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Abstract: Stochastic nonlinear model predictive control has been developed to systematically
find an optimal decision with the aim of performance improvement in dynamical systems that
involve uncertainties. However, most of the current methods are risk-neutral for safety-critical
systems and depend on computationally expensive algorithms. This paper investigates on the
risk-averse optimal stochastic nonlinear control subject to real-time safety-critical systems.
In order to achieve a computationally tractable design and integrate knowledge about the
uncertainties, bounded trajectories generated to quantify the uncertainties. The proposed
controller considers these scenarios in a risk-sensitive manner. A certainty equivalent nonlinear
model predictive control based on minimum principle is reformulated to optimise nominal cost
and expected value of future recourse actions. The capability of proposed method in terms
of states regulations, constraints fulfilment, and real-time implementation is demonstrated for
a semi-autonomous ecological advanced driver assistance system specified for battery electric
vehicles. This system plans for a safe and energy-efficient cruising velocity profile autonomously.

Keywords: Risk Assessment; Optimal Stochastic Control; Real-time Systems; Nonlinear and
Optimal Automotive Control; Intelligent Driver Aids

1. INTRODUCTION

Model Predictive Control (MPC) has been an attractive
approach for complex optimal control problems (Mayne,
2016). In the MPC, a constrained discrete-time Optimal
Control Problem (OCP) is solved repeatedly in a receding
horizon manner and the first control input in a finite
sequence of control actions is applied to the system.

Uncertainty is a ubiquitous feature of complex dynami-
cal systems, therefore, Robust MPC (RMPC) has been
effectively utilised for systems with uncertainties (see e.g.,
Rawlings and Mayne (2012)). In addition to recently ad-
vanced formulations, early RMPC mainly was based on
min-max OCP formulations. In many practical applica-
tions, however, worst-case based design may lead to con-
servative control actions and can result in low system per-
formance. Stochastic MPC (SMPC) has been introduced
to address the shortcomings of RMPC (see e.g., Bichi
et al. (2010); Mayne (2016)). The SMPC is based on the
stochastic uncertainty of a process model and generally
expected value of the objective function with probabilis-
tic constraints (chance-constraints) is optimised (Mesbah
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et al., 2014). Furthermore, Nonlinear MPC (NMPC) is
distinguished by the use of nonlinear system models for
prediction in order to improve performance specifications.
Stochastic NMPC (SNMPC) utilises probabilistic descrip-
tions of uncertainties such as parametric uncertainties,
uncertain initial conditions, and exogenous disturbances
to deal with the stochastic nonlinear systems (see e.g.,
Mesbah et al. (2014)).

While mostly there is no exact solution to the SNMPC
problems. Several approximations have been developed to
obtain a feasible solution rather than an exact solution
(see e.g., Kantas et al. (2009)). Although these may not
provide the optimal control performance, it make the
SNMPC tractable in practice. Several works of literature
about risk-neutral SNMPC have been developed (see e.g.,
Mesbah et al. (2014)). The main drawback of the SMPC is
the risk-neutral expectation assessment of future random
outcomes. This may not be a proper control policy for
safety-critical systems where one desires to regulate the
control actions robust enough to uncertainties (Yang and
Maciejowski, 2015). Risk-sensitive control law of finite
time for linear systems have been formulated (see e.g., Ito
et al. (2015); Yang and Maciejowski (2015)). On the other
hand, most of the SNMPCs depend on computationally
expensive algorithms and few approaches have been devel-
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oped about risk-averse SNMPC (see e.g., Ma et al. (2012)),
as well as real-time capable SNMPC (see e.g., Ohtsuka
(2004); Ohsumi and Ohtsuka (2011)).

The main contribution of this paper is a real-time risk-
averse SNMPC to enhance a safety-critical Advanced
Driver Assistance System (ADAS) for Battery Electric
Vehicles (BEV). First, the risk-sensitive Stochastic OCP
(SOCP) is adapted by a log-expectation of the exponen-
tiated quadratic performance index. Second, in contrast
to RMPC which plan for the worse case, an individual
expected trajectory (scenario) is generated by a physical-
statistical model of uncertainty to achieve a computation-
ally tractable design. This helps to integrate knowledge
about the disturbances and propagate the uncertainty in
a bounded set. Next, the risk-sensitive SOCP is converted
into a certainty equivalent OCP based on the minimum
principle where the scenario is considered in a risk-averse
manner. The obtained approximately equivalent problem
leads to a two-point boundary-value problem based on
a continuation method that can be solved in real-time.
The main idea of proposed method emphasises on early
detection and reduction of large recourse, rather than the
compensation of non-optimal decisions. Finally, the pro-
posed approach is evaluated in terms of states regulation,
constraints fulfilment, and real-time capability for a BEV
specific Semi-autonomous Ecological ADAS (SEADAS). A
speed prediction model based on traffic and road geometric
information is utilised to estimate an expected optimistic
scenario and determines probabilist velocity profile of pre-
ceding vehicle in traffic. It is shown that the proposed
system is capable of improving the safety and efficiency
of the BEVs that are enduring limited cruising range.

The rest of this paper is organised as follows: The risk-
averse SNMPC, uncertainty quantification, and real-time
algorithm for approximated SNMPC are reviewed in sec-
tion 2. The concept of the SEADAS for the BEVs with
risk-averse SNMPC formulation are introduced in section
3, followed by numerical evaluations in section 4. Conclu-
sions and future research are given in section 5.

2. STOCHASTIC PREDICTIVE CONTROL

A general nonlinear system to be controlled with distur-
bance is described by:

ẋ = f(x, u, ω), (1)

z = h(x), (2)

ω = ∆(z(·)), (3)

where x ∈ Rnx denotes the state vector, u ∈ Rnu

represents the input vector, z ∈ Rns refers to the output
vector, and disturbance, ω ∈ Rnω is random variable
vector. The ∆(·) is an operator standing for unmodelled
dynamics that maps the output sequence over the interval
(−∞, t] into ω (Mayne, 2016).

A general multi-stage SNMPC program has the form:

minimise
µ

JN (xt,µµµ) := E[φ(x∗N (t)) +

N−1∑
i=0

L(x∗i (t), u∗i (t))∆τ(t)]

(4a)

subject to: x∗i+1(t) = x∗i (t) + f(x∗i (t), µ∗i (t), ωi(t))∆τ(t), (4b)

Pr[hj(x
∗
i (t)) ≤ 0] ≥ β, j = 1, . . . , q, (4c)

x∗0(t) = x(t), x∗i (t) ∈ C, x∗N (t) ∈ CN , µµµ ∈ U , (4d)

where E[·] is the mathematical expectation and x∗i (t)
denotes the state vector trajectory along the prediction
τ axis. The µµµ := {µ0(·), µ1(·), . . . , µN−1(·)} is an N-stage
feedback control policy, which control input ui = µi(·) is
selected at the ith stage. The L : Rnx × Rnu → R+, and
φ : Rnx → R+ are the cost-per-stage and the terminal
cost functions, respectively. The Pr denotes probability
and hj : Rnx → R is inequality constraint functions. The
β ∈ (0, 1) ⊂ R denotes the confidence level (e.g., 0.9,
0.95, or 0.99), lower bound for probability hj(·) ≤ 0 that
should be satisfied and q is the total number of inequity
constraints. The C is the states constraint, and CN is the
terminal constraint sets. The ωi(t) ∈ Rnω are composed
i.i.d. random variables within a sample space Ω, a set of
events (σ-algebra) F , and P which is the allocations of
probabilities to the events (exogenous information). The
U ⊂ Rnu denotes the set of input constraints (for more
details see Mesbah et al. (2014)). The prediction horizon,
T , is divided into N steps where ∆τ(t) := T (t)/N . Given
the initial state, x∗0(t) = x(t), the finite sequence of control

policy, {µ∗
i (t)}

N−1
i=0 , is optimized at each sampling interval

and the first control policy, µ0(t), is applied to the system.

2.1 Uncertainty Quantification

Incorporating information about the uncertainty in pa-
rameters and variables can support in quantifying the
uncertainty used in SOCP. The sources of uncertainty in
various context emerge in mathematical models and ex-
perimental measurements such as parameter uncertainty,
structural uncertainty, experimental uncertainty, and etc.
Major uncertainty quantification problems deal with vari-
ous uncertainty propagation methods such as Monte Carlo
methods (Kantas et al., 2009), polynomial chaos expansion
(Mesbah et al., 2014), Bayesian approaches (Yang and Ma-
ciejowski, 2015), etc. In addition, SOCP (4) mainly con-
sidered in various dynamic programming approaches such
as Markov chain decision processes. Assuming Markovian
structure, the emphasis generally is in identifying finite
state and action sets. However, as the prediction horizon
length increases in SNMPC and due to the increased num-
ber of possible scenarios with large state spaces, Markov
approaches can lead to being a computationally expen-
sive method (see e.g., Bichi et al. (2010)). Moreover, it
is known that the prediction quality of these methods
worsens within prediction horizon (see e.g., Mesbah et al.
(2014); Schmied et al. (2015)).

Different models generally have various evaluation costs
and fidelities, where high-fidelity models are usually more
accurate but computationally expensive than the low-
fidelity models. For practical applications, it is a reason-
able approach to replace every random variable by their
expected values, which lead to a more simple certainty
equivalent NMPC (so-called expected value problem), or
several deterministic programs, where each solution is
corresponded to one particular scenario (see e.g., Ohsumi
and Ohtsuka (2011)). Typically, scenarios can be obtained
based on information over the random variables comes
from historical data (Birge and Louveaux, 2011). The
two classical reference scenarios are the expected value
of the random variable and the worst-case scenario. In
this paper, however, to refine the bounds on the random
variable vector in SNMPC, a dynamic optimistic scenario



is proposed to forward propagating the random variable
vector along the prediction horizon (rolling disturbance es-
timation). Subject to the case study, this may be achieved
by various methods such as simulation-based methods, lo-
cal expansion-based methods, functional expansion-based
methods, or physical-statistical models.

2.2 Risk-averse Predictive Control

Finding a solution for the SNMPC (4) that is ideal for all
possible scenarios is a challenging task. Generally one may
replace uncertainties with samples that can be represented
as scenarios. Scenarios are based on pessimistic, neutral,
or optimistic realisations of uncertainties. The OCP with
expected values that represent only one scenario may be
regarded as a poor representation of risk-aversion. How-
ever, the uncertain dynamic model captures one essential
feature of the problem in the evolution of the scenario,
which even simple models can lead to significant savings
from non-optimal decisions (Birge and Louveaux, 2011).
In this paper, it is proposed to propagate the system
uncertainties to plausible optimistic expectations. In other
words, one may expect that the value of the objective of
the stochastic model will closely match the realised total
optimistic expected values, and regulate system states in
a risk-averse manner.

One of the interesting method to include risk during
decision-making process was proposed by Whittle and
Kuhn (1986). In this method the expected quadratic-cost
replaced by a risk-sensitive benchmark of exponential-
quadratic form (Yang and Maciejowski, 2015). A typical
quadratic cost over the state is as follows:

LQ = (x∗i − xref )TQ(x∗i − xref ), (5)

where Q is weighting matrix. The conventional (risk-
neutral) criterion is that one chooses a policy µ to min-
imize Eµ[LQ]. This can be minimised based on the ex-
tremal principle prescribed by the Risk-Sensitive Certainty
Equivalence Principle (RSCEP) with modified benchmark
as follows (Whittle and Kuhn, 1986):

Lµ(γ) = − 2

γ
log(Eµ[exp(−1

2
γLQ)]), (6)

where γ is a real scalar so-called risk-sensitivity parameter.
This parameter determines the control behavior towards
uncertainty. The case γ = 0 corresponds to risk-neutral,
while γ > 0 stands for risk-seeking attitude. This paper
considers the case γ < 0 that implies risk-aversion reaction
for safety-critical systems. The expectation value in the
(6) can be computed approximately by Taylor expansion
as follows:

Eµ[exp(−1

2
γLQ)] ≈ exp(−1

2
γL̄Q) det(I +

γ2

2
Σ2
x∗
i
), (7)

where L̄Q represents the quadratic cost with predicted
(posterior) nominal values of uncertainties, and Σ2

x∗
i

is

the covariance matrix of a random variable x∗i . Therefore,
the uncertain expected posterior values of uncertainties
treated with the risk-sensitive cost (6) can be approxi-
mated as:

Lµ(γ) ≈ (L̄Q −
2

γ
log(det(I +

γ2

2
Σ2
x∗
i
))), (8)

where det(I + γ2

2 Σ2
x∗
i
) is the volume ellipsoid to the size of

the uncertainty (Yang and Maciejowski, 2015).

2.3 Risk-Sensitive Minimum Principle

In general, a variety of approximation approaches for
multi-stage SOCPs such as value function approximation,
constraint relaxation and dualization, policy restriction,
scenario generation, and Monte Carlo methods are avail-
able. The SOCP, (4), can be expressed in terms of the
Lagrangian dual problem. The main idea behind the La-
grangian approaches is to place the multi-stage links into
the objective so that repeated sub-problem optimisations
are avoided in finding search directions (Birge and Lou-
veaux, 2011). This emphasises on early detection and
reduction of large recourse, rather than the compensation
of non-optimal decisions.

The SNMPC with the risk-sensitive cost (6) is reformu-
lated in a computationally efficient certainty equivalent
SNMPC problem. One of the effective methods to solve the
resulting SOCP problem in the receding horizon manner
introduced by Ohtsuka (2004) that is based on Pontrya-
gin’s minimum principle. The obtained OCP can be solved
efficiently by the Continuation and Generalized Minimal
RESidual (C/GMRES) method instead of computation-
ally costly iterative algorithms (see Ohtsuka (2004)). Ap-
peal to the extremal principle prescribed by the RSCEP
yields a symmetric equation system, indicating that the
extended Hamiltonian formulation generalises naturally
to the risk-sensitive case. The conjugate variable or aux-
iliary variables of the Hamiltonian formulation has an
interpretation in terms of the predicted course of process
and observation noise. The RSCEP, in fact, provides a
stochastic minimum principle for which all variables have a
clear interpretation and the desired measurable properties
(see Whittle and Kuhn (1986)).

3. CASE STUDY: SEMI-AUTONOMOUS ECO-ACC

Advanced Driver Assistance Systems (ADAS) cooperated
with Ecological (Eco) driving style assist human drivers
to improve the safety and efficiency of driving. These can
significantly improve the Battery Electric Vehicle (BEV)
energy efficiency that is long-suffering from the limited
cruising range on a single battery charge. In the recent
years, various research works have been conducted in this
field. Energy efficient NMPC to drive an Internal Combus-
tion Engine (ICE) vehicle with variable traffic and signals
at intersections was introduced by Kamal et al. (2013).
A stochastic dynamic programming based control policy
with a given road grade, and traffic speed information
was established by McDonough et al. (2012). A Stochastic
MPC (SMPC) with driver behaviour learning capability
was introduced by Bichi et al. (2010). A Stochastic NMPC
(SNMPC) with the target of emission, fuel efficient driv-
ing, and infrastructure-to-vehicle (I2V) communication
was introduced by Schmied et al. (2015).

3.1 System Description

The Semi-autonomous Eco-ACC (SEDAS) is based on a
concept that was proposed by Schwickart et al. (2015,
2016), and is the enhancement of an approach started
by Sajadi-Alamdari et al. (2016). The SEDAS concept is
presented in Fig. 1, which extends the functionalities of
Adaptive Cruise Control (ACC) system. Similar to the
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Fig. 1: Semi-autonomous Eco-ACC system (SEDAS)

conventional ACC system, the driver pre-set the desired
velocity with preferred safe distance from the preceding
vehicle. The Semi-autonomous Eco-ACC system regulates
the traction input with respect to the longitudinal motion,
energy consumption dynamics of the BEV (host vehicle),
as well as the road geometric, traffic sign, and motion
of the preceding vehicle information. While the driver
handles the steering control of the vehicle, this system
should plan for a safe and energy-efficient cruising velocity
profile autonomously on the entire trip without requiring
driver interventions. The longitudinal dynamics, energy
consumption of the vehicle, road geometry, as well as
traffic sign information, are modelled as deterministic com-
ponents. The preceding vehicle’s motion and its position
are considered as a stochastic part of the system that
imposes uncertainty during the decision-making process.

3.2 System Identifications and Models

The acceleration along the longitudinal direction of the
BEV can be expressed by Newton’s second law of motion
as follows:

dvh(t)/dt = (Ftrac(t)− Fres(t))/M, (9)

where M , Ftrac(t), and Fres(t) are equivalent mass of the
vehicle, traction force, and total motion resistive forces,
respectively. The equivalent mass can be calculated by
an empirical relation including kerb mass of the vehicle
and equivalent mass of rotating parts (Sajadi-Alamdari
et al., 2016). The traction force depends on the equivalent
mass and control input as Ftrac(t) := Mu(t). The total
resistive force including aerodynamic drag, gradient, and
rolling resistance forces can be represented by:
Fres

M
=

1

2M
ρAfCD(d)v2h+g sin(θ(sh))+Crr(vh)g cos(θ(sh)), (10)

where ρ, Af , g, θ(sh), and Crr(vh), are the air density,
the vehicle frontal area, the gravitational acceleration, the
road slope angle as a function of the host vehicle position,
and the velocity dependent rolling resistance coefficient,
subsequently. Note that CD(d) is the aerodynamic drag
coefficient that depends on nominal aerodynamic drag
coefficient, and relative distance between the preceding
and host vehicles, d := sp − sh. Vehicle drag reductions
arising from close spacing with the preceding vehicle (for
more details, see e.g. Watkins and Vino (2008)).

For any given velocity and control input, a linear relation
of the traction power-to-mass ratio can describe the energy
consumption of the vehicle as

ėh = fa (ptrac/M) + fcruise, (11)

where ptrac, denotes the traction power. The fa = a2u
2 +

a1u+a0 and fcruise = b3v
3
h+b2v

2
h+b1vh+b0 approximate

the acceleration of the vehicle and the resistive power at
constant cruising velocity (Sajadi-Alamdari et al., 2016).

The road slopes, road curves, and traffic speed limit
zones data are modelled as continuous and differentiable
functions (Sajadi-Alamdari et al., 2016). The road slope
profile is proposed to be the sum of quadratic functions of
the vehicle position representing each road segments slope
data as follows:

fslp(θ(s)) :=

Nsgm∑
n=1

Hn(s− sn−1)(ans
2 + bns+ cn)Hn(s− sn), (12)

where Nsgm is the number of road segments, Hn(s−sn−1)
and Hn(s−sn) are hyper-functions of the nth road segment
at the boundary position values, sn−1 and sn. The road
curves and traffic speed limits profiles are modelled based
on the total absolute curve profile and the number of speed
limit zones. The road curves is defined as:

fcrv(δ(s)) :=

Ncrv∑
n=1

Hn(s− sent)
∣∣∣ 1

Rcrvn (s)

∣∣∣Hn(s− sext), (13)

where Ncrv is the number of road curves, and Rcrvn is the
radius of a circle valid for the curve’s arc length with two
position points, sent and sext, at the respective entrance
and exit position of the nth curve. The traffic speed limit
places can be modelled as:

flmt(s) :=

Nlmt∑
n=1

Hn(s−sstr)(vlmt−vmax)Hn(s−send)+vmax, (14)

where Nlmt is the number of speed limit zones, and vlmt is
the specified speed limit value at positions starts from sstr
up to the end of the zone send. The vmax is the maximum
speed value of the vehicle (For more details see Sajadi-
Alamdari et al. (2016)).

Knowledge representation of traffic including a prediction
model of the plausible future motion of vehicles may
improve the performance of decision-making processes
in ADAS applications. Research related to anticipating
the possible trajectory of the preceding vehicle into the
near/far-term future has a long track in the ADAS appli-
cations. To quantify the uncertainty in the proposed con-
cept, a physical-statistical motion model of the preceding
vehicle robust to far-term future prediction is proposed
in this paper. This model is based on 85th percentile
speed concept and road geometry information. The 85th

percentile speed is defined as the speed at or below which
85th percent of vehicles travel a given location based on
free-flowing conditions over a time period (Turne et al.
(2011)). The proposed dynamic model to propagate the
velocity of preceding vehicle, v̄p, at time t can be estimated
as follows:

dv̄p(t)/dt := X85th(1− (
v̄p
f85th

)4 − sin(fslp(θ(s̄p)))

sin(π4 )
), (15)

f85th := min{ω85thv85th(fcrv(δ(s̄p))), flmt(s̄p)}, (16)

v85th(δ(s̄p)) := m1 exp(−m2δ(s̄p)) +m3 exp(−m4δ(s̄p)), (17)

where X85th is the 85th percentile acceleration of the
preceding vehicle assumed to lie in a normal distribution
i.i.d. X ∼ N (µp, σp) with the mean, µp, and variance σ2

p.
The ω85th is a tunable constant, and the position based
function v85th(·), represents the 85th percentile curve speed
of the vehicles along the trip curves. The curve speed
data is adapted from Turne et al. (2011) that can be
approximated through the curve-fit process.



3.3 Problem Formulation

The risk-averse SNMPC may achieve a smarter and more
energy-efficient driving based on anticipated vehicle dy-
namics, its energy consumption characteristics, road ge-
ometry, and traffic conditions. We interpret the position
and velocity of the preceding vehicle as disturbances of the
system (ω̄i = E[ωi]). The estimated disturbance concate-
nated as auxiliary states with the host vehicle dynamic.
Thus, the states of the risk-averse SNMPC control for the
proposed semi-autonomous Eco-ACC system considering
the (9), (11), and (15) can be written as position, veloc-
ity, and energy consumption of the host vehicle, as well
as the preceding vehicle’s position and related velocity,
x = [sh, vh, eh, s̄p, v̄p]

T ∈ R5. Thus the (1) turns to its
certainty equivalent form that the i.i.d random variable
assumption is no longer required. The control input in-
equality constraint (umin(vh) ≤ u(t) ≤ umax(vh)) can be
converted to the equality constraint by a penalty function
method (Ohtsuka, 2004; Sajadi-Alamdari et al., 2016). In
addition, the reference spacing policy for regulation of the
safe relative distance to the preceding vehicle is based on
the most commonly used method so-called time headway.
It is defined as:

dref := d0 + thwvh, (18)

where d0 is a constant minimum safe distance, and thw is
the desired time headway (Bayar et al., 2016).

In the risk-averse SNMPC, the following performance
index to achieve the ecological driving is formulated by
linearly penalising the energy consumption of the host
vehicle at the end of prediction horizon as follows:

φ(x∗N (t)) := qfeh, (19)

where qf is the corresponding weight. This definition
provides a flexible velocity profile planning in the integral
performance index that can be formulated as follows:

L(x∗i (t), u
∗
i (t)) :=

1

2
(qc(vh − vref )2 + ru(u− uref )2)

− qslkuslk + qcrv,lmt(vh, fcrv(δ(sh)), flmt(sh))v2
h + Lπ(γ),

(20)

where vref , uref are desired cruising velocity, and reference
input respectively with relative weightings qc, and ru. A
slack penalty, qslk, is imposed to avoid the singularity
at sslk = 0 and keep the control input away from the
boundary values of the feasible set. A safe and comfortable
ride during the road curve and traffic speed limit zone
variations can be achieved by penalising the host vehicle
velocity with relative adaptive weight (similar to the
barrier methods) based on the lateral acceleration (alat =
v2
hfcrv(δ(sh))) and maximum allowed lateral acceleration

(alat.max) as follows:

qcrv,lmt(vh, fcrv(δ(sh)), flmt(sh)) :=

exp(qcrv(alat−alat.max)) + exp(qlmt(vh−flmt(sh))), (21)

where qcrv, and qlmt are relative weights.

The risk-averse cost for the relative distance implicit
inequality constraint (dref ≤ d) can be formulated as
follows:

Lµ(γ) :=Qw(vh, v̄p, d)((E[d]− dref )2

− 2

γ
log(1 +

γ2

2
Var(d))). (22)

The statistics of the stochastic relative distance to the
position of preceding vehicle can be approximated by:

E[d] := s85th

p − sh = s̄∗p − s∗h, (23)

Var(d) :=E[(d−E[d])2] ≈ ḋ2σ2
s̄p , (24)

where the Var[·] is the variance of the random variable,
which can be approximated by closely related moment
concept in physics. The Qw(vh, v̄p, d) is an equivalent to
a soft barrier function that supplies enough weight to
dominate the other objectives during close approaching to
the boundary value of reference relative distance defined
as follows:

Qw(vh, v̄p, d) := qacc(qrv exp(
−(v̄p − vh)

qrv
)

+ qrd exp(
E[d]

qrd
))H(dref −E[d]), (25)

where qacc, qrv, and qrd are constants, while theH(dref−d)
is a Heaviside’s sigmoid function. The (25) can behave
similarly to vanishing constraint, which smoothly switches
between two modes of reference velocity tracking and ACC
automatically depends on the presence of the preceding
vehicle. Note that the uncertain variation position of the
preceding vehicle is taken into account during decision
making that allows allocation of the trade-off between risk
and return of reference relative distance tracking. In other
words, the presence of variance of the random variable and
adaptive weights makes the controller shows proper control
actions for the large system uncertainty.

4. SYSTEM EVALUATIONS

The proposed Eco-ACC system has been evaluated with
practical experiments on a test track, and numerical sim-
ulations using realistic values of the parameters. A Smart
Electric Drive third generation commercial BEV, which is
available for practical experiments, is chosen here to model
the dynamics of a BEV and its energy consumption (for
more detail, see Sajadi-Alamdari et al. (2016)).

A closed test track located at Colmar-Berg, Luxembourg,
is chosen to model the road geometry with traffic in-
formation (Fig. 2). The test track has a total length of
1.255 km and include curves, speed limit zone, and relative
slope profile. This track has four main curves with 20 m,
25 m, 15 m, and 27 m radius. A speed limit zone (vlmt =
22.22 m/s) is assumed between positions 500 ≤ s ≤ 850.

The preceding vehicle motion prediction based on 85th

percentile speed concept with test track geometry and
speed limit zone information is shown in Fig. 3. The mea-
sured data include seven different rounds of human drivers
velocity profiles on the test track. It can be shown that

c© OpenStreetMap contributors
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Fig. 2: Test track, Centre de Formation pour Conducteurs
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the physical-statistical motion model is capable of foreseen
an expected velocity profile based on road geometry and
traffic information. Significant statistical accuracy can be
shown in term of the median and the related variations
from the practical experiments obtained by the human
drivers (H-#), and the proposed physical-statistical mo-
tion model (PS-M) performing far-term future prediction
(105 seconds) on the test track with initial state at zero
without any further measurement update.

A prediction horizon for the SNMPC, T = 15 s, is chosen
to cover upcoming road geometry, traffic speed limit zone
and the preceding vehicle motion prediction with N =
30 discretized steps. The constants in performance index
function are set as qf = 2, vref = 20 m/s, qc = 2, qslk = 1,
qcrv,lmt = 1, alat.max = 3.7 m/s2, d0 = 3 m, thw = 1.5 s,
γ = −1. The parameters for the physical-statistical model
are set as µp = 0 m/s2, δp = 1.5, ω85th = 0.67, m1 = 20.41,
m2 = 13.68, m3 = 13.23, m4 = 151.2.

For the sake of comparison, the proposed risk-averse SN-
MPC for the Eco-ACC system is compared with a conven-
tional nominal Deterministic NMPC (DNMPC), where a
typical quadratic cost over the relative distance regulation
is utilised. Furthermore, these two approach is compared
with the case that the motion of the preceding vehicle
is known in advance namely Perfect NMPC (PNMPC). A
trigonometric speed profile for the preceding vehicle is con-
sidered as the simulation scenario to demonstrate the ca-
pabilities of the controllers in state regulations, constraint
fulfilment, and energy efficiency with their treatments to
unpredicted preceding vehicle speed profile.

Fig. 4. shows the obtained results by the DNMPC, SN-
MPC, and PNMPC for the Eco-ACC system. Fig.4a shows
the velocity profile of the host and preceding vehicle with
DNMPC, SNMPC, and PNMPC setting. The preceding
vehicle has average velocity of 10m/s, and it can be
observed that the velocity profile generated by the SNMPC
is closer to the PNMPC rather than the DNMPC.

Fig. 4b shows the relative distance regulation between
the host and the preceding vehicles. Particularly, the
SNMPC fulfils the relative distance inequality constraint
with less violation rather than conventional DNMPC with
relatively large constraint violations from reference rela-
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Fig. 4: Performance of the DNMPC, SNMPC, and PN-
MPC in terms of (a) velocity, (b) relative safe distance,
(c) control input, and (d) power, with total energy con-
sumption.

tive distance. Although the SNMPC does not know the
preceding vehicle velocity profile in advance, it is shown
that it can effectively regulate the safe relative distance.
Fig. 4c is related to the control input profile and it is
shown that the DNMPC can significantly be sensitive to
unpredicted events. This leads to a non-smooth control
behaviour and the maximum input constraint violation.
On the other hand, the SNMPC not only demonstrates
a robust behaviour against the uncertainties but also is
capable of capturing similar behaviour to the PNMPC.
It is shown that the SNMPC generates better velocity
profile than the DNMPC, which leads to a proper energy
consumption profile. This can also be observed in Fig. 4d
that demonstrate the power and energy consumption of
the DNMPC, SNMPC, and PNMPC with the maximum
power of the host vehicle. It is shown that the DNMPC
violates the maximum power constraint with higher energy
consumption than the SNMPC with relatively close to the
PNMPC performance.

The SOCP calculation time for the proposed SNMPC

is about 3ms in average on an Intel R© Core
TM

i7 with



memory of 7.7 GiB. The computation time of the SOCP
might be compared with similar N/MPC controllers pro-
posed in Bichi et al. (2010) with 1s, Kamal et al. (2013)
with 6.43ms, and the Schmied et al. (2015) with 23.47ms.
Hence, the proposed SNMPC could be a real-time capable
controller for the proposed Eco-ACC system.

5. CONCLUSIONS AND FUTURE RESEARCH

A real-time risk-averse stochastic nonlinear model pre-
dictive control to improve performance of safety-critical
systems presented in this paper. This algorithm is based
on a computationally tractable design that quantifies and
integrate knowledge about the uncertainties affecting the
system states. A certainty equivalent optimal control prob-
lem based on minimum principle was proposed to minimise
current costs and the expected value of future recourse
actions in a risk-sensitive manner. The effectiveness of the
algorithm was evaluated on a semi-autonomous advanced
driver assistance system for a battery electric vehicle. This
system determines proper ecological velocity profile to
improve safety and the cruising range based on the road
geometry, traffic speed limit zones, and the preceding ve-
hicle motion information. The key challenge in stochastic
optimal control problem was to propagate the uncertainty
and achieve a certainty equivalent optimal control prob-
lem, which was addressed by a physical-statistical motion
model of the preceding vehicle and reformulation of the
risk-averse optimal control problem. The overall perfor-
mance of the proposed method reveals its capability in
regulating the system states and constraints fulfilment.
Extension of the proposed framework to the Connected-
ACC system and further practical experiments will be
conducted as the future research part.
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