
Mutation Testing Advances: An Analysis and Survey

Mike Papadakisa, Marinos Kintisa, Jie Zhangc, Yue Jiab, Yves Le Traona,
Mark Harmanb

aLuxembourg University
bUniversity College London

cPeking University

Abstract

Mutation testing realises the idea of using artificial defects to support testing

activities. Mutation is typically used as a way to evaluate the adequacy of test

suites, to guide the generation of test cases and to support experimentation.

Mutation has reached a maturity phase and gradually gains popularity both in

academia and in industry. This chapter presents a survey of recent advances,

over the past decade, related to the fundamental problems of mutation test-

ing and sets out the challenges and open problems for the future development

of the method. It also collects advices on best practices related to the use of

mutation in empirical studies of software testing. Thus, giving the reader a

‘mini-handbook’-style roadmap for the application of mutation testing as ex-

perimental methodology.

Keywords: Mutation Testing, Software Testing, Survey, Seeded Faults

1. Introduction

How can we generate test cases that reveal faults? How confident are we with

our test suite? Mutation analysis answers these questions by checking the ability

of our tests to reveal some artificial defects. In case our tests fail to reveal the

∗Corresponding author
Email addresses: michail.papadakis@uni.lu (Mike Papadakis),

marinos.kintis@uni.lu (Marinos Kintis), zhangjie_marina@pku.edu.cn (Jie Zhang),
yue.jia@ucl.ac.uk (Yue Jia), yves.letraon@uni.lu (Yves Le Traon),
mark.harman@ucl.ac.uk (Mark Harman)

Preprint submitted to Journal of LATEX Templates December 14, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84743109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

artificial defects, we should not be confident on our testing and should improve

our test suites. Mutation realises this idea and measures the confidence inspired

by our testing. This method has reached a maturity phase and gradually gains

popularity both in academia and in industry [1]. Figures 1 and 2 record the

current trends on the number of publications according to the data we collected

(will be presented later). As demonstrated by these figures, the number of

scientific publications relying on mutation analysis is continuously increasing,

demonstrated in Figure 1, and numerous of these contributions appear in the

major software engineering venues, shown in Figure 2. Therefore, mutation

testing can be considered as a mainstream line of research.

The underlying idea of mutation is to force developers to design tests that

explore system behaviours that reveal the introduced defects. The diverge types

of defects that one can use, leads to test cases with different properties as

these are designed to reflect common programming mistakes, internal boundary

conditions, hazardous programming constructs and emulate test objectives of

other structural test criteria. Generally, the method is flexible enough that it

can be adapted to check almost everything that developers want to check, i.e.,

by formulating appropriate defects.

The flexibility of mutation testing is one of the key characteristics that makes

it popular and generally applicable. Thus, mutation has been used for almost

all forms of testing. Its primary application level is unit testing but several

advances have been made in order to support other levels, i.e., specification [2],

design [3], integration [4] and system levels [5]. The method has been applied

on the most popular programming languages such as C [6], C++ [7], C# [8],

Java [9], JavaScript [10], Ruby [11] including specification [2] and modelling

languages [12]. It has also been adapted for the most popular programming

paradigms such as Object-Oriented [13], Functional [14], aspect-oriented and

declarative-oriented [15, 16] programming.

In the majority of the research projects, mutation was used as an indicator of

test effectiveness. However, recently researchers have also focused on a different

aspect: the exploration of the mutant behaviours. Thus, instead of exploring

2

the behaviour space of the program under analysis the interest shifts to the

behaviour of the mutants. In this line of research, mutants are used to identify

important behaviour differences that can be either functional or non-functional.

By realising this idea, one can form methods that assist activities outside soft-

ware testing. Examples of this line of research are methods that automatically

localise faults [17], automatically repair software [18], automatically improve

programs’ non-functional properties such as security [19], memory consumption

[20] and execution speed [20, 21].

Mutation analysis originated in early work in the 1970s [22–24], but has

a long and continuous history of development improvement, with particularly

important advances in breakthroughs in the last decade, which constitute the

focus of this survey. Previous surveys can be traced back to the work of De-

Millo [25] (in 1989), which summarised the early research achievements. Other

surveys are due to Offutt and Untch [26] (in 2000) and Jia and Harman [27]

(in 2011). Offutt and Untch summarised the history of the technique and listed

the main problems and solutions at that time. Subsequently, Jia and Harman

comprehensively surveyed research achievements up to the year 2009.

There is also a number of specialised surveys on specific problems of mutation

testing. These are: a survey on the Equivalent mutant problem, by Madeyski et

al. [28] (in 2014), a systematic mapping of mutation-based test generation by

Souza et al. [29] (in 2014), a survey on model-based mutation testing [30] (in

2016) and a systematic review on search-based mutation testing by Silva et al.

[31] (in 2017). However, none of these covers the whole spectrum of advances

from 2009. During these years there are many new developments, applications,

techniques and advances in mutation testing theory and practice as witnessed

by the number of papers we analyse (more than 400 papers). These form the

focus of the present chapter.

Mutation testing is also increasingly used as a foundational experimental

methodology in comparing testing techniques (whether or not these techniques

are directly relevant to mutation testing itself). The past decade has also wit-

nessed an increasing focus on the methodological soundness and threats to valid-

3

R²	=	0.88697

0

10

20

30

40

50

60

70

80

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

pu

bl
ic

at
io

ns

Year

Figure 1: Number of mutation testing publications per year (years: 2008-2017).

ity that accrue from such use of mutation testing and the experimental method-

ology for wider empirical studies of software testing. Therefore, the present

chapter also collects together advices on best practices, giving the reader a

‘mini-handbook’-style roadmap for the application of mutation testing as an

experimental methodology (in Section 9).

The present chapter surveys the advances related to mutation testing, i.e.,

using mutation analysis to detect faults. Thus, its focus is the techniques and

studies that are related to mutation-guided test process. The goal is to provide

a concise and easy to understand view of the advances that have been realised

and how they can be used. To achieve this, we categorise and present the

surveyed advances according to the stages of the mutation testing process that

they apply to. In other words, we use the mutation testing process steps as a

map for detailing the related advances. We believe that such an attempt will

help readers, especially those new to mutation testing, understand everything

they need in order to build modern mutation testing tools, understand the main

challenges in the area and perform effective testing.

The survey was performed by collecting and analysing papers published in

4

0

20

40

60

80

100

Pu
bl

ic
at

io
ns

Conferences & Journals

Figure 2: Number of mutation testing publications per scientific venue.

the last 10 years (2008-2017) in leading software engineering venues. This affords

our survey a two-year overlap in the period covered with the previous survey of

Jia and Harman [27]. We adopted this approach to ensure that there is no chance

that the paper could ‘slip between the cracks’ of the two surveys. Publication

dating practices can differ between publishers, and there is a potential time

lag between official publication date and the appearance of a paper, further

compounded by the blurred distinction between online availability and formal

publication date. Allowing this overlap lends our survey a coherent, decade-

wide, time window and also aims to ensure that mutation testing advances do

not go uncovered due to such publication date uncertainties.

Thus, we selected papers published in the ICSE, SigSoft FSE, ASE, ISSTA,

ICST, ICST Workshops (ICSTW), ISSRE, SCAM and APSEC conferences. We

also collected papers published in the TOSEM, TSE, STVR and SQJ journals

and formed our set of surveyed papers. We augmented this set with additional

papers based on our knowledge. Overall, we selected a set of 502 papers, which

fall within five generic categories, those that deal with the code-based mutation

testing problems (186 papers), those concerning model-based mutation testing

5

(40 papers), those that tackle problems unrelated to mutation testing problems

(25 papers), those that describe mutation testing tools (34 papers) and those

that use mutation testing only to perform test assessment (217 papers). In an

attempt to provide a complete view of the fundamental advances in the area we

also refer to some of the publications that were surveyed by the two previous

surveys on the topic, i.e., the surveys of Offutt and Untch [26] and Jia and

Harman [27], which have not been obviated by the recent research.

The rest of the chapter is organised as follows: Section 2 presents the main

concepts that are used across the chapter. Sections 3 and 4 respectively moti-

vate the use of mutation testing and discuss its relation with real faults. Next,

the regular and other code-based advances are detailed in Sections 5 and 6.

Applications of mutation testing to other artefacts than code and a short de-

scription of mutation testing tools are presented in Sections 7 and 8. Sections

9 and 10 present issues and best practices for using mutation testing in exper-

imental studies. Finally, Section 11 concludes the chapter and outlines future

research directions.

2. Background

Mutation analysis refers to the process of automatically mutating the pro-

gram syntax with the aim of producing semantic program variants, i.e., generat-

ing artificial defects. These programs with defects (variants) are called mutants.

Some mutants are syntactically illegal, e.g., cannot compile, named ’stillborn’

mutants, and have to be removed. Mutation testing refers to the process of us-

ing mutation analysis to support testing by quantifying the test suite strengths.

In the testing context, mutants form the objectives of the test process. Thus,

test cases that are capable of distinguishing the behaviours of the mutant pro-

grams from those of the original program fulfil the test objectives. When a test

distinguishes the behaviour of a mutant (from that of the original program) we

say that the mutant is ‘killed ’ or ‘detected ’; in a different case, we say that the

the mutant is ‘live’.

6

Depending on what we define as program behaviour we can have different

mutant killing conditions. Typically, what we monitor are all the observable

program outputs against each running test: everything that the program prints

to the standard/error outputs or is asserted by the program assertions. A mu-

tant is said to be killed weakly [32], if the program state immediately after the

execution of the mutant differs from the one that corresponds to the original

program. We can also place the program state comparison at a later point after

the execution of a mutant. This variation is called firm mutation [32]. A mutant

is strongly killed if the original program and the mutant exhibit some observable

difference in their outputs. Thus, we have variants of mutation, called weak, firm

and strong. Overall, for weak/firm mutation, the condition of killing a mutant

is that the program state has to be changed, while the changed state does not

necessarily need to propagate to the output (as required by strong mutation).

Therefore, weak mutation is expected to be less effective than firm mutation,

which is in turn less effective than strong mutation. However, due to failed

error propagation (subsequent computations may mask the state differences in-

troduce by the mutants) there is no formal subsumption relation between any

of the variants [32].

Mutants are generated by altering the syntax of the program. Thus, we have

syntactic transformation rules, called ‘mutant operators’, that define how to

introduce syntactic changes to the program. For instance, an arithmetic mutant

operator alters the arithmetic programming-language operator, changing + to

−, for example. A basic set of mutant operators, which is usually considered as

a minimum standard for mutation testing [33] is the five-operator set proposed

by Offutt et al. [34]. This set includes the relational (denoted as ROR), logical

(denoted as LCR), arithmetic (denoted as AOR), absolute (denoted as ABS)

and unary insertion (denoted as UOI) operators. Table 1 summarises these

operators.

Defining mutant operators is somehow easy, we only need to define some syn-

tactic alterations. However, defining useful operators is generally challenging.

Previous research followed the path of defining a large set (almost exhaustive)

7

Table 1: The popular five-operator set (proposed by Offutt et al. [34])

Names Description Specific mutation operator

ABS Absolute Value Insertion {(e,0), (e,abs(e)), (e,-abs(e))}

AOR Arithmetic Operator Replacement {((a op b), a), ((a op b), b), (x, y) | x, y ∈

{+, -, *, /, %} ∧ x 6= y}

LCR Logical Connector Replacement {((a op b), a), ((a op b), b), ((a op b), false), ((a

op b), true), (x, y) | x, y ∈ {&, |,∧ , &&, ||} ∧ x 6=

y}

ROR Relational Operator Replacement {((a op b), false), ((a op b), true), (x, y) | x, y ∈

{>, >=, <, <=, ==, !=} ∧ x 6= y}

UOI Unary Operator Insertion {(cond, !cond), (v, -v), (v,∼v), (v, --v), (v, v--),

(v, ++v), (v, v++)}

of mutant operators based on the grammar of the language. Then, based on

empirical studies, researchers tend to select subsets of them in order to improve

the applicability and scalability of the method. Of course both the definition

of operators and mutant selection (selection of representative subsets) form the

two sides of the same coin. Since all possible operators are enormous if not

infinite, the definition of small sets of them can be viewed as a subset selec-

tion (among all possible definitions). Here, we refer to mutant reduction as the

process of selecting subsets of operators over a given sets of them. We discuss

studies that define mutant operators in Section 5.1.1 and mutant reduction in

Section 5.1.2.

Based on the chosen set of mutant operators, we generate a set of mutant

instances that we use to perform our analysis. Thus, our test objectives are to

kill the mutants (design test cases that kill all the mutants). We can define as

‘mutation score’ or mutation coverage the ratio of mutants that are killed by

our test cases. In essence, the mutation score denotes the degree of achievement

of our test cases in fulfilling the test objectives. Thus, mutation score can be

used as an adequacy metric [32].

8

Adequacy criteria are defined as predicates defining the objectives of testing

[32]. Goodenough and Gerhart [35] argue that criteria capture what properties

of a program must be exercised to constitute a thorough test, i.e., one whose

successful execution implies no errors in a tested program. Therefore, the use

of mutation testing as a test criterion has the following three advantages [6]: to

point out the elements that should be exercised when designing tests, to provide

criteria for terminating testing (when coverage is attained), and to quantify test

suite thoroughness (establish confidence).

In practice using mutation score as adequacy measure, implicitly assumes

that all mutants are of equal value. Unfortunately, this is not true [36]. In

practice, some mutants are equivalent, i.e., they form functionally equivalent

versions of the original program, while some others are redundant, i.e., they are

not contributing to the test process as they are killed whenever other mutants

are killed. Redundant mutants are of various forms. We have the duplicated

mutants, mutants that are equivalent between them but not with the original

program [37]. We also have the subsumed mutants [38] (also called joint mutants

[39]), i.e., mutants that are jointly killed when other mutants are killed [36, 39].

The problem with subsumed mutants is that they do not contribute to the

test assessment process because they are killed when other mutants are also

killed. This means that eliminating these mutants does not affect the selec-

tion/generation of test cases but the computation of the mutation score. Thus,

the metric is inflated and becomes hard to interpret. As the distribution of

mutants tend to be unpredictable and the identification of mutant equivalences

and redundancies is an undecidable problem [37], it is hard to judge the test

suite strengths based on the mutation score. In other words, the accuracy of

the score metric is questionable. We will discuss this issue in depth in Section 9.

3. What is special about mutation testing

Mutation testing principles and concepts share on a long heritage with more

general scientific investigation, essentially drawing on the common sense of ‘trial

9

and error’ (that pre-dates civilisation), and also resting on the foundations of

inferential statistics and Popperian science [40].

One of the fundamental problems in software testing is the inability to know

practically or theoretically when one has tested sufficiently. Practitioners often

demand of researchers a method to determine when testing should cease. Un-

fortunately, this revolves around the question of what is intended by sufficiency;

if we are to test in order to be sufficient to demonstrate the absence of bugs,

then we are forced against the impossibility of exhaustive testing.

Faced with this challenge, much literature has centred on concepts of cov-

erage, which measure the degree of test effort, that each coverage technique’s

advocates hope will be correlated with test achievement. For instance Table 2

reports on the main studies on this subject. There has been much empirical ev-

idence concerning whether coverage is correlated with faults revelation [41–43],

a problem that remains an important subject of study to the present day [6, 41].

However, even setting aside the concern of whether such correlation exists, non-

mutation-based forms of coverage suffer from a more foundational problem; they

are essentially unfalsifiable (with respect to the goal of fault revelation), in the

Popperian sense of science [40].

Table 2: Summary of the main studies concerned with the relationship of test

criteria and faults.

Author(s) [Refer-

ence]

Year Test Crite-

rion

Summary of Primary Scientific

Findings

Frankl & Weiss [44,

45]

’91, ’93 branch, all-

uses

All-uses relates with test effectiveness,

while branch does not.

Offutt et al. [46] ’96 all-uses,

mutation

Both all-uses and mutation are effective

but mutation reveals more faults.

Frankl et al. [47] ’97 all-uses,

mutation

Test effectiveness (for both all-uses and

mutation) is increasing at higher cover-

age levels. Mutation performs better.

Frankl & Iak-

ounenko [48]

’98 all-uses,

branch

Test effectiveness increases rapidly at

higher levels of coverage (for both all-uses

and branch). Both criteria have similar

test effectiveness.

Briand & Pfahl [49] ’00 block, c-

uses, p-uses,

branch

There is no relation (independent of test

suite size) between any of the four criteria

and effectiveness

10

Table 2: Summary of the main studies concerned with the relationship of test

criteria and faults.

Author(s) [Refer-

ence]

Year Test Crite-

rion

Summary of Primary Scientific

Findings

Chen et al. [50] 01 Block coverage can be used for predicting the

software failures in operation.

Andrews et al. [42] ’06 block, c-

uses, p-uses,

branch

Block, c-uses, p-uses and branch coverage

criteria correlate with test effectiveness.

Namin & Andrews

[51]

’09 block, c-

uses, p-uses,

branch

Both test suite size and coverage influ-

ence (independently) the test effective-

ness

Li et al. [52] ’09 prime path,

branch, all-

uses, muta-

tion

Mutation testing finds more faults than

prime path, branch and all-uses.

Papadakis &

Malevris [53]

’10 Mutant

sampling,

1st & 2nd

order muta-

tion

1st order mutation is more effective than

2nd order and mutant sampling. There

are significantly less equivalent 2nd order

mutants than 1st order ones.

Ciupa et al. [54] ’11 Random

testing

Random testing is effective and has pre-

dictable performance.

Kakarla et al. [55] ’11 mutation Mutation-based experiments are vulner-

able to threats caused by the choice of

mutant operators, test suite size and pro-

gramming language.

Wei et al. [56] ’12 Branch Branch coverage has a weak correlates

with test effectiveness.

Baker & Habli [57] ’13 statement,

branch,

MC/DC,

mutation,

code review

Mutation testing helps improving the test

suites of two safety-critical systems by

identifying shortfalls where traditional

structural criteria and manual review

failed.

Hassan & Andrews

[58]

’13 multi-Point

Stride, data

flow, branch

Def-uses is (strongly) correlated with test

effectiveness and has almost the same

prediction power as branch coverage.

Multi-Point Stride provides better pre-

diction of effectiveness than branch cov-

erage.

Gligoric et al. [59,

60]

’13, ’15 AIMP,

DBB,

branch,

IMP, PCC,

statement

There is a correlation between coverage

and test effectiveness. Branch coverage is

the best measure for predicting the qual-

ity of test suites.

11

Table 2: Summary of the main studies concerned with the relationship of test

criteria and faults.

Author(s) [Refer-

ence]

Year Test Crite-

rion

Summary of Primary Scientific

Findings

Inozemtseva &

Holmes [61]

’14 statement,

branch,

modified

condition

There is a correlation between coverage

and test effectiveness when ignoring the

influence of test suite size. This is low

when test size is controlled.

Just et al. [43] ’14 statement,

mutation

Both mutation and statement coverage

correlate with fault detection, with mu-

tants having higher correlation.

Gopinath et al. [62] ’14 statement,

branch,

block, path

There is a correlation between coverage

and test effectiveness. Statement cov-

erage predicts best the quality of test

suites.

Ahmed et al. [63] ’16 statement,

mutation

There is a weak correlation between cov-

erage and number of bug-fixes

Ramler et al. [64] ’17 strong mu-

tation

Mutation testing provides valuable guid-

ance towards improving the test suites of

a safety-critical industrial software sys-

tem

Chekam et al. [6] ’17 statement,

branch,

weak &

strong

mutation

There is a strong connection between cov-

erage attainment and fault revelation for

strong mutation but weak for statement,

branch and weak mutation. Fault revela-

tion improves significantly at higher cov-

erage levels.

Papadakis et al.

[41]

’18 mutation Mutation score and test suite size corre-

late with fault detection rates, but often

the individual (and joint) correlations are

weak. Test suites of very high mutation

score levels enjoy significant benefits over

those with lower score levels.

Mutation testing is important because it provides a mechanism by which as-

sertions concerning test effectiveness become falsifiable; failure to detect certain

kinds of mutants suggest failure to detect certain kinds of faults. Alternative

coverage criteria can only be falsified in the sense of stating that, should some

desired coverage item remain uncovered, then claims to test effectiveness remain

‘false’. Unfortunately, it is not usually possible to cover every desired coverage

item, it is typically undecidable whether this criterion has been achieved in

12

any case [59]. Coverage of all mutants is also undecidable [37], but mutation

testing forms a direct link between faults and test achievements, allowing more

scientific (in the sense intended by Popper) statements of test achievement than

other less-fault-orientated approaches.

Mutation testing also draws on a rich seam of intellectual thought, that is

currently becoming more popular in other aspects of science and engineering.

Such counterfactual reasoning, can even be found beyond science, in the hu-

manities, where historians use it to explore what would have happened, had

certain historical events failed to occur. This is a useful intellectual tool to

help increase understanding and analysis of the importance of these events the

influence (or forward dependence [65] as we might think of it within the more

familiar software engineering setting. In software engineering, counterfactual

reasoning plays a role in causal impact analysis [66], allowing software engi-

neers to discover the impact of a particular event, thereby partly obviating the

problem ‘correlation is not causation’.

In mutation testing, we create a ‘counterfactual version of the program’ (a

mutant) that represents what the program would have looked like had it con-

tained a specific chosen fault, thereby allowing us to investigate what would

have happened if the test approach encounter a program containing such a

fault. Causal impact analysis relies on recent development in statistics. In more

traditional statistical analysis, mutation testing also finds a strong resonance

with the foundations of sampling and inferential frequentist statistical analysis.

A statistician might, for instance, seek to estimate the number of fish in a pool

by catching a set of fish, marking these and returning them to the pool, sub-

sequently checking how many marked fish are present in a random sample. Of

course such an approach measures not only the number of fish in the pool, but

also the effectiveness of the re-catching approach used in re-sampling. In a sim-

ilar way, creating sets of mutant programs (marking fish) and then applying the

test technique (re-sampling) can also be used to estimate the number of faults

in the program, albeit confounded by concurrently measuring the effectiveness

of the testing technique.

13

4. The relations between Mutants and Fault Revelation

The underlying idea of mutation is simple; we form defects and we ask testers

to design test cases that reveal them. Naturally, readers may ask why such an

approach is effective. Literature answers this question in the following ways:

• First, (theoretically) by revealing the formed defects we can demonstrate

that these specific types of defects are not present in the program under

analysis [67]. In such a case we assume that the formed mutants represent

the fault types that we are interested in. In a broader perspective, the

mutants used are the potential faults that testers target and thus, they

are in a sense equivalent to real faults.

• Second, (theoretically and practically) when test cases reveal simple de-

fects such as mutants (defects that are the result of simple syntactic alter-

ations), they are actually powerful enough to reveal more complex defects.

In such a case, we assume that test cases that reveal the used types of de-

fects also reveal more complex types (multiple instances of the types we

used) [68]. Thus, mutation helps revealing a broader class of faults (than

those used) composed of the simple and complex types of faults that were

used.

• Third, (practically) when we design test cases that kill mutants we are ac-

tually writing powerful test cases. This is because we are checking whether

the defects we are using can trigger a failure at every location (or related

ones) we are applying them to. In such a case, we assume that test cases

that are capable of revealing mutants are also capable of revealing other

types of faults (different from the mutants). This is because mutants re-

quire checking whether test cases are capable of propagating corrupted

program states to the observable program output (asserted by the test

cases). Thus, potential faulty states (related to the mutants) have good

chances to became observable [6].

14

The above mentioned points motivated researchers to study and set the

foundation of mutation testing.

The first point has been shown theoretically based on the foundations of

fault-based testing [67, 69]. The practical importance of this assertion is that in

case we form the employed mutants as common programming mistakes, then we

can be confident that testers will find them. Thus, we can check against the most

frequent faults. This premise becomes more important when we consider the

Competent Programmer Hypothesis [24], which states that developers produce

programs that are nearly correct, i.e., they require a few syntactic changes to

reach the correct version. This hypothesis implies that if we form mutants by

making few simple syntactic changes we can represent the class of frequent faults

(made by “competent programmers”). A recent study by Gopinath et al. [70]

has shown that defects mined from repositories involve three to four tokens to be

fixed, confirming to some extent the hypothesis. Generally, the recent studies

have not consider this subject and thus, further details about the competent

programmer hypothesis can be found in the surveys of Offutt and Untch [26]

and Jia and Harman [27].

The second point is also known as the mutant coupling effect [68]. According

to Offutt [68] the mutant coupling effect states ”Complex mutants are coupled

to simple mutants in such a way that a test data set that detects all simple

mutants in a program will detect a large percentage of the complex mutants”.

Therefore, by designing test cases that reveal almost all the mutants used, we

expect a much larger set of complex mutants to be also revealed. This premise

has been studied both theoretically and practically (details can be found in the

surveys of Offutt and Untch [26] and Jia and Harman [27]). Recent studies on

the subject only investigated (empirically) the relationship between simple and

complex mutants. For example the study of Gopinath et al. [71] demonstrates

that many hihger order mutants are semantically different from the simple first

order ones they are composed of. However, the studies of Langdon et al. [72]

and Papadakis and Malevris [53] show that test cases kill a much larger ratio of

complex (higher order) mutants than simple ones (first order ones) indicating

15

that higher order mutants are of relatively lower strength than the first order

ones.

The third point is a realisation of the requirement that the mutants must

influence the observable output of the program (the test oracle). To understand

the importance of this point we need to consider the so-called RIPR model

(Reachability, Infection, Propagation Revealability) [32]. The RIPR model

states that in order to reveal a fault, test cases must: a) reach the faulty lo-

cations (Reachability), b) cause a corruption (infection) to the program state

(Infection), c) propagate the corruption to the program output (Propagation)

and d) cause a failure, i.e., make the corrupted state observable to the user,

be asserted by the test cases (Revealability). Therefore, when designing test

cases to kill mutants, we check the sensitivity of erroneous program states to

be observable. Empirical evidence by Chekam et al. [6] has shown that this

propagation requirement makes mutation strong and distinguishes it from weak

mutation and other structural test criteria. In particular the same study demon-

strates that mutant propagation is responsible for the revealation of 36% of the

faults that can be captured by strong mutation.

Overall, the fundamental premise of mutation testing can be summarised as

“if the software contains a fault, there will usually be a set of mutants that can

only be killed by a test case that also detects that fault” [73]. This premise

has been empirically investigated by the study of Chekam et al. [6] which

demonstrated a strong connection between killing mutants and fault revelation.

Similarly, the studies of Baker and Habli [57], Ramler et al. [64] and [74]

have shown that mutation testing provides valuable guidance towards improving

existing test suites.

A last reason that makes mutation strong is the fact that its test objectives

are the formed defects. Thus, depending on the design of these defects, several

test criteria can be emulated. Therefore, mutation testing has been found to be

a strong criterion that subsumes, or probably subsumes1 almost all other test

1Subsumption is not guaranteed but it is probable to happen [32].

16

criteria [32]. Thus, previous research has shown that strong mutation probably

subsumes weak mutation [75], all dataflow criteria [47, 55], logical criteria [76],

branch and statement criteria [52]. These studies suggest that a small set of

mutant operators can often result in a set of test cases that is as strong as the

ones resulting from other criteria.

5. The Regular Code-based Mutation Testing Process

This section details the code-based mutation testing advances. We categorise

and present the surveyed advances according to the stages of the mutation

testing process that they apply to. But before we begin the presentation we

have to answer the following question: what is the mutation testing process?

Figure 3 presents a detailed view of the modern mutation testing process. This

process forms an extension of the one proposed by Offutt and Untch [26]. The

extension is based on the latest advances in the area. The important point

here is that the process keeps the steps that are inherently manual outside the

main loop of the testing process (steps in bold). The remaining steps can be

sufficiently automated (although manual analysis may still be necessary).

Overall, the process goes as follows: First, we select a set of mutants that

we want to apply (Step 1, detailed in Section 5.1) and instantiate them by

forming actual executable programs (Step 2, detailed in Section 5.2). Next, we

need to remove some problematic mutants, such as equivalent, i.e., mutants that

are semantically equivalent to the original program despite being syntactically

different, and redundant mutants, i.e., mutants that are semantically different

to the original program but are subsumed by others, (Step 3, detailed in Section

5.3).

Once we form our set of mutants we can generate our mutation-based test

suite, execute it against our mutants and determine a score. In this step, we

design (either manually or automatically) test cases that have the potential to

kill our mutants (Step 4, detailed in Section 5.4) and execute them with all

the mutants (Step 5, detailed in Section 5.5) to determine how well they scored

17

yes

Input	Test	
Program	P

Execute
Mutants

Compute
Mutation Score

Generate
test inputs T

Threshold
reached ?

Define
threshold

no

P (T) correct ? yes
Fix P

no

Create
Mutants

Remove
Equivalent/Redunda

nt mutants

1. 3. 4. 5.

6.

10. 9.

8.

Select
Mutants

2.

Reduce/Prioritize
TCs

7.

Figure 3: Modern Mutation Testing Process. The process forms an adaptation of the Offutt’s

and Untch’s proposition [26] based on the latest advances in the area. Bold boxes represent

steps where human intervention is mandatory.

(Step 6, detailed in Section 5.6). Subsequently, we perform test suite reduction

by removing potentially ineffective test cases from our test suite. At this stage,

we can also perform test case prioritisation so that we order the most effective

test cases first (Step 7, detailed in Section 5.7). The steps 4 to 7 are repeated

until the process results in a mutation score that is acceptable (Step 8, detailed

in Section 5.8).

The last part of the process is when the user is asked to assess whether the

results of the test executions were the expected ones (Step 9, detailed in Section

5.9). This step regards the so-called test oracle creation problem that involves

the tester to assert the behaviour of the test execution. In case faults are found

then developers need to fix the problems and relaunch the process (Step 10,

detailed in Section 5.10) until we reach an acceptable score level and cannot

find any faults.

18

5.1. Mutant Selection (Step 1.)

Mutation testing requires selecting a set of mutant operators based on which

the whole process is applied. Thus, we need to define the specific syntactic trans-

formations (mutant operators) that introduce mutants. Since defining mutant

operators requires the analysis of the targeted language these may result in an

enormous number of mutants. Therefore, in practice it might be important to

select representative subsets of them. The following subsection (named Mutant

Operators) refers to works that define mutant operators, while the next one

(named Mutant Reduction Strategies) refers to strategies that select subsets of

mutants from a given set of mutants (aiming at reducing the cost of the process).

5.1.1. Mutant Operators

A large amount of work has focused on designing mutant operators that

target different (categories of) programming languages, applications, types of

defects, programming elements, and others.

Operators for Specific Programming Languages.

Anbalagan and Xie [77] proposed a mutant generation framework for As-

pectJ, an aspect-oriented programming language. This framework uses two mu-

tant operators; pointcut strengthening and pointcut weakening, which are used

to increase or reduce the number of joint points that a pointcut matches.

Derezinska and Kowalski [8] introduced six object-oriented mutant operators

designed for the intermediate code that is derived from compiled C# programs.

Their work also revealed that mutants on the intermediate language level are

more efficient than the high-level source code level mutants.

Estero-Botaro et al. [78] defined 26 mutant operators for WS-BPEL – the

Web Services Business Process Execution Language. Later on, they further

quantitatively evaluated these operators regarding the number of stillborn and

equivalent mutants each operator generates [79]. On the same topic, Boubeta-

Puig et al. [80] conducted a quantitative comparison between the operators for

WS-BPEL and those for other languages. The results indicate that many of

19

the WS-BPEL operators are different due to the lack of common features with

other languages (e.g., functions and arrays).

Mirshokraie et al. [10, 81] proposed a set of JavaScript operators. These

are designed to capture common mistakes in JavaScript (such as changing the

setTimeout function, removing the this keyword, and replacing undefined with

null). Experimental results indicate the efficiency of these operators in gener-

ating non-equivalent mutants.

Delgado-Pérez [7, 82] conducted an evaluation of class-level mutant operators

for C++. Based on the results, they propose a C++ mutation tool, MuCPP,

which generates mutants by traversing the abstract syntax tree of each transla-

tion unit with the Clang API.

Operators for Specific Categories of Programming Languages.

Derezinska and Kowalski [8] explored and designed the mutant operators for

object-oriented programs through C# programs. They advocated that tradi-

tional mutant operators are not sufficient for revealing object-oriented flaws. Hu

et al. [83] studied in depth the equivalent mutants generated by object-oriented

class-level mutant operators and revealed differences between class-level and

statement-level mutation: statement-level mutants are more easy to be killed

by test cases.

Ferrari et al. [84] focused on aspect-oriented programs. They design a set

of operators based on the aspect-oriented fault types. Similarly to the work of

Anbalagan and Xie [77], this work uses AspectJ as a representative of aspect-

oriented programs. Except for pointcut-related operators, operators for general

declarations, advice definitions and implementations are also adopted.

Bottaci [85] introduced an mutation analysis approach for dynamically-typed

languages based on the theory that the mutants generated by modifying types

are very easily killed and should be avoided. Gligoric et al. [86] mentioned that

“almost all mutation tools have been developed for statically typed languages”,

and thus proposed SMutant, a mutation tool that postpones mutation until

execution and applies mutation testing dynamically instead of statically. In

this way, the tool is able to capture type information of dynamic languages

20

during execution.

Operators for Specific Categories of Applications.

Alberto et al. [87] investigated the mutation testing approach for formal

models. In particular, they introduced an approach to apply mutation testing to

Circus specifications as well as an extensive study of mutant operators. Prapha-

montripong et al. [88, 89] and Mirshokraie et al. [10] designed and studied mu-

tant operators for web applications. Example operators are link/field/transition

replacement and deletion. In a follow up study, Praphamontripong and Offutt

[90] refined the initial set of operators (they exclude 3 operators), i.e., opera-

tors proposed in [89], by considering the redundancy among the mutants they

introduce.

Deng et al. [91, 92] defined mutant operators specific for the characteris-

tics of Android apps, such as the event handle and the activity lifecycle mutant

operators. Usaola et al. [93] introduced an abstract specification for defining

and implementing operators for context-aware, mobile applications. Similarly,

Linares-Vasquez et al. [94] introduced 38 mutation operators for Android apps.

These operators were systematically derived by manually analysis types of An-

droid faults. Oliveira et al. [95] proposed 18 GUI-level mutant operators. Also

focused on GUI mutants, Lelli et al. [96] specially designed mutation operators

based on the created fault model. Abraham and Erwig [97] proposed operators

for spreadsheets. Dan and Hierons [98] introduced how to generate mutants

aiming at floating-point comparison problems. Jagannath et al. [99] introduced

how to generate mutants for actor systems.

Maezawa et al. [100] proposed a mutation-based method for validating Asyn-

chronous JavaScript and XML (Ajax) applications. The approach is based

on delay-inducing mutant operators that attempt to uncover potential delay-

dependent faults. The experimental study suggests that by killing these mu-

tants, actual errors can be revealed.

The study of Xie et al. [101] describes a mutation-based approach to analyse

and improve Parameterized Unit Tests (PUTs). The authors propose appropri-

ate mutant operators that alter the effectiveness of the PUT test by varying the

21

strength of its assumptions and assertions.

Operators for Specific Categories of Bugs.

Brown et al. [102] proposed a technique to mine mutation operators from

source code repositories. The intuition of this work is that by making mutants

sintactically similar to real faults one can get semantically similar mutants.

Loise et al. [19] uses mutation testing to tackle security issues. They proposed

15 security-aware mutant operators for Java. Nanavati et al. [103, 104] realised

that few operators are able to simulate memory faults. They proposed 9 memory

mutant operators targeting common memory faults. Garvin and Cohen [105]

focus on feature interaction faults. An exploratory study was conducted on the

real faults from two open-source projects and mutants are proposed to mimic

interaction faults based on the study’s results. Al-Hajjaji et al. [106] specially

focus on variability-based faults, such as feature interaction faults, feature inde-

pendency faults, and insufficient faults. Based on real variability-related faults,

they derive a set of mutant operators for simulating them.

Additionally, other studies focus on the design of mutant operators for dif-

ferent levels or different programming elements. Mateo et al. [5] defined system-

level mutant operators. Applying mutation at the system level faces two prob-

lems: first, mutating one part of the system can lead to an anomalous state in

another part, thus comparing program behaviour is not a trivial task; and, sec-

ond, mutation’s execution cost. To resolve these problems, the authors turn to

weak mutation by introducing flexible weak mutation for the system level. The

proposed approach is embedded in a mutation tool named Bacterio. Delamaro

et al. [107] designed three new deleting mutant operators that delete variables,

operators, and constants.

Additional categories of operators are due to Belli et al. [108], who proposed

mutant operators for go-back functions (which cancel recent user actions or

system operations), including basic mutant operators (i.e., transaction, state,

and marking mutant operators), stack mutant operators (i.e., write replacement

and read replacement), and high order mutant operators.

Gopinath and Walkingshaw [109] proposed operators targeting type anno-

22

tations. This line of work aims at evaluating the appropriateness of type anno-

tations. Jabbarvand and Malek [110] introduced an energy-aware framework

for Android application. In this work, a set of fifty mutant operators mimicing

energy defects was introduced. Arcaini et al. [111] proposed operators targeting

regular expressions. These aim at assisting the generation of tests based on a

fault model involving the potential mistakes one could made with regex.

5.1.2. Mutant Reduction Strategies

Mutant reduction strategies aim at selecting representative subsets from

given sets of mutants. The practical reason for that is simply to reduce the

application cost of mutation (since all the costly parts depend on the number

of mutants).

Perhaps the simpler way of reducing the number of mutants is to randomly

pick them. This approach can be surprisingly effective and achieve reasonably

good trade-offs. Papadakis and Malevris [53] report that randomly selecting

10%, 20%, 30%, 40%, 50% and 60% of the mutants results in a fault loss of

approximately 26%, 16%, 13%, 10%, 7% and 6% respectively. Zhang et al.

[112] reports that by killing randomly selected sets of mutants, composed of

more than 50% of the initial set, results in killing more than 99% of all the

mutants. Recently, Gopinath et al. [113] used large open source programs and

found that a small constant number of randomly selected mutants is capable of

providing statistically similar results to those obtained when using all mutants.

Also, they found that this sample is independent of the program size and the

similarity between mutants.

An alternative way of selecting mutants is based on their types. The un-

derlying idea is that certain types of mutants may be more important than

others and may result in more representative subsets than random sampling.

Namin et al. [114] used a statistical analysis procedure to identify a small set

of operators that sufficiently predicts the mutation score with high accuracy.

Their results showed that it is possible to reduce the number of mutants by

approximately 93%. This is potentially better than the mutant set of the pre-

23

vious studies, i.e., the 5-operator set of Offutt et al. [34]. Investigating ways

to discover relatively good trade-offs between cost and effectiveness, Delgado

et al. [82] studied a selective approach that significantly reduce the number of

mutants with a minimum loss of effectiveness for C++ programs. Delamaro

et al. [107, 115] experimented with mutants that involve deletion operations

(delete statements or part of it) and found that they form a cost-effective al-

ternative to other operators (and selective mutation strategies) as it was found

that they produce significantly less equivalent mutants. In a later study, Durelli

et al. [116] studied whether the manual analysis involved in the identification

of deletion equivalent mutants differs from that of other mutants and found no

significant differences. The same study also reports that relational operators

require more analysis in order to asses their equivalence.

A later study of Yao et al. [117] analysed the mutants produced by the

5-operator set of Offutt et al. [34] and found that equivalent and stubborn

mutants are highly unevenly distributed, Thus, they proposed dropping the

ABS class and a subclass of the UOI operators (post increment and decrement)

to reduce the number of equivalent mutants and to improve the accuracy of the

mutation score. Zhang et al. [118, 119] conducted an empirical study regarding

the scalability of selective mutation and found that it scales well for programs

involving up to 16,000 lines of code. To further improve scalability, Zhang et

al. [120] demonstrated that the use of random mutant selection with 5% of the

mutants (among the selective mutant operators) is sufficient for predicting the

mutation score (of the selective mutants) with high accuracy.

A comparison between random mutant selection and selective mutation was

performed by Zhang et al. [112]. In this study, it was found that there are no

significant differences between the two approaches. Later, Gopinath et al. [121]

reached a similar conclusion by performing a theoretical and empirical analysis

of the two approaches. The same study also concludes that the maximum

possible improvement over random sampling is 13%.

Overall, as we discuss in Section 9, all these studies were based on the tradi-

tional mutation scores (using all mutants) that is vulnerable to the “subsumed

24

mutant threat” [36]. This issue motivated the study of Kurtz et al. [122],

which found that mutant reduction approaches (selective mutation and random

sampling) perform poorly when evaluated against subsuming mutants.

Both random sampling and selective mutation are common strategies in

the literature. Gligoric et al. [123] applied selective mutation to concurrent

programs and Kaminski and Ammann [124] to logic expressions. Papadakis

and Traon [17, 125] adapts both of them for the context of fault localisation

and reports that both random sampling and selective mutation that use more

than 20% of all the mutants are capable of achieving almost the same results

with the whole set of mutants.

Another line of research aiming at reducing the number of mutants is based

on the notion of higher order mutants. In this case, mutants are composed by

combining two or more mutants at the same time. Polo et al. [126] analysed

three strategies to combine mutants and found that they can achieve significant

cost reductions without any effectiveness loss. Later, studies showed that rela-

tively good trade-offs between cost and effectiveness can be achieved by forming

higher order combination strategies [39, 53, 127]. In particular, Papadakis and

Malevris [53] found that second order strategies can achieve a reduction of 80%

to 90% of the equivalent mutants, with approximately 10% or less of test effec-

tiveness loss. Similar results are reported in the studies of Kintis et al. [39],

Madeyski et al. [28] and Mateo et al. [128], who found that second order strate-

gies are significantly more efficient than the first order ones. Taking advantage

of these benefits and ameliorate test effectiveness losses, Parsai et al. [129]

built a prediction model that estimates the first-order mutation score given the

achieved higher order mutation score.

Other attempts to perform mutant reduction are based on the mutants’

location. Just et al. [130] used the location of the mutants on the program

abstract syntax tree to model and predict the utility of mutants. Sun et al.

[131] explored the program path space and selected mutants that are as diverse

as possible with respect to the paths covering them. Gong et al. [132] selected

mutants that structurally dominate the others (covering them results in cover-

25

ing all the others). This work aims at weak mutation and attempts to statically

identify dominance relations between the mutants. Similarly, Iida and Takada

[133] identify conditional expressions that describe the mutant killing condi-

tions, which are used for identifying some redundant mutants. Pattrick et al.

[134] proposed an approach that identifies hard-to-kill mutants using symbolic

execution. The underlying idea here is that mutants with little effect on the out-

put are harder to kill. To determine the effect of the mutants on the program

output, Pattrick et al. suggests calculating the range of values (on the numer-

ical output expressions) that differ when mutants are killed. This method was

latter refined by Pattrick et al. [135] by considering the semantics (in addition

to numeric ones) of Boolean variables, strings and composite objects.

Another attempt to reduce the number of mutants is to rank them according

to their importance. After doing so, testers can analyse only the number of

mutants they can handle based on the available time and budget by starting

from the higher ranked ones. The idea is that this way, testers will customise

their analysis using the most important mutants. In view of this, Sridharan et al.

[136] used a Bayesian approach that prioritises the selection of mutant operators

that are more informative (based on the set of the already analysed mutants).

Along the same lines, Namin et al. [137] introduced MuRanker an approach

that predicts the difficulty and complexity of the mutants. This prediction is

based on a distance function that combines three elements; the differences that

mutants introduce on the control-flow-graph representation (Hamming distance

between the graphs), on the Jimple representation (Hamming distance between

the Jimple codes) and on the code coverage differences produced by a given set

of test cases (Hamming distance between the traces of the programs). All these

together allow testers to prioritise towards the most difficult to kill mutants.

Mirshokraie et al. [10, 81] used static and dynamic analysis to identify the

program parts that are likely to either be faulty or to influence the program

output. Execution traces are used in order to identify the functions that play

an important role on the application behaviour. Among those, the proposed

approach then mutates selectively: a) variables that have a significant impact

26

on the function’s outcome and b) the branch statements that are complex. The

variables with significant impact on the outcome of the functions are identified

using the usage frequency and dynamic invariants (extracted from the execution

traces), while complex statements are identified using cyclomatic complexity.

Anbalagan and Xie [77] proposed reducing mutants, in the context of point-

cut testing of AspectJ programs, by measuring the lexical distance between

the original and the mutated pointcuts (represented as strings). Their results

showed that this approach is effective in producing pointcuts that are both of

appropriate strength and similar to those of the original program.

Finally, mutant reduction based on historical data has also been attempted.

Nam et al. [138] generated calibrated mutants, i.e., mutants that are similar to

the past defects of a project (using the project’s fix patterns), and compared

them with randomly selected ones. Their results showed that randomly selected

mutants perform similarly to the calibrated ones. Inozemtseva et al. [139] pro-

posed reducing the number of mutants by mutating the code files that contained

many faults in the past.

5.2. Mutant Creation (Step 2.)

This stage involves the instantiation of the selected mutants as actual exe-

cutables. The easiest way to implement this stage is to form a separate source

file for each considered mutant. This approach imposes high cost as it requires

approximately 3 seconds (on average) to compile a single mutant of a large

project [37]. Therefore, researchers have suggested several techniques to tackle

this problem.

The most commonly used technique realises the idea of meta-mutation, also

known as mutant schemata [140], which encodes all mutants in a single file.

This is achieved by parameterising the execution of the mutants [141]. The

original proposition of mutant schemata involved the replacement of every pair

of operands that participate in an operation with a call to a meta-function that

functions as the operand [140]. The meta-functions are controlled through global

parameters. This technique has been adopted by several tools and researchers,

27

Papadakis and Malevris [141] use special meta-functions to monitor the mutant

execution and control the mutant application. Wang et al. [142] and Tokumoto

et al. [143] use meta-functions that fork new processes. Bardin et al. [144] and

Marcozzi et al. [145, 146] instrument the program with meta-functions that

do not alter the program state, called labels, to record the result of mutant

execution at the point of mutation and apply weak mutation.

Another approach involves bytecode manipulation [9, 147]. Instead of com-

piling the mutants, these approaches aim at generating mutants by manipulating

directly the bytecode. Coles et al. adopt such an approach for mutating Java

bytecode [147]. Derezinska and Kowalski [8] and Hariri et al. [148] adopt the

same approach for mutating the Common Intermediate Language of .NET and

LLVM Bitcode, respectively.

Other approaches involve the use of interpreted systems, such as the ones

used by symbolic evaluation engines [149]. A possible realisation of this attempt

is to harness the Java virtual machines in order to control and introduce the

mutants [150]. Finally, Devroey et al. [151] suggested encoding all mutants as

a product line. The mutants can then be introduced as features of the system

under test.

5.3. Statically Eliminating Equivalent and Redundant mutants (Step 3.)

This step involves the identification of problematic mutants before their ex-

ecution. This is a process that is typically performed statically. The idea is

that some equivalent mutants, i.e., mutants that are semantically equivalent to

the original program despite being syntactically different, and some redundant

mutants, i.e., mutants that are semantically different to the original program

but are subsumed by others, can be identified and removed prior to the costly

test execution phase. By removing these “useless” types of mutants we gain two

important benefits: first, we reduce the effort required to perform mutation and,

second, we improve the accuracy of the mutation score measurement. Unfortu-

nately, having too many “useless”mutants obscures the mutation testing score

measurement by either overestimating or underestimating the level of coverage

28

achieved. This last point is particularly important as it is linked to the decision

of when to stop the testing process, i.e., Step 8 (Section 5.8).

5.3.1. Identifying Equivalent Mutants

Detecting equivalent mutants is a well-known undecidable problem [28]. This

means that it is unrealistic to form an automated technique that will identify all

the equivalent mutants. The best we can do is to form heuristics that can remove

most of these mutants. One such effective heuristic relies on compiler optimi-

sation techniques [37, 152]. The idea is that code optimisations transform the

syntactically different versions (mutants) to the optimised version. Therefore,

semantically equivalent mutants are transformed to the same optimised version.

This approach is called Trivial Compiler Optimization (TCE) and works by

declaring equivalences only for the mutants that their compiled object code is

identical to the compiled object code of the original program. Empirical results

suggest TCE is surprisingly effective, being able to identify at least 30% of all

the equivalent mutants.

Other techniques that aim at identifying equivalent mutants are of Kintis

and Malevris [153–155] who observed that equivalent mutants have specific data-

flow patterns which form data-flow anomalies. Thus, by using static data-flow

analysis we can eliminate a large portion of equivalent mutants. This category

of techniques include the use of program verification techniques, such as Value

Analysis and Weakest Precondition calculus. Program verification is used to

detect mutants that are unreachable or mutants that cannot be infected [144,

145].

A different attempt to solve the same problem is based on identifying kil-

lable mutants. This has been attempted using (static) symbolic execution

[149, 156]. Such attempts aim at executing mutants symbolically in order to

identify whether these can be killable with symbolic input data. Other ap-

proaches leverage software clones to tackle this issue [157]. Since software clones

behave similarly, their (non-)equivalent mutants tend to be the same. There-

fore, likely killable mutants can be identified by projecting the mutants of one

29

clone to the other [157].

Literature includes additional techniques for the identification of equivalent

mutants using dynamic analysis. These require test case execution and, thus,

are detailed in the Step 6 (Section 5.6).

5.3.2. Identifying Redundant Mutants

Redundant mutants, i.e., mutants that are killed when other mutants are

killed, inflate the mutation score with the unfortunate result of skewing the

measurement. Thus, it is likely that testers will not be able to interpret the

score well and end up wasting resources or performing testing of lower quality

than intended [152]. To this end, several researchers have proposed ways to

statically reduce redundancies.

Researchers have identified redundancies between the mutants produced by

the mutant operators. The initial attempts can be found in the studies of

Foster [158], Howden [159] and Tai [160, 161] which claimed that every relational

expression should only be tested to satisfy the>, == and< conditions. Tai [160,

161] also argued that compound predicates involving n conditional AND/OR

operators should be tested with n + 2(2 ∗ n + 3) conditions. Along the same

lines, Papadakis and Malevris [149, 162] suggested inferring the mutant infection

conditions (using symbolic execution) of the mutants produced by all operators

and simplify them in order to reduce the effort required to generate mutation-

based test cases. This resulted in restricted versions for the Logical, Relational

and Unary operators.

More recently, Kaminski et al. [76, 163] analysed the fault hierarchy of the

mutants produced by the relational operators and showed that only three in-

stances are necessary. Just et al. [164] used a similar analysis and identified

some redundancies between the mutants produced by the logical mutant opera-

tors. In a subsequent work, Just et al. [165] showed that the unary operator can

be also improved. Putting all these three cases together, i.e., Logical, Relational

and Unary operators, results in significant gains in both required runtime exe-

cution (runtime reductions of approximately 20%) and mutation score accuracy

30

(avoiding mutation score overestimation which can be as high as 10%). Along

the same lines, Fernandes et al. [166] proposed 37 rules that can help avoiding

the introduction of redundant mutants. Their results showed that these rules

can reduce (on average) 13% of the total number of mutants.

All these approaches are based on a “local” form analysis, which is at the

predicate level (designed for the weak mutation). Thus, applying them on strong

mutation may not hold due to: a) error propagation that might prohibit killing

the selected mutants [141] and b) multiple executions of the mutated statements

caused by programming constructs such as loops and recursion [167, 168]. Em-

pirical evidence by Lindström and Márki [168] confirms the above problem and

shows that there is a potential loss on the mutation score precision of 8%, at

most.

Recently, Trivial Compiler Optimization (TCE) [37, 152] has been suggested

as a way to reduce the adverse effects of this problem. Similar to the equivalent

mutant identification, TCE identifies duplicate mutant instances by comparing

the compiled object code of the mutants. Empirical results have shown that

TCE identifies (on average) 21% and 5.4% of C and Java mutants [152]. The

benefits of using TCE is that it is conservative as all declared redundancies are

guaranteed and deals with strong mutation.

Finally, Kurtz et al. [169] attempts to identify non-redundant mutants using

(static) symbolic execution. The idea is that by performing differential symbolic

execution between the mutants it is possible to identify such redundancies.

5.4. Mutation-based Test Generation (Step 4.)

According to the RIPR model [32], in order to kill a mutant we need test

cases that reach the mutant, cause an infection on the program state, manifest

the infection to the program output at an observable to the user point (asserted

by the test cases). Formulating these conditions as requirements we can drive the

test generation process. Currently, there are three main families of approaches

aiming at tackling this problem named as (static) constraint-based test gener-

ation [149, 170], search-based test generation [171, 172] and Concolic/Dynamic

31

symbolic execution [141, 172]. Additional details regarding the automatic test

generation and mutation-based test generation can be found in the surveys of

Anand et al. [173] and Souza et al. [29].

5.4.1. Static Constraint-based Test Generation

Constraint-based methods turn each one of the RIPR conditions into a con-

straint and build a constraint system that is passed to a constraint solver. Thus,

the mutant killing problem is converted to a constraint satisfaction problem

[170]. Wotawa et al. [174] and Nica [175] proposed formulating the original and

mutant programs (one pair at a time) as a constraint system and use solvers to

search for a solution that makes the two programs differ by at least one out-

put value. Kurtz et al. [169] adopted the same strategy in order to identify

subsuming mutants.

Papadakis and Malevris [149, 176] suggested formulating the RIPR condi-

tions under selected paths in order to simplify the constraint formulation and

resolution process. A usual problem of path selection is the infeasible path prob-

lem, i.e., paths that do not represent valid execution paths, which is heuristically

alleviated using an efficient path selection strategy [149, 176].

Other attempts are due to Papadakis and Malevris [177] and Holling et

al. [156] who used out of the box symbolic execution engines (JPF-SE [178]

and KLEE [179] respectively) to generate mutation-based test cases. These

approaches instrument the original program with mutant killing conditions that

the symbolic execution engine is asked to cover (transforms the mutant killing

problem to code reachability problem). Riener et al. [180] suggested using

Bounded Model Checking techniques to search for solutions (counter examples)

that expose the studied mutants.

5.4.2. Concolic/Dynamic Symbolic Execution Test Generation

To overcome the potential weaknesses of the static methods, researchers pro-

posed dynamic techniques such as Concolic/Dynamic symbolic execution. Sim-

ilar to the static methods, the objective is to formulate the RIPR conditions.

32

However, dynamic techniques approximate the symbolic constraints based on

the actual program execution. Therefore, there is a need to embed the mu-

tant killing conditions within the executable program and guide test generation

towards these conditions.

The first approach that uses Concolic/Dynamic symbolic execution is that

of Papadakis et al. [177, 181] that targets weak mutation. The main idea of this

approach is to embed the mutant infection conditions within the schematic func-

tions that are produced by the mutant schemata technique (described earlier in

Section 5.2). This way, all the mutants are encoded into one executable program

along with their killing conditions (mutant infection conditions). Subsequently,

by using a Concolic/Dynamic symbolic execution tool we can directly produce

test cases by targeting the mutant infection conditions. Similarly, Zhang et al.

[182] and Bardin et al. [144, 183] use annotations to embed the mutant infection

conditions within the program under analysis. Along the same lines, Jamrozik

et al. [184] augment the path conditions with additional constraints, similar to

mutant infection conditions, to target mutants.

All the above approaches are actually performing some form of weak muta-

tion as they produce test cases by targeting mutants’ reachability and infection

conditions. Performing weak mutation often results in tests that can strongly

kill many mutants [32]. However, these tests often only kill (strongly) trivial

mutants which usually fail to reveal faults [6]. To improve test generation, there

is a need to formulate the mutant propagation condition on top of the reacha-

bility and infection conditions. This is complex as it involves the formulation of

the two executions (the one of the original program and the one of the mutant)

along all possible execution paths. Therefore, researchers try to heuristically ap-

proximate this condition through search. Papadakis and Malevris [141] search

the path space between the mutation point until the program output. This helps

finding inputs that satisfy the propagation condition. Finally, another approach

proposed by Harman et al. [172] searches the program input space using a con-

strained search engine (reachability and infection conditions are augmented with

an extra conjunct to additional constraints).

33

5.4.3. Search-based Test Generation

Other dynamic test generation techniques use search-based optimisation al-

gorithms to generate mutant killing test cases. The idea realised by this class

of methods is to formulate and search the program input domain under the

guidance of a fitness function. The primary concern for these approaches is to

define a fitness function that is capable of capturing the RIPR conditions and

effectively identify test inputs that satisfy these conditions.

There are many different search-based optimisation algorithms to choose

from, but in the case of mutation, the most commonly used ones are the hill

climbing [172, 185] and Genetic algorithms. As mentioned earlier, the main

concern of these methods is the formulation of the fitness function. For instance,

Ayari et al. [186] formulates the fitness as mutant reachability (distance from

covering mutants) and Papadakis et al. [177, 181] formulates the fitness as

fulfilment of mutant infection conditions (distance from infecting mutants).

As with the already-presented techniques, formulating the propagation con-

dition in the fitness function is not straight-forward and thus, it is approximated

by formulating indirect objectives. Fraser and Zeller [171, 187] measure the mu-

tants’ impact (the number of statements with changed coverage, between a

mutant and the original programs, along the test execution) to form the prop-

agation condition. Papadakis and Malevris [188–190] measure the distance to

reach specific program points which when impacted (covered by the original

program execution and not by the mutant execution or vice versa) result in mu-

tant killing. These are determined based on the mutants that have been killed

by the past executions.

Patrick et al. [191] proposed a technique to evolve input parameter subdo-

mains based on their effectiveness in killing mutants. The experimental evalua-

tion of this approach suggests that it can find optimised subdomains whose test

cases are capable of killing more mutants than test cases selected from random

subdomains.

The most recent approaches try to formulate the mutant propagation con-

34

dition by measuring the disagreement between the test traces of the original

program and the mutants. Fraser and Arcuri [192] count the number of exe-

cuted predicates that differ while Souza et al. [185] measure the differences in

the branch distances between the test executions.

5.5. Mutant Execution (Step 5.)

Perhaps the most expensive stage of mutation testing is the mutant execution

step. This step involves the execution of test cases with the candidate test cases.

Thus, given a program with n mutants and a test suite that contains m tests, we

have to perform n×m program executions at maximum. For instance, consider

a case where we have 100 mutants and a test suite that requires 10 seconds

to execute for the original program. In this case, we expect that our analysis

will complete in 1,000 seconds. This makes the process time-consuming (since

a large number of mutants is typically involved) and, thus, limits the scalability

of the method.

To reduce this overhead, several optimisations have been proposed. We

identify two main scenarios where the optimisations may appear. The first one,

which we refer to as “Scenario A”, regards the computation of mutation score,

while the second one, which we refer to as “Scenario B”, regards the computation

of a mutant matrix (a matrix that involves the test execution results of all tests

with all the mutants; an example appears in Figure 4). This mutant matrix is

used by many techniques such as the mutation-based fault localisation [17], the

oracle construction [171], test suite reduction [193] and prioritisation [194].

The difference between the abovementioned scenarios is that when comput-

ing the mutation score (Scenario A) we only need to execute a mutant until it is

killed. Therefore, we do not need to re-execute the mutants that have already

been killed by a test case with other test cases. This simple approach achieves

major execution savings. However, it does not apply on the second scenario

where we need to execute all mutants with all test cases.

To illustrate the difference, consider the example mutant matrix of Figure 4.

To construct this mutant matrix (Scenario B), we need 20 executions (4 mutants

35

Tests
Mutants

m1 m2 m3 m4

t1 X X

t2 X X

t3 X X

t4 X

t5 X X

Figure 4: Example Mutant Matrix.

executed with the 5 tests). A naive approach for computing the mutation score

(Scenario A) that does the same will also require 20 executions. However,

mutation score calculation requires computing the number of mutants that are

killed. Therefore, once a mutant is killed we do not need to re-execute it. In

the above example, the tester will make 4 executions for t1 (mutants m1, m2,

m3 and m4) and he will determine that m1 and m4 are killed. Then, he will

execute all the live mutants with t2 (2 executions, mutants m2 and m3) and

he will determine that none of them is killed. Then, he will execute the same

mutants with t3 (2 executions, mutants m2 and m3) and will determine that

m3 is killed. For the last couple of test cases t4 and t5 he will execute only

the mutant m2. The sum of these executions is 10 which is greatly reduced

compared to the initial requirement of 20 executions.

In the above analysis, we implicitly consider that there is an order of the test

cases we are using. Therefore, by using different orders we can reduce further

the number of test executions. In the example of Figure 4, if we execute t1 and

t3 first and then t2, t4 and t5, we can reduce the number of test executions to

9. Zhang et al. [195] realised this idea using test case prioritisation techniques.

Similarly, Just et al. [196] proposed using the fastest test cases first and Zhu et

al. [197] selected pairs of mutants and test cases to run together based on the

similarity of mutants and test cases (identified by data-compression techniques).

Of course, these two approaches only apply to Scenario A.

36

Regarding both Scenarios A and B, there are several optimisations that try

to avoid executing mutants that have no chance of being killed by the candidate

test cases. Thus, mutants that are not reachable by any test should not be

executed as there is no chance of killing them. This is one of the initial test

execution optimisations that has been adopted in the Proteum mutation testing

tool [198]. This tool records the execution trace of the original program and

executes only the mutants that are reachable by the employed tests. In practice,

this optimisation achieves major speed-ups compared to the execution of all tests

(in both considered scenarios).

Papadakis and Malevris [177, 181] observed that it is possible to record with

one execution all the mutants that can be infected by a test. This was im-

plemented by embedding the mutant infection conditions within the schematic

functions that are produced by the mutant schemata technique (described in

Section 5.2). Thus, instead of executing every mutant with every test, it is

possible to execute all mutants at once, by monitoring the coverage of the in-

fection conditions. Durelli et al. [150] suggested harnessing the Java virtual

machine instead of schematic functions in order to record the mutant infection

conditions. Both these methods resulted in major speed-ups (up to 5 times).

When performing strong mutation many mutants are not killed despite be-

ing covered by test cases, simply because the mutant execution did not infect

the program state. Therefore, there is no reason to strongly execute mutants

that are not reached and infected by the candidate test cases. Based on this

observation, Papadakis and Malevris [141] proposed to strongly execute only

the mutants that are reached and infect the program state at the mutant ex-

pression point. Along the same lines, Kim et al. [199] proposed optimising test

executions by avoiding redundant executions identified using statement level

weak mutation. Both the studies of Papadakis and Malevris [141] and Kim et

al. [199] resulted in major execution savings. More recently, Just et al. [200]

reported that these approaches reduce the mutant execution time by 40%. A

further extension of this approach is to consider mutant infection at the mutant

statement point (instead of mutant expression) [142].

37

Other test execution advances include heuristics related to the identifica-

tion of infinite loops caused by mutants. Such infinite loops are frequent and

greatly affect mutant execution time. However, since determining whether a

test execution can terminate or not is an undecidable problem heuristic solu-

tions are needed. The most frequent practice adopted by mutation testing tools

to terminate test execution is with predefined execution time thresholds, e.g.,

if it exceeds three times the original program execution time. Mateo et al.

[201, 202] proposed recording program execution and determine whether po-

tential infinite loops are encountered by measuring the number of encountered

iterations.

All the abovemetioned works aim at removing redundant executions. An-

other way to reduce the required effort is to take advantage of common execution

parts (between the original program and the mutants). Thus, instead of exe-

cuting every mutant from the input point to the mutation point, we can have

a shared execution for these parts and then a different execution for the rest

(from the mutation point to the program output). Such an approach is known

as Split-stream execution [203]. The separation of the execution is usually per-

formed using a Fork mechanism [143]. Empirical results suggest that such an

approach can substantially improve the mutant execution process [142, 143]. It

is noted that these approaches are orthogonal to those that are based on mutant

infection. Therefore, a combination of them can further improve the process and

substantially enhance the scalability of the method, as demonstrated by Wang

et al. [142].

An alternative way of speeding-up mutation testing is by leveraging parallel

processing. This is an old idea that has not been investigated much. There are

many tools supporting parallel execution of mutants, like [147, 204, 205], but

they do not report any results or specific advances. Mateo et al. [206] reports

results from five algorithms and shows that the mutant execution cost is reduced

proportionally to the number of nodes that one is using.

Finally, there are also approaches tackling the problem in specialised cases.

For instance, Gligoric et al. [207, 208] suggest a method for the efficient state-

38

space exploration of multithreaded programs. This work involves optimisation

techniques and heuristics that achieve substantial mutant execution savings. In

the context of fault localisation, Gong et al. [209] proposed a dynamic strategy

that avoids executing mutants that do not contribute to the computation of

mutant suspiciousness and achieves 32.4% to 87% cost-reductions. In the case

of regression testing, Zhang et al. [210] identifies the mutants that are affected by

the program changes (made during regression) and executes only those in order

to compute the mutation score. The affected mutants are identified with a form

of slicing (dependencies between mutants and program changes). Wright et al.

[211] uses mutant schemata and parallelisation to optimise the test of relational

database schemas. Zhou and Frankl [212] proposed a technique called inferential

checking that determines whether mutants of database updating statements

(INSERT, DELETE, and UPDATE) can be killed by observing the state change

they induce.

5.6. Mutation Score Calculation and Refinement (Step 6.)

The mutant execution aims at determining which mutants are killed and

which are not. By calculating this number, we can compute the mutation score

that represents the level of the test thoroughness achieved. Determining whether

a test execution resulted in killing a mutant requires observing and comparing

the program outputs. Thus, depending on what we define as a program output

we can have different killing conditions. Usually, what constitutes the program

output is determined by the level of granularity that the testing is applied to.

Usually in unit testing the program output is defined as the observable (public

access) return values, object states (or global variables), exceptions that were

thrown (or segmentation faults), and program crashes. In system level, program

output constitutes everything that the program prints to the standard/error

outputs, such as messages printed on the monitor, behaviour of user interfaces,

messages sent to other systems and data stored (in files, databases etc.).

In the case of non-deterministic systems, it is necessary to define mutant

killing conditions based on a form of oracle that models the behaviour of the

39

obtained outputs. Patrick et al. [213] use pseudo-oracles to test stochastic soft-

ware. Rutherford et al. [214] use discrete-event simulations (executable spec-

ifications) to define assertions and sanity checks that model how “reasonable”

are the test execution results (distribution topology, communication failure, and

timing) of distributed systems.

Observing and comparing the program outputs often requires a test driver

that it is program specific and, thus, researchers usually approximate program

outputs by observing a subset of it, usually defined by the test assertions (and

program crashes). Alternative techniques involve the use of stubs, oracle data,

log messages and internal program states that will be detailed later on, in Sec-

tion 5.9. Mateo et al. [128] proposed flexible weak mutation, an approach for

system level mutation testing that considers mutants as killed when they result

in corrupted object states. Object states are checked after the execution of ev-

ery method call. Wu et al. [104] record execution paths and determine whether

mutants cause any deviations from the original program’s ones (execution of

different paths).

Computing the mutation score requires the removal of equivalent mutants.

As already discussed in Section 5.3, identifying equivalent mutants is a manual

task that is partially addressed through static heuristics. Since the problem is

important, there are some attempts to approximate the mutation score using

dynamic heuristics. The idea is that mutants that are not killed by the tests

but are capable of causing differences on the program state are likely to be

killable [215]. This idea was initially introduced by Grun et al. [215] and, later,

studied by the works of Schuler and colleagues [216–218]. Overall, these studies

examined several heuristics that measure different types of impact (breaking

program invariants, changed return values, altered control-flow and data-flow)

and showed that measuring whether mutants cause deviations on the program

execution forms the best option.

The use of mutants’ impact provides opportunities to define mutant selec-

tion and classification strategies. Schwarz et al. [219] defined a mutant selection

strategy by selecting a small set of mutants with high impact and diverge lo-

40

cations (all over the codebase). Mutant classification provides opportunities

to achieve good trade-offs between effectiveness and efficiency. Papadakis and

Traon [220, 221] defined such strategies and found that mutant’ classification is

beneficial when low quality test suites are used.

Other attempts to refine and approximate the mutation score with the use

of mutant classification are due to Kintis et al. [222, 223]. Kintis et al. ob-

served that killable mutants are likely to compose a higher order mutant that

behaves differently than the first order ones that it is composed of. Based on this

observation, a mutant classification strategy that identifies 81% of the killable

mutants with a precision of 71% was proposed.

5.7. Reduce/Prioritise Test Cases (Step 7.)

This step involves the test suite reduction and/or test suite prioritisation.

Test reduction refers to the process of removing test cases that are somehow

redundant, i.e., test cases that when removed from the test suites do not change

the mutation score. Test prioritisation refers to the process of ordering test

cases in such a way that mutants are killed as early as possible.

Mutation-based test suite reduction has been suggested by Usaola et al.

[224], using a greedy algorithm. The idea is to iteratively select the test cases

that kill the maximum number of mutants that were not killed by the previously

selected test cases. Hao et al. [225] used mutation to estimate a confidence

level for the fault detection loss experienced due to the reduced test suites.

Therefore, users can minimise their test suites using structural criteria and

get an estimation of the potential fault-detection capability loss based on the

mutants.

Shi et al. [193] used mutants to reduce test suites and measured different

trade-offs between reduced test suites and fault-detection loss when reduced test

suites kill fewer mutants than the original (non-reduced) ones. Similar to this

work, Alipour et al. [226] proposed reducing (simplifying) individual tests rather

than removing some of them and measured the trade-offs between reductions

and fault-detection loss.

41

Regarding test case prioritisation, Lou et al. [194] studied two prioritisation

schemes; one based on the number of mutants killed and one based on the dis-

tribution of the killed mutants and found that prioritising based on the number

of killed mutants performs best. Nguyen et al. [227] proposed ordering first the

test cases that kill the most mutants in order to support the audit testing of

webservice compositions. In their work, they considered only a subset of mu-

tants, which is the ones that do not violate the explicit contract with the service

under analysis.

5.8. Confidence Inspired by Mutation Score (Step 8.)

The mutation testing process stops when mutation score reaches a user-

specified threshold. In theory, this threshold reflects the level of confidence that

developers have on the testing performed. Unfortunately, there are very few

studies related to this subject, i.e., measuring the relationship between mutation

score and fault revelation. Along these lines, Li et al. [52] experimented with

mutation adequate test suites (test suites that kill all killable mutants) and

showed that these tests reveal more faults than the ones of structural testing

criteria. This result is in line with the results of older studies that showed the

superiority of mutation testing over other structural test criteria [27, 55].

The most recent studies on the subject are those of Papadakis et al. [41] and

Chekam et al. [6] that studied the fault revelation ability of mutation testing.

The most important finding of the studies is that the “relationship between

strong mutation and fault revelation exhibits a form of threshold behaviour”

[6] and that “achieving higher mutation scores improves signicantly the fault

detection”. This means that there is a strong connection between mutation

score and fault revelation only at higher mutation score levels (above a specific

threshold). However, below that level, the mutation score is completely discon-

nected from fault-revelation. In practice, this means that inadequate test suites

that fail to reach relatively high mutation scores are vulnerable to noise effects

and testers should not be confident on their testing (based on them). Perhaps

more importantly, the same study shows that strong mutation adequate test

42

suites are capable of revealing at least 90% of the program faults [6].

The study of Tengeri et al. [228] suggests that mutation testing forms a

good indicator of the expected number of defects in a system (number of real

faults reported after the release of the system). Since these defects are those

missed by the testing process they can be viewed as quality indicators of the

test suite thoroughness.

Generally, it is important to consider the role of equivalent and redundant

mutants when studying the relationship between mutation score and fault rev-

elation. In practice, both the existence of equivalent and redundant mutants,

makes the evaluation of the exact mutation score value obscure, with the unfor-

tunate effect of overestimating or underestimating the true score [36, 152, 229].

In particular, equivalent mutants tend to reduce the true mutation score, while

redundant mutants have mixed effects. Therefore, reliably studying the mutant-

fault relation requires, to some extend, adequate solutions for these problems.

Overall, we know very little regarding this fundamental aspect of software

testing (confidence inspired by mutation score). Studies increasing our under-

standing on this respect are important and should form one of the main subjects

addressed by future research. Similarly, studies addressing the equivalent and

redundant mutant problems are also key to this problem.

5.9. Test Oracles (Step 9.)

Once we create test inputs and reach the desire level of mutation score,

we need to check whether the program under test behaves as expected. Ad-

ditionally, we need to equip our tests with test oracles that assert the desired

behaviour for future use. This is the phase were we actually find faults (when

the program does not behave as expected). Unfortunately, in the absence of

formal specifications this task is carried out manually.

One of the first attempts to automate this process is due to Fraser and Zeller

[171, 187] who used mutants to guide oracle assertion creation. The idea is to

check (and assert) the part of the program output that is responsible for killing

the mutants. Fraser and Zeller [171, 187] formulate this as a search problem and

43

devised an automated approach that generates test assertions. Testers are then

asked to validate these assertions. The same method has also been extended

to identify relevant pre- and post-conditions suitable for parameterized tests

[101, 230]. In the same vein, Knauth et al. [231] evaluated the quality of

contracts (written in the Java Modeling Language) by mutating them.

The use of mutants in creating test oracles has been a common practice in

automated test generation tools. Evosuite [232] adopts this practice for gener-

ating test oracles for Java programs. Yoshida et al. [233, 234] use the same

method to support test generation for C/C++ programs. Jahangirova et al.

[235, 236] use mutants to detect relevant observed state differences and abstract

them into test oracles.

Mutants have also been used to drive the creation of oracle data (a set of

variables that should be monitored during testing) [237, 238]. In this work,

internal program variables are monitored and ranked according to their ability

to kill mutants. Similar to the work of Fraser and Zeller, mutants assist the

creation and minimisation of the oracle data. Jahangirova et al. [239] uses test

generation and mutation testing to assess and improve oracles (code assertions).

Additional details regarding test oracles can be found in the survey of Barr et

al. [240].

5.10. Debugging (Step 10.)

Research on mutation-based debugging has followed two main directions,

namely fault localisation and fault fixing. The former refers to the problem of

locating the code areas that are responsible for a given failure while the later to

the problem of automatically repairing the fault using the available test suite.

5.10.1. Mutation-based Fault Localisation

Mutation-based fault localisation was introduce by Papadakis and Le Traon

[17, 241] with their work on the Metallaxis method. The underlying idea of Met-

allaxis is that mutants killed mostly by failing tests have a connection (interac-

tion) with the program defects that caused the program failures. Thus, mutants

44

killed mostly by failing tests provide indications regarding the faulty program lo-

cations. Empirical results on this approach demonstrated that mutation-based

fault localisation is significantly superior to other types of fault localisation

techniques, such as spectrum-based fault localisation [17, 242].

Metallaxis was later extended to support mutant reduction techniques, such

as selective mutation [125] and has been released as an automated tool called

Proteum/FL [204]. The idea of Metallaxis was later extended by Moon et al.

[243], who introduce the MUSE method. MUSE works by checking whether

mutants turn the failing test cases into passing or not. The difference from

Metallaxis is that MUSE does not consider the mutants that are killed (have

different outputs from the original program) by failing test cases but still they

are not passing.

Other mutation-based fault localisation techniques are those of Zhang et

al. [244] who studied fault localisation on the context of evolving programs

and localised suspicious program edits. Hong et al. [245, 246] extended MUSE

for multiligual programs. Empirical results demonstrated that mutation-based

techniques identify the faulty program locations (and edits) as the most suspi-

cious statements. Another work of this type is that of Murtaza et al. [247, 248].

In this work, it was observed that the test execution traces produced by mutants

and faults are similar. Musco et al. [249] used mutants to approximate a causal

graph. This approach realises the idea of tracking causality in call graphs by

exploring the test paths that lead to killing mutants.

5.10.2. Mutation-based Fault Repair and other Debugging Activities

Mutation has been used to support program repair activities by Debroy

and Wong [250, 251]. These works observe that many faults are fixed by sim-

ple syntactic transformations. Therefore, since mutants are simple syntactic

transformations, they form potential patch candidates. The advantage of this

technique is that it is simple and can be completely automated by a mutation

testing tool.

Generally, automated fault repair is a large field of research with many

45

specialised applications. Most of the approaches use genetic programming or

constraint-based techniques to select and check whether special types of mutants

can fix the underlying faults.

One of the first attempts in the area is due to Weimer et al. [18, 252],

who used genetic programming with statement deletion, statement insertion,

statement replacement and crossover mutant operators in order to support the

automated bug fixing. Empirical results demonstrated that this approach can be

particularly effective [253]. Later, Weimer et al. [254] leveraged mutation testing

advances in order to improve the performance of fault fixing. In this work,

the duality between mutation testing and fault repair is detailed along with

potential opportunities for cross fertilisation between the approaches. Other

fault repair approaches combining search and mutation testing are by Tan and

Roychoudhury [255], who introduce a regression repair technique that searches

for mutants (using 8 types of mutant operators) that fix regression faults.

There are many automated fault repair techniques that use some form of

syntactic transformations (can be viewed as specialised higher order mutants)

in order perform program repair. For instance, Long and Rinard [256] and Kim

et al. [257] use syntactic patterns to perform program repair. However, as these

approaches fall outside the scope of the present paper, the interested reader is

redirected to a specialised survey on this subject [258].

Other debugging techniques relying on a form of mutation testing is Angelic

debugging [259]. The idea of Angelic debugging is to perform a form of data

state mutation in order to correct the program execution. The idea is to identify

the set of values that can substitute the program state (at runtime) and results

in a form of “correct” execution.

6. Alternative Code-based Mutation Testing Advances

This section details code-based testing advances that do not conform to

the mutation testing process, as depicted in Figure 3. These advances include

predictions of the mutation score, gamification of mutation testing, the use of

46

search algorithms and diversity-aware testing techniques.

Mutation testing requires performing the mutant execution step which is

expensive even when using the test execution optimisations that were discussed

in Section 5.5. To deal with this problem, many researchers have proposed the

use of alternative proxies to measure the fault revealing potential of test cases.

Gligoric et al. [59, 60] found that branch coverage measurements are strongly

correlated with mutation scores. Therefore, they argued that branch cover-

age could be used as an alternative to real faults and mutation faults. Later,

Gopinath et al. [62] conducted a large empirical study and found that state-

ment coverage scores correlate strongly with mutation scores. Unfortunately,

there are also studies demonstrating that coverage does not correlate well with

mutant detection [61].

Zhang et al. [260] built a classification model that predicts the mutants that

are killed without executing them. The model relies on a number of features

related to mutants, tests and coverage measures and predicts the mutant ex-

ecution results with a relatively good precision (with over 0.85 precision and

recall).

Designing mutation-based tests is a tedious and potentially boring task that

most developers try to avoid. As testing requires the involvement of developers,

their motivation is crucial. In view of this, the studies of Rojas and Fraser [261]

and Rojas et al. [262] suggested making these activities entertaining by game-

fying mutation testing. The game includes two main roles, the attacker and the

defender. The former aims at creating subtle non-equivalent mutants and the

latter at creating test cases to kill these mutants. Overall, this approach helps

educating and motivating developers. It can also help crowdsourcing complex

tasks, such as test generation and adequacy evaluation [262].

Search-based mutation testing forms an alternative approach to traditional

mutation testing. Instead of selecting mutants from a predefined set of opera-

tors, it uses meta-heuristic search techniques to evolve and optimise the gener-

ation of higher order mutants [263]. The idea here is to seek tailored mutants

that fit to the particular goals of the testers. Thus, search-based techniques can

47

be employed in order to search the space of all possible mutants for those that

are subtle (mutants that are killed by only few test cases) [264], representative

of all mutants [38], and realistic (both semantically and syntactically close to

the original program) [72].

There is a number of approaches that utilise mutant optimisation: Jia and

Harman study ways to combine first order mutants so that they produce sub-

tle faults [38, 264] for C programs. Harman et al. [265] reports that by using

search it is possible to improve test effectiveness (between 5.6% and 12%) while

enjoying 15% improved efficiency (in Java programs). Langdon et al. [72] used

grammar-based, bi-objective, strongly typed genetic programming to form real-

istic mutants for C programs. Along the same lines, Omar et al. [15] experiment

with Java and AspectJ mutants. Their results demonstrate that it is possible

to generate subtle higher order mutants [266, 267]. Omar et al. [267, 268]

experimented with different ways of combining first order mutants in order to

improve the efficiency of the approach. They found that a form of local search

performs best. Wu et al. [269] use higher order mutation to genetically improve

the non-functional properties of the program under test. Their approach yields

time and memory performance improvements of approximately 18% and 20%,

respectively.

Finally, Shin et al. [270, 271] proposed using mutants as a test suite diversity

measure and defined a mutation-based diversity test criterion. The idea of

this approach is to construct test cases that can distinguish every mutant from

every other mutant. Thus, instead of trying to distinguish the behaviour of the

mutants from that of the original program, they proposed to distinguish the

behaviour of every mutant from all the others.

7. Advances beyond Code-based Mutation Testing

This section presents approaches that use mutants to support software engi-

neering activities other than code-based testing. We first outline those belonging

to the model-based testing, and continue with those related to security testing

48

and, finally, other applications and testing approaches.

7.1. Model-based Testing

An important line of mutation-based research regards its application to

model artefacts. Older approaches called it specification-based mutation but

the newer ones refer to it as model-based mutation. Here, we briefly discuss

these approaches. For a detailed description and discussion on this subject, we

point the reader to the specialised survey of Belli et al. [30].

Henard et al. [272] propose the use of mutation to test software product lines.

The variability of software product lines and configurable systems is compactly

represented by feature models. Therefore, the study of Henard et al. introduces

mutant operators that mutate feature models (and their constraints). The idea

is to transform the feature model into an equivalent logic formula, which is mu-

tated using logical operators (using a tool called MutaLog [273]). Subsequently,

the effectiveness of the selected configurations (to detect conformance faults of

feature models) is evaluated based on their ability to detect mutants. In a later

study, the feature model mutants were used to assist the automatic repair of

feature models [274]. This is achieved by iteratively mutating the model under

analysis until it reaches the desirable state.

An advantage of using feature model mutants is that by targeting them, it is

possible to generate (automatically) a small set of test configurations. Henard

et al. [275] applied this idea using search-based optimisation methods in order

to minimize the number of selected configurations and maximize the number

of killed mutants. Filho et al. [276, 277] used a multi-objective optimisation

approach to achieve several trade-offs between the number of selected configu-

rations and number of killed mutants, their diversity and etc.

Generating feature model mutants with the aim of selecting test configura-

tions also been attempted by Arcaini et al. [278]. The difference of this method

from that of Henard et al. is that mutants are introduced directly on the feature

model under test (instead of the logic formula). The study also reports results

from a test configuration generation technique that attempts to kill these mu-

49

tants. The same approach was then used to evaluate the conformance of feature

models to a software product line [279]. This approach also attempts to auto-

matically detect and remove conformance faults from the feature model, similar

to Henard et al. [274]. The difference is that since mutants are applied directly

on the feature model the resulting models are expected to be easy to understand.

The study of Trakhtenbrot [280] focuses of testing statechart-based mod-

els for reactive systems. This approach is concerned with specific semantics of

statechart models that are not aligned with the model’s implementation. These

semantics are the “zero-time” abstraction and “maximal parallelism”, which are

the subjects of mutation. Considering the conformance relation of action sys-

tems, Aichernig and Jöbstl [281] proposed a technique for encoding the seman-

tics (of action systems) as constrains to be incorporated in the test conformance

relations. These relations form the mutant killable conditions. Similarly, Aich-

ernig et al. [282, 283] developed a mutation-based test generation technique for

UML state machines.

Devroey et al. [12] introduced the notion of featured model-based muta-

tion analysis, a flexible formalism based on Featured Transition Systems, which

enable the optimised generation, configuration and execution of mutants. The

main idea behind this approach is to represent the model mutants as products

of a Software Product Line [151]. Based on this idea, the authors demonstrate

that the technique can speed-up mutant execution up to 1,000 times when com-

pared to other behavioural model mutation approaches. Similarly, Belli and

Beyazit [284] propose a mutant generation technique that attempts to limit the

introduction of equivalent and duplicated mutants. The same approach aims at

optimising the test case execution by avoiding the comparison of the mutants

with the original models.

El-Fakih et al. [285] present a mutation-based test case generation tech-

nique for Extended Finite State Machines (EFSMs) that evaluates whether the

EFSM under test conforms to user defined faults. As part of the technique, the

EFSM under test is mutated and test cases able to kill the generated mutants

are generated. Another technique, proposed by Su et al. [286], utilises mutated

50

GUI models for test case generation of Android applications. This particular

approach mutates an auto-generated stochastic GUI model of the application,

represented as a FSM, in order to search for better models that will result in dif-

ferent, and potentially better, event sequences compared to the original model.

Finally, Aichernig et al. [287] combine property-based testing with model-based

mutation testing to generate efficiently test suites that target specific coverage

criteria based on EFSMs.

As for code-based mutation, detecting equivalent mutants at the model level

is a tricky problem. When considering behavioural models such as automata,

this problem can be formulated as a language equivalence problem. Indeed, if

two automata accept the same language, then their traces are the same and no

test case can distinguish them. Language equivalence is P-SPACE complete but

efficient algorithms exist. Devroey et al. [3] compared one of such algorithms

with two sorts of simulations: one that is completely random and one that

exploits syntactic differences between the models to direct trace generation to

infected states. Biased simulations proved to be efficient for strong mutation

cased on large models while the exact approach was more interesting for weak

mutation.

Belli et al. [108] present a mutation-based technique to test “go-back” func-

tions modelled by pushdown automata. This approach uses mutant operators

that affect the transitions, state and stack of pushdown automata. Aichernig

and Lorber [288, 289] propose a model-based mutation testing technique for

timed automata that tackles the state-space explosion problem caused when

unfolding timed automata. The method improves the test execution using the

unfolded structure of the original specifications. Larsen et al. [290] builds on this

work and further improve its efficiency. Zhou et al. [291] present a specification-

based mutation approach to test safety-critical systems. This method defines

mutant operators for the Input Output Symbolic Transition System modelling

language and introduce a test case generation technique to create test cases

based on these mutants. Adra et al. [292] study the application of mutation

to agent-based systems. This approach defines mutant operators to address the

51

properties of this type of systems.

Stephan et al. [293, 294] present a technique that compares model-clone

detection techniques for Simulink models using mutation. This approach in-

troduces a set of structural mutant operators designed to compare model-clone

detectors. The design of the operators was based on the authors’ observations

of potential model edit operations in publicly available models. In an exten-

sion of this work, Stephan et al. [295] present a taxonomy of Simulink mutant

operators that represent realistic edit scenarios when modelling. Although this

taxonomy was created with the comparison of model-clone detectors in mind,

the authors suggest that it can represent Simulink model mutations in general.

Later, Pill et al. [296] developed a mutation testing framework for Simulink

models, named SIMULTATE.

Testing model transformations using mutation has been attempted by Khan

and Hassine [297]. In this approach the authors introduce specific mutant oper-

ators for the Atlas Transformation Language. Later, Troya et al. [298] focuses

on the same subject and presented an extensive set of mutant operators that

uses both first and higher-order mutation transformations [299]. Another study

that tests model transformations using mutation is due to Aranega et al. [300],

who focuses on how to support the generation of mutation-adequate test cases

for checking model transformations. In this case, test cases are test models.

The intuition behind the approach is that building a test model that is able

to kill alive mutants from scratch is difficult, thus, the approach attempts to

provide guidance to select some of the already available test models (test cases)

to modify to kill the alive mutants.

Bartel et al. [301] focus on testing Dynamically Adaptive Systems. These

systems are governed by adaptation policies that incorporate how and when the

system will adapt. The approach focuses on testing whether these adaptation

policies are correctly implemented using mutation. Thus, a set of mutant oper-

ators is defined using a meta-model that represent the policy formalisms. The

approach also suggests a specialisation of these mutant operators for the case

of action-based adaptation policies.

52

Mutation testing has also been applied on NuSMV models. Arcaini et al.

[302] creates mutants of such models and checks whether the NuSMV model

advisor (an automatic static model review tool) can statically detect these mu-

tants. Mutant operators for UML domain models have been defined by Kaplan

et al. [303]. This study aims at generating test cases based on information

provided by the domain model, expressed as a UML class diagram with invari-

ants, and the use case model of the application under test. Fraser and Wotawa

[304] presents another model-based mutation approach aiming at determining

property violations of a model. The approach relies on the notion of property

relevance which relates test cases to model properties, in an attempt to connect

the failing of a test case with a violation of a property.

The application of mutation testing at system requirements that are ex-

pressed in a natural language has also been attempted. Trakhtenbrot [305] in-

troduced a semantic mutation approach that introduces mutants related to the

intended meaning of the requirements (requirements expressed by predifined

patterns) by altering the pattern of the requirements. This enables the use of

the mutants for test generation and test evaluation.

Mutation testing has also been applied on Alloy models. Sullivan et al. [306]

performed mutation testing in declarative programming paradigm (Alloy lan-

guage) to support test case generation and showed that it is robust at revealing

real faults.

Finally, mutation has been applied on aspect-oriented programs by mutat-

ing state models. Xu et al. [307] proposes two strategies for generating tests

from such models. The first one leverages structural information from the state

model to generate test cases whereas the second one is based on counterexam-

ples generated by model-checking (counterexamples that form illegal sequences

of events in the original model). The study of Lindström et al. [308] intro-

duces a mutation-based approach to test aspect-oriented models. The approach

proposes a set of mutant operators targeting specific features of aspect-oriented

modelling. Abstract tests created to kill the generated mutants evaluate the

modelling of cross-cutting concerns and the weaving process, as well.

53

7.2. Security Testing

This section presents mutation-based approaches related to security. More

precisely, applications on testing security policies [309–313], regression testing of

security policies [314] and testing security protocols [315] are shortly described.

Testing security policies using mutation has been suggested by Mouelhi et

al. [310]. In this study, Mouelhi et al. propose a meta-model that captures

different rule-based security policy formalisms. This meta-model forms the sub-

ject for mutation which is performed using a set of (proposed) generic operators

that can simulate faults in the various instantiations of the model. Along the

same lines, Mouelhi et al. [312] present another mutation-based technique that

automatically transforms functional test cases into security test cases (test the

security policy). In this approach, mutation is used for two purposes: to identify

the subset of the functional test cases that are impacted by the security policy

and to relate this subset’s functional test cases to specific security policy rules.

Dadeau et al. [315, 316] propose a mutation-based test generation and eval-

uation technique that validates an implementation of a security protocol that is

written in the High-Level Security Protocol Language. These approaches pro-

pose mutant operators that introduce leaks in the security protocols and creates

abstract test cases for HLPSL models by targeting/killing mutants.

Other attempts to test security policies are due to Bertolino et al. [311]

who propose a fault model for history-based security policies. This study aims

at policies written in the PolPA language and proposes modification rules that

attempt to simulate faults that can occur in the implementation of the Pol-

icy Decision Point (PDP) and target only the static behaviour of the PDP.

Elrakaiby et al. [309] and Nguyen et al. [313] attempt to test the obligation

policy enforcement and delegation policies. These goals are achieved by using

mutant operators that introduce changes in key elements of the obligation policy

management and delegation features.

Finally, Hwang et al. [314] investigate test selection techniques for regression

testing of security policies. They proposed three techniques towards this goal,

one of which is based on mutation analysis. This particular technique first uses

54

mutation analysis to correlate policy rules and tests cases and, subsequently, it

applies test selection. The test selection is performed by selecting test cases that

are correlated with rules involved with syntactic changes between the original

policy and its mutants.

7.3. Supporting adaptive random testing, boundary value analysis and combina-

torial interaction testing

Mutation testing has been used to support or extend several not mutation-

based testing methods. Thus, it has been used to support adaptive random

testing, boundary value analysis and combinatorial interaction testing.

In the context of combinatorial interaction testing, Papadakis et al. [317]

proposed mutating the constraints between the program input parameters. Thus,

instead of selecting input combinations that satisfy the input constraints only,

the authors proposed selecting the combinations that make the mutated con-

straints invalid. The underlying idea of this approach is that the difference

between the original and the mutant constraints define some form of ’bound-

ary’ conditions that trigger faults. Empirical results with faulty applications

demonstrated that mutants have a stronger correlation with faults than the

input parameter combinations.

Zhang et al. [318] proposed a mutation-based extension to boundary value

analysis. The approach mutates some predicates of a given path condition in

order to define boundary values. Similarly to Papadakis et al. [317], these

values are the solutions that satisfy the path condition and at the same time

differentiate the original predicate from its mutants. The authors also propose

a way to generate test cases that cover these boundary conditions based on

constrained combinatorial interaction testing.

Patrick and Jia [319, 320] proposed a technique, named Kernel Density, to

support adaptive random testing. This technique guides the test selection pro-

cess based on the killed mutants. Thus, tests killing new mutants are considered

to be more distant than those killing the same ones. Empirical results show that

test cases selected by this approach kill more mutants than the ones selected by

55

adaptive random testing.

7.4. Other Mutation-based Applications

This section describes approaches tackling general software engineering prob-

lems. These include: program analysis, software verification, code clones, defect

prediction and regression testing.

Mutation analysis has been used to automatically detect loop invariants by

mutating postcondition clauses [321]. In such a way, many invariant candidates

are generated and invalid invariants are discarded based on appropriate coun-

terexamples. The study of Galeotti et al. [321] describes several ways to mutate

the postconditions, as well as, ways to eliminate some trivial cases. Similarly,

Andrés et al. [322] propose an automated framework, named PASTE, that uses

mutants to evaluate the fault revealing ability of system invariants (generated

from specifications) in the context of passive testing of stochastic timed systems.

The approach evaluates the strengths of the invariants (and prioritises them)

based on the number of killed mutants. Subsequent works detail (its mutation

module, its mutant operators and the algorithms it incorporates), extend and

evaluate the framework further [323, 324] .

Pankumhang et al. [325] propose a code instrumentation technique, named

iterative instrumentation, for measuring code coverage when testing time-sensitive

systems. The approach is based on weak mutation analysis and instruments the

program by inserting exit statements at the instrumentation points considered.

Other applications of mutation testing include its use for software verifica-

tion. Groce et al. [326] used mutants to make developers familiar with software

verification. The idea is to focus on incorrect programs (mutants) in order to

understand when and how the verification process fails (by observing failures to

detect problems caused by mutants).

Using mutation analysis to create software clones forms another application

of mutation. Roy and Cordy [294] introduce several mutant operators that

model typical copy/paste activities of developers and create clones based on the

application of these operators. The same study also uses these clones to evaluate

56

different clone detection techniques. Along these lines, the work of Svajlenko et

al. [327] presents mutant operators that create fork constructs in order to assist

the study and analysis of code similarity.

More recently, Bower et al. [328] proposed using mutation to assist the

prediction of software defects. This technique combines traditional source code

metrics with a number of mutation analysis metrics to built defect classifiers.

The mutation analysis metrics that were used are classified into static, e.g. the

number of mutants a mutant operator generated, and dynamic ones , e.g. the

number of mutants killed. The study concludes that mutation-based metrics

significantly improve the performance of defect prediction and that the best

results are obtained by using a combination of static and dynamic metrics.

In the context of regression testing, Zhang et al. [329] used special forms

of mutants to improve the fault detection ability of regression test suites. The

approach mutates both the old and the new versions of the program under

test, and executes them with the available test suites. The detected differences

between the two versions are considered as problems.

Di Nardo et al. [330] present a mutation-based technique to automatically

generate faulty input data within complex data structures from existing field

data. The approach uses six generic mutant operators that mutate the field

data and guide their selection (using a data model). Results from an industrial

case study show that it performs better, in terms of code coverage, than the

manual testing performed by domain experts.

As discussed earlier, the existence of equivalent mutants constitutes one of

the major costs of mutation’s application. However, many researchers have

started viewing this as an advantage in certain cases. Arcaini et al. [331,

332] seek to find opportunities to improve the quality of the artefact under

consideration. For example, they suggest that equivalent mutants can be used

for improving code readability and for refactoring purposes. It is suggested

that benefits from equivalent mutants may arise on all software artefacts where

mutation applies. For instance, in feature models it is possible to detect dead

and false optional features and redundant constraints. A similar approach is

57

that of Baudry et al. [333], who suggested that equivalent mutants can be

seen as diverse program versions. Therefore, by generating equivalent program

versions, one can produce multiple diverse program variants (which can support

security purposes, like moving target defense).

Lisper et al. [334] introduced the concept of targeted mutation, which aims

at non-functional properties. The idea undelying this approach is to introduce

mutants that are relevant to a targeted non-functional property and use them

as guides for generating and augmenting test suites. These test suites can then

be used for estimating the worst-case execution time.

Finally, another mutation-based testing technique refers to testing relational

database schemas. Wright et al. [211] investigate ways to make the application

of mutation to database schemas more efficient. To this end, the authors propose

and evaluate 4 cost-reduction approaches that leverage mutant schemata and

parallelisation. The results of the empirical study conducted suggest that the

mutation analysis time can be reduced by the approaches proposed but they also

indicate that their performance can be influenced by the underlining database

management system (DBMS).

8. Tools for Mutation Testing

One important factor for the successful application of mutation is the avail-

ability of automated frameworks that support its application steps. This section

discusses the tools that were introduced or were used in the studies we surveyed.

Table 3 outlines the corresponding tools along with the year of their creation,

their application artefact and a concise description of key characteristics.

As it can be seen from the table, our analysis concluded in 76 tools, most

of which where introduced between 2008 and 2017, that apply mutation to

different software artefacts. By closely examining the table, it becomes obvious

that there is an increasing growth in mutation testing tools with the creation of

approximately 10 tools per year. Most of these tools target the implementation

level languages but there are also tools that target specification languages and

58

models.

At the implementation level, the mutation testing tools target mostly the

C and Java programming languages. Most of the tools focus on the support

of traditional, method-level mutant operators and strong mutation, with few

tools supporting Object-Oriented operators and weak or higher order mutation.

Additionally, there have been various tools proposed that apply mutation to

dynamically-typed programming languages and concurrency-related aspects.

For the non-code-based tools, there have been proposed various tools for

many model notations, including Extended and Timed Finite State Machines,

Simulink models, Feature Models, etc, that automate the application of muta-

tion. Furthermore, automated frameworks for mutating security policies and

protocols have also been introduced.

Table 3: Mutation Testing Tools.

Name & Ref Year Application Description

mutate [335] N/A C supports method-level mutant operators

Jester [336] 2001 Java supports source-code-level (src-level) mu-

tant generation

Proteum [337] 2001 C supports an extensive set of method-level

mutant operators and interface mutation

(inter-method level operators)

mutgen [338, 339] 2003 C supports method-level mutant operators

muJava [9, 340, 341] 2004 Java implements src-level mutant generation

and supports method-level and Object-

Oriented (OO) mutant operators

ByteME [342] 2006 Java implements bytecode-level mutant gen-

eration and supports method-level &

Object-Oriented (OO) mutant operators

SQLMutation [343] 2006 SQL supports traditional & SQL-specific mu-

tant operators for SQL queries

Jumble [344] 2007 Java implements bytecode-level mutant gener-

ation and supports method-level mutant

operators

ESTP [345] 2008 C supports 20 traditional C mutant opera-

tors

Not Named [346] 2008 Sulu supports method-level mutant operators

(drawn from the study of Andrews et al.

[339])

Milu [347] 2008 C supports method-level mutant operators

and higher order mutation

59

Table 3: Mutation Testing Tools.

Name & Ref Year Application Description

Not Named [304] 2008 NuSMV

models

supports specification-based mutation

(drawn from the study of Black et al. [2])

Not Named [348] 2008 Code gen-

erated from

Simulink

models

seeds faults into the implementations

generated from Simulink models

Not Named [310] 2008 Security

Policies

supports security-policy-access-control

meta-model mutation (applied on poli-

cies defined in various notations (e.g.

RBAC and OrBAC)

Not Named [349] 2008 LOTOS

specifica-

tions

supports mutation testing for LOTOS

specifications

Not Named [77] 2008 AspectJ supports mutant operators for the cre-

ation of pointcut mutants that vary the

strength of the corresponding point-cut

in terms of the number of joint points it

matches

Javalanche [205] 2009 Java implements bytecode-level mutant gener-

ation and supports method-level mutant

operators and mutant classification based

on mutants’ impact

JDama [350, 351] 2009 SQL/JDBC implements bytecode-level mutant gener-

ation and supports SQL-related opera-

tors and weak mutation

AjMutator

[352, 353]

2009 AspectJ supports mutant operators for AspectJ

Point-cut Descriptors (PCDs) [84] and

automated equivalent mutant detection

GAmera [354] 2009 WS-BPEL supports mutation testing for WS-BPEL

composition

Not Named [124] 2009 boolean

logic

supports mutant operators for possible

DNF logic faults

PASTE [322–324] 2009 TFSM supports passive testing of systems pre-

senting stochastic-time information using

mutant operators specific to Timed Fi-

nite State Machices (TFSM)

Not Named [355] 2009 Z supports mutant operators for Z specifi-

cations

Not Named [356] 2009 GCC-XML supports a subset of mutant operators

proposed by Ellims et al. [357]

Not Named [358] 2009 LUSTRE /

SCADE

supports mutant operators for LUS-

TRE/SCADE programs

60

Table 3: Mutation Testing Tools.

Name & Ref Year Application Description

Not Named [231] 2009 Java supports mutant operators that follow

the fault classification of Durães and

Madeira [359]

PIT [147] 2010 Java implements bytecode-level mutant gener-

ation and supports method-level mutant

operators

MutMut [208] 2010 Java supports concurrency-related mutant op-

erators

GenMutants [182] 2010 .Net supports method-level mutant operators

Judy [360] 2010 Java implements src-level mutant generation

and supports method-level & OO mutant

operators

webMuJava [88] 2010 HTML/JSP supports specific mutant operators for

web components written in HTML and

JSP languages

Bacterio [5] 2010 Java supports method-level mutant operators

for system-level testing using flexible

weak mutation

Not Named [141,

177, 181, 188, 190]

2010 supports method-level mutant operators

Major [361] 2011 Java supports method-level mutant operators

Paraµ [362] 2011 Java supports OO & concurrency-related mu-

tant operators and higher order mutation

ILMutator [8] 2011 C# implements CLI-level mutant generation

and supports method-level & OO mutant

operators

SMutant [86] 2011 Smalltalk supports traditional, method-level mu-

tant operators in a dynamically typed

language

MuBPEL [363] 2011 WS-BPEL N/A

jMuHLPSL [315] 2011 HLPSL supports mutant operators that intro-

duce leaks in security protocols

Not Named [364] 2011 SPADE mutates the flow pattern description

of input and output streams and the

SPADE code of components

Not Named [365] 2011 Aglets supports mutant operators specific to

Mobile Agent Systems that affect the

movement, communication, run method,

creation, event listeners and agent proxy

of an agent

Not Named [366] 2011 Java supports method-level mutant operators

based on the selective mutation approach

and higher order mutation

61

Table 3: Mutation Testing Tools.

Name & Ref Year Application Description

SMT-C [367] 2012 C supports the semantic-related and

method-level mutant operators

mutant (muRuby)

[11, 368]

2012 Ruby supports Ruby-specific mutant operators

Not Named [309] 2012 Obligation

Policies

supports mutant operators specific to

obligation policy enforcement

Not Named [149] 2012 supports traditional, method-level mu-

tant operators

CCMUTATOR [369] 2013 C/C++ supports concurrency-related mutant op-

erators, higher order mutation and

targets applications written using the

PThreads and C++11 concurrency con-

structs

Comutation [123] 2013 Java supports concurrency-related mutant op-

erators [370]

SchemaAnalyst

[371]

2013 SQL supports mutant operators related to re-

lational schema integrity constraints, ap-

plied to multiple database management

systems

XACMUT [372] 2013 XACML supports mutant operators targeting

XACML 2.0 security policies

Mutandis [10, 81] 2013 JavaScript supports JavaScript-specific mutant op-

erators

Not Named [373] 2013 Web service

composi-

tions

supports 2 types of mutant operators for

web service compositions: one that is in-

ternal to the service and one that models

inconsistencies across different services of

the composition

Not Named [313] 2013 Security

Policies

supports mutant operators specific to

delegation policies based on a formal

analysis of key delegation features

Not Named [272] 2013 Feature

Models

supports mutant operators for mutating

Feature Models

MutPy[374] 2014 Python implements traditional and python-

specific mutation operators

MuCheck [14] 2014 Haskell supports mutant operators targeting

functional constructs and higher order

mutation

HOMAJ [375] 2014 AspectJ/Java supports higher order mutation

Not Named [376] 2014 HTML/CSS supports mutant operators that seed pre-

sentation defects to web pages

62

Table 3: Mutation Testing Tools.

Name & Ref Year Application Description

Not Named [377] 2014 EFSM supports mutants that introduce Sin-

gle Transfer Faults (STFs) and Double

Transfer Faults (DTFs) to Extended Fi-

nite State Machices (EFSM) models

Not Named [378] 2014 Data flow

languages

supports 2 mutant operators that model

common mistakes when creating power

plant control programs

MutaLog [273] 2014 Logic Muta-

tion

supports mutant operators for mutating

logic expressions

REDECHECK [379] 2015 HTML/CSS supports mutant operators for layout de-

fects in responsive web sites

Not Named [380] 2015 spreadsheets supports mutant operators for spread-

sheets (spreadsheet mutation)

Not Named [381] 2015 FSM supports mutant operators for FSM spec-

ifications (based on the studies of Fabbri

et al. [382] and Petrenko et. al [383])

Not Named [384] 2015 Component-

level se-

quence

and state

diagrams

supports architecture- and design-level

mutant operators

Not Named [385] 2015 HTML /

JavaScript

supports mutant operators for the Model-

View-Controller frameworks of web ap-

plication development

Not Named

[103, 104]

2015 C supports memory-related mutant opera-

tors that model memory faults and con-

trol flow deviation as a mutant-killing

condition

Not Named [91] 2015 Android

apps

supports android-specific mutant opera-

tors, affecting intents, events, activity

lifecycle and XML files; and the method-

level mutant operators of muJava

MoMut [386] 2015 UML mod-

els

supports model-based mutation testing

for UML state charts, class diagrams and

instance diagrams

MuVM [143] 2016 C implements bitcode-level mutant genera-

tion and supports higher order mutation

Not Named [387] 2016 FBD supports mutant operators for FBD lan-

guage

Not Named [388] 2016 Simulink supports mutant operators that model

common Simulink fault patterns

Not Named [233] 2016 C++ supports mutant operators similar to the

ones of PIT for the Java language

63

Table 3: Mutation Testing Tools.

Name & Ref Year Application Description

Not Named [148] 2016 C implements LLVM-level mutant genera-

tion and supports method-level mutant

operators typically used in other tools,

e.g. Milu

Not Named [36, 389] 2016 C supports traditional, method-level mu-

tant operators

Not Named [242] 2016 supports traditional, method-level mu-

tant operators

Vibes [12, 390] 2016 Transition

Systems,

Statechart

Models

Implements featured model-based muta-

tion analysis and supports the Fabbri et

al. [382] operator set (both first order

and higher order)

µDroid [110] 2017 Android

apps

Implements energy-aware mutation oper-

ators derived from a specific energy de-

fect model

MDroid+[94] 2017 Android

apps

Implements mutation operators to

test Android applications based on

a specifically-designed Android fault

model derived from manual analysis of

various software artefacts

Not named[102] 2017 Source

Code

Extracts mutation operators from

changes made in the development his-

tory of projects in an attempt to produce

more “realistic” mutants

LittleDarwin[391] 2017 Java Supports method-level mutation oper-

ators, higher order mutation, mutant

sampling and disjoint/subsuming mutant

analysis

MuCPP[7] 2017 C++ Implements class-level, object-oriented

mutation operators for C++ programs

MutRex[111] 2017 Regular Ex-

pressions

Implements mutation operators based on

a specific fault model for regular expres-

sions

BacterioWeb[93] 2017 Android

apps

Implements mutation operators for An-

droid applications

Not Named[6] 2017 C Supports method-level mutant operators

Not Named [142] 2017 C Implements method-level mutation oper-

ators and the AccMut approach [142] to

reduce the cost of mutant execution

Not Named [19] 2017 Java Implements security-aware mutation op-

erators

64

9. Mutation-based Test Assessment: Use and Threats to Validity

Mutation testing is a popular technique for assessing the fault revealing po-

tential of test suites. Much work on empirical software engineering relies on the

use of artificial faults (mutants or manually seeded faults). Researchers employ

mutants to perform controlled experiments and assess the relative strengths of

test strategies. We call this practice as mutation-based test assessment.

A typical mutation-based test assessment scenario arises when we want to

determine whether one method, say Method-1, is more effective than another

one, say Method-2. For instance, suppose that the methods to compare are a

random test generation (Method-1) and a search-based test generation (Method-

2). In this case, our objective is to check whether one of them has a higher fault

revealing ability within a given amount of time. This is assessed by counting

the number of killed mutants, i.e., the technique that kills the highest number of

mutants is the winning one. Of course, in this particular case, the approaches

are stochastic and thus, the experiment needs to be repeated multiple times

and assessed by a statistical test, but in every case the technique that kills

statistically significant more mutants is the winning one.

This is an intuitive choice made by many empirical studies. However, is it

safe to conclude that Method-1 which kills more mutants than Method-2 is bet-

ter? Actually, it is hard to draw any such conclusion unless we carefully consider

and control a number of parameters. As we shall discuss in this section, there

are influential factors lying at the heart of mutation-based test assessment that

can hamper our ability to assess the fault-revealing potential of the techniques.

9.1. The use of Mutation in Empirical Studies

Using mutants as an effectiveness metric is a common practice, which previ-

ous research suggests that is adopted by more than a quarter of software testing

controlled experiments [36]. To demonstrate the importance and popularity of

this practice, we collected the papers that conduct empirical studies and use

mutation testing as an assessment method and we analyse them to identify:

65

R²	=	0.93652

0

10

20

30

40

50

60

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Pu

bl
ic

at
io

ns

Year

Figure 5: Number of empirical studies using mutation testing as an assessment method.

1) how often mutation testing is used as an assessment method; 2) the types

of assessment that are used; 3) the tools that are frequently used; and, 4) the

languages mutation is applied to.

The results of our analysis show that, in most cases, mutation was applied

to evaluate test techniques. Thus, mutants are used as proxies for real faults

and the mutation score is used as an indicator of real fault detection. Figure 5

presents the distribution of these studies in a yearly basis, including the overall

growth trend. It is clear from the figure that the application of mutation testing,

to experimental studies has been steadily increasing over the last 10 years.

It is important to note that many of the analysed studies are strictly not con-

cerned with mutation testing; their objectives do not include mutation-related

software engineering problems. Rather, mutation is a mechanism to validate

the study and not the subject of the study.

Overall, from the papers we surveyed, we identified 190 papers falling into

this category. Taking these findings into account, we can conclude that an

increasing number of scientific results rely on mutation.

Figure 6 presents the types of mutation-based test assessment. As can be

seen from the figure, mutation’s primary use in experimental studies is for

comparing test techniques, Comparison Basis. The second largest category

refers to Test Assessment and includes the test effectiveness of single techniques

66

0 10 20 30 40 50 60 70 80

Verification & Reliability

Debugging

Simulate Fault Characteristics

Fault Localisation

Test Oracle Problem

Test Prioritisation-(N)APFD

Test Assessment

Comparison Basis

Experimental Studies

Figure 6: Different types of mutation-based test assessment.

(without comparison), i.e., a test technique kills this number of mutants. The

other categories involve assessments for test prioritisation (Test Prioritisation-

(N)APFD)2, test oracle (Test Oracle Problem), localisation of faults (Fault Lo-

calisation), verification techniques (Verification & Reliability), debugging (De-

bugging) and other techniques.

Figure 7 depicts the mutation testing tools that were used in the experimen-

tal studies along with the number of studies using these tools. It is noted that

the figure includes only the most frequently-used tools3. As can be seen from

the figure, muJava [9] and Proteum [198] are the most frequently-used tools in

experimental studies (operate on Java and C, respectively). Other frequently

used Java mutation systems are PIT [147], Major [361] and Javalanche [205].

For C, the mutgen framework, used in the study of Andrews et al. [339] and

Milu [347] are some of the most frequently-used tools.

Figure 8 depicts the most frequently used languages in experimental studies.

It can be seen that mutation is mostly applied at the code/implementation level

with the respective test subjects implemented in Java and C. Other commonly-

2Test prioritisation techniques are typically assessed based on Average Percentage Faults

Detected (APFD) or Normalized APFD (NAPFD) [392]
3The figure does not include tools that were used in fewer than 4 publications.

67

0 10 20 30 40 50 60 70 80

Mutandis

SMT-C
Milu

mutgen
Proteum

EvoSuite
Jumble

Jester
Bacterio

Javalanche
PIT

Major
muJava

JS
C

Ja
va

Experimental Studies

Figure 7: Distribution of mutation testing tools in experimental studies.

used programming languages that are used in mutation experiments include

JavaScript and AspectJ. Finally, mutation has also been applied to other test

subjects such as security protocols [316], feature models [272] and regular ex-

pressions [111], which are distributed in the remaining categories of the figure.

Since mutation testing is increasingly used in experimental studies, poten-

tial issues with this practice can have serious implications on many research

studies. Although there is some empirical evidence suggesting that mutants

behave like real faults [41–43], these are only preliminary results, contradicted

by other studies [63, 393], and can be questioned if not suitable experimental

care is taken. Unfortunately, recent research has shown that mutation testing

is vulnerable to a number of confounding factors, such as those discussed in

this section, that researchers should be aware and cater for. The influence of

these factors can be severe and lead to questioning many findings of empirical

research. In the remainder of this section, we discuss the influential factors that

can bias the results of mutation-based test assessment and how we can mitigate

them.

68

Java

C

Model Notations

Other Prog. Languages

Other web/database apps

Security-oriented

JavaScript

AspectJ

Other

Figure 8: Experimental Studies: Targeted Artefacts.

9.2. Programming Language and Mutant Operators

One of the main factors influencing the effectiveness of mutation-based test

assessment is the programming language and the mutants that are used in the

experimental study [33, 393, 394]. Applying mutation testing requires defining

mutants based on the language’s constructs. Thus, it is likely that we are not

able to use the same mutants for different languages. Additionally, languages

following different typing disciplines and programming paradigms may also re-

quire different sets of mutant operators. Certain types of mutants might be

more effective in one paradigm than another. For instance, strongly typed lan-

guages may produce fewer mutants than weakly typed ones [152]. Similarly,

object oriented code tends to have simpler method functionality, but more com-

plex interactions among the methods (or classes) than imperative (procedural)

languages [395]. Therefore, mutants encoding intra-method faults [9] might not

be effective. Another example is the Java language runtime checking, which

may result in mutants that are easier to kill than those in C.

Namin and Kakarla [393] demonstrated that the correlation between mutants

and faults differs significantly across different programming languages. Kintis

et al. [152] and Baker and Habli [57] also report significant differences between

mutants of different languages, in particular between C - Java and C - Ada,

69

respectively. Similarly, there are significant difference across different types of

mutant operators, as reported by Namin and Kakarla [393]. Kurtz et al. [122]

showed that it is hard to select mutant operator sets that perform similarly well

on different programs. Therefore, when using mutation testing, it is important

to carefully select mutant operators that are appropriate to the programming

language studied.

9.3. Subsumed Mutant Threat

A major concern when using mutation testing is related to the ‘quality’ of

the employed mutants. In case the mutants we are using are trivial, then we

only measure the ability of test suites to cover some parts of the code, instead

of their ability to uncover faults at these parts. This problem is called the

“subsumed mutant threat” [36]. The problem becomes particularly important

when we have large number of redundant mutants. Unfortunately, when assess-

ing testing methods, one test technique might achieve a significant advantage

over another by killing redundant than non-redundant mutants. This would

be a case of inadequately scientific methodology leading to possible incorrect

scientific conclusions.

Recent research has shown that redundant mutants tend to skew the muta-

tion score measurement leading to serious threats to the validity of empirical

research. Andrews et al. [42] noted that the difficulty of revealing faults and

killing mutants may influence the experimental results. Thus, they pointed out

that it may be important to filter out the subset of trivial mutants in order to set

a representative relation between mutants and real faults. Visser [396] suggested

controlling for mutants’ reachability in order to identify mutants that are hard

to kill (hard to infect and propagate). Papadakis et al. [36] used the notion

of mutant subsumption, demonstrating empirically that there is a very good

chance (estimated to be more than 60% for arbitrary experiments) to compro-

mise scientific conclusions, due to this subsumed mutant thread [36]. Similarly,

Kurtz et al. [122] replicated previous studies on selective mutation and found

that they perform well when considering redundant mutants but perform poorly

70

when discarding them.

There are many studies advocating some form of ‘refined’ mutation score

for mitigating the problems caused by mutant redundancies. The first study

attempting to address this problem was that of Kintis et al. [39] who suggested

using disjoint mutants, i.e., a small representative subset of all mutants in order

to remove all the mutant redundancies from the set of mutants that is used for

test assessment. Consider that we have a set of N mutants, a representative

subset, say D, means that any test suite that kills this subset of mutants also

kills the N mutants. No redundancy between the mutants of D means that it is

not safe to remove any mutant from this set because in this case we fail to kill

all the N mutants.

Computing the true disjoint mutant set is impossible and thus, in the context

of controlled experiments, it is approximated by a test suite. This dynamic

approximation of the disjoint mutants can be computed using the Algorithm 1

[36, 167]. In this algorithm, the live and duplicate mutants are removed first

(from S, lines 2 and 3). Then, the mutant that is joint (subsuming) with the

highest number of live mutants is selected (lines 8 to 15). This is the mutant that

it is killed by test cases, which manage to collaterally kill the highest number

of other mutants. This mutant is then added to the disjoint set D (line 16) and

the joint mutants are removed from S (line 17). This process is repeated until

S is empty. Finally, the set of disjoint mutants, D, is returned.

Other studies of redundancy reduction include that of Kaminski et al. [76,

163] and Just et al. [164], which suggested removing some instances of the

relational and logical mutant operators, in order to improve the accuracy of the

mutation score. Ammann et al. [397] introduced the notion of minimal mutants

(smallest possible set of mutants)4 and Kurtz et al. [398] suggested selecting

the minimal sets of mutants using mutant subsumption graphs. In another

4The difference between the notions of minimal and disjoint mutants is that minimal mu-

tants is the smallest possible representative set of mutants while the disjoint ones is a set that

has no redundancies (perhaps not the minimal one) [33, 39].

71

study, Kurtz et al. [169] proposed using symbolic execution to approximate

subsuming mutants. Papadakis et al. [37] and Kintis et al. [152] suggested

using compiler optimisations to remove duplicated mutants (a special form of

redundant mutants) as a way to strengthen experimental rigour.

Overall, all these studies found that a large percentage of mutants are re-

dundant, indicating potential inflation problems for the studies that have not

take account of redundancy. Kintis et al. [39] reports that disjoint mutants

were approximately 9% of all the mutants, Ammann et al. [397] that minimal

mutants were 1.2% and Kurtz et al. [398] that they were 4%. These results

motivated the work of Papadakis et al. [36] that found that redundant mutants

can bias experimental results (approximately 60% for arbitrary experiments).

Therefore, researchers should identify and discard as many subsumed mutants

as possible before conducting any test assessment.

9.4. Test Suite Strength and Size

Failure to account for test suite strength can also adversely affect the scien-

tific findings of empirical studies. Chekam et al. [6] studied the relation between

faults and mutants, reports that low strength test suites are vulnerable to noise

effects “two studies with below- threshold coverage may yield different find-

ings, even when the experimenters follow identical experimental procedures.”.

Thus, their study concluded that test suite strength plays a central role when

conducting an experiment.

In particular, the study of Chekam et al. [6] showed that there is no practi-

cal difference between test criteria when relatively low-strength test suites are

used. By contradiction, higher-strength test suites yield larger differences for

test criteria. This is particularly important, because it indicates that empirical

studies need to improve the strength of their test suites before conducting the

experiment. Unfortunately, the mutation strength (over other test techniques)

is only observable using strong test suites. For instance, one might conclude

that a test technique or criterion is ineffective (compared to another), while in

fact it is not, simply because the superiority of this criterion is only observable

72

Input: A set S of mutants

Input: A set T of test cases

Input: A matrix M of size |T | × |S| such as Mij = 1 if testi kills mutantj

Output: The disjoint mutant set D from S

D = ∅

/* Remove live mutants */

S = S \ {m ∈ S | ∀i ∈ 1..|T |,Mij 6= 1}

/* Remove duplicate mutants */

S = S \ {m ∈ S | ∃m′ ∈ S | ∀i ∈ 1..|T |,Mij(m) = Mij(m′)}

while (|S| > 0) do

maxJoint= 0

jointMut = null

maxMutDisjoint = null

/* Select the most disjoint mutant */

foreach (m ∈ S) do

subm = {m′ ∈ S|∀i ∈ 1..|T |, (Mij(m) = 1)⇒ (Mij(m′) = 1)}

if (|subm| > maxJoint) then

maxJoint = |subm|

maxMutDisjoint = m

jointMut = subm

end

end

/* Add the most disjoint mutant to D */

D = D ∪ {maxMutDisjoint}

/* Remove the joint mutants from the remaining */

S = S \ jointMut

end

return D
Algorithm 1: Disjoint Mutants

using stronger test suites.

Recent studies have also identified that test suite size (number of test cases)

introduces another confounding factor that should be brought under experimen-

tal control [61]. Going a step further, Namin and Kakarla [393] observed that

by using different test suite sizes, an experimenter will observe different corre-

lations between faults and mutants. Since test suite size can be considered as

a proxy measure of test suite’s strength, this finding re-confirms the findings of

Chekam et al. [6], suggesting experiments should consider both test suite size

and test suite strength.

Another source of variation of empirical results is due to selection of can-

73

didate test cases. Consider the case where we want to compare two test tech-

niques. In this case, we need two test suites, one that simulates the result of

the first technique and one that simulates the result of the second technique.

This is usually performed by randomly sampling of test cases from a test pool

or by randomly generating test suites. Thus, two sets of test cases are to be

compared. A problem typically arrises in this scenario is that these two test

suites need to adequately simulate the results of the techniques. Therefore, the

two sets need to be free from redundant test cases [33, 167, 397], which might

otherwise inadvertently bias experimental results. An easy way to ameliorate

this problem is to select test cases that only increase coverage, while discarding

all the others [33, 42].

Another concern derives from the test case selection. As this may be stochas-

tic, it is likely that different selection of test cases (at random) may result in

different results; perhaps very different results if the experimenter happens to

be unlucky. To reduce this problem, researchers usually select multiple sets of

test cases and perform an inferential statistical analysis on the set of results

as a whole, [399, 400]. Delamaro and Offutt [401] investigated the influence of

using multiple sets of test cases (selected randomly) and found that “averaging

over multiple programs was effective in reducing the variance in the mutation

scores introduced by specific tests”. Therefore, they found that in case it is

too expensive to perform multiple repeated experiments a single test set (per

program) over a relatively large number of subject can be enough to provide

accurate average values.

Overall, researchers are advised to carefully select their test suites. Depend-

ing on the evaluation scenario it might be important to control for test suite

size and reduce redundant test cases.

9.5. Mutation Testing Tools

An often-ignored parameter that can also inadvertently bias experimental

findings relates to the choice of mutation testing tool. Mutation testing tools

implement different operators and have different implementation details, most

74

of which can influence the experimental outcome [394]. As already explained,

the choice of mutant operators affects significantly the results of an experiment.

However, different implementations of the same operators are likely to produce

different mutants and merely provide divergent results.

The studies of Kintis et al. [394, 402] and Gopinath et al. [403] demonstrate

that there is a large degree of disagreement between the judgements made by

the most popular Java mutation testing tools. The studies of Kintis et al.

[394] and Marki and Lindstrm [404] cross evaluate the Java mutation testing

tools and identify specific implementation weaknesses. This motivated the work

of Laurent et al. [33, 167], who compared Java mutation testing tools and

implemented one (called PITRV [147]) that is “at least as strong as the mutants

of all the other tools together”. Unfortunately, these studies are only concerned

with Java so there is no clear evidence concerning the C mutation testing tools

(or tools for other less widely-studied languages). Taken together, these results

suggest that the choice of a mutation tool need to be carefully introduced and

justified in best practice empirical studies.

9.6. Clean Program Assumption

Mutation-based test assessment can be viewed as a simulation that involves

two ‘roles’; the faults role (played by the mutants) and the ‘oracle’ role (played

by the original program). By aligning this simulation to the reality, we can say

that developers produce the faulty programs (simulated by the mutants) which

they test using a test oracle (simulated by the original program). Naturally,

testers apply their tools and techniques on the mutant program versions, check

whether they can find any unexpected behaviour, as defined by the test oracle

and report on any bugs found.

As intuitive as this seems, the practice of test assessment is performed differ-

ently. It is a common practice to apply tools and test techniques on the original

program and then check their fault-revealing power by executing tests on the

mutants. This practice may be less time-consuming but it makes an implicit as-

sumption that coverage measurements (or the application of test techniques) on

75

the original program are representative (or very similar) of those on the mutant

programs. This assumption is called the “Clean Program Assumption” (CPA)

[6]. The assumption can be problematic since test suites are assessed on the

mutant program versions instead of the original program from which (and for

which) they were applied.

Unfortunately, Chekam et al. [6] demonstrated that the CPA does not hold

and therefore cannot be relied upon. The study also showed that CPA has

the potential of changing the outcome of empirical studies if not brought under

experimental control. Overall, the Chekam et al. revisited previous empirical

questions concerning the usefulness of test adequacy criteria, using a robust

methodology that accounts for CPA and showed that mutation testing outper-

form statement and branch coverage for real fault revelation. These results

suggest that experiments dealing with the real fault revelation question, should

report on the CPA. If it is not possible to take CPA into account (potentially

due to execution cost), researchers are advised to report the amount of time

required by the performed study.

10. A Seven-Point Check List of Best Practices on using Mutation

Testing in Controlled Experiments

The fundamental experimental factors surveyed in Section 9 highlight the

many pitfalls that can compromise or even invalidate the scientific findings and

conclusions of a controlled experiment that uses mutation testing. It can be

a daunting challenge for experimenters and researchers to be sure they have

catered for all of the potential threats to validity that have accrued over four

decades of literature recording the development of mutation testing.

Therefore, to address this challenge, in this section, we provide a simple

seven-step checklist that aims to give experimenters the confidence that they

are compliant with best practice reporting of results. Ensuring that all seven

steps are met is relatively straightforward, because it simply involves explaining

and justifying choices that may affect conclusion validity. Nevertheless, experi-

76

menters who follow these seven steps help other researchers replicate and inves-

tigate, properly, the influence of such potentially confounding factors, thereby

contributing to the overall experimental robustness of their study.

1. Mutant Selection: Explain the choice of mutant operators. One of the

most important things that experimenters need to explain is the appropri-

ateness of the chosen mutant operators with respect to the programming

language used.

2. Mutation Testing Tool: Justify the choice of mutation testing tool. The

choice of mutation testing tool needs to be made carefully as at the current

state, mutation testing tools differ significantly [394, 402]. To support the

reproducibility and comprehension of the experimental results, researchers

should also clearly describe the exact version of the employed mutation

testing tool. If the used tool is not a publicly available, researchers should

list the exact transformation rules (mutant instances supported by each

operator [394, 402]) that are supported by the mutant operators selected.

Unfortunately, our survey found that more than a quarter of the empirical

studies does not report such details. The objective is to provide readers

with the low-level details that might vary from one study to another, so

that these can be accounted for in subsequent studies.

3. Mutant redundancy: Justify the steps taken to control mutant redun-

dancy. As we discussed in Section 9.3, mutant redundancy may have a

large impact on the validity of the assessment. Therefore, it is important

to explain how mutant redundancy is handled (perhaps in the threats to

validity section). Where possible, experimenters are advised to addition-

ally use techniques like TCE [152] to remove the duplicate mutants (in

case the interest is on the achieved score of a technique), or a dynamic

approximation of the disjoint mutation score [33, 36] (in case the interest

is on comparing test techniques). As already discussed, the approximation

of the disjoint mutants can be made by using Algorithm 1. In case these

techniques are expensive, researchers are advised to clarify this and con-

77

trast their findings on a (small) sample of cases where mutant redundancy

is controlled.

4. Test suite choice and size: Explain the choice of test suite and any

steps taken to account for the effects of test suite size, where appropriate.

Ideally, an experimenter would like to have large, diverse (i.e., mutants are

killed by multiple test cases) and high-strength (i.e., killing the majority

of the mutants) test suites. As such test suites are rare in most of the

open-source projects, researchers are advised to demonstrate and contrast

their findings with a (small) sample of subjects with strong and diverse

test suites (perhaps in addition to the chosen subjects). Alternatively,

experimenters may consider using automated tools to augment their test

suites. Overall, the objective is to allow other researchers to create a

similar test suite and/or to experiment with different choice of suite and

measure the effects of such choices.

5. Clean Program Assumption: Explain whet the study relies on the

CPA assumption. Ideally, where possible, the CPA should not be relied

upon; testing should be applied to the faulty programs (instead of the

clean, non-faulty ones). If this is not possible (potentially due to execution

cost or lack of resources), researchers are advised to note the reliance on

the CPA. Its effects may be small in some cases, justifying reliance on this

assumption. Either way, explicitly stating whether or not it is relied upon

will aid clarity and facilitate subsequent studies.

6. Multiple experimental repetitions: Clarify the number of experi-

mental repetitions. Ideally, when techniques make stochastic choices they

should be assessed by multiple experimental repetitions [400, 405]. In

practice, this might not be possible due to the required execution time or

other constraints. In this case, researchers have to choose between exper-

iments with many subjects but few repetitions or experiments with few

subjects and many repetitions; research suggests that it is preferable to

choose the second option [401]. Of course, this choice needs to be clarified

according to the specific context and goals of the study.

78

7. Presentation of the results: Clarify the granularity level of the em-

pirical results. Many empirical studies compute mutation scores over the

whole subject projects they are using (one score per project). Since, this

practice may not generalise to other granularity levels5 (such as unit level)

[167], researchers should report and explain the suitability of the chosen

granularity level at the given application context.

11. Conclusion and Future Directions

This chapter surveyed the recent trends and advances on Mutation Test-

ing. It offers a concise description of the mutation testing problems, methods,

applications and best practices for applying mutation testing (either as a test

technique or as an experimental methodology). Based on the data we collected,

we demonstrate that there is a growing interest in the subject. Interestingly,

even eight years after the first observation of this trend, by Jia and Harman

[27], the interest in the field is still increasing markedly.

The interest in the field is related to both fundamental research advances and

practical applications such as tool support and use in controlled experiments.

Our analysis shows that many tools and techniques have been introduced these

last 10 years. Many of these advances are already widely used by researchers.

At the same time major companies report that they experiment with mutation

in order to include in their practices. Hopefully, practitioners will soon use

mutation as well. All these observations may be seen as evidence supporting

the claim that mutation testing is reaching a state of maturity. In summary,

the research interest in mutation testing is divided into the following general

categories:

• Solutions to the problems of mutation analysis (fundamental advances of

mutation).

5Two methods can have a similar number of mutants killed on a project (overall number),

but quite different numbers, of mutants killed, on the individual units of the project.

79

• Mutation applied on new languages and artefacts. New mutation testing

tools also appear.

• Use of mutants as a means to support other software engineering activities

(e.g., fault localisation [17]).

• Use of mutation testing advances to support controlled experiments.

Recent work in the area focuses on building scalable and practical tools that

can push mutation testing towards industry and everyday use. The rest of this

section is dedicated to summarise the mutation testing open problems, barriers

and areas that we believe will attract attention in the near future.

11.1. Open Problems

One of the main open problems of mutation regards the detection of the

equivalent and redundant mutants. As we already discussed, there are many

techniques tackling this problem, either directly or indirectly, but unfortunately

the problem remains largely unresolved. Overall, the current research results

show that only few of the mutants produced (approximately 5%) is practically

useful. The rest is noise to the process with severe consequences [36].

Overall, mutation testing requires models that will guide the mutations to-

wards small semantic deviations that are in a sense disjoint, instead of blind

syntactical mutations. Unfortunately, there is no clear theory or consensus on

which types and instances of mutants we should use. Some initial results in-

dicate that almost all the mutant operators are of some value. The fact that

most of the existing tools are limited to a small number of mutant operators

is restrictive and to some extend arbitrary. Thus, in future, mutation may be

tailored towards few diverse and ‘useful’ mutants that bring value to the tester

(regardless of the operators used) [41].

The lack of clear theory on which mutants are of some value has restricted

most of the previous research on first order mutation. Higher order mutation

appears to have similar characteristics with the first order mutation as it pro-

duces subtle mutants. Of course the great majority of them are redundant, but

80

in theory a smart mutant selection process can identify them. Therefore, future

mutation may identify ways to generate and use those valuable higher order

mutants.

Another important aspect concerns the automatic mutation-based genera-

tion of test cases and test oracles. Although the last ten years there are major

advances on this area of research, the problem remains. Most of the automated

approaches fail to kill a substantial number of mutants and recent empirical

evaluations show that automatic test generation techniques fail to cover most

of the critical program areas. Therefore, there is little work on improving test

suites using mutants. Perhaps this is attributed to the lack of understanding

and modelling of the error propagation. Recent research has shown that failed

mutant propagation is the basic ingredient that makes mutation testing power-

ful [6]. Much work remains to be done until we can automatically produce high

quality test cases through high quality mutants.

Although researchers have identified mutation as a strong test criterion,

there is neither clear understanding nor much empirical evidence concerning

whether and when mutants are correlated with real faults. What types of faults

are not captured by simple or complex mutants? What percentage of future

regression errors can we capture with mutations? When is it appropriate to

stop the testing process? How should we integrate mutation testing into our

development process? Of course these questions need to be answered under the

light of specific development paradigms and application domains. These are

open questions, hopefully to be answered by future research.

Model-based mutation is one of the areas that has not been researched much

(compared to code-based mutation) over the last years. Despite this, we see a

growing interest towards this direction. There is a recent dedicated survey on

this subject [30] and multiple high profile publications over the last couple of

years. Additionally, very recently efficient and scalable tools have been built,

e.g., the VIBeS tool [12], which hopefully will push the research in this area

further.

Finally, there are many new areas of research that can benefit from the use

81

of mutants. The current trend is to explore the behaviour space of mutants,

instead of the original program, to identify several interesting aspects, either

functional or non-functional. Thus, the conformance of models, the generation

and improvement of models, the improvements of program security and debug-

ging activities are only a few examples where mutants have been shown to be

spectacularly useful and effective. Future research is heading towards this line

of research with many new and exciting applications of mutation analysis.

References

[1] J. Offutt, A mutation carol: Past, present and future, Information &

Software Technology 53 (10) (2011) 1098–1107. doi:10.1016/j.infsof.

2011.03.007.

URL https://doi.org/10.1016/j.infsof.2011.03.007

[2] P. E. Black, V. Okun, Y. Yesha, Mutation operators for specifications,

in: The Fifteenth IEEE International Conference on Automated Software

Engineering, ASE 2000, Grenoble, France, September 11-15, 2000, 2000,

p. 81. doi:10.1109/ASE.2000.873653.

URL https://doi.org/10.1109/ASE.2000.873653

[3] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens, P. Hey-

mans, Automata language equivalence vs. simulations for model-based

mutant equivalence: An empirical evaluation, in: 2017 IEEE Inter-

national Conference on Software Testing, Verification and Validation,

ICST 2017, Tokyo, Japan, March 13-17, 2017, 2017, pp. 424–429. doi:

10.1109/ICST.2017.46.

URL https://doi.org/10.1109/ICST.2017.46

[4] M. E. Delamaro, J. C. Maldonado, A. P. Mathur, Interface mutation: An

approach for integration testing, IEEE Trans. Software Eng. 27 (3) (2001)

228–247. doi:10.1109/32.910859.

URL https://doi.org/10.1109/32.910859

82

https://doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1109/ASE.2000.873653
http://dx.doi.org/10.1109/ASE.2000.873653
https://doi.org/10.1109/ASE.2000.873653
https://doi.org/10.1109/ICST.2017.46
https://doi.org/10.1109/ICST.2017.46
http://dx.doi.org/10.1109/ICST.2017.46
http://dx.doi.org/10.1109/ICST.2017.46
https://doi.org/10.1109/ICST.2017.46
https://doi.org/10.1109/32.910859
https://doi.org/10.1109/32.910859
http://dx.doi.org/10.1109/32.910859
https://doi.org/10.1109/32.910859

[5] P. R. Mateo, M. P. Usaola, J. Offutt, Mutation at system and functional

levels, in: Third International Conference on Software Testing, Verifica-

tion and Validation, ICST 2010, Paris, France, April 7-9, 2010, Workshops

Proceedings, 2010, pp. 110–119. doi:10.1109/ICSTW.2010.18.

URL https://doi.org/10.1109/ICSTW.2010.18

[6] T. T. Chekam, M. Papadakis, Y. L. Traon, M. Harman, An empiri-

cal study on mutation, statement and branch coverage fault revelation

that avoids the unreliable clean program assumption, in: Proceedings of

the 39th International Conference on Software Engineering, ICSE 2017,

Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 597–608.

URL http://dl.acm.org/citation.cfm?id=3097440

[7] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. Garćıa-

Domı́nguez, J. J. Domı́nguez-Jiménez, Assessment of class mutation oper-

ators for C++ with the mucpp mutation system, Information & Software

Technology 81 (2017) 169–184. doi:10.1016/j.infsof.2016.07.002.

URL https://doi.org/10.1016/j.infsof.2016.07.002

[8] A. Derezinska, K. Kowalski, Object-oriented mutation applied in common

intermediate language programs originated from c#, in: Fourth IEEE

International Conference on Software Testing, Verification and Validation,

ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Proceedings,

2011, pp. 342–350. doi:10.1109/ICSTW.2011.54.

URL https://doi.org/10.1109/ICSTW.2011.54

[9] Y. Ma, J. Offutt, Y. R. Kwon, Mujava: an automated class mutation

system, Softw. Test., Verif. Reliab. 15 (2) (2005) 97–133. doi:10.1002/

stvr.308.

URL https://doi.org/10.1002/stvr.308

[10] S. Mirshokraie, A. Mesbah, K. Pattabiraman, Efficient javascript muta-

tion testing, in: Sixth IEEE International Conference on Software Test-

ing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg,

83

https://doi.org/10.1109/ICSTW.2010.18
https://doi.org/10.1109/ICSTW.2010.18
http://dx.doi.org/10.1109/ICSTW.2010.18
https://doi.org/10.1109/ICSTW.2010.18
http://dl.acm.org/citation.cfm?id=3097440
http://dl.acm.org/citation.cfm?id=3097440
http://dl.acm.org/citation.cfm?id=3097440
http://dl.acm.org/citation.cfm?id=3097440
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1016/j.infsof.2016.07.002
http://dx.doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1109/ICSTW.2011.54
https://doi.org/10.1109/ICSTW.2011.54
http://dx.doi.org/10.1109/ICSTW.2011.54
https://doi.org/10.1109/ICSTW.2011.54
https://doi.org/10.1002/stvr.308
https://doi.org/10.1002/stvr.308
http://dx.doi.org/10.1002/stvr.308
http://dx.doi.org/10.1002/stvr.308
https://doi.org/10.1002/stvr.308
http://dx.doi.org/10.1109/ICST.2013.23
http://dx.doi.org/10.1109/ICST.2013.23

March 18-22, 2013, 2013, pp. 74–83. doi:10.1109/ICST.2013.23.

URL http://dx.doi.org/10.1109/ICST.2013.23

[11] N. Li, M. West, A. Escalona, V. H. S. Durelli, Mutation testing in practice

using ruby, in: Eighth IEEE International Conference on Software Test-

ing, Verification and Validation, ICST 2015 Workshops, Graz, Austria,

April 13-17, 2015, 2015, pp. 1–6. doi:10.1109/ICSTW.2015.7107453.

URL https://doi.org/10.1109/ICSTW.2015.7107453

[12] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P. Schobbens, P. Hey-

mans, Featured model-based mutation analysis, in: Proceedings of the

38th International Conference on Software Engineering, ICSE 2016,

Austin, TX, USA, May 14-22, 2016, 2016, pp. 655–666. doi:10.1145/

2884781.2884821.

URL http://doi.acm.org/10.1145/2884781.2884821

[13] Y. Ma, Y. R. Kwon, J. Offutt, Inter-class mutation operators for java,

in: 13th International Symposium on Software Reliability Engineering

(ISSRE 2002), 12-15 November 2002, Annapolis, MD, USA, 2002, pp.

352–366. doi:10.1109/ISSRE.2002.1173287.

URL https://doi.org/10.1109/ISSRE.2002.1173287

[14] D. Le, M. A. Alipour, R. Gopinath, A. Groce, Mucheck: an extensible tool

for mutation testing of haskell programs, in: International Symposium on

Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21

- 26, 2014, 2014, pp. 429–432. doi:10.1145/2610384.2628052.

URL http://doi.acm.org/10.1145/2610384.2628052

[15] E. Omar, S. Ghosh, An exploratory study of higher order mutation test-

ing in aspect-oriented programming, in: 23rd IEEE International Sympo-

sium on Software Reliability Engineering, ISSRE 2012, Dallas, TX, USA,

November 27-30, 2012, 2012, pp. 1–10. doi:10.1109/ISSRE.2012.6.

URL https://doi.org/10.1109/ISSRE.2012.6

84

http://dx.doi.org/10.1109/ICST.2013.23
http://dx.doi.org/10.1109/ICST.2013.23
https://doi.org/10.1109/ICSTW.2015.7107453
https://doi.org/10.1109/ICSTW.2015.7107453
http://dx.doi.org/10.1109/ICSTW.2015.7107453
https://doi.org/10.1109/ICSTW.2015.7107453
http://doi.acm.org/10.1145/2884781.2884821
http://dx.doi.org/10.1145/2884781.2884821
http://dx.doi.org/10.1145/2884781.2884821
http://doi.acm.org/10.1145/2884781.2884821
https://doi.org/10.1109/ISSRE.2002.1173287
http://dx.doi.org/10.1109/ISSRE.2002.1173287
https://doi.org/10.1109/ISSRE.2002.1173287
http://doi.acm.org/10.1145/2610384.2628052
http://doi.acm.org/10.1145/2610384.2628052
http://dx.doi.org/10.1145/2610384.2628052
http://doi.acm.org/10.1145/2610384.2628052
https://doi.org/10.1109/ISSRE.2012.6
https://doi.org/10.1109/ISSRE.2012.6
http://dx.doi.org/10.1109/ISSRE.2012.6
https://doi.org/10.1109/ISSRE.2012.6

[16] J. Tuya, M. J. S. Cabal, C. de la Riva, Mutating database queries, Infor-

mation & Software Technology 49 (4) (2007) 398–417. doi:10.1016/j.

infsof.2006.06.009.

URL https://doi.org/10.1016/j.infsof.2006.06.009

[17] M. Papadakis, Y. L. Traon, Metallaxis-fl: mutation-based fault localiza-

tion, Softw. Test., Verif. Reliab. 25 (5-7) (2015) 605–628. doi:10.1002/

stvr.1509.

URL http://dx.doi.org/10.1002/stvr.1509

[18] C. Le Goues, T. Nguyen, S. Forrest, W. Weimer, Genprog: A generic

method for automatic software repair, IEEE Trans. Software Eng. 38 (1)

(2012) 54–72. doi:10.1109/TSE.2011.104.

URL https://doi.org/10.1109/TSE.2011.104

[19] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, P. Heymans, Towards

security-aware mutation testing, in: 2017 IEEE International Confer-

ence on Software Testing, Verification and Validation Workshops, ICST

Workshops 2017, Tokyo, Japan, March 13-17, 2017, 2017, pp. 97–102.

doi:10.1109/ICSTW.2017.24.

URL http://dx.doi.org/10.1109/ICSTW.2017.24

[20] Y. Jia, F. Wu, M. Harman, J. Krinke, Genetic improvement using higher

order mutation, in: Genetic and Evolutionary Computation Conference,

GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Pro-

ceedings, 2015, pp. 803–804. doi:10.1145/2739482.2768417.

URL http://doi.acm.org/10.1145/2739482.2768417

[21] W. B. Langdon, B. Y. H. Lam, M. Modat, J. Petke, M. Harman, Genetic

improvement of GPU software, Genetic Programming and Evolvable Ma-

chines 18 (1) (2017) 5–44. doi:10.1007/s10710-016-9273-9.

URL https://doi.org/10.1007/s10710-016-9273-9

[22] R. G. Hamlet, Testing Programs with the Aid of a Compiler, IEEE Trans-

actions on Software Engineering 3 (4) (1977) 279–290.

85

https://doi.org/10.1016/j.infsof.2006.06.009
http://dx.doi.org/10.1016/j.infsof.2006.06.009
http://dx.doi.org/10.1016/j.infsof.2006.06.009
https://doi.org/10.1016/j.infsof.2006.06.009
http://dx.doi.org/10.1002/stvr.1509
http://dx.doi.org/10.1002/stvr.1509
http://dx.doi.org/10.1002/stvr.1509
http://dx.doi.org/10.1002/stvr.1509
http://dx.doi.org/10.1002/stvr.1509
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1109/ICSTW.2017.24
http://dx.doi.org/10.1109/ICSTW.2017.24
http://dx.doi.org/10.1109/ICSTW.2017.24
http://dx.doi.org/10.1109/ICSTW.2017.24
http://doi.acm.org/10.1145/2739482.2768417
http://doi.acm.org/10.1145/2739482.2768417
http://dx.doi.org/10.1145/2739482.2768417
http://doi.acm.org/10.1145/2739482.2768417
https://doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1007/s10710-016-9273-9

[23] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Program Mutation: A New

Approach to Program Testing, in: Infotech State of the Art Report, Soft-

ware Testing, Vol. 2, 1979, pp. 107–126.

[24] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection:

Help for the practicing programmer, IEEE Computer 11 (4) (1978) 34–41.

doi:10.1109/C-M.1978.218136.

URL https://doi.org/10.1109/C-M.1978.218136

[25] R. A. DeMillo, Test adequacy and program mutation, in: Proceedings of

the 11th International Conference on Software Engineering, Pittsburg, PA,

USA, May 15-18, 1989., 1989, pp. 355–356. doi:10.1145/74587.74634.

URL http://doi.acm.org/10.1145/74587.74634

[26] A. J. Offutt, R. Untch, Mutation 2000: Uniting the orthogonal, in: W. E.

Wong (Ed.), Mutation 2000, Kluwer, San Jose, California, USA, 2001, pp.

45–55.

[27] Y. Jia, M. Harman, An analysis and survey of the development of mutation

testing, IEEE Trans. Software Eng. 37 (5) (2011) 649–678. doi:10.1109/

TSE.2010.62.

URL http://dx.doi.org/10.1109/TSE.2010.62

[28] L. Madeyski, W. Orzeszyna, R. Torkar, M. Jozala, Overcoming the equiv-

alent mutant problem: A systematic literature review and a comparative

experiment of second order mutation, IEEE Trans. Software Eng. 40 (1)

(2014) 23–42. doi:10.1109/TSE.2013.44.

URL https://doi.org/10.1109/TSE.2013.44

[29] F. C. Souza, M. Papadakis, V. H. S. Durelli, M. E. Delamaro, Test data

generation techniques for mutation testing: A systematic mapping, in:

Proceedings of the 11th ESELAW, 2014, pp. 1–14.

[30] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, W. E. Wong, Model-

based mutation testing - approach and case studies, Sci. Comput. Pro-

86

https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
http://doi.acm.org/10.1145/74587.74634
http://dx.doi.org/10.1145/74587.74634
http://doi.acm.org/10.1145/74587.74634
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1016/j.scico.2016.01.003

gram. 120 (2016) 25–48. doi:10.1016/j.scico.2016.01.003.

URL https://doi.org/10.1016/j.scico.2016.01.003

[31] R. A. Silva, S. do Rocio Senger de Souza, P. S. L. de Souza, A systematic

review on search based mutation testing, Information & Software Tech-

nology 81 (2017) 19–35. doi:10.1016/j.infsof.2016.01.017.

URL https://doi.org/10.1016/j.infsof.2016.01.017

[32] P. Ammann, J. Offutt, Introduction to software testing, 2nd Edition,

Cambridge University Press, 2016.

[33] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, A. Ven-

tresque, Assessing and improving the mutation testing practice of pit, in:

2017 IEEE International Conference on Software Testing, Verification and

Validation (ICST), 2017, pp. 430–435. doi:10.1109/ICST.2017.47.

[34] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An experimental

determination of sufficient mutant operators, ACM Trans. Softw. Eng.

Methodol. 5 (2) (1996) 99–118. doi:10.1145/227607.227610.

URL http://doi.acm.org/10.1145/227607.227610

[35] J. B. Goodenough, S. L. Gerhart, Toward a theory of test data selection,

IEEE Trans. Software Eng. 1 (2) (1975) 156–173. doi:10.1109/TSE.

1975.6312836.

URL https://doi.org/10.1109/TSE.1975.6312836

[36] M. Papadakis, C. Henard, M. Harman, Y. Jia, Y. L. Traon, Threats to

the validity of mutation-based test assessment, in: Proceedings of the

25th International Symposium on Software Testing and Analysis, ISSTA

2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 354–365. doi:

10.1145/2931037.2931040.

URL http://doi.acm.org/10.1145/2931037.2931040

[37] M. Papadakis, Y. Jia, M. Harman, Y. L. Traon, Trivial compiler equiva-

lence: A large scale empirical study of a simple, fast and effective equiva-

87

http://dx.doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1016/j.infsof.2016.01.017
https://doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1016/j.infsof.2016.01.017
https://doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1109/ICST.2017.47
http://doi.acm.org/10.1145/227607.227610
http://doi.acm.org/10.1145/227607.227610
http://dx.doi.org/10.1145/227607.227610
http://doi.acm.org/10.1145/227607.227610
https://doi.org/10.1109/TSE.1975.6312836
http://dx.doi.org/10.1109/TSE.1975.6312836
http://dx.doi.org/10.1109/TSE.1975.6312836
https://doi.org/10.1109/TSE.1975.6312836
http://doi.acm.org/10.1145/2931037.2931040
http://doi.acm.org/10.1145/2931037.2931040
http://dx.doi.org/10.1145/2931037.2931040
http://dx.doi.org/10.1145/2931037.2931040
http://doi.acm.org/10.1145/2931037.2931040
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103

lent mutant detection technique, in: 37th IEEE/ACM International Con-

ference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,

2015, Volume 1, 2015, pp. 936–946. doi:10.1109/ICSE.2015.103.

URL http://dx.doi.org/10.1109/ICSE.2015.103

[38] Y. Jia, M. Harman, Higher order mutation testing, Information & Soft-

ware Technology 51 (10) (2009) 1379–1393. doi:10.1016/j.infsof.

2009.04.016.

URL https://doi.org/10.1016/j.infsof.2009.04.016

[39] M. Kintis, M. Papadakis, N. Malevris, Evaluating mutation testing al-

ternatives: A collateral experiment, in: 17th Asia Pacific Software En-

gineering Conference, APSEC 2010, Sydney, Australia, November 30 -

December 3, 2010, 2010, pp. 300–309. doi:10.1109/APSEC.2010.42.

URL https://doi.org/10.1109/APSEC.2010.42

[40] Karl popper, https://en.wikiquote.org/wiki/Karl_Popper, accessed:

2017-06-10.

[41] M. Papadakis, D. Shin, S. Yoo, D. Bae, Are mutation scores correlated

with real fault detection? a large scale empirical study on the relationship

between mutants and real faults, in: Proceedings of the 40th International

Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,

May 27 - 3 June, 2018, 2018.

[42] J. H. Andrews, L. C. Briand, Y. Labiche, A. S. Namin, Using mutation

analysis for assessing and comparing testing coverage criteria, IEEE Trans.

Software Eng. 32 (8) (2006) 608–624. doi:10.1109/TSE.2006.83.

URL https://doi.org/10.1109/TSE.2006.83

[43] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, G. Fraser, Are

mutants a valid substitute for real faults in software testing?, in: Proceed-

ings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22,

88

http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
http://dx.doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/j.infsof.2009.04.016
http://dx.doi.org/10.1016/j.infsof.2009.04.016
http://dx.doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1109/APSEC.2010.42
http://dx.doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1109/APSEC.2010.42
https://en.wikiquote.org/wiki/Karl_Popper
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
http://doi.acm.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929

2014, 2014, pp. 654–665. doi:10.1145/2635868.2635929.

URL http://doi.acm.org/10.1145/2635868.2635929

[44] P. G. Frankl, S. N. Weiss, An experimental comparison of the effectiveness

of the all-uses and all-edges adequacy criteria, in: Symposium on Test-

ing, Analysis, and Verification, 1991, pp. 154–164. doi:10.1145/120807.

120821.

URL http://doi.acm.org/10.1145/120807.120821

[45] P. G. Frankl, S. N. Weiss, An experimental comparison of the effectiveness

of branch testing and data flow testing, IEEE Trans. Software Eng. 19 (8)

(1993) 774–787. doi:10.1109/32.238581.

URL http://dx.doi.org/10.1109/32.238581

[46] A. J. Offutt, J. Pan, K. Tewary, T. Zhang, An experimental evalua-

tion of data flow and mutation testing, Softw., Pract. Exper. 26 (2)

(1996) 165–176. doi:10.1002/(SICI)1097-024X(199602)26:2<165::

AID-SPE5>3.0.CO;2-K.

URL http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:

2<165::AID-SPE5>3.0.CO;2-K

[47] P. G. Frankl, S. N. Weiss, C. Hu, All-uses vs mutation testing: An ex-

perimental comparison of effectiveness, Journal of Systems and Software

38 (3) (1997) 235–253. doi:10.1016/S0164-1212(96)00154-9.

URL http://dx.doi.org/10.1016/S0164-1212(96)00154-9

[48] P. G. Frankl, O. Iakounenko, Further empirical studies of test effec-

tiveness, in: SIGSOFT ’98, Proceedings of the ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, Lake

Buena Vista, Florida, USA, November 3-5, 1998, 1998, pp. 153–162.

doi:10.1145/288195.288298.

URL http://doi.acm.org/10.1145/288195.288298

[49] L. C. Briand, D. Pfahl, Using simulation for assessing the real impact of

test-coverage on defect-coverage, IEEE Trans. Reliability 49 (1) (2000)

89

http://dx.doi.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/120807.120821
http://doi.acm.org/10.1145/120807.120821
http://dx.doi.org/10.1145/120807.120821
http://dx.doi.org/10.1145/120807.120821
http://doi.acm.org/10.1145/120807.120821
http://dx.doi.org/10.1109/32.238581
http://dx.doi.org/10.1109/32.238581
http://dx.doi.org/10.1109/32.238581
http://dx.doi.org/10.1109/32.238581
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
http://dx.doi.org/10.1016/S0164-1212(96)00154-9
http://dx.doi.org/10.1016/S0164-1212(96)00154-9
http://dx.doi.org/10.1016/S0164-1212(96)00154-9
http://dx.doi.org/10.1016/S0164-1212(96)00154-9
http://doi.acm.org/10.1145/288195.288298
http://doi.acm.org/10.1145/288195.288298
http://dx.doi.org/10.1145/288195.288298
http://doi.acm.org/10.1145/288195.288298
http://dx.doi.org/10.1109/24.855537
http://dx.doi.org/10.1109/24.855537

60–70. doi:10.1109/24.855537.

URL http://dx.doi.org/10.1109/24.855537

[50] M. Chen, M. R. Lyu, W. E. Wong, Effect of code coverage on software

reliability measurement, IEEE Trans. Reliability 50 (2) (2001) 165–170.

doi:10.1109/24.963124.

URL http://dx.doi.org/10.1109/24.963124

[51] A. S. Namin, J. H. Andrews, The influence of size and coverage on test

suite effectiveness, in: Proceedings of the Eighteenth International Sym-

posium on Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA,

July 19-23, 2009, 2009, pp. 57–68. doi:10.1145/1572272.1572280.

URL http://doi.acm.org/10.1145/1572272.1572280

[52] N. Li, U. Praphamontripong, J. Offutt, An experimental comparison of

four unit test criteria: Mutation, edge-pair, all-uses and prime path cov-

erage, in: Second International Conference on Software Testing Verifica-

tion and Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009,

Workshops Proceedings, 2009, pp. 220–229. doi:10.1109/ICSTW.2009.

30.

URL http://dx.doi.org/10.1109/ICSTW.2009.30

[53] M. Papadakis, N. Malevris, An empirical evaluation of the first and second

order mutation testing strategies, in: Third International Conference on

Software Testing, Verification and Validation, ICST 2010, Paris, France,

April 7-9, 2010, Workshops Proceedings, 2010, pp. 90–99. doi:10.1109/

ICSTW.2010.50.

URL http://dx.doi.org/10.1109/ICSTW.2010.50

[54] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, B. Meyer, On the number

and nature of faults found by random testing, Softw. Test., Verif. Reliab.

21 (1) (2011) 3–28. doi:10.1002/stvr.415.

URL http://dx.doi.org/10.1002/stvr.415

90

http://dx.doi.org/10.1109/24.855537
http://dx.doi.org/10.1109/24.855537
http://dx.doi.org/10.1109/24.963124
http://dx.doi.org/10.1109/24.963124
http://dx.doi.org/10.1109/24.963124
http://dx.doi.org/10.1109/24.963124
http://doi.acm.org/10.1145/1572272.1572280
http://doi.acm.org/10.1145/1572272.1572280
http://dx.doi.org/10.1145/1572272.1572280
http://doi.acm.org/10.1145/1572272.1572280
http://dx.doi.org/10.1109/ICSTW.2009.30
http://dx.doi.org/10.1109/ICSTW.2009.30
http://dx.doi.org/10.1109/ICSTW.2009.30
http://dx.doi.org/10.1109/ICSTW.2009.30
http://dx.doi.org/10.1109/ICSTW.2009.30
http://dx.doi.org/10.1109/ICSTW.2009.30
http://dx.doi.org/10.1109/ICSTW.2010.50
http://dx.doi.org/10.1109/ICSTW.2010.50
http://dx.doi.org/10.1109/ICSTW.2010.50
http://dx.doi.org/10.1109/ICSTW.2010.50
http://dx.doi.org/10.1109/ICSTW.2010.50
http://dx.doi.org/10.1002/stvr.415
http://dx.doi.org/10.1002/stvr.415
http://dx.doi.org/10.1002/stvr.415
http://dx.doi.org/10.1002/stvr.415

[55] S. Kakarla, S. Momotaz, A. S. Namin, An evaluation of mutation and

data-flow testing: A meta-analysis, in: Fourth IEEE International Confer-

ence on Software Testing, Verification and Validation, ICST 2012, Berlin,

Germany, 21-25 March, 2011, Workshop Proceedings, 2011, pp. 366–375.

doi:10.1109/ICSTW.2011.51.

URL http://dx.doi.org/10.1109/ICSTW.2011.51

[56] Y. Wei, B. Meyer, M. Oriol, Is Branch Coverage a Good Measure of Test-

ing Effectiveness?, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,

pp. 194–212. doi:10.1007/978-3-642-25231-0_5.

[57] R. Baker, I. Habli, An empirical evaluation of mutation testing for im-

proving the test quality of safety-critical software, IEEE Trans. Software

Eng. 39 (6) (2013) 787–805. doi:10.1109/TSE.2012.56.

URL https://doi.org/10.1109/TSE.2012.56

[58] M. M. Hassan, J. H. Andrews, Comparing multi-point stride coverage

and dataflow coverage, in: 35th International Conference on Software

Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, 2013,

pp. 172–181. doi:10.1109/ICSE.2013.6606563.

URL http://dx.doi.org/10.1109/ICSE.2013.6606563

[59] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, D. Marinov,

Comparing non-adequate test suites using coverage criteria, in: Interna-

tional Symposium on Software Testing and Analysis, ISSTA ’13, Lugano,

Switzerland, July 15-20, 2013, 2013, pp. 302–313. doi:10.1145/2483760.

2483769.

URL http://doi.acm.org/10.1145/2483760.2483769

[60] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, D. Marinov,

Guidelines for coverage-based comparisons of non-adequate test suites,

ACM Trans. Softw. Eng. Methodol. 24 (4) (2015) 22:1–22:33. doi:10.

1145/2660767.

URL http://doi.acm.org/10.1145/2660767

91

http://dx.doi.org/10.1109/ICSTW.2011.51
http://dx.doi.org/10.1109/ICSTW.2011.51
http://dx.doi.org/10.1109/ICSTW.2011.51
http://dx.doi.org/10.1109/ICSTW.2011.51
http://dx.doi.org/10.1007/978-3-642-25231-0_5
https://doi.org/10.1109/TSE.2012.56
https://doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1109/TSE.2012.56
https://doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1109/ICSE.2013.6606563
http://dx.doi.org/10.1109/ICSE.2013.6606563
http://dx.doi.org/10.1109/ICSE.2013.6606563
http://dx.doi.org/10.1109/ICSE.2013.6606563
http://doi.acm.org/10.1145/2483760.2483769
http://dx.doi.org/10.1145/2483760.2483769
http://dx.doi.org/10.1145/2483760.2483769
http://doi.acm.org/10.1145/2483760.2483769
http://doi.acm.org/10.1145/2660767
http://dx.doi.org/10.1145/2660767
http://dx.doi.org/10.1145/2660767
http://doi.acm.org/10.1145/2660767

[61] L. Inozemtseva, R. Holmes, Coverage is not strongly correlated with test

suite effectiveness, in: 36th International Conference on Software Engi-

neering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, 2014, pp.

435–445. doi:10.1145/2568225.2568271.

URL http://doi.acm.org/10.1145/2568225.2568271

[62] R. Gopinath, C. Jensen, A. Groce, Code coverage for suite evaluation by

developers, in: 36th International Conference on Software Engineering,

ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, 2014, pp. 72–82.

doi:10.1145/2568225.2568278.

URL http://doi.acm.org/10.1145/2568225.2568278

[63] I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, C. Jensen, Can testedness

be effectively measured?, in: Proceedings of the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE

2016, Seattle, WA, USA, November 13-18, 2016, 2016, pp. 547–558. doi:

10.1145/2950290.2950324.

URL http://doi.acm.org/10.1145/2950290.2950324

[64] R. Ramler, T. Wetzlmaier, C. Klammer, An empirical study on the ap-

plication of mutation testing for a safety-critical industrial software sys-

tem, in: Proceedings of the Symposium on Applied Computing, SAC

2017, Marrakech, Morocco, April 3-7, 2017, 2017, pp. 1401–1408. doi:

10.1145/3019612.3019830.

URL http://doi.acm.org/10.1145/3019612.3019830

[65] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, A. Kiss, L. Ouarbya,

Formalizing executable dynamic and forward slicing, in: 4th International

Workshop on Source Code Analysis and Manipulation (SCAM 04), Los

Alamitos, California, USA, 2004, pp. 43–52.

[66] K. H. Brodersen, F. Gallusser, J. Koehler, N. Remy, S. L. Scott, Infer-

ring causal impact using bayesian structural time-series models, Annals

of Applied Statistics 9 (2015) 247–274.

92

http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
http://dx.doi.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568278
http://doi.acm.org/10.1145/2568225.2568278
http://dx.doi.org/10.1145/2568225.2568278
http://doi.acm.org/10.1145/2568225.2568278
http://doi.acm.org/10.1145/2950290.2950324
http://doi.acm.org/10.1145/2950290.2950324
http://dx.doi.org/10.1145/2950290.2950324
http://dx.doi.org/10.1145/2950290.2950324
http://doi.acm.org/10.1145/2950290.2950324
http://doi.acm.org/10.1145/3019612.3019830
http://doi.acm.org/10.1145/3019612.3019830
http://doi.acm.org/10.1145/3019612.3019830
http://dx.doi.org/10.1145/3019612.3019830
http://dx.doi.org/10.1145/3019612.3019830
http://doi.acm.org/10.1145/3019612.3019830

[67] L. J. Morell, A theory of fault-based testing, IEEE Trans. Software Eng.

16 (8) (1990) 844–857. doi:10.1109/32.57623.

URL http://dx.doi.org/10.1109/32.57623

[68] A. J. Offutt, Investigations of the software testing coupling effect, ACM

Trans. Softw. Eng. Methodol. 1 (1) (1992) 5–20. doi:10.1145/125489.

125473.

URL http://doi.acm.org/10.1145/125489.125473

[69] J. Voas, G. McGraw, Software Fault Injection: Inoculating Programs

Against Errors, John Wiley & Sons, 1997.

[70] R. Gopinath, C. Jensen, A. Groce, Mutations: How close are they to real

faults?, in: 25th IEEE International Symposium on Software Reliability

Engineering, ISSRE 2014, Naples, Italy, November 3-6, 2014, 2014, pp.

189–200. doi:10.1109/ISSRE.2014.40.

URL https://doi.org/10.1109/ISSRE.2014.40

[71] R. Gopinath, C. Jensen, A. Groce, The theory of composite faults, in:

2017 IEEE International Conference on Software Testing, Verification and

Validation (ICST), 2017, pp. 47–57. doi:10.1109/ICST.2017.12.

[72] W. B. Langdon, M. Harman, Y. Jia, Efficient multi-objective higher or-

der mutation testing with genetic programming, Journal of Systems and

Software 83 (12) (2010) 2416–2430. doi:10.1016/j.jss.2010.07.027.

URL https://doi.org/10.1016/j.jss.2010.07.027

[73] R. Geist, A. J. Offutt, F. C. H. Jr., Estimation and enhancement of real-

time software reliability through mutation analysis, IEEE Trans. Com-

puters 41 (5) (1992) 550–558. doi:10.1109/12.142681.

URL https://doi.org/10.1109/12.142681

[74] I. Ahmed, C. Jensen, A. Groce, P. E. McKenney, Applying mutation

analysis on kernel test suites: An experience report, in: 2017 IEEE In-

93

http://dx.doi.org/10.1109/32.57623
http://dx.doi.org/10.1109/32.57623
http://dx.doi.org/10.1109/32.57623
http://doi.acm.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473
http://dx.doi.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/ISSRE.2014.40
http://dx.doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/ISSRE.2014.40
http://dx.doi.org/10.1109/ICST.2017.12
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1016/j.jss.2010.07.027
http://dx.doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1109/12.142681
https://doi.org/10.1109/12.142681
http://dx.doi.org/10.1109/12.142681
https://doi.org/10.1109/12.142681

ternational Conference on Software Testing, Verification and Validation

Workshops (ICSTW), 2017, pp. 110–115. doi:10.1109/ICSTW.2017.26.

[75] A. J. Offutt, S. D. Lee, An empirical evaluation of weak mutation, IEEE

Trans. Software Eng. 20 (5) (1994) 337–344. doi:10.1109/32.286422.

URL http://dx.doi.org/10.1109/32.286422

[76] G. Kaminski, P. Ammann, J. Offutt, Improving logic-based testing, Jour-

nal of Systems and Software 86 (8) (2013) 2002–2012. doi:10.1016/j.

jss.2012.08.024.

URL http://dx.doi.org/10.1016/j.jss.2012.08.024

[77] P. Anbalagan, T. Xie, Automated generation of pointcut mutants for test-

ing pointcuts in aspectj programs, in: 19th International Symposium on

Software Reliability Engineering (ISSRE 2008), 11-14 November 2008,

Seattle/Redmond, WA, USA, 2008, pp. 239–248. doi:10.1109/ISSRE.

2008.58.

URL https://doi.org/10.1109/ISSRE.2008.58

[78] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, Mutation operators

for ws-bpel 2.0, in: 21th International Conference on Software & Systems

Engineering and their Applications, 2008.

[79] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, Quantitative eval-

uation of mutation operators for WS-BPEL compositions, in: Third In-

ternational Conference on Software Testing, Verification and Validation,

ICST 2010, Paris, France, April 7-9, 2010, Workshops Proceedings, 2010,

pp. 142–150. doi:10.1109/ICSTW.2010.36.

URL https://doi.org/10.1109/ICSTW.2010.36

[80] J. Boubeta-Puig, I. Medina-Bulo, A. Garćıa-Domı́nguez, Analogies and

differences between mutation operators for WS-BPEL 2.0 and other lan-

guages, in: Fourth IEEE International Conference on Software Testing,

Verification and Validation, ICST 2012, Berlin, Germany, 21-25 March,

94

http://dx.doi.org/10.1109/ICSTW.2017.26
http://dx.doi.org/10.1109/32.286422
http://dx.doi.org/10.1109/32.286422
http://dx.doi.org/10.1109/32.286422
http://dx.doi.org/10.1016/j.jss.2012.08.024
http://dx.doi.org/10.1016/j.jss.2012.08.024
http://dx.doi.org/10.1016/j.jss.2012.08.024
http://dx.doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1109/ISSRE.2008.58
https://doi.org/10.1109/ISSRE.2008.58
http://dx.doi.org/10.1109/ISSRE.2008.58
http://dx.doi.org/10.1109/ISSRE.2008.58
https://doi.org/10.1109/ISSRE.2008.58
https://doi.org/10.1109/ICSTW.2010.36
https://doi.org/10.1109/ICSTW.2010.36
http://dx.doi.org/10.1109/ICSTW.2010.36
https://doi.org/10.1109/ICSTW.2010.36
http://dx.doi.org/10.1109/ICSTW.2011.52
http://dx.doi.org/10.1109/ICSTW.2011.52
http://dx.doi.org/10.1109/ICSTW.2011.52

2011, Workshop Proceedings, 2011, pp. 398–407. doi:10.1109/ICSTW.

2011.52.

URL http://dx.doi.org/10.1109/ICSTW.2011.52

[81] S. Mirshokraie, A. Mesbah, K. Pattabiraman, Guided mutation testing

for javascript web applications, IEEE Trans. Software Eng. 41 (5) (2015)

429–444. doi:10.1109/TSE.2014.2371458.

URL https://doi.org/10.1109/TSE.2014.2371458

[82] P. Delgado-Prez, S. Segura, I. Medina-Bulo, Assessment of c++ object-

oriented mutation operators: A selective mutation approach, Software

Testing, Verification and Reliability 27 (4-5) (2017) n/a–n/a. doi:10.

1002/stvr.1630.

URL http://dx.doi.org/10.1002/stvr.1630

[83] J. Hu, N. Li, J. Offutt, An analysis of OO mutation operators, in: Fourth

IEEE International Conference on Software Testing, Verification and Val-

idation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Pro-

ceedings, 2011, pp. 334–341. doi:10.1109/ICSTW.2011.47.

URL http://dx.doi.org/10.1109/ICSTW.2011.47

[84] F. C. Ferrari, J. C. Maldonado, A. Rashid, Mutation testing for aspect-

oriented programs, in: First International Conference on Software Testing,

Verification, and Validation, ICST 2008, Lillehammer, Norway, April 9-

11, 2008, 2008, pp. 52–61. doi:10.1109/ICST.2008.37.

URL http://dx.doi.org/10.1109/ICST.2008.37

[85] L. Bottaci, Type sensitive application of mutation operators for dynam-

ically typed programs, in: Third International Conference on Software

Testing, Verification and Validation, ICST 2010, Paris, France, April 7-9,

2010, Workshops Proceedings, 2010, pp. 126–131. doi:10.1109/ICSTW.

2010.56.

URL https://doi.org/10.1109/ICSTW.2010.56

95

http://dx.doi.org/10.1109/ICSTW.2011.52
http://dx.doi.org/10.1109/ICSTW.2011.52
http://dx.doi.org/10.1109/ICSTW.2011.52
https://doi.org/10.1109/TSE.2014.2371458
https://doi.org/10.1109/TSE.2014.2371458
http://dx.doi.org/10.1109/TSE.2014.2371458
https://doi.org/10.1109/TSE.2014.2371458
http://dx.doi.org/10.1002/stvr.1630
http://dx.doi.org/10.1002/stvr.1630
http://dx.doi.org/10.1002/stvr.1630
http://dx.doi.org/10.1002/stvr.1630
http://dx.doi.org/10.1002/stvr.1630
http://dx.doi.org/10.1109/ICSTW.2011.47
http://dx.doi.org/10.1109/ICSTW.2011.47
http://dx.doi.org/10.1109/ICSTW.2011.47
http://dx.doi.org/10.1109/ICST.2008.37
http://dx.doi.org/10.1109/ICST.2008.37
http://dx.doi.org/10.1109/ICST.2008.37
http://dx.doi.org/10.1109/ICST.2008.37
https://doi.org/10.1109/ICSTW.2010.56
https://doi.org/10.1109/ICSTW.2010.56
http://dx.doi.org/10.1109/ICSTW.2010.56
http://dx.doi.org/10.1109/ICSTW.2010.56
https://doi.org/10.1109/ICSTW.2010.56

[86] M. Gligoric, S. Badame, R. Johnson, Smutant: a tool for type-sensitive

mutation testing in a dynamic language, in: SIGSOFT/FSE’11 19th

ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE-19) and ESEC’11: 13th European Software Engineering Conference

(ESEC-13), Szeged, Hungary, September 5-9, 2011, 2011, pp. 424–427.

doi:10.1145/2025113.2025181.

URL http://doi.acm.org/10.1145/2025113.2025181

[87] A. D. B. Alberto, A. Cavalcanti, M. Gaudel, A. Simão, Formal mutation

testing for circus, Information & Software Technology 81 (2017) 131–153.

doi:10.1016/j.infsof.2016.04.003.

URL https://doi.org/10.1016/j.infsof.2016.04.003

[88] U. Praphamontripong, J. Offutt, Applying mutation testing to web appli-

cations, in: Third International Conference on Software Testing, Verifica-

tion and Validation, ICST 2010, Paris, France, April 7-9, 2010, Workshops

Proceedings, 2010, pp. 132–141. doi:10.1109/ICSTW.2010.38.

URL http://dx.doi.org/10.1109/ICSTW.2010.38

[89] U. Praphamontripong, J. Offutt, L. Deng, J. Gu, An experimental eval-

uation of web mutation operators, in: Ninth IEEE International Confer-

ence on Software Testing, Verification and Validation Workshops, ICST

Workshops 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp. 102–111.

doi:10.1109/ICSTW.2016.17.

URL http://dx.doi.org/10.1109/ICSTW.2016.17

[90] U. Praphamontripong, J. Offutt, Finding redundancy in web mutation

operators, in: 2017 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), 2017, pp. 134–142. doi:

10.1109/ICSTW.2017.30.

[91] L. Deng, N. Mirzaei, P. Ammann, J. Offutt, Towards mutation analysis of

android apps, in: Eighth IEEE International Conference on Software Test-

ing, Verification and Validation, ICST 2015 Workshops, Graz, Austria,

96

http://doi.acm.org/10.1145/2025113.2025181
http://doi.acm.org/10.1145/2025113.2025181
http://dx.doi.org/10.1145/2025113.2025181
http://doi.acm.org/10.1145/2025113.2025181
https://doi.org/10.1016/j.infsof.2016.04.003
https://doi.org/10.1016/j.infsof.2016.04.003
http://dx.doi.org/10.1016/j.infsof.2016.04.003
https://doi.org/10.1016/j.infsof.2016.04.003
http://dx.doi.org/10.1109/ICSTW.2010.38
http://dx.doi.org/10.1109/ICSTW.2010.38
http://dx.doi.org/10.1109/ICSTW.2010.38
http://dx.doi.org/10.1109/ICSTW.2010.38
http://dx.doi.org/10.1109/ICSTW.2016.17
http://dx.doi.org/10.1109/ICSTW.2016.17
http://dx.doi.org/10.1109/ICSTW.2016.17
http://dx.doi.org/10.1109/ICSTW.2016.17
http://dx.doi.org/10.1109/ICSTW.2017.30
http://dx.doi.org/10.1109/ICSTW.2017.30
http://dx.doi.org/10.1109/ICSTW.2015.7107450
http://dx.doi.org/10.1109/ICSTW.2015.7107450

April 13-17, 2015, 2015, pp. 1–10. doi:10.1109/ICSTW.2015.7107450.

URL http://dx.doi.org/10.1109/ICSTW.2015.7107450

[92] L. Deng, J. Offutt, P. Ammann, N. Mirzaei, Mutation operators for test-

ing android apps, Information & Software Technology 81 (2017) 154–168.

doi:10.1016/j.infsof.2016.04.012.

URL https://doi.org/10.1016/j.infsof.2016.04.012

[93] M. P. Usaola, G. Rojas, I. Rodrguez, S. Hernndez, An architecture for

the development of mutation operators, in: 2017 IEEE International

Conference on Software Testing, Verification and Validation Workshops

(ICSTW), 2017, pp. 143–148. doi:10.1109/ICSTW.2017.31.

[94] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,

C. Vendome, C. Bernal-Cárdenas, D. Poshyvanyk, Enabling mutation

testing for android apps, in: Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2017, ACM, New

York, NY, USA, 2017, pp. 233–244. doi:10.1145/3106237.3106275.

URL http://doi.acm.org/10.1145/3106237.3106275

[95] R. A. P. Oliveira, E. Alégroth, Z. Gao, A. M. Memon, Definition and eval-

uation of mutation operators for gui-level mutation analysis, in: Eighth

IEEE International Conference on Software Testing, Verification and Val-

idation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, 2015,

pp. 1–10. doi:10.1109/ICSTW.2015.7107457.

URL https://doi.org/10.1109/ICSTW.2015.7107457

[96] V. Lelli, A. Blouin, B. Baudry, Classifying and qualifying GUI defects,

CoRR abs/1703.09567.

URL http://arxiv.org/abs/1703.09567

[97] R. Abraham, M. Erwig, Mutation operators for spreadsheets, IEEE Trans.

Software Eng. 35 (1) (2009) 94–108. doi:10.1109/TSE.2008.73.

URL https://doi.org/10.1109/TSE.2008.73

97

http://dx.doi.org/10.1109/ICSTW.2015.7107450
http://dx.doi.org/10.1109/ICSTW.2015.7107450
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1016/j.infsof.2016.04.012
http://dx.doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1016/j.infsof.2016.04.012
http://dx.doi.org/10.1109/ICSTW.2017.31
http://doi.acm.org/10.1145/3106237.3106275
http://doi.acm.org/10.1145/3106237.3106275
http://dx.doi.org/10.1145/3106237.3106275
http://doi.acm.org/10.1145/3106237.3106275
https://doi.org/10.1109/ICSTW.2015.7107457
https://doi.org/10.1109/ICSTW.2015.7107457
http://dx.doi.org/10.1109/ICSTW.2015.7107457
https://doi.org/10.1109/ICSTW.2015.7107457
http://arxiv.org/abs/1703.09567
http://arxiv.org/abs/1703.09567
https://doi.org/10.1109/TSE.2008.73
http://dx.doi.org/10.1109/TSE.2008.73
https://doi.org/10.1109/TSE.2008.73

[98] H. Dan, R. M. Hierons, Semantic mutation analysis of floating-point com-

parison, in: Fifth IEEE International Conference on Software Testing,

Verification and Validation, ICST 2012, Montreal, QC, Canada, April 17-

21, 2012, 2012, pp. 290–299. doi:10.1109/ICST.2012.109.

URL http://dx.doi.org/10.1109/ICST.2012.109

[99] V. Jagannath, M. Gligoric, S. Lauterburg, D. Marinov, G. Agha, Mu-

tation operators for actor systems, in: Third International Conference

on Software Testing, Verification and Validation, ICST 2010, Paris,

France, April 7-9, 2010, Workshops Proceedings, 2010, pp. 157–162.

doi:10.1109/ICSTW.2010.6.

URL http://dx.doi.org/10.1109/ICSTW.2010.6

[100] Y. Maezawa, K. Nishiura, H. Washizaki, S. Honiden, Validating ajax ap-

plications using a delay-based mutation technique, in: ACM/IEEE In-

ternational Conference on Automated Software Engineering, ASE ’14,

Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 491–502. doi:

10.1145/2642937.2642996.

URL http://doi.acm.org/10.1145/2642937.2642996

[101] T. Xie, N. Tillmann, J. de Halleux, W. Schulte, Mutation analysis of

parameterized unit tests, in: Second International Conference on Software

Testing Verification and Validation, ICST 2009, Denver, Colorado, USA,

April 1-4, 2009, Workshops Proceedings, 2009, pp. 177–181. doi:10.

1109/ICSTW.2009.43.

URL http://dx.doi.org/10.1109/ICSTW.2009.43

[102] D. B. Brown, M. Vaughn, B. Liblit, T. Reps, The care and feeding of

wild-caught mutants, in: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2017, ACM, New York,

NY, USA, 2017, pp. 511–522. doi:10.1145/3106237.3106280.

URL http://doi.acm.org/10.1145/3106237.3106280

[103] J. Nanavati, F. Wu, M. Harman, Y. Jia, J. Krinke, Mutation testing

98

http://dx.doi.org/10.1109/ICST.2012.109
http://dx.doi.org/10.1109/ICST.2012.109
http://dx.doi.org/10.1109/ICST.2012.109
http://dx.doi.org/10.1109/ICST.2012.109
http://dx.doi.org/10.1109/ICSTW.2010.6
http://dx.doi.org/10.1109/ICSTW.2010.6
http://dx.doi.org/10.1109/ICSTW.2010.6
http://dx.doi.org/10.1109/ICSTW.2010.6
http://doi.acm.org/10.1145/2642937.2642996
http://doi.acm.org/10.1145/2642937.2642996
http://dx.doi.org/10.1145/2642937.2642996
http://dx.doi.org/10.1145/2642937.2642996
http://doi.acm.org/10.1145/2642937.2642996
http://dx.doi.org/10.1109/ICSTW.2009.43
http://dx.doi.org/10.1109/ICSTW.2009.43
http://dx.doi.org/10.1109/ICSTW.2009.43
http://dx.doi.org/10.1109/ICSTW.2009.43
http://dx.doi.org/10.1109/ICSTW.2009.43
http://doi.acm.org/10.1145/3106237.3106280
http://doi.acm.org/10.1145/3106237.3106280
http://dx.doi.org/10.1145/3106237.3106280
http://doi.acm.org/10.1145/3106237.3106280
https://doi.org/10.1109/ICSTW.2015.7107449
https://doi.org/10.1109/ICSTW.2015.7107449

of memory-related operators, in: Eighth IEEE International Conference

on Software Testing, Verification and Validation, ICST 2015 Workshops,

Graz, Austria, April 13-17, 2015, 2015, pp. 1–10. doi:10.1109/ICSTW.

2015.7107449.

URL https://doi.org/10.1109/ICSTW.2015.7107449

[104] F. Wu, J. Nanavati, M. Harman, Y. Jia, J. Krinke, Memory mutation

testing, Information & Software Technology 81 (2017) 97–111. doi:10.

1016/j.infsof.2016.03.002.

URL https://doi.org/10.1016/j.infsof.2016.03.002

[105] B. J. Garvin, M. B. Cohen, Feature interaction faults revisited: An ex-

ploratory study, in: IEEE 22nd International Symposium on Software

Reliability Engineering, ISSRE 2011, Hiroshima, Japan, November 29 -

December 2, 2011, 2011, pp. 90–99. doi:10.1109/ISSRE.2011.25.

URL https://doi.org/10.1109/ISSRE.2011.25

[106] M. Al-Hajjaji, F. Benduhn, T. Thüm, T. Leich, G. Saake, Mutation op-

erators for preprocessor-based variability, in: Proceedings of the Tenth

International Workshop on Variability Modelling of Software-intensive

Systems, Salvador, Brazil, January 27 - 29, 2016, 2016, pp. 81–88.

doi:10.1145/2866614.2866626.

URL http://doi.acm.org/10.1145/2866614.2866626

[107] M. E. Delamaro, J. Offutt, P. Ammann, Designing deletion mutation op-

erators, in: Seventh IEEE International Conference on Software Testing,

Verification and Validation, ICST 2014, March 31 2014-April 4, 2014,

Cleveland, Ohio, USA, 2014, pp. 11–20. doi:10.1109/ICST.2014.12.

URL http://dx.doi.org/10.1109/ICST.2014.12

[108] F. Belli, M. Beyazit, T. Takagi, Z. Furukawa, Mutation testing of ”go-

back” functions based on pushdown automata, in: Fourth IEEE Inter-

national Conference on Software Testing, Verification and Validation,

ICST 2011, Berlin, Germany, March 21-25, 2011, 2011, pp. 249–258.

99

https://doi.org/10.1109/ICSTW.2015.7107449
https://doi.org/10.1109/ICSTW.2015.7107449
http://dx.doi.org/10.1109/ICSTW.2015.7107449
http://dx.doi.org/10.1109/ICSTW.2015.7107449
https://doi.org/10.1109/ICSTW.2015.7107449
https://doi.org/10.1016/j.infsof.2016.03.002
https://doi.org/10.1016/j.infsof.2016.03.002
http://dx.doi.org/10.1016/j.infsof.2016.03.002
http://dx.doi.org/10.1016/j.infsof.2016.03.002
https://doi.org/10.1016/j.infsof.2016.03.002
https://doi.org/10.1109/ISSRE.2011.25
https://doi.org/10.1109/ISSRE.2011.25
http://dx.doi.org/10.1109/ISSRE.2011.25
https://doi.org/10.1109/ISSRE.2011.25
http://doi.acm.org/10.1145/2866614.2866626
http://doi.acm.org/10.1145/2866614.2866626
http://dx.doi.org/10.1145/2866614.2866626
http://doi.acm.org/10.1145/2866614.2866626
http://dx.doi.org/10.1109/ICST.2014.12
http://dx.doi.org/10.1109/ICST.2014.12
http://dx.doi.org/10.1109/ICST.2014.12
http://dx.doi.org/10.1109/ICST.2014.12
https://doi.org/10.1109/ICST.2011.30
https://doi.org/10.1109/ICST.2011.30

doi:10.1109/ICST.2011.30.

URL https://doi.org/10.1109/ICST.2011.30

[109] R. Gopinath, E. Walkingshaw, How good are your types? using mutation

analysis to evaluate the effectiveness of type annotations, in: 2017 IEEE

International Conference on Software Testing, Verification and Validation

Workshops (ICSTW), 2017, pp. 122–127. doi:10.1109/ICSTW.2017.28.

[110] R. Jabbarvand, S. Malek, mudroid: An energy-aware mutation testing

framework for android, in: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2017, ACM, New York,

NY, USA, 2017, pp. 208–219. doi:10.1145/3106237.3106244.

URL http://doi.acm.org/10.1145/3106237.3106244

[111] P. Arcaini, A. Gargantini, E. Riccobene, Mutrex: A mutation-based gen-

erator of fault detecting strings for regular expressions, in: 2017 IEEE

International Conference on Software Testing, Verification and Validation

Workshops (ICSTW), 2017, pp. 87–96. doi:10.1109/ICSTW.2017.23.

[112] L. Zhang, S. Hou, J. Hu, T. Xie, H. Mei, Is operator-based mutant selec-

tion superior to random mutant selection?, in: Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume

1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 435–444.

doi:10.1145/1806799.1806863.

URL http://doi.acm.org/10.1145/1806799.1806863

[113] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, A. Groce, How hard

does mutation analysis have to be, anyway?, in: 26th IEEE Inter-

national Symposium on Software Reliability Engineering, ISSRE 2015,

Gaithersbury, MD, USA, November 2-5, 2015, 2015, pp. 216–227. doi:

10.1109/ISSRE.2015.7381815.

URL https://doi.org/10.1109/ISSRE.2015.7381815

[114] A. S. Namin, J. H. Andrews, D. J. Murdoch, Sufficient mutation opera-

tors for measuring test effectiveness, in: 30th International Conference on

100

http://dx.doi.org/10.1109/ICST.2011.30
https://doi.org/10.1109/ICST.2011.30
http://dx.doi.org/10.1109/ICSTW.2017.28
http://doi.acm.org/10.1145/3106237.3106244
http://doi.acm.org/10.1145/3106237.3106244
http://dx.doi.org/10.1145/3106237.3106244
http://doi.acm.org/10.1145/3106237.3106244
http://dx.doi.org/10.1109/ICSTW.2017.23
http://doi.acm.org/10.1145/1806799.1806863
http://doi.acm.org/10.1145/1806799.1806863
http://dx.doi.org/10.1145/1806799.1806863
http://doi.acm.org/10.1145/1806799.1806863
https://doi.org/10.1109/ISSRE.2015.7381815
https://doi.org/10.1109/ISSRE.2015.7381815
http://dx.doi.org/10.1109/ISSRE.2015.7381815
http://dx.doi.org/10.1109/ISSRE.2015.7381815
https://doi.org/10.1109/ISSRE.2015.7381815
http://doi.acm.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1368088.1368136

Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,

2008, pp. 351–360. doi:10.1145/1368088.1368136.

URL http://doi.acm.org/10.1145/1368088.1368136

[115] M. E. Delamaro, L. Deng, V. H. S. Durelli, N. Li, J. Offutt, Experimental

evaluation of SDL and one-op mutation for C, in: Seventh IEEE Interna-

tional Conference on Software Testing, Verification and Validation, ICST

2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 203–

212. doi:10.1109/ICST.2014.33.

URL http://dx.doi.org/10.1109/ICST.2014.33

[116] V. H. S. Durelli, N. M. D. Souza, M. E. Delamaro, Are deletion mutants

easier to identify manually?, in: 2017 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 2017,

pp. 149–158. doi:10.1109/ICSTW.2017.32.

[117] X. Yao, M. Harman, Y. Jia, A study of equivalent and stubborn muta-

tion operators using human analysis of equivalence, in: 36th International

Conference on Software Engineering, ICSE ’14, Hyderabad, India - May

31 - June 07, 2014, 2014, pp. 919–930. doi:10.1145/2568225.2568265.

URL http://doi.acm.org/10.1145/2568225.2568265

[118] J. Zhang, M. Zhu, D. Hao, L. Zhang, An empirical study on the scalability

of selective mutation testing, in: 25th IEEE International Symposium on

Software Reliability Engineering, ISSRE 2014, Naples, Italy, November

3-6, 2014, 2014, pp. 277–287. doi:10.1109/ISSRE.2014.27.

URL https://doi.org/10.1109/ISSRE.2014.27

[119] J. Zhang, Scalability studies on selective mutation testing, in: 37th

IEEE/ACM International Conference on Software Engineering, ICSE

2015, Florence, Italy, May 16-24, 2015, Volume 2, 2015, pp. 851–854.

doi:10.1109/ICSE.2015.276.

URL https://doi.org/10.1109/ICSE.2015.276

101

http://dx.doi.org/10.1145/1368088.1368136
http://doi.acm.org/10.1145/1368088.1368136
http://dx.doi.org/10.1109/ICST.2014.33
http://dx.doi.org/10.1109/ICST.2014.33
http://dx.doi.org/10.1109/ICST.2014.33
http://dx.doi.org/10.1109/ICST.2014.33
http://dx.doi.org/10.1109/ICSTW.2017.32
http://doi.acm.org/10.1145/2568225.2568265
http://doi.acm.org/10.1145/2568225.2568265
http://dx.doi.org/10.1145/2568225.2568265
http://doi.acm.org/10.1145/2568225.2568265
https://doi.org/10.1109/ISSRE.2014.27
https://doi.org/10.1109/ISSRE.2014.27
http://dx.doi.org/10.1109/ISSRE.2014.27
https://doi.org/10.1109/ISSRE.2014.27
https://doi.org/10.1109/ICSE.2015.276
http://dx.doi.org/10.1109/ICSE.2015.276
https://doi.org/10.1109/ICSE.2015.276

[120] L. Zhang, M. Gligoric, D. Marinov, S. Khurshid, Operator-based and

random mutant selection: Better together, in: 2013 28th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2013,

Silicon Valley, CA, USA, November 11-15, 2013, 2013, pp. 92–102. doi:

10.1109/ASE.2013.6693070.

URL http://dx.doi.org/10.1109/ASE.2013.6693070

[121] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, A. Groce, On the limits

of mutation reduction strategies, in: Proceedings of the 38th International

Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May

14-22, 2016, 2016, pp. 511–522. doi:10.1145/2884781.2884787.

URL http://doi.acm.org/10.1145/2884781.2884787

[122] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, N. Gökçe,

Analyzing the validity of selective mutation with dominator mutants,

in: Proceedings of the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,

November 13-18, 2016, 2016, pp. 571–582. doi:10.1145/2950290.

2950322.

URL http://doi.acm.org/10.1145/2950290.2950322

[123] M. Gligoric, L. Zhang, C. Pereira, G. Pokam, Selective mutation testing

for concurrent code, in: International Symposium on Software Testing

and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, 2013,

pp. 224–234. doi:10.1145/2483760.2483773.

URL http://doi.acm.org/10.1145/2483760.2483773

[124] G. K. Kaminski, P. Ammann, Using a fault hierarchy to improve the

efficiency of DNF logic mutation testing, in: Second International Confer-

ence on Software Testing Verification and Validation, ICST 2009, Denver,

Colorado, USA, April 1-4, 2009, 2009, pp. 386–395. doi:10.1109/ICST.

2009.13.

URL http://dx.doi.org/10.1109/ICST.2009.13

102

http://dx.doi.org/10.1109/ASE.2013.6693070
http://dx.doi.org/10.1109/ASE.2013.6693070
http://dx.doi.org/10.1109/ASE.2013.6693070
http://dx.doi.org/10.1109/ASE.2013.6693070
http://dx.doi.org/10.1109/ASE.2013.6693070
http://doi.acm.org/10.1145/2884781.2884787
http://doi.acm.org/10.1145/2884781.2884787
http://dx.doi.org/10.1145/2884781.2884787
http://doi.acm.org/10.1145/2884781.2884787
http://doi.acm.org/10.1145/2950290.2950322
http://dx.doi.org/10.1145/2950290.2950322
http://dx.doi.org/10.1145/2950290.2950322
http://doi.acm.org/10.1145/2950290.2950322
http://doi.acm.org/10.1145/2483760.2483773
http://doi.acm.org/10.1145/2483760.2483773
http://dx.doi.org/10.1145/2483760.2483773
http://doi.acm.org/10.1145/2483760.2483773
http://dx.doi.org/10.1109/ICST.2009.13
http://dx.doi.org/10.1109/ICST.2009.13
http://dx.doi.org/10.1109/ICST.2009.13
http://dx.doi.org/10.1109/ICST.2009.13
http://dx.doi.org/10.1109/ICST.2009.13

[125] M. Papadakis, Y. L. Traon, Effective fault localization via mutation analy-

sis: a selective mutation approach, in: Symposium on Applied Computing,

SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, 2014, pp.

1293–1300. doi:10.1145/2554850.2554978.

URL http://doi.acm.org/10.1145/2554850.2554978

[126] M. Polo, M. Piattini, I. G. R. de Guzmán, Decreasing the cost of muta-

tion testing with second-order mutants, Softw. Test., Verif. Reliab. 19 (2)

(2009) 111–131. doi:10.1002/stvr.392.

URL http://dx.doi.org/10.1002/stvr.392

[127] M. Papadakis, N. Malevris, M. Kintis, Mutation testing strategies - A

collateral approach, in: ICSOFT 2010 - Proceedings of the Fifth Interna-

tional Conference on Software and Data Technologies, Volume 2, Athens,

Greece, July 22-24, 2010, 2010, pp. 325–328.

[128] P. R. Mateo, M. P. Usaola, J. L. F. Alemán, Validating second-order

mutation at system level, IEEE Trans. Software Eng. 39 (4) (2013) 570–

587. doi:10.1109/TSE.2012.39.

URL https://doi.org/10.1109/TSE.2012.39

[129] A. Parsai, A. Murgia, S. Demeyer, A model to estimate first-order mu-

tation coverage from higher-order mutation coverage, in: 2016 IEEE

International Conference on Software Quality, Reliability and Security,

QRS 2016, Vienna, Austria, August 1-3, 2016, 2016, pp. 365–373. doi:

10.1109/QRS.2016.48.

URL https://doi.org/10.1109/QRS.2016.48

[130] R. Just, B. Kurtz, P. Ammann, Inferring mutant utility from program

context, in: Proceedings of the 26th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis, Santa Barbara, CA, USA, July

10 - 14, 2017, 2017, pp. 284–294. doi:10.1145/3092703.3092732.

URL http://doi.acm.org/10.1145/3092703.3092732

103

http://doi.acm.org/10.1145/2554850.2554978
http://doi.acm.org/10.1145/2554850.2554978
http://dx.doi.org/10.1145/2554850.2554978
http://doi.acm.org/10.1145/2554850.2554978
http://dx.doi.org/10.1002/stvr.392
http://dx.doi.org/10.1002/stvr.392
http://dx.doi.org/10.1002/stvr.392
http://dx.doi.org/10.1002/stvr.392
https://doi.org/10.1109/TSE.2012.39
https://doi.org/10.1109/TSE.2012.39
http://dx.doi.org/10.1109/TSE.2012.39
https://doi.org/10.1109/TSE.2012.39
https://doi.org/10.1109/QRS.2016.48
https://doi.org/10.1109/QRS.2016.48
http://dx.doi.org/10.1109/QRS.2016.48
http://dx.doi.org/10.1109/QRS.2016.48
https://doi.org/10.1109/QRS.2016.48
http://doi.acm.org/10.1145/3092703.3092732
http://doi.acm.org/10.1145/3092703.3092732
http://dx.doi.org/10.1145/3092703.3092732
http://doi.acm.org/10.1145/3092703.3092732

[131] C. Sun, F. Xue, H. Liu, X. Zhang, A path-aware approach to mutant re-

duction in mutation testing, Information & Software Technology 81 (2017)

65–81. doi:10.1016/j.infsof.2016.02.006.

URL https://doi.org/10.1016/j.infsof.2016.02.006

[132] D. Gong, G. Zhang, X. Yao, F. Meng, Mutant reduction based on dom-

inance relation for weak mutation testing, Information & Software Tech-

nology 81 (2017) 82–96. doi:10.1016/j.infsof.2016.05.001.

URL https://doi.org/10.1016/j.infsof.2016.05.001

[133] C. Iida, S. Takada, Reducing mutants with mutant killable precondition,

in: 2017 IEEE International Conference on Software Testing, Verification

and Validation Workshops (ICSTW), 2017, pp. 128–133. doi:10.1109/

ICSTW.2017.29.

[134] M. Patrick, M. Oriol, J. A. Clark, MESSI: mutant evaluation by static

semantic interpretation, in: Fifth IEEE International Conference on Soft-

ware Testing, Verification and Validation, ICST 2012, Montreal, QC,

Canada, April 17-21, 2012, 2012, pp. 711–719. doi:10.1109/ICST.2012.

161.

URL https://doi.org/10.1109/ICST.2012.161

[135] M. Patrick, R. Alexander, M. Oriol, J. A. Clark, Probability-based seman-

tic interpretation of mutants, in: Seventh IEEE International Conference

on Software Testing, Verification and Validation, ICST 2014 Workshops

Proceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, 2014, pp.

186–195. doi:10.1109/ICSTW.2014.18.

URL https://doi.org/10.1109/ICSTW.2014.18

[136] M. Sridharan, A. S. Namin, Prioritizing mutation operators based on im-

portance sampling, in: IEEE 21st International Symposium on Software

Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4 November

2010, 2010, pp. 378–387. doi:10.1109/ISSRE.2010.16.

URL http://dx.doi.org/10.1109/ISSRE.2010.16

104

https://doi.org/10.1016/j.infsof.2016.02.006
https://doi.org/10.1016/j.infsof.2016.02.006
http://dx.doi.org/10.1016/j.infsof.2016.02.006
https://doi.org/10.1016/j.infsof.2016.02.006
https://doi.org/10.1016/j.infsof.2016.05.001
https://doi.org/10.1016/j.infsof.2016.05.001
http://dx.doi.org/10.1016/j.infsof.2016.05.001
https://doi.org/10.1016/j.infsof.2016.05.001
http://dx.doi.org/10.1109/ICSTW.2017.29
http://dx.doi.org/10.1109/ICSTW.2017.29
https://doi.org/10.1109/ICST.2012.161
https://doi.org/10.1109/ICST.2012.161
http://dx.doi.org/10.1109/ICST.2012.161
http://dx.doi.org/10.1109/ICST.2012.161
https://doi.org/10.1109/ICST.2012.161
https://doi.org/10.1109/ICSTW.2014.18
https://doi.org/10.1109/ICSTW.2014.18
http://dx.doi.org/10.1109/ICSTW.2014.18
https://doi.org/10.1109/ICSTW.2014.18
http://dx.doi.org/10.1109/ISSRE.2010.16
http://dx.doi.org/10.1109/ISSRE.2010.16
http://dx.doi.org/10.1109/ISSRE.2010.16
http://dx.doi.org/10.1109/ISSRE.2010.16

[137] A. S. Namin, X. Xue, O. Rosas, P. Sharma, Muranker: a mutant ranking

tool, Softw. Test., Verif. Reliab. 25 (5-7) (2015) 572–604. doi:10.1002/

stvr.1542.

URL http://dx.doi.org/10.1002/stvr.1542

[138] J. Nam, D. Schuler, A. Zeller, Calibrated mutation testing, in: Fourth

IEEE International Conference on Software Testing, Verification and Val-

idation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Pro-

ceedings, 2011, pp. 376–381. doi:10.1109/ICSTW.2011.57.

URL https://doi.org/10.1109/ICSTW.2011.57

[139] L. Inozemtseva, H. Hemmati, R. Holmes, Using fault history to improve

mutation reduction, in: Joint Meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Fed-

eration, August 18-26, 2013, 2013, pp. 639–642. doi:10.1145/2491411.

2494586.

URL http://doi.acm.org/10.1145/2491411.2494586

[140] R. H. Untch, A. J. Offutt, M. J. Harrold, Mutation analysis using mu-

tant schemata, in: Proceedings of the 1993 International Symposium on

Software Testing and Analysis, ISSTA 1993, Cambridge, MA, USA, June

28-30, 1993, 1993, pp. 139–148. doi:10.1145/154183.154265.

URL http://doi.acm.org/10.1145/154183.154265

[141] M. Papadakis, N. Malevris, Automatic mutation test case generation via

dynamic symbolic execution, in: IEEE 21st International Symposium on

Software Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4

November 2010, 2010, pp. 121–130. doi:10.1109/ISSRE.2010.38.

URL http://dx.doi.org/10.1109/ISSRE.2010.38

[142] B. Wang, Y. Xiong, Y. Shi, L. Zhang, D. Hao, Faster mutation analy-

sis via equivalence modulo states (2017) 295–306doi:10.1145/3092703.

105

http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1002/stvr.1542
https://doi.org/10.1109/ICSTW.2011.57
http://dx.doi.org/10.1109/ICSTW.2011.57
https://doi.org/10.1109/ICSTW.2011.57
http://doi.acm.org/10.1145/2491411.2494586
http://doi.acm.org/10.1145/2491411.2494586
http://dx.doi.org/10.1145/2491411.2494586
http://dx.doi.org/10.1145/2491411.2494586
http://doi.acm.org/10.1145/2491411.2494586
http://doi.acm.org/10.1145/154183.154265
http://doi.acm.org/10.1145/154183.154265
http://dx.doi.org/10.1145/154183.154265
http://doi.acm.org/10.1145/154183.154265
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://doi.acm.org/10.1145/3092703.3092714
http://doi.acm.org/10.1145/3092703.3092714
http://dx.doi.org/10.1145/3092703.3092714
http://dx.doi.org/10.1145/3092703.3092714

3092714.

URL http://doi.acm.org/10.1145/3092703.3092714

[143] S. Tokumoto, H. Yoshida, K. Sakamoto, S. Honiden, Muvm: Higher order

mutation analysis virtual machine for C, in: 2016 IEEE International

Conference on Software Testing, Verification and Validation, ICST 2016,

Chicago, IL, USA, April 11-15, 2016, 2016, pp. 320–329. doi:10.1109/

ICST.2016.18.

URL http://dx.doi.org/10.1109/ICST.2016.18

[144] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. L.

Traon, J. Marion, Sound and quasi-complete detection of infeasible test

requirements, in: 8th IEEE International Conference on Software Testing,

Verification and Validation, ICST 2015, Graz, Austria, April 13-17, 2015,

2015, pp. 1–10. doi:10.1109/ICST.2015.7102607.

URL http://dx.doi.org/10.1109/ICST.2015.7102607

[145] M. Marcozzi, S. Bardin, N. Kosmatov, M. Papadakis, V. Prevosto, L. Cor-

renson, Time to clean your test objectives, in: Proceedings of the 40th

International Conference on Software Engineering, ICSE 2018, Gothen-

burg, Sweden, May 27 - 3 June, 2018, 2018.

[146] M. Marcozzi, M. Delahaye, S. Bardin, N. Kosmatov, V. Prevosto, Generic

and effective specification of structural test objectives, in: 2017 IEEE

International Conference on Software Testing, Verification and Validation

(ICST), 2017, pp. 436–441. doi:10.1109/ICST.2017.48.

[147] H. Coles, T. Laurent, C. Henard, M. Papadakis, A. Ventresque, PIT: a

practical mutation testing tool for java (demo), in: Proceedings of the

25th International Symposium on Software Testing and Analysis, ISSTA

2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 449–452. doi:

10.1145/2931037.2948707.

URL http://doi.acm.org/10.1145/2931037.2948707

106

http://dx.doi.org/10.1145/3092703.3092714
http://dx.doi.org/10.1145/3092703.3092714
http://doi.acm.org/10.1145/3092703.3092714
http://dx.doi.org/10.1109/ICST.2016.18
http://dx.doi.org/10.1109/ICST.2016.18
http://dx.doi.org/10.1109/ICST.2016.18
http://dx.doi.org/10.1109/ICST.2016.18
http://dx.doi.org/10.1109/ICST.2016.18
http://dx.doi.org/10.1109/ICST.2015.7102607
http://dx.doi.org/10.1109/ICST.2015.7102607
http://dx.doi.org/10.1109/ICST.2015.7102607
http://dx.doi.org/10.1109/ICST.2015.7102607
http://dx.doi.org/10.1109/ICST.2017.48
http://doi.acm.org/10.1145/2931037.2948707
http://doi.acm.org/10.1145/2931037.2948707
http://dx.doi.org/10.1145/2931037.2948707
http://dx.doi.org/10.1145/2931037.2948707
http://doi.acm.org/10.1145/2931037.2948707

[148] F. Hariri, A. Shi, H. Converse, S. Khurshid, D. Marinov, Evaluating the

effects of compiler optimizations on mutation testing at the compiler IR

level, in: 27th IEEE International Symposium on Software Reliability

Engineering, ISSRE 2016, Ottawa, ON, Canada, October 23-27, 2016,

2016, pp. 105–115. doi:10.1109/ISSRE.2016.51.

URL http://dx.doi.org/10.1109/ISSRE.2016.51

[149] M. Papadakis, N. Malevris, Mutation based test case generation via a

path selection strategy, Information & Software Technology 54 (9) (2012)

915–932. doi:10.1016/j.infsof.2012.02.004.

URL http://dx.doi.org/10.1016/j.infsof.2012.02.004

[150] V. H. S. Durelli, J. Offutt, M. E. Delamaro, Toward harnessing high-level

language virtual machines for further speeding up weak mutation testing,

in: Fifth IEEE International Conference on Software Testing, Verification

and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012,

2012, pp. 681–690. doi:10.1109/ICST.2012.158.

URL http://dx.doi.org/10.1109/ICST.2012.158

[151] X. Devroey, G. Perrouin, M. Cordy, M. Papadakis, A. Legay,

P. Schobbens, A variability perspective of mutation analysis, in: Pro-

ceedings of the 22nd ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, (FSE-22), Hong Kong, China, November

16 - 22, 2014, 2014, pp. 841–844. doi:10.1145/2635868.2666610.

URL http://doi.acm.org/10.1145/2635868.2666610

[152] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, M. Harman,

Detecting trivial mutant equivalences via compiler optimisations, IEEE

Transactions on Software Engineering PP (99) (2017) 1–1. doi:10.1109/

TSE.2017.2684805.

[153] M. Kintis, Effective methods to tackle the equivalent mutant problem

when testing software with mutation, Ph.D. thesis, Department of Infor-

matics, Athens University of Economics and Business (2016).

107

http://dx.doi.org/10.1109/ISSRE.2016.51
http://dx.doi.org/10.1109/ISSRE.2016.51
http://dx.doi.org/10.1109/ISSRE.2016.51
http://dx.doi.org/10.1109/ISSRE.2016.51
http://dx.doi.org/10.1109/ISSRE.2016.51
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1109/ICST.2012.158
http://dx.doi.org/10.1109/ICST.2012.158
http://dx.doi.org/10.1109/ICST.2012.158
http://dx.doi.org/10.1109/ICST.2012.158
http://doi.acm.org/10.1145/2635868.2666610
http://dx.doi.org/10.1145/2635868.2666610
http://doi.acm.org/10.1145/2635868.2666610
http://dx.doi.org/10.1109/TSE.2017.2684805
http://dx.doi.org/10.1109/TSE.2017.2684805

[154] M. Kintis, N. Malevris, Using data flow patterns for equivalent mutant

detection, in: Seventh IEEE International Conference on Software Testing,

Verification and Validation, ICST 2014 Workshops Proceedings, March 31

- April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 196–205. doi:10.1109/

ICSTW.2014.21.

URL http://dx.doi.org/10.1109/ICSTW.2014.21

[155] M. Kintis, N. Malevris, MEDIC: A static analysis framework for equivalent

mutant identification, Information & Software Technology 68 (2015) 1–17.

doi:10.1016/j.infsof.2015.07.009.

URL https://doi.org/10.1016/j.infsof.2015.07.009

[156] D. Holling, S. Banescu, M. Probst, A. Petrovska, A. Pretschner, Nequiv-

ack: Assessing mutation score confidence, in: Ninth IEEE International

Conference on Software Testing, Verification and Validation Workshops,

ICST Workshops 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp.

152–161. doi:10.1109/ICSTW.2016.29.

URL https://doi.org/10.1109/ICSTW.2016.29

[157] M. Kintis, N. Malevris, Identifying more equivalent mutants via code sim-

ilarity, in: 20th Asia-Pacific Software Engineering Conference, APSEC

2013, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume 1,

2013, pp. 180–188. doi:10.1109/APSEC.2013.34.

URL https://doi.org/10.1109/APSEC.2013.34

[158] K. A. Foster, Error sensitive test cases analysis (ESTCA), IEEE Trans.

Software Eng. 6 (3) (1980) 258–264. doi:10.1109/TSE.1980.234487.

URL https://doi.org/10.1109/TSE.1980.234487

[159] W. E. Howden, Weak mutation testing and completeness of test sets,

IEEE Trans. Software Eng. 8 (4) (1982) 371–379. doi:10.1109/TSE.

1982.235571.

URL https://doi.org/10.1109/TSE.1982.235571

108

http://dx.doi.org/10.1109/ICSTW.2014.21
http://dx.doi.org/10.1109/ICSTW.2014.21
http://dx.doi.org/10.1109/ICSTW.2014.21
http://dx.doi.org/10.1109/ICSTW.2014.21
http://dx.doi.org/10.1109/ICSTW.2014.21
https://doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/10.1016/j.infsof.2015.07.009
http://dx.doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/10.1016/j.infsof.2015.07.009
https://doi.org/10.1109/ICSTW.2016.29
https://doi.org/10.1109/ICSTW.2016.29
http://dx.doi.org/10.1109/ICSTW.2016.29
https://doi.org/10.1109/ICSTW.2016.29
https://doi.org/10.1109/APSEC.2013.34
https://doi.org/10.1109/APSEC.2013.34
http://dx.doi.org/10.1109/APSEC.2013.34
https://doi.org/10.1109/APSEC.2013.34
https://doi.org/10.1109/TSE.1980.234487
http://dx.doi.org/10.1109/TSE.1980.234487
https://doi.org/10.1109/TSE.1980.234487
https://doi.org/10.1109/TSE.1982.235571
http://dx.doi.org/10.1109/TSE.1982.235571
http://dx.doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/TSE.1982.235571

[160] K. Tai, Predicate-based test generation for computer programs, in: Pro-

ceedings of the 15th International Conference on Software Engineering,

Baltimore, Maryland, USA, May 17-21, 1993., 1993, pp. 267–276.

URL http://portal.acm.org/citation.cfm?id=257572.257631

[161] K. Tai, Theory of fault-based predicate testing for computer programs,

IEEE Trans. Software Eng. 22 (8) (1996) 552–562. doi:10.1109/32.

536956.

URL https://doi.org/10.1109/32.536956

[162] M. Papadakis, Error detection methods in java programs using the muta-

tion method, Masters thesis, Athens University of Economics and Business

(June 2005).

[163] G. Kaminski, P. Ammann, J. Offutt, Better predicate testing, in: Pro-

ceedings of the 6th International Workshop on Automation of Software

Test, AST 2011, Waikiki, Honolulu, HI, USA, May 23-24, 2011, 2011, pp.

57–63. doi:10.1145/1982595.1982608.

URL http://doi.acm.org/10.1145/1982595.1982608

[164] R. Just, G. M. Kapfhammer, F. Schweiggert, Do redundant mutants af-

fect the effectiveness and efficiency of mutation analysis?, in: Fifth IEEE

International Conference on Software Testing, Verification and Validation,

ICST 2012, Montreal, QC, Canada, April 17-21, 2012, 2012, pp. 720–725.

doi:10.1109/ICST.2012.162.

URL http://dx.doi.org/10.1109/ICST.2012.162

[165] R. Just, F. Schweiggert, Higher accuracy and lower run time: efficient

mutation analysis using non-redundant mutation operators, Softw. Test.,

Verif. Reliab. 25 (5-7) (2015) 490–507. doi:10.1002/stvr.1561.

URL http://dx.doi.org/10.1002/stvr.1561

[166] L. Fernandes, M. Ribeiro, L. Carvalho, R. Gheyi, M. Mongiovi, A. Santos,

A. Cavalcanti, F. Ferrari, J. C. Maldonado, Avoiding useless mutants,

109

http://portal.acm.org/citation.cfm?id=257572.257631
http://portal.acm.org/citation.cfm?id=257572.257631
https://doi.org/10.1109/32.536956
http://dx.doi.org/10.1109/32.536956
http://dx.doi.org/10.1109/32.536956
https://doi.org/10.1109/32.536956
http://doi.acm.org/10.1145/1982595.1982608
http://dx.doi.org/10.1145/1982595.1982608
http://doi.acm.org/10.1145/1982595.1982608
http://dx.doi.org/10.1109/ICST.2012.162
http://dx.doi.org/10.1109/ICST.2012.162
http://dx.doi.org/10.1109/ICST.2012.162
http://dx.doi.org/10.1109/ICST.2012.162
http://dx.doi.org/10.1002/stvr.1561
http://dx.doi.org/10.1002/stvr.1561
http://dx.doi.org/10.1002/stvr.1561
http://dx.doi.org/10.1002/stvr.1561

in: Proceedings of the 16th ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences, GPCE 2017, ACM,

New York, NY, USA, 2017, pp. 187–198. doi:10.1145/3136040.3136053.

[167] T. Laurent, A. Ventresque, M. Papadakis, C. Henard, Y. L. Traon,

Assessing and improving the mutation testing practice of PIT, CoRR

abs/1601.02351.

URL http://arxiv.org/abs/1601.02351

[168] B. Lindström, A. Marki, On strong mutation and subsuming mutants, in:

Ninth IEEE International Conference on Software Testing, Verification

and Validation Workshops, ICST Workshops 2016, Chicago, IL, USA,

April 11-15, 2016, 2016, pp. 112–121. doi:10.1109/ICSTW.2016.28.

URL http://dx.doi.org/10.1109/ICSTW.2016.28

[169] B. Kurtz, P. Ammann, J. Offutt, Static analysis of mutant subsumption,

in: Eighth IEEE International Conference on Software Testing, Verifica-

tion and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17,

2015, 2015, pp. 1–10. doi:10.1109/ICSTW.2015.7107454.

URL https://doi.org/10.1109/ICSTW.2015.7107454

[170] R. A. DeMillo, A. J. Offutt, Constraint-based automatic test data gener-

ation, IEEE Trans. Software Eng. 17 (9) (1991) 900–910. doi:10.1109/

32.92910.

URL https://doi.org/10.1109/32.92910

[171] G. Fraser, A. Zeller, Mutation-driven generation of unit tests and oracles,

IEEE Trans. Software Eng. 38 (2) (2012) 278–292. doi:10.1109/TSE.

2011.93.

URL https://doi.org/10.1109/TSE.2011.93

[172] M. Harman, Y. Jia, W. B. Langdon, Strong higher order mutation-

based test data generation, in: SIGSOFT/FSE’11 19th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (FSE-19) and

110

http://dx.doi.org/10.1145/3136040.3136053
http://arxiv.org/abs/1601.02351
http://arxiv.org/abs/1601.02351
http://dx.doi.org/10.1109/ICSTW.2016.28
http://dx.doi.org/10.1109/ICSTW.2016.28
http://dx.doi.org/10.1109/ICSTW.2016.28
https://doi.org/10.1109/ICSTW.2015.7107454
http://dx.doi.org/10.1109/ICSTW.2015.7107454
https://doi.org/10.1109/ICSTW.2015.7107454
https://doi.org/10.1109/32.92910
https://doi.org/10.1109/32.92910
http://dx.doi.org/10.1109/32.92910
http://dx.doi.org/10.1109/32.92910
https://doi.org/10.1109/32.92910
https://doi.org/10.1109/TSE.2011.93
http://dx.doi.org/10.1109/TSE.2011.93
http://dx.doi.org/10.1109/TSE.2011.93
https://doi.org/10.1109/TSE.2011.93
http://doi.acm.org/10.1145/2025113.2025144
http://doi.acm.org/10.1145/2025113.2025144

ESEC’11: 13th European Software Engineering Conference (ESEC-13),

Szeged, Hungary, September 5-9, 2011, 2011, pp. 212–222. doi:10.1145/

2025113.2025144.

URL http://doi.acm.org/10.1145/2025113.2025144

[173] S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen,

W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn, An orches-

trated survey of methodologies for automated software test case gener-

ation, Journal of Systems and Software 86 (8) (2013) 1978–2001. doi:

10.1016/j.jss.2013.02.061.

URL https://doi.org/10.1016/j.jss.2013.02.061

[174] F. Wotawa, M. Nica, B. K. Aichernig, Generating distinguishing tests

using the minion constraint solver, in: Third International Conference on

Software Testing, Verification and Validation, ICST 2010, Paris, France,

April 7-9, 2010, Workshops Proceedings, 2010, pp. 325–330. doi:10.

1109/ICSTW.2010.11.

URL http://dx.doi.org/10.1109/ICSTW.2010.11

[175] S. Nica, On the improvement of the mutation score using distinguishing

test cases, in: Fourth IEEE International Conference on Software Testing,

Verification and Validation, ICST 2011, Berlin, Germany, March 21-25,

2011, 2011, pp. 423–426. doi:10.1109/ICST.2011.40.

URL https://doi.org/10.1109/ICST.2011.40

[176] M. Papadakis, N. Malevris, An effective path selection strategy for mu-

tation testing, in: 16th Asia-Pacific Software Engineering Conference,

APSEC 2009, 1-3 December 2009, Batu Ferringhi, Penang, Malaysia,

2009, pp. 422–429. doi:10.1109/APSEC.2009.68.

URL https://doi.org/10.1109/APSEC.2009.68

[177] M. Papadakis, N. Malevris, Automatically performing weak mutation

with the aid of symbolic execution, concolic testing and search-based

testing, Software Quality Journal 19 (4) (2011) 691–723. doi:10.1007/

111

http://dx.doi.org/10.1145/2025113.2025144
http://dx.doi.org/10.1145/2025113.2025144
http://doi.acm.org/10.1145/2025113.2025144
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1109/ICSTW.2010.11
http://dx.doi.org/10.1109/ICSTW.2010.11
http://dx.doi.org/10.1109/ICSTW.2010.11
http://dx.doi.org/10.1109/ICSTW.2010.11
http://dx.doi.org/10.1109/ICSTW.2010.11
https://doi.org/10.1109/ICST.2011.40
https://doi.org/10.1109/ICST.2011.40
http://dx.doi.org/10.1109/ICST.2011.40
https://doi.org/10.1109/ICST.2011.40
https://doi.org/10.1109/APSEC.2009.68
https://doi.org/10.1109/APSEC.2009.68
http://dx.doi.org/10.1109/APSEC.2009.68
https://doi.org/10.1109/APSEC.2009.68
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y

s11219-011-9142-y.

URL http://dx.doi.org/10.1007/s11219-011-9142-y

[178] S. Anand, C. S. Pasareanu, W. Visser, JPF-SE: A symbolic execution ex-

tension to java pathfinder, in: Tools and Algorithms for the Construction

and Analysis of Systems, 13th International Conference, TACAS 2007,

Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Pro-

ceedings, 2007, pp. 134–138. doi:10.1007/978-3-540-71209-1_12.

URL https://doi.org/10.1007/978-3-540-71209-1_12

[179] C. Cadar, D. Dunbar, D. R. Engler, KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs, in: 8th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceed-

ings, 2008, pp. 209–224.

URL http://www.usenix.org/events/osdi08/tech/full_papers/

cadar/cadar.pdf

[180] H. Riener, R. Bloem, G. Fey, Test case generation from mutants using

model checking techniques, in: Fourth IEEE International Conference on

Software Testing, Verification and Validation, ICST 2012, Berlin, Ger-

many, 21-25 March, 2011, Workshop Proceedings, 2011, pp. 388–397.

doi:10.1109/ICSTW.2011.55.

URL http://dx.doi.org/10.1109/ICSTW.2011.55

[181] M. Papadakis, N. Malevris, M. Kallia, Towards automating the generation

of mutation tests, in: The 5th Workshop on Automation of Software Test,

AST 2010, May 3-4, 2010, Cape Town, South Africa, 2010, pp. 111–118.

doi:10.1145/1808266.1808283.

URL http://doi.acm.org/10.1145/1808266.1808283

[182] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, H. Mei, Test

generation via dynamic symbolic execution for mutation testing, in: 26th

112

http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y
http://dx.doi.org/10.1007/s11219-011-9142-y
https://doi.org/10.1007/978-3-540-71209-1_12
https://doi.org/10.1007/978-3-540-71209-1_12
http://dx.doi.org/10.1007/978-3-540-71209-1_12
https://doi.org/10.1007/978-3-540-71209-1_12
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://dx.doi.org/10.1109/ICSTW.2011.55
http://dx.doi.org/10.1109/ICSTW.2011.55
http://dx.doi.org/10.1109/ICSTW.2011.55
http://dx.doi.org/10.1109/ICSTW.2011.55
http://doi.acm.org/10.1145/1808266.1808283
http://doi.acm.org/10.1145/1808266.1808283
http://dx.doi.org/10.1145/1808266.1808283
http://doi.acm.org/10.1145/1808266.1808283
https://doi.org/10.1109/ICSM.2010.5609672
https://doi.org/10.1109/ICSM.2010.5609672

IEEE International Conference on Software Maintenance (ICSM 2010),

September 12-18, 2010, Timisoara, Romania, 2010, pp. 1–10. doi:10.

1109/ICSM.2010.5609672.

URL https://doi.org/10.1109/ICSM.2010.5609672

[183] S. Bardin, N. Kosmatov, F. Cheynier, Efficient leveraging of symbolic

execution to advanced coverage criteria, in: Seventh IEEE International

Conference on Software Testing, Verification and Validation, ICST 2014,

March 31 2014-April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 173–182.

doi:10.1109/ICST.2014.30.

URL http://dx.doi.org/10.1109/ICST.2014.30

[184] K. Jamrozik, G. Fraser, N. Tillmann, J. de Halleux, Augmented dynamic

symbolic execution, in: IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE’12, Essen, Germany, September 3-7,

2012, 2012, pp. 254–257. doi:10.1145/2351676.2351716.

URL http://doi.acm.org/10.1145/2351676.2351716

[185] F. C. M. Souza, M. Papadakis, Y. L. Traon, M. E. Delamaro, Strong

mutation-based test data generation using hill climbing, in: Proceed-

ings of the 9th International Workshop on Search-Based Software Testing,

SBST@ICSE 2016, Austin, Texas, USA, May 14-22, 2016, 2016, pp. 45–

54. doi:10.1145/2897010.2897012.

URL http://doi.acm.org/10.1145/2897010.2897012

[186] K. Ayari, S. Bouktif, G. Antoniol, Automatic mutation test input data

generation via ant colony, in: Genetic and Evolutionary Computation

Conference, GECCO 2007, Proceedings, London, England, UK, July 7-

11, 2007, 2007, pp. 1074–1081. doi:10.1145/1276958.1277172.

URL http://doi.acm.org/10.1145/1276958.1277172

[187] G. Fraser, A. Zeller, Mutation-driven generation of unit tests and oracles,

in: Proceedings of the Nineteenth International Symposium on Software

Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, 2010,

113

http://dx.doi.org/10.1109/ICSM.2010.5609672
http://dx.doi.org/10.1109/ICSM.2010.5609672
https://doi.org/10.1109/ICSM.2010.5609672
http://dx.doi.org/10.1109/ICST.2014.30
http://dx.doi.org/10.1109/ICST.2014.30
http://dx.doi.org/10.1109/ICST.2014.30
http://dx.doi.org/10.1109/ICST.2014.30
http://doi.acm.org/10.1145/2351676.2351716
http://doi.acm.org/10.1145/2351676.2351716
http://dx.doi.org/10.1145/2351676.2351716
http://doi.acm.org/10.1145/2351676.2351716
http://doi.acm.org/10.1145/2897010.2897012
http://doi.acm.org/10.1145/2897010.2897012
http://dx.doi.org/10.1145/2897010.2897012
http://doi.acm.org/10.1145/2897010.2897012
http://doi.acm.org/10.1145/1276958.1277172
http://doi.acm.org/10.1145/1276958.1277172
http://dx.doi.org/10.1145/1276958.1277172
http://doi.acm.org/10.1145/1276958.1277172
http://doi.acm.org/10.1145/1831708.1831728

pp. 147–158. doi:10.1145/1831708.1831728.

URL http://doi.acm.org/10.1145/1831708.1831728

[188] M. Papadakis, N. Malevris, Automatic mutation based test data genera-

tion, in: 13th Annual Genetic and Evolutionary Computation Conference,

GECCO 2011, Companion Material Proceedings, Dublin, Ireland, July 12-

16, 2011, 2011, pp. 247–248. doi:10.1145/2001858.2001997.

URL http://doi.acm.org/10.1145/2001858.2001997

[189] M. Papadakis, N. Malevris, Killing mutants effectively a search based

approach, in: Knowledge-Based Software Engineering - Proceedings of the

Tenth Conference on Knowledge-Based Software Engineering, JCKBSE

2012, Rodos, Greece, August 23-26, 2012, 2012, pp. 217–226. doi:10.

3233/978-1-61499-094-9-217.

URL http://dx.doi.org/10.3233/978-1-61499-094-9-217

[190] M. Papadakis, N. Malevris, Searching and generating test inputs

for mutation testing, SpringerPlus 2 (1) (2013) 121. doi:10.1186/

2193-1801-2-121.

URL http://dx.doi.org/10.1186/2193-1801-2-121

[191] M. Patrick, R. Alexander, M. Oriol, J. A. Clark, Using mutation analysis

to evolve subdomains for random testing, in: Sixth IEEE International

Conference on Software Testing, Verification and Validation, ICST 2013

Workshops Proceedings, Luxembourg, Luxembourg, March 18-22, 2013,

2013, pp. 53–62. doi:10.1109/ICSTW.2013.14.

URL http://dx.doi.org/10.1109/ICSTW.2013.14

[192] G. Fraser, A. Arcuri, Achieving scalable mutation-based generation of

whole test suites, Empirical Software Engineering 20 (3) (2015) 783–812.

doi:10.1007/s10664-013-9299-z.

URL http://dx.doi.org/10.1007/s10664-013-9299-z

[193] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, D. Marinov, Balancing trade-

offs in test-suite reduction, in: Proceedings of the 22nd ACM SIGSOFT

114

http://dx.doi.org/10.1145/1831708.1831728
http://doi.acm.org/10.1145/1831708.1831728
http://doi.acm.org/10.1145/2001858.2001997
http://doi.acm.org/10.1145/2001858.2001997
http://dx.doi.org/10.1145/2001858.2001997
http://doi.acm.org/10.1145/2001858.2001997
http://dx.doi.org/10.3233/978-1-61499-094-9-217
http://dx.doi.org/10.3233/978-1-61499-094-9-217
http://dx.doi.org/10.3233/978-1-61499-094-9-217
http://dx.doi.org/10.3233/978-1-61499-094-9-217
http://dx.doi.org/10.3233/978-1-61499-094-9-217
http://dx.doi.org/10.1186/2193-1801-2-121
http://dx.doi.org/10.1186/2193-1801-2-121
http://dx.doi.org/10.1186/2193-1801-2-121
http://dx.doi.org/10.1186/2193-1801-2-121
http://dx.doi.org/10.1186/2193-1801-2-121
http://dx.doi.org/10.1109/ICSTW.2013.14
http://dx.doi.org/10.1109/ICSTW.2013.14
http://dx.doi.org/10.1109/ICSTW.2013.14
http://dx.doi.org/10.1109/ICSTW.2013.14
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://doi.acm.org/10.1145/2635868.2635921
http://doi.acm.org/10.1145/2635868.2635921

International Symposium on Foundations of Software Engineering, (FSE-

22), Hong Kong, China, November 16 - 22, 2014, 2014, pp. 246–256.

doi:10.1145/2635868.2635921.

URL http://doi.acm.org/10.1145/2635868.2635921

[194] Y. Lou, D. Hao, L. Zhang, Mutation-based test-case prioritization in soft-

ware evolution, in: 26th IEEE International Symposium on Software Reli-

ability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5,

2015, 2015, pp. 46–57. doi:10.1109/ISSRE.2015.7381798.

URL http://dx.doi.org/10.1109/ISSRE.2015.7381798

[195] L. Zhang, D. Marinov, S. Khurshid, Faster mutation testing inspired by

test prioritization and reduction, in: International Symposium on Soft-

ware Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20,

2013, 2013, pp. 235–245. doi:10.1145/2483760.2483782.

URL http://doi.acm.org/10.1145/2483760.2483782

[196] R. Just, G. M. Kapfhammer, F. Schweiggert, Using non-redundant muta-

tion operators and test suite prioritization to achieve efficient and scalable

mutation analysis, in: 23rd IEEE International Symposium on Software

Reliability Engineering, ISSRE 2012, Dallas, TX, USA, November 27-30,

2012, 2012, pp. 11–20. doi:10.1109/ISSRE.2012.31.

URL http://dx.doi.org/10.1109/ISSRE.2012.31

[197] Q. Zhu, A. Panichella, A. Zaidman, Speeding-up mutation testing via data

compression and state infection, in: 2017 IEEE International Conference

on Software Testing, Verification and Validation Workshops (ICSTW),

2017, pp. 103–109. doi:10.1109/ICSTW.2017.25.

[198] M. E. Delamaro, Proteum - A Mutation Analysis Based Testing Environ-

men, Masters thesis, University of São Paulo, Sao Paulo, Brazil (1993).

[199] S. Kim, Y. Ma, Y. R. Kwon, Combining weak and strong mutation for a

noninterpretive java mutation system, Softw. Test., Verif. Reliab. 23 (8)

115

http://dx.doi.org/10.1145/2635868.2635921
http://doi.acm.org/10.1145/2635868.2635921
http://dx.doi.org/10.1109/ISSRE.2015.7381798
http://dx.doi.org/10.1109/ISSRE.2015.7381798
http://dx.doi.org/10.1109/ISSRE.2015.7381798
http://dx.doi.org/10.1109/ISSRE.2015.7381798
http://doi.acm.org/10.1145/2483760.2483782
http://doi.acm.org/10.1145/2483760.2483782
http://dx.doi.org/10.1145/2483760.2483782
http://doi.acm.org/10.1145/2483760.2483782
http://dx.doi.org/10.1109/ISSRE.2012.31
http://dx.doi.org/10.1109/ISSRE.2012.31
http://dx.doi.org/10.1109/ISSRE.2012.31
http://dx.doi.org/10.1109/ISSRE.2012.31
http://dx.doi.org/10.1109/ISSRE.2012.31
http://dx.doi.org/10.1109/ICSTW.2017.25
http://dx.doi.org/10.1002/stvr.1480
http://dx.doi.org/10.1002/stvr.1480

(2013) 647–668. doi:10.1002/stvr.1480.

URL http://dx.doi.org/10.1002/stvr.1480

[200] R. Just, M. D. Ernst, G. Fraser, Efficient mutation analysis by propagating

and partitioning infected execution states, in: International Symposium

on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July

21 - 26, 2014, 2014, pp. 315–326. doi:10.1145/2610384.2610388.

URL http://doi.acm.org/10.1145/2610384.2610388

[201] P. R. Mateo, M. P. Usaola, Mutant execution cost reduction: Through

MUSIC (mutant schema improved with extra code), in: Fifth IEEE In-

ternational Conference on Software Testing, Verification and Validation,

ICST 2012, Montreal, QC, Canada, April 17-21, 2012, 2012, pp. 664–672.

doi:10.1109/ICST.2012.156.

URL http://dx.doi.org/10.1109/ICST.2012.156

[202] P. R. Mateo, M. P. Usaola, Reducing mutation costs through uncovered

mutants, Softw. Test., Verif. Reliab. 25 (5-7) (2015) 464–489. doi:10.

1002/stvr.1534.

URL http://dx.doi.org/10.1002/stvr.1534

[203] K. N. King, A. J. Offutt, A fortran language system for mutation-based

software testing, Softw., Pract. Exper. 21 (7) (1991) 685–718. doi:10.

1002/spe.4380210704.

URL https://doi.org/10.1002/spe.4380210704

[204] M. Papadakis, M. E. Delamaro, Y. L. Traon, Proteum/fl: A tool for

localizing faults using mutation analysis, in: 13th IEEE International

Working Conference on Source Code Analysis and Manipulation, SCAM

2013, Eindhoven, Netherlands, September 22-23, 2013, 2013, pp. 94–99.

doi:10.1109/SCAM.2013.6648189.

URL http://dx.doi.org/10.1109/SCAM.2013.6648189

[205] D. Schuler, A. Zeller, Javalanche: efficient mutation testing for java, in:

Proceedings of the 7th joint meeting of the European Software Engineering

116

http://dx.doi.org/10.1002/stvr.1480
http://dx.doi.org/10.1002/stvr.1480
http://doi.acm.org/10.1145/2610384.2610388
http://doi.acm.org/10.1145/2610384.2610388
http://dx.doi.org/10.1145/2610384.2610388
http://doi.acm.org/10.1145/2610384.2610388
http://dx.doi.org/10.1109/ICST.2012.156
http://dx.doi.org/10.1109/ICST.2012.156
http://dx.doi.org/10.1109/ICST.2012.156
http://dx.doi.org/10.1109/ICST.2012.156
http://dx.doi.org/10.1002/stvr.1534
http://dx.doi.org/10.1002/stvr.1534
http://dx.doi.org/10.1002/stvr.1534
http://dx.doi.org/10.1002/stvr.1534
http://dx.doi.org/10.1002/stvr.1534
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1002/spe.4380210704
https://doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1109/SCAM.2013.6648189
http://dx.doi.org/10.1109/SCAM.2013.6648189
http://dx.doi.org/10.1109/SCAM.2013.6648189
http://dx.doi.org/10.1109/SCAM.2013.6648189
http://doi.acm.org/10.1145/1595696.1595750

Conference and the ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, 2009, Amsterdam, The Netherlands, Au-

gust 24-28, 2009, 2009, pp. 297–298. doi:10.1145/1595696.1595750.

URL http://doi.acm.org/10.1145/1595696.1595750

[206] P. R. Mateo, M. P. Usaola, Parallel mutation testing, Softw. Test., Verif.

Reliab. 23 (4) (2013) 315–350. doi:10.1002/stvr.1471.

URL http://dx.doi.org/10.1002/stvr.1471

[207] M. Gligoric, V. Jagannath, Q. Luo, D. Marinov, Efficient mutation testing

of multithreaded code, Softw. Test., Verif. Reliab. 23 (5) (2013) 375–403.

doi:10.1002/stvr.1469.

URL http://dx.doi.org/10.1002/stvr.1469

[208] M. Gligoric, V. Jagannath, D. Marinov, Mutmut: Efficient exploration for

mutation testing of multithreaded code, in: Third International Confer-

ence on Software Testing, Verification and Validation, ICST 2010, Paris,

France, April 7-9, 2010, 2010, pp. 55–64. doi:10.1109/ICST.2010.33.

URL http://dx.doi.org/10.1109/ICST.2010.33

[209] P. Gong, R. Zhao, Z. Li, Faster mutation-based fault localization with

a novel mutation execution strategy, in: Eighth IEEE International

Conference on Software Testing, Verification and Validation, ICST 2015

Workshops, Graz, Austria, April 13-17, 2015, 2015, pp. 1–10. doi:

10.1109/ICSTW.2015.7107448.

URL http://dx.doi.org/10.1109/ICSTW.2015.7107448

[210] L. Zhang, D. Marinov, L. Zhang, S. Khurshid, Regression mutation test-

ing, in: International Symposium on Software Testing and Analysis, IS-

STA 2012, Minneapolis, MN, USA, July 15-20, 2012, 2012, pp. 331–341.

doi:10.1145/2338965.2336793.

URL http://doi.acm.org/10.1145/2338965.2336793

[211] C. J. Wright, G. M. Kapfhammer, P. McMinn, Efficient mutation anal-

ysis of relational database structure using mutant schemata and paral-

117

http://dx.doi.org/10.1145/1595696.1595750
http://doi.acm.org/10.1145/1595696.1595750
http://dx.doi.org/10.1002/stvr.1471
http://dx.doi.org/10.1002/stvr.1471
http://dx.doi.org/10.1002/stvr.1471
http://dx.doi.org/10.1002/stvr.1469
http://dx.doi.org/10.1002/stvr.1469
http://dx.doi.org/10.1002/stvr.1469
http://dx.doi.org/10.1002/stvr.1469
http://dx.doi.org/10.1109/ICST.2010.33
http://dx.doi.org/10.1109/ICST.2010.33
http://dx.doi.org/10.1109/ICST.2010.33
http://dx.doi.org/10.1109/ICST.2010.33
http://dx.doi.org/10.1109/ICSTW.2015.7107448
http://dx.doi.org/10.1109/ICSTW.2015.7107448
http://dx.doi.org/10.1109/ICSTW.2015.7107448
http://dx.doi.org/10.1109/ICSTW.2015.7107448
http://dx.doi.org/10.1109/ICSTW.2015.7107448
http://doi.acm.org/10.1145/2338965.2336793
http://doi.acm.org/10.1145/2338965.2336793
http://dx.doi.org/10.1145/2338965.2336793
http://doi.acm.org/10.1145/2338965.2336793
http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICSTW.2013.15

lelisation, in: Sixth IEEE International Conference on Software Test-

ing, Verification and Validation, ICST 2013 Workshops Proceedings,

Luxembourg, Luxembourg, March 18-22, 2013, 2013, pp. 63–72. doi:

10.1109/ICSTW.2013.15.

URL http://dx.doi.org/10.1109/ICSTW.2013.15

[212] C. Zhou, P. G. Frankl, Inferential checking for mutants modifying database

states, in: Fourth IEEE International Conference on Software Testing,

Verification and Validation, ICST 2011, Berlin, Germany, March 21-25,

2011, 2011, pp. 259–268. doi:10.1109/ICST.2011.63.

URL http://dx.doi.org/10.1109/ICST.2011.63

[213] M. Patrick, A. P. Craig, N. J. Cunniffe, M. Parry, C. A. Gilligan,

Testing stochastic software using pseudo-oracles, in: Proceedings of the

25th International Symposium on Software Testing and Analysis, IS-

STA 2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 235–246.

doi:10.1145/2931037.2931063.

URL http://doi.acm.org/10.1145/2931037.2931063

[214] M. J. Rutherford, A. Carzaniga, A. L. Wolf, Evaluating test suites and

adequacy criteria using simulation-based models of distributed systems,

IEEE Trans. Software Eng. 34 (4) (2008) 452–470. doi:10.1109/TSE.

2008.33.

URL https://doi.org/10.1109/TSE.2008.33

[215] B. J. M. Grün, D. Schuler, A. Zeller, The impact of equivalent mutants,

in: Second International Conference on Software Testing Verification and

Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009, Work-

shops Proceedings, 2009, pp. 192–199. doi:10.1109/ICSTW.2009.37.

URL http://dx.doi.org/10.1109/ICSTW.2009.37

[216] D. Schuler, V. Dallmeier, A. Zeller, Efficient mutation testing by checking

invariant violations, in: Proceedings of the Eighteenth International Sym-

posium on Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA,

118

http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICSTW.2013.15
http://dx.doi.org/10.1109/ICST.2011.63
http://dx.doi.org/10.1109/ICST.2011.63
http://dx.doi.org/10.1109/ICST.2011.63
http://dx.doi.org/10.1109/ICST.2011.63
http://doi.acm.org/10.1145/2931037.2931063
http://dx.doi.org/10.1145/2931037.2931063
http://doi.acm.org/10.1145/2931037.2931063
https://doi.org/10.1109/TSE.2008.33
https://doi.org/10.1109/TSE.2008.33
http://dx.doi.org/10.1109/TSE.2008.33
http://dx.doi.org/10.1109/TSE.2008.33
https://doi.org/10.1109/TSE.2008.33
http://dx.doi.org/10.1109/ICSTW.2009.37
http://dx.doi.org/10.1109/ICSTW.2009.37
http://dx.doi.org/10.1109/ICSTW.2009.37
http://doi.acm.org/10.1145/1572272.1572282
http://doi.acm.org/10.1145/1572272.1572282

July 19-23, 2009, 2009, pp. 69–80. doi:10.1145/1572272.1572282.

URL http://doi.acm.org/10.1145/1572272.1572282

[217] D. Schuler, A. Zeller, (un-)covering equivalent mutants, in: Third In-

ternational Conference on Software Testing, Verification and Validation,

ICST 2010, Paris, France, April 7-9, 2010, 2010, pp. 45–54. doi:

10.1109/ICST.2010.30.

URL http://dx.doi.org/10.1109/ICST.2010.30

[218] D. Schuler, A. Zeller, Covering and uncovering equivalent mutants, Softw.

Test., Verif. Reliab. 23 (5) (2013) 353–374. doi:10.1002/stvr.1473.

URL http://dx.doi.org/10.1002/stvr.1473

[219] B. Schwarz, D. Schuler, A. Zeller, Breeding high-impact mutations, in:

Fourth IEEE International Conference on Software Testing, Verification

and Validation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Work-

shop Proceedings, 2011, pp. 382–387. doi:10.1109/ICSTW.2011.56.

URL https://doi.org/10.1109/ICSTW.2011.56

[220] M. Papadakis, Y. L. Traon, Mutation testing strategies using mutant clas-

sification, in: Proceedings of the 28th Annual ACM Symposium on Ap-

plied Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013, 2013,

pp. 1223–1229. doi:10.1145/2480362.2480592.

URL http://doi.acm.org/10.1145/2480362.2480592

[221] M. Papadakis, M. E. Delamaro, Y. L. Traon, Mitigating the effects of

equivalent mutants with mutant classification strategies, Sci. Comput.

Program. 95 (2014) 298–319. doi:10.1016/j.scico.2014.05.012.

URL http://dx.doi.org/10.1016/j.scico.2014.05.012

[222] M. Kintis, M. Papadakis, N. Malevris, Isolating first order equivalent

mutants via second order mutation, in: Fifth IEEE International Con-

ference on Software Testing, Verification and Validation, ICST 2012,

Montreal, QC, Canada, April 17-21, 2012, 2012, pp. 701–710. doi:

119

http://dx.doi.org/10.1145/1572272.1572282
http://doi.acm.org/10.1145/1572272.1572282
http://dx.doi.org/10.1109/ICST.2010.30
http://dx.doi.org/10.1109/ICST.2010.30
http://dx.doi.org/10.1109/ICST.2010.30
http://dx.doi.org/10.1109/ICST.2010.30
http://dx.doi.org/10.1002/stvr.1473
http://dx.doi.org/10.1002/stvr.1473
http://dx.doi.org/10.1002/stvr.1473
https://doi.org/10.1109/ICSTW.2011.56
http://dx.doi.org/10.1109/ICSTW.2011.56
https://doi.org/10.1109/ICSTW.2011.56
http://doi.acm.org/10.1145/2480362.2480592
http://doi.acm.org/10.1145/2480362.2480592
http://dx.doi.org/10.1145/2480362.2480592
http://doi.acm.org/10.1145/2480362.2480592
http://dx.doi.org/10.1016/j.scico.2014.05.012
http://dx.doi.org/10.1016/j.scico.2014.05.012
http://dx.doi.org/10.1016/j.scico.2014.05.012
http://dx.doi.org/10.1016/j.scico.2014.05.012
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/ICST.2012.160

10.1109/ICST.2012.160.

URL http://dx.doi.org/10.1109/ICST.2012.160

[223] M. Kintis, M. Papadakis, N. Malevris, Employing second-order mutation

for isolating first-order equivalent mutants, Softw. Test., Verif. Reliab.

25 (5-7) (2015) 508–535. doi:10.1002/stvr.1529.

URL http://dx.doi.org/10.1002/stvr.1529

[224] M. P. Usaola, P. R. Mateo, B. P. Lamancha, Reduction of test suites using

mutation, in: Fundamental Approaches to Software Engineering - 15th

International Conference, FASE 2012, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,

Estonia, March 24 - April 1, 2012. Proceedings, 2012, pp. 425–438. doi:

10.1007/978-3-642-28872-2_29.

URL http://dx.doi.org/10.1007/978-3-642-28872-2_29

[225] D. Hao, L. Zhang, X. Wu, H. Mei, G. Rothermel, On-demand test suite

reduction, in: 34th International Conference on Software Engineering,

ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 2012, pp. 738–748. doi:

10.1109/ICSE.2012.6227144.

URL http://dx.doi.org/10.1109/ICSE.2012.6227144

[226] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, A. Groce, Evaluating

non-adequate test-case reduction, in: Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, ASE 2016,

Singapore, September 3-7, 2016, 2016, pp. 16–26. doi:10.1145/2970276.

2970361.

URL http://doi.acm.org/10.1145/2970276.2970361

[227] D. C. Nguyen, A. Marchetto, P. Tonella, Change sensitivity based pri-

oritization for audit testing of webservice compositions, in: Fourth IEEE

International Conference on Software Testing, Verification and Validation,

ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Proceedings,

120

http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1109/ICST.2012.160
http://dx.doi.org/10.1002/stvr.1529
http://dx.doi.org/10.1002/stvr.1529
http://dx.doi.org/10.1002/stvr.1529
http://dx.doi.org/10.1002/stvr.1529
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1007/978-3-642-28872-2_29
http://dx.doi.org/10.1109/ICSE.2012.6227144
http://dx.doi.org/10.1109/ICSE.2012.6227144
http://dx.doi.org/10.1109/ICSE.2012.6227144
http://dx.doi.org/10.1109/ICSE.2012.6227144
http://dx.doi.org/10.1109/ICSE.2012.6227144
http://doi.acm.org/10.1145/2970276.2970361
http://doi.acm.org/10.1145/2970276.2970361
http://dx.doi.org/10.1145/2970276.2970361
http://dx.doi.org/10.1145/2970276.2970361
http://doi.acm.org/10.1145/2970276.2970361
http://dx.doi.org/10.1109/ICSTW.2011.50
http://dx.doi.org/10.1109/ICSTW.2011.50

2011, pp. 357–365. doi:10.1109/ICSTW.2011.50.

URL http://dx.doi.org/10.1109/ICSTW.2011.50

[228] D. Tengeri, L. Vidács, Á. Beszédes, J. Jász, G. Balogh, B. Vancsics,

T. Gyimóthy, Relating code coverage, mutation score and test suite re-

ducibility to defect density, in: Ninth IEEE International Conference on

Software Testing, Verification and Validation Workshops, ICST Work-

shops 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp. 174–179.

doi:10.1109/ICSTW.2016.25.

URL http://dx.doi.org/10.1109/ICSTW.2016.25

[229] B. Kurtz, P. Ammann, J. Offutt, M. Kurtz, Are we there yet? how redun-

dant and equivalent mutants affect determination of test completeness,

in: Ninth IEEE International Conference on Software Testing, Verifica-

tion and Validation Workshops, ICST Workshops 2016, Chicago, IL, USA,

April 11-15, 2016, 2016, pp. 142–151. doi:10.1109/ICSTW.2016.41.

URL https://doi.org/10.1109/ICSTW.2016.41

[230] G. Fraser, A. Zeller, Generating parameterized unit tests, in: Proceedings

of the 20th International Symposium on Software Testing and Analysis,

ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, 2011, pp. 364–374.

doi:10.1145/2001420.2001464.

URL http://doi.acm.org/10.1145/2001420.2001464

[231] T. Knauth, C. Fetzer, P. Felber, Assertion-driven development: Assessing

the quality of contracts using meta-mutations, in: Second International

Conference on Software Testing Verification and Validation, ICST 2009,

Denver, Colorado, USA, April 1-4, 2009, Workshops Proceedings, 2009,

pp. 182–191. doi:10.1109/ICSTW.2009.40.

URL https://doi.org/10.1109/ICSTW.2009.40

[232] G. Fraser, A. Arcuri, Evosuite: automatic test suite generation for

object-oriented software, in: SIGSOFT/FSE’11 19th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (FSE-19) and

121

http://dx.doi.org/10.1109/ICSTW.2011.50
http://dx.doi.org/10.1109/ICSTW.2011.50
http://dx.doi.org/10.1109/ICSTW.2016.25
http://dx.doi.org/10.1109/ICSTW.2016.25
http://dx.doi.org/10.1109/ICSTW.2016.25
http://dx.doi.org/10.1109/ICSTW.2016.25
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.1109/ICSTW.2016.41
http://dx.doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.1109/ICSTW.2016.41
http://doi.acm.org/10.1145/2001420.2001464
http://dx.doi.org/10.1145/2001420.2001464
http://doi.acm.org/10.1145/2001420.2001464
https://doi.org/10.1109/ICSTW.2009.40
https://doi.org/10.1109/ICSTW.2009.40
http://dx.doi.org/10.1109/ICSTW.2009.40
https://doi.org/10.1109/ICSTW.2009.40
http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179

ESEC’11: 13th European Software Engineering Conference (ESEC-13),

Szeged, Hungary, September 5-9, 2011, 2011, pp. 416–419. doi:10.1145/

2025113.2025179.

URL http://doi.acm.org/10.1145/2025113.2025179

[233] H. Yoshida, S. Tokumoto, M. R. Prasad, I. Ghosh, T. Uehara, FSX: fine-

grained incremental unit test generation for C/C++ programs, in: Pro-

ceedings of the 25th International Symposium on Software Testing and

Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016, 2016,

pp. 106–117. doi:10.1145/2931037.2931055.

URL http://doi.acm.org/10.1145/2931037.2931055

[234] H. Yoshida, S. Tokumoto, M. R. Prasad, I. Ghosh, T. Uehara, FSX: a tool

for fine-grained incremental unit test generation for C/C++ programs,

in: Proceedings of the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,

November 13-18, 2016, 2016, pp. 1052–1056. doi:10.1145/2950290.

2983937.

URL http://doi.acm.org/10.1145/2950290.2983937

[235] S. Mirshokraie, A. Mesbah, K. Pattabiraman, PYTHIA: generating test

cases with oracles for javascript applications, in: 2013 28th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2013,

Silicon Valley, CA, USA, November 11-15, 2013, 2013, pp. 610–615. doi:

10.1109/ASE.2013.6693121.

URL http://dx.doi.org/10.1109/ASE.2013.6693121

[236] S. Mirshokraie, A. Mesbah, K. Pattabiraman, JSEFT: automated

javascript unit test generation, in: 8th IEEE International Conference on

Software Testing, Verification and Validation, ICST 2015, Graz, Austria,

April 13-17, 2015, 2015, pp. 1–10. doi:10.1109/ICST.2015.7102595.

URL http://dx.doi.org/10.1109/ICST.2015.7102595

122

http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2931037.2931055
http://doi.acm.org/10.1145/2931037.2931055
http://dx.doi.org/10.1145/2931037.2931055
http://doi.acm.org/10.1145/2931037.2931055
http://doi.acm.org/10.1145/2950290.2983937
http://doi.acm.org/10.1145/2950290.2983937
http://dx.doi.org/10.1145/2950290.2983937
http://dx.doi.org/10.1145/2950290.2983937
http://doi.acm.org/10.1145/2950290.2983937
http://dx.doi.org/10.1109/ASE.2013.6693121
http://dx.doi.org/10.1109/ASE.2013.6693121
http://dx.doi.org/10.1109/ASE.2013.6693121
http://dx.doi.org/10.1109/ASE.2013.6693121
http://dx.doi.org/10.1109/ASE.2013.6693121
http://dx.doi.org/10.1109/ICST.2015.7102595
http://dx.doi.org/10.1109/ICST.2015.7102595
http://dx.doi.org/10.1109/ICST.2015.7102595
http://dx.doi.org/10.1109/ICST.2015.7102595

[237] M. Staats, G. Gay, M. P. E. Heimdahl, Automated oracle creation sup-

port, or: How I learned to stop worrying about fault propagation and love

mutation testing, in: 34th International Conference on Software Engineer-

ing, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 2012, pp. 870–880.

doi:10.1109/ICSE.2012.6227132.

URL http://dx.doi.org/10.1109/ICSE.2012.6227132

[238] G. Gay, M. Staats, M. W. Whalen, M. P. E. Heimdahl, Automated oracle

data selection support, IEEE Trans. Software Eng. 41 (11) (2015) 1119–

1137. doi:10.1109/TSE.2015.2436920.

URL https://doi.org/10.1109/TSE.2015.2436920

[239] G. Jahangirova, D. Clark, M. Harman, P. Tonella, Test oracle assessment

and improvement, in: Proceedings of the 25th International Symposium

on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany,

July 18-20, 2016, 2016, pp. 247–258. doi:10.1145/2931037.2931062.

URL http://doi.acm.org/10.1145/2931037.2931062

[240] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, The oracle

problem in software testing: A survey, IEEE Trans. Software Eng. 41 (5)

(2015) 507–525. doi:10.1109/TSE.2014.2372785.

URL https://doi.org/10.1109/TSE.2014.2372785

[241] M. Papadakis, Y. L. Traon, Using mutants to locate ”unknown” faults,

in: Fifth IEEE International Conference on Software Testing, Verification

and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012,

2012, pp. 691–700. doi:10.1109/ICST.2012.159.

URL http://dx.doi.org/10.1109/ICST.2012.159

[242] T. T. Chekam, M. Papadakis, Y. L. Traon, Assessing and comparing

mutation-based fault localization techniques, CoRR abs/1607.05512.

URL http://arxiv.org/abs/1607.05512

[243] S. Moon, Y. Kim, M. Kim, S. Yoo, Ask the mutants: Mutating faulty

programs for fault localization, in: Seventh IEEE International Conference

123

http://dx.doi.org/10.1109/ICSE.2012.6227132
http://dx.doi.org/10.1109/ICSE.2012.6227132
http://dx.doi.org/10.1109/ICSE.2012.6227132
http://dx.doi.org/10.1109/ICSE.2012.6227132
http://dx.doi.org/10.1109/ICSE.2012.6227132
https://doi.org/10.1109/TSE.2015.2436920
https://doi.org/10.1109/TSE.2015.2436920
http://dx.doi.org/10.1109/TSE.2015.2436920
https://doi.org/10.1109/TSE.2015.2436920
http://doi.acm.org/10.1145/2931037.2931062
http://doi.acm.org/10.1145/2931037.2931062
http://dx.doi.org/10.1145/2931037.2931062
http://doi.acm.org/10.1145/2931037.2931062
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/ICST.2012.159
http://dx.doi.org/10.1109/ICST.2012.159
http://dx.doi.org/10.1109/ICST.2012.159
http://arxiv.org/abs/1607.05512
http://arxiv.org/abs/1607.05512
http://arxiv.org/abs/1607.05512
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/ICST.2014.28

on Software Testing, Verification and Validation, ICST 2014, March 31

2014-April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 153–162. doi:10.

1109/ICST.2014.28.

URL https://doi.org/10.1109/ICST.2014.28

[244] L. Zhang, L. Zhang, S. Khurshid, Injecting mechanical faults to local-

ize developer faults for evolving software, in: Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Program-

ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH

2013, Indianapolis, IN, USA, October 26-31, 2013, 2013, pp. 765–784.

doi:10.1145/2509136.2509551.

URL http://doi.acm.org/10.1145/2509136.2509551

[245] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, M. Kim, Mutation-

based fault localization for real-world multilingual programs (T), in: 30th

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, 2015, pp. 464–

475. doi:10.1109/ASE.2015.14.

URL http://dx.doi.org/10.1109/ASE.2015.14

[246] S. Hong, T. Kwak, B. Lee, Y. Jeon, B. Ko, Y. Kim, M. Kim, MU-

SEUM: debugging real-world multilingual programs using mutation anal-

ysis, Information & Software Technology 82 (2017) 80–95. doi:10.1016/

j.infsof.2016.10.002.

URL https://doi.org/10.1016/j.infsof.2016.10.002

[247] S. S. Murtaza, N. H. Madhavji, M. Gittens, Z. Li, Diagnosing new faults

using mutants and prior faults, in: Proceedings of the 33rd International

Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu ,

HI, USA, May 21-28, 2011, 2011, pp. 960–963. doi:10.1145/1985793.

1985959.

URL http://doi.acm.org/10.1145/1985793.1985959

124

http://dx.doi.org/10.1109/ICST.2014.28
http://dx.doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/ICST.2014.28
http://doi.acm.org/10.1145/2509136.2509551
http://doi.acm.org/10.1145/2509136.2509551
http://dx.doi.org/10.1145/2509136.2509551
http://doi.acm.org/10.1145/2509136.2509551
http://dx.doi.org/10.1109/ASE.2015.14
http://dx.doi.org/10.1109/ASE.2015.14
http://dx.doi.org/10.1109/ASE.2015.14
http://dx.doi.org/10.1109/ASE.2015.14
https://doi.org/10.1016/j.infsof.2016.10.002
https://doi.org/10.1016/j.infsof.2016.10.002
https://doi.org/10.1016/j.infsof.2016.10.002
http://dx.doi.org/10.1016/j.infsof.2016.10.002
http://dx.doi.org/10.1016/j.infsof.2016.10.002
https://doi.org/10.1016/j.infsof.2016.10.002
http://doi.acm.org/10.1145/1985793.1985959
http://doi.acm.org/10.1145/1985793.1985959
http://dx.doi.org/10.1145/1985793.1985959
http://dx.doi.org/10.1145/1985793.1985959
http://doi.acm.org/10.1145/1985793.1985959

[248] S. S. Murtaza, A. Hamou-Lhadj, N. H. Madhavji, M. Gittens, An em-

pirical study on the use of mutant traces for diagnosis of faults in

deployed systems, Journal of Systems and Software 90 (2014) 29–44.

doi:10.1016/j.jss.2013.11.1094.

URL https://doi.org/10.1016/j.jss.2013.11.1094

[249] V. Musco, M. Monperrus, P. Preux, Mutation-based graph inference for

fault localization, in: 16th IEEE International Working Conference on

Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA,

October 2-3, 2016, 2016, pp. 97–106. doi:10.1109/SCAM.2016.24.

URL http://dx.doi.org/10.1109/SCAM.2016.24

[250] V. Debroy, W. E. Wong, Using mutation to automatically suggest fixes for

faulty programs, in: Third International Conference on Software Testing,

Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010,

2010, pp. 65–74. doi:10.1109/ICST.2010.66.

URL http://dx.doi.org/10.1109/ICST.2010.66

[251] V. Debroy, W. E. Wong, Combining mutation and fault localization for

automated program debugging, Journal of Systems and Software 90 (2014)

45–60. doi:10.1016/j.jss.2013.10.042.

URL https://doi.org/10.1016/j.jss.2013.10.042

[252] W. Weimer, T. Nguyen, C. Le Goues, S. Forrest, Automatically finding

patches using genetic programming, in: 31st International Conference on

Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,

Proceedings, 2009, pp. 364–374. doi:10.1109/ICSE.2009.5070536.

URL http://dx.doi.org/10.1109/ICSE.2009.5070536

[253] C. Le Goues, M. Dewey-Vogt, S. Forrest, W. Weimer, A systematic study

of automated program repair: Fixing 55 out of 105 bugs for $8 each, in:

34th International Conference on Software Engineering, ICSE 2012, June

2-9, 2012, Zurich, Switzerland, 2012, pp. 3–13. doi:10.1109/ICSE.2012.

125

https://doi.org/10.1016/j.jss.2013.11.1094
https://doi.org/10.1016/j.jss.2013.11.1094
https://doi.org/10.1016/j.jss.2013.11.1094
http://dx.doi.org/10.1016/j.jss.2013.11.1094
https://doi.org/10.1016/j.jss.2013.11.1094
http://dx.doi.org/10.1109/SCAM.2016.24
http://dx.doi.org/10.1109/SCAM.2016.24
http://dx.doi.org/10.1109/SCAM.2016.24
http://dx.doi.org/10.1109/SCAM.2016.24
http://dx.doi.org/10.1109/ICST.2010.66
http://dx.doi.org/10.1109/ICST.2010.66
http://dx.doi.org/10.1109/ICST.2010.66
http://dx.doi.org/10.1109/ICST.2010.66
https://doi.org/10.1016/j.jss.2013.10.042
https://doi.org/10.1016/j.jss.2013.10.042
http://dx.doi.org/10.1016/j.jss.2013.10.042
https://doi.org/10.1016/j.jss.2013.10.042
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/ICSE.2012.6227211

6227211.

URL http://dx.doi.org/10.1109/ICSE.2012.6227211

[254] W. Weimer, Z. P. Fry, S. Forrest, Leveraging program equivalence

for adaptive program repair: Models and first results, in: 2013 28th

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, 2013, pp.

356–366. doi:10.1109/ASE.2013.6693094.

URL http://dx.doi.org/10.1109/ASE.2013.6693094

[255] S. H. Tan, A. Roychoudhury, relifix: Automated repair of software regres-

sions, in: 37th IEEE/ACM International Conference on Software Engi-

neering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015,

pp. 471–482. doi:10.1109/ICSE.2015.65.

URL http://dx.doi.org/10.1109/ICSE.2015.65

[256] F. Long, M. Rinard, Staged program repair with condition synthesis, in:

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,

2015, 2015, pp. 166–178. doi:10.1145/2786805.2786811.

URL http://doi.acm.org/10.1145/2786805.2786811

[257] D. Kim, J. Nam, J. Song, S. Kim, Automatic patch generation learned

from human-written patches, in: 35th International Conference on Soft-

ware Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,

2013, pp. 802–811. doi:10.1109/ICSE.2013.6606626.

URL https://doi.org/10.1109/ICSE.2013.6606626

[258] J. Petke, S. Haraldsson, M. Harman, w. langdon, D. White, J. Wood-

ward, Genetic improvement of software: a comprehensive survey, IEEE

Transactions on Evolutionary Computation PP (99) (2017) 1–1. doi:

10.1109/TEVC.2017.2693219.

[259] S. Chandra, E. Torlak, S. Barman, R. Bod́ık, Angelic debugging, in: Pro-

ceedings of the 33rd International Conference on Software Engineering,

126

http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1109/ICSE.2015.65
http://dx.doi.org/10.1109/ICSE.2015.65
http://dx.doi.org/10.1109/ICSE.2015.65
http://dx.doi.org/10.1109/ICSE.2015.65
http://doi.acm.org/10.1145/2786805.2786811
http://dx.doi.org/10.1145/2786805.2786811
http://doi.acm.org/10.1145/2786805.2786811
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
http://dx.doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
http://dx.doi.org/10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1109/TEVC.2017.2693219
http://doi.acm.org/10.1145/1985793.1985811

ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, 2011, pp.

121–130. doi:10.1145/1985793.1985811.

URL http://doi.acm.org/10.1145/1985793.1985811

[260] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, L. Zhang,

Predictive mutation testing, in: Proceedings of the 25th International

Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,

Germany, July 18-20, 2016, 2016, pp. 342–353. doi:10.1145/2931037.

2931038.

URL http://doi.acm.org/10.1145/2931037.2931038

[261] J. M. Rojas, G. Fraser, Code defenders: A mutation testing game, in:

Ninth IEEE International Conference on Software Testing, Verification

and Validation Workshops, ICST Workshops 2016, Chicago, IL, USA,

April 11-15, 2016, 2016, pp. 162–167. doi:10.1109/ICSTW.2016.43.

URL https://doi.org/10.1109/ICSTW.2016.43

[262] J. M. Rojas, T. D. White, B. S. Clegg, G. Fraser, Code defenders: crowd-

sourcing effective tests and subtle mutants with a mutation testing game,

in: Proceedings of the 39th International Conference on Software Engi-

neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp.

677–688.

URL http://dl.acm.org/citation.cfm?id=3097449

[263] M. Harman, Y. Jia, W. B. Langdon, A manifesto for higher order mu-

tation testing, in: Third International Conference on Software Testing,

Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010,

Workshops Proceedings, 2010, pp. 80–89. doi:10.1109/ICSTW.2010.13.

URL https://doi.org/10.1109/ICSTW.2010.13

[264] Y. Jia, M. Harman, Constructing subtle faults using higher order mutation

testing, in: Eighth IEEE International Working Conference on Source

Code Analysis and Manipulation (SCAM 2008), 28-29 September 2008,

127

http://dx.doi.org/10.1145/1985793.1985811
http://doi.acm.org/10.1145/1985793.1985811
http://doi.acm.org/10.1145/2931037.2931038
http://dx.doi.org/10.1145/2931037.2931038
http://dx.doi.org/10.1145/2931037.2931038
http://doi.acm.org/10.1145/2931037.2931038
https://doi.org/10.1109/ICSTW.2016.43
http://dx.doi.org/10.1109/ICSTW.2016.43
https://doi.org/10.1109/ICSTW.2016.43
http://dl.acm.org/citation.cfm?id=3097449
http://dl.acm.org/citation.cfm?id=3097449
http://dl.acm.org/citation.cfm?id=3097449
https://doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1109/ICSTW.2010.13
http://dx.doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1109/ICSTW.2010.13
https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/SCAM.2008.36

Beijing, China, 2008, pp. 249–258. doi:10.1109/SCAM.2008.36.

URL https://doi.org/10.1109/SCAM.2008.36

[265] M. Harman, Y. Jia, P. R. Mateo, M. Polo, Angels and monsters: an em-

pirical investigation of potential test effectiveness and efficiency improve-

ment from strongly subsuming higher order mutation, in: ACM/IEEE

International Conference on Automated Software Engineering, ASE ’14,

Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 397–408. doi:

10.1145/2642937.2643008.

URL http://doi.acm.org/10.1145/2642937.2643008

[266] E. Omar, S. Ghosh, D. Whitley, Constructing subtle higher order mu-

tants for java and aspectj programs, in: IEEE 24th International Sym-

posium on Software Reliability Engineering, ISSRE 2013, Pasadena, CA,

USA, November 4-7, 2013, 2013, pp. 340–349. doi:10.1109/ISSRE.2013.

6698887.

URL https://doi.org/10.1109/ISSRE.2013.6698887

[267] E. Omar, S. Ghosh, D. Whitley, Subtle higher order mutants, Information

& Software Technology 81 (2017) 3–18. doi:10.1016/j.infsof.2016.

01.016.

URL https://doi.org/10.1016/j.infsof.2016.01.016

[268] E. Omar, S. Ghosh, D. Whitley, Comparing search techniques for finding

subtle higher order mutants, in: Genetic and Evolutionary Computation

Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014, 2014,

pp. 1271–1278. doi:10.1145/2576768.2598286.

URL http://doi.acm.org/10.1145/2576768.2598286

[269] F. Wu, M. Harman, Y. Jia, J. Krinke, HOMI: searching higher or-

der mutants for software improvement, in: Search Based Software En-

gineering - 8th International Symposium, SSBSE 2016, Raleigh, NC,

USA, October 8-10, 2016, Proceedings, 2016, pp. 18–33. doi:10.1007/

128

http://dx.doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/SCAM.2008.36
http://doi.acm.org/10.1145/2642937.2643008
http://doi.acm.org/10.1145/2642937.2643008
http://doi.acm.org/10.1145/2642937.2643008
http://dx.doi.org/10.1145/2642937.2643008
http://dx.doi.org/10.1145/2642937.2643008
http://doi.acm.org/10.1145/2642937.2643008
https://doi.org/10.1109/ISSRE.2013.6698887
https://doi.org/10.1109/ISSRE.2013.6698887
http://dx.doi.org/10.1109/ISSRE.2013.6698887
http://dx.doi.org/10.1109/ISSRE.2013.6698887
https://doi.org/10.1109/ISSRE.2013.6698887
https://doi.org/10.1016/j.infsof.2016.01.016
http://dx.doi.org/10.1016/j.infsof.2016.01.016
http://dx.doi.org/10.1016/j.infsof.2016.01.016
https://doi.org/10.1016/j.infsof.2016.01.016
http://doi.acm.org/10.1145/2576768.2598286
http://doi.acm.org/10.1145/2576768.2598286
http://dx.doi.org/10.1145/2576768.2598286
http://doi.acm.org/10.1145/2576768.2598286
http://dx.doi.org/10.1007/978-3-319-47106-8_2
http://dx.doi.org/10.1007/978-3-319-47106-8_2
http://dx.doi.org/10.1007/978-3-319-47106-8_2
http://dx.doi.org/10.1007/978-3-319-47106-8_2

978-3-319-47106-8_2.

URL http://dx.doi.org/10.1007/978-3-319-47106-8_2

[270] D. Shin, S. Yoo, D. Bae, Diversity-aware mutation adequacy criterion

for improving fault detection capability, in: Ninth IEEE International

Conference on Software Testing, Verification and Validation Workshops,

ICST Workshops 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp.

122–131. doi:10.1109/ICSTW.2016.37.

URL https://doi.org/10.1109/ICSTW.2016.37

[271] D. Shin, S. Yoo, D. H. Bae, A theoretical and empirical study of diversity-

aware mutation adequacy criterion, IEEE Transactions on Software Engi-

neering PP (99) (2017) 1–1. doi:10.1109/TSE.2017.2732347.

[272] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. L. Traon, Assessing

software product line testing via model-based mutation: An application

to similarity testing, in: Sixth IEEE International Conference on Software

Testing, Verification and Validation, ICST 2013 Workshops Proceedings,

Luxembourg, Luxembourg, March 18-22, 2013, 2013, pp. 188–197. doi:

10.1109/ICSTW.2013.30.

URL http://dx.doi.org/10.1109/ICSTW.2013.30

[273] C. Henard, M. Papadakis, Y. L. Traon, Mutalog: A tool for mutating

logic formulas, in: Seventh IEEE International Conference on Software

Testing, Verification and Validation, ICST 2014 Workshops Proceedings,

March 31 - April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 399–404. doi:

10.1109/ICSTW.2014.54.

URL https://doi.org/10.1109/ICSTW.2014.54

[274] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. L. Traon, Towards

automated testing and fixing of re-engineered feature models, in: 35th In-

ternational Conference on Software Engineering, ICSE ’13, San Francisco,

CA, USA, May 18-26, 2013, 2013, pp. 1245–1248. doi:10.1109/ICSE.

129

http://dx.doi.org/10.1007/978-3-319-47106-8_2
http://dx.doi.org/10.1007/978-3-319-47106-8_2
http://dx.doi.org/10.1007/978-3-319-47106-8_2
https://doi.org/10.1109/ICSTW.2016.37
https://doi.org/10.1109/ICSTW.2016.37
http://dx.doi.org/10.1109/ICSTW.2016.37
https://doi.org/10.1109/ICSTW.2016.37
http://dx.doi.org/10.1109/TSE.2017.2732347
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1109/ICSTW.2013.30
https://doi.org/10.1109/ICSTW.2014.54
https://doi.org/10.1109/ICSTW.2014.54
http://dx.doi.org/10.1109/ICSTW.2014.54
http://dx.doi.org/10.1109/ICSTW.2014.54
https://doi.org/10.1109/ICSTW.2014.54
https://doi.org/10.1109/ICSE.2013.6606689
https://doi.org/10.1109/ICSE.2013.6606689
http://dx.doi.org/10.1109/ICSE.2013.6606689
http://dx.doi.org/10.1109/ICSE.2013.6606689

2013.6606689.

URL https://doi.org/10.1109/ICSE.2013.6606689

[275] C. Henard, M. Papadakis, Y. L. Traon, Mutation-based generation of

software product line test configurations, in: Search-Based Software En-

gineering - 6th International Symposium, SSBSE 2014, Fortaleza, Brazil,

August 26-29, 2014. Proceedings, 2014, pp. 92–106. doi:10.1007/

978-3-319-09940-8_7.

URL http://dx.doi.org/10.1007/978-3-319-09940-8_7

[276] R. A. M. Filho, S. R. Vergilio, A mutation and multi-objective test

data generation approach for feature testing of software product lines,

in: 29th Brazilian Symposium on Software Engineering, SBES 2015,

Belo Horizonte, MG, Brazil, September 21-26, 2015, 2015, pp. 21–30.

doi:10.1109/SBES.2015.17.

URL https://doi.org/10.1109/SBES.2015.17

[277] R. A. M. Filho, S. R. Vergilio, A multi-objective test data generation

approach for mutation testing of feature models, J. Software Eng. R&D 4

(2016) 4. doi:10.1186/s40411-016-0030-9.

URL https://doi.org/10.1186/s40411-016-0030-9

[278] P. Arcaini, A. Gargantini, P. Vavassori, Generating tests for detecting

faults in feature models, in: 8th IEEE International Conference on Soft-

ware Testing, Verification and Validation, ICST 2015, Graz, Austria, April

13-17, 2015, 2015, pp. 1–10. doi:10.1109/ICST.2015.7102591.

URL http://dx.doi.org/10.1109/ICST.2015.7102591

[279] P. Arcaini, A. Gargantini, P. Vavassori, Automatic detection and re-

moval of conformance faults in feature models, in: 2016 IEEE Inter-

national Conference on Software Testing, Verification and Validation,

ICST 2016, Chicago, IL, USA, April 11-15, 2016, 2016, pp. 102–112.

doi:10.1109/ICST.2016.10.

URL http://dx.doi.org/10.1109/ICST.2016.10

130

http://dx.doi.org/10.1109/ICSE.2013.6606689
http://dx.doi.org/10.1109/ICSE.2013.6606689
https://doi.org/10.1109/ICSE.2013.6606689
http://dx.doi.org/10.1007/978-3-319-09940-8_7
http://dx.doi.org/10.1007/978-3-319-09940-8_7
http://dx.doi.org/10.1007/978-3-319-09940-8_7
http://dx.doi.org/10.1007/978-3-319-09940-8_7
http://dx.doi.org/10.1007/978-3-319-09940-8_7
https://doi.org/10.1109/SBES.2015.17
https://doi.org/10.1109/SBES.2015.17
http://dx.doi.org/10.1109/SBES.2015.17
https://doi.org/10.1109/SBES.2015.17
https://doi.org/10.1186/s40411-016-0030-9
https://doi.org/10.1186/s40411-016-0030-9
http://dx.doi.org/10.1186/s40411-016-0030-9
https://doi.org/10.1186/s40411-016-0030-9
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/ICST.2016.10
http://dx.doi.org/10.1109/ICST.2016.10
http://dx.doi.org/10.1109/ICST.2016.10
http://dx.doi.org/10.1109/ICST.2016.10

[280] M. B. Trakhtenbrot, Implementation-oriented mutation testing of stat-

echart models, in: Third International Conference on Software Testing,

Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010,

Workshops Proceedings, 2010, pp. 120–125. doi:10.1109/ICSTW.2010.

55.

URL http://dx.doi.org/10.1109/ICSTW.2010.55

[281] B. K. Aichernig, E. Jöbstl, Towards symbolic model-based mutation test-

ing: Pitfalls in expressing semantics as constraints, in: Fifth IEEE In-

ternational Conference on Software Testing, Verification and Validation,

ICST 2012, Montreal, QC, Canada, April 17-21, 2012, 2012, pp. 752–757.

doi:10.1109/ICST.2012.169.

URL http://dx.doi.org/10.1109/ICST.2012.169

[282] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, Efficient mutation killers

in action, in: Fourth IEEE International Conference on Software Testing,

Verification and Validation, ICST 2011, Berlin, Germany, March 21-25,

2011, 2011, pp. 120–129. doi:10.1109/ICST.2011.57.

URL http://dx.doi.org/10.1109/ICST.2011.57

[283] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, S. Tiran,

Killing strategies for model-based mutation testing, Softw. Test., Verif.

Reliab. 25 (8) (2015) 716–748. doi:10.1002/stvr.1522.

URL http://dx.doi.org/10.1002/stvr.1522

[284] F. Belli, M. Beyazit, Exploiting model morphology for event-based testing,

IEEE Trans. Software Eng. 41 (2) (2015) 113–134. doi:10.1109/TSE.

2014.2360690.

URL https://doi.org/10.1109/TSE.2014.2360690

[285] K. El-Fakih, A. Kolomeez, S. Prokopenko, N. Yevtushenko, Extended

finite state machine based test derivation driven by user defined faults,

in: First International Conference on Software Testing, Verification, and

Validation, ICST 2008, Lillehammer, Norway, April 9-11, 2008, 2008, pp.

131

http://dx.doi.org/10.1109/ICSTW.2010.55
http://dx.doi.org/10.1109/ICSTW.2010.55
http://dx.doi.org/10.1109/ICSTW.2010.55
http://dx.doi.org/10.1109/ICSTW.2010.55
http://dx.doi.org/10.1109/ICSTW.2010.55
http://dx.doi.org/10.1109/ICST.2012.169
http://dx.doi.org/10.1109/ICST.2012.169
http://dx.doi.org/10.1109/ICST.2012.169
http://dx.doi.org/10.1109/ICST.2012.169
http://dx.doi.org/10.1109/ICST.2011.57
http://dx.doi.org/10.1109/ICST.2011.57
http://dx.doi.org/10.1109/ICST.2011.57
http://dx.doi.org/10.1109/ICST.2011.57
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1002/stvr.1522
https://doi.org/10.1109/TSE.2014.2360690
http://dx.doi.org/10.1109/TSE.2014.2360690
http://dx.doi.org/10.1109/TSE.2014.2360690
https://doi.org/10.1109/TSE.2014.2360690
http://dx.doi.org/10.1109/ICST.2008.16
http://dx.doi.org/10.1109/ICST.2008.16

308–317. doi:10.1109/ICST.2008.16.

URL http://dx.doi.org/10.1109/ICST.2008.16

[286] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,

Z. Su, Guided, stochastic model-based gui testing of android apps, in:

Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, ACM, New York, NY, USA, 2017, pp.

245–256. doi:10.1145/3106237.3106298.

URL http://doi.acm.org/10.1145/3106237.3106298

[287] B. K. Aichernig, S. Marcovic, R. Schumi, Property-based testing with

external test-case generators, in: 2017 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 2017,

pp. 337–346. doi:10.1109/ICSTW.2017.62.

[288] B. K. Aichernig, F. Lorber, Towards generation of adaptive test cases

from partial models of determinized timed automata, in: Eighth IEEE

International Conference on Software Testing, Verification and Validation,

ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, 2015, pp. 1–6.

doi:10.1109/ICSTW.2015.7107409.

URL http://dx.doi.org/10.1109/ICSTW.2015.7107409

[289] B. K. Aichernig, F. Lorber, D. Nickovic, Time for mutants - model-based

mutation testing with timed automata, in: Tests and Proofs - 7th Inter-

national Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013.

Proceedings, 2013, pp. 20–38. doi:10.1007/978-3-642-38916-0_2.

URL https://doi.org/10.1007/978-3-642-38916-0_2

[290] K. G. Larsen, F. Lorber, B. Nielsen, U. M. Nyman, Mutation-based test-

case generation with ecdar, in: 2017 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 2017,

pp. 319–328. doi:10.1109/ICSTW.2017.60.

[291] T. Zhou, H. Sun, J. Liu, X. Chen, D. Du, Improving testing cover-

age for safety-critical system by mutated specification, in: 21st Asia-

132

http://dx.doi.org/10.1109/ICST.2008.16
http://dx.doi.org/10.1109/ICST.2008.16
http://doi.acm.org/10.1145/3106237.3106298
http://dx.doi.org/10.1145/3106237.3106298
http://doi.acm.org/10.1145/3106237.3106298
http://dx.doi.org/10.1109/ICSTW.2017.62
http://dx.doi.org/10.1109/ICSTW.2015.7107409
http://dx.doi.org/10.1109/ICSTW.2015.7107409
http://dx.doi.org/10.1109/ICSTW.2015.7107409
http://dx.doi.org/10.1109/ICSTW.2015.7107409
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1109/APSEC.2014.15
https://doi.org/10.1109/APSEC.2014.15

Pacific Software Engineering Conference, APSEC 2014, Jeju, South Ko-

rea, December 1-4, 2014. Volume 1: Research Papers, 2014, pp. 43–46.

doi:10.1109/APSEC.2014.15.

URL https://doi.org/10.1109/APSEC.2014.15

[292] S. F. Adra, P. McMinn, Mutation operators for agent-based models, in:

Third International Conference on Software Testing, Verification and Vali-

dation, ICST 2010, Paris, France, April 7-9, 2010, Workshops Proceedings,

2010, pp. 151–156. doi:10.1109/ICSTW.2010.9.

URL http://dx.doi.org/10.1109/ICSTW.2010.9

[293] M. Stephan, M. H. Alalfi, A. Stevenson, J. R. Cordy, Using mutation

analysis for a model-clone detector comparison framework, in: 35th In-

ternational Conference on Software Engineering, ICSE ’13, San Francisco,

CA, USA, May 18-26, 2013, 2013, pp. 1261–1264. doi:10.1109/ICSE.

2013.6606693.

URL http://dx.doi.org/10.1109/ICSE.2013.6606693

[294] C. K. Roy, J. R. Cordy, A mutation/injection-based automatic framework

for evaluating code clone detection tools, in: Second International Confer-

ence on Software Testing Verification and Validation, ICST 2009, Denver,

Colorado, USA, April 1-4, 2009, Workshops Proceedings, 2009, pp. 157–

166. doi:10.1109/ICSTW.2009.18.

URL http://dx.doi.org/10.1109/ICSTW.2009.18

[295] M. Stephan, M. H. Alalfi, J. R. Cordy, Towards a taxonomy for simulink

model mutations, in: Seventh IEEE International Conference on Software

Testing, Verification and Validation, ICST 2014 Workshops Proceedings,

March 31 - April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 206–215. doi:

10.1109/ICSTW.2014.17.

URL http://dx.doi.org/10.1109/ICSTW.2014.17

[296] I. Pill, I. Rubil, F. Wotawa, M. Nica, SIMULTATE: A toolset for fault

injection and mutation testing of simulink models, in: Ninth IEEE In-

133

http://dx.doi.org/10.1109/APSEC.2014.15
https://doi.org/10.1109/APSEC.2014.15
http://dx.doi.org/10.1109/ICSTW.2010.9
http://dx.doi.org/10.1109/ICSTW.2010.9
http://dx.doi.org/10.1109/ICSTW.2010.9
http://dx.doi.org/10.1109/ICSE.2013.6606693
http://dx.doi.org/10.1109/ICSE.2013.6606693
http://dx.doi.org/10.1109/ICSE.2013.6606693
http://dx.doi.org/10.1109/ICSE.2013.6606693
http://dx.doi.org/10.1109/ICSE.2013.6606693
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1109/ICSTW.2009.18
http://dx.doi.org/10.1109/ICSTW.2014.17
http://dx.doi.org/10.1109/ICSTW.2014.17
http://dx.doi.org/10.1109/ICSTW.2014.17
http://dx.doi.org/10.1109/ICSTW.2014.17
http://dx.doi.org/10.1109/ICSTW.2014.17
http://dx.doi.org/10.1109/ICSTW.2016.21
http://dx.doi.org/10.1109/ICSTW.2016.21

ternational Conference on Software Testing, Verification and Validation

Workshops, ICST Workshops 2016, Chicago, IL, USA, April 11-15, 2016,

2016, pp. 168–173. doi:10.1109/ICSTW.2016.21.

URL http://dx.doi.org/10.1109/ICSTW.2016.21

[297] Y. Khan, J. Hassine, Mutation operators for the atlas transformation

language, in: Sixth IEEE International Conference on Software Test-

ing, Verification and Validation, ICST 2013 Workshops Proceedings,

Luxembourg, Luxembourg, March 18-22, 2013, 2013, pp. 43–52. doi:

10.1109/ICSTW.2013.13.

URL http://dx.doi.org/10.1109/ICSTW.2013.13

[298] J. Troya, A. Bergmayr, L. Burgueño, M. Wimmer, Towards systematic

mutations for and with ATL model transformations, in: Eighth IEEE

International Conference on Software Testing, Verification and Validation,

ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, 2015, pp. 1–10.

doi:10.1109/ICSTW.2015.7107455.

URL http://dx.doi.org/10.1109/ICSTW.2015.7107455

[299] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, J. Bézivin, On the use of higher-

order model transformations, in: Model Driven Architecture - Founda-

tions and Applications: 5th European Conference, ECMDA-FA 2009, En-

schede, The Netherlands, June 23-26, 2009. Proceedings, Vol. 5562 of

LNCS, 2009, pp. 18–33. doi:10.1007/978-3-642-02674-4_3.

URL http://dx.doi.org/10.1007/978-3-642-02674-4_3

[300] V. Aranega, J. Mottu, A. Etien, T. Degueule, B. Baudry, J. Dekeyser,

Towards an automation of the mutation analysis dedicated to model

transformation, Softw. Test., Verif. Reliab. 25 (5-7) (2015) 653–683.

doi:10.1002/stvr.1532.

URL http://dx.doi.org/10.1002/stvr.1532

[301] A. Bartel, B. Baudry, F. Munoz, J. Klein, T. Mouelhi, Y. L. Traon, Model

driven mutation applied to adaptative systems testing, in: Fourth IEEE

134

http://dx.doi.org/10.1109/ICSTW.2016.21
http://dx.doi.org/10.1109/ICSTW.2016.21
http://dx.doi.org/10.1109/ICSTW.2013.13
http://dx.doi.org/10.1109/ICSTW.2013.13
http://dx.doi.org/10.1109/ICSTW.2013.13
http://dx.doi.org/10.1109/ICSTW.2013.13
http://dx.doi.org/10.1109/ICSTW.2013.13
http://dx.doi.org/10.1109/ICSTW.2015.7107455
http://dx.doi.org/10.1109/ICSTW.2015.7107455
http://dx.doi.org/10.1109/ICSTW.2015.7107455
http://dx.doi.org/10.1109/ICSTW.2015.7107455
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1002/stvr.1532
http://dx.doi.org/10.1002/stvr.1532
http://dx.doi.org/10.1002/stvr.1532
http://dx.doi.org/10.1002/stvr.1532
http://dx.doi.org/10.1109/ICSTW.2011.24
http://dx.doi.org/10.1109/ICSTW.2011.24

International Conference on Software Testing, Verification and Validation,

ICST 2011 Workshops Proceedings, March 21 - March 25, 2011, Berlin,

Germany, 2011, pp. 408–413. doi:10.1109/ICSTW.2011.24.

URL http://dx.doi.org/10.1109/ICSTW.2011.24

[302] P. Arcaini, A. Gargantini, E. Riccobene, Using mutation to assess fault

detection capability of model review, Softw. Test., Verif. Reliab. 25 (5-7)

(2015) 629–652. doi:10.1002/stvr.1530.

URL http://dx.doi.org/10.1002/stvr.1530

[303] M. Kaplan, T. Klinger, A. M. Paradkar, A. Sinha, C. Williams, C. Yilmaz,

Less is more: A minimalistic approach to UML model-based conformance

test generation, in: First International Conference on Software Testing,

Verification, and Validation, ICST 2008, Lillehammer, Norway, April 9-

11, 2008, 2008, pp. 82–91. doi:10.1109/ICST.2008.48.

URL http://dx.doi.org/10.1109/ICST.2008.48

[304] G. Fraser, F. Wotawa, Using model-checkers to generate and analyze prop-

erty relevant test-cases, Software Quality Journal 16 (2) (2008) 161–183.

doi:10.1007/s11219-007-9031-6.

URL https://doi.org/10.1007/s11219-007-9031-6

[305] M. Trakhtenbrot, Mutation patterns for temporal requirements of reactive

systems, in: 2017 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), 2017, pp. 116–121. doi:

10.1109/ICSTW.2017.27.

[306] A. Sullivan, K. Wang, R. N. Zaeem, S. Khurshid, Automated test gener-

ation and mutation testing for alloy, in: 2017 IEEE International Confer-

ence on Software Testing, Verification and Validation (ICST), 2017, pp.

264–275. doi:10.1109/ICST.2017.31.

[307] D. Xu, O. el Ariss, W. Xu, L. Wang, Testing aspect-oriented programs

with finite state machines, Softw. Test., Verif. Reliab. 22 (4) (2012) 267–

293. doi:10.1002/stvr.440.

135

http://dx.doi.org/10.1109/ICSTW.2011.24
http://dx.doi.org/10.1109/ICSTW.2011.24
http://dx.doi.org/10.1002/stvr.1530
http://dx.doi.org/10.1002/stvr.1530
http://dx.doi.org/10.1002/stvr.1530
http://dx.doi.org/10.1002/stvr.1530
http://dx.doi.org/10.1109/ICST.2008.48
http://dx.doi.org/10.1109/ICST.2008.48
http://dx.doi.org/10.1109/ICST.2008.48
http://dx.doi.org/10.1109/ICST.2008.48
https://doi.org/10.1007/s11219-007-9031-6
https://doi.org/10.1007/s11219-007-9031-6
http://dx.doi.org/10.1007/s11219-007-9031-6
https://doi.org/10.1007/s11219-007-9031-6
http://dx.doi.org/10.1109/ICSTW.2017.27
http://dx.doi.org/10.1109/ICSTW.2017.27
http://dx.doi.org/10.1109/ICST.2017.31
http://dx.doi.org/10.1002/stvr.440

[308] B. Lindström, S. F. Andler, J. Offutt, P. Pettersson, D. Sundmark, Mu-

tating aspect-oriented models to test cross-cutting concerns, in: Eighth

IEEE International Conference on Software Testing, Verification and Val-

idation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, 2015,

pp. 1–10. doi:10.1109/ICSTW.2015.7107456.

URL https://doi.org/10.1109/ICSTW.2015.7107456

[309] Y. Elrakaiby, T. Mouelhi, Y. L. Traon, Testing obligation policy en-

forcement using mutation analysis, in: Fifth IEEE International Con-

ference on Software Testing, Verification and Validation, ICST 2012,

Montreal, QC, Canada, April 17-21, 2012, 2012, pp. 673–680. doi:

10.1109/ICST.2012.157.

URL http://dx.doi.org/10.1109/ICST.2012.157

[310] T. Mouelhi, F. Fleurey, B. Baudry, A generic metamodel for security

policies mutation, in: First International Conference on Software Testing

Verification and Validation, ICST 2008, Lillehammer, Norway, April 9-11,

2008, Workshops Proceedings, 2008, pp. 278–286. doi:10.1109/ICSTW.

2008.2.

URL http://dx.doi.org/10.1109/ICSTW.2008.2

[311] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, F. Martinelli,

P. Mori, Testing of polpa-based usage control systems, Software Qual-

ity Journal 22 (2) (2014) 241–271. doi:10.1007/s11219-013-9216-0.

URL http://dx.doi.org/10.1007/s11219-013-9216-0

[312] T. Mouelhi, Y. L. Traon, B. Baudry, Transforming and selecting functional

test cases for security policy testing, in: Second International Conference

on Software Testing Verification and Validation, ICST 2009, Denver, Col-

orado, USA, April 1-4, 2009, 2009, pp. 171–180. doi:10.1109/ICST.

2009.49.

URL http://dx.doi.org/10.1109/ICST.2009.49

136

https://doi.org/10.1109/ICSTW.2015.7107456
https://doi.org/10.1109/ICSTW.2015.7107456
http://dx.doi.org/10.1109/ICSTW.2015.7107456
https://doi.org/10.1109/ICSTW.2015.7107456
http://dx.doi.org/10.1109/ICST.2012.157
http://dx.doi.org/10.1109/ICST.2012.157
http://dx.doi.org/10.1109/ICST.2012.157
http://dx.doi.org/10.1109/ICST.2012.157
http://dx.doi.org/10.1109/ICST.2012.157
http://dx.doi.org/10.1109/ICSTW.2008.2
http://dx.doi.org/10.1109/ICSTW.2008.2
http://dx.doi.org/10.1109/ICSTW.2008.2
http://dx.doi.org/10.1109/ICSTW.2008.2
http://dx.doi.org/10.1109/ICSTW.2008.2
http://dx.doi.org/10.1007/s11219-013-9216-0
http://dx.doi.org/10.1007/s11219-013-9216-0
http://dx.doi.org/10.1007/s11219-013-9216-0
http://dx.doi.org/10.1109/ICST.2009.49
http://dx.doi.org/10.1109/ICST.2009.49
http://dx.doi.org/10.1109/ICST.2009.49
http://dx.doi.org/10.1109/ICST.2009.49
http://dx.doi.org/10.1109/ICST.2009.49

[313] P. H. Nguyen, M. Papadakis, I. Rubab, Testing delegation policy enforce-

ment via mutation analysis, in: Sixth IEEE International Conference on

Software Testing, Verification and Validation, ICST 2013 Workshops Pro-

ceedings, Luxembourg, Luxembourg, March 18-22, 2013, 2013, pp. 34–42.

doi:10.1109/ICSTW.2013.12.

URL http://dx.doi.org/10.1109/ICSTW.2013.12

[314] J. Hwang, T. Xie, D. E. Kateb, T. Mouelhi, Y. L. Traon, Selection of

regression system tests for security policy evolution, in: IEEE/ACM In-

ternational Conference on Automated Software Engineering, ASE’12, Es-

sen, Germany, September 3-7, 2012, 2012, pp. 266–269. doi:10.1145/

2351676.2351719.

URL http://doi.acm.org/10.1145/2351676.2351719

[315] F. Dadeau, P. Héam, R. Kheddam, Mutation-based test generation from

security protocols in HLPSL, in: Fourth IEEE International Conference

on Software Testing, Verification and Validation, ICST 2011, Berlin, Ger-

many, March 21-25, 2011, 2011, pp. 240–248. doi:10.1109/ICST.2011.

42.

URL http://dx.doi.org/10.1109/ICST.2011.42

[316] F. Dadeau, P. Héam, R. Kheddam, G. Maatoug, M. Rusinowitch, Model-

based mutation testing from security protocols in HLPSL, Softw. Test.,

Verif. Reliab. 25 (5-7) (2015) 684–711. doi:10.1002/stvr.1531.

URL http://dx.doi.org/10.1002/stvr.1531

[317] M. Papadakis, C. Henard, Y. L. Traon, Sampling program inputs with

mutation analysis: Going beyond combinatorial interaction testing, in:

Seventh IEEE International Conference on Software Testing, Verification

and Validation, ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio,

USA, 2014, pp. 1–10. doi:10.1109/ICST.2014.11.

URL http://dx.doi.org/10.1109/ICST.2014.11

137

http://dx.doi.org/10.1109/ICSTW.2013.12
http://dx.doi.org/10.1109/ICSTW.2013.12
http://dx.doi.org/10.1109/ICSTW.2013.12
http://dx.doi.org/10.1109/ICSTW.2013.12
http://doi.acm.org/10.1145/2351676.2351719
http://doi.acm.org/10.1145/2351676.2351719
http://dx.doi.org/10.1145/2351676.2351719
http://dx.doi.org/10.1145/2351676.2351719
http://doi.acm.org/10.1145/2351676.2351719
http://dx.doi.org/10.1109/ICST.2011.42
http://dx.doi.org/10.1109/ICST.2011.42
http://dx.doi.org/10.1109/ICST.2011.42
http://dx.doi.org/10.1109/ICST.2011.42
http://dx.doi.org/10.1109/ICST.2011.42
http://dx.doi.org/10.1002/stvr.1531
http://dx.doi.org/10.1002/stvr.1531
http://dx.doi.org/10.1002/stvr.1531
http://dx.doi.org/10.1002/stvr.1531
http://dx.doi.org/10.1109/ICST.2014.11
http://dx.doi.org/10.1109/ICST.2014.11
http://dx.doi.org/10.1109/ICST.2014.11
http://dx.doi.org/10.1109/ICST.2014.11

[318] Z. Zhang, T. Wu, J. Zhang, Boundary value analysis in automatic white-

box test generation, in: 26th IEEE International Symposium on Software

Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November

2-5, 2015, 2015, pp. 239–249. doi:10.1109/ISSRE.2015.7381817.

URL http://dx.doi.org/10.1109/ISSRE.2015.7381817

[319] M. Patrick, Y. Jia, Kernel density adaptive random testing, in: Eighth

IEEE International Conference on Software Testing, Verification and Val-

idation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, 2015,

pp. 1–10. doi:10.1109/ICSTW.2015.7107451.

URL http://dx.doi.org/10.1109/ICSTW.2015.7107451

[320] M. Patrick, Y. Jia, KD-ART: should we intensify or diversify tests to

kill mutants?, Information & Software Technology 81 (2017) 36–51. doi:

10.1016/j.infsof.2016.04.009.

URL https://doi.org/10.1016/j.infsof.2016.04.009

[321] J. P. Galeotti, C. A. Furia, E. May, G. Fraser, A. Zeller, Inferring loop

invariants by mutation, dynamic analysis, and static checking, IEEE

Trans. Software Eng. 41 (10) (2015) 1019–1037. doi:10.1109/TSE.2015.

2431688.

URL http://dx.doi.org/10.1109/TSE.2015.2431688

[322] C. Andrés, M. G. Merayo, M. Núñez, Passive testing of stochastic timed

systems, in: Second International Conference on Software Testing Veri-

fication and Validation, ICST 2009, Denver, Colorado, USA, April 1-4,

2009, 2009, pp. 71–80. doi:10.1109/ICST.2009.35.

URL http://dx.doi.org/10.1109/ICST.2009.35

[323] C. Andrés, M. G. Merayo, C. Molinero, Advantages of mutation in pas-

sive testing: An empirical study, in: Second International Conference on

Software Testing Verification and Validation, ICST 2009, Denver, Col-

orado, USA, April 1-4, 2009, Workshops Proceedings, 2009, pp. 230–239.

138

http://dx.doi.org/10.1109/ISSRE.2015.7381817
http://dx.doi.org/10.1109/ISSRE.2015.7381817
http://dx.doi.org/10.1109/ISSRE.2015.7381817
http://dx.doi.org/10.1109/ISSRE.2015.7381817
http://dx.doi.org/10.1109/ICSTW.2015.7107451
http://dx.doi.org/10.1109/ICSTW.2015.7107451
http://dx.doi.org/10.1109/ICSTW.2015.7107451
https://doi.org/10.1016/j.infsof.2016.04.009
https://doi.org/10.1016/j.infsof.2016.04.009
http://dx.doi.org/10.1016/j.infsof.2016.04.009
http://dx.doi.org/10.1016/j.infsof.2016.04.009
https://doi.org/10.1016/j.infsof.2016.04.009
http://dx.doi.org/10.1109/TSE.2015.2431688
http://dx.doi.org/10.1109/TSE.2015.2431688
http://dx.doi.org/10.1109/TSE.2015.2431688
http://dx.doi.org/10.1109/TSE.2015.2431688
http://dx.doi.org/10.1109/TSE.2015.2431688
http://dx.doi.org/10.1109/ICST.2009.35
http://dx.doi.org/10.1109/ICST.2009.35
http://dx.doi.org/10.1109/ICST.2009.35
http://dx.doi.org/10.1109/ICST.2009.35
http://dx.doi.org/10.1109/ICSTW.2009.33
http://dx.doi.org/10.1109/ICSTW.2009.33

doi:10.1109/ICSTW.2009.33.

URL http://dx.doi.org/10.1109/ICSTW.2009.33

[324] C. Andrés, M. G. Merayo, M. Núñez, Formal passive testing of timed

systems: theory and tools, Softw. Test., Verif. Reliab. 22 (6) (2012) 365–

405. doi:10.1002/stvr.1464.

URL http://dx.doi.org/10.1002/stvr.1464

[325] T. Pankumhang, M. Rutherford, Iterative instrumentation for code cov-

erage in time-sensitive systems, in: 8th IEEE International Conference on

Software Testing, Verification and Validation, ICST 2015, Graz, Austria,

April 13-17, 2015, 2015, pp. 1–10. doi:10.1109/ICST.2015.7102594.

URL http://dx.doi.org/10.1109/ICST.2015.7102594

[326] A. Groce, I. Ahmed, C. Jensen, P. E. McKenney, How verified is my

code? falsification-driven verification (T), in: 30th IEEE/ACM Inter-

national Conference on Automated Software Engineering, ASE 2015,

Lincoln, NE, USA, November 9-13, 2015, 2015, pp. 737–748. doi:

10.1109/ASE.2015.40.

URL http://dx.doi.org/10.1109/ASE.2015.40

[327] J. Svajlenko, C. K. Roy, S. Duszynski, Forksim: Generating software forks

for evaluating cross-project similarity analysis tools, in: 13th IEEE Inter-

national Working Conference on Source Code Analysis and Manipulation,

SCAM 2013, Eindhoven, Netherlands, September 22-23, 2013, 2013, pp.

37–42. doi:10.1109/SCAM.2013.6648182.

URL http://dx.doi.org/10.1109/SCAM.2013.6648182

[328] D. Bowes, T. Hall, M. Harman, Y. Jia, F. Sarro, F. Wu, Mutation-aware

fault prediction, in: Proceedings of the 25th International Symposium on

Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July

18-20, 2016, 2016, pp. 330–341. doi:10.1145/2931037.2931039.

URL http://doi.acm.org/10.1145/2931037.2931039

139

http://dx.doi.org/10.1109/ICSTW.2009.33
http://dx.doi.org/10.1109/ICSTW.2009.33
http://dx.doi.org/10.1002/stvr.1464
http://dx.doi.org/10.1002/stvr.1464
http://dx.doi.org/10.1002/stvr.1464
http://dx.doi.org/10.1002/stvr.1464
http://dx.doi.org/10.1109/ICST.2015.7102594
http://dx.doi.org/10.1109/ICST.2015.7102594
http://dx.doi.org/10.1109/ICST.2015.7102594
http://dx.doi.org/10.1109/ICST.2015.7102594
http://dx.doi.org/10.1109/ASE.2015.40
http://dx.doi.org/10.1109/ASE.2015.40
http://dx.doi.org/10.1109/ASE.2015.40
http://dx.doi.org/10.1109/ASE.2015.40
http://dx.doi.org/10.1109/ASE.2015.40
http://dx.doi.org/10.1109/SCAM.2013.6648182
http://dx.doi.org/10.1109/SCAM.2013.6648182
http://dx.doi.org/10.1109/SCAM.2013.6648182
http://dx.doi.org/10.1109/SCAM.2013.6648182
http://doi.acm.org/10.1145/2931037.2931039
http://doi.acm.org/10.1145/2931037.2931039
http://dx.doi.org/10.1145/2931037.2931039
http://doi.acm.org/10.1145/2931037.2931039

[329] J. Zhang, Y. Lou, L. Zhang, D. Hao, L. Zhang, H. Mei, Isomorphic re-

gression testing: executing uncovered branches without test augmenta-

tion, in: Proceedings of the 24th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, FSE 2016, Seattle, WA,

USA, November 13-18, 2016, 2016, pp. 883–894. doi:10.1145/2950290.

2950313.

URL http://doi.acm.org/10.1145/2950290.2950313

[330] D. D. Nardo, F. Pastore, L. C. Briand, Generating complex and faulty test

data through model-based mutation analysis, in: 8th IEEE International

Conference on Software Testing, Verification and Validation, ICST 2015,

Graz, Austria, April 13-17, 2015, 2015, pp. 1–10. doi:10.1109/ICST.

2015.7102589.

URL http://dx.doi.org/10.1109/ICST.2015.7102589

[331] P. Arcaini, A. Gargantini, E. Riccobene, P. Vavassori, Rehabilitating

equivalent mutants as static anomaly detectors in software artifacts, in:

Eighth IEEE International Conference on Software Testing, Verification

and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015,

2015, pp. 1–6. doi:10.1109/ICSTW.2015.7107452.

URL https://doi.org/10.1109/ICSTW.2015.7107452

[332] P. Arcaini, A. Gargantini, E. Riccobene, P. Vavassori, A novel use of equiv-

alent mutants for static anomaly detection in software artifacts, Informa-

tion & Software Technology 81 (2017) 52–64. doi:10.1016/j.infsof.

2016.01.019.

URL https://doi.org/10.1016/j.infsof.2016.01.019

[333] B. Baudry, S. Allier, M. Monperrus, Tailored source code transformations

to synthesize computationally diverse program variants, in: International

Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA,

USA - July 21 - 26, 2014, 2014, pp. 149–159. doi:10.1145/2610384.

140

http://doi.acm.org/10.1145/2950290.2950313
http://doi.acm.org/10.1145/2950290.2950313
http://doi.acm.org/10.1145/2950290.2950313
http://dx.doi.org/10.1145/2950290.2950313
http://dx.doi.org/10.1145/2950290.2950313
http://doi.acm.org/10.1145/2950290.2950313
http://dx.doi.org/10.1109/ICST.2015.7102589
http://dx.doi.org/10.1109/ICST.2015.7102589
http://dx.doi.org/10.1109/ICST.2015.7102589
http://dx.doi.org/10.1109/ICST.2015.7102589
http://dx.doi.org/10.1109/ICST.2015.7102589
https://doi.org/10.1109/ICSTW.2015.7107452
https://doi.org/10.1109/ICSTW.2015.7107452
http://dx.doi.org/10.1109/ICSTW.2015.7107452
https://doi.org/10.1109/ICSTW.2015.7107452
https://doi.org/10.1016/j.infsof.2016.01.019
https://doi.org/10.1016/j.infsof.2016.01.019
http://dx.doi.org/10.1016/j.infsof.2016.01.019
http://dx.doi.org/10.1016/j.infsof.2016.01.019
https://doi.org/10.1016/j.infsof.2016.01.019
http://doi.acm.org/10.1145/2610384.2610415
http://doi.acm.org/10.1145/2610384.2610415
http://dx.doi.org/10.1145/2610384.2610415
http://dx.doi.org/10.1145/2610384.2610415

2610415.

URL http://doi.acm.org/10.1145/2610384.2610415

[334] B. Lisper, B. Lindstrm, P. Potena, M. Saadatmand, M. Bohlin, Tar-

geted mutation: Efficient mutation analysis for testing non-functional

properties, in: 2017 IEEE International Conference on Software Test-

ing, Verification and Validation Workshops (ICSTW), 2017, pp. 65–68.

doi:10.1109/ICSTW.2017.18.

[335] A. Babu, mutatepy: A mutation testing tool for c, “Last Accessed May

2017”.

URL "http://members.femto-st.fr/pierre-cyrille-heam/

mutatepy"

[336] I. Moore, Jester and pester, “Last Accessed May 2017” (2001).

URL "http://jester.sourceforge.net/"

[337] M. E. Delamaro, J. C. Maldonado, A. M. R. Vincenzi, Proteum/IM 2.0:

An Integrated Mutation Testing Environment, Springer US, Boston, MA,

2001, Ch. Mutation Testing for the New Century, pp. 91–101. doi:10.

1007/978-1-4757-5939-6_17.

URL http://dx.doi.org/10.1007/978-1-4757-5939-6_17

[338] J. H. Andrews, Y. Zhang, General test result checking with log file anal-

ysis, IEEE Trans. Software Eng. 29 (7) (2003) 634–648. doi:10.1109/

TSE.2003.1214327.

URL https://doi.org/10.1109/TSE.2003.1214327

[339] J. H. Andrews, L. C. Briand, Y. Labiche, Is mutation an appropriate tool

for testing experiments?, in: G. Roman, W. G. Griswold, B. Nuseibeh

(Eds.), 27th International Conference on Software Engineering (ICSE

2005), 15-21 May 2005, St. Louis, Missouri, USA, ACM, 2005, pp. 402–

411. doi:10.1145/1062455.1062530.

URL http://doi.acm.org/10.1145/1062455.1062530

141

http://dx.doi.org/10.1145/2610384.2610415
http://dx.doi.org/10.1145/2610384.2610415
http://doi.acm.org/10.1145/2610384.2610415
http://dx.doi.org/10.1109/ICSTW.2017.18
"http://members.femto-st.fr/pierre-cyrille-heam/mutatepy"
"http://members.femto-st.fr/pierre-cyrille-heam/mutatepy"
"http://members.femto-st.fr/pierre-cyrille-heam/mutatepy"
"http://jester.sourceforge.net/"
"http://jester.sourceforge.net/"
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
https://doi.org/10.1109/TSE.2003.1214327
https://doi.org/10.1109/TSE.2003.1214327
http://dx.doi.org/10.1109/TSE.2003.1214327
http://dx.doi.org/10.1109/TSE.2003.1214327
https://doi.org/10.1109/TSE.2003.1214327
http://doi.acm.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/1062455.1062530
http://dx.doi.org/10.1145/1062455.1062530
http://doi.acm.org/10.1145/1062455.1062530

[340] Y. Ma, J. Offutt, Y. R. Kwon, Mujava: a mutation system for java, in:

L. J. Osterweil, H. D. Rombach, M. L. Soffa (Eds.), 28th International

Conference on Software Engineering (ICSE 2006), Shanghai, China, May

20-28, 2006, ACM, 2006, pp. 827–830. doi:10.1145/1134425.

URL http://doi.acm.org/10.1145/1134425

[341] J. Offutt, Y. Ma, Y. R. Kwon, An experimental mutation system for java,

ACM SIGSOFT Software Engineering Notes 29 (5) (2004) 1–4. doi:

10.1145/1022494.1022537.

URL http://doi.acm.org/10.1145/1022494.1022537

[342] H. Do, G. Rothermel, On the use of mutation faults in empirical assess-

ments of test case prioritization techniques, IEEE Trans. Software Eng.

32 (9) (2006) 733–752. doi:10.1109/TSE.2006.92.

URL https://doi.org/10.1109/TSE.2006.92

[343] J. Tuya, M. J. Suarez-Cabal, C. de la Riva, Sqlmutation: A tool to gen-

erate mutants of sql database queries, in: Second Workshop on Muta-

tion Analysis (Mutation 2006 - ISSRE Workshops 2006), 2006, pp. 1–1.

doi:10.1109/MUTATION.2006.13.

[344] ”jumble testing tool for java”, “Last Accessed May 2017” (2007).

URL "http://jumble.sourceforge.net/"

[345] X. Feng, S. Marr, T. O’Callaghan, Estp: An experimental software testing

platform, in: Testing: Academic Industrial Conference - Practice and

Research Techniques (taic part 2008), 2008, pp. 59–63. doi:10.1109/

TAIC-PART.2008.8.

[346] R. P. Tan, S. Edwards, Evaluating automated unit testing in sulu, in:

First International Conference on Software Testing, Verification, and Val-

idation, ICST 2008, Lillehammer, Norway, April 9-11, 2008, IEEE Com-

puter Society, 2008, pp. 62–71. doi:10.1109/ICST.2008.59.

URL https://doi.org/10.1109/ICST.2008.59

142

http://doi.acm.org/10.1145/1134425
http://dx.doi.org/10.1145/1134425
http://doi.acm.org/10.1145/1134425
http://doi.acm.org/10.1145/1022494.1022537
http://dx.doi.org/10.1145/1022494.1022537
http://dx.doi.org/10.1145/1022494.1022537
http://doi.acm.org/10.1145/1022494.1022537
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1109/TSE.2006.92
http://dx.doi.org/10.1109/TSE.2006.92
https://doi.org/10.1109/TSE.2006.92
http://dx.doi.org/10.1109/MUTATION.2006.13
"http://jumble.sourceforge.net/"
"http://jumble.sourceforge.net/"
http://dx.doi.org/10.1109/TAIC-PART.2008.8
http://dx.doi.org/10.1109/TAIC-PART.2008.8
https://doi.org/10.1109/ICST.2008.59
http://dx.doi.org/10.1109/ICST.2008.59
https://doi.org/10.1109/ICST.2008.59

[347] Y. Jia, M. Harman, Milu: A customizable, runtime-optimized higher or-

der mutation testing tool for the full c language, in: Proceedings of the

3rd Testing: Academic and Industrial Conference Practice and Research

Techniques (TAIC PART’08), Windsor, UK, 2008, pp. 94–98.

[348] A. Rajan, M. W. Whalen, M. Staats, M. P. E. Heimdahl, Requirements

coverage as an adequacy measure for conformance testing, in: S. Liu,

T. S. E. Maibaum, K. Araki (Eds.), Formal Methods and Software Engi-

neering, 10th International Conference on Formal Engineering Methods,

ICFEM 2008, Kitakyushu-City, Japan, October 27-31, 2008. Proceedings,

Vol. 5256 of Lecture Notes in Computer Science, Springer, 2008, pp. 86–

104. doi:10.1007/978-3-540-88194-0_8.

URL https://doi.org/10.1007/978-3-540-88194-0_8

[349] M. Weiglhofer, F. Wotawa, ”on the fly” input output conformance ver-

ification, in: Proceedings of the IASTED International Conference on

Software Engineering, SE ’08, ACTA Press, Anaheim, CA, USA, 2008,

pp. 286–291.

[350] C. Zhou, P. G. Frankl, Mutation testing for java database applications,

in: Second International Conference on Software Testing Verification and

Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009, 2009, pp.

396–405. doi:10.1109/ICST.2009.43.

URL https://doi.org/10.1109/ICST.2009.43

[351] C. Zhou, P. G. Frankl, JDAMA: java database application mutation anal-

yser, Softw. Test., Verif. Reliab. 21 (3) (2011) 241–263. doi:10.1002/

stvr.462.

URL http://dx.doi.org/10.1002/stvr.462

[352] R. Delamare, B. Baudry, S. Ghosh, Y. L. Traon, A test-driven approach

to developing pointcut descriptors in aspectj, in: Second International

Conference on Software Testing Verification and Validation, ICST 2009,

Denver, Colorado, USA, April 1-4, 2009, 2009, pp. 376–385. doi:10.

143

https://doi.org/10.1007/978-3-540-88194-0_8
https://doi.org/10.1007/978-3-540-88194-0_8
http://dx.doi.org/10.1007/978-3-540-88194-0_8
https://doi.org/10.1007/978-3-540-88194-0_8
https://doi.org/10.1109/ICST.2009.43
http://dx.doi.org/10.1109/ICST.2009.43
https://doi.org/10.1109/ICST.2009.43
http://dx.doi.org/10.1002/stvr.462
http://dx.doi.org/10.1002/stvr.462
http://dx.doi.org/10.1002/stvr.462
http://dx.doi.org/10.1002/stvr.462
http://dx.doi.org/10.1002/stvr.462
https://doi.org/10.1109/ICST.2009.41
https://doi.org/10.1109/ICST.2009.41
http://dx.doi.org/10.1109/ICST.2009.41
http://dx.doi.org/10.1109/ICST.2009.41

1109/ICST.2009.41.

URL https://doi.org/10.1109/ICST.2009.41

[353] R. Delamare, B. Baudry, Y. L. Traon, Ajmutator: A tool for the mu-

tation analysis of aspectj pointcut descriptors, in: Second International

Conference on Software Testing Verification and Validation, ICST 2009,

Denver, Colorado, USA, April 1-4, 2009, Workshops Proceedings, 2009,

pp. 200–204. doi:10.1109/ICSTW.2009.41.

URL https://doi.org/10.1109/ICSTW.2009.41

[354] J. J. Domı́nguez-Jiménez, A. Estero-Botaro, I. Medina-Bulo, A framework

for mutant genetic generation for WS-BPEL, in: M. Nielsen, A. Kucera,

P. B. Miltersen, C. Palamidessi, P. Tuma, F. D. Valencia (Eds.), SOF-

SEM 2009: Theory and Practice of Computer Science, 35th Confer-

ence on Current Trends in Theory and Practice of Computer Science,

Spindleruv Mlýn, Czech Republic, January 24-30, 2009. Proceedings, Vol.

5404 of Lecture Notes in Computer Science, Springer, 2009, pp. 229–240.

doi:10.1007/978-3-540-95891-8_23.

URL https://doi.org/10.1007/978-3-540-95891-8_23

[355] E. G. Aydal, R. F. Paige, M. Utting, J. Woodcock, Putting formal speci-

fications under the magnifying glass: Model-based testing for validation,

in: Second International Conference on Software Testing Verification and

Validation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009, IEEE

Computer Society, 2009, pp. 131–140. doi:10.1109/ICST.2009.20.

URL https://doi.org/10.1109/ICST.2009.20

[356] K. Dobolyi, W. Weimer, Harnessing web-based application similarities

to aid in regression testing, in: ISSRE 2009, 20th International Sym-

posium on Software Reliability Engineering, Mysuru, Karnataka, In-

dia, 16-19 November 2009, IEEE Computer Society, 2009, pp. 71–80.

doi:10.1109/ISSRE.2009.18.

URL https://doi.org/10.1109/ISSRE.2009.18

144

http://dx.doi.org/10.1109/ICST.2009.41
http://dx.doi.org/10.1109/ICST.2009.41
https://doi.org/10.1109/ICST.2009.41
https://doi.org/10.1109/ICSTW.2009.41
https://doi.org/10.1109/ICSTW.2009.41
http://dx.doi.org/10.1109/ICSTW.2009.41
https://doi.org/10.1109/ICSTW.2009.41
https://doi.org/10.1007/978-3-540-95891-8_23
https://doi.org/10.1007/978-3-540-95891-8_23
http://dx.doi.org/10.1007/978-3-540-95891-8_23
https://doi.org/10.1007/978-3-540-95891-8_23
https://doi.org/10.1109/ICST.2009.20
https://doi.org/10.1109/ICST.2009.20
http://dx.doi.org/10.1109/ICST.2009.20
https://doi.org/10.1109/ICST.2009.20
https://doi.org/10.1109/ISSRE.2009.18
https://doi.org/10.1109/ISSRE.2009.18
http://dx.doi.org/10.1109/ISSRE.2009.18
https://doi.org/10.1109/ISSRE.2009.18

[357] M. Ellims, D. Ince, M. Petre, The csaw c mutation tool: Initial results, in:

Testing: Academic and Industrial Conference Practice and Research Tech-

niques - MUTATION (TAICPART-MUTATION 2007), 2007, pp. 185–192.

doi:10.1109/TAIC.PART.2007.28.

[358] A. Lakehal, I. Parissis, Structural coverage criteria for LUSTRE/SCADE

programs, Softw. Test., Verif. Reliab. 19 (2) (2009) 133–154. doi:10.

1002/stvr.394.

URL https://doi.org/10.1002/stvr.394

[359] J. Durães, H. Madeira, Definition of software fault emulation opera-

tors: A field data study, in: 2003 International Conference on Depend-

able Systems and Networks (DSN 2003), 22-25 June 2003, San Fran-

cisco, CA, USA, Proceedings, IEEE Computer Society, 2003, pp. 105–114.

doi:10.1109/DSN.2003.1209922.

URL https://doi.org/10.1109/DSN.2003.1209922

[360] L. Madeyski, N. Radyk, Judy - a mutation testing tool for java, IET

Software 4 (1) (2010) 32–42. doi:10.1049/iet-sen.2008.0038.

URL https://doi.org/10.1049/iet-sen.2008.0038

[361] R. Just, The major mutation framework: efficient and scalable mutation

analysis for java, in: International Symposium on Software Testing and

Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, 2014, pp.

433–436. doi:10.1145/2610384.2628053.

URL http://doi.acm.org/10.1145/2610384.2628053

[362] P. Madiraju, A. S. Namin, Paraµ - A partial and higher-order mutation

tool with concurrency operators, in: Fourth IEEE International Confer-

ence on Software Testing, Verification and Validation, ICST 2012, Berlin,

Germany, 21-25 March, 2011, Workshop Proceedings, 2011, pp. 351–356.

doi:10.1109/ICSTW.2011.34.

URL https://doi.org/10.1109/ICSTW.2011.34

145

http://dx.doi.org/10.1109/TAIC.PART.2007.28
https://doi.org/10.1002/stvr.394
https://doi.org/10.1002/stvr.394
http://dx.doi.org/10.1002/stvr.394
http://dx.doi.org/10.1002/stvr.394
https://doi.org/10.1002/stvr.394
https://doi.org/10.1109/DSN.2003.1209922
https://doi.org/10.1109/DSN.2003.1209922
http://dx.doi.org/10.1109/DSN.2003.1209922
https://doi.org/10.1109/DSN.2003.1209922
https://doi.org/10.1049/iet-sen.2008.0038
http://dx.doi.org/10.1049/iet-sen.2008.0038
https://doi.org/10.1049/iet-sen.2008.0038
http://doi.acm.org/10.1145/2610384.2628053
http://doi.acm.org/10.1145/2610384.2628053
http://dx.doi.org/10.1145/2610384.2628053
http://doi.acm.org/10.1145/2610384.2628053
https://doi.org/10.1109/ICSTW.2011.34
https://doi.org/10.1109/ICSTW.2011.34
http://dx.doi.org/10.1109/ICSTW.2011.34
https://doi.org/10.1109/ICSTW.2011.34

[363] ”muBPEL - A mutation testing tool for WS-BPEL”, “Last Accessed May

2017” (2011).

URL "https://neptuno.uca.es/redmine/projects/sources-fm/

wiki/MuBPEL/"

[364] K. Winbladh, A. Ranganathan, Evaluating test selection strategies for

end-user specified flow-based applications, in: P. Alexander, C. S. Pasare-

anu, J. G. Hosking (Eds.), 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,

November 6-10, 2011, IEEE Computer Society, 2011, pp. 400–403. doi:

10.1109/ASE.2011.6100083.

URL https://doi.org/10.1109/ASE.2011.6100083

[365] A. A. Saifan, J. Dingel, J. S. Bradbury, E. Posse, Implementing and evalu-

ating a runtime conformance checker for mobile agent systems, in: Fourth

IEEE International Conference on Software Testing, Verification and Vali-

dation, ICST 2011, Berlin, Germany, March 21-25, 2011, IEEE Computer

Society, 2011, pp. 269–278. doi:10.1109/ICST.2011.62.

URL https://doi.org/10.1109/ICST.2011.62

[366] R. Just, G. M. Kapfhammer, F. Schweiggert, Using conditional mutation

to increase the efficiency of mutation analysis, in: Proceedings of the

6th International Workshop on Automation of Software Test, AST 2011,

Waikiki, Honolulu, HI, USA, May 23-24, 2011, 2011, pp. 50–56. doi:

10.1145/1982595.1982606.

URL http://doi.acm.org/10.1145/1982595.1982606

[367] H. Dan, R. M. Hierons, SMT-C: A semantic mutation testing tools for C,

in: Fifth IEEE International Conference on Software Testing, Verification

and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012,

2012, pp. 654–663. doi:10.1109/ICST.2012.155.

URL https://doi.org/10.1109/ICST.2012.155

146

"https://neptuno.uca.es/redmine/projects/sources-fm/wiki/MuBPEL/"
"https://neptuno.uca.es/redmine/projects/sources-fm/wiki/MuBPEL/"
"https://neptuno.uca.es/redmine/projects/sources-fm/wiki/MuBPEL/"
https://doi.org/10.1109/ASE.2011.6100083
https://doi.org/10.1109/ASE.2011.6100083
http://dx.doi.org/10.1109/ASE.2011.6100083
http://dx.doi.org/10.1109/ASE.2011.6100083
https://doi.org/10.1109/ASE.2011.6100083
https://doi.org/10.1109/ICST.2011.62
https://doi.org/10.1109/ICST.2011.62
http://dx.doi.org/10.1109/ICST.2011.62
https://doi.org/10.1109/ICST.2011.62
http://doi.acm.org/10.1145/1982595.1982606
http://doi.acm.org/10.1145/1982595.1982606
http://dx.doi.org/10.1145/1982595.1982606
http://dx.doi.org/10.1145/1982595.1982606
http://doi.acm.org/10.1145/1982595.1982606
https://doi.org/10.1109/ICST.2012.155
http://dx.doi.org/10.1109/ICST.2012.155
https://doi.org/10.1109/ICST.2012.155

[368] M. Schirp, ”mutation testing for ruby ”, “Last Accessed May 2017” (2012).

URL "https://github.com/mbj/mutant"

[369] M. Kusano, C. Wang, Ccmutator: A mutation generator for concur-

rency constructs in multithreaded C/C++ applications, in: 2013 28th

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, 2013, pp.

722–725. doi:10.1109/ASE.2013.6693142.

URL https://doi.org/10.1109/ASE.2013.6693142

[370] J. S. Bradbury, J. R. Cordy, J. Dingel, Mutation operators for concur-

rent java (j2se 5.0), in: Second Workshop on Mutation Analysis (Mu-

tation 2006 - ISSRE Workshops 2006), 2006, pp. 11–11. doi:10.1109/

MUTATION.2006.10.

[371] G. M. Kapfhammer, P. McMinn, C. J. Wright, Search-based testing

of relational schema integrity constraints across multiple database man-

agement systems, in: Sixth IEEE International Conference on Software

Testing, Verification and Validation, ICST 2013, Luxembourg, Luxem-

bourg, March 18-22, 2013, IEEE Computer Society, 2013, pp. 31–40.

doi:10.1109/ICST.2013.47.

URL https://doi.org/10.1109/ICST.2013.47

[372] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, XACMUT: XACML

2.0 mutants generator, in: Sixth IEEE International Conference on Soft-

ware Testing, Verification and Validation, ICST 2013 Workshops Pro-

ceedings, Luxembourg, Luxembourg, March 18-22, 2013, IEEE Computer

Society, 2013, pp. 28–33. doi:10.1109/ICSTW.2013.11.

URL https://doi.org/10.1109/ICSTW.2013.11

[373] C. Ye, H. Jacobsen, Whitening SOA testing via event exposure, IEEE

Trans. Software Eng. 39 (10) (2013) 1444–1465. doi:10.1109/TSE.2013.

20.

URL https://doi.org/10.1109/TSE.2013.20

147

"https://github.com/mbj/mutant"
"https://github.com/mbj/mutant"
https://doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/ASE.2013.6693142
http://dx.doi.org/10.1109/ASE.2013.6693142
https://doi.org/10.1109/ASE.2013.6693142
http://dx.doi.org/10.1109/MUTATION.2006.10
http://dx.doi.org/10.1109/MUTATION.2006.10
https://doi.org/10.1109/ICST.2013.47
https://doi.org/10.1109/ICST.2013.47
https://doi.org/10.1109/ICST.2013.47
http://dx.doi.org/10.1109/ICST.2013.47
https://doi.org/10.1109/ICST.2013.47
https://doi.org/10.1109/ICSTW.2013.11
https://doi.org/10.1109/ICSTW.2013.11
http://dx.doi.org/10.1109/ICSTW.2013.11
https://doi.org/10.1109/ICSTW.2013.11
https://doi.org/10.1109/TSE.2013.20
http://dx.doi.org/10.1109/TSE.2013.20
http://dx.doi.org/10.1109/TSE.2013.20
https://doi.org/10.1109/TSE.2013.20

[374] A. Derezińska, K. Ha las, Analysis of Mutation Operators for the Python

Language, Springer International Publishing, Cham, 2014, pp. 155–164.

doi:10.1007/978-3-319-07013-1_15.

[375] E. Omar, S. Ghosh, D. Whitley, HOMAJ: A tool for higher order mutation

testing in aspectj and java, in: Seventh IEEE International Conference

on Software Testing, Verification and Validation, ICST 2014 Workshops

Proceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, 2014, pp.

165–170. doi:10.1109/ICSTW.2014.19.

URL https://doi.org/10.1109/ICSTW.2014.19

[376] S. Mahajan, W. G. J. Halfond, Finding HTML presentation failures using

image comparison techniques, in: I. Crnkovic, M. Chechik, P. Grünbacher

(Eds.), ACM/IEEE International Conference on Automated Software En-

gineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, ACM,

2014, pp. 91–96. doi:10.1145/2642937.2642966.

URL http://doi.acm.org/10.1145/2642937.2642966

[377] K. El-Fakih, A. Simão, N. Jadoon, J. C. Maldonado, On studying the

effectiveness of extended finite state machine based test selection criteria,

in: Seventh IEEE International Conference on Software Testing, Verifi-

cation and Validation, ICST 2014 Workshops Proceedings, March 31 -

April 4, 2014, Cleveland, Ohio, USA, IEEE Computer Society, 2014, pp.

222–229. doi:10.1109/ICSTW.2014.25.

URL https://doi.org/10.1109/ICSTW.2014.25

[378] K. Maruchi, H. Shin, M. Sakai, Mc/dc-like structural coverage criteria

for function block diagrams, in: Seventh IEEE International Conference

on Software Testing, Verification and Validation, ICST 2014 Workshops

Proceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, IEEE Com-

puter Society, 2014, pp. 253–259. doi:10.1109/ICSTW.2014.27.

URL https://doi.org/10.1109/ICSTW.2014.27

[379] T. A. Walsh, P. McMinn, G. M. Kapfhammer, Automatic detection of

148

http://dx.doi.org/10.1007/978-3-319-07013-1_15
https://doi.org/10.1109/ICSTW.2014.19
https://doi.org/10.1109/ICSTW.2014.19
http://dx.doi.org/10.1109/ICSTW.2014.19
https://doi.org/10.1109/ICSTW.2014.19
http://doi.acm.org/10.1145/2642937.2642966
http://doi.acm.org/10.1145/2642937.2642966
http://dx.doi.org/10.1145/2642937.2642966
http://doi.acm.org/10.1145/2642937.2642966
https://doi.org/10.1109/ICSTW.2014.25
https://doi.org/10.1109/ICSTW.2014.25
http://dx.doi.org/10.1109/ICSTW.2014.25
https://doi.org/10.1109/ICSTW.2014.25
https://doi.org/10.1109/ICSTW.2014.27
https://doi.org/10.1109/ICSTW.2014.27
http://dx.doi.org/10.1109/ICSTW.2014.27
https://doi.org/10.1109/ICSTW.2014.27
https://doi.org/10.1109/ASE.2015.31
https://doi.org/10.1109/ASE.2015.31

potential layout faults following changes to responsive web pages (N),

in: M. B. Cohen, L. Grunske, M. Whalen (Eds.), 30th IEEE/ACM In-

ternational Conference on Automated Software Engineering, ASE 2015,

Lincoln, NE, USA, November 9-13, 2015, IEEE Computer Society, 2015,

pp. 709–714. doi:10.1109/ASE.2015.31.

URL https://doi.org/10.1109/ASE.2015.31

[380] R. Abreu, B. Hofer, A. Perez, F. Wotawa, Using constraints to diagnose

faulty spreadsheets, Software Quality Journal 23 (2) (2015) 297–322. doi:

10.1007/s11219-014-9236-4.

URL https://doi.org/10.1007/s11219-014-9236-4

[381] F. Belli, M. Beyazit, A. T. Endo, A. P. Mathur, A. da Silva Simão, Fault

domain-based testing in imperfect situations: a heuristic approach and

case studies, Software Quality Journal 23 (3) (2015) 423–452. doi:10.

1007/s11219-014-9242-6.

URL https://doi.org/10.1007/s11219-014-9242-6

[382] S. C. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, P. C. Masiero,

Mutation analysis testing for finite state machines, in: 5th International

Symposium on Software Reliability Engineering, ISSRE 1994, Monterey,

CA, USA, November 6-9, 1994, IEEE, 1994, pp. 220–229. doi:10.1109/

ISSRE.1994.341378.

URL https://doi.org/10.1109/ISSRE.1994.341378

[383] A. Simao, A. Petrenko, J. C. Maldonado, Comparing finite state machine

test coverage criteria, IET software 3 (2) (2009) 91–105.

[384] J. Guan, J. Offutt, A model-based testing technique for component-based

real-time embedded systems, in: Eighth IEEE International Conference

on Software Testing, Verification and Validation, ICST 2015 Workshops,

Graz, Austria, April 13-17, 2015, IEEE Computer Society, 2015, pp. 1–10.

doi:10.1109/ICSTW.2015.7107407.

URL https://doi.org/10.1109/ICSTW.2015.7107407

149

https://doi.org/10.1109/ASE.2015.31
https://doi.org/10.1109/ASE.2015.31
http://dx.doi.org/10.1109/ASE.2015.31
https://doi.org/10.1109/ASE.2015.31
https://doi.org/10.1007/s11219-014-9236-4
https://doi.org/10.1007/s11219-014-9236-4
http://dx.doi.org/10.1007/s11219-014-9236-4
http://dx.doi.org/10.1007/s11219-014-9236-4
https://doi.org/10.1007/s11219-014-9236-4
https://doi.org/10.1007/s11219-014-9242-6
https://doi.org/10.1007/s11219-014-9242-6
https://doi.org/10.1007/s11219-014-9242-6
http://dx.doi.org/10.1007/s11219-014-9242-6
http://dx.doi.org/10.1007/s11219-014-9242-6
https://doi.org/10.1007/s11219-014-9242-6
https://doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1109/ISSRE.1994.341378
https://doi.org/10.1109/ISSRE.1994.341378
https://doi.org/10.1109/ICSTW.2015.7107407
https://doi.org/10.1109/ICSTW.2015.7107407
http://dx.doi.org/10.1109/ICSTW.2015.7107407
https://doi.org/10.1109/ICSTW.2015.7107407

[385] F. S. O. Jr., K. Pattabiraman, A. Mesbah, Detecting inconsistencies in

javascript MVC applications, in: A. Bertolino, G. Canfora, S. G. Elbaum

(Eds.), 37th IEEE/ACM International Conference on Software Engineer-

ing, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, IEEE Com-

puter Society, 2015, pp. 325–335. doi:10.1109/ICSE.2015.52.

URL https://doi.org/10.1109/ICSE.2015.52

[386] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, H. Brandl, Mo-

mut::uml model-based mutation testing for uml, in: 2015 IEEE 8th In-

ternational Conference on Software Testing, Verification and Validation

(ICST), 2015, pp. 1–8. doi:10.1109/ICST.2015.7102627.

[387] E. P. Enoiu, A. Causevic, D. Sundmark, P. Pettersson, A controlled ex-

periment in testing of safety-critical embedded software, in: 2016 IEEE

International Conference on Software Testing, Verification and Validation,

ICST 2016, Chicago, IL, USA, April 11-15, 2016, IEEE Computer Society,

2016, pp. 1–11. doi:10.1109/ICST.2016.15.

URL https://doi.org/10.1109/ICST.2016.15

[388] R. Matinnejad, S. Nejati, L. C. Briand, T. Bruckmann, Automated test

suite generation for time-continuous simulink models, in: L. K. Dillon,

W. Visser, L. Williams (Eds.), Proceedings of the 38th International Con-

ference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-

22, 2016, ACM, 2016, pp. 595–606. doi:10.1145/2884781.2884797.

URL http://doi.acm.org/10.1145/2884781.2884797

[389] C. Henard, M. Papadakis, M. Harman, Y. Jia, Y. L. Traon, Comparing

white-box and black-box test prioritization, in: L. K. Dillon, W. Visser,

L. Williams (Eds.), Proceedings of the 38th International Conference on

Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,

ACM, 2016, pp. 523–534. doi:10.1145/2884781.2884791.

URL http://doi.acm.org/10.1145/2884781.2884791

[390] X. Devroey, G. Perrouin, P. Y. Schobbens, P. Heymans, Poster: Vibes,

150

https://doi.org/10.1109/ICSE.2015.52
https://doi.org/10.1109/ICSE.2015.52
http://dx.doi.org/10.1109/ICSE.2015.52
https://doi.org/10.1109/ICSE.2015.52
http://dx.doi.org/10.1109/ICST.2015.7102627
https://doi.org/10.1109/ICST.2016.15
https://doi.org/10.1109/ICST.2016.15
http://dx.doi.org/10.1109/ICST.2016.15
https://doi.org/10.1109/ICST.2016.15
http://doi.acm.org/10.1145/2884781.2884797
http://doi.acm.org/10.1145/2884781.2884797
http://dx.doi.org/10.1145/2884781.2884797
http://doi.acm.org/10.1145/2884781.2884797
http://doi.acm.org/10.1145/2884781.2884791
http://doi.acm.org/10.1145/2884781.2884791
http://dx.doi.org/10.1145/2884781.2884791
http://doi.acm.org/10.1145/2884781.2884791

transition system mutation made easy, in: 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, Vol. 2, 2015, pp. 817–

818. doi:10.1109/ICSE.2015.263.

[391] A. Parsai, A. Murgia, S. Demeyer, LittleDarwin: A Feature-Rich and

Extensible Mutation Testing Framework for Large and Complex Java

Systems, Springer International Publishing, Cham, 2017, pp. 148–163.

doi:10.1007/978-3-319-68972-2_10.

[392] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Test case prioritiza-

tion: An empirical study, in: 1999 International Conference on Software

Maintenance, ICSM 1999, Oxford, England, UK, August 30 - September

3, 1999, 1999, pp. 179–188. doi:10.1109/ICSM.1999.792604.

URL https://doi.org/10.1109/ICSM.1999.792604

[393] A. S. Namin, S. Kakarla, The use of mutation in testing experiments and

its sensitivity to external threats, in: Proceedings of the 20th International

Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON,

Canada, July 17-21, 2011, 2011, pp. 342–352. doi:10.1145/2001420.

2001461.

URL http://doi.acm.org/10.1145/2001420.2001461

[394] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N. Malevris,

Analysing and comparing the effectiveness of mutation testing tools: A

manual study, in: 16th IEEE International Working Conference on Source

Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA, Octo-

ber 2-3, 2016, 2016, pp. 147–156. doi:10.1109/SCAM.2016.28.

URL https://doi.org/10.1109/SCAM.2016.28

[395] R. V. Binder, Testing Object-oriented Systems: Models, Patterns, and

Tools, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1999.

[396] W. Visser, What makes killing a mutant hard, in: Proceedings of the

151

http://dx.doi.org/10.1109/ICSE.2015.263
http://dx.doi.org/10.1007/978-3-319-68972-2_10
https://doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1109/ICSM.1999.792604
http://dx.doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1109/ICSM.1999.792604
http://doi.acm.org/10.1145/2001420.2001461
http://doi.acm.org/10.1145/2001420.2001461
http://dx.doi.org/10.1145/2001420.2001461
http://dx.doi.org/10.1145/2001420.2001461
http://doi.acm.org/10.1145/2001420.2001461
https://doi.org/10.1109/SCAM.2016.28
https://doi.org/10.1109/SCAM.2016.28
http://dx.doi.org/10.1109/SCAM.2016.28
https://doi.org/10.1109/SCAM.2016.28
http://doi.acm.org/10.1145/2970276.2970345

31st IEEE/ACM International Conference on Automated Software En-

gineering, ASE 2016, Singapore, September 3-7, 2016, 2016, pp. 39–44.

doi:10.1145/2970276.2970345.

URL http://doi.acm.org/10.1145/2970276.2970345

[397] P. Ammann, M. E. Delamaro, J. Offutt, Establishing theoretical minimal

sets of mutants, in: Seventh IEEE International Conference on Software

Testing, Verification and Validation, ICST 2014, March 31 2014-April 4,

2014, Cleveland, Ohio, USA, 2014, pp. 21–30. doi:10.1109/ICST.2014.

13.

URL https://doi.org/10.1109/ICST.2014.13

[398] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, L. Deng, Mutant sub-

sumption graphs, in: Seventh IEEE International Conference on Software

Testing, Verification and Validation, ICST 2014 Workshops Proceedings,

March 31 - April 4, 2014, Cleveland, Ohio, USA, 2014, pp. 176–185.

doi:10.1109/ICSTW.2014.20.

URL https://doi.org/10.1109/ICSTW.2014.20

[399] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess

randomized algorithms in software engineering, in: ICSE, 2011, pp. 1–10.

doi:10.1145/1985793.1985795.

URL http://doi.acm.org/10.1145/1985793.1985795

[400] M. Harman, P. McMinn, J. T. de Souza, S. Yoo, Search Based Soft-

ware Engineering: Techniques, Taxonomy, Tutorial, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012, pp. 1–59. doi:10.1007/

978-3-642-25231-0_1.

URL http://dx.doi.org/10.1007/978-3-642-25231-0_1

[401] M. E. Delamaro, J. Offutt, Assessing the influence of multiple test case

selection on mutation experiments, in: Seventh IEEE International Con-

ference on Software Testing, Verification and Validation, ICST 2014 Work-

shops Proceedings, March 31 - April 4, 2014, Cleveland, Ohio, USA, 2014,

152

http://dx.doi.org/10.1145/2970276.2970345
http://doi.acm.org/10.1145/2970276.2970345
https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/ICST.2014.13
http://dx.doi.org/10.1109/ICST.2014.13
http://dx.doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/ICST.2014.13
https://doi.org/10.1109/ICSTW.2014.20
https://doi.org/10.1109/ICSTW.2014.20
http://dx.doi.org/10.1109/ICSTW.2014.20
https://doi.org/10.1109/ICSTW.2014.20
http://doi.acm.org/10.1145/1985793.1985795
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/10.1145/1985793.1985795
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://dx.doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1109/ICSTW.2014.22
https://doi.org/10.1109/ICSTW.2014.22

pp. 171–175. doi:10.1109/ICSTW.2014.22.

URL https://doi.org/10.1109/ICSTW.2014.22

[402] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N. Malevris, Y. Le

Traon, How effective mutation testing tools are? An empirical analy-

sis of Java mutation testing tools with manual analysis and real faults,

Empirical Software Engineering (EMSE)(accepted for publication).

doi:10.1007/s10664-017-9582-5.

[403] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, A. Groce, Does choice

of mutation tool matter?, Software Quality Journal (2016) 1–50doi:10.

1007/s11219-016-9317-7.

URL http://dx.doi.org/10.1007/s11219-016-9317-7

[404] A. Márki, B. Lindström, Mutation tools for java, in: Proceedings of

the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco,

April 3-7, 2017, 2017, pp. 1364–1415. doi:10.1145/3019612.3019825.

URL http://doi.acm.org/10.1145/3019612.3019825

[405] A. Arcuri, L. C. Briand, Adaptive random testing: an illusion of effec-

tiveness?, in: M. B. Dwyer, F. Tip (Eds.), Proceedings of the 20th In-

ternational Symposium on Software Testing and Analysis, ISSTA 2011,

Toronto, ON, Canada, July 17-21, 2011, ACM, 2011, pp. 265–275. doi:

10.1145/2001420.2001452.

URL http://doi.acm.org/10.1145/2001420.2001452

153

http://dx.doi.org/10.1109/ICSTW.2014.22
https://doi.org/10.1109/ICSTW.2014.22
http://dx.doi.org/10.1007/s10664-017-9582-5
http://dx.doi.org/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1007/s11219-016-9317-7
http://dx.doi.org/10.1007/s11219-016-9317-7
http://doi.acm.org/10.1145/3019612.3019825
http://dx.doi.org/10.1145/3019612.3019825
http://doi.acm.org/10.1145/3019612.3019825
http://doi.acm.org/10.1145/2001420.2001452
http://doi.acm.org/10.1145/2001420.2001452
http://dx.doi.org/10.1145/2001420.2001452
http://dx.doi.org/10.1145/2001420.2001452
http://doi.acm.org/10.1145/2001420.2001452

	Introduction
	Background
	What is special about mutation testing
	The relations between Mutants and Fault Revelation
	The Regular Code-based Mutation Testing Process
	Mutant Selection (Step 1.)
	Mutant Operators
	Mutant Reduction Strategies

	Mutant Creation (Step 2.)
	Statically Eliminating Equivalent and Redundant mutants (Step 3.)
	Identifying Equivalent Mutants
	Identifying Redundant Mutants

	Mutation-based Test Generation (Step 4.)
	Static Constraint-based Test Generation
	Concolic/Dynamic Symbolic Execution Test Generation
	Search-based Test Generation

	Mutant Execution (Step 5.)
	Mutation Score Calculation and Refinement (Step 6.)
	Reduce/Prioritise Test Cases (Step 7.)
	Confidence Inspired by Mutation Score (Step 8.)
	Test Oracles (Step 9.)
	Debugging (Step 10.)
	Mutation-based Fault Localisation
	Mutation-based Fault Repair and other Debugging Activities

	Alternative Code-based Mutation Testing Advances
	Advances beyond Code-based Mutation Testing
	Model-based Testing
	Security Testing
	Supporting adaptive random testing, boundary value analysis and combinatorial interaction testing
	Other Mutation-based Applications

	Tools for Mutation Testing
	Mutation-based Test Assessment: Use and Threats to Validity
	The use of Mutation in Empirical Studies
	Programming Language and Mutant Operators
	Subsumed Mutant Threat
	Test Suite Strength and Size
	Mutation Testing Tools
	Clean Program Assumption

	A Seven-Point Check List of Best Practices on using Mutation Testing in Controlled Experiments
	Conclusion and Future Directions
	Open Problems

