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Abstract 
Motivation: Mathematical modelling of regulatory networks allows for the discovery of knowledge at 

the system level. However, existing modelling tools are often computation-heavy and do not offer 

intuitive ways to explore the model, to test hypotheses or to interpret the results biologically.  

Results: We have developed a computational approach to contextualise logical models of regulatory 

networks with biological measurements based on a probabilistic description of rule-based interactions 

between the different molecules. Here, we propose a Matlab toolbox, FALCON, to automatically and 

efficiently build and contextualise networks, which includes a pipeline for conducting parameter anal-

ysis, knockouts, and easy and fast model investigation. The contextualised models could then pro-

vide qualitative and quantitative information about the network and suggest hypotheses about biolog-

ical processes. 

Availability and implementation: FALCON is freely available for non-commercial users on GitHub 

under the GPLv3 licence. The toolbox, installation instructions, full documentation and test datasets 

are available at https://github.com/sysbiolux/FALCON. FALCON runs under Matlab (MathWorks) and 

requires the Optimization Toolbox. 

Contact: thomas.sauter@uni.lu  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

 

The functional characteristics of eukaryotic cells are largely determined 

by the properties of their regulatory networks. Notwithstanding the vast 

amount of biological data accumulated over the past decades, a global 

model of the way these networks determine the phenotypes of both 

healthy and diseased cells remains elusive. One goal of systems biology 

is to understand these networks at the highest possible functional level, 

for example to devise therapeutic strategies for treating patients affected 

by diseases like cancer. 
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Numerous mathematical approaches exist to optimize and train regulato-

ry network models against steady-state experimental data (Villaverde 

and Banga, 2013). Of these, logical models (Le Novère, 2015) are of 

particular interest, as they are able to capture essential features of the 

system being modelled and generate biological insights, while requiring 

less prior knowledge and experimental observations than differential 

equation models (Morris et al., 2010). Some successful applications 

include the logical models of yeast cell-cycle protein network (Li et al., 

2004), gene regulatory networks (Mendoza et al., 1998), signalling 

networks (Saez-Rodriguez et al., 2007). In addition, logical models are 

in general more powerful than statistical models, as they incorporate the 

relational information embedded in the network structure, while statisti-

cal models aiming at reverse-engineering biological networks from high-

throughput data implicitly consider all possible topologies (Bansal et al., 

2007).  

 

In logical models of systems at steady-state, nodes represent the degree 

of activation of the constituents of the system at equilibrium and edges 

represent the logical functions between nodes. These functions can be 

either linear or non-linear functions of the parent nodes and are combina-

tions of the fundamental ‘AND’, ‘OR’, and ‘NOT’ Boolean functions. 

 

While Binary Boolean models (Kauffman, 1969) only consider full 

activation or complete absence, more quantitative approaches, for in-

stance, Probabilistic Boolean Networks (PBNs) (Trairatphisan et al., 

2013) and Dynamic Bayesian Networks (DBNs) (Lähdesmäki et al., 

2006) can account for intermediate or continuous activation values and 

allow the integration of data uncertainty. These approaches are usually 

analysed by Monte Carlo approaches (Trairatphisan et al., 2014; Mizera 

et al., 2016), which can be computationally demanding or non-intuitive 

to use. Here, we propose a tool called FALCON to efficiently contextu-

alize logical regulatory networks based on steady-state experimental 

data. Our algorithm is based on DBNs and computes the expected value 

of the nodes by including an algebraic interpretation of the logical gates. 

The FALCON pipeline is shown in Figure 1. 

 

2 Methods 

2.1 Modelling of logical networks  

 

FALCON models biological regulatory systems as DBNs, which are 

directed graphical models defined by the set of � nodes with � � �0,1�	 

and the probability distribution 
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where ��
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denotes the �’th node at time � and 
����
���
� represents the 

parents of ��
���

. These conditional probabilities are implicitly formulated 

by the structure of the network. The different nodes represent the differ-

ent molecules of the system, with a value corresponding to the degree to 

which these molecules exist in their active form (for example, phosphor-

ylated proteins). These node values can be understood as the proportion 

of the molecules in the system being active, or as the probability for a 

randomly chosen molecule to be active at time �. 

 

In the FALCON framework, each molecular interaction is formulated as 

a logical predicate associated with a weight quantifying the relative 

importance of that specific interaction. We model different types of 

biochemical interactions with two types of edges: positive and negative 

edges connect activators and inhibitors to their downstream targets. 

Hyperedges corresponding to the ‘AND’ and ‘OR’ logical operations link 

multiple nodes to an output node, and model the activity of protein 

Figure 1. The FALCON pipeline. Prior knowledge network and experimental data are combined to generate a network optimization problem. After 

the optimization process, the properties of the optimal network are then analyzed. 
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complexes and competition, respectively. Each edge and hyperedge is 

associated to a weight ��
���

 representing the relative influence of the 

upstream node to the downstream node.  Because our modelling frame-

work is grounded in Bayesian theory, the weights need to obey the law 

of total probability: for each node ���� having a set ��of � activating 

functions, we ensure the sum of activating weights ∑ ���
����

����
� 1. 

Similarly, as weights of inhibiting interactions materialize the relative 

inhibition of upstream nodes, for nodes having a set �� of � inhibiting 

functions, we ensure that 0  ∑ ��!
���
 1"

�!��
. 

 

Given a network structure established from prior knowledge, a set of 

parameters (weights) and a set of experimental conditions, the steady-

state of the network is computed for each of the conditions and the 

values of the nodes corresponding to the measured species are recorded. 

For each one of the conditions, the nodes of the network are initialized 

with random values, except for the nodes considered as inputs (external 

to the system) for which the value is determined by the experimental 

condition and kept constant. The network is then updated repeatedly by 

computing synchronously for each node the expected value of its proba-

bility distribution, given the value of its parent nodes and the weights 

Figure 2. Analyses of optimized model in FALCON (PDGF model). a: Parameter robustness analysis ; red stars: optimal parameter values, blue bars: 

standard deviations of parameter values fitting to 10 resampling datasets. b: Parameter identifiability analysis of parameter ‘km3’ from panel a; Red 

line: threshold used to speed up computations in the ‘fast’ mode. c: Interaction knock-out analysis. d: Node knock-out analysis. In panels c and d, the 

color of the bars indicates the sign of the difference with the base model (blue). Green indicate better models (AICmodel<AICbase), black indicates 

worse ones. Abbreviations: MSE = mean squared error, AIC = Akaike Information Criterion. 
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associated with each interaction.  
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Because all nodes at each update are considered as independent, the 

inputs values of ‘AND’ logical gates are multiplied. The computation of 

‘OR’ gates follows De Morgan’s law, i.e. the complement of the union of 

two sets is the same as the intersection of their complements. Inputs 

pointing to the same child node that are not members of a logical gate are 

summed. Table 1 summarizes the different types of interactions explicit-

ly formulated in our framework. The algebraic formulas used for the 

computations can be directly derived from the conditional probability 

tables of the DBN formulation of the logical interactions. 

 

Table 1: Different types of biological interactions modelled by different 

Boolean functions and their algebraic representations.  

 

Biological equivalent Graphical form Algebraic computation 

Activation A → Z (k) Zt+1 = At * k 

Inhibition A -| Z (k) Zt+1 = 1 – (At * k) 

Complex formation A AND B → Z (k) Zt+1 = At * Bt * k 

Competitive interaction A OR B → Z (k) Zt+1 = 1 – [ (1-At) * (1-

Bt) * k] 

Non-competitive           

interaction 
A → Z (k1) 

B → Z (k2) 

Zt+1 = At * k1 + Bt * k2 

(with k1 + k2 = 1) 

 

The resulting dynamical system converges to a steady-state where each 

node value corresponds to the normalized equilibrium concentration of 

the activated form of the molecule in the system.  

 

2.2 Contextualization algorithm 

 

Objective function. To perform the contextualization of the model with 

experimental data, we extract from the network at steady-state the value 

of the nodes corresponding to the measurements, compare them with the 

normalized values from the experimental data and compute the mean 

squared error (MSE) between the estimated values and the measure-

ments. We minimize this measure of the error by optimizing the value of 

the weights using a gradient-descent algorithm. To guarantee high effi-

ciency while allowing for arbitrary degrees of recurrence in the net-

works, we use the interior-point method (Waltz et al., 2004). A scheme 

of the FALCON workflow is presented in Fig. 1. 

 

Rapid Optimisation. Using the gradient-descent optimization algorithm 

fmincon with interior-point method, FALCON is able to rapidly estimate 

the set of weights that minimizes the objective function. Random initiali-

zation of the weights is done either from a uniform distribution across 

the [0, 1] range, or from a truncated normal distribution centred on 0.5, 

depending on users’ choice. Normally distributed initial values have 

been shown to improve learning for deep neural networks (Glorot and 

Bengio, 2010) and in our hands, increase the speed of convergence of the 

optimisation algorithm. 

 

 

2.3 Subsequent analyses on optimized logical networks 

 

Once a set of parameters has been inferred from a given topology and 

dataset, a series of additional analyses can be performed to gain more 

insight into the systems-level properties of the regulatory network being 

modelled as summarised in Figure 2. 

 

Figure 3. Differential analyses in FALCON. The same prior knowledge model is contextualized in parallel with different datasets corresponding to 

different contexts. Subsequent analysis can identify context-specific parametrizations and topologies. 
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Robustness of optimised parameter values. Depending on the topolo-

gy of the network, the uncertainty in the measurement of some nodes can 

have more impact on the parameter values of the model than others. 

FALCON can analyse the uncertainty on inferred parameter values by 

sampling a user-defined number of artificial datasets based on original 

experimental measurements and determining the weights of the model in 

the light of the new data (Fig. 2a). The artificial datasets are constructed 

from the average experimental measurements and their associated error, 

assuming normally-distributed residuals. 

 

Identifiability analysis. In order to assess the identifiability of the 

model parameters, an approach similar to Raue et al. is applied (Raue et 

al., 2009). For each parameter, the algorithm samples the range of possi-

ble parameter values [0, 1], and re-optimizes the model under the addi-

tional constraint of this parameter being fixed to each one of the sampled 

values. In order to obtain the most meaningful results we sample the 

same number of points on both sides of the optimal value. We include 

the option to skip the most extreme values based on a threshold deter-

mined by the resampling analysis (red line, Fig. 2b), thereby accelerating 

computations. The resulting MSE profiles allow to determine which 

parameters are well constrained by the experimental measurements.  

 

Interactions Knockouts. FALCON allows the systematic removal of 

each edge in the network and provides a graphical output showing the 

effect on the global fitness of the model. The models are compared using 

the Akaike Information Criterion (Burnham and Anderson, 2004), which 

balances goodness-of-fit with model complexity (Fig. 2c). By using this 

additional analysis, it is possible to differentiate the crucial edges of the 

system from the ones that are dispensable, which can be pruned out. 

 

Nodes Knockouts. A frequent goal of systems biology analyses is to 

identify the crucial molecules of a regulatory network.  Often performed 

via network topological properties (centrality measures), this identifica-

tion is of particular interest in the case of target discovery efforts. 

FALCON allows the systematic evaluation of models in which each 

node is removed from the network. The comparison of these models 

using the Akaike Information Criterion allows to identify these crucial 

nodes not only from topological properties but from the effect their 

removal has on the behaviour of the entire system (Fig 2d). 

 

Differential regulation. In many real-life modelling applications, a 

system is studied in different contexts. For example, during a drug 

screen, the same signalling pathways are studied for different cell lines, 

or over time. One goal of systems biology is to identify differences 

between the contexts in the way the system is regulated. FALCON 

automates such analyses by optimizing identical models in parallel for 

multiple series of experimental conditions. Users can discover which 

parts of the network are activated or shut down between cell lines/time 

points, and this may lead to the identification of specific interventions 

strategies for each context (Fig. 3). 

3 Pipeline and Performance 

 

FALCON is a highly efficient optimisation tool that is capable of contex-

tualizing small-to-large biological networks. For an easy input of model 

structure and experimental data, FALCON accepts different file formats 

(.txt, .xls, .xlsx, .csv) which are subsequently used to build logical mod-

els. Inference of network structure, interaction matrices, and parameter 

constraints are fully automated, and the toolbox outputs a user-friendly 

summary comprising the optimized weights for the different interactions, 

both in text and graphical forms. To facilitate the use of our toolbox, we 

included a graphical user interface (GUI) to guide users through the 

different steps of the workflow. Users who are more comfortable with 

the MATLAB language can instead choose to use the provided driver 

script for full flexibility. 

 

To showcase the performance of our toolbox, we provide four examples, 

including the replication of several studies, each presenting a particular 

challenge for the toolbox. The results of our tests are shown in Table 2. 

All computations were performed on a desktop PC with 16 GB RAM 

and an Intel® Xeon® CPU E3-1246 v3, 3.5 GHz with Matlab 2016b. 

 

Toy model: we demonstrate the basic functionality of FALCON on a 6-

node toy model, comprising both positive and negative interactions, as 

well as a Boolean AND gate. The structure of this network, associated 

synthetic data and trained model are illustrated in Figure S1 in the Sup-

plementary Material.  

 

PDGF: we used FALCON to optimise a platelet-derived growth factor 

signalling model (Trairatphisan et al., 2016), comprising 30 nodes and 

37 interactions (19 free parameters). The dataset was assembled from the 

quantification of 6 proteins by western blot analysis in HEK293 cells 

expressing a constitutively active form of the PDGF receptor, in the 

presence or absence of two types of perturbations: single-point mutations 

of tyrosine residues on the PDGF receptor associated with the recruit-

ment sites of downstream signalling molecules, and kinase inhibitors. 

We obtained a fitting cost (MSE=0.0041) and parameter values very 

similar to the original study, where the tool optPBN (Trairatphisan et al., 

2014) was used to perform the optimization, and in accordance with it, 

we are able to train the network with single perturbations and accurately 

predict the signalling profiles of combined perturbations experiments 

(see Supplementary Materials). 

 

Apoptosis: we replicated a modified model of a previous study in which 

a large Boolean model of apoptosis was used to investigate non-linear 

dose-effects of UV radiation on cultured hepatocytes (Schlatter et al., 

2009; Trairatphisan et al., 2014). The model comprises 138 nodes and 

160 interactions (41 free parameters). We correctly estimated apoptosis 

levels and the other associated experimental measures, and could draw 

the same conclusions as the original study concerning the importance of 

cross-talks, especially between Caspase 8 and NFKB (see Supplemen-

tary Materials). While the original study used the software CellNetAna-

lyzer (Klamt et al., 2007), which uses a multi-value Boolean formalism 

and concentrates on network properties, a previous replication with the 

optPBN toolbox (Trairatphisan et al., 2014) could infer more quantita-

tive properties, but at the expense of long computation times. Analysis of 

this network and data with FALCON is comparatively very fast with up 

to 170-fold improvement (FALCON: 76 seconds; optPBN: 4 hours 40 

minutes) and we obtained a fitting cost (FALCON: MSE=0.017) compa-

rable with the previous studies (optPBN: MSE=0.011; Schlatter et al.: 

MSE=0.013). In comparison, CellNetAnalyzer, using discrete Boolean 

modelling and only able to consider either full activation of complete 

inactivity of the molecules, achieves a worse fit (MSE: 0.056). The 

comparison of the inferred molecular states of optPBN and FALCON 

can be found in Supplementary Figure S6. 
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MAPK: we compared the performance of our tool with the software 

CellNOptR (Terfve et al., 2012; MacNamara et al., 2012) in the fuzzy 

logic mode (CNORfuzzy) for quantitative optimisation of model states. 

Using the toy example provided, which is the optimized network of the 

DREAM4 challenge and contains 22 nodes, 36 interactions and 25 

experimental conditions (Prill et al., 2011), we obtained a similar fitting 

cost with FALCON (MSE=0.036) and with CellNOptR (MSE=0.032) 

but with a gain of speed of about 44 times (see Table 2). 

Table 2. Accuracy and computation times for the different examples. 

The cost is expressed as MSE (mean squared error) and the speed is 

expressed in seconds (s). 

 Example Nodes Edges / Parameters Datapoints Cost Speed 

  Toy (artificial) 6 3 / 3 10 0 < 1s 

  PDGF 30 19 / 19 36 0.004 1.3s 

  Apoptosis 138 160 / 41 18 0.017 76s 

  MAPK [FALCON] 22 32 / 32 175 0.036 1.1s 

  MAPK [CNORfuzzy] 22 32 / 92 175 0.032 47.4s 

4 Discussion 

We present FALCON as an alternative tool for the efficient optimization 

and comprehensive analysis of logical models of regulatory networks. 

Our modelling framework, based on DBNs, is able to determine qualita-

tive and quantitative features of the systems being modelled. Node 

values, being comprised in the interval [0, 1], represent the probabilities 

for molecules to be in their active state at equilibrium. They can also be 

understood as the normalized average activities of the nodes. The com-

puted parameters, or weights, also comprised in the interval [0, 1] and 

subject to the law of total probability, represent the probabilities for the 

designated interactions to influence downstream nodes. They can also be 

interpreted as the relative influences of the parent nodes on their children 

nodes and are useful in assessing the flow of the signal transduction. 

 

FALCON, through its GUI, is easy to use for scientists without extensive 

modelling experience. FALCON is also very fast compared to similar 

tools based on PBNs, and surpassed CellNOptR in our test. The low 

computation costs make it possible to analyse the models at the systems 

level through a series of bundled additional analyses which allow to 

answer a number of biologically important questions: whether the pa-

rameter values are well constrained by the available data, how the exper-

imental error influences the confidence in the parameter values, and 

which are the nodes and interactions most crucial to the behaviour of the 

system versus the ones that can be pruned out. Together, our results 

suggest that FALCON is a very useful software for rapid model explora-

tion, especially for large networks and large datasets. 

 

Compared to the popular package CellNOptR, the FALCON pipeline is 

faster in contextualizing a small graphical model with quantitative data. 

The inferred parameters are also more intuitively understandable as the 

relative strength of the interactions, while CellNOptR combines linear 

and Hill’s equations in a way that does not encourage direct interpreta-

tion. This relative complex formulation, together with the multiple 

concurrent formalisms proposed and the increased computational cost 

suggest reserving this tool for more complex tasks, while FALCON is 

better adapted for exploratory studies of larger networks and datasets. 

 

Future development of the FALCON toolbox will include full compati-

bility with established model representation formats (SBML-Qual, Bio-

PAX), and the conversion of the toolbox to other languages, like R, 

Python and C++. One particular aspect that we regard as highly interest-

ing is the use of FALCON to explore model topologies in a large-scale, 

systematic way to uncover previously unknown mechanisms in regulato-

ry networks. 

 

In terms of applications, we demonstrated that FALCON is applicable to 

model signal transduction networks and could easily be extended to 

study other biological regulatory systems. We envision that FALCON 

has the potential to be widely adopted by the computational biology 

community, including biologists with limited programming experience. 
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