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Abstract 

Valid use of the traditional independent samples ANOVA procedure requires that the population 

variances are equal. Previous research has investigated whether variance homogeneity tests, such 

as Levene’s test, are satisfactory as gatekeepers for identifying when to use or not to use the 

ANOVA procedure. This research focuses on a novel homogeneity of variance test that 

incorporates an equivalence testing approach. Instead of testing the null hypothesis that the 

variances are equal against an alternate hypothesis that the variances are not equal, the 

equivalence-based test evaluates the null hypothesis that the difference in the variances falls 

outside or on the border of a predetermined interval against an alternate hypothesis that the 

difference in the variances falls within the predetermined interval. Thus, with the equivalence-

based procedure, the alternate hypothesis is aligned with the research hypothesis (variance 

equality). A simulation study demonstrated that the equivalence-based test of population 

variance homogeneity is a better gatekeeper for the ANOVA than traditional homogeneity of 

variance tests.   
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The Variance Homogeneity Assumption and the Traditional ANOVA: 

Exploring a Better Gatekeeper 

The independent group analysis of variance (ANOVA) F- test is widely used to test 

hypotheses regarding population means. For example, a researcher may want to know if the 

number of words recalled from a list differs depending on the nature of the lists (e.g., happy, sad, 

or neutral words). It is widely known that the ANOVA F-test is biased when the assumptions of 

normality, homogeneity of variance (HOV), or independence of errors are violated (Choi, 2005; 

Cochran, 1947; Cribbie, Fiksenbaum, Wilcox, &Keselman, 2012; Glass, Peckham, & Sanders, 

1972; Hoekstra, Kiers, & Johnson, 2012; Olsen, 2003). In this paper, we explore the HOV 

assumption of the ANOVA F-test. More specifically, we are interested in whether tests of the 

HOV assumption can inform researchers regarding when it is appropriate/safe to use the 

traditional ANOVA F-test and when it is recommended that they seek out an appropriate robust 

test. 

To be clear, our recommendation, which will be repeated in the discussion, is that 

researchers always adopt tests that are robust to violations of the HOV assumption. However, 

previous research (Golinski & Cribbie, 2009; Erceg-Hurn & Mirosevich, 2008; Grisson, 2000; 

Keselman et al., 1998; Sharpe, 2013; Wilcox, 1998) indicates that researchers are resistant to 

making robust techniques their 'go to' method. For example, in a study by Keselman et al. (1998) 

examining articles in prominent education and psychology journals, 93.3% of the published 

articles with independent group univariate designs used the traditional ANOVA F-test. This is 

extremely troubling since research exploring assumption violation in independent groups 

ANOVA designs has found that the data rarely meet the assumptions (Micceri, 1989; Golinski & 

Cribbie, 2009), and as outlined above the ANOVA F-test is not robust to violations of the HOV 
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assumption. Golinski and Cribbie (2009) found that only 2% of researchers adopted a HOV test 

while more than 40% of the largest to smallest variance ratios exceeded 2:1. As a second best 

solution to always using a robust test, researchers could check whether or not they have satisfied 

the HOV assumption of the ANOVA F-test. If the assumption is satisfied, then the ANOVA F-

test is utilized; if not, then an appropriate robust test is adopted. In other words, the HOV test is 

used as a gatekeeper for the ANOVA F-test.  

Previous research has found that this strategy of using a HOV test to determine when a 

traditional ANOVA F-test is appropriate is not effective at controlling the overall Type I error 

rate (across the traditional ANOVA F-test and robust tests) at approximately α (Parra-Frutos, 

2016; Rasch, Kubinger, & Moder, 2011; Zimmerman, 2004). This research used traditional 

difference-based HOV tests (e.g., Levene). However, more recent research has proposed that 

equivalence-based HOV tests are more appropriate for testing the research hypothesis that 

population variances are equal (Mara & Cribbie, 2014).Therefore, this paper will explore the use 

of HOV tests as gatekeepers for use of the traditional independent groups ANOVA F-test 

procedure; however, this study will propose a new strategy whereby the gatekeeper is an 

equivalence-based HOV test, instead of a traditional difference-based HOV test. First, we 

summarize previous literature on traditional HOV tests and the use of traditional HOV tests as 

gatekeepersfor deciding whether to use the ANOVA F-test or a robust test. Second, we outline 

the equivalence-based HOV test and propose it as a gatekeeper for deciding when to use (or not 

use) the traditional ANOVA F-test. Lastly, a simulation study was used to compare the overall 

Type I error rates for a test of population mean differences when a traditional difference-based 

HOV test is used as a gatekeeper and when an equivalence-based HOV test is used as a 

gatekeeper. 
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Homogeneity of Variance Tests as Gatekeepers 

Many different tests for HOV have been proposed, with the Levene test on deviations 

from the median (LM; Brown & Forsythe, 1974) often emerging as the recommended procedure 

over a broad range of conditions (Conover, Johnson, & Johnson, 1981; Nordstokke & Zumbo, 

2010; Sharma &Kibria, 2013) and available in many popular software packages. HOV tests have 

been suggested as gatekeepers for deciding when to use a robust procedure (e.g., Welch’s, 1951, 

heteroscedastic ANOVA F-test) or the traditional ANOVA (Rasche et al., 2011; Ruscio & 

Roche, 2012). If the HOV test is satisfied, the traditional ANOVA F-test procedure can be used. 

If the HOV test is violated, then a robust procedure should be adopted (see Figure 1). 

However, simulation studies have shown that using traditional HOV tests as preliminary 

tests (gatekeepers) for deciding when to use the ANOVA F-test or a robust test produces 

unacceptable Type I error rates (Rasch et al., 2011; Zimmerman, 1996; Zimmerman, 2004). 

Thus, traditional HOV tests are not effective gatekeepers for deciding when it is acceptable to 

use, or not use, the traditional ANOVA F-test procedure. 

One of the reasons for the ineffectiveness of these traditional HOV tests as gatekeepers is 

that the goal (research hypothesis) of traditional difference-based HOV tests does not align with 

the study goal. For example, when researchers use traditional HOV tests as gatekeepers for the 

ANOVA F-test, the research hypothesis (variance equality) does not match the alternative 

hypothesis of the test (variance inequality). With a traditional HOV test, such as the LM, the null 

hypothesis is that the variances are equal, 𝐻0: 𝜎12 = 𝜎22 = ⋯ = 𝜎𝐽2, where 𝐽 is the number of 

groups. This test is not optimal for detecting when population variances are equal since the 

power for detecting equal variances decreases as sample sizes increase, whereas the chance of 
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declaring the variances equal increases substantially as sample sizes decrease. Put in another 

way, researchers with small sample sizes are more likely to conclude that the population 

variances are equal than their counterparts with large sample sizes, even if the difference in the 

variances remained constant. Further, not rejecting the null hypothesis does not prove that the 

null hypothesis is true (Altman & Bland, 1995). In other words, failing to reject the null 

hypothesis only shows that there is insufficient evidence to detect unequal population variances 

(Mara & Cribbie, 2014). Thus, the present study aims to explore a more effective statistical 

method for testing the homogeneity of variance assumption in order to derive improved 

gatekeepers for the ANOVA F-test procedure. 

Equivalence Testing Approach to Assessing Variance Homogeneity 

As mentioned above, traditional difference-based null hypothesis tests (e.g., Levene-

based approaches) explore whether there are differences in the population parameter of interest; 

the null hypothesis specifies a lack of relationship, whereas the alternative hypothesis specifies 

the presence of a relationship. However, what is really desired is a test of the practical 

equivalence of population variances; in other words, any differences in the variances should be 

too small to be of any practical significance. Mara and Cribbie (2014) proposed the use of an 

equivalence-based HOV test that was derived from Wellek’s (2010) one-way test of population 

mean equivalence and Levene’s (1960) HOV test. With this test, the research hypothesis 

(equivalence of population variances) is aligned with the alternative hypothesis (also equivalence 

of population variances), not the null hypothesis. More specifically, the null hypothesis specifies 

that the difference in the variances falls outside of or at the bounds of an a priori determined 

interval based on the smallest practically significant difference, whereas the alternative 

hypothesis declares that the difference among the variances of the groups falls within an interval 
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based on this minimally important difference. The test statistic quantifies the standardized 

squared Euclidian distance, and thus, the interval is one-sided. Mara and Cribbie (2014), 

following Wellek (2010), proposed the following hypotheses: 

𝐻0: Ψ∗2 ≥ ε2 

𝐻1: Ψ∗2 < ε2 

where Ψ∗2 quantifies the standardized squared Euclidian distance of the population variances, 

and ε2 represents the minimally important practical distance for Ψ∗2. To provide some context 

regarding these hypotheses, these are equivalent to the hypotheses used for evaluating the 

equivalence of several independent population means (see Wellek, 2010). Since the Levene-

based tests use an ANOVA on the deviations from a measure of central tendency, it is logical 

that an equivalence-based test following Levene’s methodology would have hypotheses 

synchronous with a one-way independent group equivalence test. Before discussing the 

equivalence-based test of equal variance, the traditional difference-based Levene tests of unequal 

population variances will be discussed because the equivalence-based test of equal variances was 

derived from these traditional tests.  

Levene Difference-based Homogeneity of Variance Tests 

 Original Levene Test. The original Levene’s (1960) test is a traditional ANOVA F-test 

on the absolute deviations of the sample scores from the sample mean, 𝑧𝑖𝑗 = �𝑋𝑖𝑗 − 𝑀𝑗�, j = 1, …, 

J, in order to assess variance inequality across the groups, where 𝑋𝑖𝑗 is the sample raw score of 

the 𝑖th individual in the 𝑗th group, and 𝑀𝑗 is the mean of the 𝑗th group.  

 Levene’s Median-based Test with Welch Adjustment (LWM). Numerous modifications 

of the original Levene’s test have been proposed. Among the modifications, the present study 
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explores Levene’s median-based test with a Welch adjustment (LWM; Keselman, Games, & 

Clinch, 1979). 

Levene’s median-based test with Welch adjustment (LWM) is a traditional ANOVA F-

test on the absolute deviations of the sample scores from the sample median, denoted as 𝑧𝑚𝑖𝑗, 

that tests for variance differences across the groups: 

𝑧𝑚𝑖𝑗 = �𝑋𝑖𝑗 − 𝑀𝐷𝑁𝑗� 

where 𝑋𝑖𝑗 is the sample raw score of the 𝑖th individual in the 𝑗th group, and 𝑀𝐷𝑁𝑗 is the median 

of the 𝑗th group. The null hypothesis of LWM, 𝐻0: 𝜎12 = ⋯ = 𝜎𝐽2, is rejected if 𝐹′ ≥  𝐹𝛼,𝐽−1,𝑑𝑓′, 

where: 

𝐹′ =

∑𝑤𝑧𝑚𝑗(𝑧𝑚�����𝑗−𝑧𝑚�����′..)2

𝐽−1�

1+2(𝐽−2)
𝐽2−1

∑� 1
𝑛𝑗−1

��1−
𝑤𝑧𝑚𝑗
∑𝑤𝑧𝑚𝑗

�
2 ,                  

𝑛𝑗 is the size of the 𝑗th group, 𝑠𝑧𝑚𝑗
2  is the variance of the transformed scores for the 𝑗th group, 

𝑤𝑧𝑚𝑗 = 𝑛𝑗
𝑠𝑧𝑚𝑗
2  is the size of 𝑗th group divided by the sample variance of the 𝑧𝑚𝑖𝑗 for the 𝑗th group,  

𝑧𝑚����𝑗is the mean of the𝑧𝑚𝑖𝑗 for the 𝑗th group, and 𝑧𝑚����′.. =
∑𝑤𝑧𝑚𝑗𝑧𝑚�����𝑗
∑𝑤𝑧𝑚𝑗

 is the mean of the 𝑧𝑚����𝑗. The 

observed F-statistic (𝐹′) is approximately distributed as F with the nominal Type I error rate α, 

𝐽 − 1 numerator degrees of freedom, and denominator degrees of freedom: 

𝑑𝑓′ = 𝐽2−1

3∑� 1
𝑛𝑗−1

��1−
𝑤𝑧𝑚𝑗
∑𝑤𝑧𝑚𝑗

�
2.     

The Welch adjusted test statistic and degrees of freedom help the control for any differences in 

the variances of the deviations from the group medians. 
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Equivalence-based Homogeneity of Variance Test 

 Several novel equivalence-based HOV tests were proposed and examined in the 

simulation study by Mara and Cribbie (2014). Among the proposed tests, the simulations showed 

that the Levene-Wellek median-based test with a Welch adjustment (LWWM) was the best-

performing equivalence-based test in terms of accurate Type I error rates and the highest power 

for detecting equivalent variances across groups. Thus, the present study examines the 

performance of the LWWM as a gatekeeper for the traditional ANOVA procedure. The 

performance of the equivalence-based LWWM will be compared to the performance of the 

traditional LWM, which is the difference-based counterpart of the LWWM discussed in the 

previous section. 

The LWWM uses transformed raw scores, which are the absolute deviations from the 

median (𝑧𝑚𝑖𝑗), as also used in the LWM test. The null hypothesis of equivalence-based HOV 

tests,𝐻0: Ψ∗2 ≥ ε2, is rejected if 𝐹′ < 𝐹𝛼,𝐽−1,𝑑𝑓′,𝑛�𝜀2, where 𝑛�ε2 is the noncentrality parameter. 

 
Equivalence Interval. The equivalence interval, in this case a one-sided interval denoted 

as 𝜀, outlines the smallest difference that is still practically significant. Thus, an appropriate 

value of ε should be determined in the context of each research study. To facilitate an 

understanding of the magnitude of ε, it is equivalent to Cohen’s d in the two group case, 

𝑑 = 𝑀1−𝑀2
𝑠𝑑(𝑋1−𝑋2), where M1, M2 are the sample means, sd is the standard deviation of difference 

between X1 and X2, and X1, X2 are the scores in groups 1 and 2, respectively. For instance, ε = 

d=.25. In five group case, Cohen’s d can be converted to Cohen’s f using  𝑓 = � 𝑑2

2𝐽
 , where d is 

the Cohen’s d and J is the number of groups (Mara & Cribbie, 2014). Cohen’s d of .25 is equated 
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to Cohen’s f of approximately .08. As effect sizes are interpreted as small, medium, and large, 

both Cohen’s d in two group case and Cohen’s f in five group case fall in small effect.  

Rejecting the null hypothesis provides evidence that the differences in the variances are 

small enough to be considered practically insignificant. Further, as discussed previously, the 

research hypothesis of the equivalence-based HOV test (detecting equal population variances) is 

aligned with the alternative hypothesis of the test, which is more theoretically appropriate 

compared to traditional difference-based HOV tests. 

Present Study 

This study explores whether the novel equivalence-based HOV test (LWWM) can be an 

effective gatekeeper for the traditional independent groups ANOVA F-test. More specifically, 

the question we are exploring is whether using the equivalence–based HOV test to decide if the 

traditional ANOVA F-test (when the null hypothesis of the equivalence-based HOV test is 

rejected) or the Welch robust F-test (when the null hypothesis of the equivalence-based HOV 

test is not rejected) should be used will provide acceptable overall Type I error control. It is 

important to note that by Type I error control we are referring to the overall rate of Type I errors 

for testing the null hypothesis that the population means are equal. Additionally, we also expect 

that the traditional difference-based HOV test will not maintain the empirical Type I error rate at 

the nominal rate based on the findings of past research. 

Method 

A simulation study was used to evaluate two strategies for deciding when to use the 

traditional one-way ANOVA F-test and when to abandon the traditional ANOVA procedure in 

favour of a robust test (Welch’s robust F-test in this study). More specifically, we evaluated the 
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empirical Type I error rates of the traditional ANOVA F-test/Welch robust F-test combination 

when the LWM test and LWWM tests were used as gatekeepers to decide when to adopt the 

ANOVA F-test and when to adopt the Welch robust F-test (see Figure 1). We investigated 

conditions where there J = 2 or J = 5 independent groups. We also varied the average per group 

sample size from 𝑛� = 20 to 𝑛� = 200 (total N = 40 to 400 in the two group condition and N = 100 

to 1000 in the five group condition). In each condition, five different population variance ratios 

were used and three different sample size ratios were examined. Unequal population variances 

were directly (positively) and inversely (negatively) paired with the unequal sample sizes (i.e., in 

the directly paired condition, the largest variance was paired with the largest sample size and the 

smallest variance was paired with the smallest sample size, and in the inversely paired condition, 

the largest variance was paired with the smallest sample size and the smallest variance was 

paired with the largest sample size). Since we are only investigating Type I errors, all population 

means were fixed at zero. See Table 1 for the specific conditions used in the simulations. 

The nominal Type I error rate (α) was set at .05, the equivalence interval (ε) for the 

LWWM was set to .25 (conservative value recommended by Wellek, 2010), and all outcome 

variables were normally distributed. We focused on the conservative ε as .25 since this is more in 

line with the goals of our research (i.e., ensure that researchers are not accidentally steered in the 

direction of the non-robust test). We used Bradley’s (1978) liberal limits (α ±.5α) to determine 

whether empirical Type I error rates are acceptably close to the nominal rate.  Although there are 

numerous methods that could be adopted for evaluating robustness (see Serlin, 2000), we find 

Bradley’s limits to be most appropriate for our goals. Specifically, we are looking for an 

approach that provides satisfactory, not necessarily perfect, Type I error rates, and many 
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approaches (e.g., two standard errors) would be too conservative. Bradley’s liberal limits provide 

a compromise between conservative approaches and simple eye-balling the results.  

Five thousand simulations were run for each of the 162 (2 group size X 3 total N X 3 

sample size ratio X 9 population variance ratio) conditions, resulting in a standard error of 

approximately .003 when the rejection rate was close to α. All analyses were run using R (R Core 

Team, 2015). 

Results 

 Empirical Type I error rates for J = 2 and J = 5 are presented in Tables 2 and 3, 

respectively. Type I error rates when the sample sizes were equal never fell outside of Bradley’s 

limits; therefore, we excluded those conditions from the tables. In other words, since all of the 

procedures were satisfactory when sample sizes were equal, and further that equal sample sizes 

are rare in empirical research, we do not discuss these results further. Additionally, the pattern of 

results for 𝑛� = 50 were similar to that for 𝑛� = 200; therefore, we only present the results for 𝑛� = 

20 and 𝑛� = 50.  

No Preliminary Test/Gatekeeper 

 As expected, for both J = 2 and J = 5, the Type I error rates of the traditional ANOVA F-

test regularly fell outside of Bradley’s liberal limits, whereas, the rates for the Welch robust F-

test never fell outside of these limits. More specifically, the rates of the ANOVA F-test were 

regularly conservative (reaching as low as .000) when the sample sizes and variances were 

directly paired. On the other hand, the Type I error rates of the ANOVA F-test were regularly 

liberal (reaching as high as .411) when the sample sizes and variances were inversely paired. 
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LWM/LWWM as a Gatekeeper 

 When the traditional LWM test was used to decide when to use the ANOVA F-test and 

when to use the Welch robust F-test, the overall Type I error rates for the test of population mean 

differences often fell outside of Bradley’s liberal limits, especiallywhen the sample sizes and 

variances were inversely paired and when the overall sample size was small. For example, with 

small and unequal sample sizes (𝑛1 = 5, 𝑛2 = 35) that were negatively paired with the population 

variances (96, 6), the empirical Type I error rates reached eight times the nominal rate (.403). 

 When the LWWM was used to decide when to use the ANOVA F-test or Welch robust 

F-test, the empirical Type I error rates of the test of population means never fell outside of 

Bradley’s liberal limits. In other words, when the LWWM was used as a gatekeeper, the 

empirical Type I error rates of the combined ANOVA F/Welch robust F strategy were always 

approximately equal to the nominal α level. 

Discussion 

The independent groups ANOVA F-test is widely used in behavioural science research 

for conducting tests of mean difference in between-subjects designs (Keselman et al., 1998). 

However, violations of the HOV assumption of the traditional ANOVA procedure are common 

and have a pronounced effect on the Type I error rates and the power for detecting population 

mean differences (Cribbie et al., 2012; Golinski & Cribbie, 2009; Hoekstra, Kiers, & Johnson, 

2012). Violations of the HOV assumption will cause the nominal Type I error rates to be inflated 

or deflated depending on the combinations of the unequal sample sizes and unequal variances. 

This phenomenon was demonstrated in this study and by numerous other researchers (e.g., 

Boneau, 1960; Glass et al., 1972). 
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The recommendation to exclusively use robust procedures was put forth more than a half 

a century ago, yet this recommendation has been almost completely ignored. This is unfortunate 

because, as evidenced in this study and numerous previous studies, exclusively using a robust 

test (e.g., Welch’s, 1951, heteroscedastic ANOVA F-test) provides good control of the empirical 

Type I error rates. Given the unpopularity of the ‘robust only’ strategy, an alternative solution is 

the use of an HOV test as a gatekeeper for deciding when to use the traditional ANOVA F-test 

and when to use a robust test.  

The present study compared the performance of two HOV tests as gatekeepers for the 

ANOVA F-test: (i) a traditional difference-based HOV test by Levene (1960) and Brown-

Forsythe (1974) based on the absolute value of the deviations from the median (LWM); and (ii) a 

recently proposed equivalence-based test also utilizing the absolute value of the deviations from 

the median (LWWM; Mara & Cribbie, 2014). The empirical Type I error rates often fell outside 

of Bradley’s limits when the LWM was used as a gatekeeper. On the other hand, all the 

empirical Type I error rates were within Bradley’s limits when the LWWM was used as a 

gatekeeper.  

One of the reasons for the excellent Type I error results when the LWWM was used as a 

gatekeeper is that the LWWM, as an equivalence-based procedure, has a greater probability of 

concluding equal variances as sample sizes increase, whereas the LWM, as a difference-based 

procedure, has a greater probability of concluding unequal variances as sample sizes increase. 

For example, in the sample size condition 𝑛 = 10, 15, 20, 25, 30 and the population variance 

condition σ2 = 30, 40, 50, 60, 70, the LWWM concluded that the variances were equal 

approximately 2% of the time (therefore resulting in adoption of the robust Welch F test in 98% 

of the simulations), whereas the LWM concluded that the variances were equal approximately 
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70% of the time (therefore resulting in adoption of the robust Welch F test in only 30% of the 

simulations). This clearly provides the LWWM with an advantage since it is less likely to adopt 

the traditional non-robust ANOVA procedure when variances are very disparate and sample 

sizes are small. 

With all simulation studies, a limitation is that the results are only applicable to the 

conditions investigated in this study. However, given the wide range of sample size and variance 

conditions adopted, we expect that the results would hold generally in one-way independent 

group designs. However, the present study only examined normally distributed data; therefore, 

inferences based on our results are limited to normally distributed outcomes. To broaden the 

applicability of our results, future studies should use nonnormally distributed data to examine 

whether the results of our study can be applied to both normally and nonnormally distributed 

data. The performance of this strategy, however, may depend onthe use of an appropriate 

normality test and a robust test that is insensitive to violations of both the normality and HOV 

assumptions (see Cribbie et al., 2012).  

To conclude, it is important to reiterate that we recommend that researchers always adopt 

tests that are robust to violations of the HOV assumption in order to ensure that empirical Type I 

error rates are maintained at approximately nominal rate. However, numerous quantitative 

methods researchers have made this recommendation with very little adoption by applied 

researchers. Thus, we explored whether using an equivalence-based HOV test (LWWM) as a 

gatekeeper could be an appropriate substitute for always using a robust test. Our results indicate 

that adopting a robust test when the LWWM is not statistically significant and adopting the 

traditional ANOVA F-test otherwise is an acceptable strategy for controlling overall empirical 

Type I error rates for a test of population mean difference. In order to facilitate adoption of the 
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equivalence-based HOV test as a gatekeeper, a user-friendly R (R Core Team, 2015) function ??? 

is available in the R package ??? (omitted for blind review). 
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Table 1 
 
Conditions used in the Simulation Study. 
 

𝑛� = 20 𝑛� = 50 𝑛� = 200     σ2 

J = 2    

20, 20 50, 50 200, 200 50, 50 

10, 30 25, 75 100, 300 40, 60a 

5, 35 15, 85 30, 350 35, 70a 

   20, 80a 

   6, 96a 

J = 5    

20, 20, 20, 20, 20 50, 50, 50, 50, 50 200, 200, 200, 200, 200 50, 50, 50, 50, 50 

10, 15, 20, 25, 30 25, 40, 50, 60, 75 100, 150, 200, 250, 300 40, 45, 50, 55, 60a 

5, 12, 20, 28, 35 15, 35, 50, 65, 85 50, 125, 200, 275, 350 30, 40, 50, 60, 70a 

   20, 35, 50, 65, 80a 

   6, 28, 50, 70, 96a 

Note. 𝑛� = average sample size; σ2 = population variances; J = number of groups; a = this 
pattern of population variances was also reversed in order to created inversely paired 
population variances and sample sizes. 
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Table 2. 

Type I error results with and without a gatekeeper strategy for J = 2. 

 

   Gatekeeper   Gatekeeper   Gatekeeper   Gatekeeper 

 F W LW

M 

LW

WM 

F W LW

M 

LW

WM 

F W LW

M 

LW

WM 

F W LW

M 

LW

WM 

𝜎2 N = (5, 35) N = (10, 30) N = (15, 85) N = (25, 75) 

50, 50 .045 .055 .067 .060 .050 .053 .054 .055 .055 .057 .061 .060 .041 .042 .043 .042 

40, 60 .023 .056 .053 .057 .034 .055 .044 .055 .028 .055 .044 .056 .031 .053 .042 .053 

30, 70 .010 .050 .043 .050 .018 .054 .041 .054 .011 .049 .045 .049 .019 .049 .045 .049 

20, 80 .003 .053 .049 .053 .010 .050 .045 .050 .002 .046 .045 .046 .008 .055 .055 .055 

6, 96 .001 .057 .057 .057 .003 .051 .051 .051 .001 .048 .048 .048 .002 .049 .049 .049 

60, 40 .093 .061 .105 .068 .079 .055 .080 .057 .087 .045 .085 .051 .077 .053 .073 .054 

70, 30 .159 .055 .161 .065 .116 .056 .108 .057 .138 .048 .119 .051 .112 .053 .080 .053 

80, 20 .232 .054 .234 .063 .156 .053 .128 .054 .201 .048 .120 .048 .154 .052 .064 .052 

96, 6 .411 .053 .403 .053 .238 .050 .099 .050 .340 .050 .057 .050 .228 .052 .052 .052 

Note. F = ANOVA F test; W = Welch F test; LW = Levene Welch Median Gatekeeper with Welch Robust test; LWWM = Levene Wellek 

Welch Median Gatekeeper with Welch Robust test, Bold = Type I error rate fell outside of Bradley’s liberal limits (.025-.075) 
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Table 3 

Type I error results with and without a gatekeeper strategy for J = 5. 

   Gatekeeper   Gatekeeper   Gatekeeper   Gatekeeper 

 F W LW

M 

LW

WM 

F W LW

M 

LW

WM 

F W LW

M 

LW

WM 

F W LW

M 

LW

WM 

𝜎2 N = (5, 12, 20, 28, 35) N = (10, 15, 20, 25, 30) N = (15, 35, 50, 65, 85) N = (25, 40, 50, 60, 75) 

50, 50, 50, 50, 50 .052 .055 .064 .058 .052 .053 .054 .054 .054 .053 .057 .056 .051 .050 .052 .052 

40, 45, 50, 55, 60 .037 .062 .061 .063 .044 .058 .053 .059 .038 .055 .047 .055 .036 .048 .041 .048 

30, 40, 50, 60, 70 .028 .059 .056 .060 .040 .052 .052 .052 .026 .045 .042 .046 .038 .054 .052 .054 

20, 35, 50, 65, 80 .022 .056 .055 .056 .029 .053 .052 .053 .019 .047 .047 .047 .030 .051 .050 .051 

6, 28, 50, 70, 96 .021 .054 .054 .054 .029 .053 .053 .053 .023 .053 .053 .053 .027 .048 .048 .048 

60, 55, 50, 45, 40 .075 .065 .083 .070 .065 .055 .068 .056 .072 .053 .071 .055 .067 .054 .066 .055 

70, 60, 50, 40, 30 .112 .070 .117 .073 .090 .055 .086 .056 .100 .050 .082 .051 .078 .049 .064 .050 

80, 65, 50, 35, 20 .149 .065 .135 .066 .106 .049 .087 .050 .139 .053 .056 .053 .100 .049 .050 .049 

96, 70, 50, 28, 6 .223 .060 .061 .060 .149 .050 .050 .050 .190 .048 .048 .048 .144 .052 .052 .052 

Note. F = ANOVA F test; W = Welch F test; LW = Levene Welch Median Gatekeeper with Welch Robust test; LWWM = Levene Wellek 

Welch Median Gatekeeper with Welch Robust test, Bold = Type I error rate fell outside of Bradley’s liberal limits (.025-.075) 
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Figure 1. Homogeneity of Variance Tests as Gatekeepers 
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