
HIERARCHICAL AGGREGATE STRUCTURE BY INDUCTIVE
AGGREGATION FOR INTERACTIVE DATA VISUALIZATION

NASIM RAZAVI

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

SEPTEMBER 2016

c© NASIM RAZAVI, 2016

Abstract

Data visualization is a method to facilitate the process of knowledge discovery and decision

making. Effective and practical visual analytic systems have to support real-time and

smooth interaction. Traditional data processing techniques and systems are inadequate

when it comes to large datasets. The powerful features of relational database engines can

be adapted to facilitate the visual representation of very large datasets.

In this thesis, we propose techniques to provide a tightly coupled system with a

database engine back-end to support a data visualization front-end. We employ data

reduction techniques along with other methods to form a hierarchical data structure

that we call the inductive-aggregate pyramid to provide multiple representations of data.

We also propose a generalized form of inductive-aggregate pyramids that we call cubed

pyramids to provide a richer representation of high-dimensional data. We develop and

employ techniques to build and query efficiently these structures to support interactive

data visualization.

ii

Acknowledgements

First, I would like to express my sincere gratitude and appreciation to my supervisory

committee Professor Parke Godfrey and Professor Jarek Gryz for their continuous support

of my research with their patience, motivation, enthusiasm, and immense knowledge. I

am grateful for the guidance and great effort they put into training me in this scientific

field. Their keen insight and constant encouragement helped me learn to believe in myself.

I wish to sincerely thank my thesis advisory committee member Professor Henry M.

Kim for his time and valuable suggestions and comments to improve the quality of my

thesis.

I would like to express my very sincere gratitude to Professor Piotr Lasek from Uni-

versity of Rzeszow for his support and guidance to make this thesis possible and help me

in this project by his deep knowledge and advice and giving me a better understanding

of the problem.

I am thankful to Professor Nikolay Yakovets from Eindhoven University of Technology

for his constant support, encouragement, and his technical assistance. He has helped me in

this journey by generously sharing his professional experience and providing the valuable

iii

guidance.

I want to thank York University, the Faculty of Graduate Studies, and Lassonde

School of Engineering for their support.

I would like to take this opportunity to express my profound gratitude from the deepen

of my heart to my beloved parents, for their love and encouragement.

Finally, I would like to express my very sincere thanks to my beloved husband for his

love, patience, and continuous support that led this journey to a success.

iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 The Problem: Seeing Data . 1

1.2 Motivation . 4

1.3 Methodology . 8

1.4 Contributions . 15

1.5 Outline . 16

2 Background and Related Work 18

v

3 Inductive Aggregate Pyramid 33

3.1 Data Summarization . 34

3.2 Hierarchical Data Structures . 36

3.3 Multi-dimensional Ordering . 38

3.4 Aggregate Data Pyramid Model . 42

3.4.1 Progressive and Interactive Visualization 44

3.4.1.1 Compression Techniques 46

Wavelet Transformation . 48

One-dimensional Haar Wavelet Transform 48

Two-dimensional Haar Wavelet Transform 49

3.4.1.2 Data Compression . 51

3.4.2 Inductive aggregate pyramid structure and specification 54

3.4.2.1 Inductive Aggregate Pyramid 56

3.4.2.2 Inductive Aggregation . 58

3.4.3 Building the Aggregate Pyramid 61

3.4.3.1 Mapping Multi-dimensional data into 1D 65

3.4.3.2 Depth of the Aggregate Pyramid 68

3.4.3.2.1 Metric Distance Measurement 69

3.4.3.2.2 Super Bin Adjacency 73

3.4.3.2.3 Issues with the Natural Depth 76

3.4.3.3 Indexing the pyramid . 78

vi

4 API 80

4.1 Resizing . 82

4.2 Zooming . 84

4.3 Panning . 84

4.4 Region of Interest (ROI) (Data of Interest) 85

4.5 Implementation of Interactive Operations 85

5 Cubed Pyramid 96

5.1 Definition of Cubed Pyramids . 96

5.2 Cubed Aggregate Pyramid Implementation 98

5.3 Cubed Aggregate Pyramids and OLAP Roll-up Data Cubes 102

5.4 Cubed Aggregate Pyramids Cardinalities 107

5.5 Further Considerations . 110

6 Experiments 112

7 Conclusions and Future Work 126

7.1 In Summary . 126

7.2 Review of Contributions . 129

7.3 Future Work . 133

7.4 In Closing . 136

Bibliography 138

vii

List of Tables

3.1 One-dimensional Haar Wavelet Transform 48

3.2 Pyramid terminology. 64

6.1 Number of Data Points per Stratum of 2D Aggregate Pyramid (Brightkite

dataset) . 113

6.2 Aggregate Pyramid Statistics of Brightkite Dataset 116

viii

List of Figures

3.1 Quadrant-recursive property of Z (Morton) order 40

3.2 Four level image pyramid . 45

3.3 the tiled image . 47

3.4 Standard decomposition . 49

3.5 Standard decomposition of an image [80] 50

3.6 Nonstandard decomposition . 51

3.7 Nonstandard decomposition of an image [80] 52

3.8 A multi-resolution dataset . 53

3.9 Hierarchical resolution of an image . 55

3.10 Six-level inductive aggregation over a sample dataset 60

3.11 SQL aggregate pyramid template . 63

3.12 Four-level Z-order . 66

3.13 Z-order values of three levels . 67

3.14 Quadrant-recursive property of Z order . 74

ix

4.1 An example of a window of interest . 86

4.2 An example of a window of interest . 87

4.3 An example of a window of interest . 88

5.1 SQL cubed pyramid template to build from the base 100

5.2 SQL cubed pyramid template from previous built axes 101

6.1 Strata Size Reduction of 2D Aggregate Pyramid (Brightkite dataset) . . . 115

6.2 Calculated Number of Separate Points per Stratum 117

6.3 Calculated Number of Data Points per Stratum 118

6.4 Calculated Number of Points with Aggregate Values per Stratum 119

6.5 Strata Size Reduction of Implemented and (Predicted) Aggregate Pyramid 120

6.6 Strata Size Reduction of 1D Aggregate Pyramid 122

6.7 Statistics of 1D × 2D Aggregate Pyramid of Brightkite Dataset 123

6.8 Strata Size Reduction of 1D × 2D × 2D Aggregate Pyramid 124

x

Chapter 1

Introduction

1.1 The Problem: Seeing Data

Managing, analyzing, and processing data in today’s information overloaded world is a

significant problem. Datasets such as scientific data are growing rapidly. Visualization

is a powerful means to convey knowledge hidden in datasets in order to gain deeper un-

derstanding of data. Data visualization can lead to good analysis and decision making,

especially over large datasets. Visual representation of data allows for rapid and easy

exploration, leading to comprehension of the underlying information by revealing connec-

tions, relations, patterns, and anomalies. Furthermore, visual exploration of data helps

to achieve insight about what was unknown.

Card et al. [1], in their paper where an organization of the information visualization

literature is presented, define visualization as a means to map data into a visual vocab-

ulary that provides interactive data exploration and analysis. Stephen Few [2] defines

data visualization as graphical representation of abstract information that maintains two

1

principles: communication and data analysis (sense-making). MacEachren et al. [3] also

illustrate these principles as communication and insight discovery. In their work where

they propose a cartographic visualization model, they state two important roles of carto-

graphic visualization in data exploration and analysis. They make a distinction between a

cartographic communication model (communication tools) and a cartographic visualiza-

tion model (visualization tools). A cartographic communication model can be developed

to depict known patterns and relationships to simplify communication. A cartographic

visualization model, on the other hand, unveils hidden knowledge and insight into the

data which was previously unknown. Data visualization not only represents the known

aspect of data such as relationships and connections to facilitate communication, but also

identifies new patterns providing insight into the data.

The datasets that organizations create are ever larger nowadays, commonly continuing

millions to billions of elements. An individual data element, say, a tuple, will often contain

numerous attributes. Data visualization maintains a graphical representation of abstract

information, concepts, and relationships by characterizing and categorizing spatial and

temporal attributes. Many datasets contain data of high dimensionality and complexity.

Therefore, traditional visualization approaches are not efficient nor sufficient to provide

visual representation of very large datasets of high dimensionality along with variety of

attributes. To have an effective and expressive visual representation of high-dimensional

and complex data, understanding the characteristics of human visual perception is vital.

Alexandre et al. [4] present how to implement more efficient visualization systems by

2

taking important aspects of human visual perception into consideration. They classify

visualization activities in three categories: exploratory analysis; confirmatory analysis,

and presentation. The purpose of exploratory analysis is to convey new knowledge by

revealing insight, visual representation of relations, and hidden patterns, which can lead

to creating hypotheses. In confirmatory analysis, the graphical representation of data

is explored to confirm or disprove a predefined hypothesis. In presentation, graphical

representation of data is used to expose relations, characteristics, patterns, and anomalies.

Many techniques have been proposed to map high-dimensional data with large num-

bers of attributes into graphical metaphors which are coherent and meaningful in an

effective and efficient way [5, 6]. Yet, visualizing very large datasets with millions or bil-

lions tuples remains a great challenge. Scaling large datasets to any desired resolution

considering the limited number of pixels on displays in an efficient manner, has recently

gained much attention in data exploration and visualization research work. In this thesis,

we study the issues and challenges in integrating database systems and visualization tech-

niques to facilitate interactive exploration and visualization of large datasets. We propose

structures and techniques to construct a multi-resolution dataset of various levels of de-

tail. We address the challenges involved to construct a multi-resolution dataset efficiently

that can be used at run-time to support real-time, interactive visual exploration of data.

3

1.2 Motivation

Data visualization and analysis systems can provide effective and powerful means to reveal

trends, unusual patterns, and anomalies in data. Gray et al. [7] illustrate four steps in

data analysis: formulating; extracting; visualizing; and analyzing. Formulating defines a

query needed to retrieve data from a dataset. Next, aggregate data needs to be extracted.

The processed and computed result is then ready to map into a graphical representation,

which is visualization. The final visual result is then analyzed to form new hypotheses,

then to query the data in follow up as needed.

A challenge in data visualization is how to map data into graphical metaphors that

provide an exploratory representation of data which leads to patterns and anomalies

discovery, especially for high-dimensional datasets. Nowadays, another major challenge

is the extreme amount of data that needs to be processed and visualized. Datasets can

be enormous, while the display screen has limited number of pixels; and human cognition

can only assimilate but so much at any given moment. Thus, an important question is

how we can sufficiently visualize data that summarizes underlying datasets when they are

very large. This requires a way to reduce the size of the original dataset, to summarize

it, to make the visual representation of data possible with a limited number of pixels.

There are many challenges involved. One must determine how to efficiently reduce the

size of data while assuring that the reduced version still tells the same story.

A pertinent problem is how to reduce data in a precise and coherent manner that

scales to different screen sizes with different resolutions. Managing, storing, and ma-

4

nipulating large datasets are each expensive processes. Data visualization systems such

as Tableau [8–10] have their own data management systems. DBMSs for many decades,

have provided powerful and efficient data storage, management, and manipulation. These

systems are well designed to store and process data optimally. Database systems can be

adopted to facilitate the complex process of visual representation of data from very large

datasets with millions or billions of tuples.

DBMSs can be integrated with data visualization systems to push the data processing

into the database engine. A number of research efforts have been conducted to determine

how relational engines can efficiently support data extraction and visualization systems

[11]. Database techniques can be applied to reduce the load on the visualizer (visual

space) by reducing the amount of data to be visualized. Standard features in SQL can

be employed to deal with large dataset exploration. Data reduction techniques such as

aggregation along with optimization tools embedded within database systems, are some

of the features that can facilitate the process of data exploration and extraction. An

approach is to reduce the size of very large datasets by using aggregation in the data

space (database). Scalar [12], for instance, applies aggregation, sampling and filtering

operations to reduce the size of the results along with analysis queries using optimization

techniques to predict the size of the final result. Hierarchical aggregation is another

approach to build a multi-scale representation of information in order to scale the visual

representations [13].

In addition to the size of a dataset, high dimensionality of a dataset imposes more

5

complexity on data extraction and visualization. Aaggregation across different dimen-

sions is required when exploring data for hidden knowledge and patterns, anomalies, and

decision making. In data visualization and analysis, dimensionality reduction is per-

formed by summarizing data along different dimensions [7]. Gray et al. [7] introduce data

cubes as database relations constructed by aggregating data across all combinations of

dimensions. This is the generalization of the operator group-by. Data cubes provide for

efficient exploration and analysis of high-dimensional data for decision making, knowledge

discovery, and finding patterns and anomalies. However, since in data cubes, aggrega-

tion is performed for all possible combinations of dimensions, the size of a data cube

exponentially grows with respect to the number of dimensions.

Despite the expense of constructing data cubes, these structures are prominent in data

exploration and analysis. The OLAP extensions to the SQL standards provide operations

such as roll-up and drill-down over data cubes. The roll-up operation creates hierarchies

over dimensions by aggregating, with respect to a concept hierarchy of dimensions. Spatial

aggregation, however, is not directly supported in OLAP in the SQL standards. Research

efforts have been conducted to propose techniques and solutions to make the construction

and storage of data cubes optimized and efficient. Cubes can be employed to maintain

the multi-scale representation of high dimensional data [14]. ImMens [15] relies on a

binned aggregation technique [16], along with partial data cubes combined with the roll-

up operation, to form hierarchies over time. Nanocubes, proposed by Lins et al. [17], are

reduced size cubes that are small enough to fit in the main memory to maintain real-time

6

and interactive data visualization and exploration.

Besides the complexity and difficulty behind high-dimensional data visual represen-

tation and exploration, data needs to be scaled the size of the screen. Whenever the size

of the given dataset is larger than the number of pixels, the dataset has to be processed

to provide a result set compatible with the size of the screen. Shneiderman’s mantra [18]

can be followed: “Overview first, zoom and filter, then details on demand.” When a

dataset is too large to fit the screen, an overview can be displayed. The user can then

zoom in to observe more detail as needed. Providing more detail requires performing new

queries to retrieve data at “higher resolution”. Every time the user sends such a request

(indirectly, by manipulating the visualization interface), a query needs to be performed

in the background. Querying directly the very large base dataset for every single such

request, followed by processing and extracting of data to be visualized, is too expensive

for real-time, interactive systems. Going back and forth between the front-end (visual

space) and the back-end (data space) to extract and process data imposes a significant

delay on the user and system interaction. Every time a request is sent, the user has to

wait for the response to be processed.

A solution to have real-time interaction is to pre-compute data at different levels

of detail. Storing data in a multi-resolution structure alleviates the expensive need to

re-visit the dataset each time. With a hierarchical data structure with multiple levels

of detail pre-computed, the appropriate resolution and “slice” to fit the request can be

retrieved directly. Perrot et al. [19], for instance, propose an architecture to support

7

interactive visualization and exploration of large scale data over a pre-computed multi-

level aggregation of data. A hierarchical structure facilitates the process of exploration

and extraction of data when multiple representations of data is desired. Choosing a

proper index provides for efficient range selection over the multi-resolution structure. A

pre-computed structure with various levels of detail supports real time interaction since

the user’s request does not have to be computed and processed over the original dataset.

1.3 Methodology

In this thesis, our objective is to define techniques and procedures to define and build

efficiently a hierarchical structure with levels of detail that supports interactive data visu-

alization and exploration of large datasets; especially when different data resolutions are

desired. To achieve this goal, we borrow from concepts of techniques such as progressive

image transformations. We adapt these techniques to provide data summarization in a

hierarchical form which we call an inductive-aggregate pyramid. An aggregate pyramid

defines the multi-resolution aggregation of the dataset that represents corresponding ag-

gregate data to be visualized. We provide multi-resolution aggregates of the datasets by

defining techniques to aggregate data spatially over desired dimensions. — The struc-

ture is then indexed on one-dimensional ordering values (Z/Morton-order [20]) and the

level of detail. The proposed index efficiently maintains range queries over the hierar-

chical structure to support interactive operations such as zooming and panning. — A

request is processed and data with the required size and resolution is extracted from this

8

pre-computed hierarchical structure in an efficient way. The result is then sent to the

front-end (visualizer) to be visualized.

Multi-scale representation is recently a prominent issue which has been addressed in

the image processing and database communities. In image processing systems, large im-

ages need to be transmitted and displayed in systems with finite transmission bandwidth

and limited screen sizes. In image representation and transmission, techniques have been

proposed and employed to improve the performance, especially for systems with restricted

resources [21]. Image compression is one of the techniques to reduce the usage of trans-

mission bandwidth and storage. Image compression techniques also provide progressive

representation of an image by gradually transmitting the image data.

JPEG2000 [22], as an image compression and multi-resolution format, maintains pro-

gressive mode for image compression and transmission. In progressive mode, an image is

encoded into multiple copies. In the first scan, a very coarse and low quality version of

the image is displayed. This low quality version is then refined by receiving subsequent

scans with more detail. This process continues until a high quality image with desired

resolution is generated. A wavelet compression technique employed in JPEG2000 main-

tains the progressive transmission. Encoded data is progressively sent and decoded to

maintain a gradual refinement of an image. Progressive transmission improves interaction

by providing a quick lower resolution of the image.

Platforms, nowadays, spam a variety of representations and different screen sizes. This

requires multi-scale representation of images. Thus, representing and analyzing images at

9

various scales is required. To process and analyze the initial large images in order to search

and extract features, a low resolution copy of an image can be examined. To maintain

the multi-scale representation of an image, a pyramidal structure can be employed. A

pyramidal structure successively provides multiple levels of representation of an image.

An image pyramid is a hierarchical structure containing different copies of an image

with different resolutions arranged from high quality image resolution to a low quality

copy. The low resolution levels can be efficiently computed through recursive algorithms.

Tanimoto et al. [23] represent an image pyramid as a multi-resolution representation of

an image which is a stack of arrays where the size of each array is one-quarter the size of

its preceding computed array.

Hierarchical structures have been employed in many systems such as image processing,

computer graphics, and geographic information systems. They have also obtained much

attention in database systems specifically as index structures for spatial databases [24].

Samet [25] represents a class of hierarchical data structures called quadtrees which all

comply the recursive decomposition basis. Hierarchical structures facilitate the process

of narrowing down and extracting a desired subset of data in an efficient way [26].

Samet [26] defines an image pyramid of a given 2n × 2n image as a sequence of

image arrays In to I0 where In represents the highest quality version of the image and

I0 represent a single pixel. The image array Ii−1 can be constructed from Ii with half

of the resolution in a recursive decomposition process by subdividing the high quality

versions into low-resolution copies. The size of each version Ii−1 (2i−1 × 2i−1) is one-

10

quarter the size of its preceding image array Ii (2i × 2i). Although Samet [26] represents

quadtrees and pyramids as similar and related structures, he makes a distinction between

quadtrees and pyramids in various aspects. For instance, in contrast to pyramids which

are multi-resolution data structures, quadtrees are variable-resolution data structures.

pyramids are also appropriate structures to focus on the limited scopes to search and

extract features as opposed to quadtrees.

Implementation and use of these hierarchical structures are efficient. To improve the

manipulation of hierarchical structures such as quadtrees, these structures can be stored in

a linear order. The linear quadtree [27], for instance, is defined as a class of data structures

where leaf nodes are represented by a set of sequential numeric keys. In linear quadtrees,

a quadtree is addressed and stored more efficiently on the disk. Shaffer et al. [28] propose

an algorithm to compute the linear quadtree. The algorithm assigns a sequence of key

values to each pixel representing the leaves of the quadtree. The linear ordering employed

in this approach is called Morton ordering, introduced by Morton to index maps in a

geographic information system [20]. Morton order is a space filling curve to map a high-

dimensional space to a one-dimensional set. The multi-dimensional ordering also known as

space-filling curve, introduced by mathematician Giuseppe Peano [29], continuously maps

multi-dimensional data points onto a one-dimensional domain by sequentially assigning

a unique number to every point in the multi-dimensional space. The locality of points is

preserved in the linear ordering.

To have an interactive visual representation and exploration of data in very large

11

datasets, we propose a hierarchical structure called the aggregate pyramid to store and

query data at different resolutions. In order to summarize and store data in a multi-

resolution structure, we define techniques to aggregate data progressively starting from

raw data of the original dataset. In this approach, data is processed and computed

in advance to form a hierarchical structure at different levels of detail. To create the

aggregate pyramid, we define a technique to aggregate data spatially over one or more

dimensions called inductive aggregation. In this technique, the base of the pyramid has

to be processed and materialized first. Inductive aggregation is then performed over bins

of last previously computed level to form the next lower resolution level or stratum. Since,

a stratum is computed from one immediate stratum below, in building a new aggregate

level with less detail, we need to only process the last preceding aggregate level. Inductive

aggregation is an iterative process that progressively creates aggregate levels (strata) from

last computed stratum. In fact, inductive aggregation performs aggregate functions on a

group of four adjacent bins or tuples to form a super bin of the immediate next higher

stratum with lower resolution.

To build the aggregate pyramid progressively, we determine two phases: base-

aggregation; and re-aggregation. In the base-aggregation phase, raw data from the given

dataset is aggregated and processed to form the base of the aggregate pyramid. Each

tuple in the base represents a bin. To make the process of constructing the aggregate

pyramid more efficient, we apply a multi-dimensional ordering (Z/Morton ordering [20])

on the raw dataset to map a multi-dimensional dataset into one-dimensional data points

12

while their spatial locality is preserved. The processed and aggregated dataset is then

sorted and written sequentially in Z ordering values onto the disk. Because of the Z-

order, adjacent points are likely to be also close in this order. In the re-aggregation phase,

the inductive aggregation is progressively applied on the base stratum to form the next

higher stratum with less detail. In this phase, starting from the base, every four adjacent

points are aggregated to form a new aggregate value representing a bin in the next higher

stratum. A subsequent stratum is materialized from the previously built stratum, start-

ing from the base until the highest stratum containing one bin is built. Because of the

ordering technique, spatially adjacent points in the recently computed stratum are likely

to be consecutive on the disk. To build the next level with less detail, we only sequentially

read the tuples (bins) from the previous computed stratum once. The tuples in stratum

i are sequentially processed in a single scan to produce the stratum i − 1. Since tuples

in stratum i are sorted on Z-order, the tuples needed to be aggregate are adjacent on

the disk in the sequence. The stratum i− 1 is also written onto the disk sequentially in

Z-order.

A multi-dimensional mapping such as Z ordering (Morton order [20]) supports B+-

tree indexes over high-dimensional datasets. We create an index on stratum and one-

dimensional ordering (Z-order) to facilitate building and querying the aggregate pyra-

mid. With an index on stratum and Z-order values along with taking advantage of

quadrant-recursive property of Z ordering [30], the aggregate pyramid sufficiently main-

tains interactive operations such as re-sizing and panning. Since the aggregate pyramid

13

is constructed in advance, the user’s request does not require to be processed over the

original dataset. The request is handled by querying a slice of the aggregate pyramid

matching the desired size and resolution. If the requested size is too large to fit the

screen, the same window of interest but from a lower resolution stratum is retrieved and

visualized. We propose algorithms to query efficiently the aggregate pyramid, exploiting

the quadrant-recursive property of Z-order.

To provide details by representing all individual data points in an aggregate pyramid,

we need to determine the depth at which all points are separated. We call this dept, the

natural depth. To construct the aggregate pyramid, this natural depth of the pyramid

has to be determined. The deeper the structure is, more detail it can provide; but one has

to consider limiting depth, since a very deep stratum might be sparse. Depth has a direct

impact on the performance of the aggregate pyramid construction. When a stratum is

sparse, aggregation to the next stratum does not result in a reduction of data. Starting at

too shallow, on the contrary, misses detail and the pyramid might not provide sufficient

detail and desired resolution. We address this tradeoff via experiments over different

datasets.

To represent multi-resolution of high-dimensional datasets, we propose cubed pyra-

mids. Cubed pyramids are cross products of aggregate pyramids. An aggregate pyramid

can be either a one-dimensional or multi-dimensional dataset. In a cubed pyramid, induc-

tive aggregation can be applied over a dimension or groups of dimensions independently.

We call a single aggregate pyramid processed in building the cubed pyramid an axis. Each

14

axis can be constructed by applying inductive aggregation over one or more dimensions.

Cubed pyramids can be defined as a generalization of roll-up data cubes. In contrast to

data cubes [7], cubed pyramids are built by aggregating data over desired and predefined

dimensions, not all combinations of dimensions. They also provide for exploration over

each axis independently. For example, providing the visualization of a temperature map,

the user may ask to view the temperature data of the map at different times (time inter-

vals). The user can view the temperature map of a day, a week, or a year without the

necessity of sending more requests to the database engine and waiting for a response.

1.4 Contributions

The following list includes the summary of our contributions:

1. Provide a comprehensive survey of state of the art of database support for interactive

visualization. (Chapter 1 and Chapter 2)

2. Propose a data structure to store data in multiple levels of detail called inductive

aggregate pyramid. (Chapter 3 and Chapter 4)

(a) Define techniques to inductively construct the aggregate pyramid. (inductive

aggregation)

(b) Define the meaningful depth for the aggregate pyramid

(c) Design API to support interactive visual operations

15

3. Implement efficiently the aggregate pyramid materialization and use of inductive

aggregation.

(a) materializing efficiently the aggregate pyramid

(b) indexing the aggregate pyramid for fast API evaluation

(c) Determining efficiently the natural depth and representing its critical impact

on the efficiency of building the aggregate pyramid

(d) Evaluating API cost in an interactive speed

4. Generalize aggregate pyramids to cubed pyramids (Chapter 5)

(a) Define multiple axes for richer representation of high-dimensional data

(b) Implement efficiently materialization and use of cubed pyramids.

(c) Demonstrate how cubed pyramids’ richer presentation supports for interactive

data representation

5. Verify experimentally efficiency of aggregate pyramids (Chapter 6)

(a) Estimate the aggregate pyramid cardinality in advance

(b) Show the fact of natural depth on cost

1.5 Outline

The thesis is organized as follows. In Chapter 2, we present a summary of related work

regarding the integration of database systems and data visualization and exploration

16

to provide an interactive visual environment. In Chapter 3, we propose, the inductive

aggregate pyramid, a hierarchical data structure to represent data at different levels of

detail. We develop techniques and algorithms to build and index the aggregate pyramid.

In Chapter 4, we illustrate how aggregate pyramids support interactive operations for data

visualization and exploration. In Chapter 5, We develop the concept of cubed pyramids,

the cross product of aggregate data pyramids. In Chapter 6, we present experiments

conducted on two different datasets to determine building and using aggregate pyramids.

In this chapter, the importance of the natural depth and its impact on the performance are

experimentally determined. In Chapter 7, we conclude with a summary and a discussion

of future work.

17

Chapter 2

Background and Related Work

Processing, analyzing, and exploring data effectively and efficiently have been great chal-

lenges in data visualization. As data has grown rapidly in recent decades, this has become

even more challenging in processing time due to the size of the data to be processed. With

data produced and stored even more quickly, an important challenge in data exploration

and visualization is scaling visual presentation from thousands to millions or even bil-

lions of data items (records). The integration of database and visualization systems can

make database analysis tools accessible for visualization systems in data exploration and

presentation. Numerous work has sought to overcome the difficulties of data exploration

and analysis combined with visualization techniques.

Since database systems are designed to host data to be stored, manipulated, and

queried in recent decades, they are natural tools for data exploration and visualization.

They provide powerful means to explore data with their search engines in an effective

way. One of the earliest attempts in data exploration and relational information visu-

18

alization is APT (A Presentation Tool) [31]. APT is a pioneering work in this area.

It was developed to provide presentation tools and graphical techniques for automati-

cally designing two dimensional presentations of relational information. Mackinlay [31]

describes graphical presentations as sentences in a graphical language. Using graphical

presentations raises the issue of how graphical designs can present a wide variety of infor-

mation in an expressive and effective manner. Specifically, he defines the key graphical

design issues as expressiveness and effectiveness. Expressiveness determines whether a

graphical design can express the relevant information correctly. Effectiveness determines

whether a graphical presentation provides a meaningful and understandable graphical

output compatible with the human visual system. Thus, the idea behind this work is

designing and developing a presentation environment where information extracted from a

database can be presented in expressive and effective graphical forms. Unlike other work,

the key point of APT [31] was producing a wide range of comprehensive graphical designs

for relational information. SAGE [32], a research effort in automating the presentation

of relational information, investigates the needs and problems of developing tools to sim-

plify the designing and programming of displays which support data presentation in large

information systems. SAGE can be said to be the improved version of APT [31] with

the additional support of interactively creating and designing complex combination of

data presentation displays in order to meet the application requirements. It also provides

the possibility of visualizing the intermediate results to help system developers discover

outliers and anomalies. The intermediate results can also assist system designers and

19

developers to understand behavior of systems.

Many efforts have been done to provide more interactive data visualization and flexible

graphical user interfaces to explore relational information at the time that thousands, or

even hundreds, of data items (tuples) were considered as large data sets. VIS [33] and

IVEE [34], for instance, rely on some principles such as dynamic query filters, starfield

displays [35], and tight coupling to create an interactive visual environment for relational

information exploration. Dynamic Queries (DQ) [36] is a concept of direct manipulation

of databases by graphically formulating and representing the queries and their result

sets with graphical widgets such as sliders. It provides quick feedback of the results every

time a user adjusts the query parameters. Moreover, because of its graphical environment,

this interface is easy to learn and work even for non-expert users. Starfield displays are

two-dimensional scatter plots for visual representation of result sets which provide some

additional operations such as zooming and panning. One of the important aspects of

tight coupling is the progressive refinement of queries in which the user can modify the

query parameters when the query result is large in order to eliminate the unwanted data

and have more restrictive results. It means that the output of a query can be processed

and explored as the input for a reformulated query.

Another aspect of tight coupling applied in VIS and IVEE is detail-on-demand selec-

tion. At the time, one of initiate approaches to conquer the issue of dealing with large

data sets was to visualize as many data as possible by using each pixel of the display,

each to represent one data item of the result set. Therefore, each record in a result set

20

is represented as a point for saving space in order to display more data points. The user

then can select any data point to see more detail (desired attributes of that data point).

Another interactive visualization and query system implemented based on the concept of

dynamic queries is Spotfire [37]. Spotfire provides a high level of database exploration

and visual information representation by attaching graphical objects to database objects.

Even with these efforts done to make data exploration and visualization more effective at

the time, the problem of visualizing tens of thousands data points remained a great chal-

lenge. The issues of the limited number of objects that can be visualized in the display

and overlapping points in the scatter plots, were still needed to be addressed.

In the 1990’s, another step forward in interactive data visualization with database

integration was taken by IDES [38]. IDES is a knowledge-based interactive data ex-

ploration framework integrating data exploration and automatic presentation systems

to discover hidden relationships in large data sets from extracted data. Not only the

automated presentation of large data sets is considered as a big challenge, but also the

necessity of an interactive data manipulation and analysis is emphasized. Interactive data

visualization is an iterative process of data exploration by its nature. The authors [38]

divide the process of data exploration and visualization into three sub-processes: data

visualization; data manipulation; and data analysis. The data visualization operation is

the process of designing and creating a view using effective graphical presentations. The

data exploration and visualization are dynamic processes that allow the user to change

the visualized data on the display in order to see the required information. IDES iden-

21

tifies three categories of data manipulation operations: controlling the scope; selecting

the focus of attention; and choosing the level of detail. In IDES, users can choose what

amount of data to be visualized (controlling the scope), what attributes they want to

be presented (selecting the focus of attention), and finally what granularity of data they

want to examine (choosing the level of detail) using aggregation or decomposition. It can

be seen clearly that the discordance of the screen size and the amount of data in large

data sets makes the idea of data reduction and visualizing data at different levels of detail

inevitable.

While visualization makes data exploration and analysis more effective and compre-

hensive, a good design and development of a data visualization system can also provide a

graphical environment in database systems in order to create more complex queries and

data manipulation tools. Tioga-2 [39], , the extended and refined version of Tiago [40]

(a data management to support scientific visualization applications), for instance, is a

database visualization environment in which graphical representation of data can be ma-

nipulated using a set of basic operations. The majority of programming operations are

performed by employing graphical representations. In Tioga-2, a set of primitive op-

erations are successively composed to build practical database applications. Tioga-2

maintains incremental programming in which the programmer can observe intermediate

results by getting an immediate visual feedback as a result of any modification.

Besides the issues in visualizing large data sets with respect to the size of the displays

and the number of data items that can be represented on the screen, processing and

22

finding a meaningful result in a large dataset as a time consuming and challenging process

is another essential concern. To overcome these problems, work has been done to provide

a graphical environment for an interactive data exploration by sending feedback to the

user during the time of data exploration and analysis process. One research attempt that

addresses the problem of the difficulty of finding a correct and meaningful answer to a

query is FLEX [41]. FLEX is a cooperative and tolerant user interface that maintains

the interaction between the user and the query specification analyzer. In the case that

the query does not return a proper answer, the FLEX interface suggests or modifies

the query to browse an acceptable result. VisDB [42], an interactive data exploration

system, presents an approach to maintain filtering and approximate answers. It provides

dynamic query modification and an immediate visual feedback; the former has a direct

impact on the latter. When applying any changes in the query specifications, based on

the amount of data in the new query result, the visual representation of data is changed

which provides a feedback of the recent modifications. This takes into consideration, that

in most data exploration and visualization systems, the visual representation has to be

recalculated any time the query is modified and executed.

While the relational information visualization systems have been improved since early

attempts done in 1980’s, the definition of large amount of data shifted from tens of

thousands to millions of data items. By data growing with accelerated speed, scaling

visual presentations from tens of thousands to millions of data items has become an

enormous challenge in information visualization and database management research area.

23

Initially an approach to conquer this issue was to visualize as many data items as possible

by using each pixel of the display to represent a data item of the result set like IVEE

system. However, this idea is not applicable in visualizing large data sets with millions

of records. To overcome this problem, approaches are to reduce size of the data to be

visualized, or to represent data at different levels of details. Shneiderman [18] believes that

in designing an effective graphical user interface, his visual-information seeking mantra is

the starting point: “overview first, zoom and filter, then details on demand.” He presents

the following primary but high level abstractions; overview (having an overview of entire

data set); zoom (zooming into interesting data points to see more details); filter (filter out

unwanted and irrelevant data); detail-on-demand (accessing the details of some interesting

portion of data); relate (discovering and observing data items relationships); history (the

possibility of reverse tasks and progressive refinement); and extract (extracting the query

parameters or a subset of data). Some of these abstractions are used and developed in

some early research attempts such as IVEE, IDES, and Visage [43], but still the idea of

having an overview of large data sets remains challenging and overwhelming.

The filtering technique used in IVEE, for instance, presents a subset of data points

in order to reduce the size of visualized data. IDES proposed by GoledSTEIN et al. [44]

can be considered as some of the early work in defining the aspect of data granularity

(multi-level data representation) and controlling the scope (region of interest). Based on

their definition, in an interactive visualization environment, users can control the scope

by selecting a specific portion of data, and the data granularity (the level of detail) by

24

creating and decomposing aggregated values. Visage [43] also addresses this problem, and

provides a more precise definition of interactive operations in data exploration. Visage

provides filtering and partitioning in order to focus on interesting subsets of data (data

reduction). By the means of drill-down and roll-up techniques (zooming in and out), the

level of detail that has to be visualized can be controlled. Drill-down is defined as the

process of decomposition of aggregated data into larger number of aggregated values of

smaller data collections, while the roll-up technique refers to the process of re-aggregating

smaller data groups to create new aggregation of larger data collections to reduce and

summarize the visualized data. These aspects of roll-up and drill-down — also known

as zooming in and out — have been used in much recent work to provide multiple levels

of detail for representation in data visualization. VQE [45] (Visual Query Environment)

adds more capabilities to direct manipulation and data exploration in Visage. VQE has

the capability of storing exploration sessions (queries and visualizations) and reuse them

on different datasets.

While many techniques were being developed to maintain the interactive data vi-

sualization, more general systems were designed to work with different data sources.

DEVise [46] and Rivet [47] provide more general and flexible visualization and explo-

ration environments for visual representation and manipulation of large data sets from

disparate sources. DEVise supports exploration of large data sets from either local or

remote databases by applying the query optimization techniques to deliver a robust vi-

sualization system. In addition to maintaining a flexible and simple visual environment,

25

DEVise allows users to interactively share and explore visual data representations. Any

modification made by one user in a data set is noticeable and available by other users

observing the same data. While it provides exploring and handling large data sets from

distributed data sources in a visual exploration, the user can drill down to browse a sin-

gle data record (zooming in) for more detail. Following the same objective to develop a

flexible and more general visual exploration system, Rivet provides an interactive data

exploration environment that allows users to import arbitrary large data sets from differ-

ent data sources. Rivet is flexible in that it supports user-defined transformations along

with powerful standard operations such as filtering, aggregation, sorting, and grouping.

Once data from other resources is imported and transformed in an internal database,

each individual tuple is mapped to its visual representation using visual metaphors. A

visual metaphor is responsible to encode data tuples to visual primitives on the display.

Rivet also provides discriminating a subset of data using identifiers called selectors while

data tuples are encoding to visual objects within metaphors. Multiple selectors can be

defined in a metaphor to distinguish several subsets of data using different primitives

associated to each selector. The idea of designing some systems such as Rivet is to de-

velop effective and interactive visual exploration systems compatible with the iterative

and unpredictable nature of data visualization and analysis of large datasets.

With significant work done to improve interactive data visualization systems, dealing

with the large number of data items has still remained challenging and many research

attempts have continued to be devoted to this problem. More detailed and comprehensive

26

overview on interactive visualization of large datasets is presented by Godfrey et al. [11].

They provide a survey on three major areas in the visual exploration of large data sets:

visualization techniques and related developed systems; query optimization techniques;

and challenges in visual representation of data. One essential approach to deal with the

issue of exploring and visualizing large datasets is data reduction. Data reduction can

be performed either directly by the database system using available features and tools

devised within the database system for data manipulation and transformation, or by

visualization management tools. In database systems, the size of data can be reduced

via sampling, aggregation, and filtering techniques [12]. When data sets are very large,

analysis, manipulation, exploration, and visualization can be performed on a subset of

data points instead of whole data sets. Sampling is one technique to statistically select

a subset of data points in order to reduce the size of data in the visualization process.

One concern in applying sampling technique on data is the possibility of loosing relevant

and interesting data. Aggregation can be applied to the groups of data in order to

reduce the number of data points to be visualized. The aggregated data points have

same characteristics of the original data values and aggregate values can be defined as

the summaries of the underlying data. Filtering can be described as selecting a subset of

data with specific characteristics.

Aggregation as one of the most effective techniques in data reduction has gained sig-

nificant attention in the relational data exploration and visualization research. Since

aggregated data preserve the characteristics of original data, it provides some interactive

27

operations such drill-down and roll-up. The user can also select the granularity of the

aggregated data. When an overview (summarized data) can be expressive and effective

enough, avoiding processing and analyzing individual data points improves the perfor-

mance of the interactive visualization process. In database systems, aggregation is a

query with a group function summarizing data via standard aggregation operations such

as average, sum, and max. Fredrikson et al. [48] uses aggregation to simplify the display

since fewer number of points (markers) is required to be visualized the aggregated data

(data summaries). Their system provides two coordinates: aggregation; and detail. A

user can have an overview of desired information in the aggregation coordinate and, at

the same time, look at required details available in the detail coordinate.

Aggregation is a prominent technique in data reduction. However, aggregating large

data sets is a time-consuming and costly process. The user has to wait a significant

amount of time until the aggregation process is completed to see the final result, without

any feedback in the meanwhile. In systems in which approximate answers are acceptable,

an approximate answer can be provided for the initial query. The user can then refine the

query after receiving feedback to explore and investigate a data set for desired patterns

and knowledge. In aggregating large data sets, some approaches have been developed

to address the problem of latency in answering aggregate queries. Hellerstein et al.

[49] propose a new aggregation interactive interface called online aggregation. Online

aggregation provides the possibility of observing the aggregate result progressively, and

controlling the query execution whenever is needed on the fly. Some systems apply

28

different data reduction techniques to scale down the processed data by considering system

limitations and optimization techniques to improve the data visualization performance.

Scalar [12] uses powerful features such as optimization tools in database management

systems to improve the interactive visualization process by limiting the amount of data

in the query result. This cap on data volume can be computed by statistically evaluating

query plans to estimate the number of data required to be processed. Whenever the

expected query result is too large to be efficiently and effectively visualized, data reduction

techniques such as filtering, sampling, and aggregation are applied to summarize the result

set.

Jugel et al. [50] propose M4 aggregation, a visualization-oriented data aggregation

model, along with a visualization-driven query rewriting technique to dimensionally sim-

plify time-series data reduction. When a query is issued over a high volume of time-series

data, the query is rewritten in order to scale down the result set by applying data reduc-

tion techniques in the database. Systems like Scalar and M4 apply some parameters such

as the display limitation and predictive techniques like query plans to reduce the number

and the scope of data needed to be processed. VisReduce [51], in a new approach, uses

MapReduce [52] as a powerful tool in large data processing. MapReduce is a powerful

model to execute parallel and distributed algorithms over a set of workers (computers).

Since VisReduce permits any query to be executed on an arbitrary group of workers, the

processing time and the scale of the processed data sets can be accelerated by increasing

the number of workers. As data is processed in a distributed and parallel manner, a

29

feedback can incrementally be sent to the user while more data is processed and visu-

alized. VisReduce provides a visualization environment with low latency by providing

progressive feedback to the users; however, it does not define an overview of summarized

data, not interaction operations such as zooming and panning to investigate and explore

data.

One of the most essential contribution from the database community to data explo-

ration and visualization has been to develop condense data structures that provide effec-

tive data reduction and multi-resolution representation techniques to supports interactive

visualization of large data sets [53]. Elmqvist et al. [13] define a class of visualization

techniques that represent a multi-scale structure using hierarchical aggregation which

maintains interaction techniques. The authors represent a hierarchical aggregation in the

form of a tree structure where non-leaf nodes are aggregated values and the leaves carry

original data items. In this aggregated hierarchical structure, a non-leaf node (an aggre-

gated value) can have one or more children and the root of the tree represents the whole

data set. The aggregate tree structure can be constructed hierarchically in a bottom-up

or top-down process. Bottom-up process starts with original data points, repeatedly ap-

plying aggregation on the subsets of original data or aggregate data until there is only one

aggregate value. The top-down aggregation starts from the root (the aggregate value)

and iteratively splitting the aggregate values until it produces leaves. Since aggregate

values convey information about the underlying data, visualization techniques of hier-

archical aggregation support the visualizing of aggregate data as well as original data

30

points. One of the pioneering attempts in visualizing hierarchical data structures is from

1991. TreeMaps [54], a visualization technique, maps a complete hierarchy on to the

display based on the space filling aspect in the form of rectangular area. This technique

provides an overview of a large hierarchy that permits users to navigate any interesting

area in the visual space. The authors assign a weight to each node to determine the size of

the space the node occupies on the display called bounding box. However, this approach

does not provide hierarchical data representation in a multi-resolution manner.

The OLAP cube [7] is another structure can be used in multi-resolution data visu-

alization to reduce the size of the processed data and support various data granularity.

Polaris [55] is the extension of Pivot Table [56]. It provides multi-dimensional explo-

ration interface for database systems. Polaris supports a table-based graphical represen-

tation, but not the hierarchical structure of dimensions. It supports the data representa-

tion in each dimension independently. Later, Polaris was extended to effectively explore

pre-summarized data cubes by supporting its hierarchical and multi-dimensional struc-

ture [57]. Hierarchical structures such as data cubes integrated with some data-reduction

technique can maintain an interactive data visualization interface to explore large data

sets in various granularities. imMens [15] relies on binned aggregation as its primary

technique in data reduction, and the data cube structure to support interactive visualiza-

tion of large scale data sets by precomputing multivariate data tiles. Multivariate data

tiles are simply materialized database views. Binned aggregation, also applied by Hadley

Wickham [16], is a technique to summarize data into a set of predefined bins. Binning

31

summarizes the specified number of data points into bins (or intervals) represents an

approximation of data. Binned aggregation represents data in multi-level resolution and

maintains both global patterns and local features.

We propose inductive aggregation to build the hierarchical aggregate pyramid [58].

We employ aggregation as a data-reduction technique maintained as in some of systems

described above. A practical and effective data exploration and visualization environ-

ment not only must be responsive in answering users’ queries, but also must be smooth

and rich to provide answers in desired level of detail in a multi-resolution representation

model. The hierarchical characteristic of the pyramid structure along with aggregating

data points incrementally supports interactive visualization of large data sets. The sum-

marized data with the same scale of canvas is sent to the user. Additional operations to

explore data in more detail (resolution) can be maintained by interconnection between

different resolution levels of the aggregate pyramid hierarchy. Following Schniderman’s

mantra, the aggregate pyramid provides overview, zoom in, and detail on demand. The

precomputaion of the aggregate pyramid can also address the latency of aggregate queries

response, since summarized and precomputed data provides an efficient and effective in-

teraction in database exploration and visualization.

32

Chapter 3

Inductive Aggregate Pyramid

One of the most crucial and important aspect of data analysis and visualization is a

fast and smooth (real-time) interaction. Visualizing large datasets makes this problem

more challenging when the dataset is too large to fit the screen or even in main memory.

Various techniques have been developed to deal with the issue of large dataset exploration

and visualization. Some systems employed techniques to provide approximate answers

to the queries using some predictive parameters in relational database systems [12, 59]

and data reduction techniques such as filtering, sampling, and aggregation to eliminate

unwanted and irrelevant data points to summarize and scale data based on the screen

limitations [12].

One approach to reduce the size of data in order to develop an interactive visualization

environment is to have the data reduction techniques maintained by a database system

to provide filtering, sampling, and aggregation. One important concern in data reduction

is that some relevant and interesting data might be discarded during the data reduction

33

process. Sampling and filtering techniques, for instance, select a subset of data in order to

scale down the dataset. However, by selecting some interesting and desired portion of data

in data reduction by applying filtering or sampling, there is a possibility to lose relevant

and interesting data. Aggregation, on the other hand, is a data reduction technique that

processes all required data by applying aggregate functions on predefined groups of data

values. Unlike sampling and filtering, in the aggregation operation, all desired data points

are processed to form aggregate values and the characteristics of the original data values

can be preserved while summarizing the underlying data. Furthermore, by re-aggregating

group aggregates to have larger aggregate data collections, different granularity of data

can be provided by this technique.

Our objective is to propose and develop a data structure containing multiple levels of

detail to maintain fast and real-time data exploration and visualization of large datasets.

The proposed structure scales to collections of data of any desired size. In order to have

data at multiple levels of detail, an aggregation technique is applied to summarize the

dataset. The original and summarized data can be organized in a hierarchical, compact,

and successive structure which is often called a data pyramid.

3.1 Data Summarization

The purpose of data summarization is to reduce the size of data while keeping the prop-

erties and characteristics of the original data points. Summarized data delivers the same

concept (knowledge) and information as the original data values. In other words, in data

34

exploration of summarized data, reaching the same explanation of original data values is

expected. The data summary is a reduced version of a dataset in a comprehensive and

semantically meaningful form.

To scale down a data set, data reduction techniques solely may not be sufficient since

we want to preserve some essential key elements of the original data in the compact form.

Some other factors have to be considered along with data reduction techniques to translate

the original dataset to the reduced version. We introduce an approach to summarize

data called inductive aggregation to support data summarization using data reduction

techniques along with other methods to preserve the original data characteristics. To

summarize sufficiently geometric data, for instance, we use techniques to preserve the

original data properties such as the locality of data points.

To have interactive and efficient data visualization, we need to be able to explore

data in an efficient and real-time way. However, when it comes to a huge dataset with

billions of tuples, exploring data is a time-consuming and costly process. Even in the

cases when an overview (summarized data) is provided, the user may ask for further

detail by “zooming in” to a subset of the data or want to change the viewpoint (panning)

— moving to an adjacent portion of data — to explore other areas. Therefore, more data

has to be retrieved and processed to provide a data summary at the desired granularity to

provide the overview and to browse more detail. One way to make this process faster and

more efficient is by preprocessing the data and making it ready to explore by generating

multiple projections and representations of the original dataset in advance, providing

35

the summaries of data at different granuralities. Having the multiple representations of

pre-computed and summarized data gives us the possibility of exploring data in different

resolutions of detail without the necessity of processing over the whole dataset for every

request.

3.2 Hierarchical Data Structures

In spatial database systems, hierarchical data structures such as quadtrees [26] have been

proposed to sort the data based on their occupancy in the space known as spatial indexing.

These hierarchical data structures provide efficiency by facilitating some operations on

data. Quadtrees and pyramids are two popular hierarchical data structures in image

processing and spatial database systems.

Pyramids can be defined as hierarchically organized and interconnected structures.

By providing interconnections between different levels from detailed data points to more

global information (containing summarized and aggregate data), the pyramid hierarchy

maintains computational efficiency by supporting optimized and efficient algorithms for

both constructing and querying summarized data. The idea of using the pyramid to per-

form search on an image, was introduced initially by Tanimoto, et al. [23]. The search

operation as a top-down process is initiated at a low resolution level (the top of the pyra-

mid) with progressive refinement by processing more detail at higher resolutions (lower

levels of the pyramid). Kriegel et al. [24] propose a pyramid technique as a novel way

to index high dimensional data sets. Their primary idea is to map a multi-dimensional

36

data space to one-dimensional data points in order to be supported by an efficient in-

dex structure such as a B+-tree to improve the performance especially for range-query

processing. The PT (Pyramid Technique) [24] partitions high dimensional data spaces

into two-dimensional pyramids with the top at the center point of the data space. Each

two-dimensional pyramid is then transformed to one-dimensional data points. The hier-

archical multi-resolution structure of the pyramid makes this model a popular structure

for indexing high dimensional data spaces in spatial data systems and image processing.

Quadtrees and pyramids are two prominent structures in multi-dimensional indexing

in spatial database systems. However, there are some distinctions between these two

structures. The pyramid is a multi-resolution representation while the quadtree is a

multi-variant structure [26]. The hierarchical multi-resolution structure of the pyramid

maintains a sufficient configuration to summarize data at multiple levels of detail. The

multiple representations of summarized data can then provide the approximate answers to

queries. While the pyramid representation provides a summarized data representation to

give approximate answers to the queries, the quadtree model can produce exact answers.

Moreover, pyramids and quadtrees differ in supporting the various types of spatial queries

in spatial database systems [60]. Samet et al. [61] define two types of spatial queries:

location-based and feature-based queries. While location-based queries can simply be

answered in a quadtree structure, there is more complication in answering feature-based

queries, since quadtrees are indexed based on spatial occupancy and do not provide

indexing by features. Comparing the characteristics of quadtrees and pyramids, pyramids

37

are better structures to answer feature-based queries. To determine the existence of a

feature in the pyramid structure, lower-resolution data (higher levels of the pyramid)

can be examined. This reduces the response time of the query by negating the need to

examine large portions of data to check for the presence of a feature. Moreover, building

the pyramid structure is a bottom-up process in contrast to the construction of quadtrees

which is a top-down operation. One of the more important distinctions between quadtrees

and pyramids can be seen in their non-leaf nodes. In quadtrees, unlike pyramids, a non-

leaf node does not contain data or information about the underlying data points and

nodes [62].

The pyramid as a multi-resolution representation of data has advantages compared

to other hierarchical structures [63] for our application. They provide interconnection

between local (more detailed data) and global features (region information or aggre-

gate data) by mapping global features into local ones and vice versa. Because of the

hierarchical nature of the pyramid, a recursive decomposition, similar to the divide-

and-conquer principle, can be employed to reduce the cost of operations and improve

performance [63,64].

3.3 Multi-dimensional Ordering

Many analytical problems rely on processing cellular data (bins) in the form of a multi-

dimensional gridded space. For efficiency, this requires a single-dimension cellular or-

dering to reduce the multi-dimensional space to a one-dimensional domain, as pointed

38

out in [62]. This spatial ordering simplifies the complexity of analysis procedures by ex-

ploiting previously designed data structures and techniques. Mark and Goodchild [65]

define an ordering as a sequence of unique consecutive key values assigned to a set of n

distinct spatial objects (e.g., bins or points) from 0 to n− 1. An ordering maps a multi-

dimensional plane to a one-dimensional space in order to simplify analytic processing

while preserving the spatial locality of data objects. By storing spatial objects in a linear

order, the sequential processing on a consecutive list of data objects can be performed

in an efficient way. For two-dimensional data, each bin can be partitioned into 2 × 2

cells/bins called quadrants. Mark [30] defines the three following properties for cellular

data objects partitioned onto a 2n × 2n grid where n is large enough that no two points

(with distinct x and y valuess) fall into one bin;

• An ordering is continuous if and only if each two data objects with successive

order keys are spatially neighbors.

• An ordering is quadrant-recursive if the keys assigned to the subquadrants of a

cell (quadrant) are consecutive in an order. In a 2n × 2n grid with ordering levels

from 0 to n, any level L (0 ≤ L ≤ n), has 2L × 2L cells with consecutive keys from

0 to 2L−1.

• And finally, an ordering is monotonic if and only if for any fixed coordinate x, the

keys monotonically vary with respect to y, and vice versa. An ordering is positive

monotonic if the value of keys increases by increasing the value of one dimension

39

1

3

40 5

62 7

8 9 12 13

10 11 14 15

10

2 3

Figure 3.1: Quadrant-recursive property of Z (Morton) order

(e.g., x) while the value of other dimension (e.g., y) is constant.

The quadrant-recursive ordering property has garnered significant attention because

of its compatibility with popular data structures such as quadtress. A multiple-level

ordering can be recursively constructed based on this property [30]. In a quadrant-

recursive ordering, a rectangular region (quadrant) is recursively decomposed to sub-

quadrants in a consecutive order. In other words, in a successive step, a quadrant is

divided into four sub-quadrant;, each sub-quadrant is then subsequently partitioned into

four sub-sub-quadrants; and so on. Multiple levels of a quadrant-recursive ordering can

be constructed by applying a recursive algorithm.

Multi-dimensional orderings also known as space-filling curves (Peano curves) [66]

were proposed for the first time as early as in 1890, by mathematician Giuseppe Peano

[29]. A space-filling curve (in our discussion of multi-dimensional orderings) continuously

40

maps a multi-dimensional space into a one-dimensional domain by assigning a unique

number to every point in the multi-dimensional space. As a result, distinct points are

mapped to different numbers. In the space filling curve technique, two points that are

spatially adjacent are likely to be close in the linear ordering resulted by space filling curve

mapping. The idea of mapping the multi-dimensional data points to the one-dimensional

data values can be used in spatial indexing. The one-dimensional values resulting from a

space-filling curve can be efficiently indexed by an index structure such as a B+-tree to

improve performance especially for the spatial-range query processing. In many spatial

data analyses, the query processing is more efficient if spatially adjacent data points are

contiguously stored on the disk.

Morton order [20] and Hilbert order [67] are two popular multi-dimensional order-

ings that have received considerable attention in image processing and spatial database

systems. They hold the three properties as described by Mark [30]: continuity; quadrant-

recursive ordering; and monotonicity. Considering their quadrant-recursive character-

istics, these two ordering are compatible to quadtree-form structures. The idea of as-

signing a linear ordering to spatial data objects in a multi-dimensional space while pre-

serving the spatial contiguity of the keys has been applied to quadtrees, known as linear

quadtrees [26,27,68,69]. The term linear quadtree, introduced by Gargantini [27] in 1982,

indicates a class of data structures where leaf nodes are representing by a set of sequential

numeric keys. Figure 3.1 presents the quadrant-recursive property of Morton order for

three levels.

41

We adopt Morton order in this research to construct and index the aggregate pyramid;

this ordering is also known as “Z order” [70, 71] and as “N order” [72, 73]. Morton

order [20], introduced by G.M. Morton in 1966, is a space-filling curve technique that maps

multi-dimensional data space to one-dimensional domain while preserving the spatial

properties of data points. In this ordering, the key value (the morton number) of a data

point is calculated by interleaving the binary representation of its coordinates’ values. In

calculation of the Z-order values, the process of interleaving the data point coordinates’

bits is called the shuffle of coordinates. In the rest of this study, we use the term “Z-order”

to address Morton multi-dimensional ordering.

3.4 Aggregate Data Pyramid Model

Employing database query optimization and data reduction techniques in data visual-

ization requires a tightly coupled system with integration of database and visualization

systems. Besides the powerful features for data reduction and optimization tools, scalable

and compact data structures can be developed in database systems to support interactive

data exploration. OLAP cubes and pre-computed materialized views, for instance, pro-

vide intermediate pre-aggregate results that facilitate query evaluation and processing.

To browse interactively a large volume of data, imMens (Real-time Visual Querying of Big

Data) [15] employs multidimensional data cubes along with binned aggregate techniques

to develop a multi-resolution data structure supporting interaction. Zuotao Li et al. [74]

propose a pyramid model to browse interactively and discover content-based knowledge

42

to support statistical range query processing. Their data pyramid stores relevant and

desired information in condense and approximate form. A query answer can be prepared

by querying the data pyramid rather than the whole dataset.

We propose a compact multi-resolution structure that facilitates the process of data

exploration and visualization by providing the summarized data at different granularities.

In order to have a multi-resolution representation of data summaries, we propose a multi-

resolution compact structure called the inductive aggregate pyramid. This structure

provides a hierarchy to store and process the data at multiple levels of detail. To have a

multi-resolution data pyramid, data has to be preprocessed and pre-computed in advance.

First, the raw data has to be processed to form the base of the pyramid. Then, the base

data is reprocessed to form the next stratum, which is the summary of the underlying

base stratum of the pyramid. This process can be repeated until computing the apex

stratum of the pyramid (the top of the pyramid) — which is a single bin represented an

aggregate of the whole dataset — inductively and progressively.

The motivation for our aggregate pyramid model is to exploit a database system to

support visualization tools and techniques to explore and represent a large volume of

data. The hierarchical structure of the data pyramid helps users efficiently to narrow

down to a subset of the data they are interested in. The pre-computed and preprocessed

multi-resolution data represented in the hierarchical form of the pyramid can then be

considered as a data source for visualization and data mining tools.

43

3.4.1 Progressive and Interactive Visualization

One major obstacle in visualizing very large datasets is the massive amount of data re-

quired to be processed and represented. This same problem has been addressed in image

processing and visualization to render and transfer very large images. Large images need

more storage, and the transmission of digital images with high quality can be quite slow.

Moreover, the incompatibility of the image resolution with the display size imposes addi-

tional difficulties in image transmission and rendering. Encoding images in a compressed

form, transmitting images progressively, and/or having multiple copies of an image with

various qualities in order to scale to a resolution compatible with the display size are im-

perative solutions to address these issues in image processing. The JPEG standard [75]

maintains both lossy and lossless image compression. In lossless compression, the original

image can be decoded and recovered in entirety from its compact form without losing any

information. Lossy compression, on the other hand, produces images in more compact

form with smaller size in comparison to the lossless technique but with imperceptible and

acceptable loss of information. The JPEG standard also proposes both progressive and

hierarchical modes for image compression [75,76].

Progressive image transmission is known as progressive mode in the JPEG standard.

In the progressive mode, an image can be transmitted in multiple passes. In the first

pass, an approximate version of the image with low quality and size is sent to provide a

quick overview in order to have a fast and real time interaction. In subsequent passes, the

image quality is progressively increased by sending more bit information. Ultimately, an

44

Figure 3.2: Four level image pyramid

accurate approximation of the original image is constructed by the progressive refinement

of the initial low-quality version of the image. To have progressive image transmission,

some techniques called progressive compression techniques are applied to encode a low-

quality version of the imge . The encoding can be performed on either the original image

or any intermediate lower quality version of the image to create progressively various

versions of the image with different resolutions.

The JPEG standard [75] also supports another form of progressive transmission known

as hierarchical mode; this is multi-resolution representation of an image. In this mode,

the image is decomposed into a pyramidal structure of multi-resolution copies of the

image where the top of the pyramid represents the lowest resolution of the image and the

45

base provides the image version with highest resolution (Figure 3.2). In the hierarchical

mode, the image is encoded to the lower resolutions using low-pass filters. As a result,

images with higher resolutions successively represent more detail.

The resolution, in the hierarchical mode, is progressively increased at each step pro-

ducing a sequence of different versions of the image from high to low resolutions. Each

lower level version with higher resolution of the pyramid is used as a source to create

a very next upper level with lower resolution. This method can be applied whenever

the resolution of the requested image is very high such that it cannot be displayed on

a low resolution screen. Like progressive transmission mode, the hierarchical mode also

provides the progressive presentation and the encoded image with different resolutions

can be progressively transmitted. This technique can effectively be used in applications

supporting a variety of representations and different screen sizes.

3.4.1.1 Compression Techniques

Progressive mode is employed to improve the user experience of viewing and interacting

with images on the web. JPEG2000 [22] is an image compression and multi-resolution

format that provides multiple representation of an image by its compression process. This

feature also provides progressive transmission in JPEG2000 [22]. For compression, images

are decomposed into progressively lower resolution approximations of the full size image.

The approximations are ordered from highest to lowest resolution.

The JPEG2000 [22] image compression standard is based on the Discrete Wavelet

46

Figure 3.3: the tiled image

Transformation (DWT) [77]. An image in JPEG2000 can be defined by image tiles which

are rectangular non-overlapping blocks. In the tiling process, a source image is partitioned

into equal rectangular regions called tiles (Figure3.3). These tiles are considered as in-

dependent images for the compression process and some operations such as the wavelet

transform can be performed on each tile. Since each tile is compressed individually, a

part of the image can be independently reconstructed by decoding the correlated tiles

of that region. In the tiling process, the dimensions of tiles are powers of two (with the

exception that the tiles’ dimensions on the image boundaries that may not be the powers

of two).

47

Resolution Average Detail Coefficients

2 <7 5 2 6 >

1 <6 4 > <1 -2 >

0 <5 > <1 >

Table 3.1: One-dimensional Haar Wavelet Transform

Wavelet Transformation

The wavelet transform is a computational technique used in signal and image processing

applications and can be applied to represent an image at different levels of detail. Im-

age tiles are encoded and compressed into different decomposition levels employing the

wavelet transform technique. This method is used in the JPEG2000 standard as wavelet-

based compression algorithms [78]. Image compression techniques use two-dimensional

Haar transform that is a generalization of its one-dimensional technique. Haar functions

were introduced by the Hungarian mathematician Alfred Haar in 1910 [79].

One-dimensional Haar Wavelet Transform One-dimensional Haar Wavelet

Transform [80] can be applied on a one-dimensional image. The following vector can

be considered as a one-dimensional image with four-pixel resolution; < 7 5 2 6 >. Table

3.1 represents the wavelet transform computation in a Haar basis.

The four-pixel resolution image (Table 3.1) contains the original image information

that represents the high resolution of the image. The second row, the lower resolution,

48

(a) 16-pixel 2D image (b) Wavelet transform of each

row

(c) Wavelet transform of each

column

Figure 3.4: Standard decomposition

is the result of pairwise averaging of the four-pixel resolution. Similarly, the last row,

the lowest resolution, is computed from pairwise averaging of the two-pixel image. Since

some information is lost in averaging, we need detail coefficients to recover the higher

resolution pixels from the lower ones. The first coefficient in the two-pixel resolution is

1 which conveys that the first average value of the two-pixel image is one unit less than

7 and one unit more than 5 in four-pixel resolution version. The coefficient 1 and the

average pixel 6 can be used to recover the first two pixels of the original image. The vector

< 5 1 1 -2 > represents the final transformed image. One-dimensional Haar Transform

can be generalized to two-dimensional Haar Transform.

Two-dimensional Haar Wavelet Transform There are two types of two-

dimensional wavelet transforms [80]; standard decomposition and nonstandard decompo-

sition. In the standard decomposition of an image (Figure 3.4), one-dimensional wavelet

transform is first applied to each row image data that results average and detail coeffi-

49

Figure 3.5: Standard decomposition of an image [80]

cient values in each row. Then, the transform function is applied to each column. At the

end, in the standard decomposition, we have coefficients and one average value which is

the average of the whole image. Figure 3.5 is an example from “Wavelets for Computer

Graphics: A Primer” [80] that shows the standard decomposition of a two-dimensional

image.

Figure 3.6 displays the nonstandard decomposition of a two-dimension image matrix

with 16 pixels resolution. The nonstandard decomposition applies pairwise averaging

and differencing on the image data in each row horizontally and then it computes pair-

wise averaging and differencing of the result (average values) in each column vertically.

Pairwise averaging and differencing on rows and columns of the cells containing average

data values continues until there is just one square on top left of the image matrix that

50

(a) Two-dimensional image

with 16-pixel resolution

(b) Horizontal pairwise aver-

aging

(c) Vertical pairwise averag-

ing on averaged data values

(d) Horizontal pairwise aver-

aging on averaged data values

(e) Final wavelet transformed

image

Figure 3.6: Nonstandard decomposition

represents the average of the whole image data. Figure 3.7 is an example of nonstandard

decomposition of a two-dimensional image from “Wavelets for Computer Graphics: A

Primer” [80].

3.4.1.2 Data Compression

We can take advantage of the previous techniques to define a multi-resolution dataset

constructed by an inductive aggregation process to compress data in a multiple represen-

51

Figure 3.7: Nonstandard decomposition of an image [80]

tation format. The first aggregate result retrieved from the database can be considered

as the source data similar to the original image in the compression process. In the source

data, each tuple is considered as a bin. Figure 3.8 depicts a multiple resolution two di-

mensional dataset. The 16×16 two-dimensional matrix represents a dataset of resolution

4 with 24× 24 cells. Each cell in the matrices represent a bin. Tiles in a two-dimensional

dataset can be referred to a bin or a group of bins.

Let the 16× 16 dataset form the highest resolution of our data pyramid. The source

tuples can be composed to 64 bins which each bin includes the aggregate value of the

corresponding quadrant (four bins) of the source tuples. The average data values in each

quadrant is then processed to create the bins of the next lower resolution in the hierarchy

52

Figure 3.8: A multi-resolution dataset

3.8. This process continues until producing the lowest resolution which is made of the

one bin containing an aggregate value that represents the average of the whole source

tuples.

In fact, by having a hierarchy of data resolutions as a source for data visualization,

whenever the requested data is very large so that it cannot fit the canvas; a data overview

(a data summary) can be transmitted and visualized in the visual space. In order to reduce

the size of the visualized data, some data reduction techniques are required to apply on

the original requested dataset. While the lower resolution data is sent to the user, the

user may ask for more detail which needs to retrieve more data from the target relation.

In this case, the user has to wait for the system to compute the new request with the

53

desired resolution which increases the response time. One way to overcome this problem

is to precompute and provide data at different resolutions and retrieve the requested

data from precomputed and preprocessed hierarchy of different data resolutions in an

interactive manner. A hierarchical data structure such as the pyramid model [74] can be

used to precompute and store the data at various resolutions of detail.

We assume a dataset is too large when the number of the data points is bigger than the

number of pixels of the display. By precomputing and storing data in a compact multi-

resolution form, to visualize the requested data, we can send a slice of lower resolution

data tuples to the visualizer compatible to the display size. In order to build a hierarchical

data structure with different levels of resolution, In the first step, the tuples with original

data values retrieved from the target relation has to be processed to form the highest

resolution version of the dataset. Next, a lower resolution slice is built of aggregate

tuples which represents the average resolution of the previous slice; and so on. If the

user asks for more detail by zooming or sizing up, the system sends the tuples of the

relevant higher slice of resolution. If the user wants to observe a different part of the

image, the system applies the appropriate range selection to retrieve the related tuples

from the corresponding resolution slice.

3.4.2 Inductive aggregate pyramid structure and specification

The image pyramid, a multi-resolution data structure, represents a 2d × 2d image as a

sequence of copies (two-dimensional arrays) of an original image at different levels of

54

(a) 204× 153 image (b) 102× 77 image (c) 51× 39 image

Figure 3.9: Hierarchical resolution of an image

resolution. The pyramid P consists of d + 1 levels (from d to 0) called the depth of the

pyramid. The Pi represents the level i in the pyramid P which has a half of the resolution

of Pi+1. Each level is composed of equal rectangular cells (bins). The P0 is the top layer

in the pyramid which consists of one bin representing the average of the whole image.

Figure 3.9 represents an image in three different resolutions in which the image with lower

resolution has the half of the quality of its previous image with higher resolution.

The data pyramid, similarly, is a representation of a 2d × 2d data in the form of a

stack of two-dimensional arrays containing the data at different resolutions. Given a two-

dimensional dataset, the data tuples is considered as bins representing the rectangular

cells in the base stratum of the data pyramid. As mentioned, the construction of the data

pyramid is a bottom-up process. The data pyramid is generated from the base stratum

(preprocessed data values from original dataset) by recursive composition of data tuples

or bins. The recursive composition can be applied by performing the aggregate functions

on each quadrant (four bins) of the base stratum to build the immediate next stratum

with the lower resolution. Each Pi is generated from the immediate lower stratum Pi+1.

55

This process continues until the last stratum P0 is constructed which contains a bin

with one aggregate value. Sub-queries can also be performed on the data pyramid to

provide different data resolutions to be visualized in response to the user’s request in an

interactive visualization.

3.4.2.1 Inductive Aggregate Pyramid

The inductive aggregate pyramid is an appropriate structure to be used for an efficient

data exploration process. To explore and visualize a dataset, the database system ma-

terializes the pyramid from the given dataset, and indexes the pyramid by stratum (the

resolution level) over the Z-order [20] assigned to the tuples in the precomputing process

to build the base stratum of the aggregate pyramid. To explore the data at different

resolutions, the queries of interactive operations over the aggregate pyramid is managed

by the database engine. Visual interactive operations such as panning and zooming are

efficiently supported by the data pyramid hierarchy. The aggregate pyramid supports

range queries over a rectangular region using filling space curve techniques such as Z-

order, which provides a real-time and efficient interaction. In other words, in a data

visualization process, the aggregate data pyramid provides database support to manage

and process very large datasets in an interactive manner.

The aggregate pyramid is made of various levels of data resolution (strata) containing

aggregate values called strata. The base of the pyramid represents the stratum with the

highest resolution of data. The raw data has to be processed and aggregated to form

56

the base stratum. The higher strata represent successively lowest resolutions of data. In

a two-dimensional aggregate data pyramid, the base of the pyramid is the rectangular

two-dimensional data space. The dimensions are not necessarily equal but they have to

be powers of two. In this study, we consider the dimensions equal, and (without loss of

generality) the power of two.

Each stratum of the aggregate pyramid consists of bins. A bin is a tuple of aggregate

values and related data such as dimensions, the stratum number and the Z-order (Morton

order) [20] value. We define the aggregate window as 2d bins (where d is the number of

dimensions) to be aggregated to form the super-bins in the next higher stratum with lower

resolution. All 2d bins in the aggregate window of the current stratum are associated with

a super-bin (a single bin) from the next higher stratum. In inductive aggregation for a

two-dimensional dataset, aggregate windows are non-overlapping square windows of 2×2

(22) bins also called aggregate quadrants or data quadrants. Therefore, the aggregate

pyramid is a right pyramid with its apex directly above the centroid of its base. Each four

bins (a data quadrant) in the base stratum and other intermediate layers are associated

with at most a super bin from the very next higher level and the single bin in the apex

is correlated only to the four bins (one quadrant) from the stratum below the apex.

Z-order [20] is assigned to tuples (bins) at each level of data resolution. As a result,

tuples at each stratum can be defined by their Z-order and their stratum number (level

of resolution). By having the tuples in this order, we can apply aggregate functions on

each group of four adjacent tuples (consecutive data points in the Z-order) representing

57

aggregate windows (aggregate quadrants) in two-dimensional (and, likewise, for higher di-

mensional) data. The lowest resolution has one bin (tuple) that represents the aggregated

value of all data points.

3.4.2.2 Inductive Aggregation

We define the inductive aggregation to pre-compute data in order to build the aggre-

gate pyramid to represent the multiple projections of data summaries. In the following

discussion, we describe the concept of inductive aggregation to build the aggregate pyra-

mid for two-dimensional datasets which generalizes naturally to higher dimensional or

one-dimensional datasets. Inductive aggregation processes and summarizes data progres-

sively, starting from the base of the pyramid. This technique is applied on a group of four

bins (aggregate quadrant or aggregate window) that represent the four locally adjacent

points in a plane by Z-order. The inductive aggregate technique consists of two phases.

• The base-aggregation phase that processes and aggregates the initial raw data to

form the base stratum of the data pyramid.

• The re-aggregation phase that iteratitively and progressively applies the aggregate

functions over the aggregate windows (data quadrants) containing aggregate values

(bins) to build the super bins of corresponding strata initially started from the base

stratum in order to form the aggregate pyramid.

We devise how to aggregate hierarchically and efficiently very large datasets. We

define inductive aggregation as a set of techniques and principles to build the aggregate

58

pyramid in an efficient and progressive manner. In the base-aggregation phase, we deter-

mine the procedure of processing and aggregating the initial raw data to form the base

of the pyramid. In this phase, a distinct number (Z-order) is assigned to each tuple in

the base. Let Bn be the number of bins in the base stratum Pn retrieved from raw data,

which forms a 2n × 2n grid. In the re-aggregation phase, we iteratively apply the aggre-

gate functions over the aggregate windows (data quadrants), which contain the aggregate

values (bins) to build the super bins of corresponding strata initially started from the

base stratum, in order to form the aggregate pyramid. To build the next stratum Pn−1

from the base, an aggregate function is applied on aggregate windows of stratum Pn. By

assuming that each of the 2n × 2n bins of Pn have data from the raw dataset assigned to

them, the size of stratum Pn−1 is then 1
4Bn. Successively, the intermediate stratum Pi

(0 ≤ i ≤ n) is constructed by employing the aggregate function over aggregate windows

of the previous stratum Pi+1. Consequently, the number of bins Bi of stratum Pi is 1
4Bi+1

(or 1
4(n−i)Bn). The total number of bins Bp in the two-dimensional aggregate pyramid is

Bp = Bn +
1

22
Bn +

1

24
Bn +

1

26
Bn + ...

Bp = Bn

n∑
i=0

1

22i

Bp = 1
1

3
Bn

59

11

1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 11 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1

1 1

1 1

11

1 1 1

1

(a) Aggregate data 32× 32

111 1

2 3 1 2 2 4 3 1 1 1 2 1 2 1

2 1 1 2 1 2 3 3 4 3 4 3 1

3 1 1 2 1 1 3 3 4 3 3 1

2 3 2 3 31 2 3 2

2 1 1 2

1 1

1 2 1 1

1

(b) Re-aggregate data 16×16

111 1

8 6 3 9 11 9 7 3

3 7 5 8 12 11 1

4 1 3

1 2 1 1 1

(c) Re-aggregate data 8× 8

16 13 20 10

13 17 27 1

3 2 1

(d) Re-aggregate data 4× 4

29 30

33 31

(e) Re-aggregate data 2× 2

123

(f) Re-aggregate data 1× 1

Figure 3.10: Six-level inductive aggregation over a sample dataset

Standard aggregate functions including mean, count, sum, min, and max are sup-

ported by this inductive-aggregation technique. In summary,to construct inductively the

aggregate pyramid, first, we aggregate the raw data from the dataset to process and

construct the pyramid’s base stratum. Next, we iteratively re-aggregate quadrants (ag-

gregate windows) containing aggregate values from the previous stratum to form the very

next higher stratum with lower resolution.

60

Figure 3.10 presents an aggregate pyramid with six strata (from 0 to 5). In the base-

aggregation phase, the base stratum (stratum 5) is constructed from the original dataset

which possesses 25 × 25 bins. The non-empty bins (tuples) represent data points in the

two-dimensional space with data value 1. In re-aggregation phase, the aggregate function

count is applied over aggregate windows (2× 2 bins) to build the next stratum, stratum

4 with 24 × 24 bins. The aggregate function is again employed over the aggregate values

in each aggregate window of stratum 4 to build the very next stratum (stratum 3). The

re-aggregation process continues until the top of the pyramid, stratum 0, is constructed

that represents the total number of data points in the original dataset.

3.4.3 Building the Aggregate Pyramid

In construction of the aggregate pyramid, the first step is building the base stratum (the

base of the pyramid). The cost of the base stratum construction relies directly on the size

of the underlying dataset containing the raw data, and other factors such as existence

of the indexes. The presence of indexes can facilitate the procedure of processing and

aggregating the raw data into the bins. The bins of the base stratum can be computed in

an order such as Z-order (Morton order) [20]. The Z-order space-filing curve technique

is a one-dimensional, linear ordering for any multi-dimensional data, with respect to the

dataset’s dimensions. The computed tuples (bins) including aggregate values of the base

stratum are then written sequentially to the disk, sorted based on the Z-order. Each

stratum is built and materialized from the previous stratum, starting from the base up to

61

the top of the pyramid. The last stratum (stratum i, i from n to 0 where n is the depth

of the pyramid) is sequentially scanned once to construct the next stratum i − 1. Since

bins in stratum i are ordered by Z-order values, the aggregate functions can be applied

on a group of four adjacent bins (the aggregate window) in the sequence to produce

the corresponding super-bin in stratum i − 1. The bins in stratum i − 1 are also then

sequentially stored on the disk sorted by Z-order values.

To build the pyramid, we need to determine how deep the pyramid needs to be

computed. The base of the pyramid made of aggregate values is built by applying any

aggregate function (sum, average, etc.) during the base-aggregation phase. Next, we need

to define a depth which is meaningful and coherent to construct the base stratum from

that depth. If the pyramid is too deep, in the lower strata, many bins could be empty.

On the other hand, if the pyramid is not deep enough, it may not be able to provide

required detail in the process of interactive operations such as zooming in or sizing up.

We can build the base stratum as deep as possible to provide enough detail to build the

next stratum. We want the next stratum after the base to have a proper and meaningful

bin size (number of bins), which we name the natural depth. This should be deep enough

that, if the user wants to narrow down to observe more detail, there is no more detail

after this level. We need to define the number of bins (stratum size) that guarantees no

pair of points fall into one bin.

As presented in Figure 3.11, the aggregate pyramid can be computed by a recursive

SQL query. The main components processed in constructing the aggregate data pyramid

62

-- SQL aggregate pyramid template
recursive Pyramid (c0, ..., ch−1,

divs,
b0, ..., bk−1,
a0, ..., ar−1) as (

-- base step
select c0, ..., ch−1,

divs,
integer(x0 - low0 * divs /

high0 - low0) as b0,
...,

integer(xk−1 - lowk−1 * divs /
highk−1 - lowk−1) as bk−1,

base_agg0(...) as a0,
...,

base_aggr−1(...) as ar−1

from Dataset, Params
group by c0, ..., ch−1,

divs,
b0, ..., bk−1

union all
select c0, ..., ch−1,

integer(divs / 2) as sdivs,
integer(b0 / 2) as sb0,

...,
integer(bk−1 / 2) as sbk−1,
ind_agg0(...) as sa0,

...,
ind_aggr−1(...) as sar−1

from Pyramid
where divs > 1
group by c0, ..., ch−1,

sdivs,
sb0, ..., sbk−1

) -- end of the recursive definition
select c0, ..., ch−1,

-1 * integer(log(2, divs)) as stratum,
zo(b0, ..., bk−1) as zoo,
b0, ..., bk−1,
a0, ..., ar−1

from Pyramid

Figure 3.11: SQL aggregate pyramid template

are illustrated in Table 3.2. In the base step, the base of the pyramid is constructed. In

this step, the size of bins along all desired dimensions is determined for the base of the ag-

gregate pyramid which defines what is the smallest bin size to hold the aggregate values.

The number of bins is a power of two for all dimensions. To build the aggregate pyramid,

one dimension is, or a group of dimensions are, processed to form a one-dimensional or

63

Dataset: assemble a dataset of interest from the database
ci’s: attributes with “categorical” data (c0, . . . , ch−1)
xi’s: the dimensions (x0, . . . , xk−1)

mi’s: the measures (m0, . . . , mq−1)
Params: parameters used for constructing the pyramid; derived

over dataset and/or defined by user; returns one row
lowi’s: lower grid boundaries for the pyramid

highi’s: higher grid boundaries for the pyramid
divs: how many bin-divisions along each xi for the pyramid

base; is a power of 2 (e.g., 1,024)
Pyramid: the constructed pyramid

ci’s: constructs a pyramid per partition of c0, . . . , ch−1

divs: number of bin-divisions (indicates stratum)
bi’s: bin number (for each dimension)
ai’s: aggregate values

Result: the returned aggregate pyramid
ci’s: the constants

stratum: stratum of the pyramid
zoo: Z-order ordinal
bi’s: bin number (for each dimension)
ai’s: aggregate values

Table 3.2: Pyramid terminology.

multidimensional aggregate data pyramid. The base aggregation functions base-agg are

then applied on measures to fill the predefined bins with aggregate values. The attributes

cs represent “constants” (this can be used to pipeline processing to build the cross prod-

ucts of aggregate pyramids. This is discussed in Chapter 5). In the recursive part of

the SQL query then, the inductive aggregation is applied over the pre-processed and pre-

aggregated dataset. In this phase, we double the size of bins along every dimension by

halving the number of bins along each dimension to build one stratum higher from the

previous one. The inductive aggregation functions ind-agg are employed on pre-aggregate

values from the previous step to fill the bins with new calculated aggregate values.

64

3.4.3.1 Mapping Multi-dimensional data into 1D

The first step after determining the scope of requested data to be retrieved as the base

dataset in the base-aggregation phase is to assign sequential Z-order key values to tuples

and sort them base on their Z-order values. The next stratum is then computed by

applying the re-aggregate functions over the aggregate values in the base stratum. During

processing data and computing the aggregate pyramid, the inductive aggregate functions

are employed over the appropriate bins of one stratum below the current stratum to

compute the re-aggregate values. At the same time, we can compute the Z-order while

processing and building the higher strata of the pyramid.

Figure 3.12 presents the Z-order in a 2n × 2n two-dimensional space (n = 4) at four

different granularities (1 to 4). The level 0 contains one cell with one key value which

is zero and since for one value there does not exist a “curve”, we represent the Z-order

curves from level 1. At each level L (0 ≤ L ≤ n), the dimensions are divided into 2L.

These four granularities (levels) can be built in an iterative process. In the first iteration

(n = 1), the size of the two-dimensional space is 21× 21, which contains four cells (bins).

The size of dimensions is doubled in every iteration. As a result, the size of the two-

dimensional spaces in the second and third iterations are 22 × 22 and 23 × 23, etc., as

shown in Figure 3.12.

Given a data space with granularity n, the binary representation of a data point

coordinates X and Y is an n-bit binary number. The Z-order can be calculated simply

by interleaving the bits of X (xn−1xn...x0) and Y (yn−1yn...y0) coordinates. The result

65

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

64 65

66 67

68 69

70 71

72 73

74 75

76 77

78 79

80 81

82 83

84 85

86 87

88 89

90 91

92 93

94 95

96 97

98 99

100 101

102 103

104 105

106 107

108 109

110 111

112 113

114 115

116 117

118 119

120 121

122 123

124 125

126 127

128 129

130 131

132 133

134 135

136 137

138 139

140 141

142 143

144 145

146 147

148 149

150 151

152 153

154 155

156 157

158 159

160 161

162 163

164 165

166 167

168 169

170 171

172 173

174 175

176 177

178 179

180 181

182 183

184 185

186 187

188 189

190 191

192 193

194 195

196 197

198 199

200 201

202 203

204 205

206 207

208 209

210 211

212 213

214 215

216 217

218 219

220 221

222 223

224 225

226 227

228 229

230 231

232 233

234 235

236 237

238 239

240 241

242 243

244 245

246 247

248 249

250 251

252 253

254 255

(a) Fourth order

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

(b) Third order

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

(c) Second order

0 1

2 3

(d) First Order

Figure 3.12: Four-level Z-order

is a 2n-bit binary number (yn−1xn−1ynxn...y0x0), representing the Z-order for the point

P (X,Y). After mapping the data points to a consecutive list of values, a one-dimensional

index structure such as a B+-tree can be used to store and retrieve the aggregate data

points at each level. The index of each data point (a bin) is a combination of the depth

of the containing stratum and the Z-order of the data point in the aggregate pyramid

with depth n.

Index : L (the level) + Z-order

66

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

(a) Level 3

0 1 2 3

0

1

2

3

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

(b) Level 2

0 1

0

1

0 1

2 3

(c) Level 1

Figure 3.13: Z-order values of three levels

Algorithm 1 Calculating Z-order value of n dimensions

1: procedure Z Number(array dimensions[])– x,y,z,...
2: mask ← 1
3: z number ← 0
4: d← dimensions.Length()
5: bit place← 0
6: while mask > 0 do
7: for i from 1 to d do
8: masked bit← dimension[i] ∧mask
9: if masked bit > 0 then

10: bit← 1
11: else
12: bit← 0
13: end if
14: bit← bit� [(i− 1) + (bit place ∗ d)]
15: z number ← z number ∨ bit;
16: end for
17: bit place← bit place+ 1
18: mask ← mask � 1
19: end while
20: return z number
21: end procedure

67

Figure 3.13 shows an example of Z-order values in three granularities. Consider the

point denoted by coordinates X = 6 and Y = 4 at level three with size 23 × 23, which

binary representation of X and Y are respectively x3x2x1x0 = 110 and y3y2y1y0 =

100. The 8-bit Z-order value of the point is then y3x3y2x2x1x1y0x0 = 110100 which

corresponds to number 52. The Z-order curve is easy to order and nicely preserves

spatial locality. Algorithm 1 demonstrates the process of mapping a point from a multi-

dimensional space to a one dimensional data value (Z-order) by interleaving the bits of

its coordinates.

3.4.3.2 Depth of the Aggregate Pyramid

One essential issue in building the aggregate pyramid is the depth of the pyramid. We

need to determine how deep the pyramid needs to be computed. We consider the deepest

height that we can build a data pyramid in our system. In a 64-bit system, we can

consider the dimensions X and Y as big as 32 bits. As a result, the Z-order is a 64-bit

number resulted from the bit interleaving of the coordinates X and Y . Consequently,

the depth of the aggregate pyramid is 33 (from 32 to 0) in which the base stratum (the

stratum 32) of the pyramid is a 232×232 rectangular of bins and apex (the stratum 0) is a

1×1 bin. Since this base stratum is very deep, many bins could be empty at this level. In

order to improve the efficiency, we need to define which level needs to be computed from

the base that has a more coherent and meaningful bin size (number of bins along each

dimension). We call the depth of the second stratum built from the base stratum, natural

68

depth. This means that if the user wants to zoom in more for further detail, there is no

more detail after this level. In order to find the natural depth, we need to find the smallest

distance between our points, which we call delta (δ). We consider the two-dimensional

closest pair problem in order to find the bin size of the natural depth; given n points in

a two-dimensional space, we need to find a pair of points whose distance δ is smallest.

After finding δ, it is not necessary to divide data dimensions into the bins smaller than

δ. To find the smallest distance between data points, we can apply some techniques such

as Metric Distance Measurement. We also define a technique to find approximately the

natural depth called Super Bin Adjacency. We discuss both techniques below.

3.4.3.2.1 Metric Distance Measurement

In metric distance measurement, we find the closets distance of a pair of points to define

the natural depth. In this approach, we can apply two metric techniques in order to find

the smallest distance (δ);

• Euclidean distance Euclidean distance [81] between two points is the length of a

straight path between them. In a two-dimensional space, the Euclidean distance

between a pair of points P1 = (x1, y1) and P2 = (x2, y2) is calculated by the

Pythagorean formula:

δ =
√

(x2 − x1)2 + (y2 − y1)2

• Chebyshev Distanc Chebyshev Distance [81] Chebyshev Distance, conceived of by

69

Pafnuty Chebyshev, is a metric measurement to find the distance of a pair of points

in a multi-dimensional space. In this technique, the greatest difference of two points’

coordinate dimensions is considered as the distance of those points. The Chebyshev

distance of a pair of points P1 = (x1, y1) and P2 = (x2, y2) is calculated by the

following formula:

δ = max(|x2 − x1| , |y2 − y1|)

Chebyshev distance metric is computationally simpler compared to Euclidean distance

technique. However, this metric does not have the rotation-invariant property since in

a rotation transformation, the distance between points might be changed in Chebyshev

distance metric. It means that if we rotate the grid, the Chebyshev distance will differ

and could be smaller than the distance we compute to build our bins at the natural depth.

Euclidean distance, on the other hand, is rotation invariant but it has more complexity

to find the closet pair of points. We resolve this problem by applying the Chebyshev

distance approach to find the smallest distance which defines the size of the pyramid’s

bins. Then, we halve the bin size calculated in Chebyshev distance metric to solve the

rotation variant problem of this metric. It means we build our natural depth stratum by

dividing our dimensions into bins with the number of bins are two times bigger than the

calculated number. In other words, we construct the aggregate pyramid from one level

below the calculated depth but not lower than base stratum.

70

Algorithm 2 Smallest Distance Calculation using Chebyshev Metric for 2D Data

procedure smallest distance(array z order[], dimension size S)
Require: An array of z order values, size of dimensions in bits
2: array distance[]← NULL

if z order.Length() > 1 then
4: x mask ← 1

y mask ← 2
6: for i from 1 to S do

x bit0 ← z order[1] ∧ x mask
8: y bit0 ← z order[1] ∧ y mask

x bit0 ← x bit0 � (i− 1)
10: y bit0 ← y bit0 � i

x0 ← x0 + x bit0
12: y0 ← y0 + y bit0

x mask ← x mask � 2
14: y mask ← y mask � 2

end for
16: for i from 2 to z order.Length() do

x mask ← 1
18: y mask ← 2

for j from 1 to S do
20: x bit← z order[i] ∧ x mask

y bit← z order[i] ∧ y mask
22: x bit← x bit� (j − 1)

y bit← y bit� j
24: x← x+ x bit

y ← y + y bit
26: x mask ← x mask � 2

y mask ← y mask � 2
28: end for

distance[i− 1]← greatest(x− x0, y − y0)
30: end for

end if
32: return smallest(for all in distance)

end procedure

As mentioned before, Chebyshev Distance is a metric to define the distance between

two points by finding the greatest difference along tow points’ coordinates. While process-

ing the raw data to aggregate and build the base stratum, we also calculate the Z-order

71

and find the smallest distance between points. First, we assign a set of consecutive val-

ues to every bin in the base stratum applying Z-order space filling curve technique by

interleaving the bits of points’ coordinates. Next, we ascendingly sort the base stratum

based on the Z-order values. Then, the Chebyshev metric is applied to find the smallest

distance between two points in the dataset. In this process, we consider four preceding

continuous points Pk, Pk−1, Pk−2, and Pk−3 to be examined. We apply Chebyshev met-

ric to find the closet pair in the group of four selected points in which the distance of a

point is calculated from its three preceding points. We keep the smallest distance as δ to

compare with the smallest distance of the next heading points (Algorithm 2). Each time,

we can sample four points to find the smallest distance which can give us a satisfying

approximation. To calculate the dimension size Dn of the natural depth;

δ = approximate smallest distance defined in the base-aggregation phase.

Xmax = greatest number in x coordinate of the base stratum

Ymax = greatest number in y coordinate of the base stratum

Dn = dlog2(dmax(Xmax, Ymax)/δe)e

After finding the smallest distance (δ) and the number of bins in each dimension,

the size of the natural depth is then 2Dn+1 × 2Dn+1. We build the natural depth one

level below the calculated depth to guarantee the rotation invariant property. The rest of

the pyramid is then constructed by applying the inductive aggregation on the aggregate

windows (groups of 2× 2 aggregate quadrants) from the very lower level.

72

3.4.3.2.2 Super Bin Adjacency

As described before, each bin is correlated to a super bin from the very next higher

stratum and each super bin is associated with four sub-bins from the very lower stratum.

The strata of the aggregate data pyramid are made of bins and each bin represents one

single aggregate value with a unique Z-order value in the containing stratum.

To apply the Super Bin Adjacency approach in a two-dimensional space, we compare

each point with its two neighbors; a succeeding point and a following point in the Z-order

sequence to see if they fall into the same super bin of the one stratum higher (with lower

resolution). If two examined points are contained in a same super bin of the next higher

stratum, they are adjacent in the current stratum. If those points are not in the same

super bin in one stratum higher, we continue examination until we find the depth at

which they do fall into a same super bin. We store the associated depth of each group of

three points (a current point and its two immediate neighbors) and continue to examine

the rest of the points of the base stratum. In each three-point examination, if we found

any associated depth greater than the previous calculated depth, we consider the new

one as the natural depth.

We assume the depth of the pyramid is n+ 1 (deepest n to lowest 0). As a result, our

base stratum is a 2n × 2n two-dimensional matrix. As discussed in the previous section,

Z-order is the result of the bit interleaving of X and Y . Since to represent each X and

Y we need n bits, 2n bits are required to represent the Z-order that conveys n pairs of

bits.

73

Figure 3.14: Quadrant-recursive property of Z order

The first right two bits present the place of the point on the local Z-order curve in

the aggregate window (Figure 3.14). We call the curve inside an aggregate window the

local curve. The rest of the bits then represent the Z-order of the super bin containing

the current aggregate window in one stratum higher. The remaining bits are analyzed

in the same way. The second two right bits represent the place of the correlated super

bin (parent bin) on the local curve of its aggregate window. For instance, the binary

representation of the point with Z-order 35 on the depth 3 of the aggregate pyramid is

100011. Since the current depth d is 3 (d = 3), the number of bits required to represent

the Z-order is 6 bits (2d). The most right two bits (11) represent the number 3 specifies

the place of the point on the local Z-order curve in its aggregate window which is the

74

fourth place (place 3). The rest of the bits (1000) define the Z-order 8 of the correlated

super bin on the very next higher stratum (d = 2) containing the initial aggregate window

in one level below (stratum 3). The most right two bits in the binary representation of

the bin with Z-order 8 similarly specify the place of the point P (0, 2) on its local curve

in its aggregate window which is the place 0. The remaining bits are then analyzed in

the same way as required.

In order to find the depth at which all points are separated (so that they never fall

into the same bins), we can compare the binary representation of Z-order values assigned

to the points. As discussed above, in this approach, each point’s Z-order is compared

to its immediate neighbors’ Z-order. We compare the pairs of bits from the most left

side of the binary representation of the Z-order of the initial point with its preceding

and following neighbors. If the first pairs of two points’ Z-order are similar, we move to

the next pairs from the left until we meet the pairs which are not identical. We have

n pairs of bits in total in depth n, the deepest level (base stratum) where we examine

all the points to find the natural depth (the deepest meaningful depth of the pyramid).

A pair of bits holds a place ρ on the Z-order value numbered from 1 to n (from left to

right), each representing the stratum number of a correlated depth to be compared. In

comparing two Z-order values from the left most bit-pair place, when we meet two pairs

of bits that are not identical, the place ρ of the pairs indicates the depth that two points

are adjacent, so they also fall into separate bins in that stratum with depth number ρ.

We consider this depth as the local natural depth of two points, to compare to the local

75

natural depth of other points. To find the natural depth of a given dataset, we examine

a sequence of three points (the initial points and its immediate neighbors on Z-order)

retrieved from the dataset. After finding the local natural depth of the current point and

its immediate neighbors, we check the next sequence of three points until all the points

in the base stratum are examined. Algorithm 3 demonstrates the process of finding the

natural depth of multi-dimensional data points using the Super Bin Adjacency technique.

3.4.3.2.3 Issues with the Natural Depth

In summary, to find the natural depth, we examine the four preceding points Pk, Pk−1,

Pk−2, Pk−3 in Chebyshev metric approach and three points Pk, Pk−1, Pk−2 in Super Bin

Adjacency. After finding the greatest depth (the local natural depth) for a set of points,

we compare the new depth with previous computed local natural depth to choose the

greatest one. We continue until all points of a given dataset are examined. We then build

the final natural depth one level below the calculated depth (not deeper than the base

stratum) in order to resolve the rotation invariant issue. In fact, in the process of finding

natural depth, we examine the points to find the natural depth for every single point. It

means that each point is separated from other points in its natural depth, but it has at

least one immediate non-empty neighbor. Therefore, the natural depth of the pyramid

which has to guarantee that all points are separated is the greatest natural depth of all

the points. The natural depth of a single point can be smaller than the natural depth of

the aggregate pyramid that means the point remains individual and is not merged with

76

Algorithm 3 Local Natural Depth Calculation using Super Bin Adjacency

procedure Natural Depth(array z order[], dimension D, dimension size S)
Require: An array of z order values, the number of dimensions, size of dimensions in

bits
2: depth← 0

stratum← 0
4: n bit← S ∗D

if z order.Length() > 1 then
6: for i from 1 to z order.Length() do

init mask ← init mask + power(2, (n bit− i))
8: end for

mask ← init mask
10: for i from 2 to z order.Length() do

while mask > 0 do
12: stratum← stratum+ 1

masked number 0← z order[1] ∧mask
14: masked number ← z order[i] ∧mask

if masked number 0 6= masked number then
16: if stratum > depth then

depth← stratum
18: end if

exit
20: end if

masked number 0← 0
22: masked number ← 0

mask ← mask � D
24: end while

mask ← init mask;
26: stratum← 0

end for
28: end if

return depth
30: end procedure

any other points until its own natural depth. We call bins with no immediate non-empty

neighbors as islands. Islands are bins with raw or aggregate data values such that their

surrounding bins in the Z-order mapping curve are empty. A point with natural depth 24,

for instance, in the aggregate data pyramid with depth 29, is an island in depths between

77

29 to 24. Depth 24 is its natural depth meaning that the point is separated from other

points but it has at least one immediate non-empty neighbor which is aggregated with

its neighbor in the very next stratum, depth 23. Choosing the natural depth very deep

can result many bins to be islands in the deep strata. The islands are not immediately

aggregated with others points in the inductive aggregation process. As a result, they are

replicated at each stratum from the base stratum until their own natural depth. This issue

can cause the size of the pyramid become very large as the result of island replication.

This imposes a negative impact on the proficiency and performance of constructing the

aggregate pyramid.

3.4.3.3 Indexing the pyramid

The materialized pyramid provides an interactive exploration in order to visualize the

requested data. We can define the pyramid as a relation in our database that a tuple Tp

represents a bin Bp in the pyramid. Each tuple T consists of the corresponding stratum

S (the granularity that the aggregate value is calculated), Z-order, the coordinates D

(X and Y in a two-dimensional dataset), the aggregate values A, and other required

parameters P :

Bp = T (D,S, Z,A, P)

In order to improve the performance of the interactive exploration on the aggregate

pyramid, we index the pyramid. A proper index facilitates the query processing over our

78

pyramid during the process of the interactive data exploration and visualization. In the

process of constructing the pyramid, we assign a distinct number (Z-orders) to the bins

in a correlated stratum. In fact, by assigning the Z-order values to the points, we map a

two-dimensional space of each stratum into the one-dimensional data points. Therefore,

the pyramid tuples (bins) in each stratum can be indexed by the B+-tree index structure

on Z-order and the stratum number which sufficiently supports the interactive operations

needed over our hierarchical data structure.

An other index structure that can be employed to index the aggregate pyramid is

the quadtree. However, to support the interactive operations over the aggregate data

pyramid such as zooming and panning, the B+-tree is an appropriate index structure

since it supports range queries in an optimum and efficient way. Therefore, it is beneficial

to apply the B+-tree index on the aggregate pyramid since this index structure is sufficient

to perform range queries required for interactive operations over the pyramid.

79

Chapter 4

API

As datasets get ever larger, efficient interactive visual information exploration and analysis

receive significant attention from the database community. Interaction is essential in

data visualization and exploration, especially for the process of analyzing and visualizing

large datasets where the large volume of data imposes a great challenge to the real-time

interaction [82]. The aggregate pyramid improves data processing and reduces delays by

pre-computing and materializing the raw data in a multiple projection and representation

structure. It also provides local (horizontal) processing (panning) by querying current

stratum and resolutional (vertical) processing (zooming in and out) by querying among

different strata with different resolutions.

Typically, the first request issued from the user is processed to provide an overview of

the entire dataset. In the data visualization API, when the user issues a query, the system

evaluates the request to determine whether the visual representation of the requested data

can fit the canvas. When the user has a display with limited size, the system sends a

80

result consisting the data from the lowest resolution stratum compatible with the canvas

size. The canvas is the rectangular area on the screen; data is visualized in that area. The

size and location of the canvas on the screen can differ in various applications. The size

of the canvas can be same as the size of the screen or smaller. When the dataset is very

large, in order to scale the data to the canvas, the system applies inductive aggregation

in order to create a hierarchical dataset. The aggregate data is then sent to the visualizer

at a lower resolution to provide an overview of the requested data. In this approach, the

user receives a quick feedback which is fast enough to support real-time interaction. To

display the full resolution of data in further detail, when the scale of the requested data

and display is different, the user needs to zoom and pan interactively into strata with

higher resolutions.

In many applications with loose coupling, the database exports a subset of data im-

ported to the visualization system in the client application [83,84]. The visualizer (front-

end) system is then responsible to process and explore data, which itself requires data

management features. In tight coupling, however, less data management is needed on the

visualization side. Most requests from the user to query and explore data are processed

and maintained by database management systems.

The aggregated data pyramid is an appropriate structure to be used for an efficient

data visualization process. Given a query to explore a dataset, the database system

materializes the data-pyramid version of the dataset, and indexes the pyramid by stratum

and Z-order. The aggregate pyramid is then managed by the database engine during

81

the dataset visual exploration. The aggregate pyramid provides range queries over a

rectangular region by indexing the two-dimensional data points based on the Z-order that

maps two-dimensional data points into one-dimensional space, and the stratum number.

The Z-order value in the index keys utilizes bit-wise manipulation to facilitate the search

of a subset of data in a multi-dimensional space. Visual interactive operations such as

zooming and panning are supported by querying over the data pyramid at the appropriate

stratum and desired range, which provides a real-time and efficient interaction. In other

words, in a data visualization process, the aggregate data pyramid maintains database

support in order to manage and process very large datasets in an interactive manner. The

design of the aggregate data pyramid efficiently supports the following visual operations

over large datasets in an interactive visualization.

4.1 Resizing

In an interactive visual exploration of a dataset, the user can change the size of the

visualized data (size up or size down). In resizing, the visualizer needs to present a

different resolutions of the same window of interest. The same window of interest in

different strata cover different number of aggregate data points (bins). A boundary of

super bins from a lower resolution stratum contains all correlated sub-bins from a higher

resolution stratum.

The window of interest (query window) is the rectangular bounding box that defines

the borders to retrieve and process the aggregate data from the same or different stratum.

82

The window of interest could be the size of the canvas or to be defined by the user as

a rectangle boundary to select a specific region for more processing. In the re-sizing

operation, the initial window of interest is the size of the canvas. In fact, the canvas

is the boundary for retrieving and visualizing data. A query window in different strata

contains a different number of data points. For instance, in a system with the aggregate

pyramid of depth five (4 to 0), a query window in stratum 1 can be translated to a

boundary in stratum 4.

In a size-up operation, a translated boundary window from a higher data resolution

is visualized. In this operation, more detail is retrieved from the database into the

memory. The user defines the requested resolution by maximizing the canvas. Associated

data is then retrieved and sent to the visualizer. After having data in requested size

and detail, other interactive operations such zooming and panning are available to the

user. In the size-down process, on the other hand, data from the stratum with lower

resolution contained in the determined window of interest is visualized. In this process,

the user specifies the requested resolution by minimizing the canvas. The requested lower

resolution fitting the canvas is retrieved and sent to the visualizer.

An upper bound of size-up process is the display resolution. In the case that the

resolution of the deepest stratum (the base stratum) is smaller than the display, the

upper bound of the size-up operation is the resolution of the base stratum, since no

more data is available below this resolution. Similarly, the lower bound of the size-down

operation is the available lowest resolution in the aggregate data pyramid (the pyramid

83

apex).

4.2 Zooming

In image processing, zooming changes the number of display pixels per image pixel. In a

zooming operation, the user may request more or less detail of the image. Similarly, in

data visualization, zooming changes the number of display pixels per data point (bin).

The zooming operation is applied by considering the center of the canvas as the pivot

point to retrieve new bins with aggregate data values from the aggregate pyramid. In a

re-sizing operation, the window of interest is constant and does not change during the

re-sizing process while the canvas changes. In fact, in the re-sizing process, same window

of interest in different resolution is represented. In the zooming operation, in contrast,

the window of interest is subject to change while the size of the canvas is fixed. Every

time user zooms in to observe further details from the aggregated pyramid, more data is

fetched. In the zooming-in operation, the smaller area with more detail is visualized. In

the zooming-out operation, however, less detail of a larger area is represented. In other

words, the zooming operation produces different views with different resolutions while

re-sizing process generates same view in the various size and resolution.

4.3 Panning

In panning, the resolution scale is constant. In fact, the window of interest is constant in

this operation while the area to be explored and visualized changes. In this process, the

84

user changes the view point of the visualized data within the same resolution. If the user

requests different areas to be visualized by panning, the system will check the availability

of data with same resolution in the memory. If requested data is not available in the

memory, the system retrieves more data from the target relation at the same resolution.

4.4 Region of Interest (ROI) (Data of Interest)

A region of interest is a selected subset of visualized data within a dataset defining

a high resolution area in the current stratum. In other words, an ROI is identified

by the resolution and a rectangle defining the window of interest, including a smaller

area. Indeed, the region-of-interest is initially same as the canvas. In a region of interest

selection, the user specifies a window of interest in a current resolution (strata) by defining

a rectangular window. The corresponding data contained in that region is then retrieved

from a higher resolution stratum. In this process, the user selects a smaller rectangular

area to observe more detail in that specific region. The data related to the requested

region is retrieved from a deeper stratum of the aggregated pyramid and visualized in a

resolution compatible with the canvas resolution.

4.5 Implementation of Interactive Operations

The hierarchical structure of the aggregate pyramid, indexed on stratum and Z-order in

the B+-tree structure, efficiently supports interactive operations to explore and visualize

data at different resolutions of various windows of interest. The interactive operations can

85

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

Figure 4.1: An example of a window of interest

be efficiently implemented based on the quadrant-recursive property [30] of Z-order. We

define the window of interest (query window) as a square area for which its dimensions are

a power of two (Again, without loss of generality, assume the same power of two along each

dimension, x and y.). A window of interest (query window) may not include a contiguous

range of Z-order values. As a simple solution, we can just fetch all points between

minimum and maximum Z-order values in the query window (window of interest). The

window of interest in Figure 4.1, specified in the blue area (22 × 22), includes 16 points

in the stratum 3. To have the points within the query window, we can fetch all points

with Z-order values between 15 and 60; the number of retrieved tuples is three times

bigger than the absolute number of tuples needed to be fetched for the initial window

of interest. Figure 4.2 represents another example of a same size window of interest in

stratum 4. Employing same approach to fetch the tuples contained in this window, we

86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1

2 3

4 55

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

64 65

66 67

68 69

70 71

72 73

74 75

76 77

78 79

80 81

82 83

84 85

86 87

88 89

90 91

92 93

94 95

96 97

98 99

100 101

102 103

104 105

106 107

108 109

110 111

112 113

114 115

116 117

118 119

120 121

122 123

124 125

126 127

128 129

130 131

132 133

134 135

136 137

138 139

140 141

142 143

144 145

146 147

148 149

150 151

152 153

154 155

156 157

158 159

160 161

162 163

164 165

166 167

168 169

170 171

172 173

174 175

176 177

178 179

180 181

182 183

184 185

186 187

188 189

190 191

192 193

194 195

196 197

198 199

200 201

202 203

204 205

206 207

208 209

210 211

212 213

214 215

216 217

218 219

220 221

222 223

224 225

226 227

228 229

230 231

232 233

234 235

236 237

238 239

240 241

242 243

244 245

246 247

248 249

250 251

252 253

254 255

Figure 4.2: An example of a window of interest

need to retrieved all the tuples with Z-order values between 56 and 151 which needs

tuples six times more than the tuples included in the initial query window to be fetched.

Looking at the window of interest in Figure 4.2, there exist two continuous ranges; 56 to

63 and 144 to 151. Therefore, we can query the stratum 4 of the aggregate pyramid to

retrieve the tuples inside the window of interest over these two rectangular areas specified

by red borders.

Quadrant-recursive property [30] of Z-order determines that each quadrant (a cell)

can be decomposed into sub-quadrants with consecutive Z-order key values. The Z-order

2 in stratum 2 is decomposed to four sub-quadrants (2×2) in stratum 3 and sixteen sub-

sub-quadrants (24 × 24) in stratum 4. To query the correlated stratum in order to fetch

the tuples inside the window of interest, we can divide the query window to continuous

Z-order intervals employing the quadrant-recursive property of the Z-order. A window

87

Figure 4.3: An example of a window of interest

of interest could consist of one or more contiguous ranges. To fetch the tuples of the

query window, we query the corresponding stratum over at most four Z-order intervals.

A window of interest can be covered by one or more super bins from higher strata called

covering super bins. In the best scenario, the correlated covering super bins are exactly

mapped onto the window of interest. However, it is most likely that the associated super

bins overlay an area larger than the query window. The window of interest in Figure 4.2

can be covered by four super bins from one stratum higher (stratum 3). These super bins

can be examined to determine the probes. In this example, the query can be executed

via two probes. In Figure 4.2, four super bins are precisely overlap the initial window

of interest. As a result, the exact number of tuples included in the query window are

fetched.

88

Figure 4.3 illustrates a query window with size 22 × 22 in stratum 4 (24 × 24). In the

simple apprach, for querying the window of interest to fetch tuples between minimum and

maximum Z-order values (35 and 144) of the initial window of interest, the number of

tuples required to be retrieved is approximately six times more than the number of initial

requested tuples. However, in the super bin coverage (covering) approach, the number of

tuples needed to be fetched is at most four times bigger than the number of tuples in the

initial query window. Applying the super bin covering approach on the example shown

in Figure 4.3, nine super bins from one stratum higher (stratum 3) include the initial

window of interest. Since, we want at most four super bins to cover the initial query

window, we move one more stratum up where four super bins overlay the initial query

window. The red rectangular box indicates the area covered by super bins from stratum

2. The new query window is larger and has the size four times bigger than the size of the

initial query window.

In the super bin coverage approach, the final query result is at most four times bigger

than the number of tuples in the initial query window. For a given stratum with size

2n × 2n, assume that the initial query window w has the size 2k × 2k (k ≤ n). In the

best case, the query window w covers at most four contiguous ranges of Z-order values.

In this case, the initial query window covers all quadrants of associated bins from the

higher stratum. As a result, the number of retrieved tuples is exactly the same as the

number of bins in the initial query window (see 4.2). Now, consider the case that the

initial query window w partially covers the quadrants of the correlated super bins from

89

the next higher stratum and does not include at most four continuous ranges of Z-order

values (see 4.3). Therefore, a larger area has to be examined to fetch the selected bins in

w from the initial resolution. In this technique, we are interested to find a query window

that covers all quadrants of the correlated super bins and covers at most four Z-order

value ranges. The query window is a square area with its dimensions as a power of two.

To select a larger area covering the initial query window, we want to examine the smallest

query window w′, which covers the initial query window w. Since the size of initial query

window is 2k×2k, the smallest window covering w has the size 2k+1×2k+1 (k+1 ≤ n) that

covers all quadrants of its associated super bins from the next higher stratum. Therefore,

the smallest window w′ larger than the initial query window w has the size 2k+1 × 2k+1

(4× (2k × 2k)) which is four times bigger than the initial query window.

In the super bin coverage (covering) technique, we define in what stratum there exist

at most four adjacent super bins that cover the window of interest. To find the associated

strata and super bins, we employ both super bin adjacency (Chapter 3, Section 3.4.3.2.2)

and Chebyshev distance metric [81] techniques. In this technique, we just need to examine

the minimum and maximum Z-order values of the query window (35 and 144). First, we

apply super bin adjacency approach to find the stratum where these two data points are

adjacent. In the Z mapping curve, each level of ordering (n to 1), can be divided into

four regions, northwest, northeast, southwest, and southeast numbered from 0 to 3 which

are square areas with 1
4 the size of the corresponding ordering level. In the level 4 of Z

ordering, for instance, the regions respectively include the bins with Z-order values from

90

0 to 63, 64 to 127, 128 to 191, and 192 to 255. If two bins fall into different regions, they

are never included with the same super bin until the level 0 where there is only a single

bin. We call these regions exclusive regions.

We examine the starting and ending (the most northwest and southeast) bins’ Z-

order values by applying super bin adjacency. Since, if two bins located in two different

(exclusive) regions never fall into a same super bin in intermediate strata, after finding

the stratum where these two bins are adjacent using super bin adjacency technique, we

employ Chebyshev metric to check the distance between the determined covering super

bins. If the distance is 1, we move one stratum down to check whether these two points

are still neighbors in a higher resolution level applying the distance metric. We continue

to examine lower strata until the distance between two associated covering super bins is

bigger than one. Ultimately, the lowest stratum with distance one between two examined

covering super bins is considered as the resolution containing covering super bins. Two

examined bins in the corresponding stratum can have following states;

• Two determined covering super bins are diagonal neighbors; this means that we

have four super bins covering the window of interest. These bins could have either

consecutive or distinct Z-order values. There exist some cases that two pair of bins

(northwest/northeast and southwest/southeast) have contiguous numbers. In this

case, there are two probes overlapping the query window.

• Two determined covering super bins are side neighbors; in this situation, there only

exist two super bins covering the initial window of interest. If two super bins are

91

horizontal neighbors which occupy the northwest and northeast spots in the covering

super bin window (of at most four bins) and the difference of their Z-order values

is one (they are contiguous on Z ordering), the window of interest can be queried

over one single probe. If two covering super bins are vertical neighbors (northwest

and southwest bins), two probes are required to query the correlated stratum.

After finding the associated stratum and Z-order values of two covering super bins,

they are examined to see whether they are diagonal or side neighbors. Then, the required

continuous Z-order ranges can be defined to query the requested data which include

no more than four probes. Algorithm 4 demonstrates the process of finding covering

bounding box of at most four super bins which overlays the window of interest in the

requested resolution. The bins in the four corners of the window of interest and the

current stratum are required in this procedure. Then the boundary window to fetch the

data at requested resolution can be determined. The resolution specifies how many strata

lower or higher the data has to be fetched. In the panning process, the resolution ratio is

0 since the same resolution data from different areas is required to be visualized. In the

zooming and sizing operations, however, the desired resolution differs from the current

one. In zoom-in and size-up processes, we look at higher resolution strata for further

detail. Therefore, the resolution ratio is a positive number not bigger than the resolution

of the base stratum. In zoom-out and size-down procedures, the resolution ratio is a

negative number and higher strata with lower resolutions are needed to be queried. When

the user asks for a lower resolution (higher strata), the same technique is applied. The

92

Algorithm 4 Covering Super Bins Determination for 2D Data

procedure covering query window(array z order[], stratum)
Require: An array of z order values, current stratum
2: depth← 1

is neighbor ← 1
4: n bit← 2 ∗ stratum

depth← NATURAL DEPTH(array[z order[1], z order[4]], 2, stratum)
6: while is neighbor = 1 do

nw masked super bin← z order[1]
8: se masked super bin← z order[4]

super mask ← 0
10: for i from 1 to (depth ∗ 2) do

super mask ← super mask + floor(power(2, (n bit− i)))
12: end for

nw masked super bin← nw masked super bin ∧ super mask
14: se masked super bin← se masked super bin ∧ super mask

nw masked super bin← nw masked super bin� (n bit− (depth ∗ 2))
16: se masked super bin← se masked super bin� (n bit− (depth ∗ 2))

is neighbor ←
18: SMALLEST DISTANCE(array[nw masked super bin, se masked super bin], depth)

if is neighbor = 1 then
20: nw super bin← nw masked super bin

se super bin← se masked super bin
22: adjacency mask ← super mask

adjacency depth← depth
24: end if

depth← depth+ 1
26: end while

ne super bin← (z order[2]∧adjacency mask)� (n bit−(adjacency depth∗2))

28: sw super bin← (z order[3]∧adjacency mask)� (n bit−(adjacency depth∗2))

end procedure

covering bounding box contained at most four super bins is determined. If the stratum

of covering super bins is higher than the requested resolution, the covering window is

mapped onto the desired stratum. If the resolution of determined covering window is

higher than the requested resolution, the covering bounding box is then defined in the

93

desired resolution of a lower stratum.

In the procedure of finding the covering bounding box to fetch more detail, as we move

up in the hierarchy, the covering super bins cover larger areas in the desired resolution.

To optimize the process, we need to find the covering super bins in the lowest possible

stratum, which covers the smallest area while including the initial window of interest.

Hence, fewer tuples are required to be fetch to response the user’s query. To find the

covering query window in Algorithm 4, first, function NATURAL DEPTH (using Super

Bin Adjacency technique) is called to find the stratum where the super bins containing

the two bins with minimum and maximum Z-order values (the most northwest and most

southeast bins) are adjacent. Next, the Z-order of the covering super bins in this depth

(stratum) is calculated (Algorithm 4, lines 7 to 16). Since the examined bins could be

located in two different (exclusive) regions, the depth they are considered adjacent could

be very low (a very high stratum); the covering super bins from this depth overlay the very

large area at the desired resolution. We examine the covering super bins in the calculated

depth to see whether there is a lower stratum that still implies the neighborhood of the

covering super bins. To find a lower stratum, we examine the two determined covering

super bins to check the distance between them employing Chebyshev distance metric. In

the calculated depth in line 5, the distance of these two super bins is definitely one since

they are adjacent at this depth. We determine the distance between two covering super

bins by calling function SMALLEST DISTANCE (see lines 18) in one stratum below

(lower stratum). If the distance between two associated covering super bins is still one,

94

we move down to one more stratum low and repeat the process until we meet a stratum

that the covering super bins in its underneath stratum are not adjacent anymore. When

we find the lowest stratum with adjacent covering super bins, we calculate the other two

associated super bins if they exist. We define the northeast and southwest covering super

bins of the determined depth from initial bins in the window of interest (lines 27 and 28).

When all covering super bins of the associated depth are calculated, the Z-order value

ranges are determined. First, the neighboring status of two ultimately calculated covering

super bins is defined to see whether they are diagonal or side neighbors. If they are

diagonal nearby bins, there are four different Z-order values calculated by Algorithm 4.

Otherwise, they are side neighbors meaning that there is at most two probes overlapping

the window of interest. They are then checked to see whether they are horizontal or

vertical neighbors to determine if there is a single probe or two.

95

Chapter 5

Cubed Pyramid

5.1 Definition of Cubed Pyramids

In previous chapters, we discussed how to build and query (the API) an aggregate pyra-

mid. We introduced the aggregate pyramid for a two dimensions, with this generalizing

in a straightforward way to higher dimensions. A one-dimensional or multi-dimensional

aggregate pyramid can be constructed by applying inductive aggregation over the desired

dimensions. In a one-dimensional aggregate data pyramid, the inductive aggregation is

employed over a single dimension, say time. After constructing the base and assigning

an order of consecutive numbers to each tuple/bin (from 0 to n−1) for the base stratum

of n bins, inductive aggregation can be applied over each group of 2d (d is the number

of dimensions) adjacent points (aggregate window) in that linear order; the aggregate

window is an area containing 2d adjacent data points (bins) on the linear order where d

is the number of dimensions. In a two-dimensional aggregate pyramid for instance, the

aggregate window is a rectangular area and the size of the aggregate window is 4 (22 or

96

2 × 2). Similarly, the size of the aggregate window in a three-dimensional pyramid is 8

(23 or 2 × 2 × 2). Let us call a single aggregate pyramid an axis, which can be either a

one-dimensional, two-dimensional,or a higher-dimensional aggregate pyramid.

We introduce the concept of the cubed pyramids as a generalization to our inductive-

aggregate pyramids, which are the cross products of two or more aggregate pyramids

(axes). This generalization, in fact, generalizes and unifies aggregate pyramids as we

have introduced them and data cubes from the database literature. A challenge is then

defining multi-pyramid datasets (more than one multi-resolution dataset) as a result of

the inductive aggregation. Consider a dataset with dimension attributes of time (1D)

and of latitude and longitude (2D) and a measure of temperature. a visual presentation

model of this dataset could provide a visualization of a temperature map while allowing

the user to view the temperature data of the map in different times (time intervals).

The user could view the temperature map for a given day, week, or year, without the

necessity of sending more requests to the database engine and waiting for a response.

To support this, we must query over a one-dimensional aggregate pyramid on dimension

time. On the other hand, the user may want to observe the temperature map for a

specific time interval in various resolutions of dimensions x and y. Hence, we also need

to explore a two-dimensional aggregate pyramid on x and y dimensions (longitude and

latitude). Building a single three-dimensional aggregate pyramid (axis) on x, y, and

time is not sufficient since it does not provide the exploration on hierarchies of time

(t) and (x, y) independently. And to build a data cube on x, y, and t is wasteful, as

97

x t y aggregate always together. To have freedom in exploring the data along different

axes — (x, y) and (t) — independently, we propose the cubed pyramid d0 × . . . × da

(
∑a−1

i=0 di = d where d is the total number of dimensions) where a is the number of axes

and di defines the number of dimensions of axis i in the cubed pyramid. The cubed

pyramid Pyramid(time)×Pyramid(x, y) provides a multi-resolution structure where we

can observe a specific slice (fixed resolution of x and y) in different time intervals. It

means that while the resolution of time is changed, the resolution of x and y is fixed.

Likewise, the resolution of time can be constant while we observe various resolutions of

one axis Pyramid(x, y). Or the resolution of both axes can be changed to any desired

level.

5.2 Cubed Aggregate Pyramid Implementation

To build a cubed aggregate pyramid, we first process the raw data and apply a multi-

dimensional ordering (Z order) to assign consecutive numbers to a set of dimensions in

order to map d-dimensional data points to the one-dimensional space. To construct a

1D × 2D cubed pyramid of two axes Pyramid(time) and Pyramid(x, y), for instance, a

sequence of positive numbers from 0 to n−1 for a base of n bins is assigned to time, which

is processed as a single dimension to create a one-dimensional axis. For axes with higher

dimension (d > 1) — a two-dimensional axis of x and y, for example – we employ Z

ordering to map the higher-dimensional space to one-dimensional data points in a linear

ordering. The next step is to define the natural depth of the cubed aggregate pyramid.

98

It is possible to find the natural depth of each axis independently and build the axes

of cubed aggregate pyramid at different depths. In this approach, we are interested in

finding a natural depth which is meaningful and comprehensive for all dimensions. We

look for smallest bin size that makes a data point with d dimensions separate from other

points while it has at least one immediate non-empty neighbor bin. In fact, the depth

including none overlapping bins with nearby non-empty neighbors is desired. By having a

proper depth, we expect a satisfying reduction in building the higher strata of the cubed

aggregate pyramid as a result of inductive aggregation.

To build the cubed pyramid of time × 2D (Pyramid(time) × Pyramid(x, y)) of

Brightkite Check-ins dataset [85], after finding the natural depth of time and (x, y) di-

mensions, we apply inductive aggregation on the time dimension while the resolution of

other axis, dimensions x and y, remains constant. Next, we inductively and independently

aggregate data over x, y axis — the x and y dimensions — where time is constant. Sim-

ilarly, we constructed the cubed aggregate pyramid of the NYC Taxi Trips dataset [86]

with three axes, Pyramid(time)×Pyramid(x, y)×Pyramid(u, v), where first axis is the

one-dimensional aggregate pyramid on time, and the second and third axes are, respec-

tively, two-dimensional aggregate pyramids on source (x, y) and destination (u, v). In a

similar process, the inductive aggregation is independently applied on dimension time,

then on x and y, and ultimately on the u, v axis (the u and v dimensions).

Every time we process the dimensions and attributes of one axes, the other axes’

dimensions and attributes are held constant. Figure 5.1 represents the re-aggregation

99

-- SQL Cubed Pyramid template
with recursive P_Cube0 (ax0_d0, ..., ax0_dh−1,

ax1_d0, ..., ax1_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
ax0_stratum, ax0_zo,
ax1_stratum, ax1_zo,
...,
axn−1_stratum, axn−1_zo,
a0, ..., aj−1) as (

-- retrieve all pre-processed, pre-aggregated, and raw data from the base
select ax0_d0, ..., ax0_dh−1,

ax1_d0, ..., ax1_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
ax0_stratum, ax0_zo,
ax1_stratum, ax1_zo,
...,
axn−1_stratum, axn−1_zo,
a0, ..., aj−1

from theBase
union all
select integer(ax0_d0 / 2) as nax0_d0, ..., integer(ax0_dh−1 /2) as nax0_dh−1,

ax1_d0, ..., ax1_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
(ax0_stratum - 1) as nax0_stratum,
Z_NUMBER(integer(ax0_d0 / 2), ..., integer(ax0_dh−1 /2)) as nax0_zo,
ax1_stratum, ax1_zo,
...,
axn−1_stratum, axn−1_zo,
ind_agg0(...) as na0, ..., ind_aggj−1(...) as naj−1

from P_Cube0
where ax0_stratum > 0
group by nax0_d0, ..., nax0_dh−1,

ax1_d0, ..., ax1_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
nax0_stratum, nax0_zo,
ax1_stratum, ax1_zo,
...,
axn−1_stratum, axn−1_zo

) -- end of the recursive definition
select *
from P_Cube0

Figure 5.1: SQL cubed pyramid template to build from the base

phase where inductive aggregation is applied on the base built in the base-aggregation

phase to create a first axes of the cubed pyramid. In the base-aggregation phase, the

Z-order is assigned to data points while raw data is pre-processed and pre-aggregated.

Then the natural depth is defined to form the base of the cubed aggregate pyramid.

In building the cubed pyramid, each time, inductive aggregation is applied on the

100

-- SQL Cubed Pyramid template
with recursive P_Cubedi (ax0_d0, ..., ax0_dh−1,

ax1_d0, ..., ax1_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
ax0_stratum, ax0_zo,
ax1_stratum, ax1_zo,
...,
axn−1_stratum, axn−1_zo,
a0, ..., aj−1) as (

-- retrieve all pre-processed, pre-aggregated, and raw data from the base
select ax0_d0, ..., ax0_dh−1,

ax1_d0, ..., ax1_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
ax0_stratum, ax0_zo,
ax1_stratum, ax1_zo,
...,
axn−1_stratum, axn−1_zo,
a0, ..., aj−1

from Axisi
union all
select ax0_d0, ..., ax0_dh−1,

integer(axi_d0 / 2) as naxi_d0, ..., integer(axi_dk−1 / 2) as naxi_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
ax0_stratum, ax0_zo
(axi_stratum - 1) as naxi_stratum,
Z_NUMBER(integer(axi_d0 / 2), ..., integer(axi_dh−1 /2)) as naxi_zo,
...,
axn−1_stratum, axn−1_zo,
ind_agg0(...) as na0, ..., ind_aggj−1(...) as naj−1

from P_Cubei−1
where axi_stratum > 0
group by ax0_d0, ..., ax0_dh−1,

naxi_d0, ..., naxi_dk−1,
...,
axn−1_d0, ..., axn−1_dr−1,
ax0_stratum, ax0_zo,
naxi_stratum, naxi_zo,
...,
axn−1_stratum, axn−1_zo

) -- end of the recursive definition
select *
from P_Cubei

Figure 5.2: SQL cubed pyramid template from previous built axes

dimensions and attributes of one axis. The “constant” attributes and dimensions of

other axes in the process of building an intermediate product of the cubed pyramid are

the constants c0 . . . ch−1 illustrated in Chapter 3, Figure 3.11. In the re-aggregation

phase, first, inductive aggregation is applied on one axis’ dimensions and attributes over

the base of the cubed pyramid (Figure 5.1). In this phase, the different resolution of

101

axis0 is built while the resolution of other axes’ dimensions and attributes are constant.

The intermediate product P Cubei are created from the previous version P Cubei−1 for

a axes (axis0 . . . axisa−1) (see Figure 5.2). Cubed pyramids provide the independent

exploration of multiple resolutions of each axis. One axis in the cubed pyramid of NYC

Taxi Trips dataset [86], for instance, can be explored to observe various time resolutions

of this dataset. For a specific time (time interval) and specific destination resolution of u

and v, the resolution of the source (x, y) can be changed. A low resolution area of a set

of points as source data points can be observed with a high resolution destination data

points or vice versa.

5.3 Cubed Aggregate Pyramids and OLAP Roll-up Data Cubes

Cubed aggregate pyramids can be defined as partitioned data cubes where dimensions are

partitioned into predefined groups. The aggregation is then performed on these groups

of dimensions. The advantage of cubed aggregate pyramids is that the aggregation is

calculated only on desired set of predefined group of dimensions, not all. Cubed pyramids,

in addition, provide the data hierarchy over specified dimensions, axes. An axis, in fact, is

an aggregate data pyramid with a hierarchy over one group of dimensions. Indeed, cubed

pyramids are generalization of roll-up cubes in order to maintain spatial aggregation over

dimensions. They have both concept of data cubes and roll-up operation combined to

create data hierarchies to support an interactive data visualization and exploration.

Data cubes [7] are database relations constructed by aggregating data across all com-

102

bination of d dimensions. In fact, it is the d-dimensional generalization of the operator

group-by. To construct a cube, the group-by is computed on all possible combinations

of d dimensions of a dataset. It can provide efficient exploration and analysis of data

for decision making, knowledge discovery, and finding patterns and anomalies; but it can

also be overly large, and offer meaningless aggregation for an application that does not

need certain dimensions to be aggregated independently. Since, in data cubes, all pos-

sible combination of dimensions are aggregated, the size of the data cubes grows very

fast when increasing the number of dimensions. Data cubes can be pre-computed and

constructed in advanced so they can be used as a source for data exploration and visual-

ization. In the example of cubed aggregate pyramids on time, x, and y, the data cube can

be constructed over these three dimensions. However, aggregating over all combinations

of dimensions is not needed. Moreover, data cubes solely do not maintain the exploration

of the dimensions’ hierarchies over independent groups of axes.

There exist some OLAP operations that enables a system to drill-up or drill-down

analysis on a data cube. Roll-up operation performs aggregation either by aggregating

data along all hierarchy levels of a single taxonomic dimension such as time or by reducing

the number of dimensions. The concept hierarchy of time, for instance, can be defined

as hour, day, month, quarter, and year. In the roll-up operation, to create the time

hierarchy of data, the data is first aggregated on hour, then it is rolled up to day and

then month, and finally it is summarized to quarter and year. The roll-up can be define

as a process of increasing the level of aggregation from more detailed data to less detailed

103

values.

In data visualization and analysis, data cubes are prominent structures to materialize

data by aggregating over different dimensions along with the roll-up operation to form

the hierarchy over one or more dimensions. However, constructing a data cube is costly

for higher dimensions. The size of a cube grows exponentially by increasing the number

of dimensions d (2d different combinations of dimensions). And since the cube itself does

not provide dimensional hierarchy, the roll-up operation has to be performed to create

the different data granularity over the concept hierarchy of one dimension; for instance,

time (hour, day, month, quarter, and year) or location (neighborhood, city, province, and

country). Roll-up cubes provide both aggregation and dimensions hierarchy.

In order to make OLAP cubes’ construction and storage more efficient, various work

has been done. ImMens [15], for instance, use the notion of partial data cubes to decrease

the memory storage needed for cubes to support an interactive data visualization. Instead

of constructing a single cube with d dimensions, they build several smaller data cubes

with di dimensions (di ≤ 4 and
∑d−1

i=0 di = d). To provide a higher level of aggregation,

ImMens then perform roll-up operation on the pre-computed data cubes. Lins et al. [17]

propose algorithms to construct and query nanocubes, reduced size cubes that are small

enough to fit in the main memory to maintain real-time and interactive exploratory visu-

alization. Carlos Scheidegger [87] reviews recent main techniques to visualize large-scale

data sets. He analyzes techniques employed in three different systems, including ImMens

and nanocubes . Sismanis et al. [88] propose a compact and clustered structure (Dwarf)

104

to construct, index, and query data cubes. However, performing OLAP operations such

as roll-up and drill-down over dimension hierarchies are expensive, since they need to

be handled externally. Later, they extended their compressed architecture to maintain

roll-up data cubes, cubes with hierarchical dimensions.

Roll-up cubes are well known structures in data visualization systems. However, stan-

dard OLAP does not provide full support of spatial operation over data cubes such as

spatial aggregation. Recently, some commercial technologies have been proposed to de-

velop spatial OLAP (SOLAP) applications supporting spatial OLAP operations. SOLAP

(spatial on-line analytical processing), introduced and defined by Bedrad [89] as a new

type of tool to maintain a platform to support visual exploration and analysis of multidi-

mensional, spatio-temporal data along with multilevel aggregation. Rivest et al. in their

survey [90], present a new category of features, an extension of OLAP tools, to efficiently

explore and analyze spatio-temporal data.

Matias et al. [91] present a category of OLAP tools to explore sptail data (SOLAP).

One essential requirement in SOLAP is rolling up through spatial hierarchies. Matias

et al. [91] classify a spatial hierarchy in three main categories: full semantic (a concept

hierarchy of a dimension contains only alphabetic attributes, such as neighborhood, city,

province, country); hybrid (some attributes of a concept hierarchy of a dimension are

alphabetic and some are geometrics such as location coordinates as latitude, longitude or

country); and full geometric (all attributes in a concept hierarchy are geometric). Spatial

roll-up can be defined and performed on a cube to create a spatial hierarchy over one or

105

more dimensions [92–94]. Sampaio et al. [93] propose a spatial multidimensional model

which is an integration of data warehouse model (DW) and the geometry object model

(OGB). Their proposed model maintains the extensions of OLAP operations in their

spatial model (spatial roll-up and drill-down). They define spatial roll-up as an operation

that creates geometric aggregation values from most detailed values to the least detailed

level.

We are interested in spatial aggregation over a dimension or a set of dimensions (our

axes). In inductive aggregation, we double the size of a bin along each dimension to

create a higher level aggregation with less detail. In cubed aggregate pyramids, we can

choose what sets of dimensions we want to inductively aggregate. As a result, we avoid to

compute the aggregate values over dimensions or sets of dimensions that we do not require

to process. Cubed pyramids can be considered as the generalized form of (S)OLAP data

cubes. However, in contrast to cubed pyramids, in data cubes all possible combinations

of dimensions or attributes are required to be processed and aggregated. The roll-up

operation can be then performed on a data cube to create dimension hierarchies. Let d

be the total number of dimensions that we want to roll-up over their concept hierarchies, l

be the number of hierarchical levels, and ci,j be the cardinality of dimension i (0 ≤ i ≤ d)

in level j (0 ≤ j ≤ l). Therefore, the size (S) of the corresponding roll-up data cube with

symbolic roll-up is

S =

d−1∏
i=0

l−1∑
j=0

ci,j

106

Assume that, for all dimensions hierarchies, each time we aggregate two values to

create a higher aggregation level. For instance, assume there exist exactly two stores in

each neighborhood, two neighborhoods for each city, two cities per state, and two states

per country. Therefore, to roll-up the concept hierarchy of dimension location, each time

we aggregate two values to form the next higher level of aggregation. Indeed, each time

the size of computed aggregation level is half of the size of previous level with a smaller

sub-category. With all dimensions having same number of bins b (b = 2n), the size of the

roll-up data cube is

S
.
= (2b)d

Let’s B = bd be the size of the base dataset (data cube) required in constructing the

hierarchy. Therefore, we have

S
.
= 2dB

In the next section, we define the size of cubed aggregate pyramids in more detail.

5.4 Cubed Aggregate Pyramids Cardinalities

In Section 3.4.2.2, the size of a two-dimensional aggregate pyramid was defined. After

building the base of the aggregate pyramid, stratum i is constructed from one stratum

below, stratum i + 1. The size of the base stratum for two dimensions (d = 2) and the

natural depth n is 2n × 2n. The size of stratum i, is 2i × 2i. Each time we double the

107

size of bins along each dimension. Therefore, the number of bins in each dimension in

stratum i is half of the number of bins in stratum i + 1 and size of the stratum i is a

quarter size of stratum i + 1. The following formula shows the relation of stratum i’s

size (Bi) with the size of previous stratum i + 1 (Bi+1) in an aggregate pyramid with d

dimensions;

Bi =
Bi+1

2d

The size of an aggregate pyramid with two dimensions and the base stratum of size

B (B = bd and b = 2n for d dimension and depth n) defined in Section 3.4.2.2 is

S = 1
1

3
B

By generalizing the formula for a d-dimensional aggregate pyramid (d ≥ 1) with depth

n and the size B (bd where b is the number of bins along each dimension and b = 2n) for

the base stratum, we have

S = B +
1

2d
B +

1

22d
B +

1

23d
B + · · ·+ 1

2nd
B

S = B
n∑

i=0

1

2di

S
.
= 1

1

2d − 1
B

108

The aggregate data pyramid is well behaved when the number of dimensions increase.

In higher dimensions, the size of the aggregate pyramids grows gently compared to lower

dimensions. Since a cubed aggregate pyramid is a cross product of single aggregate

pyramids (axes), the size of a cubed pyramid with a number of axes (axis0 . . . axisa−1),

axes’ dimensions d0 . . . da−1, and depth n when B is the size of the base of the Cubed

aggregate pyramid can be calculated by following formula;

S = B
a−1∏
i=0

1
1

2di − 1
(5.1)

where

a−1∑
i=0

di = d

and

1
1

2d − 1
B ≤ B

a−1∏
i=0

1
1

2di − 1
≤ 2dB

In the worse case, in constructing the cubed aggregate pyramid, each dimension is ag-

gregated independently grouped by itself; it means that for total number of d dimensions

there are d single axes. In this case, the size of the cubed pyramid is 2dB. In the best

case, we have just one axis of d dimensions (a single aggregate pyramid) where its size is

1 1
2d−1B. Assume we build a cubed aggregate pyramid of a 1D axis time and a 2D axis

(x, y) over a given dataset with size B. The size of the 1D axis (one-dimensional aggregate

109

pyramid) is 2B and the size of the 2D axis (two-dimensional aggregate pyramid) is 11
3B,

the size of the computed cubed pyramid is then 22
3B (2× 11

3 ×B).

5.5 Further Considerations

Depth of the aggregate pyramid is an important factor in building the pyramid efficiently.

As mentioned in Chpater 3, Section 3.4.3.2.3, in the process of finding the natural depth,

the calculated natural depth could be very deep that causes many bins to be islands (that

is, having no immediate neighbor) in deep strata of the aggregate pyramid. In building

cubed aggregate pyramids, the depth does also play an essential role to make this process

efficient. It is possible to find the natural depth of each axes independently and to

construct the cubed pyramid from axes at different depths. However, the existence of

data points with non-empty neighbors in the base stratum of one axis does not guarantee

same situation for other axes. The depth of one axis could be very deep for other axes and

creates very sparse data on the base of the cubed aggregate pyramid. Hence, many data

points becomes islands with no nearby non-empty bins, and they get replicated in the

construction of cubed aggregate pyramid. And since, cubed pyramids are cross products

of axes with different number of dimensions, the size of cubed pyramids grows much faster

than aggregate pyramids in the presence of islands. Accelerating the growth of cubed

pyramids’ size imposes a negative impact on the performance in the construction process

because the replicated data points are unnecessarily processed and repeated at higher

strata.

110

In order to avoid the replication of islands and more efficiently build the cubed pyra-

mids, we find the natural depth by considering all dimensions as a group, in the same way

we process dimensions to find the depth for a single aggregate pyramid (axis). By pro-

cessing all possible dimensions together to find the natural depth, the problem of islands’

existence could be still a challenge depends on the calculated depth. Finding the natural

depth for all dimensions together, however, moderates the acceleration of the size growth

of the final product. After finding natural depth, we perform inductive aggregation along

each group of dimensions which could be either a one-dimensional or muti-dimensional

axes. Cubed aggregate pyramids can be studied as a single aggregate pyramid to define

a proper depth. The probable number of islands in the computed natural depth from

base-aggregation phase can be evaluated. If the likelihood of a large number of data

points being islands is high in this depth, we can pick a higher stratum where there is a

low probability of islands presence. By choosing an appropriate depth, cubed aggregate

pyramids are well behaved and their size can be defined by Equation 5.1 in Section 5.4.

111

Chapter 6

Experiments

We applied inductive aggregation on the Brightkite Check-ins dataset [85] to construct a

two-dimensional aggregate pyramid. In the base-aggregation phase, we process the raw

data to build the base of the pyramid. Since we build the two-dimensional aggregate

pyramid (Pyramid(x, y)), we aggregate data points to unify the duplicate tuples with

same x and y coordinates. Therefore, the base tuples could contain aggregates of these

duplicates. After we establish the base dataset from the raw data in the original dataset

by pre-processing and pre-aggregating tuples (data points), a distinct Z-order value is

assigned to each tuple at the base. The base dataset is then sorted based on the Z-order

values. Next, we process the base to find the natural depth. Since the base dataset is

sorted based on the Z-order values, each time we process two contiguous points on the disk

including the current point and its preceding point. We apply the Super Bin Adjacency

technique (Chapter 3, Section 3.4.3.2.2) to find the natural depth over the base dataset.

Comparing the two-bit pairs of current point’s Z-order value to the Z-order values of its

112

Stratum Points per Stratum

1 4

2 15

3 40

4 101

5 262

6 649

7 1474

8 3085

9 6602

10 13962

11 27531

12 49545

13 83464

14 136000

15 210052

16 296490

17 388841

18 478680

19 555734

20 612096

21 646601

22 666077

23 678241

24 686178

25 688738

26 690303

27 691619

28 692736

29 693362

Table 6.1: Number of Data Points per Stratum of 2D Aggregate Pyramid (Brightkite

dataset)

preceding point, we choose the greatest depth such that the current point is separated

from its neighbor; call this the local natural depth of that point. The local natural depth

of a point identifies the deepest stratum at which the point is separated from other points

while it has at least one immediate none-empty neighbor. Moving up from a point’s local

113

natural depth to one stratum higher, the point is aggregated with one or more neighbors.

The next local natural depth found in the iteration is then compared to the previous one

to choose the deepest stratum. At the end of the process, the deepest stratum is found

that guarantees the separation of all data points. In other words, the natural depth is

the maximum calculated local natural depth determined for each data point.

To construct the two-dimensional aggregate pyramid of check-in data, we processed

the raw data and found the depth 29 as the natural depth of the aggregate pyramid in

the base-aggregation phase. In this phase, we applied aggregate functions to build the

base of the pyramid. We then employed inductive aggregation to build the higher strata

of the pyramid up to the apex, the highest stratum. The second column in Table 6.1

indicates the number of data points for each stratum of the aggregate pyramid. To build

the first stratum after the base (stratum 28), the inductive aggregation is performed

on the tuples at stratum 29. As a result of inductive aggregation, the number of tuples

(bins) in stratum 28 has been reduced. The process of constructing the aggregate pyramid

continues by applying the inductive aggregation over intermediate strata to build the very

next higher stratum until the last stratum (with the lowest data resolution) is built. It

can be observed from Table 6.1 that moving from stratum 29 up to stratum 1, the sizes

of the strata reduces.

Figure 6.1 shows the data reduction from stratum 29 to the top of the pyramid. The

number of data points slightly reduces from the base stratum up to stratum 22. After

stratum 22, the data reduction of the intermediate strata accelerates between strata 22

114

024681012141618202224262830

0

1

2

3

4

5

6

7

·105

Stratum

N
u
m
b
er

of
tu
p
le
s
(p
oi
nt
s)

points per stratum

Figure 6.1: Strata Size Reduction of 2D Aggregate Pyramid (Brightkite dataset)

and 10. The slow data reduction in the depth of the pyramid implies that in very low

strata there are a few points with immediate non-empty neighbors to be aggregated to

form the very next higher stratum. To investigate the reason for slow changes in the size

of lower strata in the aggregated pyramid, we examined the base dataset to determine

the number of data points that get aggregated moving up from each stratum. To define

that, we first need to know how many points there are with the local natural depth of

each stratum. In the process of finding the natural depth, in each iteration, we find the

local natural depth of every single data point. Using this information, we can define how

many data points exist in every strata that are separated from other points (do not fall

in the same bins) while they have at least one immediate neighbor.

Table 6.2 represents the information extracted from the base dataset collected in the

process of finding the natural depth. These calculated numbers give us very precise

115

Stratum Points per Stratum Distinct Points Aggregate Points

1 8 6 693361

2 27 19 693355

3 71 44 693336

4 182 111 693292

5 468 286 693181

6 1135 667 692895

7 2502 1367 692228

8 5178 2675 690861

9 11000 5822 688185

10 22918 11918 682363

11 43274 20355 670445

12 74430 31156 650089

13 121032 46602 618933

14 190430 69398 572331

15 279792 89361 502933

16 375042 95250 413571

17 469117 94075 318321

18 552519 83402 224246

19 615513 62994 140844

20 653958 38445 77850

21 673343 19385 39405

22 682707 9364 20020

23 687858 5151 10656

24 690832 2974 5505

25 691717 884 2531

26 692148 431 1646

27 692602 454 1215

28 693154 553 761

29 693363 209 209

Table 6.2: Aggregate Pyramid Statistics of Brightkite Dataset

information about the aggregate pyramid before building it. Column 4 of Table 6.2

represents the number of data points that are aggregated with other points moving one

stratum up from each stratum. For instance, if we build the stratum 28 from stratum

29, it contains at most 209 aggregated data points and the rest are repeated data values.

We then determined the number of distinct points in each stratum.

116

024681012141618202224262830

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

·105

Stratum

N
u
m
b
er

of
d
is
jo
in
t
p
oi
nt
s

disjoint points

Figure 6.2: Calculated Number of Separate Points per Stratum

Figure 6.2 shows the distribution of disjoint data points in each stratum started from

stratum 29. The result in cloumn 3, Table 6.2 states the number of points that are

separate only in the correlated stratum and if you move one stratum up, those points are

aggregated with their immediate neighbors from current stratum which is the definition

of local natural depth. Depth 29, for instance, is the natural depth for 209 data points

while the rest of the tuples (bins) are still disconnected from others at this stratum.

When we move up to stratum 28, all 209 points from depth 29 get aggregated. These

statistics have been collected in the process of finding local natural depth for each data

point. Although we consider a natural depth deep enough to separate all data points in

which no two points fall into the same bin, this depth could be too deep, causing many

points to be far apart from each other with no non-empty nearby bins. As we see in

117

024681012141618202224262830

0

1

2

3

4

5

6

7

·105

Stratum

N
u
m
b
er

of
tu
p
le
s
(p
oi
nt
s)

points per stratum

Figure 6.3: Calculated Number of Data Points per Stratum

Figure 6.2, there are a few points that get merged in the process of building the stratum

28.

Represented in Table 6.2, there are only 209 points in the stratum 29 that are ag-

gregated in the next higher stratum and the rest, 693154 points, remains separated and

are replicated in the stratum 28. In fact, when we apply inductive aggregation to sum-

marize the stratum 29 (the base of the pyramid) to construct the stratum 28, not many

non-empty bins are adjacent to be merged and aggregated at this depth. Thus, moving

from stratum 29 up to stratum 28, we do not have considerable data reduction. Figure

6.3 shows very slow reduction from stratum 29 until depth 16. Moving from stratum 29

up to stratum 16, the number of individual points with non-empty neighbors increases.

Therefore, in the higher strata of the aggregate pyramid, moving away from stratum 29,

the number of bins with aggregate values escalates.

118

024681012141618202224262830

0

1

2

3

4

5

6

7

·105

Stratum

N
u
m
b
er

of
ag
gr
eg
at
e
tu
p
le
s

aggregate points

Figure 6.4: Calculated Number of Points with Aggregate Values per Stratum

Figure 6.4 represents the number of data points with aggregate values in each stratum.

After depth 20, the points get aggregated with a higher rate. Reaching the high strata of

the aggregate pyramid, the number of aggregated points reduces since there are smaller

numbers of bins in very high strata on top of the pyramid. Figure 6.3 shows the size of

each stratum with respect to the number of its tuples. Similarly, the same rate can be

observed in the stratum size reduction. Up to stratum 20 started from depth 29, the size

of the strata decreases slowly. After depth 20, the strata’ size reduction accelerates and

it slows down again after depth 10. We compared the final aggregate pyramid strata’

size built from the actual check-in data with the statistics collected from the process of

finding natural depth and obtained the similar result (Figure 6.5). In fact, in the process

of finding the natural depth, we examine data points to find the local natural depth of

each point, which is quite accurate, providing an acceptable approximation.

119

024681012141618202224262830

0

1

2

3

4

5

6

7

·105

Stratum

N
u
m
b
er

of
tu
p
le
s
(p
oi
nt
s)

points per stratum
predicted points per stratum

Figure 6.5: Strata Size Reduction of Implemented and (Predicted) Aggregate Pyramid

Since the natural depth could be deep enough to separate the points, it can result

in having a large number of points with no immediate neighbors at the very low strata

(higher resolution). Consequently, when we apply inductive aggregation on the tuples at

the deep strata, many points do not get aggregated and they are replicated at higher strata

causing a low rate of data reduction. We call the points with no immediate neighbors

islands. Islands are bins such that their surrounding bins in the Z-order mapping curve

are empty. An island can become adjacent to a non-empty bin in one stratum up or

higher. By the time an island is transmitted to a higher stratum which attains at least

one non-empty neighbor bin, it gets replicated in the process of inductive aggregation.

Shown in Figure 6.3, we have many replicated points up to stratum 20 which determines

that many bins are empty in the very deep strata resulting many points to become islands.

The repetition of the islands in deep strata of the aggregate pyramid influences per-

120

formance. To improve the performance, the aggregate pyramid can be built from higher

strata with less number of islands. To determine the proper depth with more satisfying

reduction, we can define a threshold for the depth at which we have more data reduction

compared to the calculated natural depth. To find the threshold depth, we can approxi-

mately model the size reduction with a polynomial. We can differentiate the approximate

polynomial model to calculate the first and second derivatives of that function to find the

points in which we have decent reduction. The first column in Table 6.2 can be approxi-

mately modeled with a polynomial function. If we model the size reduction graph with a

third degree polynomial (f(x)), for instance, the point with x = 16 is the local maximum

point of its first derivative. The graph representing the first derivative of f(x) is similar to

the graph presented in Figure 6.2. Figure 6.2 shows the difference of each stratum with

the next higher stratum. In this graph, we observe that in depth 16 there exist many

points with non-empty neighbors causing the acceptable data reduction compared to the

size of the base. To find the local maximum of the approximate polynomial function,

the solution of the second derivative of the function f(x) can be examined to find the

local maximum points which for a third degree polynomial is approximately stratum 16

(x = 16). The critical point of the function f ′(x) can be considered as the threshold

depth at which we observe adequate data reduction. In the case, that there exist more

than one local maximum, we select the highest one as the threshold depth.

Likewise, we employed the same technique on Brightkite dataset to build a 1D ×

2D aggregate pyramid; Pyramid(time) × Pyramid(x, y). The result of the experiment

121

0246810121416182022242628

0

1

2

3

4

·106

Stratum

N
u
m
b
er

of
tu
p
le
s
(p
oi
nt
s)

points per stratum

Figure 6.6: Strata Size Reduction of 1D Aggregate Pyramid

is uniform with the result achieved from the previous observation of building the 2D

aggregate pyramid. Considering three dimensions x, y, and time, the natural depth for

the 1D × 2D pyramid was determined as depth 21. The computed natural depth for

2D pyramid Pyramid(x, y) and 1D pyramid Pyramid(time) are respectively 29 and

27. It is obvious from Figure 6.6 that stratum size is decreased from depth 27 with a

satisfying reduction rate in 1D aggregate pyramid, Pyramid(time). The statistics of 1D

aggregate pyramid shows that most of the points have at least one immediate non-empty

bin at depth of the pyramid, and, as a result, we do not have many islands in very low

strata starting from the threshold natural depth, depth 27. In the 1D × 2D aggregate

pyramid (Pyramid(time) × Pyramid(x, y)), however, we observe very slow reduction

between strata 21 and 16 (see Figure 6.7a). The determined natural depth for 1D × 2D

aggregate pyramid is 21. With same reasoning, the presence of many islands in the depth

122

0246810121416182022

0

1

2

3

4

·106

Stratum

N
u
m
b
er

of
tu
p
le
s
(p
oi
nt
s)

points per stratum

(a) Strata Size Reduction of 1D×2D Ag-

gregate Pyramid1

0246810121416182022

0

1

2

3

4

·106

Stratum

N
u
m
b
er

of
tu
p
le
s
(p
oi
nt
s)

aggregate points

(b) Data Points with Aggregate Values

per Stratum

Figure 6.7: Statistics of 1D × 2D Aggregate Pyramid of Brightkite Dataset

of the aggregate pyramid is caused the size of the lower strata to be slightly decreased.

Presented in Figure 6.7b, the number of aggregate points at the depth of the aggregate

pyramid is small. Therefore, we observe less reduction before depth 16, knowing there are

many islands in deep strata of the aggregate pyramid. After depth 16, the observation

shows that the number of aggregate points increases which causes the size of the strata

to be reduced with a satisfying speed.

We also applied inductive aggregation on NYC Taxi Trips dataset [86] to construct

the 1D×2D×2D aggregate pyramid, Pyramid(time)×Pyramid(x, y)×Pyramid(u, v).

Each data point has 5 dimensions; time, source location (x,y), and destination location

(u,v). In the same manner, we determine the natural depth of the 1D×2D×2D aggregate

pyramid by sampling points and estimating the statistics corresponding the number of

separate points in each stratum during the process of finding the local natural depth of

123

02468101214161820

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·106

Stratum

N
u
m
b
er

of
p
oi
nt
s
(t
u
p
le
s)

points per stratum

Figure 6.8: Strata Size Reduction of 1D × 2D × 2D Aggregate Pyramid

each point. To calculate the depth of the pyramid, we employ super bin adjacency on the

original dataset. We considered the size of each dimension a 20-bit number. Therefore,

the size of each dimension in the base stratum is 220 and the stratum size is 25×20.

Since the Z-order value of a point in a multi-dimensional space is the result of the bit

interleaving of its dimensions, the Z-order of each tuples in the 1D× 2D× 2D aggregate

pyramid is a 100-bit positive number from 0 to 2100−1 (which is very large). The natural

depth calculated for the 1D× 2D× 2D aggregate pyramid of NYC Taxi Trips data is 20.

The depth 20 is the deepest stratum that could be calculated since our dimensions are

20-bit numbers. If we build the 1D × 2D × 2D aggregate pyramid before this depth, we

observe that the number of islands below this depth is increased. Figure 6.8 expresses the

satisfying reduction from depth 20. The result emphasizes that most of the points have

124

at least one non-empty neighbor at depth 20. Building the pyramid from any stratum

below stratum 20 would cause a repetition of islands; any deeper the base of the pyramid

is built, more disconnect points are replicated.

125

Chapter 7

Conclusions and Future Work

7.1 In Summary

The objective of this thesis was to provide a hierarchical structure defined in a database

and managed by a database system in the back-end to maintain a tight coupling between

visualization systems as the front-end. A tightly coupled system can benefit from the

effective and powerful features and techniques of the database system to facilitate and

improve the interactive operations in data visualization. In this thesis, we have con-

tributed following methods and techniques to create a hierarchical structure to support

interactive data visualization of large datasets.

The concept of data compression and multi-scale representation of data has been

adopted in various domains such as image processing, computer graphics, and computer

vision. The original idea was taken from image processing techniques such as progressive

transmission and multi-scale representation of images. In image processing, for instance,

JPEG2000 maintains progressive and hierarchical modes. In the progressive mode, im-

126

age data is gradually visualized by starting from very low quality version which is an

approximation of the initial image, then refining the image as more data is received until

the desired resolution is obtained. In the hierarchical mode, on the other hand, different

scales of an image are created at different sizes and resolutions. The version compatible

with the screen size and resolution is then sent to be visualized. This technique is known

as pyramidial image representation or pyramidial mode. In this mode, the initial image

is down-sampled into a lower quality version with half of the resolution of the original

image. The lower resolution sample is filtered and sub-sampled again to form the next

lower resolution copy, and so forth. This mode also supports image compression and

progressive transmission.

Likewise, in visualizing large datasets, data compression and reduction techniques can

be employed to deal with issues such as over plotting when the number of data points

is larger than the number of pixels on the screen. Similar to compression techniques in

image processing, reduction techniques can be applied on the initial dataset to summarize

the data and to scale data to the desired resolution. However, for each request, the initial

dataset has to be examined to provide the sufficient response. Besides data reduction

techniques, other methods can be adapted to improve the performance in interactive

data visualization. To reduce the processing time, data can be processed in advance and

multiple resolutions of the dataset can be prepared. Data reduction techniques can be

iteratively applied on the original dataset or reduced versions to achieve a compact and

successive structure representing multiple levels of detail.

127

Hierarchical structures such as quadtrees have garnered tremendous attention in spa-

tial databases. The term quadtree has been adopted to describe a class of hierarchical

structures which are based on the recursive-decomposition principle [25]. Another struc-

ture related to quadtrees is the pyramids. The pyramid provides a hierarchical data

representation where different resolutions of an image are successively arranged from the

highest quality version to the lowest quality copy. In an image pyramid, for instance, the

lower quality version of an image can be examined to search for a feature instead of pro-

cessing the initial large image [23]. Hierarchical structures are prominent data structures

in spatial databases to index multi-dimensional datasets [95].

To process and search high-dimensional datasets, data can be mapped to one di-

mensional data points. One-dimensional datasets impose less complexity by simplifying

some processes such as range queries. By mapping a multi-dimensional dataset to a

one-dimensional domain using space filling curves [29], a unique number is assigned to

each data point in a sequence that preserve the locality of points in the space. The data

can then be sorted and stored by the assigned values in a linear order. An efficient one-

dimensional B+-tree can be used to improve the performance. B+-tree indexes efficiently

support range queries. Since the tuples (data points) are sequentially sorted where two

spatially adjacent points are also likely to be close on the disk, a limited scope of data

can be searched and queried by scanning continuous tuples.

To maintain the tight coupling between databases and visualization systems, we pro-

posed a hierarchical structure and methods to build and query efficiently the proposed

128

structure. Adopted techniques in this thesis empower the integration of database sys-

tems and visualization techniques where the powerful features of the database system for

data manipulation and storage can be used to improve the visualization process by push-

ing data management into the database engine. Our proposed hierarchical structure, the

inductive-aggregate pyramid provides a multi-level representation of a given data set. The

multi-dimensional ordering (Z-order) employed in our structure facilitates the processing

and indexing of data to materialize and query the aggregate pyramid. The aggregate

pyramid efficiently supports interactive operations. The generalized form of the aggre-

gate pyramid, the cubed pyramid, maintains richer representation of high-dimensional

datasets. A summary of our contributions follows.

7.2 Review of Contributions

The main contributions of the thesis is stated as follows.

1. Provided a comprehensive survey of state of the art of database support for inter-

active visualization.

2. Proposed a hierarchical data structure called the inductive aggregate pyramid

that provides multi-scale representation of data to support interactive exploration

and visualization of large datasets. The reduction techniques along with multi-

dimensional ordering methods adopted in a recursive procedure summarizes data

in a successive and compact form.

129

(a) Proposed techniques and principles that iteratively aggregate data to construct

multiple representations of a dataset, called inductive aggregation. In induc-

tive aggregation, aggregate functions are iteratively and efficiently performed

on data quadrants to form the lower levels of detail by sequentially scanning

the last computed level. Inductive aggregation spatially aggregates data over

one dimension or a group of dimensions.

(b) Defined the meaningful depth for the aggregate pyramid. We define how deep

an aggregate pyramid should be constructed to provide useful and meaning-

ful detail. The depth of the pyramid is an essential element in building the

aggregate pyramid. Since the aggregate pyramid provides multiple levels of

resolution, it needs to maintain a high level of detail representing single data

points to very low resolution data (more aggregate values) that can be ex-

tracted and visualized. The natural depth is defined as a depth at which

all data points are separated; below this depth there is no more detail to be

extracted.

(c) Designed API to support interactive visual operations. We propose algorithms

and techniques that interactively query the aggregate pyramid. In these pro-

posed techniques, the quadrant recursive property of Z ordering [20] (the space

filling curve used in our structure) is employed to query efficiently the aggre-

gate pyramid.

3. Implemented efficiently the aggregate pyramid materialization and use of inductive

130

aggregation.

(a) Materializing efficiently the aggregate pyramid. The construction of the aggre-

gate pyramid is performed in two phases: base-aggregation and re-aggregation.

In the base, the initial dataset is processed and the sequential Z-order values

are assigned to tuples. In the next phase, inductive aggregation efficiently ag-

gregates groups of four consecutive tuples by performing a sequential scan on

the disk.

(b) Indexed the aggregate pyramid for fast API evaluation. The aggregate pyramid

is indexed using the B+-tree index structure on the level of detail (stratum)

and the multi-dimensional ordering key values (Z-order [20]) to facilitate the

constructing and querying this structure.

(c) Determined efficiently the natural depth and demonstrating its critical impact

on the efficiency of building the aggregate pyramid. We proposed an algorithm

that calculates the natural depth of the aggregate pyramid.

(d) Evaluated API cost at interactive speed. The aggregate pyramid is queried

efficiently to support interactive operations. With the proposed techniques, to

answer a query, at most four probes are needed to be examined and the size

of final result is at most four times bigger than the initial query window.

4. Generalized aggregate pyramids to cubed pyramids. A novel structure, the cubed

pyramid, was proposed which is a generalization of roll-up data cubes. The cubed

131

pyramid is a cross product of aggregate pyramids. This structure provides hier-

archical building and processing of data over one or more desired dimensions, in

contrast to data cubes which aggregates data over all combinations of dimensions.

(a) Defined multiple axes for richer representation of high-dimensional data. An

aggregate pyramid can be considered as an axis of one or more dimensions. A

cubed pyramid consists of one or more axes.

(b) Implemented efficiently materialization and use of cubed pyramids. The depth

of each axis is computed by the same technique used in the aggregate pyramid

construction. Inductive aggregation is then applied over each axis while the

attributes of other axes are held constant.

(c) Demonstrated how cubed pyramids’ richer presentation supports richer in-

teractive data representations. Aggregating data over pre-defined dimensions

(axes) provides an independent axis exploration. Different resolutions of one

or more axes can be displayed while the resolution of other axes is fixed.

5. Verified experimentally efficiency of aggregate pyramids

(a) Estimated the aggregate pyramid cardinality in advance. Through the process

of finding the natural depth, the size of the final cardinality can be predicted.

Since in this technique, the natural depth is calculated by finding the local

natural depth of sampled data points, the size of each stratum can also be

approximately computed. These statistics provide valuable information to

132

study and analyze the performance of the aggregate pyramid construction.

(b) Showed the effect of natural depth on cost. The experiments show that in a

very deep stratum where data is sparse, performing aggregation to the next

higher stratum does not result in the desired data reduction. Building an

aggregate pyramid very deep can result in many “islands.” Islands are bins

with no immediate non-empty neighbors. They are replicated without being

aggregated with other points in the inductive aggregation process at higher

strata.

7.3 Future Work

• Evaluate the performance of interactive operations over cubed pyramids, especially

when the cubed pyramid is made of more than two axes.

• Resolve the inefficiencies caused by islands. Islands impose a negative impact on

the efficiency of constructing the aggregate pyramid, and especially more so on the

cubed pyramids. Finding a solution to this problem will improve the efficiency of

aggregate and cubed pyramids construction.

– Currently, we aggregate data over non-overlapping fixed-size aggregate win-

dows (data quadrants), which are composed of 2 × 2 squares containing four

bins (tuples) for a two-dimensional dataset, in inductive aggregation. Aggre-

gating data over variable-size aggregate windows within a stratum or between

133

related strata can be investigated to deal with the problem of islands’ repli-

cation. Since islands do not have immediate neighbors to aggregate with, a

larger size aggregate window could include those islands preventing them to

replicate.

– In this thesis, we have adopted the pyramidial structure. As mentioned be-

fore in Chapter 3, pyramids and quadtrees are relevant structures, while hav-

ing some differences. In a quadtree, terminal nodes can have different levels

(depths) in contrast to a pyramid where all terminal nodes, representing the

most detailed values, have the deepest level. Pyramids can be defined as com-

plete region quadtrees [26,96]. A region quadtree [97] is a 2n × 2n area which

is successively subdivided into four equal quadrants. The region is subdivided

into quadrants, sub-quadrants, sub-sub-quadrants, and so forth until indivis-

ible units are obtained (which represents single data points or pixels). Since

islands do not aggregate in very deep strata, their local natural depth is dif-

ferent from the natural depth calculated for the aggregate pyramid. Instead of

reproducing the islands in deep strata where they do not have any non-empty

nearby bins, we could represent them by their own local natural depth which

could be higher than the depth of the aggregate pyramid. Unlike our cur-

rent structure where all terminal nodes have the same depth which is also the

depth of the whole structure, we might have various depths in the hierarchical

structure.

134

– The idea of not replicating islands would sufficiently improve the performance

of constructing the aggregate and cubed pyramids. However, the lack of pres-

ence of islands in the deeper strata imposes complication on the interactive op-

erations. In our current approach, because all tuples in a stratum are present

and sorted on the Z-order values, a desired resolution can be efficiently queried

over a single stratum traversing a range of consecutive numbers. In querying

the deep strata where some points might not be presented to prevent the repli-

cation of islands, more strata may be required to be examined. One or more

strata above the examined stratum have to be included to provide the com-

plete result in response to a request. Therefore, the extra work needed to

search and fetch the related tuples from corresponding strata can influence the

performance of interactive operations.

• Apply other data reduction techniques to summarize data. In this study, we have

applied aggregation as our data reduction technique to generate the reduced version

of a dataset at different levels of detail. We are interested in studying the possibil-

ity of employing different reduction techniques such as sampling and determining

how the aggregate and cubed pyramids can be interpreted under these reduction

techniques.

• Interpolate over bins (thus approximating) to improve performance. In this study,

we assume that the window of interest as a rectangular window (n ×m) that in-

cludes full size bins. An approximate or exact answer can then be prepared by

135

employing the quadrant-recursive property of the Z-order values since we map the

current window to a higher strata to query at most by four probes. However, a

window of interest may not completely cover all bins. Indeed, a circular or rectan-

gular window of interest might partially cover some bins on the border. One could

investigate how a partial value could be calculated to represent the fractional area

based on the portion of a bin that is covered by the window of interest. It has to be

also determined what aggregate values (min, max, mean, etc.) can be sufficiently

interpolated in this process.

7.4 In Closing

Visual exploration and representation of data is an effective tool employed to facilitate

the process of knowledge discovery and decision making. As technologies evolve, more

powerful and effective techniques are being developed. However, the fast growth of data

and the need to store and process more information have imposed more challenges and

complications for data visualization and exploration processes. Integration of database

systems with visualization tools provide very effective techniques to overcome these prob-

lems since database systems are well designed to support data manipulation and storage

of very large datasets. The database community has done a remarkable job of incor-

porating many novel ideas and effective techniques to empower interactive visual data

exploration and processing. However, there are many issues and difficulties that have

not been addressed sufficiently. To enhance the process of visual representation of large

136

datasets, there are many potential approaches that can be developed and employed to

facilitate this process, especially following the integration of database systems and data

visualization techniques.

137

Bibliography

[1] Stuart K Card and Jock Mackinlay. The structure of the information visualization
design space. In Information Visualization, 1997. Proceedings., IEEE Symposium
on, pages 92–99. IEEE, 1997.

[2] Stephen Few. Data visualization for human perception. The Encyclopedia of Human-
Computer Interaction, 2nd Ed., 2013.

[3] Alan M MacEachren and John H Ganter. A pattern identification approach to
cartographic visualization. Cartographica: The International Journal for Geographic
Information and Geovisualization, 27(2):64–81, 1990.

[4] Dulclerci Sternadt Alexandre and Joao Manuel RS Tavares. Introduction of human
perception in visualization. 2010.

[5] Shusen Liu, Dan Maljovec, Bei Wang, Peer-Timo Bremer, and Valerio Pascucci. Vi-
sualizing high-dimensional data: Advances in the past decade. In Proc. Eurographics
Conf. Visualization, pages 20151115–127, 2015.

[6] Georges Grinstein, Marjan Trutschl, and Urska Cvek. High-dimensional visualiza-
tions. In Proceedings of the Visual Data Mining Workshop, KDD. Citeseer, 2001.

[7] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1(1):29–53, 1997.

[8] Tableau software. http://www.tableausoftware.com.

[9] Richard Wesley, Matthew Eldridge, and Pawel T Terlecki. An analytic data engine
for visualization in tableau. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 1185–1194. ACM, 2011.

[10] Richard Michael Grantham Wesley and Pawel Terlecki. Leveraging compression in
the tableau data engine. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 563–573. ACM, 2014.

138

http://www.tableausoftware.com

[11] Parke Godfrey, Jarek Gryz, and Piotr Lasek. Interactive visualization of large data
sets. 2015.

[12] Leilani Battle, Michael Stonebraker, and Ronald Chang. Dynamic reduction of query
result sets for interactive visualizaton. In Big Data, 2013 IEEE International Con-
ference on, pages 1–8. IEEE, 2013.

[13] Niklas Elmqvist and Jean-Daniel Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. Visualization and Com-
puter Graphics, IEEE Transactions on, 16(3):439–454, 2010.

[14] Chris Stolte, Diane Tang, and Pat Hanrahan. Multiscale visualization using data
cubes. IEEE Transactions on Visualization and Computer Graphics, 9(2):176–187,
2003.

[15] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual querying of
big data. In Computer Graphics Forum, volume 32, pages 421–430. Wiley Online
Library, 2013.

[16] Hadley Wickham. Bin-summarise-smooth: a framework for visualising large data,
2013.

[17] Lauro Lins, James T Klosowski, and Carlos Scheidegger. Nanocubes for real-time
exploration of spatiotemporal datasets. Visualization and Computer Graphics, IEEE
Transactions on, 19(12):2456–2465, 2013.

[18] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
336–343. IEEE, 1996.

[19] Alexandre Perrot, Romain Bourqui, Nicolas Hanusse, Frédéric Lalanne, and David
Auber. Large interactive visualization of density functions on big data infrastructure.
In Large Data Analysis and Visualization (LDAV), 2015 IEEE 5th Symposium on,
pages 99–106. IEEE, 2015.

[20] Guy M Morton. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York, 1966.

[21] Yvette E Gelogo, Tai-hoon Kim, and Bimal Kumar Ray. Compressed images trans-
mission issues and solutions. 2014.

[22] David Taubman and Michael Marcellin. JPEG2000 Image Compression Funda-
mentals, Standards and Practice: Image Compression Fundamentals, Standards and
Practice, volume 642. Springer Science & Business Media, 2012.

[23] Steven Tanimoto and Theo Pavlidis. A hierarchical data structure for picture pro-
cessing. Computer Graphics and Image Processing, 4(2):104–119, 1975.

139

[24] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The pyramid-technique:
towards breaking the curse of dimensionality. In ACM SIGMOD Record, volume 27,
pages 142–153. ACM, 1998.

[25] Hanan Samet. An overview of quadtrees, octrees, and related hierarchical data
structures. In Theoretical Foundations of Computer Graphics and CAD, pages 51–
68. Springer, 1988.

[26] Hanan Samet. The quadtree and related hierarchical data structures. ACM Com-
puting Surveys (CSUR), 16(2):187–260, 1984.

[27] Irene Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905–910, 1982.

[28] Clifford A Shaffer and Hanan Samet. Algorithm to expand regions represented by
linear quadtrees. Image and Vision Computing, 6(3):162–168, 1988.

[29] Giuseppe Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen, 36(1):157–160, 1890.

[30] David M Mark. Neighbor-based properties of some orderings of two-dimensional
space. Geographical Analysis, 22(2):145–157, 1990.

[31] Jock Mackinlay. Automating the design of graphical presentations of relational in-
formation. Acm Transactions On Graphics (Tog), 5(2):110–141, 1986.

[32] Steven F Roth and Joe Mattis. Automating the presentation of information. In
Artificial Intelligence Applications, 1991. Proceedings., Seventh IEEE Conference
on, volume 1, pages 90–97. IEEE, 1991.

[33] Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight cou-
pling of dynamic query filters with starfield displays. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 313–317. ACM, 1994.

[34] Christopher Ahlberg and Erik Wistrand. Ivee: An information visualization and
exploration environment. In Information Visualization, 1995. Proceedings., pages
66–73. IEEE, 1995.

[35] NK Jogt and B Shneiderman. Starfield visualization with interactive smooth zoom-
ing. Visual Database Systems 3: Visual information management, page 1, 1995.

[36] Christopher Ahlberg, Christopher Williamson, and Ben Shneiderman. Dynamic
queries for information exploration: An implementation and evaluation. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, pages
619–626. ACM, 1992.

140

[37] Christopher Ahlberg. Spotfire: an information exploration environment. ACM SIG-
MOD Record, 25(4):25–29, 1996.

[38] Jade Goldstein, Steven F Roth, John Kolojejchick, and Joe Mattis. A framework
for knowledge-based interactive data exploration. Journal of Visual Languages &
Computing, 5(4):339–363, 1994.

[39] Alexander Aiken, Jolly Chen, Michael Stonebraker, and Allison Woodruff. Tioga-2:
A direct manipulation database visualization environment. In icde, pages 208–217,
1996.

[40] Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, and Jiang Wu.
Tioga: Providing data management support for scientific visualization applications.
In VLDB, volume 93, pages 25–38, 1993.

[41] Amihai Motro. Flex: A tolerant and cooperative user interface to databases. Knowl-
edge and Data Engineering, IEEE Transactions on, 2(2):231–246, 1990.

[42] Daniel A Keim and Hans-Peter Kriegel. Visdb: Database exploration using multidi-
mensional visualization. Computer Graphics and Applications, IEEE, 14(5):40–49,
1994.

[43] Steven F Roth, Peter Lucas, Jeffrey A Senn, Cristina C Gomberg, Michael B Burks,
Philip J Stroffolino, AJ Kolojechick, and Carolyn Dunmire. Visage: a user interface
environment for exploring information. In Information Visualization’96, Proceedings
IEEE Symposium on, pages 3–12. IEEE, 1996.

[44] Jade Goldstein and Steven F Roth. Using aggregation and dynamic queries for
exploring large data sets. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 23–29. ACM, 1994.

[45] Mark Derthick, John Kolojejchick, and Steven F Roth. An interactive visual query
environment for exploring data. In Proceedings of the 10th annual ACM symposium
on User interface software and technology, pages 189–198. ACM, 1997.

[46] Miron Livny, Raghu Ramakrishnan, Kevin Beyer, Guangshun Chen, Donko Don-
jerkovic, Shilpa Lawande, Jussi Myllymaki, and Kent Wenger. Devise: integrated
querying and visual exploration of large datasets. In ACM SIGMOD Record, vol-
ume 26, pages 301–312. ACM, 1997.

[47] Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel Rosenblum, and Pat
Hanrahan. Rivet: A flexible environment for computer systems visualization. ACM
SIGGRAPH Computer Graphics, 34(1):68–73, 2000.

[48] Anna Fredrikson, Chris North, Catherine Plaisant, and Ben Shneiderman. Temporal,
geographical and categorical aggregations viewed through coordinated displays: a

141

case study with highway incident data. In Proceedings of the 1999 workshop on
new paradigms in information visualization and manipulation in conjunction with
the eighth ACM internation conference on Information and knowledge management,
pages 26–34. ACM, 1999.

[49] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online aggregation. In ACM
SIGMOD Record, volume 26, pages 171–182. ACM, 1997.

[50] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, Gregor Hackenbroich, and Volker
Markl. M4: a visualization-oriented time series data aggregation. Proceedings of the
VLDB Endowment, 7(10):797–808, 2014.

[51] Jean-François Im, Felix Giguere Villegas, and Michael J McGuffin. Visreduce: Fast
and responsive incremental information visualization of large datasets. In Big Data,
2013 IEEE International Conference on, pages 25–32. IEEE, 2013.

[52] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[53] Ben Shneiderman. Extreme visualization: squeezing a billion records into a mil-
lion pixels. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 3–12. ACM, 2008.

[54] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the
visualization of hierarchical information structures. In Visualization, 1991. Visual-
ization’91, Proceedings., IEEE Conference on, pages 284–291. IEEE, 1991.

[55] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. Visualization and
Computer Graphics, IEEE Transactions on, 8(1):52–65, 2002.

[56] Bill Jelen and Michael Alexander. Pivot Table Data Crunching: Microsoft Excel
2010. Pearson Education, 2010.

[57] Chris Stolte, Diane Tang, and Pat Hanrahan. Query, analysis, and visualization
of hierarchically structured data using polaris. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
112–122. ACM, 2002.

[58] Parke Godfrey, Jarek Gryz, Piotr Lasek, and Nasim Razavi. Visualization through
inductive aggregation. In Proceedings of EDBT, 2016.

[59] Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggregate queries
with a multi-resolution tree structure. In ACM SIGMOD Record, volume 30, pages
401–412. ACM, 2001.

[60] Hanan Samet. Spatial data structuresi. 1995.

142

[61] Walid G Aref and Hanan Samet. Efficient processing of window queries in the pyra-
mid data structure. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 265–272. ACM, 1990.

[62] Hanan Samet. Foundations of multidimensional and metric data structures. Morgan
Kaufmann, 2006.

[63] A Rosenfeld. Some useful properties of pyramids. In Multiresolution Image Process-
ing and Analysis, pages 2–5. Springer, 1984.

[64] Hanan Samet. Hierarchical spatial data structures. In Design and Implementation
of Large Spatial Databases, pages 191–212. Springer, 1989.

[65] DM Mark and MF Goodchild. On the ordering of two-dimensional space: intro-
duction and relation to tesseral principles. Spatial Data Processing using Tesseral
Methods. NERC, Unit for Thematic Information Systems, Natural Environment Re-
search Council, Swindon, Great Britain, pages 179–192, 1986.

[66] Hans Sagan. Space-filling curves. Springer Science & Business Media, 2012.

[67] David Hilbert. Ueber die stetige abbildung einer line auf ein flächenstück. Mathe-
matische Annalen, 38(3):459–460, 1891.

[68] David M Mark and Jean Paul Lauzon. Linear quadtrees for geographic information
systems. In Proceedings of the International Symposium on Spatial Data Handling,
volume 2, pages 412–430. Zurich, 1984.

[69] David M Mark. The use of quadtrees in geographic information systems and spatial
data handling. In Proceedings Auto Carto London, volume 1, pages 517–526, 1986.

[70] Jack A Orenstein. Algorithms and data structures for the implementation of a
relational database system. 1983.

[71] Jack A Orenstein and Tim H Merrett. A class of data structures for associative
searching. In Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Prin-
ciples of database systems, pages 181–190. ACM, 1984.

[72] Marvin White. N-trees: large ordered indexes for multi-dimensional space. Appli-
cation Mathematics Research Sta, Statistical Research Division, US Bureau of the
Census, 1981.

[73] Michael F Goodchild and Andrew W Grandfield. Optimizing raster storage: an
examination of four alternatives. In Proceedings of Auto-Carto, volume 6, pages
400–407, 1983.

143

[74] Zuotao Li, X Sean Wang, Menas Kafatos, and Ruixin Yang. A pyramid data model
for supporting content-based browsing and knowledge discovery. In Scientific and
Statistical Database Management, 1998. Proceedings. Tenth International Conference
on, pages 170–179. IEEE, 1998.

[75] Rashid Ansari and Nasir Memon. The jpeg standard. Department of Computer
Science, University of Illinois and Polytechnic University, Chicago & New York,
1999.

[76] Gregory K Wallace. The jpeg still picture compression standard. Consumer Elec-
tronics, IEEE Transactions on, 38(1):xviii–xxxiv, 1992.

[77] Brani Vidakovic. Discrete wavelet transformation. Statistical Modeling by Wavelets,
pages 101–117.

[78] Charilaos Christopoulos, Athanassios Skodras, and Touradj Ebrahimi. The jpeg2000
still image coding system: an overview. Consumer Electronics, IEEE Transactions
on, 46(4):1103–1127, 2000.

[79] Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische An-
nalen, 69(3):331–371, 1910.

[80] Eric J Stollnitz, Tony D DeRose, and David H Salesin. Wavelets for computer
graphics: a primer. Computer Graphics and Applications, IEEE, 15(3):76–84, 1995.

[81] Prashan Premaratne. Effective hand gesture classification approaches. In Human
Computer Interaction Using Hand Gestures, pages 105–143. Springer, 2014.

[82] Joseph M Hellerstein, Ron Avnur, Andy Chou, Christian Hidber, Chris Olston,
Vijayshankar Raman, Tali Roth, and Peter J Haas. Interactive data analysis: The
control project. Computer, 32(8):51–59, 1999.

[83] Jeffrey Heer, Jock D Mackinlay, Chris Stolte, and Maneesh Agrawala. Graphical
histories for visualization: Supporting analysis, communication, and evaluation. Vi-
sualization and Computer Graphics, IEEE Transactions on, 14(6):1189–1196, 2008.

[84] Jock D Mackinlay, Pat Hanrahan, and Chris Stolte. Show me: Automatic presenta-
tion for visual analysis. Visualization and Computer Graphics, IEEE Transactions
on, 13(6):1137–1144, 2007.

[85] Brightkite Dataset. https://snap.stanford.edu/data/loc-brightkite.html.

[86] TLC Trip Record Dataset. http://www.nyc.gov/html/tlc/html/about/trip_

record_data.shtml.

[87] Carlos Scheidegger. Interactive visual analysis of big data. Handbook of Big Data,
page 61, 2016.

144

https://snap.stanford.edu/data/loc-brightkite.html
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

[88] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis Kotidis.
Dwarf: Shrinking the petacube. In Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages 464–475. ACM, 2002.

[89] Y Bedard. Spatial olap. vidéo-conférence. 2ème forum annuel sur la rd, géomatique
vi: Un monde accessible, montréal, 1997.

[90] Sonia Rivest, Yvan Bédard, and Pierre Marchand. Toward better support for spatial
decision making: defining the characteristics of spatial on-line analytical processing
(solap). GEOMATICA-OTTAWA-, 55(4):539–555, 2001.

[91] Rosa Matias and Joao Moura-Pires. Spatial on-line analytical processing (solap): A
tool the to analyze the emission of pollutants in industrial installations. In Artificial
intelligence, 2005. epia 2005. portuguese conference on, pages 214–217. IEEE, 2005.

[92] Nurefsan Gur, Katja Hose, Torben Bach Pedersen, and Esteban Zimanyi. Model-
ing and querying spatial data warehouses on the semantic web. Lecture Notes in
Computer Science, 2015.

[93] Marcus Sampaio, C Baptista, A Souza, and F Nascimento. Enhancing decision
support systems with spatial capabilities. Intelligent Databases: Technologies and
Applications. Hershey PA, 17033:94–116, 2006.

[94] Pierre Marchand, Alexandre Brisebois, Yvan Bédard, and Geoffrey Edwards. Im-
plementation and evaluation of a hypercube-based method for spatiotemporal explo-
ration and analysis. ISPRS journal of photogrammetry and remote sensing, 59(1):6–
20, 2004.

[95] Stefan Berchtold, Christian Boehm, and Hans-Peter Kriegel. High-dimensional index
structure, November 28 2000. US Patent 6,154,746.

[96] Larry S Davis. Foundations of image understanding, volume 628. Springer Science
& Business Media, 2012.

[97] Hanan Samet. Using quadtrees to represent spatial data. In Computer Architectures
for Spatially Distributed Data, pages 229–247. Springer, 1985.

145

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Problem: Seeing Data
	Motivation
	Methodology
	Contributions
	Outline

	Background and Related Work
	Inductive Aggregate Pyramid
	Data Summarization
	Hierarchical Data Structures
	Multi-dimensional Ordering
	Aggregate Data Pyramid Model
	Progressive and Interactive Visualization
	Compression Techniques
	Wavelet Transformation
	One-dimensional Haar Wavelet Transform
	Two-dimensional Haar Wavelet Transform

	Data Compression

	Inductive aggregate pyramid structure and specification
	Inductive Aggregate Pyramid
	Inductive Aggregation

	Building the Aggregate Pyramid
	Mapping Multi-dimensional data into 1D
	Depth of the Aggregate Pyramid
	Metric Distance Measurement
	Super Bin Adjacency
	Issues with the Natural Depth

	Indexing the pyramid

	API
	Resizing
	Zooming
	Panning
	Region of Interest (ROI) (Data of Interest)
	Implementation of Interactive Operations

	Cubed Pyramid
	Definition of Cubed Pyramids
	Cubed Aggregate Pyramid Implementation
	Cubed Aggregate Pyramids and OLAP Roll-up Data Cubes
	Cubed Aggregate Pyramids Cardinalities
	Further Considerations

	Experiments
	Conclusions and Future Work
	In Summary
	Review of Contributions
	Future Work
	In Closing

	Bibliography

