
A Model-Driven Approach to Trace Checking of
Pattern-based Temporal Properties

Wei Dou
SnT - University of Luxembourg

Luxembourg, Luxembourg
dou@svv.lu

Domenico Bianculli
SnT - University of Luxembourg

Luxembourg, Luxembourg
domenico.bianculli@uni.lu

Lionel Briand
SnT - University of Luxembourg

Luxembourg, Luxembourg
lionel.briand@uni.lu

Abstract—Trace checking is a procedure for evaluating re-
quirements over a log of events produced by a system. This paper
deals with the problem of performing trace checking of temporal
properties expressed in TemPsy, a pattern-based specification
language. The goal of the paper is to present a scalable and
practical solution for trace checking, which can be used in
contexts where relying on model-driven engineering standards
and tools for property checking is a fundamental prerequisite.

The main contributions of the paper are: a model-driven trace
checking procedure, which relies on the efficient mapping of
temporal requirements written in TemPsy into OCL constraints
on a meta-model of execution traces; the implementation of
this trace checking procedure in the TEMPSY-CHECK tool; the
evaluation of the scalability of TEMPSY-CHECK, applied to the
verification of real properties derived from a case study of our
industrial partner, including a comparison with a state-of-the-
art alternative technology based on temporal logic. The results
of the evaluation show the feasibility of applying our model-
driven approach for trace checking in realistic settings: TEMPSY-
CHECK scales linearly with respect to the length of the input
trace and can analyze traces with one million events in about
two seconds.

I. INTRODUCTION

Trace checking, also called trace validation [1] or history
checking [2], is a technique for evaluating requirements over a
log of recorded events produced by a system. This technique
complements verification activities performed before the de-
ployment of a system (e.g., testing and model checking) or
during the system’s execution (e.g., run-time monitoring).

As part of a larger research collaborative project that we are
running with our public service partner CTIE (Centre des tech-
nologies de l’information de l’Etat, the Luxembourg national
center for information technology), on model-driven run-time
verification of business processes [3], we are investigating the
use of trace checking for detecting anomalous behaviors of
eGovernment business processes and for checking whether
third-parties (e.g., other administrations, suppliers) involved
in the execution of the process fulfill their guarantees.

The effective application of trace checking goes through two
steps: 1) precisely specifying the requirements to check over
a trace; 2) defining a procedure for checking the conformance
of a trace with respect to the requirements.

Regarding the specification of the requirements to check,
many of the existing approaches support some types of tem-
poral properties, usually expressed in some temporal logic,

either the classic LTL or CTL, or more complex versions
like MFOTL [4] and SOLOIST [5]. However, these specifi-
cation approaches require strong theoretical and mathematical
background, which are rarely found among practitioners. To
address this issue, in previous work [6] we proposed OCLR,
a domain-specific language for the specification of temporal
properties, based on the catalogue of property specification
patterns defined by Dwyer et al. [7], and extended with
additional constructs. The language has been defined in col-
laboration with the CTIE analysts, based on the analysis of
the requirements specifications of an industrial case study.
The most recent version of the language, now called TemPsy
(Temporal Properties made easy) [8], sports a syntax close
to natural language, has all the constructs required to express
the property specification patterns found in our case study,
and has a precise semantics expressed in terms of linear
temporal traces. By design, TemPsy does not aim at being as
expressive as a full-fledged temporal logic. Instead, its goal is
to make as easy as possible the specification of the temporal
requirements of business processes, by supporting only the
constructs needed in business process applications.

Having fixed the specification language for the properties
to check, in this paper we focus on the definition of a trace
checking procedure for temporal properties. The definition
of this procedure has to fulfill the following requirements
determined by the type of context in which this work is
set: R1) to be viable in the long term, any procedure shall
rely on standard MDE (model-driven engineering) technology
— in our context tools implementing OMG specifications —
for checking the compliance of a system to its application
requirements; R2) any procedure shall be scalable and enable
checking of large traces within practical time limits, such that a
trace with millions of events could be checked within seconds.

Requirement R1 emerges from the software development
methodology embraced by our industrial partner, which has
adopted MDE in practice and requires any software solution
added to the development process (e.g., trace checking) to
adhere to OMG specifications and rely on the corresponding
tools. We remark that this requirement prevents the adoption
of a naive approach for trace checking, in which TemPsy
specifications would be first translated (likely manually, given
the complexity of the task) into their corresponding tempo-
ral logic formulae and then verified using an existing trace

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84743122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

checking approach (e.g., [4], [9]) optimized for temporal logic
but not based on standard MDE technologies. Although this
requirement is motivated by specific needs from our partner,
we believe — based on experience — that it can be generalized
to other contexts in which solutions have to be engineered by
using standard MDE technologies that are already in place in
the targeted development environment.

As for requirement R2, the trace checking procedure has to:
1) scale with respect to the length of the trace, because traces
may contain a huge number of events, depending on the time
span captured by the log, the nature of the system to which the
log refers to (e.g., several virtual machines), and the types of
events monitored (e.g., high-level message passing events or
low-level method calls) [10]; 2) complete within practical time
limits, because trace checking can be used not only for post-
mortem analysis, but also to enable real-time log analysis (as a
complementary strategy to run-time monitoring), to promptly
detect critical requirements violations.

Keeping in mind the above requirements, the goal of this
paper is to present a scalable and practical solution, based
on standard MDE technologies, for trace checking of pattern-
based temporal properties expressed in TemPsy. To achieve
this goal, the paper will make the following contributions:
i) a model-driven trace checking procedure, which relies on a
mapping of temporal requirements written in TemPsy into Ob-
ject Constraint Language (OCL) constraints on a meta-model
of execution traces; ii) a publicly available tool (TEMPSY-
CHECK) implementing this model-driven trace checking pro-
cedure; iii) an evaluation of the scalability of TEMPSY-
CHECK, applied to the verification of real properties derived
from a case study of our public service partner, including a
comparison with a state-of-the-art alternative technology. As
a separate contribution, we also make available the artifacts
used in the evaluation to contribute to the building of a public
repository of case studies for evaluating trace checking/run-
time verification procedures.

Our trace checking procedure fulfills requirement R1 above
since it follows a model-driven approach based on OCL. OCL
is the de-facto constraints specification language defined by
OMG and an international standard [11], which is supported
by mature constraint checking technology, such as the con-
straint checker included in Eclipse OCL [12]. The procedure
relies on a generic meta-model of system execution traces
and leverages an optimized mapping of TemPsy properties
into OCL constraints defined over this trace model. This
mapping is optimized based on the structure of the TemPsy
property to check, in order to achieve better performance.
More specifically, we show how the problem of checking a
TemPsy property over an execution trace (i.e., the TemPsy
trace checking problem) can be reduced to evaluating an
OCL constraint (derived from the TemPsy property to check
and semantically-equivalent to it) on an instance of the trace
model; this check is executed using standard OCL checkers.

To show the fulfillment of requirement R2 above, we
extensively evaluated the scalability of the proposed trace
checking procedure, by assessing the relationship among the

checking time, the structural properties of a trace (e.g., length,
distribution of events), and the type of property to check. We
evaluated the scalability of our TEMPSY-CHECK tool on real
properties extracted from our case study, on traces with length
ranging from 100K to 1M. We also compared the performance
of TEMPSY-CHECK with MONPOLY [13], a state-of-the-art
alternative technology, selected from the participants to the
“offline monitoring” track of the international Competition on
Software for Runtime Verification [14], [15]. The experimental
results show that TEMPSY-CHECK can load and analyze very
large traces (with one million events) in about two seconds
and that it scales linearly with respect to the length of the
trace to check. The results also show that TEMPSY-CHECK
in practice performs similarly to or better than the state-of-
the-art, depending on the type of properties, confirming the
feasibility and benefits of a model-driven approach for trace
checking of temporal properties.

The rest of the paper is structured as follows. Section II
provides some background concepts of TemPsy. Section III
describes our model-driven approach for trace checking of
TemPsy properties. Section IV reports on the evaluation con-
ducted with TEMPSY-CHECK. Section V discusses related
work. Section VI concludes the paper, providing directions
for future work.

II. BACKGROUND: THE TemPsy LANGUAGE

Property specification patterns (PSPs) have been initially
proposed by Dwyer et al. [7] in the late ‘90s in the context of
formal verification, as a means to express recurring properties
in a generalized form, which could be formalized in different
specification languages. PSPs consists of eight parametrizable
patterns (“absence”, “universality”, “existence”, “bounded ex-
istence”, “precedence”, “response”, “precedence chain”, “re-
sponse chain”), representing high-level abstractions of formal
specifications, and five scopes (“globally”, “before”, “after”,
“between-and”, “after-until”), which indicate the portions of a
system execution in which a certain pattern should hold.

In previous work we proposed OCLR [6], a pattern-based,
domain-specific language for the specification of temporal
properties; the most recent version of the language is now
called TemPsy (Temporal Properties made easy) [8]. The
design of (OCLR and) TemPsy was driven by the analysis
of the requirements of various applications implementing
business process models in the context of eGovernment sys-
tems. The analysis showed that all the requirements could
be expressed through Dwyer’s PSPs, with some additional
constructs. Hence, TemPsy was designed with the goal of
supporting Dwyer’s PSPs with the following extensions: 1) the
possibility, in the definition of a scope boundary, to refer
to a specific occurrence of an event; 2) the possibility to
indicate a time distance with respect to a scope boundary;
3) support for expressing time distance between occurrences
in the precedence and response patterns as well as their chain
versions; 4) additional variants for the bounded existence and
absence patterns.

The main concepts within a property expressed in TemPsy
are those of scope and pattern. Scopes and patterns refer to
events, which correspond to the actual events logged in the
execution trace on which the properties specified in TemPsy
are meant to be checked. TemPsy properties may contain time
distances (both between events and from scope boundaries);
time distances are expressed with an integer value, followed
by the ‘tu’ keyword, which represents the system time unit
(as suggested in [16]). For space reasons, we only explain
TemPsy informally, focusing on the supported patterns; readers
are referred to the online report [8] for the complete definition
of the (formal) syntax and semantics.

The semantics of patterns in TemPsy is defined as follows:

Universality. An event should occur across the entire exe-
cution trace.

Existence. The existence pattern can be expressed in four
variants, using the following syntax: “eventually [(at least
| at most | exactly) m] A”, where the brackets indicate an
optional part and the vertical bar represents an alternative.
The basic variant indicates that event A will eventually happen
at least once; the other three variants are used to express a
bounded existence pattern, which indicates that event A will
eventually happen at least/at most/exactly m times.

Absence. In addition to stating that a certain event never
occurs in the given scope, TemPsy makes also possible to
specify that a specific number of occurrences of the same
event should not happen, as in “never exactly 2 A”, which
indicates that A should never occur exactly twice.

Precedence. This pattern indicates the precondition rela-
tionship between a pair of events (respectively, the two blocks
of a chain) in which the occurrence of the second event
(respectively, block) depends on the occurrence of the first
event (respectively, block). Based on this definition, we add
support for timing information to enable expressing the time
distance between two adjacent events. For example, the pattern
“A preceding at most 5 tu B, #at least 2 tu C” indicates
that the event A is the precondition of the block “B followed by
C”. In this pattern, A (left-hand side of ‘preceding’) represents
the first block, while the expression “B, #at least 2 tu C”
represents the second block, and the time distance between
A and B should be at most 5 time units (specified right after
‘preceding’), and the time distance between B and C (denoted
with a # symbol) should be at least 2 time units.

Response. This pattern specifies the cause-effect relation-
ship between a pair of events (respectively, the two blocks of a
chain) in which the occurrence of the first event (respectively,
first block) leads to the occurrence of the second event
(respectively, second block). Similarly to precedence, we add
support for timing information to enable expressing the time
distance between two adjacent events.

To exemplify, the property “Event B shall happen at least 4
time units before the third occurrence of event Y .” is expressed
in TemPsy as “before 3 Y at least 4 tu eventually B”.

traceElements

*

Trace

properties : EList<TemPsyExpression>

applyScopeGlobally(Scope):Elist<EList<TraceElement>>
applyScopeBefore(Scope):Elist<EList<TraceElement>>
applyScopeAfter(Scope):Elist<EList<TraceElement>>
applyScopeBetweenAnd(Scope):Elist<EList<TraceElement>>
applyScopeAfterUntil(Scope):Elist<EList<TraceElement>>
checkPatternUniversality(EList<TraceElement>, Pattern):Boolean
checkPatternExistence(EList<TraceElement>, Pattern):Boolean
checkPatternAbsence(EList<TraceElement>, Pattern):Boolean
checkPatternPrecedence(EList<TraceElement>, Pattern):Boolean
checkPatternResponse(EList<TraceElement>, Pattern):Boolean

TraceElement

event : EString
timestamp : EInt

Fig. 1. Meta-model for execution traces

III. MODEL-DRIVEN TRACE CHECKING OF TemPsy
PROPERTIES

The idea at the basis of our model-driven trace checking
approach is to reduce the problem of checking a TemPsy
property ρ over a trace λ , to the problem of evaluating an
OCL constraint (semantically equivalent to ρ) on an instance
of a conceptual model for execution traces (equivalent to λ).

This reduction allows us to rely on standard constraint
checking technology to perform trace checking; standard OCL
checkers, such as Eclipse OCL, can be used to evaluate OCL
constraints on model instances. The use of a model-driven
approach and of standard technologies fulfills requirement R1
stated in section I, and enables us to provide a scalable and
practical solution for trace checking of temporal properties,
which is also viable in the long term.

A. Meta-model for execution traces

The definition of a meta-model for execution traces is a key
element of our approach, since the transformation of TemPsy
properties into efficiently checkable OCL constraints defined
on such model is a key strategy for us to achieve scalability.

We propose a simple and yet generic meta-model of system
execution traces; it can be extended (by enriching the type of
event) depending on the actual type of system (e.g., business
process, access control framework) and the type of properties
to check. The model, depicted in Fig. 1 with a UML class di-
agram, contains a Trace, which is composed of a sequence of
TraceElements, accessed through the association traceEle-
ments. Each TraceElement contains an attribute event of
type string, which represents the actual event recorded in
the trace, and an attribute timestamp of type integer, which
indicates the time at which the event occurred. Class Trace
contains also an attribute properties, which is a collection of
TemPsyExpressions, representing the properties to be checked
on the trace.

We have defined some side-effect-free operations in OCL
for the Trace class; these operations consist of two types
of functions. The first type, of the form applyScope*S*, are
named after the different types of scope (e.g., applyScopeBe-
fore, applyScopeBetweenAnd) and return segment(s) of a trace
as determined by the parameters of the scope provided in input.
The second type, of the form checkPattern*P*, are named
after the different types of pattern (e.g., checkPatternEx-
istence, checkPatternPrecedence) and check whether the
pattern provided in input as the second parameter holds on
the segment(s) represented by the first parameter.

Parse
propertiesLog

instances of
TemPsyExpression

Read Trace

instance of
trace model

Check OCL invariant
on trace instance True/False

1a TemPsy
properties

1b

2

Fig. 2. Overview of the approach

B. Overview of the approach

Our approach for model-driven trace checking is sketched
in Fig. 2: parallelogram shapes correspond to input/output
artifacts, while rectangles correspond to steps in the approach.
The two inputs are represented by a log, corresponding to the
trace one wants to check, and by a set of TemPsy properties.
The log file is read and converted (step 1a) to an instance of
the class Trace in the model shown in Fig. 1. The TemPsy
properties are parsed and converted (step 1b) to instances of
class TemPsyExpression.

The key step (#2 in the figure) of our approach is to evaluate
an OCL invariant on the trace instance. The checking of this
invariant, which can be done using standard OCL checking
tools, is semantically equivalent to performing trace checking
of the TemPsy properties provided in input.

We have defined this invariant on the Trace class, as shown
in Fig. 3. For every TemPsy property provided in input (and
referenced in the instance of the trace through the attribute
self.properties, line 2), the invariant evaluates a boolean
function, which conceptually corresponds to applying the
semantics of the pattern used in the property (accessed through
the expression property.pattern) on a set of sub-traces, as
defined by the scope used in the property (accessed through
the expression property.scope).

More specifically, the body of the invariant expression is
a multi-way branch (defined through a sequence of if state-
ments), which selects a certain branch based on the specific
scope type used within the property. Within the body of a
branch, first a function of the form applyScope*S* is called.
This function takes the scope used in the property as input
and returns a collection of sub-traces, as defined by the scope
semantics. Afterwards, the invariant invokes a function of
the form checkPattern*P*, which checks whether the pattern
used in the property holds on each sub-trace.

For instance, let us assume that the type of the scope of
the TemPsy property provided in input is globally and that the
type of the pattern used in the property is response. As shown
in line 5, the function applyScopeGlobally is invoked to
compute the sub-trace(s) defined by the scope parameter; the
return value of this function is assigned to variable subtraces.
The branch indicated on line 15 is then taken, which results in
the evaluation of the boolean function checkPatternResponse
on all the elements of subtraces, to check whether the input
parameter pattern holds on each sub-trace.

1 context Trace
2 inv: self.properties->forAll(property:TemPsy::

TemPsyExpression |
3 let scope:TemPsy::Scope = property.scope, pattern:

TemPsy::Pattern = property.pattern in
4 if scope.type = TemPsy::GLOBALLY then
5 let subtraces:Sequence(OrderedSet(TraceElement)) =

applyScopeGlobally(scope) in
6 if pattern.type = TemPsy::UNIVERSALITY then
7 subtraces->forAll(subtrace |

checkPatternUniversality(subtrace, pattern))
8 else if pattern.type = TemPsy::EXISTENCE then
9 subtraces->forAll(subtrace |

checkPatternExistence(subtrace, pattern))
10 else if pattern.type = TemPsy::ABSENCE then
11 subtraces->forAll(subtrace | checkPatternAbsence(

subtrace, pattern))
12 else if pattern.type = TemPsy::PRECEDENCE then
13 subtraces->forAll(subtrace |

checkPatternPrecedence(subtrace, pattern))
14 else if pattern.type = TemPsy::RESPONSE then
15 subtraces->forAll(subtrace | checkPatternResponse

(subtrace, pattern))
16 endif endif endif endif endif
17 else if scope.type = TemPsy::BEFORE then [...]
18 else if scope.type = TemPsy::AFTER then [...]
19 else if scope.type = TemPsy::BETWEENAND then [...]
20 else if scope.type = TemPsy:AFTERUNTIL then [...]
21 endif endif endif endif endif)

Fig. 3. OCL invariant for checking TemPsy properties on a trace

The complete definitions in OCL of the functions of the
form applyScope*S* and checkPattern*P* are available in
the technical report accompanying this paper [8]. We illus-
trate examples of the applyScope*S* and checkPattern*P*
functions in subsections III-C and III-D, respectively; to ease
readability and conciseness, all the code snippets presented in
these subsections are written using pseudocode.

C. Example of OCL functions for scopes (before)

To exemplify the OCL functions that are used to apply
a scope definition on a trace, we illustrate the function
applyScopeBefore, corresponding to the before scope. This
function takes as input an object representing a scope in
TemPsy and yields one or more segments of the trace, as
determined by the semantics of the scope.

The pseudocode of the function applyScopeBefore is
shown in Algorithm 1. The input parameter scope is an
instance of the before scope, and the output is a list that
contains the trace segments as determined by the structure
of scope. We assume the parameter scope to have the form
“before [m] X [op n tu]” (see section II), in which op
stands for the comparison operator (i.e., “at least”, “at
most”, or “exactly”) used in the constraint that defines the
time distance from the scope boundary event X.

The function starts by reading the parameters X, m, op, and
n from the instance of the before scope (lines 1–4). In addition,
we define and initialize to an empty list both variable result
(to store the output value) and the auxiliary variable segment

Algorithm 1: applyScopeBefore
Input: scope : an instance of the before scope structured as

“before [m] X [op n tu]”
Output: result : a list containing the trace segment as

determined by the parameters of scope
1 X ← event name of the scope boundary
2 m← index of the specific occurrence of event X
3 op← comparison operator of the constraint on time distance
4 n← time distance from the m-th occurrence of X
5 result← [],segment← []
6 if m = null then m← 1
7 t← timestamp of the m-th occurrence of event X
8 if t 6= null then
9 switch op do

10 case “at least” do
11 segment ← trace elements with timestamp t ′

satisfying t ′ ≤ t−n

12 case “at most” do
13 segment ← trace elements with timestamp t ′

satisfying t−n≤ t ′ < t

14 case “exactly” do
15 segment ← trace elements with timestamp equal to

t−n

16 otherwise do
17 segment ← trace elements with timestamp t ′

satisfying t ′ < t

18 result.append(segment)
19 return result

(for collecting intermediate trace elements). If the parameter
m is omitted in the scope definition, variable m is replaced
with the value 1 (line 6), according to the default semantics
of the before scope. We then assign to variable t the timestamp
of the m-th occurrence of event X in the trace (line 7). If t
is defined, it means that the m-th occurrence of the event has
been found in the trace. Lines 9–17 select a segment from
the trace, based on the value of op. For example, when op is
“at least”, line 11 selects all the trace elements that occur at
least n time unit(s) before the m-th occurrence of event X. If
no time distance constraint is specified in the scope (line 17),
the function selects the trace segment starting at the beginning
of the trace and ending at the m-th occurrence of event X. The
function ends by adding the segment selected from the trace
to the output variable result.

D. Example of OCL functions for patterns (precedence)

To exemplify the OCL functions that are used to check
if a pattern holds on a sub-trace, we present the function
checkPatternPrecedence, corresponding to the precedence
pattern. This function takes as input a sub-trace and an object
representing a pattern in TemPsy, and returns whether the
pattern holds on the input sub-trace. The definition of function
checkPatternPrecedence comes in four variants, to consider
the case where no time distance is specified between the two
blocks of the patterns, and the three cases with the differ-
ent comparison operators (i.e., “at least”, “at most”, and

Algorithm 2: checkPatternPrecedenceAtLeast
Input: a trace segment subtrace and the parameters of an

instance of precedence pattern of the form “block1
preceding at least n tu block2”: two events (chains)
block1 and block2, and a threshold n of the time
distance between block1 and block2

Output: true if pattern holds on subtrace; false otherwise
1 size1,size2← the sizes of block1 and block2
2 firstOfBlock1← block1.first().event
3 firstOfBlock2← block2.first().event
4 (i1,pt1)← (1,0), (i2,pt2)← (1,0)
5 flag1← true
6 for elem ∈ subtrace do
7 e ← elem.event
8 t ← elem.timestamp
9 if flag1 then

10 if e = firstOfBlock1 then (i1,pt1)← (2, t)
11 else if i1 > 1 then (i1,pt1)← match(block1, i1,pt1,e, t)
12 if i1 = size1 +1 then flag1← false

13 if e = firstOfBlock2 then
14 if flag1 ‖ t < pt1 +n then (i2,pt2)← (2, t)
15 else return true

16 else if i2 > 1 then (i2,pt2)← match(block2, i2,pt2,e, t)
17 if i2 = size2 +1 then return false

18 return true

“exactly”). For space reasons, we only describe the function
checkPatternPrecedenceAtLeast, shown in Algorithm 2.

This function takes as input a trace segment and the parame-
ters of an instance of a precedence pattern: block1, block2, and
the optional time distance n between them. Notice that block1
and block2 can be either an atomic event or a chain of events
with optional constraints on the time distances in between.
The semantics of the pattern prescribes that each occurrence
of block2 is preceded, possibly with a certain time distance, by
an occurrence of block1. In practice, we need to check whether
there is an occurrence of block1 before the first occurrence of
block2 (and at a certain time distance, if required), since this
implies that any other occurrence of block2 occurring after the
first one is preceded by an occurrence of block1. We report a
violation if we cannot find an occurrence of block1 before the
first occurrence of block2 or if the distance between the two
blocks is less than n.

The algorithm uses several auxiliary variables: size1 and
size2 keep track of the number of events to match in each
block; firstOfBlock1 and firstOfBlock2 contain the event of
each block’s first element. The integer tuple (i1,pt1) (respec-
tively (i2,pt2)) is used to determine whether the trace element
being checked is a match of the next event in block1 (re-
spectively, block2). More specifically, element i1 (respectively,
i2) stores the position within block1 (respectively, block2) of
the next event to be matched; element pt1 (respectively, pt2)
stores the timestamp of the previous trace element matched at
block1[i1−1] (respectively, block2[i2−1]). The boolean flag1 is
initialized to true and is set to false when the first occurrence
of block1 has been fully matched.

Algorithm 3: match
Input: an events chain block, a tuple (i, pt) of which i (i > 1)

stores the position (within block) of the event to be
checked, pt stores the timestamp of the previous trace
element if it was a match for block[i−1], and a trace
element (e, t) to be matched with block[i]

Output: (i+1, t) if the trace element is a match for block[i];
(1,0) otherwise

1 if e = block[i].event then
2 op← block[i].timeDistance.op
3 t′← pt+block[i].timeDistance.value
4 if compare(t, op, t′) then (i,pt)← (i+1, t)

5 else (i,pt)← (1,0)
6 return (i, pt)

The function contains a loop that iterates through all the
elements of the input subtrace, trying to match each element
with block1[i1] (lines 9–12) and with block2[i2] (lines 13–17).

As for matching block1, if the current trace element matches
the first event of block1 (line 10), the variable i1 is set to 2 and
pt1 is updated with the current timestamp. Otherwise, if the
next event of block1 to be matched is not the first, an auxiliary
function match (shown in Algorithm 3) is called to match the
event defined at i1.

Function match takes as input five parameters: an events
chain block, two integer parameters i and pt, of which i (i >
1) stores the position (within block) of the event to be checked
and pt stores the timestamp of the previous trace element (if
it was a match for block[i−1]), and the two parameters of a
trace element (e, t) to be matched with block[i]. The function
updates the tuple (i,pt) if the input element is a match for
block[i]; else it sets the tuple to (1,0). More specifically, if the
current element is an occurrence of the event defined at block[i]
(with i > 1) (line 1), and if the constraint on the distance (if
defined1) from the previous event at block[i−1] holds (line 4),
variable i is incremented and variable pt is updated with the
timestamp of current trace element (line 4). Otherwise, the
tuple (i,pt) is reset on line 5.

At line 12 of function checkPatternPrecedenceAtLeast, if
the matched event is the last event of block1 (meaning that an
occurrence of block1 has been found preceding any possible
occurrence of block2), variable flag1 is set to false.

As for matching block2, if the occurrence of the first event
of block2 is detected (line 13), there are two cases that may
lead to a violation. Either block1 has not been fully matched
yet (i.e., variable flag1 is true) or it has been fully matched
but the timestamp of the current trace element (matching the
first element of block2) violates the constraint on the distance
between block1 and block2. If one of these two conditions
holds (line 14), the algorithm goes on to match2 the rest
of block2 (line 16), since the current element might actually
not be part of a whole instance of block2. If both of these

1The pseudocode for dealing with the case when the distance between block
elements is not defined has been omitted for simplicity.

2Notice that in this case a violation is reported only if block2 is fully
matched (line 17).

conditions are not satisfied (line 15), it means that there is
no violation, i.e., the first block has been fully matched and
the distance constraint between the two blocks is satisfied;
hence, there is no need to match3 the remainder of block2 and
the algorithm returns true. Otherwise the algorithm invokes
function match to match the current element with block2[i2]
(line 16). The function reports a violation whenever block2 is
fully matched (line 17); otherwise, it returns true after the
loop (line 18).

E. Tool Implementation

We have implemented our model-driven approach for trace
checking of TemPsy properties in a tool named TEMPSY-
CHECK. The tool is based on Xtext [17] and Eclipse OCL;
it is publicly available online [18].

TEMPSY-CHECK takes as input a log file in CSV format
and converts it to an intermediary representation (called “trace
description”), defined as a domain-specific language using
the Xtext framework. We have introduced this intermediate
representations for traces to support, in the future, multiple
input raw formats for trace logs. The trace description is then
used to generate an XMI file corresponding to an instance of
the trace model. The tool also takes as input a list of TemPsy
properties and converts them into an XMI-based format. The
evaluation of the OCL constraints corresponding (as described
in the previous subsections) to the properties to check on the
trace is done using the OCL checker included in Eclipse OCL,
whose output (true/false) is then returned to the user.

IV. EVALUATION

A. Overview, Methodology, and Settings
The evaluation of TEMPSY-CHECK focuses on its scala-

bility, since trace checking tools are expected to be able to
handle very large traces. Indeed, traces may contain a huge
number of events, depending on the time span captured by
the log, the nature of the system to which the log refers to
(e.g., several virtual machines), the types of events monitored
(e.g., high-level message passing events or low-level method
calls) [10]. In the evaluation, we assess the relationship be-
tween the time taken to check a property on a trace and the
structural properties of the trace (e.g., length, distribution of
events) and the type of property to check; we also compare
the performance of TEMPSY-CHECK with a state-of-the-art
alternative technology.

We have conducted our evaluation using a benchmark
consisting of a subset of the properties extracted from the
requirements specification documents of one of the eGovern-
ment applications developed by our public service partner. Out
of the 47 properties documented in the case study, in this
paper, for space reasons, we report only on the evaluation
with the 12 properties using a globally scope4. They are the

3This is derived from the formal semantics of the preceding operator, in
which the match of the first block, at the proper time distance, is defined as
the consequent of the logical implication that formalizes the semantics of the
operator.

4The complete evaluation report and the data related to the remaining
properties (defined using other scopes) are available in [8].

TABLE I
TemPsy PROPERTIES USED FOR THE EVALUATION

P1: globally always A; P2: globally never B
P3: globally eventually at least 2 A; P4: globally eventually at most 3 A
P5: globally A responding at most 1000 tu B
P6: globally A responding exactly 1000 tu B
P7: globally A preceding at most 6000 tu B
P8: globally A preceding at least 100 tu B
P9: globally A preceding exactly 100 tu B
P10: globally A, B preceding at least 1000 tu C, D
P11: globally A responding at least 1000 tu B, C; P12: globally A responding B

most challenging in terms of scalability, since the semantics
of this scope guarantees that the pattern (used in the property
to check) will be evaluated through the entire length of the
trace. The 12 properties used for the evaluation are listed in
a sanitized form in Table I. The actual textual description of
each property has been omitted for confidentiality reasons;
the events involved in the property (e.g., “a citizen requests a
certificate”) are denoted using uppercase letters.

These properties have been checked on synthesized traces.
We use synthesized traces instead of real ones because:
1) based on our experience, real traces are often inadequate to
cover a large range of trace lengths and a variety of properties;
2) we wanted to have great diversity in terms of occurrences of
patterns in the traces, while being able to control this diversity;
3) real traces are valuable to assess fault detection capabilities,
while in our case we focus on the scalability of the approach;
4) if we had used real traces, they could not be shared for
forming a public benchmark, even when sanitized. By using
synthesized traces we are able to control in a systematic
way the factors (such as trace length, sub-trace(s) length and
position, frequency and distance of events) that could impact
the execution time for a specific type of property. At the same
time, we are also able to randomly set other factors, to avoid
any bias.

To synthesize these traces we implemented a trace generator
program. This program allows for generating diverse (in terms
of size, patterns, scopes, event positions and frequency) and
realistic traces, without introducing bias. The generator takes
as input a property, the desired length of the trace to generate
and additional parameters depending on the type of property
given in input and the factors one wants to control. To
determine the position in the trace of the events occurring
in the input property, the generator takes into account the
temporal and timing constraints prescribed by the semantics
of the scope and the pattern used in the property. Positions
in the trace that are deemed not relevant for the evaluation
of the property are filled with a dummy event. The trace
generation strategy depends on the scope and pattern used
in each property and is discussed in detail below. As an
additional contribution of the paper, we also make available in
the TEMPSY-CHECK GitHub repository [18] the artifacts used
in the evaluation, to contribute to the building of a public
repository of case studies for evaluating trace checking/run-
time verification procedures.

Moreover, to assess scalability, we also need a baseline of
comparison. Such baseline should be the best available tool
that can be considered an alternative to TEMPSY-CHECK. We
identified such a tool among the participants to the “offline
monitoring” track of the 2014 and 2015 international Compe-
tition on Software for Runtime Verification (CSRV 2014 [14]
and CSRV 2015 [15]). Out of the tools (LOGFIRE [19],
MARQ/QEA [20], MONPOLY [13], RITHM2 [21], RV-
MONITOR [22], STEPR) qualified for the final round of the
two editions of the competition, LOGFIRE, RITHM2, and
STEPR were not publicly available5 at the time of writing.
Among the remaining three, MARQ/QEA does not support
any input language and uses an automata-based formalism:
the user has to write a Java program that builds the automaton
corresponding to the property to check; on the other hand,
both MONPOLY and RV-MONITOR support a specification
language that is conceptually close to TemPsy. We chose
MONPOLY over RV-MONITOR because it achieved a better
score (293.54 vs 265.39). MONPOLY supports MFOTL, a
metric first-order temporal logic, as specification language;
to perform the comparison with it, we manually translated
the properties into MFOTL formulae. These formulae are also
available in the TEMPSY-CHECK GitHub repository [18]. We
remark that our goal, in this comparison, is not necessarily
to fare better than existing technology, but to verify that an
MDE approach to trace checking is viable from a scalability
standpoint.

The results reported in this section have been measured on
a desktop computer with a 3 GHz Intel Dual-Core i7 CPU
and 16GB of memory, running Eclipse DSL Tools v. 4.6.0M3
(Neon Milestone 3), JavaSE-1.7 (Java SE v. 1.8.0_25-b17,
Java HotSpot (TM) 64-Bit Server VM v. 25.25-b02, mixed
mode), Eclipse OCL v. 6.0.1, and MONPOLY v. 1.1.6. All
measurements reported correspond to the average value over
100 runs of the check procedure (on the same trace, for the
same property).

B. Scalability analysis

To assess the scalability of our approach, we address the
following research questions:

RQ-G1) What is the relation between the execution time of
the trace checking procedure and the length of a trace?

RQ-G2) What are the types of pattern most taxing on the
execution time?

RQ-G3) How does TEMPSY-CHECK compare with MON-
POLY in terms of execution time?

1) Trace Generation Strategy: In the case of the globally
scope the generation of the trace is determined only by the
semantics of the pattern used in the property.

For the universality pattern, we repeat the event occurring
in it through the entire trace.

For the existence pattern, we first determine the number n of
occurrences to generate, based on the bound indicated in the

5The first version of RITHM is available but it only supports run-time
verification of C programs. As for STEPR, no reference is available in the
competition report [14] or online.

property. If the bound is expressed as “at least m” or “at
most m” we randomly generate n with a uniform distribution
on the range [m, trace length], respectively [0,m]; if the bound
is expressed as “exactly m”, n is set to m. Afterwards, we
randomly generate (with a uniform distribution on the range
[1, trace length]) n positions in the trace where to put the
occurrences of the event specified in the property.

For the absence pattern, if the property has the form never
A, the trace is generated without any occurrence of the event
A. If the property has the form never exactly m A, we
randomly generate n with a uniform distribution on the range
[0, . . . ,m−1,m+1, . . . , trace length].

In the case of a property containing a precedence or
response pattern, we generate a number of occurrences of
events (involved in the property) equal to 10% of the length of
the trace. This value has been selected based on the frequency
of events observed in the application whose requirements
are expressed through the properties shown in Table I. The
simplest case is for a property like globally B responding
at most 10 tu A: assuming a trace length of 1M, we would
generate 50K occurrences of the pattern (i.e., pairs of A and B),
for a total of 100K occurrences of A and B. More complex cases
have to take into account the event chains used in the property.
For the distribution of the occurrences of the pattern across the
trace we have to consider the distance between events. For
example, for the property aforementioned, each occurrence of
the response pattern would span over at most 10 time units;
this is the maximum distance between an occurrence of A
and the corresponding occurrence of B. The number of pattern
occurrences to generate and the maximum time span of each
pattern occurrence are the parameters used to randomly allot
the pattern occurrences over the trace, according to a uniform
distribution.

2) Evaluation: We run the trace checking procedure for
properties P1–P12; each property was checked on ten different
traces, with length (i.e., number of events) varying from 100K
to 1M. The twelve plots in Fig. 4 depict the execution time of
TEMPSY-CHECK (denoted by) and of MONPOLY (denoted
by) for each of the properties P1–P12, for different trace
lengths. The execution time for both tools has been measured
using the time Unix command.

We answer RQ-G1 by observing that the time taken by
TEMPSY-CHECK ranges from about one hundred milliseconds
to a bit more than two seconds, and increases linearly with the
length of the trace, depending on the type of property. To an-
swer RQ-G2, the results show that the properties more taxing
on the execution time are those with a response or precedence
pattern (e.g., P5, P6, P7, P9, P11). Regarding RQ-G3, we
observe that the time taken by MONPOLY ranges from about
one hundred milliseconds to a bit less than eight seconds, and
is also linear with respect to the length of the trace. MONPOLY
takes longer for checking properties with a (bounded) existence
pattern (e.g., P3, P4) and with a precedence pattern that
contains a distance constraint of type “at least” (e.g., P10).
We can answer RQ-G3 stating that, except for the case of
properties P3, P4, and P10, the two tools perform almost

similarly, with absolute differences between execution times
that are quite small (less than one second). In the case of
properties P3, P4, and P10, TEMPSY-CHECK performs much
better than MONPOLY. A possible explanation for the slower
time of MONPOLY for these properties could be the structure
of the corresponding MFOTL formulae, which contain several
nested temporal operators to express the “eventually at least/at
most” pattern (P3, P4) and an event chain (P10).

The execution times discussed above include not only
the time to perform the actual check, but also the time to
parse/load the trace to check6. The average trace loading
time for TEMPSY-CHECK, measured through instrumentation,
ranges from 55 ms to 550 ms, growing linearly with respect
to the trace length. Notice that for checking a single property
on a trace with TEMPSY-CHECK, the trace loading time can
take, for larger traces, from one-fourth to one-third of the total
execution time. Although these values for the trace loading
time can seem high, we expect the loading time not to impact
on the total execution time in the case of batch property
checking, i.e., checking multiple properties at the same time on
a trace. Checking in batch mode a set of properties, rather than
individual ones, is common in enterprise scenarios in which,
for example, the set of properties to check is decided by the
entity that has invoked a business process [23].

To further investigate this aspect, we compared the exe-
cution time of TEMPSY-CHECK and MONPOLY for batch
checking ten properties (P3–P12), over ten traces, with length
ranging from 1M to 10M. These traces have been obtained
by concatenating the traces used for the experiment described
above, and by renaming the events within each trace being
concatenated, to avoid name clashes. We executed TEMPSY-
CHECK by providing in input the list of the ten properties
to check. We executed MONPOLY by providing in input one
formula corresponding to the conjunction of the ten formulae
equivalent to properties P3–P12. Figure 5 shows the result of
the comparison: the performance of the two tools are similar
for traces of length up to six millions; over this threshold,
MONPOLY gets slower.

C. Discussion

The results presented above (as well as the additional data
presented in the technical report accompanying this paper [8])
show the feasibility and benefits of applying our model-driven
approach for trace checking in realistic settings.

Our TEMPSY-CHECK tool is a viable technology from a
performance standpoint point as it can load and analyze very
large traces (with one million events) in about two seconds.
The tool scales linearly with respect to the length of the input
trace to check. Notice that “the input trace to check” can
correspond also to a sub-trace of an actual, larger execution
trace. This can be the case for properties referring to events
occurring in time windows (see, for example, the service
provisioning patterns presented in [24]). In these cases, one

6The trace loading time is not available in the output of MONPOLY.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

1,500

Trace length (·103)

Ti
m

e
(m

s)

(a) P1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

1,500

Trace length (·103)

Ti
m

e
(m

s)

(b) P2

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

1,000

2,000

3,000

Trace length (·103)

Ti
m

e
(m

s)

(c) P3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

2,000

4,000

6,000

8,000

Trace length (·103)

Ti
m

e
(m

s)

(d) P4

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

500

1,000

1,500

2,000

Trace length (·103)

Ti
m

e
(m

s)

(e) P5

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

1,000

2,000

Trace length (·103)

Ti
m

e
(m

s)

(f) P6

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

1,500

2,000

Trace length (·103)

Ti
m

e
(m

s)

(g) P7

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

Trace length (·103)

Ti
m

e
(m

s)

(h) P8

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

1,500

2,000

Trace length (·103)

Ti
m

e
(m

s)

(i) P9

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

1,000

2,000

3,000

Trace length (·103)

Ti
m

e
(m

s)

(j) P10

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

1,000

2,000

3,000

Trace length (·103)

Ti
m

e
(m

s)

(k) P11

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

1,500

Trace length (·103)

Ti
m

e
(m

s)

(l) P12

Fig. 4. Comparison between the execution time of TEMPSY-CHECK () and of MONPOLY () for properties with the globally scope

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Trace length (·106)

E
xe

cu
tio

n
tim

e
(s

)

TEMPSY-CHECK

MONPOLY

Fig. 5. Comparison of the execution time for the batch checking of ten
properties with the globally scope

can first isolate from the original trace the window of interest
and then feed the latter to our tool.

We have also compared the performance of our implemen-
tation to MONPOLY, a comparable, state-of-art tool. Despite
the fact that MONPOLY is a tool that implements a dedicated
algorithm [4] for trace checking of temporal logic properties,

our TEMPSY-CHECK tool (which relies on a generalist OCL
checker) not only achieves similar results, but in some cases
it also performs better than MONPOLY.

We also remark that writing some of the properties in
MFOTL was challenging (despite previous knowledge of
MFOTL), much more than when using TemPsy. This challenge
could be overcome by defining properties in TemPsy and then
providing an automatic translation to MFOTL formulae or,
dually, by building a system of property specification patterns
on top of MFOTL. In both cases, one could have relied on
MONPOLY for trace checking. While this could be in principle
a viable approach, it would not fulfill requirement R1 (see
section I), which entails to rely on standard constraint checking
technology — complying with OMG specifications — for
checking temporal properties. We remark that this requirement
is not specific to this project, but is more general because there
are many contexts where solutions have to be engineered by
using standardized MDE technologies.

Overall, we can conclude that a model-driven approach to
trace checking of realistic temporal properties is viable, even
on very large traces, and performs similarly to or better than
the state-of-the-art, depending on the type of properties.

Threats to validity: The main threat to validity to the results
presented above is the intrinsic presence of errors in the
toolchain we developed, which might not reflect the semantics
of TemPsy. We tried to compensate for this by thoroughly
testing the checker with traces and properties for which the
oracle was previously known. Another potential threat is the
fact that we have performed trace checking on synthesized
traces. Real execution traces might be different, in terms of
events occurrences and time distances. However, this threat
does not affect our research question on scalability, as we
want to analyze the execution time as a function of a number
of parameters (e.g., trace length), while varying randomly
other aspects (e.g., position of certain events). As explained
at the beginning of this section, for that purpose, synthesized
traces are better than real ones as they guarantee we have
the data to perform our analysis by controlling certain factors
and varying others randomly. Another threat is given by the
use of Eclipse OCL; one could get different results by using
another OCL checker, with lower performance. We chose
Eclipse OCL for its scalability (see [25]). Finally, as for the
comparison with MONPOLY, we remark that its specification
language (MFOTL) is more expressive than TemPsy (e.g., by
supporting first-order quantification), hence the performance of
MONPOLY could have been negatively affected by the more
complex implementation needed to support a richer specifica-
tion language. Moreover, the MFOTL properties that we wrote
to perform the comparison described in subsection IV-B could
be written in a different, but semantically-equivalent form
that could lead to different results. We tried to mitigate this
aspect by having the MFOTL formulae written by a person
with ten years of experience in formal specification (and
verification) with temporal logics. Furthermore, we believe
that in practice, it might be hard anyway for practitioners (with
limited background in temporal logic) to find out what is the
optimal way to express a property in MFOTL.

V. RELATED WORK

Model-driven technologies have been used in various work
on (run-time) trace and/or assertion checking. The model-
driven approach for assertion checking proposed in [26] relies
on the principles of aspect-oriented programming and uses
a technique called two-level aspect weaving. First, cross-
cutting assertions defined using ECL, an extension of OCL,
are weaved into a model defined within GME (Generic
Modeling Environment [27]) and then the code for check-
ing the contracts specified in the models is generated using
model-driven program transformations [28]. ECL does not
support the expression of temporal constraints. An approach
conceptually similar to ours is proposed in [29], in which
pre- and post-conditions are expressed with visual contracts
defined using graph transformations and then transformed into
a code-level representation as JML (Java Modeling Language)
assertions. The pre- and post-conditions that can be expressed
in this framework are functional and do not support temporal
expressions. The approach for model-driven monitoring of
Web services proposed in [30] considers temporal properties

expressed using property specification patterns [7] and defined
with a subset of UML 2.0 Sequence Diagrams; these properties
are checked at run time by translating sequence diagrams into
non-deterministic finite automata. However, these properties,
differently from those that can be expressed with TemPsy, do
not support expressing timing requirements. Our model-driven
approach for trace checking can be easily applied in scenarios
where other trace models are used, as long as OCL invariants
can be expressed on them; examples of these models are those
proposed in [31] (for the reverse engineering of UML sequence
diagrams from traces) and [32] (tailored for the exchange of
traces corresponding to large program call trees).

This work is also related to the more general area of trace
checking/run-time verification [33]. The majority of the ap-
proaches proposed in this area — for example, [4], [34]–[36],
including previous work of some of the authors [9], [10], [37]
— focuses on the verification of temporal properties expressed
using some temporal logic. These approaches define the trace
checking/run-time verification problem in terms of a word
problem, i.e., the problem of whether a given word is included
in some languages, and rely on formal verification tools like
model checkers or SAT/SMT solvers. In our approach, we use
a domain-specific specification language (TemPsy) and rely on
standard constraint checking technology complying with OMG
specifications.

VI. CONCLUSION AND FUTURE WORK

Trace checking is a procedure for checking the compliance
of a system with respect to its requirements, by analyzing the
log of events produced by the system during its execution. In
this paper we have presented a scalable and practical solution
for trace checking of the temporal requirements expressed
using a pattern-based specification language. Our solution can
be used in contexts where: model-driven engineering is already
a practice; relying on standards and industry-strength tools for
property checking is a fundamental prerequisite; the checking
procedure should scale with respect to the length of the trace,
to allow checking very large traces, and should complete
within practical time limits, to enable real-time log analysis.

The results of the evaluation show the feasibility and bene-
fits of applying our model-driven approach for trace checking
in realistic settings. TEMPSY-CHECK can load and analyze
very large traces (with one million events) in about two
seconds; it scales linearly with respect to the length of the
trace to check. The results also show that TEMPSY-CHECK in
practice performs similarly to or better than the state-of-the-
art, depending on the type of properties.

As part of future work, we plan to extend TEMPSY-CHECK
to provide a more informative output than the boolean result
currently returned when violations are detected in a trace, by
adding support for interactive inspection of violations.

ACKNOWLEDGEMENT

This work has been supported by the National Research
Fund, Luxembourg (FNR/P10/03). The authors would like to
thank the members of the Prometa team at CTIE.

REFERENCES

[1] A. Mrad, S. Ahmed, S. Hallé, and E. Beaudet, “BabelTrace: A collection
of transducers for trace validation,” in Proc. RV 2012, ser. LNCS, vol.
7687. Heidelberg, Germany: Springer, 2013, pp. 126–130.

[2] M. Felder and A. Morzenti, “Validating real-time systems by history-
checking TRIO specifications,” ACM Trans. Softw. Eng. Methodol.,
vol. 3, no. 4, pp. 308–339, Oct. 1994.

[3] W. Dou, D. Bianculli, and L. Briand, “Revisiting model-driven engi-
neering for run-time verification of business processes,” in Proc. SAM
2014, ser. LNCS, vol. 8769. Heidelberg, Germany: Springer, September
2014, pp. 190–197.

[4] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann, “Runtime monitoring
of metric first-order temporal properties,” in Proc. FSTTCS ’08, vol. 2.
Dagstuhl, Germany: IBFI Schloss Dagstuhl, 2008, pp. 49–60.

[5] D. Bianculli, C. Ghezzi, and P. San Pietro, “The tale of SOLOIST: a
specification language for service compositions interactions,” in Proc.
FACS’12, ser. LNCS, vol. 7684. Heidelberg, Germany: Springer, 2013,
pp. 55–72.

[6] W. Dou, D. Bianculli, and L. Briand, “OCLR: a more expressive, pattern-
based temporal extension of OCL,” in Proc. ECMFA 2014, ser. LNCS,
vol. 8569. Heidelberg, Germany: Springer, July 2014, pp. 51–66.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proc. ICSE 1999. New
York, NY, USA: ACM, 1999, pp. 411–420.

[8] W. Dou, D. Bianculli, and L. Briand, “A model-based approach to
offline trace checking of temporal properties with OCL,” SnT Centre
- University of Luxembourg, Tech. Rep. TR-SnT-2014-5, September
2014. [Online]. Available: http://hdl.handle.net/10993/16112

[9] M. M. Bersani, D. Bianculli, C. Ghezzi, S. Krstić, and P. San Pietro,
“SMT-based checking of SOLOIST over sparse traces,” in Proc. FASE
2014, ser. LNCS, vol. 8411. Heidelberg, Germany: Springer, April
2014, pp. 276–290.

[10] D. Bianculli, C. Ghezzi, and S. Krstić, “Trace checking of metric
temporal logic with aggregating modalities using MapReduce,” in Proc.
SEFM 2014, ser. LNCS, vol. 8702. Heidelberg, Germany: Springer,
September 2014, pp. 144–158.

[11] OMG, “ISO/IEC 19507 (OCL v2.3.1),” http://www.omg.org/spec/OCL/
ISO/19507/PDF, April 2012.

[12] Eclipse, “Eclipse OCL tools,” http://www.eclipse.org/modeling/mdt/
?project=ocl, Sep. 2015.

[13] D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu, “MONPOLY:
Monitoring usage-control policies,” in Proc. RV 2011, ser. LNCS, vol.
7186. Heidelberg, Germany: Springer, 2012, pp. 360–364.

[14] E. Bartocci, B. Bonakdarpour, and Y. Falcone, “First international
competition on software for runtime verification,” in Proc. RV 2014,
ser. LNCS. Heidelberg, Germany: Springer, 2014, vol. 8734, pp. 1–9.

[15] Y. Falcone, D. Ničković, G. Reger, and D. Thoma, “Second international
competition on runtime verification,” in Proc. RV 2015. Heidelberg,
Germany: Springer, 2015, pp. 405–422.

[16] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
Proc. ICSE ’05. ACM, 2005, pp. 372–381.

[17] Eclipse, “Xtext–Language Engineering Made Easy!” http://www.eclipse.
org/Xtext/, Nov. 2015.

[18] W. Dou. Tempsy-check tool web site. http://weidou.github.io/TemPsy-
Check/.

[19] K. Havelund, “Rule-based runtime verification revisited,” Int. J. Softw.
Tools Technol. Transf., vol. 17, no. 2, pp. 143–170, Apr. 2015.

[20] G. Reger, H. C. Cruz, and D. Rydeheard, “Marq: Monitoring at runtime
with qea,” in Profc. TACAS 2015. Heidelberg, Germany: Springer,
2015, pp. 596–610.

[21] S. Navabpour, Y. Joshi, W. Wu, S. Berkovich, R. Medhat, B. Bonakdar-
pour, and S. Fischmeister, “RiTHM: A tool for enabling time-triggered
runtime verification for C programs,” in Proc. ESEC/FSE 2013. New
York, NY, USA: ACM, 2013, pp. 603–606.

[22] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta,
and G. Rosu, “RV-Monitor: Efficient parametric runtime verification
with simultaneous properties,” in Proc. RV’14, ser. LNCS. Heidelberg,
Germany: Springer, September 2014, pp. 285–300.

[23] L. Baresi and S. Guinea, “Towards dynamic monitoring of WS-BPEL
processes,” in Proc. ICSOC 2005, ser. LNCS, vol. 3826. Heidelberg,
Germany: Springer, 2005, pp. 269–282.

[24] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification patterns
from research to industry: a case study in service-based applications,”
in Proc. ICSE 2012. Piscataway, NJ, USA: IEEE, 2012, pp. 968–976.

[25] I. Raáth and E. Willink, “Fast, faster and super-fast queries,”
http://www.eclipse.org/modeling/mdt/ocl/docs/publications/
EclipseConEurope2012/FastQueries.pdf, eclipseCon Europe 2012
presentation.

[26] J. Zhang, J. Gray, and Y. Lin, “A model-driven approach to enforce
crosscutting assertion checking,” in Proc. MACS ’05. New York, NY,
USA: ACM, 2005, pp. 1–5.

[27] J. Davis, “GME: The generic modeling environment,” in Companion of
the Proc. of OOPSLA ’03. New York, NY, USA: ACM, 2003, pp.
82–83.

[28] J. Gray, J. Zhang, Y. Lin, S. Roychoudhury, H. Wu, R. Sudarsan,
A. Gokhale, S. Neema, F. Shi, and T. Bapty, “Model-driven program
transformation of a large avionics framework,” in Proc. GPCE 2004,
ser. LNCS, vol. 3286. Heidelberg, Germany: Springer, 2004, pp. 361–
378.

[29] G. Engels, M. Lohmann, S. Sauer, and R. Heckel, “Model-driven mon-
itoring: An application of graph transformation for design by contract,”
in Proc. ICGT 2006, ser. LNCS, vol. 4178. Heidelberg, Germany:
Springer, 2006, pp. 336–350.

[30] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani,
and J. Waterhouse, “Runtime monitoring of web service conversations,”
IEEE Trans. Serv. Comput., vol. 2, no. 3, pp. 223–244, 2009.

[31] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering
of UML sequence diagrams for distributed Java software,” IEEE Trans.
Softw. Eng., vol. 32, no. 9, pp. 642–663, Sep. 2006.

[32] A. Hamou-Lhadj and T. C. Lethbridge, “A metamodel for the compact
but lossless exchange of execution traces,” Softw. Syst. Model., vol. 11,
no. 1, pp. 77–98, Feb. 2012.

[33] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–
303, May/June 2009.

[34] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma, “Collecting statistics
over runtime executions,” Form. Method Syst. Des., vol. 27, pp. 253–
274, 2005.

[35] D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu, “Monitoring of
temporal first-order properties with aggregations,” in Proc. RV 2013, ser.
LNCS, vol. 8174. Heidelberg, Germany: Springer, 2013, pp. 40–58.

[36] B. Barre, M. Klein, M. Soucy-Boivin, P.-A. Ollivier, and S. Hallé,
“MapReduce for parallel trace validation of LTL properties,” in Proc.
RV 2012, ser. LNCS, vol. 7687. Heidelberg, Germany: Springer, 2013,
pp. 184–198.

[37] M. Bersani, D. Bianculli, C. Ghezzi, S. Krstić, and P. San Pietro,
“Efficient large-scale trace checking using MapReduce,” in Proc. ICSE
2016. New York, NY, USA: ACM, May 2016, pp. 888–898.

