear function was due to limited degrees of freedom and 

since we did not make any assumptions about the shape of this potential functional relationship. 

3.5.2 Behavioral Measures 

3.5.2.1 Errors 

Overall task performance was 54.26%. To determine if our sample performed above 

chance (33.33%), a paired-samples Student’s t-test compared the proportion of correct trials for 

each participant against chance. Participants did discriminate the target significantly above 

chance, t(24) = 8.96, p < 0.001. 

The distribution of errors across similarity and OS distance conditions were analyzed 

with Chi-squared goodness-of-fit tests to determine if they were randomly distributed. 

Interestingly, errors were not randomly distributed across the similarity conditions, χ2(2, N = 

2704) = 18.35, p < 0.001; or OS distance conditions, χ2(3, N = 2704) = 19.43, p < 0.001. 

However, an examination of the model residuals suggested that these effects are likely being 

driven by a high rate of errors in the neutral (similarity) or 0 (OS distance) conditions. Therefore, 

the analyses were repeated with these conditions removed. Our prediction was confirmed as both 

analyses demonstrated that errors were randomly distributed across the similarity conditions, 

χ2(1, N = 2240) = 0.03, p = 0.866;  and OS distance conditions, χ2(2, N = 2240) = 1.29, p = 

0.525. Furthermore, task performance increased to 62.11%. These results suggest that the task 

was more difficult on trials when the distractors are equally similar to the target as compared to 

when one distractor was more similar to the target. However, the difficulty of the task was 

otherwise equal across similarity and OS distance conditions. 
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3.5.2.2 Bias 

Error trials were categorized according to whether the CCW or CW distractor was 

selected by participants in order to determine if there was a directionality bias. A Chi-squared 

goodness-of-fit test revealed that there was no overall directionality bias, χ2(1, N = 2704) = 0.02, 

p = 0.878. Interestingly, when this analysis was repeated for each similarity condition, it 

demonstrated that there is no bias when the distractors are equally similar to the target (neutral 

condition), χ2(1, N = 464) = 0.08, p = 1. However, participants did show a selection bias for the 

distractor most similar to the target in the CCW similarity condition, χ2(1, N = 1124) = 32.80, p < 

0.001; and the CW similarity condition, χ2(1, N = 1116) = 28.39, p < 0.001. 

Next we investigated whether this selection bias for the distractor most similar to the 

target varies with OS by calculating the proportion of trials on which the objectively most and 

least similar distractors were selected for each OS distance (see Figure 2). Since stimuli were 

equally similar to the target in the 0 condition, most/least similar distractor selection were 

replaced with CCW/CW selection and this condition was not analyzed as it was identical to the 

neutral condition analyzed above. There was an unreliable bias in the 1 condition, χ2(1, N = 764) 

= 4.10, p = 0.128, Cramer’s φ = 0.07. However, there was a reliable bias in the 2 condition, χ2(1, 

N = 722) = 32.85, p < 0.001, Cramer’s φ = 0.21; and the 3 condition, χ2(1, N = 754) = 33.95, p < 

0.001, Cramer’s φ = 0.21. Based on the increasing effect sizes and differences in the proportion 

of error trials on which the most and least similar distractor was selected across OS distance 

conditions, it appears that the selection bias for the distractor most similar to the target is 

modulated by OS distance whereby the more similar the distractor is to the target, the higher the 

bias.  
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Figure 3.2: The proportion of total error trials. Error proportions are plotted separately for 

trials on which the distractor that is most similar to the target was selected (filled circles, solid 

line) and the distractor that is least similar to the target was selected (open circles, broken line) as 

a function of OS distance. *p < .001. 

3.5.2.3 SRT 

There was no difference in SRT between the CCW and CW similarity conditions, z = 

−0.04, p = 1. Furthermore, pooling SRTs from the CCW and CW similarity conditions and 

comparing them to the neutral similarity group revealed that there was also no difference in SRT 

when the distractors were equally similar to the target than when they were differentially similar 

to the target, z = −1.14, p = 0.506. 

Finally, an omnibus Friedman test revealed that there were no mean SRT differences 

between OS distance conditions, χ2(3) = 3.38, p = 0.336; and a linear regression found no 

evidence of a functional relationship between SRT and OS distance, F(1,2) = 1.71, p = 0.321, R2 

= 0.46. 
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3.5.3 Saccade Curvature Metrics 

3.5.3.1 Categorical analysis 

We analyzed whether saccades were significantly curved in each similarity condition 

relative to baseline, and critically, whether saccades curved in opposite directions between the 

CCW and CW conditions (see Figure 3).  
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Figure 3.3: Mean saccade curvature as a function of similarity condition. Error bars 

represent standard error of the mean. A: Mean sum curvature in degrees of visual angle. B: Mean 

max curvature in degrees of visual angle. C: Mean sum curvature in degrees of angular 

separation from fixation. * p < 0.05, ** p < 0.01. 

When the distractors were equally similar to the target (neutral condition), saccade 

curvatures did not differ from saccade curvatures in the baseline condition across all global 

metrics: sum curvature, zsum = −0.26, p = 1; max curvature, zmax = −0.15, p = 1; and max theta, 

ztheta = −0.74, p = 1. Critically, by analyzing the mean difference between the CCW and CW 

condition, we observed that when one distractor was more similar to the target, saccades curved 

away from this distractor for the sum curvature, zsum = −3.11, p = 0.008; and max curvature 

metrics, zmax = −2.65, p = 0.032; but not for max theta, ztheta = −2.06, p = 0.158. When the CCW 

distractor was more similar to the target (CCW condition), saccade curvatures were greater than 

baseline: sum curvature, zsum = −3.05, p = 0.009; max curvature, zmax = −3.08, p = 0.008; and 

max theta, ztheta = −3.00, p = 0.011. However, when the CW distractor was more similar to the 

target (CW condition), saccade curvatures were not greater than baseline: sum curvature, zsum = 

−0.20, p = 1; max curvature, zmax = −0.74, p = 1; and max theta, ztheta = −0.55, p = 1. Given that 

the CCW and CW conditions are perceptually matched within subjects, it seems unlikely that 

saccades would curve away from the most similar CCW distractor, but not from the 

corresponding CW distractor especially since saccades curved in opposite directions across these 

conditions and the difference between them was statistically significant (see Figure 3). 

Therefore, a subsequent analysis was conducted to examine whether this abnormality can be 

explained by a saccade curvature bias.	 

Paired-samples Student’s t-tests compared baseline saccade curvatures to 0 to examine 
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whether there was a directional bias for this sample. This analysis demonstrated a strong CCW 

bias across saccade curvature metrics: sum curvature, tsum(24) = −3.63, p = 0.001; max curvature, 

tmax(24) = −3.52, p = 0.002; and max theta, ttheta(24) = −3.37, p = 0.003. This result suggests that 

curvatures in the CW similarity condition, which curved CCW, may not be reliably different 

from baseline due to a strong CCW curvature bias in the baseline condition. Saccade curvatures 

in the similarity conditions will only be hereafter discussed in terms of differences between the 

CCW and CW conditions. 

As our stimuli were constructed from either 6 or 7 line segments, they varied in 

luminance. However, since we always alternately added and then removed one unique line 

segment to create our stimuli (see Figure 1A), when both distractors were evenly or oddly spaced 

in OS away from the target, they both contained the same number of line segments. Therefore, in 

the OS distance 0 and OS distance 2 conditions, the distractors both contained the same number 

of line segments. As mentioned above, there were no significant saccade curvatures in the OS 

distance 0 condition, which had balanced distractor OS (see Quantifying Similarity section) and 

balanced distractor luminance. If there are significant saccade curvatures in the OS distance 2 

condition, which has unbalanced distractor OS but balanced distractor luminance, then the 

effects of saccade curvatures must be attributed to variations in OS. Saccade curvatures were 

significantly different from the absolute baseline curvatures in the OS distance 2 condition across 

metrics, zsum = −3.03, p = 0.002; zmax = −3.09, p = 0.002; ztheta = −2.57, p = 0.010. Therefore, our 

effects are due to the distractor OS and cannot be attributed to distractor luminance. 

3.5.3.2 Functional analysis 

The relationship between saccade curvatures and visual similarity was first explored by 

calculating a Pearson’s correlation between OSR and each global saccade curvature metric using 
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the raw data. There was a significant correlation for sum curvature, rsum(1230) = −0.08, p = 

0.005; max curvature, rmax(1230) = −0.06, p = 0.044; but not for max theta, rtheta(1230) = −0.04, p 

= 0.198. 

Coinciding with these correlations, regression analyses with OS distance as the 

independent variable and sum deviation, max deviation, and max theta as the dependent 

variables found a significant linear relationship for sum curvature, Fsum(1,2) = 32.64, p = 0.029, 

R2 = 0.94; and for max curvature, Fmax(1,2) = 44.92, p = 0.022, R2 = 0.96; but provided 

insufficient evidence for a linear relationship for max theta (F < 1, R2 < .01) (see Figure 4). 
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Figure 3.4: Mean global saccade curvatures as a function of OS distance. Error bars 

represent standard error. A: Mean sum deviation as a function of OS distance. B: Mean max 

deviation as a function of OS distance. C: Mean max theta as a function of OS distance. 

y = 0.18x + 1.26 
R² = 0.94 

0 

0.5 

1 

1.5 

2 

2.5 

-1 0 1 2 3 4 

M
ea

n 
Su

m
 C

ur
va

tu
re

 (d
eg

) 

OS Distance 

y = 0.01x + 0.14 
R² = 0.96 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

-1 0 1 2 3 4 

M
ea

n 
M

ax
 C

ur
va

tu
re

 (d
eg

) 

OS Distance 

y = -0.01x + 2.87 
R² < 0.01 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

-1 0 1 2 3 4 

M
ea

n 
M

ax
 T

he
ta

 (p
ol

ar
 d

eg
) 

OS Distance 

C 

B 

A 



67 

Another possible explanation for the current results to be ruled out is that saccades 

actually curved towards the least similar distractor. We find this account extremely unlikely for 

the following reasons: (1) We observed relatively long SRTs in the experiment (M = 322.52 ms), 

which reflects the difficulty of the task. Previous research has found that saccades begin to curve 

away from distractors after sufficient distractor processing time (~200 ms), which likely reflects 

an accumulation of inhibition at the distractor locus on the SCi motor map (McSorley et al., 

2006, 2009). (2) The bias for selecting the most similar distractor on error trials (see Figure 1) 

may suggest an influence of visuospatial attention deployed at the most similar distractor 

location and previous behavioral research has demonstrated that saccades typically curve away 

from the locus of attention (Sheliga et al., 1994, 1995). (3) If saccades curved towards the most 

similar distractor, the functional relationship between saccade curvatures and OS distance would 

suggest that activity at a particular distractor locus increased as the similarity of the distractor to 

the target decreased. Although we cannot rule out this possibility, neurophysiological data 

collected from frontal eye field (FEF) visuo-movement neurons during visual search has 

demonstrated that neuronal firing rates increase as the feature-based similarity between a 

stimulus in their receptive field and a target increases during target selection (Bichot et al., 1996; 

Bichot and Schall, 1999; Sato et al., 2003). 

3.5.3.3 Time course 

Saccades were binned by amplitude into quintiles and potential mean differences between 

the similarity groups (CCW vs. CW) were examined for each amplitude quintile bin (referred to 

herein as amplitude bin 1, 2, 3, 4, and 5). The deviation metric indicates the deviation along the 

axis perpendicular to a straight line passing through the saccade start- and endpoint in degrees at 

each 20% interval along the length of the saccade (Figure 5A), while the deviation theta metric is 
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equal to the deviation metric converted into polar degrees (Figure 5B), and thus indicates the 

saccade vector at each 20% interval along the length of the saccade. The partial sum (Figure 5C), 

partial max (Figure 5D), and partial theta (Figure 5E) metrics correspond to the sum of all x 

deviations in degrees, the maximum x deviation, and the maximum x deviation converted to 

polar degrees respectively, and were calculated for each amplitude bin using all the eye samples 

between bins n−1 and n. 

Figure 3.5: Mean saccade curvatures as a function of saccade amplitude bin. Saccade time 

points correspond to saccade amplitude quintiles. Mean saccade deviations in the CCW 

condition are plotted with filled circles and solid lines. Mean saccade deviations in the CW 
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condition are plotted with open circles and broken lines. Error bars represent standard error. A: 

Mean deviation as a function of amplitude bin. B: Mean theta deviation as a function of 

amplitude bin. C: Mean partial sum as a function of amplitude bin. D: Mean partial max as a 

function of amplitude bin. E: Mean partial theta as a function of amplitude bin. * p < 0.05, ** p 

< 0.01. 

The means in Figure 4 quantify the overall (global) saccade curvature, whereas the means 

in Figure 5 quantify the saccade deviation at various points along the length of the saccade and 

thus provide an approximation to the overall saccade trajectory. These metrics were used to 

examine if distractors differentially affect the early and late portions of saccade trajectories as 

has been observed in monkeys (Port and Wurtz, 2003) and to determine whether movement 

vector averaging occurs early in the movement, but a winner emerges later in the movement as 

with pursuit (Recanzone and Wurtz, 1999, 2000).  

For the deviation and deviation theta metrics, saccade amplitude bin 5 was not analyzed 

since this bin corresponds to the saccade endpoint, which equals zero given the rotational method 

used to calculate saccade deviations.  

Interestingly, there was a significant saccade curvature away from the most similar 

distractor across metrics in all amplitude bins except amplitude bin 4 (80% of movement) for the 

deviation and deviation theta metrics, amplitude 5 bin (between 80-100% of movement) for all 

of the partial curvature metrics (see Figure 5), and amplitude bin 1 for the partial theta metric. 

These results are summarized in Table 1. 
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Metric Saccade Amplitude Bin 
  1 2 3 4 5 
Deviation       
 CCW Curvature 0.01 0.03 0.03 0.01 - 
 CW Curvature -0.03 -0.03 -0.02 -0.02 - 
 z -3.00 -2.95 -2.87 -2.46 - 
 p *0.011 *0.013 *0.017 0.055 - 
Deviation Theta      
 CCW Curvature 0.64 0.47 0.36 0.10 - 
 CW Curvature -1.56 -0.72 -0.27 -0.21 - 
 z -3.27 -2.95 -2.73 -2.27 - 
 p **0.004 *0.013 *0.025 0.092 - 
Partial Sum       
 CCW Curvature 0.01 0.04 0.10 0.10 0.04 
 CW Curvature -0.08 -0.09 -0.12 -0.11 -0.11 
 z -2.65 -2.68 -2.81 -2.89 -2.22 
 p *0.040 *0.037 *0.025 *0.019 0.132 
Partial Max       
 CCW Curvature 0.01 0.03 0.03 0.04 0.02 
 CW Curvature -0.03 -0.03 -0.03 -0.02 -0.03 
 z -3.03 -3.03 -2.70 -2.84 -2.57 
 p *0.012 *0.012 *0.034 *0.023 0.051 
Partial Theta      
 CCW Curvature 0.64 0.35 0.38 0.45 0.17 
 CW Curvature -1.05 -0.82 -0.56 -0.28 -0.22 
 z -2.58 -2.63 -2.63 -2.98 -2.43 
 p 0.050 *0.043 *0.043 *0.014 0.076 
Table 3.1: Mean partial saccade curvatures in the CCW and CW conditions with z and p 

values for each CCW and CW mean difference. These statistics are repeated for each partial 

saccade curvature metric, and across saccade amplitude bins. * p < 0.05, ** p < 0.01 

3.5.4 Endpoint Deviation 

The endpoint deviations and endpoint deviation thetas were analyzed as a function of OS 

distance and similarity condition to determine if the distractor similarity modulated the overall 

saccade vectors as supposed to saccade vector shifts at some point along the length of the 

saccade.  
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Comparing baseline endpoint deviations to zero demonstrated a strong CCW bias for 

endpoint deviations, tdeg(24) = −4.27, p = 0.001; and endpoint deviations theta, ttheta(24) = −4.06, 

p = 0.001. There was no difference between the baseline and the neutral conditions for endpoint 

deviation, zdeg = −0.36, p = 1; or endpoint deviation theta, ztheta = −0.202, p = 1. There were also 

no differences between the baseline and CCW conditions for endpoint deviation, zdeg = −0.85, p 

= 1; or endpoint deviation theta, ztheta = −0.12, p = 1. There was, however, a difference between 

the baseline and the CW conditions for endpoint deviation, zdeg = −3.13, p = 0.007; and endpoint 

deviation theta, ztheta = −3.70, p < 0.001). Saccade endpoints in the CW condition deviated 

slightly CW as indicated by the mean endpoint deviation theta, however mean endpoint deviation 

was still CCW, but to a lesser extent than baseline. Similarly, the difference between the CCW 

and CW conditions was unreliable for endpoint deviation (zdeg = −2.11, p = 0.139), but was 

marginally reliable for endpoint deviation theta (ztheta = −2.38, p = 0.069). This analysis suggests 

that overall saccades vectors were marginally shifted in the direction of the most similar 

distractor. 

There was no evidence of a linear relationship between OS distance and endpoint 

deviation, Fdeg < 1, R2 = .01; or endpoint deviation theta, Ftheta < 1, R2 = .05; and no evidence of 

mean differences between OS distance conditions for endpoint deviation, χ2(3) = 3.45, p = 0.290; 

or for endpoint deviation theta, χ2(3) = 3.00, p = 0.392. 

3.6 Discussion 

  This experiment demonstrated that the task relevance of objects encoded by the 

oculomotor system is represented along a continuous dimension. Our sum curvature and max 

curvature metrics demonstrated that when one of the bilateral distractors was more similar to the 

target, saccades curved away from it. Saccades curved in opposite directions in the CCW and 
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CW conditions, which contained visually identical distractor pairs and differed only insofar as 

the bilateral distractor placement about the target was reversed. This is consistent with previous 

research suggesting that task relevance modulates saccade curvatures (Ludwig and Gilchrist, 

2003; Mulckhuyse et al., 2009). Furthermore, saccade curvatures were not different between the 

baseline and neutral conditions. This result is consistent with McSorley et al. (2004) who found 

that saccades returned to baseline when bilaterally flanked by identical distractors. 

 The opposite pattern of results was observed for the endpoint deviation theta metric. 

Similar to saccade curvatures, there was no difference in endpoint deviation theta between the 

neutral and baseline condition. However, the overall endpoint deviation theta was marginally 

different between the CCW and CW conditions: overall saccade vectors were marginally shifted 

towards the most similar distractor. This may be a marginal reflectance of the global effect 

(Coren and Hoenig, 1972), which can be biased by top-down factors such as target probability 

(He and Kowler, 1989). 

 The factors that modulate saccade curvature are typically investigated categorically. We 

have expanded on this paradigm by investigating whether task relevance functionally modulates 

saccade curvatures and observed a significant linear relationship between the sum curvature and 

max curvature metrics and OS distance. Since our stimuli were spatially balanced, this analysis 

provides direct behavioral evidence that the spatial average of competing saccades vectors 

computed by the oculomotor system is cognitively weighted. Here, these cognitive weights were 

determined by the task relevance of stimuli, but since many visual cognitive factors modulate 

saccade curvatures, it is reasonable to assume that systematically varying these factors may yield 

similar results, which is an area for future research. 
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 Finally, in our time course analysis, we examined saccade deviations as a function of 

saccade amplitude percentage to examine whether target-distracter similarity affected the early 

and late portions of saccades differentially. Our deviation and deviation theta metrics indicated 

that saccades were curved at 20%, 40%, and 60% of the movement, but not at 80%. Similarly, 

our partial metrics (i.e., partial sum, partial max, and partial max theta) demonstrated that 

saccades were curved between 0-80% of their amplitudes, with the exception of partial max 

theta, which did not indicate any curvature until after the first 20% of the saccade. Across partial 

metrics, there was no evidence of saccade curvature in the last 20% of the saccade. Clearly, there 

was a high degree of consistency between our 5 different amplitude metrics, which demonstrated 

that saccades began to curve between 0-20% of the movement and stopped curving between 60-

80% of the movement. This result is consistent with neurophysiological and behavioral data 

collected from monkeys during target selection (Port and Wurtz, 2003). 

Given that saccade curvatures arise due to neuronal interactions on the SCi motor map 

whereby the level of activation (McPeek et al., 2003; Port and Wurtz, 2003) or inhibition (White 

et al., 2012) at the distractor locus is proportional to the magnitude of saccade curvatures, and 

that behavioral relevance is represented in SCi (Fecteau and Munoz, 2006), our results suggest 

that visual similarity modulates the representational strength of stimuli on the SCi motor map 

whereby increasing the visual similarity of a distractor to the target increases inhibition at the 

distractor locus in SCi. This conclusion is consistent with the target selection behavior of SCi 

neurons in which targets and distractors initially elicit onsets bursts with equal intensity, but over 

time, distractor activity decreases while target activity either increases or stays consistent 

(Horwitz and Newsome, 1999; McPeek and Keller, 2002; Kim and Basso, 2008; Shen and Paré, 

2007, 2012, 2014). Since SCi inhibition prevents saccades (Quaia et al., 1998) and therefore 
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plays a pivotal role in target selection by preventing saccades to erroneous stimuli (McPeek and 

Keller, 2004), the current results suggests that the oculomotor system inhibited both distractor 

loci to prevent erroneous saccades to distractors. Critically, however, when one distractor was 

objectively more similar to the target than the other, there was greater inhibition at this locus and 

thus saccades curved away from the most similar distractor. Furthermore, the functional 

relationship between saccade curvature and OS distance suggests that SCi inhibition at a 

distractor locus was proportional to its similarity to the target: inhibition increased as it became 

more similar to the target and decreased as it became less similar to the target. 

A question that arises is whether similarity is computed locally in SCi or whether 

similarity information is received from outside cortical sources. Since we utilized a visual search 

task with randomized stimulus locations and identities trial-to-trial, targets were not simply 

spatially defined, but were defined by their visual features. Furthermore, distractors were always 

task relevant and had to be distinguished from the target by analyzing these features. There is 

evidence for sensitivity in SCi neurons for luminance (Bell et al., 2006; Li and Basso, 2008) and 

isoluminant color (White et al., 2009), but variations in luminance or color cannot account for 

our effects of visual similarity since our stimuli were defined by complex conjunctions of line 

orientations. Since there is no evidence for orientation tuning in SCi neurons, this suggests that 

SCi is insufficient to discriminate the target in the current context. Finally, given that stimulus 

identities were randomly selected trial-to-trial from a large set of complicated and novel stimuli 

(see Figure 1A), it is unlikely that SCi neurons developed sensitivity for a particular stimulus as 

being a target or distractor from repeated consecutive appearances. Therefore, we argue that 

oculomotor target selection in the current context involved two stages: (1) The cortical visual 

system integrates visual and cognitive information to encode object representations with 
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associated features and behavioral relevance. (2) The subcortical oculomotor system spatially 

encodes potential saccade vectors and these vectors are continuously weighted by cortical input. 

A thoroughly examined source of SCi inhibition that integrates visual and cognitive 

signals from a diverse set of cortical areas—such as FEF, lateral intraparietal area, and dorsal 

lateral prefrontal cortex—is the substantia nigra pars recticulata, (SNr) (reviewed by Hikosaka et 

al., 2000). SNr inhibits the initiation of saccades by projecting a tonic GABAnergic blanket of 

activity over SCi (Hikosaka et al., 2000). Conversely, SNr can initiate saccades through spatially 

selective disinhibition of SCi (Hikosaka and Wurtz, 1983, 1985). SNr is the most likely source of 

SCi inhibition to explain the current results because (1) saccades curved away from a distractor, 

which suggests inhibition; and (2) although there is evidence for a local source of inhibition in 

SCi (McPeek and Keller, 2002; Munoz and Istvan, 1998), the saccade curvatures in the current 

experiment suggest that the distractors were not equally inhibited and the computations required 

to differentiate these distractors likely was not computed in SCi.  

A rapid burst of excitation in the critical epoch between −30 and 0 ms prior to the 

initiation of a saccade has been causally demonstrated to elicit saccades curved towards 

distractors (McPeek et al., 2003). A recent study has found evidence that a burst of inhibition in 

this critical epoch may also cause saccades to curve away from distractors (White et al., 2012). 

In the case of excitation, this critical epoch is also behaviorally evident: saccade curvatures begin 

and end within ~20 ms (Port and Wurtz, 2003). The current results from our temporal analysis 

suggests that saccade curvature modulation by visual similarity occurred in the first 

approximately 20-30 ms. Since our observed curvatures were likely due to inhibition, this 

strengthens the interpretation that the same spatio-temporal profile of SCi activity elicits 

saccades curved towards and away from distractors. 
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We found evidence that the visual similarity between two bilateral, equidistant distractors 

and a target modulates saccade curvatures during a visual search task, consistent with previous 

behavioral experiments (Ludwig and Gilchrist, 2003; Mulckhuyse et al., 2009). Critically, we 

also discovered a continuous linear relationship between the magnitude of saccade curvatures 

and visual similarity between targets and distractors, which demonstrates that the oculomotor 

system computes a weighted-vector average of possible saccade goals and that high-order 

cognitive factors can mediate the values assigned to these weights. Conversely, when these 

bilateral distractors were equally similar to the target, the oculomotor system spatially averaged 

distractor vectors with equal weights and saccade trajectories returned to baseline, as with 

identical bilateral distractors (McSorley et al., 2004). By analyzing saccade curvature as a 

function of saccade amplitude percentage, we demonstrated that saccades were only curved in 

the first 20-30 ms of the movement, which is consistent with neurophysiological observations 

(Port and Wurtz, 2003). Finally, our task parameters likely preclude SCi as sufficient to compute 

visual similarity in the current context, which suggests a downstream role of SCi in target 

selection.  
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Chapter 4: A Rapid Accumulation of Inhibition Can Account for Saccades Curved Away 

from Distractors (Manuscript 3) 
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4.1 Summary 

Saccades curved towards a distractor are accompanied by a perisaccadic burst at the 

distractor locus in the intermediate layers of the superior colliculus (SCi) ~20-30 ms prior to the 

initiation of a saccade (McPeek et al., 2003; Port and Wurtz, 2003). Although saccades curve 

away from inhibited SCi loci (Aizawa et al., 1998), whether inhibition is restricted to a similar 

critical epoch for saccades curved away from a distractor remains unclear (White et al., 2012). 

We examined this possibility by modeling human saccade curvature as a function of the duration 

of visual input from an irrelevant luminance- or color-modulated distractor prior to an impending 

saccade, referred to as saccade distractor onset asynchrony (SDOA). Our results demonstrated 

that 70 ms of luminance-modulated distractor processing or 90 ms of color-modulated distractor 

processing is required to modulate the trajectory of a saccade curved towards the distractor. As 

these behavioral results mirror the very robust transient visual onset latencies observed from SCi 

visuo-movement (VM) neurons for luminance- (Boehnke and Munoz, 2008) and color-

modulated (White et al., 2009) stimuli, this method seems to provides an accurate non-invasive 

means to estimate the timing of peak firing rates of populations of VM neurons in SCi. We 

modeled SDOA functions separately for saccades curved towards and away from distractors and 

observed that a similar temporal process determined the magnitude of saccade curvatures in both 

contexts suggesting that saccades deviate away from a distractor due to a rapid accumulation of 

inhibition in the critical epoch prior to saccade initiation. 

4.2 New and Noteworthy 

In this research article, we propose a novel, non-invasive approach to behaviorally model 

the time course of competitive oculomotor processing. Our results highly resembled those from 

previously published neurophysiological experiments utilizing similar oculomotor processing 
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contexts, thus validating our approach. Furthermore, this methodology provided new insights 

into the underlying neural mechanism subserving oculomotor processing as we applied it to a 

context with which the neural mechanism is more contentious and the results clearly favored one 

view. 

4.3 Introduction 

Interest in using saccade curvatures to examine competitive oculomotor processing of 

potential saccade goals has increased in the last several decades. This interest is likely due in part 

to the striking correlation between the neurophysiology and behavioral output of the oculomotor 

system: potential oculomotor movement goals are represented in the intermediate layers of the 

superior colliculus (SCi), a midbrain structure with a highly ordered movement map (Wurtz and 

Goldberg, 1972; Robinson, 1972) that projects directly to the brainstem saccade pulse generators 

(Moschovakis et al., 1988) and contributes to target selection for both pursuit (Basso et al., 2000; 

Carello and Krauzlis, 2004; Krauzlis and Dill, 2002; Krauzlis, 2003, 2005) and saccadic eye 

movements (Basso and Wurtz, 1997, 1998; Horwitz and Newsome, 2001; McPeek and Keller 

2002, 2004). Activity on the motor map is spatially averaged whereby saccade vectors curve 

towards an area with excitation (McPeek et al., 2003; Port and Wurtz, 2003) or curve away from 

an area with inhibition (Aizawa and Wurtz, 1998). In addition to spatial factors, saccade 

curvatures are also affected by robust temporal factors.  

McPeek et al. (2003) reported that saccades that landed near a target but curved towards a 

distractor were accompanied by a perisaccadic burst at the SCi locus encoding the distractor, 

which occurred approximately 30 ms before the perisaccadic burst at the SCi locus encoding the 

target. This was then causally demonstrated whereby subthreshold microstimulation 

administered to the distractor locus with the same spatiotemporal profile elicited a saccade 
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curved towards the distractor. A subsequent study reported that these curved saccade trajectories 

conform to a vector average model weighted by the activity levels of the neuronal populations 

encoding vectors to the target and distractor (Port & Wurtz, 2003). The spatiotemporal factors 

that relate SCi excitation to saccades curved towards distractors are well understood. However, 

these factors are more controversial for linking SCi inhibition to saccades curved away from 

distractors. 

The sources of excitation in SCi are transient visual onset bursts that immediately follow 

the onset of a stimulus (reviewed by Boehnke & Munoz, 2008) and perisaccadic bursts that 

immediately precede the initiation of an eye movement (Wurtz & Goldberg, 1972). The sources 

of SCi inhibition are local lateral inhibitory circuits (McPeek & Keller, 2002; Munoz & Istvan, 

1998) or top-down cortical inhibition indirectly projected to SCi through the substantia nigra 

pars reticulata (SNr) nucleus of the basal ganglia (Hikosaka & Wurtz, 1983). This top-down 

inhibitory input imposes spatially selective tonic GABAergic activity on populations of SCi 

neurons encoding specific saccade vectors (Hikosaka & Wurtz, 1985). As such, SCi inhibition 

predictably modulates saccade vectors: inhibitory SCi injections elicit saccades with endpoints 

shifted away from the injection site (Lee et al., 1988) or that curve away from the injection site 

(Aizawa et al., 1998), therefore demonstrating the same spatial averaging principle as SCi 

excitation (Robinson, 1972; van Gisbergen et al., 1987). However, the temporal principle 

relating to SCi inhibition to saccade curvatures is more contentious. 

Neurophysiological experiments have demonstrated that inhibition of potential saccade 

goals (e.g., a distractor stimulus) slowly accumulates over time (McPeek & Keller, 2002). This is 

also reflected in behavioral studies as saccade curvatures are generally curved towards a 

distractor at early saccade reaction times (SRTs), but begin to curve away from the distractor 
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after approximately 200 ms (McSorley et al., 2006, 2009; Walker et al., 2006). Interested in 

examining the temporal factors that cause saccades to curve away from distractors, White et al. 

(2012) examined the activity of SCi neurons encoding the distractor vector during a saccade task 

specifically on trials with saccades curved away from the distractor. They observed that the 

magnitude of these saccade curvatures only correlated with distractor-related neuronal activity in 

the epoch between −22 and 0 ms before saccade initiation and argued that this was too brief to 

reflect a slow accumulation of top-down inhibition. However, this critical epoch in which SCi 

inhibition correlates with the magnitude of saccades curved away from distractors is entirely 

consistent with the epoch in which distractor-related excitation correlates with the magnitude of 

saccades curved towards distractors (McPeek et al., 2003; Port & Wurtz, 2003). Given that SNr 

inhibition is tonically projected onto SCi at a quick temporal frequency of 50-100 Hz (Hikosaka 

et al., 2000), then as acknowledged by White et al. (2012), it is possible that saccades curve away 

from a distractor when inhibition rapidly accumulates at the distractor locus in SCi in this critical 

epoch. 

Here, we examined this possibility by examining the time course of competitive 

distractor processing by noninvasively measuring saccade curvatures while human participants 

completed a simple saccade task and by modeling this process as a function of how long the 

oculomotor system has had access to the distractor. To manipulate how long the oculomotor 

system has had access to a distractor we utilized various distractor-target onset asynchronies 

(DTOAs) and subtracted from them saccade response times (SRTs), which provided a metric we 

refer to as saccade-distractor onset asynchrony (SDOA). As we observed in a pilot study that 

SRTs cluster around 200 ms for this saccade task, we utilized DTOAs of 50, 100, 150, 200, and 

250 ms so to probe a wide range of the SRT distribution and consequently capture a wide SDOA 



82 

range. We modeled saccade curvature as a function of SDOA for saccades curved towards and 

away from the distractor and found that saccades curvatures varied as a function of SDOA with a 

nearly identical temporal profile for saccades curved towards and away from distractors, 

suggesting that a rapid accumulation of excitation and inhibition can account for saccades curved 

towards or away from distractors respectively. 

4.4 Methods 

4.4.1 Participants 

 22 York University undergraduate students (18-28 years old, 11 male) participated in the 

experiment for course credit. Participants had normal or corrected-to-normal visual acuity, had 

normal red-green color vision as assessed by Ishihara color plates (Ishihara, 2006), and were 

naïve to the purpose and design of the experiment. Informed consent was obtained prior to 

participation. All research was approved by York University’s Human Participants Review 

Committee. 

4.4.2 Stimuli 

 The saccade target was a white (x = 117.30, y = 122.70) square that subtended 0.6° × 0.6° 

and was located 12° above or below central fixation. We replicated the Gabor patches utilized by 

Burr and Morrone (1993) as our distractors, which were created offline using MATLAB 

(MathWorks, Natick, MA) by superimposing equiluminant red (peak intensity: x = 14.50, y = 

7.58) and green (peak intensity: x = 3.78, y = 7.57) sinusoidal waves with a spatial frequency of 

1°/cycle and a phase shift of either 1 (luminance-modulation) or .5 (color-modulation) convolved 

with a 2D Gaussian filter (σ = 1.5°). Stimuli were imbedded in a grey (x = 7.21, y = 7.51) 

background. Distractors faded to grey by weighting the blue color channel with the inverse of the 

2D Gaussian filter. The stimuli were displayed on a 21-inch CRT monitor (85 Hz, 1024 × 768). 
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Participants viewed stimuli in a dimly lit room from a viewing distance of 57 cm with a headrest 

stabilizing their head position. 

4.4.3 Apparatus and Measurement 

Stimulus presentation was controlled using a computer running Presentation software 

(www.neurobs.com). Eye position was recorded using infrared eye tracking (500 Hz, EyeLink II, 

SR Research, Ontario, Canada). The eye tracker was calibrated at the beginning and halfway 

point of each experimental session, and as needed. 

4.4.4 Task Procedure 

Trials were initiated by maintaining fixation (1.89° square window) to a white, central 

fixation cross (0.4°× 0.4°) for 200 ms, after which the fixation cross offset and the target onset 

12° above or below fixation (see Figure 1). Participants were instructed to fixate the target as 

soon as it appeared. After an interval of 50, 100, 150, 200, or 250 ms, the luminance- or color-

modulated distractor onset to the left or right of the target at an eccentricity of 12° with an 

angular separation of 45° to the target. This interval is subsequently referred to as the distractor-

target onset asynchrony (DTOA). The trial ended when a saccade was made to the target or 500 

ms had elapsed (time-out). Time-out trials were randomly replaced back into the block and were 

signified with an error tone and message. Trials were separated by a 1000 ms intertrial interval 

(ITI) with a blank, grey display. 
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Figure 4.1: Example trial sequence. After viewing fixation for 200 ms, the target onset above 

or below fixation until it was fixated or the trial timed out (500 ms). The luminance- or color-

modulated distractor appeared to the left or right of the target 50, 100, 150, 200, or 250 ms after 

target onset (DTOA). 

Participants completed 1 session with 10 blocks of 78 trials for a total of 780 trials. For 

half of the participants (determined by the order in which they appeared in the lab), we utilized 

DTOAs of 50, 100, and 150 ms. For the remaining half, we utilized DTOAs of 150, 200, and 250 

ms. On each trial, the target location, distractor location, distractor feature, and DTOA were 

randomized. This design contained a total of 24 (2×2×2×3) experimental conditions. Baseline 

trials with targets at both target locations and no distractors were randomly interleaved into the 

blocks and increased the number of conditions to 26. There were an equal proportion of trials 

from all 26 conditions on every block. 
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4.4.5 Saccade Detection and Analysis 

Saccades were detected, visualized, filtered and analyzed offline using customized 

MATLAB algorithms. Trials that contained blinks, endpoint deviations > 3° from the center of 

the target, or a fixation drift > 0.5° during the pre-saccadic latency period were excluded from 

further analysis.  Saccades were defined as a velocity exceeding 20 deg/s for at least 8 ms and a 

peak velocity exceeding 50 deg/s. Saccades were excluded from further analysis if they had a 

latency less than 100 ms. The data from 2 participants was not analyzed as over 50% of trials 

were removed. 

To analyze saccade curvatures, saccade start-points were translated back to the origin and 

then trigonometrically rotated so that the endpoint was aligned to the positive y-axis. The 

following metrics were then used to quantify saccade curvatures: (1) sum deviation, the sum of 

all x deviations along the length of the saccade; and (2) max deviation, the maximum x deviation 

along the length of the saccade. Baseline saccade curvatures for each participant at each target 

location were subtracted from the data to reduce inherent, idiosyncratic curvature. The curvature 

metrics were then recoded so that positive deviations correspond to deviations towards a 

distractor, while negative deviations correspond to deviations away from a distractor. 

We calculated the saccade distractor onset asynchrony (SDOA) by subtracting SRTs 

from DTOA such that, SDOA = DTOA − SRT. Thus, this metric indicates how much time the 

distractor has been displayed for relative to saccade initiation, where a negative value indicates 

how long before saccade initiation the distractor onset. SDOA values greater than zero were not 

analyzed as this indicates that the distractor appeared after the initiation of the saccade. We 

binned the SDOA data such that each bin contained data from a 20 ms SDOA interval aligned to 

an SDOA of zero. We herein refer to each individual bin by its center (e.g., bin −10 contains the 
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SDOA data between −20 and 0 ms). We performed a regression analysis on the average sum 

curvature and max curvature as a function of bin center for every bin that contained ≥ 20 trials. 

Since there was an uneven SDOA distribution across subjects, we averaged saccade curvatures 

across subjects in each bin. Using a customized MATLAB implementation of the maximum 

likelihood estimation (MLE) method, the mean saccade curvature as a function of SDOA bin 

center was fit to the following two functions:  

(1) Gaussian:  

ƒ! 𝑥 = α− δ  � 𝑒!
!!! !

!!! + δ 

where α is the height of the function, µ is the midpoint of function, σ is the slope of the function, 

and δ is the floor of the function and 

(2) logistic:  

ƒ! 𝑥 =
𝐿 − 𝛿

1+ 𝑒! !!!!
+ 𝛿 

where L is the height of the function, x0 is the midpoint of the function, k is the slope of the 

function, and δ is the floor of the function.  

 

 

4.5 Results 

 Trials were removed if the sum curvature was 3 standard deviations (SD) above or below 

the mean in each SDOA bin. Trials were categorized as having curved towards or away from the 

distractor. Saccades that could not be classified according to this dichotomy (i.e., so-called 

“cubic” saccades, Ludwig & Gilchrist, 2002) were also omitted from subsequent analyses. As we 

were interested in determining how much distractor processing time is sufficient for saccade 

vector modulation by the distractor, we calculated the unsigned magnitude of saccade curvatures 
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in each SDOA bin (regressed using bin centers) by averaging the absolute mean saccade 

curvature for each subject. Furthermore, to determine when saccade curvatures had significantly 

deviated from baseline, we compared the absolute subject means in each SDOA bin to the fitted 

floor parameter (𝛿) from the regression analysis using a two-tailed, paired-samples t-test and a 

Bonferroni multiplicity adjustment. We assessed whether each function accounted for a 

significant proportion of the variance using an F-test regression analysis. If both models 

significantly fit the data, we assessed whether the Gaussian or logistic model provided a 

statistically better fit to the data using an F-test performed on the ratio of the sum-of-squared 

model residuals with N – k degrees of freedom. Similarly, the goodness-of-fit of each function to 

the data was evaluated by calculating the coefficient of determination (R2). 

4.5.1 Overall SDOA Functions 

 The overall sum curvature data was significantly fit by the Gaussian, F(3,7) = 21.34, p 

<.001, R2 = .90 (see Figure 2A); and logistic models, F(3,7) = 11.35, p =.004, R2 = .84 (see 

Figure 2B). Neither model provided a statistically better fit of the data, F < 1. However, a 

comparison of the R2 values and a visual inspection of the fit suggested that the Gaussian model 

provides a better mathematical description of the distractor integration process. As such, the 

Gaussian model demonstrated that sum curvatures significantly deviated from baseline in SDOA 

bins ≤ −70 ms, suggesting that approximately 70 ms of distractor processing time is required for 

saccade vector modulation. 
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Figure 4.2: Function fits for overall SDOA data. Gaussian and logistic models fitted to the 

overall mean sum and max curvatures as a function of SDOA bin center. Datapoints (open, black 

circles) represent mean saccade curvature. Error bars represent standard error. Broken lines 

depict fitted floor and ceiling parameters Asterisks denote significant curvature deviations from 

baseline. A: Gaussian model fitted to the overall sum curvature data. B: Logistic model fitted to 

the overall sum curvature data. C: Gaussian model fitted to the overall max curvature data. D: 

Logistic model fitted to the overall max curvature data. 

The overall max curvature data was also significantly fit by the Gaussian, F(3,7) = 17.63, 

p =.001, R2 = .88 (see Figure 2C); and logistic models, F(3,7) = 11.85, p =.004, R2 = .85 (see 

Figure 2D). Neither model provided a statistically better fit of the data, F < 1. A similar 

inspection as before suggests that the Gaussian model provides a better mathematical description 
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of the distractor integration process. According to the Gaussian model, max curvatures 

significantly deviated from baseline in SDOA bin ≤ −30 ms. This result conflicts with the 

estimate from the sum curvature data for the minimum distractor processing time required for 

saccade vector modulation. However, given that the mean and SD of the fitted Gaussian models 

for the sum and max curvature data are quite similar (µsum = −149.69, σsum = 51.37; µmax = 

−147.69, σmax = 54.52 respectively), the sum and max curvature appear to reflect the same 

process. Furthermore, the logistic model demonstrated that max curvatures significantly deviated 

from baseline in SDOA bins ≤ −70 ms (see Figure 2D), consistent with the sum curvatures. 

Taken together, these results suggest that the max curvature −50 ms and −30 ms bins likely 

significantly deviated above baseline due to extremely low variability in these bins and a small 

fitted floor parameter by the Gaussian model. We maintain that our data show that approximately 

70 ms of distractor processing time is required for saccade vector modulation. 

4.5.2 Color Differences 

 To examine potential feature differences in the sum and max saccade curvatures, we split 

the data into trials with a luminance-modulated distractor and a color-modulated distractor (see 

Figure 3). The Gaussian model significantly fit the sum curvature data from luminance trials, 

F(3,7) = 13.61, p = .003, R2 = .86; and color trials, F(3,7) = 12.16, p = .004, R2 = .79 (see Figure 

3A). The logistic model also significantly fit the data from luminance trials, F(3,7) = 8.74, p = 

.009, R2 = .80; and color trials, F(3,7) = 34.60, p < .001, R2 = .85 (see Figure 3B). Neither model 

was a statistically better fit to the luminance data, F < 1. However, the logistic model provided a 

marginally better fit to the color data, F(7,7) = 3.25, p = .072, η2 = .76. Based on a comparison of 

the R2 and a subjective evaluation, it appears as though the Gaussian model provided a better 

description of luminance-modulated distractor processing, whereas the logistic model provided a 
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better description of color-modulated distractor processing with marginal, yet unreliable, 

statistical evidence for this conclusion. The Gaussian model indicated that the sum curvatures 

measured on trials with luminance-modulated distractors deviated from baseline in SDOA bins ≤ 

−70 ms as with the overall data. However, the logistic model indicated that the sum curvatures 

measured on trials with color-modulated distractors deviated from baseline in SDOA bins ≤ −90 

ms. 

Figure 4.3: Function fits for color differences. Gaussian and logistic models fitted to mean 

sum and max curvatures as a function of SDOA bin centers split into trials with a luminance-

modulated distractor (blue) and color-modulated distractors (red). Datapoints (open, colored 

circles) represent mean saccade curvature. Error bars represent standard error. Broken lines 

depict fitted floor and ceiling parameters. Asterisks denote significant curvature deviations from 
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baseline. A: Gaussian model fitted to the sum curvature data. B: Logistic model fitted to the sum 

curvature data. C: Gaussian model fitted to the max curvature. D: Logistic model fitted to max 

curvature data. 

 We repeated the above analyses for the max curvature metric, which provided consistent 

results (see Figure 3). The Gaussian model significantly fit the max curvature data for luminance 

trials, F(3,7) = 14.56, p = .002, R2 = .87; and color trials, F(3,7) = 9.59, p = .007, R2 = .81 (see 

Figure 3C). The logistic model also significantly fit the data on luminance trials, F(3,7) = 7.78, p 

= .012, R2 = .78; and color trials, F(3,7) = 23.32, p < .001, R2 = .92 (see Figure 3D). Consistent 

with the sum curvature data, neither model was a statistically better fit to the luminance data, F < 

1. Furthermore, the logistic model was not a statistically better fit of the color data, F(7,7) = 

2.29, p = .148, η2 = .70. However, based on a comparison of the R2 and a subjective evaluation, it 

appears as though the Gaussian model provided a better description of luminance-modulated 

distractor processing, whereas the logistic model provided a better description of color-

modulated distractor processing. Consistent with the sum curvature data, the Gaussian model 

indicated that the max curvatures measured on trials with luminance-modulated distractors 

deviated from baseline in SDOA bins ≤ −70 ms, whereas the logistic model indicated that the 

max curvatures measured on trials with color-modulated distractors deviated from baseline in 

SDOA bins ≤ −90 ms. These results clearly demonstrate that color information elicits an onset 

transient burst in SCi neurons between 20-40 ms (i.e., the minimum and maximum bin width 

respectively) later than luminance information. 

4.5.3 Directional Differences 

 As we were interested in examining potential differences in saccade curvature as a 

function of SDOA when saccades curved towards or away from the distractor, we split the data 
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into trials on which saccades curved towards the distractor and trials on which saccades curved 

away from the distractor (see Figure 4). For the sum curvature data, the Gaussian model 

significantly fit the data for trials with saccades curved towards distractors, F(3,7) = 10.97, p = 

.005, R2 = .77; and away from distractors, F(3,7) = 13.63, p = .003, R2 = .84 (see Figure 4A). 

Conversely, the logistic model did not provide a significant fit to the data for trials with saccades 

curved towards distractors, F(3,7) = 1.93, p = .213, R2 = .474; and a unreliable, yet marginal, fit 

for trials with saccades curved away from distractors, F(3,7) = 3.93, p = .062, R2 = .64. The fitted 

Gaussian model demonstrated that sum curvatures towards distractors deviated from baseline in 

the −110 ms SDOA bin, while the sum curvatures away from distractors deviated from baseline 

in the −170 and −150 ms SDOA bins. 

Figure 4.4: Function fits for directional differences. Gaussian model fitted to sum and max 
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curvatures as a function of SDOA bin split into trials with a saccade curved away from the 

distractor (blue) and towards the distractor (red). Datapoints (open, colored circles) represent 

mean saccade curvature, error bars represent standard error, broken lines depict fitted floor and 

ceiling parameters, and asterisks denote significant curvature deviations from baseline (A, B).  A: 

Gaussian models fitted to the sum curvature data. B: Gaussian models fitted to the max curvature 

data. C: Proportion of trials with a saccade curved towards (black bars) or away (white bars) 

from a distractor in each SDOA bin. Asterisks denote deviations from a random distribution of 

trials with saccades curved towards or away from distractors. 

 For the max curvature data, the Gaussian model significantly fit the data for trials with a 

saccade curved towards distractors, F(3,7) = 7.49, p = .014, R2 = .72; and away from distractors, 

F(3,7) = 11.74, p = .004, R2 = .82. (see Figure 4B) The logistic model did not significantly fit the 

data for trials with a saccade curved towards distractors, F(3,7) = 2.37, p = .156, R2 = .53; but did 

fit the data for trials with a saccade curved away from distractors, F(3,7) = 4.43, p = .048, R2 = 

.61; and neither model was statistically better fit to the data, F < 1. However, a comparison of the 

R2 and a subjective evaluation suggested that the Gaussian model provided a better description of 

inhibitory influences on distractor processing. Consistent with the sum curvature data, the fitted 

Gaussian model demonstrated that sum curvatures towards distractors deviated from baseline in 

the −110 ms SDOA bin and marginally in the −130 bin (p = .067), while the sum curvatures 

away from distractors deviated from baseline in the −150 ms SDOA bin and marginally in the 

−170 bin (p = .093). Taken together, these results suggest that oculomotor inhibition responsible 

for saccades curved away from the distractor is processed slower than the excitation responsible 

for saccades curved towards the distractor, although these excitatory and inhibitory influences 

accumulate at the same rate since the slope parameters were nearly identical. 
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A Chi-squared goodness-of-fit analysis demonstrated that there was a higher probability 

of saccades curved away from distractors than saccades curved towards distractors, χ2(1, N = 

6792) = 12.04, p < .001. Similarly, a subsequent Chi-squared test-of-independence analysis 

demonstrated that the frequency distribution of saccades across SDOA bins was related to the 

directionality of saccades, χ2(10, N = 6792) = 241.33, p < .001. As such, we analyzed the 

proportion of saccades that curved towards and away from distractors in each SDOA bin using 

Chi-squared goodness-of-fit analyses weighted using the Bonferroni multiplicity adjustment (see 

Figure 5C). This analysis demonstrated that the SDOA time point of peak saccade curvature 

towards a distractor corresponded to a higher probability of saccades curved towards distractors. 

Similarly, the SDOA time point of peak saccade curvature away from a distractor corresponded 

to a higher probability of saccades curved away from distractors. 

4.6 Discussion 

 We examined the time course of competitive oculomotor processing by analyzing 

saccade curvatures as a function of the duration of time that the oculomotor system has received 

distractor visual input prior to saccade initiation (SDOA). We performed two analyses to validate 

this methodological approach to modeling the time course of competitive oculomotor processing. 

The first analysis linked the current behavioral data to a very robust pattern of neuronal 

responses observed in SCi VM neurons after a transient visual onset. Second, the current study 

provides the behavioural sequelae to a recent neurophysiological observation that showed that 

these visual onset latencies differ between luminance and color onsets. Finally, having validated 

SDOA modeling, we analyzed SDOA functions separately for saccades curved towards and 

away from distractors. This analysis provided insights into the time course for the accumulation 

of oculomotor inhibition, which has been a contentious topic in the study of competitive 
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oculomotor processing. Here, we discuss the main findings and implications of these three 

analyses in turn. 

4.6.1 Saccade Curvature Timing 

Our analysis of the overall sum curvature data as a function of SDOA demonstrated that 

saccade curvatures significantly deviated from baseline when the oculomotor system received 

distractor input at least 70 ms prior to the initiation of an impending saccade. Consistent with this 

result is converging evidence from various other behavioral methodologies suggesting that there 

is a point of no return for modulating the trajectory of an impending saccade, which is estimated 

to be between 60 and 80 ms prior to saccadic initiation (Becker and Jürgen, 1979; Findlay and 

Harris, 1984; Ludwig et al., 2007; Reingold and Stampe, 2002; cf. Buonocore et al., 2016). The 

time between saccade initiation and the point of no return has been called saccadic dead time 

(SDT; Ludwig et al., 2007). Critically, this SDT time estimate provided by the overall sum 

curvature data is consistent with the known neurophysiological correlates of saccade curvature: 

the latencies of transient onset bursts measured in monkey SCi are usually between 40 and 70 ms 

after stimulus onset (Boehnke & Munoz, 2008). At an SDOA of −70 ms, this burst of distractor-

related activity is occurring well within the critical epoch of 0 to 30 ms prior to saccade 

initiation, and it has been causally demonstrated that subthreshold distractor activity occurring in 

this epoch elicits curved saccades (McPeek et al., 2003). Therefore, the behavioral results of the 

overall sum curvature analysis can be directly linked to SCi neurophysiology. 

When we conducted the overall saccade curvature analysis for the max curvature metric, 

we observed that the SDT estimate generated by the Gaussian function dropped to a minimum of 

30 ms prior to the initiation of an impending saccade. Alternatively, the logistic function fit to 

the max curvature data suggested that 70 ms is the minimum time required for saccade trajectory 
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modulation. Therefore, the 30 ms SDT estimate is likely due to a small fitted floor parameter and 

extremely small variability in the −50 and −30 ms bins as the SDOA distribution contained a 

high number of observations in these bins. This was also corroborated by subsequent logistic fits 

to the max curvature data for luminance- and color-modulated distractors also suggesting that 70 

ms is the minimum time required for saccade trajectory modulation. Furthermore, as previously 

mentioned, the fastest transient onset burst latencies for SCi visuo-movement (VM) neurons are 

approximately 40 ms. Given that the −30 SDOA bin includes SDOA observations between −40 

and −20 ms, most values fall outside of the critical temporal epoch for eliciting curved saccades. 

However, the −50 SDOA bin does actually fall better into this range and seems more plausible 

from a neurophysiological standpoint. A second technique that could be used to estimate the 

SDT would be to simply use the half-height of the Gaussian or midpoint parameter of the logistic 

functions. However, in the case of the logistic midpoint parameter, this suggests that 

approximately 70 ms is indeed the correct SDT estimate for both the sum and max curvature 

data. Similarly, in the case of the half-height of the Gaussian, the fitted slope and midpoint 

parameters are nearly identical between the sum and max curvature data suggesting that both 

estimates should indeed be similar. Clearly, there is strong reason to believe that a minimum of 

70 ms exposure time is required for a distractor to interfere with an impending saccade despite 

the significant deviations from baseline in the −30 and −50 SDOA bins to the contrary. 

4.6.2 Color Differences in Saccade Curvature Timing  

 We also found that luminance- and color-modulated distractors produced different results 

with regards to the time course of saccade curvatures and these results helped further relate our 

current behavioral results to SCi neurophysiology. A recent neurophysiological investigation by 

White et al. (2009) discovered SCi VM neurons with color “sensitivities” (as supposed to 
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selectivities due to their very broad tuning), contrary to classic studies suggesting an absence of 

color projections to the colliculus from either the lateral geniculate nucleus (Schiller et al., 1979) 

or from retinal ganglion cells (Schiller and Malpeli, 1977). An interesting property observed for 

these color sensitive neurons is that the transient onset burst latencies were 30-35 ms longer for 

color targets (i.e., equiluminant with the display background, but a different color) than the 

latencies for luminance targets (i.e., a higher luminance than the background display). The 

distractors utilized in the current experiment have similar visual properties as the targets utilized 

by White et al. and should then elicit a similar pattern of onset burst latencies in SCi VM 

neurons. Consistent with this prediction, our current data demonstrated that the SDT for color-

modulated distractors is 20±10 ms longer than for luminance-modulated distractors as saccade 

curvatures deviated from baseline in the −90 SDOA bin for color-modulated distractors, but 

deviated from baseline in the −70 SDOA bin for luminance-modulated distractors. This was 

consistent across sum and max curvature metrics and across fit functions, although the Gaussian 

fit of the max curvature data did show a significant deviation from baseline in the −30 SDOA 

bin. However, since there was no deviation in the −50 SDOA bin, this further strengthens our 

interpretation of the results in −30 and −50 SDOA bins for the overall max curvature Gaussian 

fit and we similarly find this observation unlikely. Critically, these differences between 

luminance and color cannot be attributed to practice effects (see Gilbert et al., 2001 for a 

review), as participants observed an equal number of luminance and color distractors and the 

presentation of these features were not predictable. 

One interesting consideration is whether the latency differences between color and 

luminance input to SCi are due to the fact that latencies vary inversely with luminance (Bell et 

al., 2006; Li and Basso, 2008) and since the luminance modulated distractors were more 
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luminous than the color-modulated distractors. This explanation is unlikely given that the 

mathematical descriptions of the SDOA functions were different for trials with a luminance 

(Gaussian) or color (logistic) distractor, therefore alternatively suggesting that luminance and 

color projections to SCi are processed separately through distinct anatomical channels. This is 

consistent with this reasoning, White et al. (2009) observed that the visual onset burst latency 

differences between color and luminance targets did not covary with the magnitude of the 

neuronal responses.  

The analyses of overall curvature and color differences demonstrated that there is a close 

temporal relationship between the current behavioral results and SCi neurophysiology. These 

analyses therefore validate the current methodology as a non-invasion, behavioral means to infer 

the timing of critical neurophysiological events that influence competitive oculomotor processing 

such as the peak firing rates of populations of VM neurons in response to transient onsets as well 

as the time course of oculomotor inhibition. As such, we utilized similar regression analyses to 

investigate the time course of saccades curved towards and away from distractors separately, 

which yielded several results that merit discussion. 

4.6.3 Timing Effects on Saccade Curvature 

The analysis of directional differences suggested that the processing responsible for 

eliciting saccades curved towards a target occurs before the processing responsible for eliciting 

saccades curved away from distractors as the Gaussian functions were shifted by approximately 

50 ms along the SDOA axis relative to one another. This temporal difference between processes 

is consistent with previous behavioral studies that have examined saccade deviations as a 

function of SRT on trials with synchronous distractors and target onsets and found that saccades 

curve towards distractors at short latencies between 150-200 ms, but then begin to curve away 
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from distractors after latencies of approximately 200 ms (McSorley et al., 2006, 2009; Walker et 

al., 2006). However, a neurophysiological study examining the time course of SCi target 

selection suggested that inhibition likely begins to accumulate before 200 ms as SCi VM neurons 

can discriminate a target from distractor after ~110 ms from visual onset (McPeek and Keller, 

2002). Interestingly, the current results are consistent with this estimate of distractor inhibition 

accumulation beginning ~110 after stimulus onset in two ways: (1) When we modeled the 

oculomotor processes for excitation (i.e., distribution of curvatures for saccades curved towards 

distractors) and inhibition (i.e., distribution of curvatures for saccades curved towards 

distractors), we observed that these processes were offset by 50-55 ms, which is consistent with 

excitation occurring 55 ms [on average as (70+40)/2 = 55] after stimulus onset (Boehnke and 

Munoz, 2008) and inhibition occurring 55 ms later (McPeek and Keller, 2002). (2) We observed 

significant saccade deviations from baseline for saccades curved away from the distractor in the 

−150 SDOA bin. This means that the critical epoch for distractor activity to elicit saccade 

curvature began ~120 ms after onset using the 30 ms estimate provided by McPeek et al. (2003). 

As the −150 SDOA bin includes saccade curvatures away from distractors occurring between an 

SDOA interval of −140 and −160, this means that the critical epoch can be decreased to 110 ms 

using the lower bound of the interval. Therefore, if distractor related inhibition occurred ~110 ms 

after distractor onset, this aligns the inhibitory activity with this critical epoch. Furthermore, the 

Gaussian shape of the SDOA functions for each saccade direction indicates that the exact timing 

of distractor inhibition stochastically varies trial-to-trial according to a Gaussian distribution. Our 

fits would indicate that this variability has a SD of ~40 ms. This variability suggests that there is 

a certain probability that inhibition accumulates at a time point greater than 110 ms, which can 

account for the observations of a significant deviation from baseline in the −170 SDOA bin 
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according to the sum curvature analysis and a higher probability of saccades curved away from a 

distractor in the −150, −170, and −190 SDOA bins according to the proportion analysis.  

This same logic can also be applied to the time course of SCi excitation as the shape of 

the Gaussian fits were nearly identical between the SDOA functions for saccades curved towards 

and away from distractors, which was also consistent between the sum and max curvature 

metrics. There was a significant deviation from baseline in the −110 SDOA bin for saccades 

curved towards distractors. Taking the lower bound of this bin, and subtracting 30 ms provides a 

critical epoch estimate for saccades curved towards distractors beginning 60 ms after distractor 

onset, which also aligns well with latency estimates of 40-70 ms for visual onset bursts (Boehnke 

& Munoz, 2008). As with the Gaussian SDOA function for saccades curved away from 

distractors, this critical epoch likely stochastically varies according to a Gaussian distribution 

and can therefore also elicit saccade curvatures for excitatory bursts with latencies that vary 

about 60 ms. This model of saccade curvature assumes that the latency of saccade initiation and 

the latency of inhibitory accumulation are independent processes. McPeek and Keller (2002) 

observed that the target discrimination time for VM neurons did not covary with SRT therefore 

convincingly demonstrating such independence.  

Neurophysiological investigations have demonstrated that saccades curved towards 

distractors are caused by excitation at the distractor SCi distractor locus ~20-30 ms prior to the 

initiation of a saccade (McPeek et al., 2003; Port & Wurtz, 2003). Although a neurophysiological 

experiment has demonstrated that saccades curved away from distractors are caused by inhibition 

at the distractor locus in SCi (Aizawa & Wurtz, 1998), the temporal mechanics of these saccades 

curved away from distractors are disputed (White et al., 2012). Our data clearly show that for a 

particular SDOA value, there is a corresponding Gaussian distributed probability of eliciting a 
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curved saccade. For saccades curved towards a distractor, this corresponds to the probability that 

the onset burst aligns with the critical temporal epoch of 30 ms prior to saccade initiation 

(McPeek et al., 2003). Similarly for saccades curved away from a distractor, this corresponds to 

the probability that the accumulation of inhibition aligns with the critical temporal epoch of 30 

ms prior to saccade initiation. We reason that the source of this variability is likely attributed to 

the inherent variability observed in the onset burst latencies of SCi VM neurons (Boehnke and 

Munoz, 2008) even for saccades curved away from distractors as inhibition will likely only 

accumulate after excitation has been elicited. As the shape of the Gaussian functions for saccades 

that are curved towards and away from distractors were nearly identical, this suggests that, like 

excitation, inhibition must also occur in the critical epoch prior to saccade initiation in order to 

elicit curved saccades. As such, our data suggests that saccades curved away from distractors are 

caused by a rapid accumulation of inhibition at the SCi distractor locus. 

4.6.4 Conclusion 

The current experiment demonstrated that a minimum of 70 ms is required for saccade 

vector modulation by a distractor. This was consistent with the results from behavioral studies 

employing various methodologies and analytic techniques (Becker and Jürgen, 1979; Findlay 

and Harris, 1984; Ludwig et al., 2007; Reingold and Stampe, 2002; cf. Buonocore et al., 2016) in 

addition to various monkey neurophysiological recordings from SCi, which is a critical neural 

structure associated with eliciting saccades (reviewed by Boehnke & Munoz, 2008). We also 

observed that the visual features that characterize the distractor modulated this time course for 

saccade vector modulation, as color distractors required an additional approximately 20 ms of 

processing time in order to modulate saccade vectors. The underlying neural mechanism 

producing this result can also be explained by the neurophysiology of the oculomotor system, as 



102 

the response times of SCi VM neurons demonstrate a similar time course discrepancy (White et 

al., 2009). These results validated our current approach to inferring the time course of 

competitive oculomotor processing using SDOA modeling. As such, we modeled the SDOA 

functions for saccades curved towards and away from a distractor separately and observed that 

these function fits had nearly identical slope parameters. As these functions define the time 

course of competitive oculomotor processing, these results elucidate similar spatiotemporal 

profiles of oculomotor processing that elicit saccades curved towards and away from distractors, 

which likely involves a rapid accumulation of excitation (Port and Wurtz, 2003; McPeek et al., 

2003) or inhibition at the SCi distractor locus. 
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Chapter 5: General Discussion and Conclusions 

5.1 Research Questions 

The manuscripts presented here have provided answers to the questions originally posed 

in section 1.4. The first manuscript demonstrated that just as the neurological encoding of objects 

seems to generalize across all classes of object (i.e., simple vs. complex and familiar vs. 

unfamiliar) (Brincat & Connor, 2004, 2006; Kayaert et al., 2005; Freiwald et al., 2009), so too 

does perceptual encoding as we observed a similar perceptual effect for complex, novel stimuli 

that have hitherto only been observed for simple features: perceptual repulsion (Blakemore et al., 

1970; Marshak & Sekuler, 1979). This observation led us to propose a unified account of object 

perceptual encoding we called “object space” encoding. The second manuscript demonstrated 

that in certain visual contexts, SCi likely does not functionally contribute to target selection 

processing as we observed evidence of competitive target selection (i.e., saccade curvatures), but 

used stimuli for which SCi has no sensitivities. As such, SCi is likely encoding saccade vectors, 

but not object representations with associated features. If this were true in some contexts, then a 

parsimonious account of SCi functionality would conclude that this generalizes across visual 

contexts. These results therefore suggest a limited role of feature processing for SCi during target 

selection. The third manuscript demonstrated that the time course of competitive oculomotor 

processing for saccades curved towards and away from a distractor is the same. The temporal 

neural correlates of saccades that are curved towards a distractor have been described in great 

detail (see Port & Wurtz, 2003; McPeek et al., 2003). However, whether the same temporal 

neural mechanism is responsible for saccades curved away from distractors has been disputed 

(White et al., 2012). As such, the data from this manuscript suggests that saccades curved away 

from a distractor are attributable to a rapid accumulation of inhibition at the distractor locus in 



104 

SCi. Perhaps more interesting than the individual contributions of each research manuscript in 

isolation is the combined contribution of these research manuscripts, which is the topic of 

discussion in the next section. 

5.2 General Discussion 

 The complex stimuli utilized in the experiments from Chapter 2 and 3 were most likely 

processed in the ventral stream, as there is neurophysiological evidence for the processing of 

complex novel objects in IT (Brincat & Connoer, 2004, 2006; Desimone et al., 1984; Fujita et 

al., 1992; Kayaert et al., 2009; Kobatake & Tanaka, 1994) and the perceptual similarity functions 

in Chapter 2 were similar to the population-level neuronal response functions for similarity 

between other complex objects (Loffler et al., 2005; Panis et al., 2008). This reasoning has 

implications for the results from Chapter 3: (1) If the SCi does not functionally contribute to 

visually processing object representations with associated features, the similarity computations 

were performed in cortex and vector weights were mapped on to SCi vector representations. If 

SCi does functionally contribute to visual processing object representations with associated 

features, there are two remaining possibilities: (2) These similarity computations were performed 

in cortex for Chapter 2 experiments as it did not contain any oculomotor component. Conversely, 

these computations were performed in the SCi for the Chapter 3 experiment, which would 

therefore be a redundant neural circuit. (3) These similarity computations were performed in SCi 

across the experiments in Chapter 2 and 3. As there is no evidence to support the feature 

sensitivities necessary for such computations in SCi, the third possibility is unlikely. 

Furthermore, as it very unlikely for the nervous system to contain a duplicated, redundant circuit, 

the second possibility is unlikely. Therefore, the results from Chapter 2 and 3 strengthen the 

conclusions about the nature of SCi target selection processing. 
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 For the character stimuli from Chapter 2, perceptual saturation was observed at the 

longest objective similarity distances. However, conversely, for the wagon wheel stimuli, 

perceptual saturation was observed at the shortest objective similarity distances. Furthermore, the 

perceptual similarity response function shifted rightward for the wagon wheel stimuli suggesting 

that the wagon wheel stimuli had to be more objectively dissimilar to achieve the same 

perceptual dissimilarity as character stimuli. We concluded that the inherent similarity between 

the wagon wheels was greater than between the character stimuli and discussed this observation 

in terms of the inherent discriminability between the constituent visual features for both classes 

of objects. Therefore, if the results from this similarity computation are projected into the 

oculomotor system and are responsible for the effects of objective similarity distance in Chapter 

3, then if this experiment were repeated using the wagon wheel stimuli, the effects should be 

either diminished or eliminated. Furthermore, these results would likely also generalize to other 

perceptual tasks such as change detection (Richards et al., 2004; Smilek et al., 2000). 

The results from Chapter 3 and 4 are consistent with data reported from several 

neurophysiological experiments examining the temporal interactions that elicit saccade 

curvatures towards or away from distractors. Port and Wurtz (2003) measured SCi neuronal 

activity during a saccade task in which two potential targets onset in quick temporal succession 

and monkeys were rewarded for saccading to the target that onset first. They observed that 

simultaneous peak activity in the SCi neurons encoding saccade vectors to the two potential 

targets elicited a straight vector-averaged saccade with an endpoint between targets, which 

replicates the behaviour observed when two locations in SCi were simultaneously 

microstimulated (Robinson, 1972). Conversely, sequential activity in these neurons elicited 

curved saccades: when the neurons encoding the first target reached their peak level of activity, 
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the saccade was initiated and was directed towards the first target or to an intermediate location 

between targets. When the neurons encoding the second target reached their peak level of 

activity approximately 20 ms later, the saccade was then redirected towards the second target and 

landed near this target. Therefore, the timing of peak neuronal activity was predictive of saccade 

curvature: the first burst of activity corresponded to the time when saccades began to curve, 

while the second burst corresponded to the time when saccades stopped curving. Similarly, 

McPeek et al. (2003) observed that on trials in which saccades curved towards a distractor during 

a visual search task, there was a perisaccadic burst from visuo-movement (VM) neurons in SCi 

encoding the distractor location, which occurred approximately 30 milliseconds prior to saccade 

initiation. Conversely, no such burst was observed on trials in which saccades trajectories were 

straight and landed near the target. The results from both of these experiments are consistent with 

Robinson (1972) who double-stimulated two loci on the SCi motor map encoding saccade 

vectors in orthogonal directions within 30 ms of each other and observed that the second saccade 

mechanically interfered with the initial saccade by partially or completely replacing it. 

Furthermore, a similar phenomenon, redirected saccades, has been observed behaviourally 

(Godijn & Theeuwes, 2002; McPeek & Keller, 2001; McPeek et al., 2000). These results were 

replicated in Chapter 3 as saccades were curved in approximately the first 30 ms of the 

movement, but then stopped curving, and also in Chapter 4 as significant saccade deviations 

towards the distractor occurred if the distractor onset ~110 ms prior to the initiation of the 

saccade. This meant the critical epoch prior to saccade initiation was ~80 after saccade onset, 

which is equal to a distractor onset latency of 60 ms sustained for 20 ms. Interestingly, this 

temporal profile of saccade curvature timing in Chapters 3 was consistent with 

neurophysiological data (Port & Wurtz, 2003) and occurred for saccades curved away from 
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distractors. Furthermore, in Chapter 4, significant saccade deviations occurred for saccades away 

from distractors if they onset 150 ms prior to saccade initiation. The critical epoch for a saccade 

with a latency of 150 ms would be 120 ms. As saccade inhibition emerges ~110 ms after 

stimulus onset (McPeek & Keller, 2002), this is consistent with the lower bound of the critical 

epoch measured in the data from Chapter 4. Therefore, the results from Chapter 3 and 4 provide 

converging evidence that (1) an identical spatiotemporal profile of SCi neuronal activity elicits 

saccades curved towards and away from distractors, contrary arguments from other researchers 

(White et al., 2012); (2) there is a remarkable temporal correlation between the neural processing 

and behavioural output of the oculomotor system and therefore the current results validate using 

the time course and SDOA analyses to infer the timing of major SCi neural events involved in 

target selection. Interestingly, it appears that the SDOA methodology is a non-invasive 

approximation to the effects of double stimulation paradigm in SCi (Robinson, 1972), which 

could have applications in diagnosing neurodegenerative diseases such as progressive 

supranuclear palsy. 

Another important implication elucidated by contrasting the results from Chapter 3 and 4, 

is that top-down cortical inhibition may exclusively be the source of inhibition during target 

selection. Many previous studies that have examined the factors that influence human saccade 

curvatures utilized a saccade task in which the target was spatially defined and the distractor was 

completely irrelevant to the task (Dolye & Walker, 2001; Godijn & Theeuwes, 2002; McSorley 

et al., 2004, 2006, 2009; Van der Stigchel & Theeuwes, 2005; Van der Stigchel et al., 2007; 

Walker et al., 2006). There are two known sources of inhibition for the SCi motormap: local 

inhibitory circuits (Munoz & Istvan, 1998) and top-down cortical input likely via SNr (Hikosaka 

& Wurtz, 1983, 1985; Hikosaka et al., 2000). Since these tasks did not have a top-down 
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component, some authors have speculated that SCi lateral inhibition (Munoz & Istvan, 1998) 

may be sufficient to account for saccade deviations away from the distractor (Wang, Kruijne, & 

Theeuwes, 2012). Although many authors still consider the influence of top-down cortical 

inhibition (Doyle & Walker, 2001; Godijn & Theeuwes, 2002; McSorley et al., 2004, 2006; 

2009; Van der Stigchel et al., 2007; Walker et al., 2006). However, lateral inhibition is 

insufficient to explain the results from Chapters 3 and 4. In Chapter 3, we argued that local 

inhibition in SCi is an unlikely explanation given that the SCi does not possess the featural 

selectivities necessary for the similarity computations that elicited the saccade curvatures. In 

Chapter 4, we demonstrate that the time scales are inconsistent with local inhibition given that 

local inhibition circuits in SCi inhibit neighbouring populations of neurons on extremely short 

times scales of about 5 ms. However, our SDOA analysis demonstrated that inhibition did not 

accumulate until ~120 ms after stimulus onset, which is also consistent with neurophysiological 

observations (i.e., ~110 ms, McPeek & Keller, 2002). 

Another interesting aspect of the fact that it was likely top-down inhibition that elicited 

saccades curved away from distractors in Chapters 3 and 4, is that in Chapter 4, the task was 

devoid of any top-down component: the target and distractors never occupied the same location 

and were visually quite dissimilar. In reference back to the discussion on the visual processing 

capabilities of SCi, this observation would suggest that SCi visual processing is nearly absent in 

the context of even the simplest visual tasks. 

5.3 Conclusions 

The research projects in Chapters 2, 3, and 4 have all met their objectives and provided 

answers to the questions asked at the beginning of this thesis. By utilizing a variety of 

methodologies and analytic techniques, these experiments have provided insight into how the 
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visual system processes information, and then feeds this information into the oculomotor system 

with certain temporal constraints, so to enhancing processing a specific object. This thesis 

contributes to our understanding of human visual cognitive neuroscience as it shows that the 

visual system plays a much more central role in oculomotor target selection processing than is 

acknowledged by some influential investigators. Furthermore, it appears that the language the 

visual system uses to communicate with the oculomotor system is inhibition and, rather than 

being smooth and gradual, these inhibitory signals can be rapid and transient. 
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