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The structure signature of a system made up of n components having continuous and i.i.d.
lifetimes was defined in the eighties by Samaniego as the n-tuple whose k-th coordinate is
the probability that the k-th component failure causes the system to fail. More recently, a
bivariate version of this concept was considered as follows. The joint structure signature
of a pair of systems built on a common set of components having continuous and i.i.d.
lifetimes is a square matrix of order n whose (k, l)-entry is the probability that the k-th
failure causes the first system to fail and the l-th failure causes the second system to fail.
This concept was successfully used to derive a signature-based decomposition of the joint
reliability of the two systems. In this talk we will show an explicit formula to compute
the joint structure signature of two or more systems and extend this formula to the general
non-i.i.d. case, assuming only that the distribution of the component lifetimes has no ties.
Then we will discuss a condition on this distribution for the joint reliability of the systems
to have a signature-based decomposition. Finally we will show how these results can be
applied to the investigation of the reliability and signature of multistate systems made up
of two-state components. This talk is based on the research paper [7].
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1. Introduction

Consider a system S = (C,φ,F ), where C is a set [n] = {1, . . . , n} of nonre-
pairable components, φ∶{0,1}n → {0,1} is a structure function, and F is the
joint c.d.f. of the component lifetimes T1, . . . , Tn, defined by

F (t1, . . . , tn) = Pr(T1 ⩽ t1, . . . , Tn ⩽ tn) , t1, . . . , tn ⩾ 0.

We assume that the system S is semicoherent, which means that the function φ is
nondecreasing in each variable and satisfies the conditions φ(0) = 0 and φ(1) = 1,
where 0 = (0, . . . ,0) and 1 = (1, . . . ,1).

Samaniego [11] defined the signature of any system S whose components
have continuous and i.i.d. lifetimes as the n-tuple s = (s1, . . . , sn) where

sk = Pr(TS = Tk∶n), k = 1, . . . , n,

Here TS is the system lifetime and Tk∶n is the k-th smallest component lifetime,
that is, the k-th order statistic of the component lifetimes.

It is well-known that the signature s is independent of the joint distribution F
of the i.i.d component lifetimes. A combinatorial interpretation of this vector and
a formula for its computation are given by Boland [1]. Here we thus see s as a
combinatorial object associated with (C,φ) and we call it structure signature.

This original definition of signature can be extended to the general non-i.i.d.
case, assuming only that the joint distribution function F has no ties, i.e., Pr(Ti =
Tj) = 0 for i ≠ j (we will always make this assumption). The probability signature
of a system S is the n-tuple p = (p1, . . . , pn) whose k-th coordinate is defined by

pk = Pr(TS = Tk∶n), k = 1, . . . , n.

Thus, for a given system (C,φ,F ), we can consider the two objects s and p. The
first one is associated with (C,φ) and can be computed for instance via Boland’s
formula, or by its definition after replacement of F by the c.d.f. corresponding to
any i.i.d. distribution of lifetimes.

The probability signature p depends on the joint c.d.f. F of the component
lifetimes through the relative quality function q∶2[n] → [0,1], which is defined as

q(A) = Pr ( max
i∈C∖A

Ti <min
j∈A

Tj), A ⊆ C,

with the convention that q(∅) = q(C) = 1. We have indeed (see [6])

pk = ∑
A⊆C

∣A∣=n−k+1

q(A)φ(A) − ∑
A⊆C

∣A∣=n−k

q(A)φ(A), (1)



which generalizes Boland’s formula under the sole assumption that the joint dis-
tribution function F has no ties.

Navarro et al. [9,10] proposed to analyze the joint behavior of several systems
S1 = (C,φ1, F ) , . . . , Sm = (C,φm, F ) built on a common set of components.
To simplify our presentation we will henceforth restrict ourselves to the case of
two systems. In this case, under the assumption that the lifetimes are i.i.d. and
continuous, Navarro et al. [10] defined the joint structure signature of the systems
S1 and S2 as the square matrix s of order n whose (k, l)-entry is the probability

sk,l = Pr(TS1 = Tk∶n and TS2 = Tl∶n), k, l = 1, . . . , n.

This definition can also be extended directly to the general dependent setting,
assuming only that the function F has no ties : the joint probability signature of
two systems S1 = (C,φ1, F ) and S2 = (C,φ2, F ) is the square matrix p of order
n whose (k, l)-entry is the probability

pk,l = Pr(TS1 = Tk∶n and TS2 = Tl∶n), k, l = 1, . . . , n.

Thus, with a given pair of systems we can associate the two matrices s and p.
Since s can be computed using the general formulas obtained for p, simply by
replacing F by the c.d.f corresponding to any i.i.d. distribution of lifetimes, we
will concentrate on the results for p.

We will provide a formula for the computation of the joint probability signa-
ture p by introducing a bivariate version of the relative quality function.

In the general non-i.i.d. setting, we will provide and discuss a necessary and
sufficient condition on the function F for the joint reliability of two systems

FS1,S2(t1, t2) = Pr(TS1 > t1 and TS2 > t2), t1, t2 ⩾ 0,

to have a signature-based decomposition, thus extending the results of Navarro et
al. [10] in that direction.

We will then apply these results to the investigation of the signature and re-
liability of multistate systems made up of two-state components in the general
dependent setting. We will show how such a system can be decomposed in sev-
eral two-state system built on the same set of components. This decomposition
will provide a connection between the concept of signature that naturally emerges
in the framework of such multistate systems and the concept of joint signature of
several systems.

2. The joint probability signature

The results on the joint probability signature of two systems are more easily stated
using the concept of joint tail probability signature. It is the square matrix P of



order n + 1 whose (k, l)-entry is the probability

P k,l = Pr(TS1 > Tk∶n and TS2 > Tl∶n), k, l = 0, . . . , n.

The conversion formulas between p and P are given by the next result.

Proposition 1. We have P k,l = ∑n
i=k+1∑n

j=l+1 pi,j , for k, l = 0, . . . , n, and
pk,l = P k−1,l−1 − P k,l−1 − P k−1,l + P k,l , for k, l = 1, . . . , n.

In order to compute the matrix P from φ1, φ2, and F , we introduce the bivari-
ate version of the relative quality function.

Definition 1. The joint relative quality function associated with the joint c.d.f. F
is the symmetric function q∶2[n] × 2[n] → [0,1] defined by

q(A,B) = Pr ( max
i∈C∖A

Ti <min
j∈A

Tj and max
i∈C∖B

Ti <min
j∈B

Tj),

with the convention that q(A,∅) = q(A,C) = q(A) for every A ⊆ C and
q(∅,B) = q(C,B) = q(B) for every B ⊆ C.

In many situations, including the i.i.d. case, but also the exchangeable case, the
joint relative quality function can be easily computed, and reduces to the function
q0∶2[n] × 2[n] → [0,1] defined by

q0(A,B) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n−∣A∣)! (∣A∣−∣B∣)! ∣B∣!
n!

if B ⊆ A,
(n−∣B∣)! (∣B∣−∣A∣)! ∣A∣!

n!
if A ⊆ B,

0 otherwise.

(2)

We can now show how to compute the matrix P from φ1, φ2, and q.

Theorem 1. For every k, l ∈ {0, . . . , n} we have

P k,l = ∑
∣A∣=n−k

∑
∣B∣=n−l

q(A,B)φ1(A)φ2(B). (3)

The same formula holds for the computation of the joint tail structure signa-
ture, just replacing q by q0. It is also clear that Theorem 1 easily generalizes to
the case of m systems.

3. Signature-based decomposition of the joint reliability

In [11], a signature-based decomposition of the reliability of a system (C,φ,F )
was derived, assuming that the lifetimes have a continuous i.i.d. distribution. This



decomposition has the form

FS(t) =
n

∑
k=1

sk F k∶n(t) , (4)

where FS(t) = Pr(TS > t) is the reliability of the system at time t and F k∶n(t)
is the reliability at time t of the k-out-of n system built on the same components,
i.e. F k∶n(t) = Pr(Tk∶n > t). Several conditions were analyzed in the literature
for the existence of this decomposition. It was proved by Marichal et al. [8] that
its existence at time t for all coherent or semicoherent systems is governed by
the exchangeability of the state variables of the components at time t (the state
variable of component j ∈ C at time t is defined by Xj(t) = Ind(Tj > t). The
state vector at time t is then X(t) = (X1(t), . . . ,Xn(t))).

We will now analyze the existence of an analogous decomposition for the case
of two systems in the general dependent case, thus extending the results of [10].
To this aim we will consider the joint distribution of the state vectors X(t1) and
X(t2) at times t1 ⩾ 0 and t2 ⩾ 0. To simplify the notation we regard these two
vectors together as a single object, namely a 2 × n random array (X(t1)

X(t2)
).

The existence of a signature-based decomposition of reliability at times t1, t2
is actually governed by the exchangeability of th columns of the array (X(t1)

X(t2)
).

The columns of this array are exchangeable if and only if

Pr((X(t1)
X(t2)

) = (x
y
)) = Pr((X(t1)

X(t2)
) = (σ(x)

σ(y))) (5)

for any x,y ∈ {0,1}n and any permutation σ of {1, . . . , n}.
We can now state the main result concerning the signature-based decompo-

sition of the reliability of two systems. This decomposition is given in terms of
reliabilities of pairs of k-out-of-n systems, namely

F k∶n,l∶n(t1, t2) = Pr(Tk∶n > t1 and Tl∶n > t2).

Proposition 2. Let t1, t2 ⩾ 0 be fixed. If the joint c.d.f. F satisfies condition (5)
for any nonzero x,y ∈ {0,1}n, then we have

FS1,S2(t1, t2) =
n

∑
k=1

n

∑
l=1

sk,l F k∶n,l∶n(t1, t2) (6)

for any semicoherent systems S1 and S2, where sk,l is the (k, l) entry of the joint
structure signature. Conversely, if n ⩾ 3 and if (6) holds for any coherent systems
S1 and S2 (at times t1, t2), then the joint c.d.f. F satisfies condition (5) for any
nonzero x,y ∈ {0,1}n.

Equation (5) provides an intermediate condition between the exchangeability
of the component lifetimes and the exchangeability of the component states.



4. Applications to multistate systems

If m ⩾ 1 is an integer, an (m + 1)-state system is a triple S = (C,φ,F ), where C
and F are as above and where φ∶{0,1}n → {0, . . . ,m} is the structure function
that expresses the state of the system in terms of the states of its components.

The system is assumed to be semicoherent, i.e., φ is nondecreasing in each
variable and satisfies the boundary conditions φ(0) = 0 and φ(1) =m. We assume
again that the c.d.f. F has no ties. Using the component states as above, we can
express the system state at time t by XS(t) = φ(X(t)).

Since the system has m + 1 possible states, its “lifetime” can be described
by m random variables that represent the times at which the state of the system
strictly decreases. We introduce these random variables, denoted T ⩾1

S
, . . . , T ⩾m

S
,

by means of the conditions

T ⩾k
S

> t ⇔ φ(X(t)) ⩾ k , k = 1, . . . ,m.

Thus defined, T ⩾k
S

is the time at which the system ceases to be at a state ⩾ k and
deteriorates to a state < k. In this setting it is also useful and natural to introduce
the reliability function (called reliability of the system at states ⩾ k)

F
⩾k

S
(t) = Pr(T ⩾k

S
> t), t ⩾ 0, (7)

for k = 1, . . . ,m. The (overall) reliability function is then

FS(t1, . . . , tm) = Pr(T ⩾1
S

> t1 , . . . , T ⩾m
S

> tm), t1, . . . , tm ⩾ 0. (8)

For simplicity let us now consider the special case wherem = 2. All the results
can be adapted directly in the general case. The probability signature of a 3-state
system S = (C,φ,F ) is the square matrix p of order n whose (k, l)-entry is the
probability

pk,l = Pr(T ⩾1
S

= Tk∶n and T ⩾2
S

= Tl∶n), k, l = 1, . . . , n, (9)

where T1∶n ⩽ ⋯ ⩽ Tn∶n are the order statistics of the component lifetimes.
Also, the tail probability signature of a 3-state system S = (C,φ,F ) is the

square matrix P of order n + 1 whose (k, l)-entry is the probability

Pk,l = Pr(T ⩾1
S

> Tk∶n and T ⩾2
S

> Tl∶n), k, l = 0, . . . , n. (10)

Note that these concepts were already introduced in [4] and [3] as the “bivariate
signature” and “bivariate tail signature”, in the special case where the component
lifetimes are i.i.d. and continuous (see also [5] for an earlier work).

The key observation to connect these concepts defined in the framework of
multistate systems to the concept of joint probability signatures for several sys-
tems is that we can always uniquely decompose a multistate system as a sum of



two-state systems. Actually, this idea was already suggested in another form by
Block and Savits [2, Theorem 2.8].

Proposition 3. Any semicoherent structure function φ∶{0,1}n → {0, . . . ,m} de-
composes in a unique way as a sum

φ =
m

∑
k=1

φ⟨k⟩, (11)

where φ⟨k⟩∶{0,1}n → {0,1} (k = 1, . . . ,m) are semicoherent structure functions
such that φ⟨1⟩ ⩾ ⋯ ⩾ φ⟨m⟩ (i.e., φ⟨1⟩(x) ⩾ ⋯ ⩾ φ⟨m⟩(x) for all x ∈ {0,1}n).

This proposition naturally leads to the following definition and to the subse-
quent decomposition principle.

Definition 2. Given a semicoherent (m + 1)-state system S = (C,φ,F ), with
Boolean decomposition φ = ∑k φ⟨k⟩, we define the semicoherent systems Sk =
(C,φ⟨k⟩, F ) for k = 1, . . . ,m.

Decomposition Principle. Any semicoherent (m + 1)-state system S made up
of two-state components can be additively decomposed into m semicoherent two-
state systems S1, . . . ,Sm constructed on the same set of components, with the
property that for any k ∈ {1, . . . ,m} the lifetime of Sk is the time at which S
deteriorates from a state ⩾ k to a state < k.

Setting m = 2 and considering the systems S1 and S2 we denote by TSk
the

random lifetime of Sk. We can immediately derive the following important the-
orem that connects the different lifetimes introduced so far as well as the joint
probability signatures of the systems S1 and S2 and the probability signatures of
the system S.

Theorem 2. We have T ⩾k
S

= TSk
and F

⩾k

S
= FSk

for k = 1, . . . ,m. Moreover we
have p = p, P = P, and FS = FS1,S2 .

This theorem allows us to interpret the results concerning joint signatures of
several systems in the context of signatures of multistate systems. For instance we
obtain a formula for the probability signature.

Theorem 3. For every k, l ∈ {0, . . . , n} we have

Pk,l = ∑
A⊆C

∣A∣=n−k

∑
B⊆C

∣B∣=n−l

q(A,B)φ⟨1⟩(A)φ⟨2⟩(B).



Concerning a possible signature-based decomposition, we derive the follow-
ing proposition. This result generalizes to the non-i.i.d. setting a recent result
obtained by Gertsbakh et al. [4, Theorem 1] and Da and Hu [3, Theorem 7.2.3].

Proposition 4. If, for any t1, t2 ⩾ 0, the joint c.d.f. F satisfies condition (5) for
any nonzero x,y ∈ {0,1}n and any permutation σ on [n], then we have

FS(t1, t2) =
n

∑
k=1

n

∑
l=1

sk,l F k∶n,l∶n(t1, t2), (12)

where the coefficients sk,l correspond to the structure signature of the pair of
systems S1 and S2.

Many other results concerning the signatures of multistate systems can be eas-
ily derived using the Theorem 3.
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