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Abstract—This paper presents a retrospect of an Android app
collection named AndroZoo and some research works conducted
on top of the collection. AndroZoo is a growing collection
of Android apps from various markets including the official
Google Play. At the moment, over five million Android apps
have been collected. Based on AndroZoo, we have explored
several directions that mine Android apps for resolving various
challenges. In this work, we summarize those resolved mining
challenges in three research dimensions, including code analysis,
app evolution analysis, malware analysis, and present in each
dimension several case studies that experimentally demonstrate
the usefulness of AndroZoo.

I. INTRODUCTION

Mobile devices such as smart phones have permeated into
out daily life, where now people complete many of their tasks
through mobile devices such as to carry out social networking,
buy bus/train tickets, navigate car routes, etc. Nowadays people
spend a significant amount of time everyday on their mobile
devices, making mobile ecosystem an important target to
explore.

Among several mobile operating systems, Android is the
most popular one that has almost dominated the market by
grabbing nearly 90% of share. The popularity of Android-
based smart phones also reflects on the number of Android
apps, which by now has exceeded a record of 3 million apps
on Google Play1. Such a large number of apps provide great
resources and values for researchers and practitioners to mine.

State-of-the-art works have explored the direction of mining
Android apps from different aspects [1], [2], [3]. As summa-
rized by Martin et al. [4] in their recent survey on app store
analysis, literature works have tackled seven aspects related
to mining Android apps, which are API, Feature, Release,
Reviews, Security, Store Ecosystem, and Prediction. In our
previous systematic literature review (SLR) on static analysis
of Android apps [5], we additionally identified four directions
that literature works also mine Android apps for, including
analyzing app clones, addressing energy problems, generating
test cases, and verifying code correctness. The SLR also shows
that security is the most targeted aspect for Android apps.

Our work is in line with the aforementioned literature works,
where we attempt to mine Android apps for achieving various
purposes including to secure Android apps. Since our research
community does not provide a large dataset of Android apps
by the time when we started our research, we start to explore
the direction of mining Android apps by first building a large

1https://www.appbrain.com/stats/stats-index

enough dataset of Android apps, which are named later as
AndroZoo [6]. AndroZoo is a growing collection of Android
apps from various sources, including the official Google Play
store. By far, it has collected over five millions of Android apps
that we share to the research community for encouraging our
fellow researchers to engage in reproducible experiments.

Based on AndroZoo, we tackle three research dimensions on
mining Android apps: (1) Code analysis: We mainly perform
static code analysis to address Android security problems; (2)
App evolution analysis: We present some case studies around
the analysis of app versions. Concretely, we focus not only on
app variants that are useful for evaluating extractive Software
Product Line (SPL) adoption techniques, but also on app
versions including both legitimate versions that belong to the
lineage of an app and repackaged versions of apps which are
now proliferating in third-party markets. (3) Malware analysis:
We have explored a new type of vulnerability named potential
component leak and have conducted several machine learning
algorithms to detect Android malware.

II. BACKGROUND

To help readers better understand this work, we now briefly
introduce the different artifacts shipped with Android apps
that could be potentially interesting to miners to achieve their
mining objectives.

An Android app is basically a zip archive file, which
includes several types of files that are put together during the
app releasing phase. Table I enumerates the file structure of a
given Android app and a basic explanation on the functionality
of those files. The most important file are AndroidManifest.xml
and classes.dex. We now detail these two files separately.

TABLE I: File Structure of an Android App.

Structured Files Description
AndroidManifest.xml App configuration such as declaration of permissions, etc.
classes.dex Dalvik bytecode, generated from Java code
resources.arsc Compressed resource file
META-INF/ Meta-data related to the APK file contents
res/ Resource directory, storing files like image, layout, etc.
assets/ Data directory, storing files that will be compiled into APK file

AndroidManifest.xml provides essential information about
the app to the Android system so that the system knows how
to execute the app code. Indeed, it contains several important
attributes that could be interesting to app miners. We now
summarize them as follows:

• package. The package attribute depicts the unique name
of a given Android app, which thus is frequently used to
uniquely name a given app.



• sdkVersion. The manifest leverages the uses-sdk element
to express an app’s compatibility with one or more
versions of Android platform.

• permission. Permission is declared to allow the app to
access some sensitive actions. For example, permission
READ PHONE STATE allows the app to read the phone
state information like device id.

• component declaration. Component is the basic unit
forming an Android app. Normally, all the components
should be declared in the manifest, except for rare cases
in which components are registered dynamically (in app
code).

classes.dex contains the compiled app code, which is orig-
inally written in Java. The actual implementation of app
components declared in AndroidManifest.xml is located in
classes.dex. As demonstrated in Fig. 1, there are four types
of components: 1) Activity, which represents the visible part
of Android apps; 2) Service, which is dedicated to execute
time-intensive tasks in the background; 3) Broadcast Receiver,
which waits to receive user-specific events as well as system
events (e.g., phone rebooting); 4) Content Provider, which
provides a standard interface for other components/apps to
access structured data.
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Fig. 1: Overview of Android Components.

Android components can communicate with each other,
where the communication is referred by the literature as
inter-component communication (ICC), e.g., from Activity to
Service in Fig. 1. Actually, as shown in Fig. 1, there are two
types of ICC: (1) explicit ICC, where the target component is
explicitly set and (2) implicit ICC, where the target component
is not explicitly set but is specified by some meta information
such as Action, Category. For implicit ICC, the final com-
munication is determined by the Android system based on
the specified meta information. The Android system searches
in the installed apps for all the possible target components,
either within the same app or from other apps. If the target
component is from a different app, the communication is then
referred by the literature as inter-app communication (IAC),
e.g., from Broadcast Receiver in App1 to Service in App2 in
Fig. 1.

III. ANDROZOO

AndroZoo is a growing collection of Android apps from
several sources, including the official Google Play market,
various alternative markets such as Anzhi and Slideme, and
some open-source repositories like F-Droid. At the moment,
AndroZoo contains more than five million apps. Fig. 2 plots
the distribution of DEX size (i.e., size of classes.dex) of our
collected AndroZoo apps. The DEX size ranges from several

hundred kilobytes to over 10 megabytes, demonstrating that
our dataset is highly diverse and thus can be leveraged to
conduct various mining challenges. We have released our
dataset to the research community, with Restful APIs to
facilitate the access of Android apps. We hope our dataset
can be well leveraged by the community to promote the field
of mining Android apps, and also to encourage our fellow
researchers to engage in reproducible experiments.
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Fig. 2: Distribution of DEX Size of AndroZoo Apps (in KB).

In addition to Android apps, within AndroZoo, we also
make available some pre-computed artifacts such as the sign-
ing certificate of Android apps, the malicious status of Android
apps, etc, trying our best to boost the mining process for
potential miners.

IV. RESEARCH DIMENSIONS

Fig. 3 presents an overview of the research dimensions that
we have explored so far based on the AndroZoo apps and
their meta-data that we pre-compute for facilitating high level
analyses. In a nutshell, our research on mining Android apps
are mainly located in three dimensions: (1) Code analysis; (2)
App evolution analysis; and (3) Malware analysis; We now
detail those research dimensions respectively.
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Fig. 3: Overview of Our Research Dimensions.

A. Code Analysis

ICC-Aware Analysis. Since Android apps can leak sensi-
tive information carelessly or maliciously and malicious apps
manipulate significantly more ICCs than benign apps, we
propose a static analysis approach named IccTA to detect
privacy leaks crossing Android components, and crossing apps



with the help of ApkCombiner [7]. Unlike state-of-the-art
approaches, which mainly detect privacy leaks within sin-
gle component, IccTA propogates context information among
components to support inter-component communication (ICC)
analysis [8], [9].

IccTA applies a code instrumentation based approach, i.e.,
change the code before analyzing, in order to make the ICC
analysis reusable to existing intra-component analyzers. List-
ing 1 illustrates a code snippet showing an ICC-based privacy
leak. The device id, considered as sensitive information, is
obtained and stored into an Intent object (lines 8-10) in
Activity1. Then, an ICC method startActivity is called, which
switches the current execution from Activity1 to Activity2.
Finally, in Activity2, the device id is retrieved and is eventually
sent out of the device through sendTextMessage (lines 15-17).

1 //TelephonyManager telMnger; (default)
2 //SmsManager sms; (default)
3 class Activity1 extends Activity {
4 void onCreate(Bundle state) {
5 Button to2 = (Button) findViewById(to2a);
6 to2.setOnClickListener(new OnClickListener(){
7 void onClick(View v) {
8 String id = telMnger.getDeviceId();
9 Intent i = new

Intent(Activity1.this,Activity2.class);
10 i.putExtra("sensitive", id);
11 Activity1.this.startActivity(i);
12 }});}}
13 class Activity2 extends Activity {
14 void onStart() {
15 Intent i = getIntent();
16 String s = i.getStringExtra("sensitive");
17 sms.sendTextMessage(number,null,s,null,null);
18 }}

Listing 1: Example of an ICC Leak.

This privacy leak cannot be detected by intra-component
analyzers such as FlowDroid [10], because the switching
between Activity1 and Activity2 is unfortunately decided only
by the system and it is non-trivial to obtain it directly at the
code level [11], [12]. Therefore, in this work we present IccTA,
a code instrumentation based approach, which modifies the
code to be analyzed in a way that inter-component feature is
mitigated. As an example, Listing 2 demonstates the modi-
fications made by IccTA for the ICC leak example shown in
Listing 1. The ICC method startActivity is replaced by a helper
method that simulates the ICC through Java code, resulting in
a simplified code snippet where ICC is no longer appearing.
As a consequence, existing intra-component analyzers such as
FlowDroid can now detect the privacy leak shown in Listing 1
without any modification.

Reflection-Aware Analysis. Like ICC we introduced previ-
ously, reflection is another challenge that usually causes static
analyzers to yield false negatives. Android developers heavily
use reflection in their apps for legitimate reasons such as
providing genericity, maintaining backward compatibility, ac-
cessing inaccessible APIs [13], but also significantly for hiding
malicious actions. Unfortunately, based on our SLR [5], most
state-of-the-art works do not take into account the presence
of reflective calls. Hence, we present DroidRA [14], [15],

1 // modifications of Activity1
2 - Activity1.this.startActivity(i);
3 + IpcSC.redirect0(i);
4 // creation of a helper class
5 + class IpcSC {
6 + static void redirect0(Intent i) {
7 + Activity2 a2 = new Activity2(i);
8 + a2.dummyMain();
9 + }

10 + }
11 // modifications in Activity2
12 + public void dummyMain() {
13 + // lifecycle and callbacks
14 + // are called here
15 + }
16 + public Activity2(Intent i) {
17 + this.intent_for_ipc = i; }
18 + public Intent getIntent() {
19 + return this.intent_for_ipc; }

Listing 2: Code Instrumentation for startActivity.

a code instrumentation based approach, to tackle this issue
in a non-invasive way. We first model the reflection analysis
problem to a constant string propagation problem and then
leverage the COAL solver [11] to infer the values of reflection-
related targets. Finally, we instrument the app code to replace
reflective calls by traditional Java calls where the separated
parts due to reflection are now connected. Experimental results
demonstrate that DroidRA is capable of supporting state-of-
the-art static approaches to provide more sound and complete
analyses.

Common Library Analysis. In a preliminary study, Wang
et al. [16] have found that over 60% of Android apps’s code is
from common libraries, which may not be relevant to certain
analyses such as repackaging analysis. Indeed, there are a
number of researches that exclude libraries before performing
their analyses [17], [18], [19]. Despite some efforts on investi-
gating common libraries, the momentum of Android reserach
has not yet produced a complete set of libraries that can be
taken as a whitelist to support further analysis. Therefore, in
this work, we leverage AndroZoo apps to perform a heuristic-
based approach with several steps of refinements to harvest
potential common libraries, for which we eventually collect
1,113 general libraries and 240 advertisement libraries. Fur-
thermore, based on the collected libraries, we have performed
several empirical studies that confirm our motivation: certain
analyses such as repackaging analysis and malware detection
should not take into account the library code, which constitute
noise in app features, in order to produce accurate results.

B. App Evolution Analysis

App Variant Analysis. App variants (or family, e.g., the dif-
ferent products of a same company) usually embrace valuable
information for evaluating extractive Software Product Line
(SPL) adoption techniques, e.g., the reuse practices among
app variants [20].

Fig. 4 presents a tree model to select app variants from a
set of to-be mined Android apps, where each non-leaf node
is represented by a package segment (e.g., baidu) while leaf
node is represented through the remaining package segments



(e.g., BaiduMap). A branch from the root node (i.e., com) to a
leaf node (e.g., BaiduMap) represents an unique package name
(i.e., the Baidu Map). Because each Android app can have
different versions, e.g., each update will result in a version,
each leaf node has further been affiliated with a list of meta-
data of app versions. The time line of the vertical axis shows
that the affiliated list is ranked through times and the apps it
contains are actually different versions of the app indicated by
the leaf node. Given a time point, the tree model also gives a
way to identify family variants. For example, as shown in the
red dashed rectangle, given the latest time point, we are able
to collect a set of variants for company com.baidu.
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Fig. 4: A Simplified Example Showing how App Variants and
Versions are Selected.

In this research direction, based on a clustering-based ap-
proach, we have collected in total 75,963 families of apps:
The median number of variants in a family is three and
760 collected families have over 100 variants. Through a
preliminary study on the collected app families, we have
identified several reuse cases adopted by Android app variants,
including library reuse, automated app generation, content-
driven variants and device-driven variants [21]. With an ad-
vanced study, we believe that more reuse cases, including
semantic reuses, can be identified on top of our collect app
family variants.

Pairwise Similarity Analysis. We present a research frame-
work called SimiDroid [22] that supports multi-level pairwise
similarity comparison of Android apps, aiming at supporting
the understanding of similarities or changes among app ver-
sions and among repackaged apps. SimiDroid is designed as
a plugin-based framework that has already integrated various
comparison methods such as code-based or resource-based
comparisons. In addition to detect similar Android apps, we
also perform a number of case studies on AndroZoo apps to
demonstrate the suitability of SimiDroid in providing explana-
tion hints for different usage scenarios. For example, we have
leveraged SimiDroid to check and validate the hypothesis of
multi-generation repackaging, where an original app identified
in a repackaging pair is actually a repackaged app from a prior
repackaging generation [23].

Piggybacking Behavior Understanding. Fig. 5 presents
some basic terms related to Android app piggybacking. Basi-
cally, the working process of piggybacking is like this: Given
an original Android app (referred to as carrier), attackers
first unpack it and then modify its code by injecting some
additional code (referred to as rider), and finally re-pack it

back to a new app version (referred to as piggybacked app).
The injected code will be triggered thanks to the so-called
hooks, which connect the execution of carrier code to rider
code.

Set of Android Apps

Carrier Rider

piggybacked APP (a2)

Hook
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APP (a1)

Set of Piggybacked Apps

Set of Malware

Fig. 5: Piggybacking Terminology.

Despite many research works have been conducted in the
literature to detect piggybacked apps, the literature lacks a
comprehensive study on the behavior of piggybacking. To
this end, we construct a benchmark set of piggybacked app
pairs (through pairwise similarity analysis) and investigate the
characteristics of malicious piggybacked apps in comparison
with their original counterparts. Thanks to these comparisons,
we have eventually observed many interesting findings on the
piggybacking process [24], [25]. The findings are summarized
as follows:

1) The realization of malicious behavior is often accompa-
nied by manipulation of app resource files.

2) Piggybacking changes app behavior mostly by tamper-
ing with carrier code.

3) Piggybacked apps are potentially built in batches.
4) Piggybacking often asks for new permissions to allow

the realization of malicious behavior.
5) Piggybacking may recurrently request some specific

permissions that are less requested by non-piggybacked
apps.

6) Piggybacking is probably largely automated.
7) Piggybacking may overly request permissions that have

been already declared by their original apps.
8) Piggybacking may introduce new user interfaces, imple-

ment new receivers and services, but will not add new
database structures.

9) Piggybacking often consists in injecting a component
that offers the same capabilities (i.e., Action, Category,
etc.) as an existing component in the original app.

10) Piggybacking may change the launcher component so as
to trigger the execution of rider code.

11) Piggybacking is often characterized by a naming mis-
match between existing and newly injected components.

12) Piggybacking generally connects the malicious payloads
to the benign carrier code via a single method call, mak-
ing it possible to automatically locate grafted malicious
payloads from piggybacked malicious apps.

13) Piggybacking hooks are generally placed within library
code rather than in core app code.



14) Piggybacking often reuses the to-be injected malicious
payloads.

15) Piggybacking adds code which performs sensitive ac-
tions, often without referring to device users.

16) Piggybacking operations are distributed over well-
known malicious behavior types.

17) Piggybacking increasingly hides malicious actions via
uses of reflection and dynamic class loading.

18) Piggybacking complicates app’s overall call graph, while
rider code can even largely exceed in size the carrier
code.

19) Piggybacking are seldom conducted by authors of be-
nign apps.

20) Piggybacking code brings more execution paths where
sensitive data can be leaked.

C. Malware Analysis

Potential Component Leaks. Potential Component Leaks
are such attacks that leak sensitive information through known
ICC vulnerabilities such as Activity Hijacking Attack and
Broadcast Injection Attack [26]. In this work, we have defined
two types potential component leaks: 1) potential passive
component leak, which leaks everything a component receives
from other components; and 2) potential active component
leak, which attempts to send sensitive information to other
components. In order to detect the aforementioned attacks, we
present a prototype tool named PCLeaks, which based on ICC
vulnerabilities to perform data-flow analysis on Android apps
to pinpoint potential component leaks that could potentially
be exploited by other components (or apps) [27].

ML-based Malware Detection. As a follow-up work of
PCLeaks, we find that potential component leaks are common
in Android apps and that malicious apps have manipulated
significantly more potential component leaks than benign apps.
This evidence makes potential component leaks perfect can-
didates of features for machine learning (ML) based malware
detection. Towards verifying this hypothesis, we take potential
component leaks as features to train several classification
models (with different settings such as different benign/mal-
ware ration, different ML algorithm, etc.) and perform 10-fold
cross-validation to justify the ability of identifying malicious
Android apps. Our experimental validations show high perfor-
mance for identifying malware, demonstrating that potential
component leaks are useful for discriminating malicious from
benign apps [28].

Topic-Specific Data-Flow Analysis. State-of-the-art work
has shown that both app descriptions [29] and sensitive
data-flows [17] in standalone are capable of discriminating
malicious from benign apps. In this work, we take both app
descriptions (i.e., indicative of app topics) and sensitive data-
flows (i.e., functionality implemented) into consideration for
discriminating malware from benign apps. At beginning, we
leverage adaptive LDA with GA, an advanced topic model, to
cluster apps different categories based on their descriptions.
Then, we use information gain ratio of sensitive data-flows to
build so-called “topic-specific data-flow signatures”. Finally,

we leverage those signatures to characterize malicious Android
apps. Our experiments on 3,691 benign and 1,612 malicious
apps demonstrate that topic-specific data-flow signatures are
useful and effective in highlighting malicious app behav-
ior [30].

Malicious Payload Identification. As shown in Fig. 5, the
malicious payloads of piggybacked apps are usually triggered
by a small peace of code called hooks. If we are able to locate
such hooks, we can accurately locate the malicious payloads,
and thus reducing the examination space for security analysts
to understand the malicious behavior. To this end, we propose
in this work a tool-based approach called HookRanker [31],
which provides rank lists of potential malicious packages
based on the way malware behavior are revealed. With ex-
periments on a ground truth of piggybacked Android apps, we
demonstrate that HookRanker is helpful for locating malicious
packages of piggybacked Android malware.

V. CONCLUSION AND FUTURE WORK

In this paper, we have provided a retrospect on our works
relating to mining Android apps, more specially on mining
AndroZoo, our growing collection of Android apps. We have
enumerated three research dimensions that we have explored
in the field mining Android apps, including code analysis, app
evolution analysis, and malware analysis.

Through almost five years of research in this field, we have
learned several lessons: (1) constructing reliable dataset is
the key to fulfill different mining purposes. (2) fundamental
functionalities should be implemented in a reusable way, so
that it does not need to be re-innovated.

Future Work: We plan to dig deeper into existing dimen-
sions and also explore new dimensions in mining Android
apps:

• We aim at enhancing AndroZoo by providing an even
larger dataset (e.g., via crawling more alternative markets)
and easing the access of interested AndroZoo apps (e.g.,
via pre-computing more meta-data of collected apps).

• We intent to summarize the common parts of conducting
code analysis and thereby propose generic frameworks
for promoting the reuse of the implementation of fun-
damental functionalities [32]. For example, we plan to
design a Jimple-based Instrumentation Language (JIL)
and a solver that interprets JIL descriptions and thus
solves instrumentation problems in a generic way [33].

• We plan to explore the direction of mining app lineages,
which provides a wealth of change information that
can be leveraged in various research directions such as
learning bug fix patterns or recommending new API
usages.

• We plan to embrace Android testing techniques to ex-
amine Android apps dynamically. Since static and dy-
namic analysis are naturally complementary to each other,
we plan to combine these two techniques together and
thereby to propose hybrid approaches for resolving more
advanced challenges in mining Android apps.
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[14] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.
Droidra: Taming reflection to support whole-program analysis of android
apps. In The 2016 International Symposium on Software Testing and
Analysis (ISSTA 2016), 2016.
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Jacques Klein. Comprehending malicious android apps by mining topic-
specific data flow signatures. Information and Software Technology,
2017.
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