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We show how previous work on modal extensions of Łn-valued logics fits naturally into the coalgebraic
framework and indicate some of the ensuing generalisations.

Modal extensions of Łn-valued logics. We study logics with a modal operator � and built from a
countable set of propositional variables Prop using the connectors ¬,→,�, 1 in the usual way. To interpret
formulas on structures, we use a (crisp) many-valued generalization of the Kripke models. We fix a positive
integer n and we denote by Łn the subalgebra Łn = {0, 1

n , . . . ,
n−1
n , 1} of the standard MV-algebra 〈[0, 1],¬,→

, 1〉. A frame is a couple 〈W,R〉 where W is a nonempty set and R is an binary relation. We denote by FR
the class of frames.

Definition 0.1 ([2, 4, 5, 9]). An  Ln-valued model, or a model for short, is a couple M = 〈F,Val〉 where
F = 〈W,R〉 is a frame and Val : W ×Prop→ Łn. The valuation map Val is extended inductively to W ×Form
using  Lukasiewicz’ interpretation of the connectors 0, ¬ and → in [0, 1] and the rule

Val(u,�φ) = min{Val(w, φ) | w ∈ Ru}. (1)

A formula φ is true in an Łn-valued model M = 〈F,Val〉, in notation M |= φ, if Val(u, φ) = 1 for every
world u of F. If Φ is a set of formulas that are true in every Łn-valued model based on an frame F, we write

F |=n Φ

and say that Φ is Łn-valid in F.

Apart from the signature of frames, there is another first-order signature that can be used to interpret
formulas. We denote by � the dual order of divisibility on N, that is, for every `, k ∈ N we write ` � k if `
is a divisor of k, and ` ≺ k if ` is a proper divisor of k.

Definition 0.2 (n-frames, [5, 9]). An n-frame is a tuple 〈W, (rm)m�n, R〉 where 〈W,R〉 is a frame, rm ⊆W
for every m � n, and

1. rn = W and rm ∩ rq = rgcd(m,q) for any m, q � n,

2. Ru ⊆ rm for any m � n and u ∈ rm.

FRn is the class of n-frames. For F ∈ FRn, a model M = 〈F,Val〉 is based on F if Val(u,Prop) ⊆ Łm for
every m � n and u ∈ rm. We write

F |= Φ

if Φ holds in all models based on F.

It is apparent from [4, 8, 5, 9] that |= is better behaved then |=n because there is a nice duality between
n-frames and modal MVn-algebras, very much analogous to the classical duality between Kripke frames
and Boolean algebras with operators. For example, the Goldblatt-Thomason theorem for modal Łn-valued
logic in [9] is first proved for n-frames and |=. The Goldblatt-Thomason theorem for frames and |=n then
appears as a corollary. Morevoer, the canonical extension of a modal MVn-algebra A can be obtained as
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the complex algebra of a canonical n-frame associated with A. This construction leads to completeness-
through-canonicity results [5] with regards to classes of n-frames.

Modal extensions of Łn-valued logics, coalgebraically. We account for |=n by following well-
established coalgebraic methodology, summarised in

SetT

-- P ,,
MVn

S

kk L

jj
(2)

where T = P is the powerset functor and LA is the free MVn algebra generated by {�a | a ∈ A} modulo
the axioms of modal MVn-algebras. P and S are the contravariant functors given by homming into Łn.
(1) allows us to extend P to a functor P̃ from T -coalgebras to L-algebras, assigning to a T -coalgebra its

‘complex algebra’. Similarly, the functor S can be extended to a functor S̃ from L-algebras to T -coalgebras
assigning to an L-algebra its ‘canonical structure’.

A Kripke frame F = 〈W,R〉 is exactly a T -coalgebra (for T = P). The Lindenbaum algebras (over a set
of atomic propositions) are free L-algebras. We have F |= φ iff all morphisms from the free L-algebra (over

the atomic propositions of φ) to P̃F map φ to W .
To account for |=, we replace, in (2), Set by the category SetVn defined as follows. Let Vn = {1, . . . , n}

be the lattice of all divisors of n ordered by n ≤ m if m divides n (so that n is bottom and 1 is top). Then
SetVn has as objects pairs (X, v) with v : X → V and arrows are maps f : (X, v) → (X ′, v′) such that
v′fx ≥ vx. Note that this definition makes sense for any complete lattice V and that SetV coincides with
Goguen’s category of fuzzy sets [3].1

In order to extend functors T : Set→ Set as in (2) to functors SetVn → SetVn we notice that SetV can be
described equivalently as a category of ‘continuous presheaves’. A continuous presheaf is a collection of sets
(X, (Xi)i∈V) such that (i) i ≤ j only if Xj ⊆ Xi (ii) X∨

I =
⋂

i∈I Xi (iii) X0 = X. Under mild conditions,
this allows us to extend T pointwise by mapping (X, (Xi)i∈V) to (TX, (TXi)i∈V).

In case of V = Vn and T = P, a T -coalgebra is precisely an n-frame, and capture the situation for |=:

SetVnT
== P ,,

MVn

S
ll L

jj
(3)

The adjunction (3) has better properties than (2). In particular, (3) restricts to a dual equivalence on finite
structures. This shows that (3) falls into the framework of [7] and allows us to obtain the Goldblatt-Thomason
theorems of [9] from the coalgebraic Goldblatt-Thomason theorem of [6]. In particular, this generalises the
theorems of [9] to other functors T .
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