Modal extensions of L_n -valued logics, coalgebraically

Marta Bílková¹^{*}, Alexander Kurz²[†], and Bruno Teheux^{3‡}

We show how previous work on modal extensions of L_n -valued logics fits naturally into the coalgebraic framework and indicate some of the ensuing generalisations.

Modal extensions of \mathbb{L}_n -valued logics. We study logics with a modal operator \Box and built from a countable set of propositional variables Prop using the connectors $\neg, \rightarrow, \Box, 1$ in the usual way. To interpret formulas on structures, we use a (crisp) many-valued generalization of the KRIPKE models. We fix a positive integer n and we denote by \mathbb{L}_n the subalgebra $\mathbb{L}_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$ of the standard MV-algebra $\langle [0, 1], \neg, \rightarrow, 1\rangle$. A *frame* is a couple $\langle W, R \rangle$ where W is a nonempty set and R is an binary relation. We denote by FR the class of frames.

Definition 0.1 ([2, 4, 5, 9]). An L_n -valued model, or a model for short, is a couple $\mathcal{M} = \langle \mathfrak{F}, \text{Val} \rangle$ where $\mathfrak{F} = \langle W, R \rangle$ is a frame and Val: $W \times \text{Prop} \to \mathbb{L}_n$. The valuation map Val is extended inductively to $W \times \text{Form}$ using LUKASIEWICZ' interpretation of the connectors $0, \neg$ and \rightarrow in [0, 1] and the rule

$$\operatorname{Val}(u, \Box \phi) = \min\{\operatorname{Val}(w, \phi) \mid w \in Ru\}.$$
(1)

A formula ϕ is *true* in an \mathbb{L}_n -valued model $\mathcal{M} = \langle \mathfrak{F}, \operatorname{Val} \rangle$, in notation $\mathcal{M} \models \phi$, if $\operatorname{Val}(u, \phi) = 1$ for every world u of \mathfrak{F} . If Φ is a set of formulas that are true in every \mathbb{L}_n -valued model based on an frame \mathfrak{F} , we write

 $\mathfrak{F}\models_n \Phi$

and say that Φ is \mathbb{L}_n -valid in \mathfrak{F} .

Apart from the signature of frames, there is another first-order signature that can be used to interpret formulas. We denote by \leq the dual order of divisibility on \mathbb{N} , that is, for every $\ell, k \in \mathbb{N}$ we write $\ell \leq k$ if ℓ is a divisor of k, and $\ell \leq k$ if ℓ is a proper divisor of k.

Definition 0.2 (*n*-frames, [5, 9]). An *n*-frame is a tuple $\langle W, (r_m)_{m \leq n}, R \rangle$ where $\langle W, R \rangle$ is a frame, $r_m \subseteq W$ for every $m \leq n$, and

- 1. $r_n = W$ and $r_m \cap r_q = r_{\text{gcd}(m,q)}$ for any $m, q \leq n$,
- 2. $Ru \subseteq r_m$ for any $m \preceq n$ and $u \in r_m$.

 FR^n is the class of *n*-frames. For $\mathfrak{F} \in \mathsf{FR}^n$, a model $\mathcal{M} = \langle \mathfrak{F}, \mathrm{Val} \rangle$ is based on \mathfrak{F} if $\mathrm{Val}(u, \mathsf{Prop}) \subseteq \mathbb{L}_m$ for every $m \leq n$ and $u \in r_m$. We write

 $\mathfrak{F} \models \Phi$

if Φ holds in all models based on \mathfrak{F} .

It is apparent from [4, 8, 5, 9] that \models is better behaved then \models_n because there is a nice duality between *n*-frames and modal \mathcal{MV}_n -algebras, very much analogous to the classical duality between Kripke frames and Boolean algebras with operators. For example, the Goldblatt-Thomason theorem for modal \mathbb{L}_n -valued logic in [9] is first proved for *n*-frames and \models . The Goldblatt-Thomason theorem for frames and \models_n then appears as a corollary. Moreover, the canonical extension of a modal \mathcal{MV}_n -algebra **A** can be obtained as

 ¹ Institute of Computer Science, the Czech Academy of Sciences, Prague
 ² Department of Informatics, University of Leicester
 ³ Mathematics Research Unit, FSTC, University of Luxembourg

^{*}bilkova@cs.cas.cz

[†]ak155@leicester.ac.uk

[‡]bruno.teheux@uni.lu

the complex algebra of a canonical *n*-frame associated with **A**. This construction leads to completenessthrough-canonicity results [5] with regards to classes of *n*-frames.

Modal extensions of L_n -valued logics, coalgebraically. We account for \models_n by following wellestablished coalgebraic methodology, summarised in

$$T \underbrace{\sum}_{S} \mathsf{Set} \underbrace{\sum}_{S} \mathsf{MV}_{\mathsf{n}} \underbrace{\sum}_{L}$$
(2)

where $T = \mathcal{P}$ is the powerset functor and LA is the free \mathcal{MV}_n algebra generated by $\{\Box a \mid a \in A\}$ modulo the axioms of modal \mathcal{MV}_n -algebras. P and S are the contravariant functors given by homming into L_n . (1) allows us to extend P to a functor \tilde{P} from T-coalgebras to L-algebras, assigning to a T-coalgebra its 'complex algebra'. Similarly, the functor S can be extended to a functor \tilde{S} from L-algebras to T-coalgebras assigning to an L-algebra its 'canonical structure'.

A Kripke frame $\mathfrak{F} = \langle W, R \rangle$ is exactly a *T*-coalgebra (for $T = \mathcal{P}$). The Lindenbaum algebras (over a set of atomic propositions) are free *L*-algebras. We have $\mathfrak{F} \models \phi$ iff all morphisms from the free *L*-algebra (over the atomic propositions of ϕ) to $\widetilde{P}\mathfrak{F}$ map ϕ to W.

To account for \models , we replace, in (2), Set by the category $\operatorname{Set}_{\mathcal{V}_n}$ defined as follows. Let $\mathcal{V}_n = \{1, \ldots, n\}$ be the lattice of all divisors of *n* ordered by $n \leq m$ if *m* divides *n* (so that *n* is bottom and 1 is top). Then $\operatorname{Set}_{\mathcal{V}_n}$ has as objects pairs (X, v) with $v : X \to \mathcal{V}$ and arrows are maps $f : (X, v) \to (X', v')$ such that $v'fx \geq vx$. Note that this definition makes sense for any complete lattice \mathcal{V} and that $\operatorname{Set}_{\mathcal{V}}$ coincides with Goguen's category of fuzzy sets [3].¹

In order to extend functors $T : \text{Set} \to \text{Set}$ as in (2) to functors $\text{Set}_{\mathcal{V}_n} \to \text{Set}_{\mathcal{V}_n}$ we notice that $\text{Set}_{\mathcal{V}}$ can be described equivalently as a category of 'continuous presheaves'. A continuous presheaf is a collection of sets $(X, (X_i)_{i \in \mathcal{V}})$ such that (i) $i \leq j$ only if $X_j \subseteq X_i$ (ii) $X_{\bigvee I} = \bigcap_{i \in I} X_i$ (iii) $X_0 = X$. Under mild conditions, this allows us to extend T pointwise by mapping $(X, (X_i)_{i \in \mathcal{V}})$ to $(TX, (TX_i)_{i \in \mathcal{V}})$.

In case of $\mathcal{V} = \mathcal{V}_n$ and $T = \mathcal{P}$, a T-coalgebra is precisely an n-frame, and capture the situation for \models :

$$T\left(\operatorname{Set}_{\mathcal{V}_n} \underbrace{\stackrel{P}{\underset{S}{\longrightarrow}}}_{S} \mathsf{MV}_n \right) L \tag{3}$$

The adjunction (3) has better properties than (2). In particular, (3) restricts to a dual equivalence on finite structures. This shows that (3) falls into the framework of [7] and allows us to obtain the Goldblatt-Thomason theorems of [9] from the coalgebraic Goldblatt-Thomason theorem of [6]. In particular, this generalises the theorems of [9] to other functors T.

References

- [1] Michael Barr. Fuzzy set theory and topos theory. Canad. Math. Bull., 18:145–174, 1967.
- [2] Félix Bou, Francesc Esteva, Lluís Godo, and Ricardo Oscar Rodríguez. On the minimum many-valued modal logic over a finite residuated lattice. Journal of Logic Computation, 21(5):739–790, 2011.
- [3] J. A. Goguen. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18:145–174, 1967.
- [4] Georges Hansoul and Bruno Teheux. Completeness results for many-valued Łukasiewicz modal systems and relational semantics. arXiv:math/0612542, 2006.
- [5] Georges Hansoul and Bruno Teheux. Extending Lukasiewicz logics with a modality: Algebraic approach to relational semantics. *Studia Logica*, 101(3):505–545, 2013.
- [6] Alexander Kurz and Jiří Rosický. The Goldblatt-Thomason theorem for coalgebras. In Algebra and Coalgebra in Computer Science, Second International Conference, CALCO 2007, Bergen, Norway, August 20-24, 2007, Proceedings, pages 342–355, 2007.

¹See also [1, 10].

- [7] Alexander Kurz and Jiří Rosický. Strongly complete logics for coalgebras. Logical Methods in Computer Science, 8(3), 2012.
- [8] Bruno Teheux. A duality for the algebras of a Łukasiewicz n + 1-valued modal system. Studia Logica, 87(1):13–36, 2007.
- [9] Bruno Teheux. Modal definability based on Łukasiewicz validity relations. Studia Logica, 104(2):343–363, 2016.
- [10] Carol L. Walker. Categories of fuzzy sets. Soft Comput., 8(4):299-304, 2004.