
....

Software	Verification	and	Validation	Laboratory:

.

Modeling	Security	and	Privacy	Requirements	for

.

Mobile	Applications: a	Use	Case-driven	Approach

.

Xuan	Phu	Mai, Arda	Goknil, Lwin	Khin	Shar, and	Lionel	C.	Briand

.

Interdisciplinary	Centre	for	Security, Reliability	and	Trust

.

University	of	Luxembourg

.

TR-SNT-2017-3

.

ISBN-13: 978-2-87971-160-7

.

July	07, 2017

.

Version	1.0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84743068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling Security and Privacy Requirements for
Mobile Applications: a Use Case-driven Approach

Xuan Phu Mai, Arda Goknil, Lwin Khin Shar, Lionel C. Briand
SnT Centre, University of Luxembourg, Luxembourg

{xuanphu.mai, arda.goknil, lwinkhin.shar, lionel.briand}@uni.lu

Abstract—Defining and addressing security and privacy re-
quirements in mobile apps is a significant challenge due to the
high level of transparency regarding users’ (private) informa-
tion. In this paper, we propose, apply, and assess a modeling
method that supports the specification of security and privacy
requirements of mobile apps in a structured and analyzable form.
Our motivation is that, in many contexts including mobile app
development, use cases are common practice for the elicitation
and analysis of functional requirements and should also be
adapted for describing security requirements. We integrate and
adapt an existing approach for modeling security and privacy
requirements in terms of security threats, their mitigations,
and their relations to use cases in a misuse case diagram.
We introduce new security-related templates, i.e., a mitigation
template and a misuse case template for specifying mitigation
schemes and misuse case specifications in a structured and
analyzable manner. Natural language processing can then be
used to automatically detect and report inconsistencies among
artifacts and between the templates and specifications. Since
our approach supports stakeholders in precisely specifying and
checking security threats, threat scenarios and their mitigations,
it is expected to help with decision making and compliance with
standards for improving security. We successfully applied our
approach to industrial mobile apps and report lessons learned
and results from structured interviews with engineers.

I. INTRODUCTION

Nowadays, mobile applications (or apps) are widely-used in
many of our daily activities such as e-commerce and social
networking. The widespread use of mobile apps brings a
plethora of security and privacy risks, including malware that
steals consumer and corporate data from mobile devices and
mobile apps that unintentionally expose confidential data [1].
Therefore, security and privacy has become a crucial concern
in mobile app development, starting from requirements anal-
ysis to implementation and testing.

The work presented in this paper is part of the EDLAH2 [2]
project focusing on developing mobile apps in the healthcare
domain. The project brings academic institutions and com-
panies together in a consortium to enhance the lifestyle of
elderly people through gamification-based apps. Gamification
transforms activities that we normally hesitate to do, e.g., exer-
cising regularly, into a competition [3]. EDLAH2’s objectives
entail that app users provide access not only to their personal
data but also to their daily activities. Hence, software engineers
must face the significant challenge of defining and ensuring
security and privacy requirements in a context where there is
a high level of transparency regarding users’ (private) data.

In EDLAH2’s business context, like in many others, use
cases are the main artifacts employed to elicit functional re-
quirements and communicate with stakeholders. Consequently,
the usage scenarios describing how elderly people are expected
to interact with the EDLAH2 apps is documented in use case
diagrams and specifications. Therefore, to achieve widespread
applicability, the need for integrating security requirements
with use case modeling warrants the development of a use
case-driven, security requirements modeling method that is,
in our context, tailored to mobile app development.

Considerable research has been devoted to eliciting and
analyzing security requirements using various forms of use
cases (e.g., abuse cases [4] [5], security use cases [6], misuse
cases [7] [8] [9] [10]). However, the applicability of these
approaches in the context of security and privacy requirements
modeling for mobile apps shows limitations with respect to (1)
their support for explicitly specifying various types of security
threats (a security threat is a possible event that exploits a
vulnerability of the system to cause harm), (2) the definition of
threat scenarios (a threat scenario is a flow of events containing
interactions between a malicious actor and system to cause
harm), and (3) the specification of mitigations for these threats.

These features are essential in the type of business context
we target where it is required to explicitly identify the threat
scenarios that may affect important business operations in
order to identify appropriate mitigation schemes and trade-
offs between functional requirements and security and privacy
concerns. It is also expected that such security requirements,
to be preferably specified in a structured and analyzable form,
provide support for security testing, for example by helping
with identification of attack surfaces (points at which security
attacks can be executed). In addition to specifying security
threats, a common practice in many environments requires
mitigation schemes to be documented for the stakeholders to
demonstrate compliance with applicable security and privacy
standards and regulations. However, existing approaches lack
reusable templates to specify such mitigation schemes.

In the context of modeling security and privacy requirements
of mobile apps, the goal of this paper is to address the above
challenges by proposing a use case-driven, security require-
ments modeling method called Restricted Misuse Case Mod-
eling (RMCM), which adapts existing methods and extends
them. In RMCM, we employ misuse case diagrams proposed
by Sindre and Opdahl [9] to model security and privacy

2

requirements in terms of use cases. Misuse cases model attacks
that may compromise use cases and security use cases describe
how to mitigate such attacks. For eliciting security threats and
threat scenarios in a structured, and analyzable form, we adopt
the Restricted Use Case Modeling method (RUCM) proposed
in [11]. RUCM is based on a template and restriction rules,
reducing ambiguities and incompleteness in use cases. It was
previously evaluated through controlled experiments and has
shown to be usable and beneficial with respect to making
use cases less ambiguous and more amenable to precise
analysis and design [12] [13] [14] [15] [16]. However, since
RUCM was not originally designed for modeling security and
privacy requirements, we extend the RUCM template with new
restriction rules and constructs, targeting the precise modeling
of security threats with a focus on mobile apps. Further, we
provide a template for mitigation schemes and 3 mitigation
schemes that are pre-specified with standard and secure coding
methods for mitigating common security threats in mobile
apps. They can be readily used and revised as necessary.

Leveraging on the analyzable form of our models,
RMCM employs Natural Language Processing (NLP) to re-
port inconsistencies between a misuse case diagram and its
RMCM specifications, and to analyze the compliance of such
specifications against the provided RMCM templates. NLP is
also used to identify and highlight the control flow leading to
different threat scenarios and the steps in RMCM specifica-
tions that refer to interactions between malicious actors and the
system. The latter provides security testers with information
about attack surfaces on which security testing should focus.
To summarize, the contributions of this paper are:
• RMCM, a security requirements modeling method sup-

porting the precise and analyzable specification of secu-
rity threats, threat scenarios, and their mitigations, in the
context of use case driven mobile app development;

• a practical toolchain, available at our tool website [17], in-
cluding (1) a component that extends Papyrus [18] to sup-
port misuse case diagrams, (2) a component that extends
IBM Doors [19] to support misuse case specifications
and mitigation schemes in the RMCM templates, and (3)
a component relying on NLP to detect inconsistencies
among these artifacts;

• a case study demonstrating the applicability of RMCM in
a realistic mobile app development context.

This paper is structured as follows. Section II introduces the
context of our case study to provide the motivations behind
RMCM. Section III discusses the related work. Section IV
provides an overview of RMCM. Section V focuses on the use
case extensions in RMCM. In Section VI, we present our tool
support. Section VII reports on our industrial case study, from
which we draw conclusions on the benefits and applicability
of the proposed approach. Section VIII concludes the paper.

II. CONTEXT AND MOTIVATION

The context in which we developed RMCM was that of
mobile apps, designed to engage users and enable interactions
among them, accessing, processing, keeping track of user data

and activities, and providing services. This entails the system
we consider has a client-server database architecture, in which
mobile apps interact with Web services for providing online
activities, Web services interact with databases, and mobile
apps interact with mobile device data storage such as SQLite
and a SD card for storing data offline. In cases like EDLAH2,
the system may consist of a Web portal interacting with Web
services or even third-party software (e.g., other mobile apps).

Such mobile apps are representative of contexts where
stakeholders face the significant challenge of defining and
ensuring security and privacy requirements when there is a
high level of transparency regarding users’ information and
the information flow across users and apps, including third-
party software. There are various types of security threats
that can harm such apps, such as information disclosure,
information modification, unauthorized access, and denial of
service. Each security threat can be further sub-classified
according to the types of vulnerabilities being exploited. For
example, information disclosure may arise from exploiting
insecure data storage/flows, insecure authorization, SQL in-
jection (SQLI), or cross site scripting (XSS) vulnerabilities.
Hence, it is crucial to have such threats made explicit in
the requirements specifications to systematically analyze the
risks, help determine countermeasures to mitigate them, and
demonstrate compliance with relevant security standards.

MiCare Website (web)

Gamification Center (mobile)

Get
Fitter Play

Games

Do Social
ActivitiesGet

Rewards

Create
AccountConfigure

System

Client

Carer

Bracelet

GameApp

Browser

Skype

Log in

Fig. 1. Part of the use case diagram of
EDLAH2

In this paper, we use the
EDLAH2 system as a case
study to motivate, illustrate,
and assess RMCM. The ED-
LAH2 system provides a set
of gamification-based func-
tionalities on mobile devices
that engage and challenge
clients (older adults) to im-
prove their physical, mental,
and social activities. It al-
lows the carers of the clients
to create user accounts and
configure the system through a website called MiCare. The
gamification-based functionalities rely on a set of third-party
mobile apps.

The current development practice in EDLAH2 is use case-
driven and involves UML use case diagrams and use case
specifications for describing functional requirements. Fig. 1
depicts part of the use case diagram of EDLAH2. Client
and Carer are the main actors of the system while Bracelet,
Game App, Browser and Skype are the secondary actors
representing the third-party apps. The use cases describe seven
main functionalities: get fitter, play games, do social activities,
get rewards, log in, create account, and configure system.

A use case specification contains detailed description of a
use case given in a use case diagram and usually conforms to a
template [20] [21] [22]. The Cockburn template [20] had been
followed so far to document EDLAH2 use case specifications
in EDLAH2. Fig. 2 shows two examples of such specifications
that are part of EDLAH2. Log in describes how the carer logs

3

into the system via the MiCare website. Get Fitter describes
how the client checks his physical activities and condition
(e.g., heart beat rate, number of steps and minutes of walking)
as measured by the wearable device (i.e., bracelet).

1 USE CASE Log in
2 Precondition The system displays the login screen.
3 Basic Path
4 1. The system displays the login screen in a browser.
5 2. The carer enters the user name and password in the login form.
6 3. The system checks in the browser if the user name and password are valid.
7 4. The system builds a database query using the user name and password.
8 5. The system evaluates the query in the database.
9 6. The system checks that the query is successful.
10 7. The system displays the welcome message.
11 Postcondition The carer has successfully logged in the system.
12 Alternative Paths
13 3a. The entered user name or password is invalid.
14 3a1. The system displays the wrong user name or password message.
15 6a. The query is unsuccessful.
16 6a1. The system displays the database error message.
17
18 USE CASE Get Fitter
19 Precondition The client account has already been created.
20 Basic Path
21 1. The client requests to get current measurement.
22 2. The system receives the heart beat rate data from the bracelet.
23 3. The system checks whether the received heart beat rate data is correct.
24 4. The system stores the received data.
25 5. The system sets one point as a reward for the client.
26 6. The system displays the received heart beat rate data.
27 7. The system displays one point as a reward.
28 Postcondition The heart beat rate data and reward have been stored.
29 Alternative Paths
30 1a. The client requests to get activity data.
31 1a1. The system receives the client’s activity data from the bracelet.
32 1a2. The system checks whether the activity data is correct.
33 1a3. The system stores the activity data.
34 1a4. The system sets two point as a reward for the client.
35 1a5. The system displays the activity data.
36 1a6. The system displays two points as a reward.
37 1a3a. The system displays the error for incorrect activity data.
38 4a. The system displays the error for incorrect heart beat rate measurement.

Fig. 2. Sample use case specifications for part of the EDLAH2 system

1 MISUSE CASE Get Unauthorized Access
2 Precondition Some client accounts have already been created in the system.
3 Basic Path
4 1. The crook tampers with the values in the login URL.
5 2. The crook submits the tampered URL directly to the system.
6 3. The system builds a query using the values provided in login URL.
7 4. The system evaluates the query in the database.
8 5. The system checks that the query is successful.
9 6. The system displays the welcome message.
10 Postcondition The crook has gained some privileges.
11 Alternative Paths
12 5a. The query is unsuccessful.
13 5a1. The system displays the database error message, revealing some

information about the database structure.
14 5a2. The crook tampers with the values in the login URL again

based on the exposed information.
15 5a3. The crook submits the tampered URL directly to the system

until the system checks that the query is successful.
16 5a3. The crook reaches maximum number of login attempts.
17 5a3a. The system displays the error message for login.
18 Mitigation Points
19 mp1. In Step 3, the system sanitizes the values before building the query.
20 mp2. In Step 5a1, the system does not replay the exact database error message

and instead, it displays only non-confidential information.
21
22 MISUSE CASE Expose Information from Mobile
23 Precondition The mobile device has a malware installed.
24 Basic Path
25 1. The malware requests access to user data stored in the system.
26 2. The system accepts the request.
27 3. The system sends user data to the malware.
28 Postcondition The malware has obtained user’s private information.
29 Alternative Paths
30 2a. The system rejects the request.

Fig. 3. Sample misuse case specifications for part of the EDLAH2 system

The sample use case specifications reflect scenarios in which

the client and carer use the system as expected. From these
scenarios, one may also observe that the system accesses, pro-
cesses, propagates, and stores the user’s private information.
As a result, security and privacy concerns need to be elicited
such that stakeholders can take appropriate actions where
needed. Standard use case templates, such as Cockburn’s, are
insufficient to document security and privacy concerns in use
case specifications. One state-of-the-art approach for elicit-
ing security concerns, together with functional requirements,
provides a misuse case specification template [7] [9] which
extends a use case template with additional fields such as
misuse and mitigation point. We applied this template and
attempted to elicit some of the security and privacy concerns in
Fig. 2, as shown in Fig. 3. The Get Unauthorized Access and
Expose Information from Mobile misuse case specifications
we targeted are similar to the example given in [9]. The basic
and alternative paths in Fig. 3 describe the sequence of actions
that malicious actors and the system go through to cause harm.
The mitigation points document the actions in a path where
the misuse case can be mitigated (Lines 19-20 in Fig. 3).

Based on this attempt, we identified three challenges that
need to be considered when capturing security and privacy
requirements in use case-driven development of mobile apps:

Eliciting security threats in an explicit, precise form
(Challenge 1). We identified that although the template we
applied supports specifying various threats, it does not support
their specification in a precise and unambiguous manner. This
is the same for other related approaches such as [9] [7] [6] [4].
First, the templates do not provide glossary or keywords
for specifying common security threats in mobile apps. For
instance, the Get Unauthorized Access misuse case in Fig. 3
corresponds to unauthorized access via SQLI (for categorizing
the security threats for mobile apps, we follow the common,
well-known terminology given in OWASP [23]). In the spec-
ification, the term “SQL” was not even used. Likewise, the
Expose Information from Mobile misuse case corresponds to
information disclosure due to insecure data storage. Second,
the templates do not explicitly distinguish between malicious
actor-system interactions and other types of interactions. For
instance, the steps in Lines 4-5 in Fig. 3 correspond to
the malicious actor-system interactions, whereas the steps in
Lines 6-9 correspond to the system’s internal state changes.
The interactions between malicious actors and the system
contain information about the attack surfaces. But since the
specification provided in Fig. 3 does not make this important
difference, it may not be straightforward for a security tester
to precisely determine where the attack surface is. In this case,
the attack surface is the parameters in the login URL.

The templates also do not provide a precise and systematic
way to determine malicious actors in the specification. How-
ever, providing security extensions or keywords for precisely
specifying common security threats in mobile apps would
be useful. It would facilitate unambiguous communication
among stakeholders and support various automated analyses,
including security testing (e.g., identify where a security attack
may come from and from whom).

4

Eliciting threat scenarios in a structured form (Chal-
lenge 2). The existing templates have two shortcomings in
eliciting threat scenarios. First, they do not have any explicit
control flow structure (e.g., Do-While, Do-Until, and IF-Then).
For instance, the Get Unauthorized Access misuse case in
Fig. 3 tries a list of user name and password tuples iteratively
until the malicious user logs into the system to get privileges.
Since we do not have any explicit loop structure in the template
we use for misuse cases in Fig. 3, we tried to describe the loop
condition for the threat in a non-restrictive natural language
form (‘...until the system checks that...’ in Line 15 in Fig. 3).
However, it is not clear where the iteration starts in the
execution flow. Second, we need extensions for distinguishing
different types of scenarios — (basic and alternative) scenarios
that a malicious actor may follow to successfully harm the
system and scenarios that may not result in such harm. For
instance, in the Get Unauthorized Access misuse case in Fig. 3,
there are two alternative paths — the one starting from Line
12 leads to the scenario where the malicious actor harms
the system and the other one starting from Line 16 leads
to the scenario where the malicious actor fails to harm the
system. As a result, it may not be easy for the stakeholders
or an analysis tool to distinguish control flows and conditions
leading to threat scenarios. Therefore, such specifications can
be ambiguous and cannot support automated analyses.

Eliciting mitigation schemes (Challenge 3). After identi-
fying security threats in threat scenarios, it is crucial to specify
mitigation schemes matching these threats to demonstrate that
the software design complies with applicable security and
privacy standards and regulations. Such mitigation schemes
provide the developers with guidance on how to prevent
security threats specified in misuse cases. Different security
threats and threat scenarios often share common mitigation
methods and guidance. For instance, the two different security
threats — information disclosure via SQLI and unauthorized
access via SQLI — can both be mitigated by parameterizing
the SQL queries. Existing work only supports specifying the
flow of events mitigating each specific threat scenario. Such
flows of events are embedded in misuse case specifications
where one should specify the mitigation points (Lines 18-20 in
Fig. 3). There is no structured way to specify the guidance for
developers to mitigate security threats. In other words, there is
a lack of template support for specifying mitigation schemes
that can be reused and adapted for various security threats.

In this work, we focus on how to best address these three
challenges in a practical manner. Automated test generation
for security testing is one potential application of our method,
but we leave it out for future work.

III. RELATED WORK

There are numerous approaches in the literature to model
security and privacy requirements [24] [25] [26] [27] [28].
In a comprehensive literature review [24], security require-
ments engineering methods are distinguished across six cat-
egories: multilateral [29] [30], UML-based [9] [31], goal-
oriented [32] [33], problem frame-based [34] [35], risk/threat

analysis-based [36] [37], and common criteria-based ap-
proaches [38] [39]. Since our modeling method is based on
misuse cases [9] extending UML use case diagrams, it can be
considered a UML-based approach. It also relies on a form of
risk/threat analysis to capture various security threats, to elicit
threat scenarios in a structured form, and to specify mitigation
schemes. There are previous works devoted to documenting
security and privacy requirements in various forms of use cases
(e.g., abuse cases [4] [5], security use cases [6], and misuse
cases [7] [8] [9] [10]). We discuss those previous works with
respect to the challenges identified in Section II.

Eliciting security threats in a precise form. McDermott
and Fox [4] [5] propose abuse cases to describe harmful
interactions (i.e., security threats) between a system and ma-
licious actors, but relations between abuse cases and other
types of requirements are not described. Sindre and Opdahl [9]
extend the UML use case diagram with misuse cases and
security use cases to model security threats (i.e., misuse)
with security-related requirements (i.e., threat mitigation) and
with other functional requirements. Alexander discusses au-
tomation to support misuse case diagrams [40] [41] and
reports experiences with misuse case diagrams in an indus-
trial setting [42]. Rosado et al. [43] show how misuse case
diagrams are employed to model the security requirements
of a grid application, while Rostad [8] extends misuse case
diagrams with the notion of vulnerability, i.e., a weakness
that may be exploited by misusers. Misuse case diagrams
can be employed to represent misuse cases, security use
cases and their relations, but not to capture security threats
in misuse cases. Sindre and Opdahl [10] adapt a use case
specification template for detailed textual descriptions of threat
scenarios. This template is later extended for misuse case
generalization [44] and reuse [45]. However, the template does
not provide any construct or restriction rule to capture security
threats in a precise and analyzable form to support automated
analysis. Firesmith [6] proposes a similar template, suffering
from the same shortcomings, for security use cases which
represent security-related requirements combined with a form
of threat scenarios. El-Attar [46] [47] proposes a structure, i.e.,
Structured Misuse Case Descriptions (SMCD), that guides the
analysts towards developing consistent misuse case diagrams
and specifications. The proposed structure embeds some key-
words, e.g., misuse case and include, within fields present
in common use case templates. However, the keywords do
not support capturing security threats in an explicit form. To
the best of our knowledge, our work is the first that provides
restriction rules and keywords (see Table II in Section V-B) to
precisely capture security threats in misuse case specifications.

Eliciting threat scenarios in a structured form. The
templates proposed for misuse cases [10], [46], [47], security
use cases [6] and abuse cases [5] extend the common use
case templates in the literature to elicit security requirements.
But in general they do not provide any extension or any
control flow structure to systematically identify and capture
various threat scenarios. Whittle et al. [48] propose the use
of sequence diagrams for the analysis of threat scenarios in

5

misuse cases. Though these diagrams come with control flow
structures, their approach does not provide a systematic way
to distinguish attack types and threat scenarios causing harm
from those that don’t. We extend the RUCM template because
it already provides control flow structures, e.g., ‘do...while’
and ‘if...then...else...’, which can also be used for security threat
scenarios. We propose new extensions to capture success and
failure scenarios in a structured and analyzable form.

Eliciting mitigation schemes. The template proposed by
Sindre and Opdahl [10] supports mitigation points where one
can specify the flow of events mitigating each specific threat
scenario. There is, however, no structured way to specify miti-
gation schemes, i.e., the guidance and methods for developers
to mitigate security threats. RMCM is the first that provides
template support for specifying mitigation schemes, which can
be reused for mitigating various security threats.

IV. OVERVIEW OF OUR MODELING METHOD

Check Conformance
for Diagram and
Specifications

start
Elicit Requirements

as Use Cases,
Security Use Cases
and Misuse Cases

Is there any
inconsistency?

Check Conformance
for Mitigation

Schemes

[Yes]
[No]

Misuse Case
Diagram and
Specifications

1

- Misuse Case Diagram
- Use Case, Security
 Use Case, and Misuse
 Case Specifications
- Mitigation Schemes

2

4

List of
Inconsistencies

Elicit Mitigation
Schemes for

Misuse Cases

[Yes]

[No]

3

•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• ••

Is there any
inconsistency?

List of
Inconsistencies

Mitigation
Schemes

Fig. 4. Approach overview

The process in Fig. 4 presents
an overview of our modeling
method. RMCM is designed to
address the challenges stated
above in the use case-driven de-
velopment context we described
for mobile apps, and builds upon
and integrates existing work. The
RMCM output is a misuse case
diagram, use case specifications,
security use case specifications,
misuse case specifications, and
mitigation schemes.

In Step 1, Elicit requirements
as use cases, security use cases
and misuse cases, the analyst
elicits functional and security re-
quirements relying on a misuse
case diagram and the extended
RUCM (RMCM) template. Func-
tional requirements and security
requirements are captured in the
misuse case diagram while it is
further detailed in use case, se-
curity use case and misuse case
specifications (Challenges 1 and
2). While use cases capture func-
tional requirements, security use cases capture security coun-
termeasures addressing potential attacks, which are themselves
represented with misuse cases.

In Step 2, Check conformance for diagram and specifica-
tions, RMCM-V (Restricted Misuse Case Modeling - Verifier),
the tool we developed for RMCM, automatically checks the
consistency between the misuse case diagram and specifica-
tions, and between the specifications and the RMCM template.
It relies on NLP. If there is any inconsistency, the analyst
updates the diagram or specifications (Step 1). Steps 1 and 2
are iterative: the specifications and diagram are updated until

the specifications conform to the RMCM template and they
are consistent with the diagram. In Step 3, Elicit mitigation
schemes for misuse cases, mitigation schemes are elicited for
the security threats specified in misuse cases (Challenge 3).

In Step 4, Check conformance for mitigation schemes,
RMCM-V automatically checks whether the mitigation
schemes conform to the mitigation template. Steps 3 and 4
are also iterative: the mitigation schemes are updated until
they conform to the template.

V. CAPTURING SECURITY REQUIREMENTS

In this section, we explain the artifacts produced by RMCM.
We discuss how they were extended, compared to what was
proposed in existing work, and illustrate how they address our
three challenges with our running example.

A. Use Case Diagram with Misuse Case Extensions

To capture misuse cases, security use cases, use cases,
and their relationships, RMCM relies on the misuse case
extensions proposed by Sindre and Opdahl [9] for use case
diagrams. We made this choice for RMCM because of the
explicit representation of misuse cases, security use cases,
and their relationships (i.e., threaten and mitigate). In the
following, we briefly introduce our extensions. The reader is
referred to [9] for further details. Fig. 5 depicts part of the
misuse case diagram for EDLAH2.

Gamification Center (on mobile)

Get Fitter

Play Games

Do Social
Activities

Get
Rewards

Client

MiCare Website (on web)
Log in

Configure
SystemCarer

Bracelet

Game App

Browser

Skype

<<Security>>
Validate Mobile

Inputs

<<Security>>
Provide Privacy
Control Settings

Expose Information
via Insecure Data

Storage

<mitigate>

<mitigate>

<include>

<include>

<include>

<include>

<<Security>>
Validate Website

Inputs

<include>

<include>

Get Unauthorized
Access via SQLi

Expose
Information via

XSS

<threaten>

<mitigate>

<mitigate>

Malicious
App

Malicious
User

<threaten>

Create
Account Modify Information

via XSS<threaten>

<mitigate>
<include>

Fig. 5. Part of the misuse use case diagram for EDLAH2

As shown in Fig. 5, misuse cases, i.e., sequence of actions
that a malicious actor can perform to cause harm, are greyed
to distinguish them from use cases. Likewise, malicious actors
(e.g., Malicious app) are distinguished from benign actors
(e.g., Carer) and labeled with the keyword ‘malicious’. The
‘security’ stereotype is used to distinguish security use cases
that are countermeasures against misuse cases. In addition to
the use case relationships (e.g., include and extend), mitigate
is used for specifying the relationships between security use
cases and misuse cases; and threaten is used for specifying
the relationships between misuse cases and use cases [9].
For instance, in Fig. 5, Validate Website Inputs mitigates
Get Unauthorized Access via SQLI, which threatens Log in.

6

Expose Information via Insecure Data Storage is an abstract
misuse case that is extended by some concrete misuse cases
threatening Get Fitter, Play Games, Do Social Activities, and
Get Rewards. For space reasons, we do not show them here.
Please refer to our website [17] for details.

B. Misuse Case and Security Use Case Specifications

Regarding misuse case specifications, to elicit security
threats in a precise form and to elicit threat scenarios in
a structured and analyzable form (Challenges 1 and 2), we
propose the RMCM template, an extension of the RUCM
template, shown in Table I, and new restriction rules, shown
in Table II. The misuse case specifications are elicited using
this template, further using the new restriction rules in addition
to the original ones. These template and restriction rules are
designed to make (mis)use case specifications explicit, precise,
and analyzable by restricting the use of natural language and
by using specific keywords. Our extensions specifically target
the modeling of security and privacy concerns for mobile apps.

Fig. 6 shows two simplified misuse case specifications of
EDLAH2 written in RMCM. The original RUCM provides
basic and alternative flows which we adapted as Basic Threat
Flow, Specific/Bounded/Global Alternative Flow and Spe-
cific/Bounded/Global Alternative Threat Flow (see Table I).

TABLE I
RESTRICTED MISUSE CASE MODELING (RMCM) TEMPLATE

Misuse Case Name The name of the misuse case.

Brief Description Summarizes the misuse case in a short paragraph.

Precondition What should be true before the misuse case is executed.

Primary Actor The actor which initiates the misuse case.

Secondary Actors Actors which interact with the system to accomplish
the misuse case.

Dependency Include and extend relationships to other (mis)use cases.

Generalization Generalization relationships to other misuse cases.

Threats Threaten relationships to use cases.

Basic Threat Flow Specifies the main sequence of actions that the misuser
carries out to harm the system.

Steps(numbered) Flow of events

Postcondition What should be true after the ba-
sic flow executes.

Specific/Bounded/Global
Alternative Threat Flow

A specific alternative sequence of actions that the
misuser carries out to harm the system.

RFS A reference flow step number
where flow branches from.

Steps(numbered) Flow of events

Postcondition What should be true after the al-
ternative flow executes.

Specific/Bounded/Global
Alternative Flow

A specific alternative sequence of actions that do not
result in any harm to the system.

RFS A reference flow step number
where flow branches from.

Steps(numbered) Flow of events

Postcondition What should be true after the al-
ternative flow executes.

Mitigation Scheme Refers to the name of the mitigation scheme, specified
using our mitigation template, to mitigate this misuse
case. This complements security use case(s).

TABLE II
RMCM EXTENSIONS

Description Explanation

R1 MALICIOUS Referring to a malicious actor to enforce explicitly describ-
ing the actions/steps that involve a malicious actor.

R2 DATA Referring to the security-sensitive or privacy data to enforce
explicitly describing the actions/steps that access or modify
security-sensitive or privacy data.

R3 SQLI Referring to SQL injection attacks to enforce explicitly
describing the type of security threat.

R4 XPATHI Referring to XPath injection attacks to enforce explicitly
describing the type of security threat.

R5 XMLI Referring to XML injection attacks to enforce explicitly
describing the type of security threat.

R6 LDAPI Referring to LDAP injection attacks to enforce explicitly
describing the type of security threat.

R7 XSS Referring to cross site scripting attacks to enforce explicitly
describing the type of security threat.

R8 JSONI Referring to JSON injection attacks to enforce explicitly
describing the type of security threat.

R9 BO Referring to Buffer overflow attacks to enforce explicitly
describing the type of security threat.

R10 RME Referring to remote code execution attacks to enforce ex-
plicitly describing the type of security threat.

R11 GETS 〈data〉
FROM
〈location〉

Enforcing explicitly describing the security threat that ex-
ploits insecure data storage or unintentional data flows
vulnerabilities (e.g., the MALICIOUS app GETS credit card
DATA FROM log files).

R12 PROVIDES
〈attack〉
VALUES IN
〈parameter〉

Enforcing explicitly describing the security threat that ex-
ploits injection vulnerabilities. 〈attack〉 is the parameter in
which the injection attack type (listed in R3-R10) is to be
specified explicitly (e.g., the MALICIOUS user PROVIDES
SQLI VALUES IN name and password).

R13 BYPASSES
〈service-request〉
REQUEST TO
〈server-program〉

Enforcing explicitly describing the security threat that ex-
ploits insecure authentication or access control vulnerabili-
ties, which allows malicious actors to bypass any direct in-
teraction with the client program and directly submit service
requests to the server program (e.g., the MALICIOUS app
BYPASSES view users REQUEST TO viewInfo program).

R14 EXPLOITS
〈error-message〉

Enforcing explicitly describing the security threat exploiting
information exposed in error or exception messages, which
allows a malicious actor to understand the system better and
conduct informed security attacks (e.g., the MALICIOUS
user EXPLOITS exception message from the system).

R15 SENDS
PRIVILEGED
〈permission〉
REQUEST TO
〈client-program〉

Enforcing explicitly describing the security threat exploiting
insecure authorization schemes, which allows a malicious
app to request the mobile app to execute privileged function-
alities (e.g., the MALICIOUS app SENDS PRIVILEGED
phone call REQUEST TO the main activity program).

Different from a basic flow in a use case specification, which
describes a nominal scenario for an actor to use the system as
intended, a basic threat flow describes a nominal scenario for
a malicious actor to harm the system. It contains misuse case
steps and a postcondition (Lines 5-12 and 36-39). A misuse
case step can be one of the following interactions: a malicious
actor initiates a security attack to the system (Lines 6, 7, 17,
18, 19 and 37); the system validates a request and/or data (Line
10); the system replies to a malicious actor with a result (Lines
11, 16, 26 and 38). A step can also capture the system altering
its internal state (Lines 8 and 9). In addition, the inclusion of
another use case can be specified as a step. All keywords are
written in capital letters for readability.

Based on examples, the following discusses how the rules
in Table II (R1-R15) are applied to address Challenge 1:

The step in Line 6 applies R12 to explicitly specify the
security threat in which a malicious actor, labelled with
the ‘MALICIOUS’ keyword (R1), initiates an SQL injection
attack through the two user input fields ‘user name’ and
‘password’ of the login URL. The ‘SQLI’ keyword (R3) is
used to explicitly specify the type of security threat. The step

7

1 MISUSE CASE Get Unauthorized Access via SQLi
2 Precondition Some client accounts have already been created in the system.
3 Primary Actor MALICIOUS user
4 Threats Log In
5 Basic Threat Flow
6 1. The MALICIOUS user PROVIDES SQLI VALUES IN user name and

password of the login url.
7 2. The MALICIOUS user BYPASSES the login REQUEST TO the login

server program.
8 3. The system builds a query with the values provided in login url.
9 4. The system evaluates the query in the database.
10 5. The system VALIDATES THAT the query is successful.
11 6. The system SENDS the welcome message TO the MALICIOUS user.
12 Postcondition The MALICIOUS user gained an unauthorized access.
13 Specific Alternative Threat Flow
14 RFS 5
15 1. DO
16 2. The system SENDS the database error message DATA TO the MALICIOUS

user.
17 3. The MALICIOUS user EXPLOITS the database error message DATA from

the system.
18 4. The MALICIOUS user PROVIDES SQLI VALUES IN user name and

password of the login url.
19 5. The MALICIOUS user BYPASSES the login REQUEST TO the login

server program.
20 6. UNTIL the query is successful.
21 7. RESUME STEP 6.
22 Postcondition The MALICIOUS user gained an unauthorized access.
23 Bounded Alternative Flow
24 RFS SATF 1-6
25 1. IF the maximum number of login attempts is reached THEN
26 2. The system SENDS the invalid login message TO the MALICIOUS user.
27 3. ABORT.
28 4. ENDIF.
29 Postcondition The MALICIOUS user did not gain an unauthorized access.
30 Mitigation Scheme Secure Coding for Server-side Program
31
32 MISUSE CASE Expose Information via Insecure Data Storage
33 Precondition The mobile device, in which the system is installed, also has a

MALICIOUS app installed. The client has already used the system.
34 Primary Actor MALICIOUS app
35 Threats Get Fitter, Play Games, Do Social Activities
36 Basic Threat Flow
37 1. The MALICIOUS app GETS user location DATA FROM the log file of the

system.
38 2. The system SENDS the user location DATA TO the MALICIOUS app.
39 Postcondition The MALICIOUS app has obtained user’s private information.
40 Specific Alternative Flow
41 RFS 2
42 1. IF user location DATA is encrypted THEN
43 2. ABORT.
44 3. ENDIF.
45 Postcondition The MALICIOUS app didn’t obtain user’s location information.
46 Mitigation Scheme Secure Coding for Mobile Program

Fig. 6. Misuse case specifications in RMCM

in Line 7 specifies another threat in which the malicious actor
bypasses the input validation method, possibly implemented
on the client side (browser), and submits the login URL to
the login server program directly (R13). Notice that in place
of the ‘SQLI’ keyword as the value of the parameter 〈attack〉
in R12, the keywords ‘XPATHI’, ‘XMLI’, ‘LDAPI’, ‘XSS’,
‘JSONI’, ‘BO’, ‘RME’ described in R4-R10 can be used to
explicitly elicit other types of code injection security threats
for mobile apps. The step in Line 17 applies R14 to specify a
security threat that exploits the information exposed in error or
exception messages, labelled with the keyword ‘DATA’ (R2).
The step in Line 37 applies R11 to specify a security threat in
which a malicious actor attempts to access the user location
data, labelled with the keyword ‘DATA’ (R2), locally stored
in the mobile device (specified by stating the location of the
data: ‘log file of the system’ in the 〈location〉 parameter).

In the following, we discuss with examples how Challenge
2 is addressed. The ‘VALIDATES THAT’ keyword (Line 10),

described in the original RUCM [11], indicates a condition
that must be true to take the next step, otherwise an alternative
flow is taken. It is one of the control flow structures we use
for threat scenarios. In Fig. 6, the system proceeds to Step 6
(Line 11) if the query is successful (Line 10).

In the original RUCM template, there are three types of
alternative flows: specific, bounded and global. In RMCM,
we employ these alternative flows to describe failure scenarios
for security attacks. An alternative flow always refers to and
depends on a condition in a specific step of the basic threat
flow. A bounded alternative flow refers to more than one step
in the basic flow (Lines 23-29) while a global alternative flow
refers to any step in the basic flow. For specific and bounded
alternative flows, the keyword RFS is used to refer to one or
more reference flow steps (Line 24).

In the RMCM template (Table I), we introduce Spe-
cific/Bounded/Global alternative threat flows to describe alter-
native success scenarios and to distinguish them from failure
scenarios for security attacks. For instance, in the Get Unau-
thorized Access via SQLI in Fig. 6, the specific alternative
threat flow describes another success threat scenario (Lines
13-22) where the query is not validated by the system in the
basic threat scenario (Line 10). The bounded alternative flow
(Lines 23-29) describes the failure scenario for the attack given
in this alternative threat flow (Lines 13-22).

Bounded and global alternative (threat) flows begin with
the ‘IF .. THEN’ keyword, which is described in the original
RUCM template, to describe the conditions under which alter-
native (threat) flows are taken (Line 24). Specific alternative
flows do not necessarily begin with ‘IF .. THEN’ since a guard
condition can be indicated in its reference flow step (Line 10).
In addition, to describe threat scenarios, we also use other
control flow structures — ‘DO...UNTIL’ and ‘MEANWHILE’
— which are described in the original RUCM template. For
instance, in the Get Unauthorized Access via SQLI misuse
case in Fig. 6, the malicious user tries a list of user name and
password tuples iteratively in an attempt to log in the system
to obtain privileges. By having such explicit loop structure
(Lines 15 and 20), we are able to specify where the iteration
starts and ends in the execution flow of the threat scenario.

In RMCM, use case specifications are elicited according
to the original RUCM template and restriction rules [11].
Following [9], security use cases in RMCM specify flow of
events mitigating specific steps in misuse cases. But, to reduce
ambiguity and produce a structured, analyzable specification,
we propose to use RUCM for eliciting security use cases
as we do for use cases, with the only addition of a field
called ‘Compliance’ to specify the standard provisions that
the security use case should comply with (see Fig. 7). For the
details of the RUCM template, the reader is referred to [11].

Fig. 7 shows a simplified security use case (only some
fields are shown) for mitigating the threat Get Unauthorized
Access via SQLi. It provides compliance (Line 3) with a clause
in the widely-used security standard — ISO/IEC 27001:2013
Information Security Management Systems Requirements.

8

1 SECURITY USE CASE Validate Website Inputs
2 Precondition The system has received some inputs.
3 Compliance ISO/IEC 27001:2013 clause A.9.4:System and application access

control.
4 Basic Flow
5 1. The system sanitizes the inputs according to the input specification.
6 2. The system VALIDATES THAT the inputs are valid.
7 Postcondition The system has successfully validated the inputs.
8 Specific Alternative Flow
9 RFS 2
10 1. The system displays an error message.
11 2. ABORT.

Fig. 7. A security use case specification

C. Mitigation Schemes

To address Challenge 3, RMCM provides the mitigation
template given in Table III. The field ‘Mitigation Scheme’
in misuse case specifications refers to the scheme mitigating
misuse cases (Table I). Mitigation schemes themselves are
specified in a separate table, according to the mitigation
template, to facilitate reuse. Differently from security use cases
specifying flow of events mitigating a specific threat scenario,
mitigation schemes provide the secure coding methods adopted
by the system, guidelines on how to educate users and other
mechanisms to prevent various security threats in general. As
different security threats can be mitigated by applying standard
secure coding methods, such as those listed in OWASP [23],
once a mitigation scheme is specified, it can be reused or
tailored as necessary for various security threats. The field
‘Mitigated Misuse Case’ in Table III lists such various se-
curity threats mitigated by a given scheme, while the field
‘Compliance’ lists the standard provisions that the mitigation
scheme addresses.

The mitigation schemes complement the security use cases.
The field ‘Compliance’ in these two artifacts provides precise
traceability to specific clauses in standard provisions, and
together these artifacts provide a means for stakeholders to
demonstrate compliance with applicable security and privacy
standards and regulations. For instance, the mitigation scheme
in Fig. 8 mitigates two misuse cases — Expose Information via
Insecure Data Storage and Expose Information due to Insecure
Authentication. It also supports compliance with some of the
clauses in ISO/IEC 27001:2013. On our website [17], we give
two additional mitigation schemes which are used to mitigate
various security threats for EDLAH2.

TABLE III
MITIGATION TEMPLATE

Scheme Name The name of the mitigation scheme.

Brief Description A short description about the mitigation scheme.

Actor The actor who is responsible for reviewing and/or imple-
menting the mitigation tasks.

Mitigated Misuse
Case

Mitigate relationships to the misuse case(s). It specifies the
misuse case(s) mitigated by the mitigation scheme.

Compliance Specifies the standard/applicable provision(s) that this mit-
igation scheme provides compliance.

Mitigation Tasks Specifies the mitigation tasks.

Tasks(numbered) Mitigation Tasks

VI. TOOL SUPPORT

We implemented a tool, RMCM-V for checking the consis-
tency between the misuse case diagram and the specifications,
and between the specifications and the RMCM template.

Scheme Name Secure Coding for Mobile Program.

Brief Descrip-
tion

This mitigation scheme mitigates serious and common security
threats for mobile apps.

Actor Software Developer, Security Engineer.

Mitigated
Misuse Case

Expose Information via Insecure Data Storage, Expose Infor-
mation due to Insecure Authentication.

Compliance ISO/IEC 27001:2013 clause A.6.1.5:Information security in
project management, clause A.9.4:System & application ac-
cess control, clause A.10.1:Cryptographic controls.

Mitigation 1 OBFUSCATE all apk files using an Android apk obfuscator.
Tasks 2 ENCRYPT sensitive data stored in mobile device, such as

SQLite database, cache and log files, and SD card.
3 Apply root detection check. If jailbreak is detected, the

system warns the client of privacy data leakage risk.
4 Periodically clear caching data automatically.
5 Do not grant files world readable or writable permissions.
6 Perform code integrity violation check.
7 Educate users not to download apps from unofficial stores.

Fig. 8. A sample mitigation scheme

RMCM-V automatically checks consistency and reports incon-
sistencies such as a misuse case diagram missing a threaten
or mitigate relationship in specifications. The tool architecture
is composed of three layers (see Fig. 9): (i) the User Interface
(UI) layer, (ii) the Application layer, and (iii) the Data layer.

DoorsPapyrusU
I

La
ye

r
A

pp
lic

at
io

n
La

ye
r

D
at

a
La

ye
r

Use Case, Security
Use Case and Misuse
Case Specifications

Misuse Case
Diagram

GATE NLP
Workbench

uses
Mediator

uses uses

uses

Lists of modals,
conditional words,

ambiguous terms, etc.

LSTLSTLSTLST
Rules for checking

use case, security use
case and misuse case

conformance

Rules for checking
mitigation scheme

conformance

LSTLSTLSTJape LSTLSTLSTJape

Mitigation
Schemes

Diagram-
Specification
Consistency

Checker

Specification-
Template

Conformance
Checker

uses

Fig. 9. Layered architecture of RMCM-V

User Interface (UI) Layer. This layer supports the activi-
ties of eliciting security and (mis)use cases, and mitigation
schemes (see Fig. 4). We employ IBM Doors [19] for elic-
iting security and (mis)use case specifications and mitigation
schemes according to the RUCM and RMCM templates and
their restriction rules. We employ Papyrus [18] for misuse
case diagrams. Sindre and Opdahl [9] proposed a metamodel
of the basic misuse case concepts and their relation to the
UML metamodel. We adopted and implemented their proposed
metamodel as a UML profile in Papyrus so that we can use
the Papyrus model editor for drawing misuse case diagrams.

Application Layer. This layer supports the main activities
of our modeling method in Fig. 4: checking conformance
for diagram and specifications and checking conformance for
mitigation schemes. It contains three main components imple-
mented in Java: Mediator, Diagram-Specification Consistency
Checker, and Specification-Template Conformance Checker.
To access these Application Layer components through the
UI Layer, we implemented an IBM Doors plugin.

The Mediator is a coordinator that manages the other
two components. The Specification-Template Conformance

9

Checker employs NLP to check whether the specifications and
mitigation schemes comply with the RUCM and RMCM tem-
plates and their restriction rules. NLP is also used by the
Diagram-Specification Consistency Checker to check the con-
sistency between the misuse case diagram and specifications.

To support NLP, we employ a regular expression engine,
called JAPE [49], in the GATE workbench (http://gate.ac.uk/),
an open-source NLP framework. We implemented the re-
striction rules in JAPE. First, the specifications are split
into tokens. Second, Part-Of-Speech (POS) tags (i.e., verb,
noun, and pronoun) are assigned to each token. By using
the restriction rules implemented in JAPE, blocks of tokens
are tagged to distinguish RUCM/RMCM steps (e.g., actor to
system interaction, malicious actor to system interaction, and
internal actions), types of flows (i.e., threat-specific, alterna-
tive, and global), and mitigation scheme tasks. The NLP output
contains the annotated use case steps and mitigation scheme
tasks. The Diagram-Specification Consistency Checker and
Specification-Template Conformance Checker process these
annotations with the misuse case diagram to generate the list
of inconsistencies among artifacts.

Data Layer. The specifications and the mitigation schemes
are stored as native IBM Doors format. The misuse case
diagram is stored using the UML profile mechanism.

VII. INDUSTRIAL CASE STUDY

We applied RMCM to the security and privacy require-
ments of EDLAH2. Our goal was to assess, in an industrial
context, how RMCM can improve the practice of eliciting
and analyzing security and privacy requirements and how
well RMCM addresses the challenges that we identified in
Section II. EDLAH2 engineers provided their initial ED-
LAH2 documentation, which contained a use case diagram
and use case specifications. To model the security and privacy
requirements of EDLAH2 according to RMCM, we first exam-
ined the initial EDLAH2 documentation and then worked with
EDLAH2 engineers to build and iteratively refine our models
for security and privacy requirements. Tables IV reports the
size of the resulting RMCM artifacts. Table V reports the
number of times each restriction rule (R1-R15 in Table II)
is applied when eliciting misuse cases.

TABLE IV
THE SIZE OF THE RMCM ARTIFACTS IN EDLAH2

no. relations alt.
flows

alt. threat
flows

steps malicious
steps

Use cases 9 9 25 NA 143 NA
Security use
cases

4 26 4 NA 12 NA

Mitigation
schemes

3 20 NA NA NA NA

Misuse cases 17 17 21 10 145 22

In Table IV, the column ‘no.’ shows the numbers of use
cases, security use cases, mitigation schemes, and misuse
cases we modeled. The column ‘relations’ shows the numbers
of include (second row), mitigate (third and fourth rows),
and threaten (fifth row) relations among those artifacts. The
columns ‘alt. flows’, ‘alt. threat flows’, ‘steps’, ‘malicious
steps’ show the numbers of alternative flows, alternative threat

flows, steps, and malicious steps, respectively. ‘Malicious
steps’ denotes the steps in misuse case specifications that
correspond to interactions between malicious actors and the
system. ‘NA’ denotes “not applicable”.

TABLE V
NUMBER OF APPEARANCES OF RMCM RESTRICTIONS IN EDLAH2

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
80 38 2 0 0 0 4 1 1 1 1 9 2 14 3

As shown in Table IV, we elicited 17 misuse cases threat-
ening 9 use cases. We explicitly captured 10 alternative threat
flows (column ‘alt. threat flows’), specifying the conditions
and the flow of events that may still lead to successful attacks
when the attacks specified in the basic threat flows fail. We
elicited 21 scenarios that do not pose security threats (column
‘alt. flows’). We also elicited 4 security use cases and 3 mitiga-
tion schemes. They typically mitigate more than one misuse
case since there are 26 mitigate relations between security
use cases and misuse cases and 20 mitigate relations between
mitigation schemes and misuse cases (column ‘relations’).

One first interesting observation is that usually several
potential threats are relevant for each use case. This makes
security requirements engineering rather complex, especially
when involving many stakeholders, and it is therefore highly
important to be systematic and structured in identifying and
specifying security requirements. A second observation is that
a given threat can materialize through multiple threat scenar-
ios, which need to be all identified and carefully analyzed.
It is therefore important to have a structured and precise
way to express such scenarios. Our case study also confirmed
that mitigation schemes can be reused across multiple misuse
cases and they are therefore useful reusable artifacts that
should be captured independently. One other interesting result
is that we also identified 22 malicious steps, which contain
information about the attack surfaces, i.e., parameters, URLs,
files, and programs, through which the security attacks can be
carried out. Such malicious steps could be precisely identified
because of the systematic use of restriction rules. With so
many malicious steps, the resulting attack surface is rather
complex and justifies the need to be rigorous and systematic.
Malicious steps are therefore expected to provide insightful
information to security testers of EDLAH2 apps.

Thanks to the RMCM extensions (Table II) that reflect
common security threats for mobile apps, we were able to
cover security threats relevant to EDLAH2 in a systematic and
precise way. It is interesting to note that some of them were not
covered in the initial EDLAH2 documentation. For instance,
the extensions helped us identify and model that getting
unauthorized access is an SQLI injection attack (R3 and R12)
while exposing information from mobile is a security threat
that exploits insecure data storage (R2 and R11), which was
not previously documented. As shown in Table V, we applied
almost all the proposed restriction rules to systematically
model the security threats. Only three restriction rules (R4,
R5, R6) were not used since they correspond to security threats
targeting XML and LDAP databases, and EDLAH2 only uses
an SQL database.

10

http://gate.ac.uk/

To evaluate the RMCM output in light of the challenges we
identified earlier, we had semi-structured interviews with four
engineers holding various roles in EDLAH2 consortium (i.e.,
project manager, software engineer, and game architect). They
all had substantial software development experience, ranging
from 3 to 28 years. All participants had experience with use
case driven development and modeling. The interview included
a presentation illustrating the RMCM steps, a tool demo,
and examples from EDLAH2. To capture the perception of
engineers participating in the interview, regarding the potential
benefits of RMCM, and assess the extent to which it addresses
the targeted challenges, we handed out a questionnaire [50]
including questions to be answered according to a Likert
scale [51] (i.e., strongly agree, agree, disagree, and strongly
disagree) along with open, written comments. It was structured
for the participants to assess RMCM in terms of adoption
effort, expressiveness, and comparison with current practice.

Results from the interview showed that all participants
agreed on the following positive aspects of RMCM:
• The security extensions in RMCM provided enough ex-

pressiveness to conveniently capture security and privacy
requirements in EDLAH2.

• RMCM provided useful assistance for systematically cap-
turing and analyzing security and privacy requirements,
especially when compared to the current, informal prac-
tice in EDLAH2.

• Mitigation schemes and security use cases enabled pre-
cise traceability to specific clauses in the security standard
provisions of ISO/IEC 27001:2013, which EDLAH2 aims
to comply with, as illustrated in Fig. 7 and Fig. 8.

• RMCM-V provided useful assistance for minimizing in-
consistencies in the RMCM artifacts of EDLAH2. It
also helped ensure that the restrictions in Table II were
accurately followed in the misuse case specifications.

We, together with the participants, also identified a number
of challenges regarding the application of RMCM:
• Adopting RMCM in an organization. In the current prac-

tice in EDLAH2, like in many other environments, there
is no systematic way to capture security requirements in
use case models. Even though the effort required to apply
our modeling approach was considered to be reasonable
by EDLAH2 engineers, it may be a challenge to convince
engineers in general to engage in this additional modeling
effort. The costs and benefits of such an activity should be
further evaluated to help with adoption. This is, however,
a common and general challenge when introducing new
practices in software development.

• Additional extensions in RMCM. The security extensions
in RMCM cover various security and privacy concerns to
be captured in use case models. However, due to rapidly
changing software and hardware technology, new types
of security threats will likely need to be covered with
further security extensions. In a way, such extensions can
be treated as a knowledge repository of potential vulner-
abilities and their associated mitigation schemes, that has
to be regularly updated and helps creating awareness of

security threats and solutions across an organization.
Our discussion with the participants resulted in the follow-

ing priorities for future work:
• Providing more automation. Although RMCM-V pro-

vides useful assistance for minimizing inconsistencies
among RMCM artifacts, more automation, such as key-
word completion and semi-automated creation of alter-
native flows, would help engineers when writing misuse
case and security use case specifications.

• Generating security test cases. Restricted misuse case
specifications contain the precise control flow corre-
sponding to various threat scenarios in an analyzable
form. Such information should be used to automate test
generation for requirements-driven security testing.

Threats to validity. The main threat to the validity of our
case study regards the generalizability of the conclusions. To
mitigate the threat, we applied RMCM to a representative
mobile application that includes nontrivial use cases in an
application domain entailing numerous and varied security
threats. We selected the respondents to our interviews to hold
various roles and with substantial industry experience. To
limit threats to the internal validity of the case study, we had
many meetings with the engineers in EDLAH2 to verify the
correctness and completeness of our models.

VIII. CONCLUSION

This paper presents a use case-driven security requirements
modeling method, called RMCM, for documenting the security
and privacy requirements of mobile apps in a structured and
analyzable form. Our main motivation is to enable security
and privacy requirements modeling by relying on commonly
used artifacts in use-case driven development and by adding
a limited number of extensions, thus achieving widespread
applicability. RMCM builds on and integrates existing work
and is supported by a tool employing natural language process-
ing for checking the consistency of artifacts and compliance
to templates. The key characteristic of our method is that
it captures threat scenarios and mitigation schemes in an
explicit and structured form, thus enabling both automated
analysis of threat scenarios, e.g., consistency and conformance
checking, and reuse of mitigation schemes. Initial results
from structured interviews with experienced engineers suggest
that RMCM is accurate and practical to capture security and
privacy requirements of mobile apps in industrial settings.

In addition to supporting more precise and complete security
requirements, RMCM is a first step to achieve a longer-
term objective: automated test generation for requirements-
driven security testing. Our plan for the next stages is to
provide an automated technique that generates security test
cases from misuse case models. Our ultimate objective is to
achieve adequate coverage of the specified security and privacy
requirements, with traceability information between security
requirements and generated test cases.
Acknowledgment. This work is supported by the
National Research Fund, Luxembourg FNR/P10/03,
INTER/AAL/15/11213850, and INTER/DFG/14/11092585.

11

REFERENCES

[1] A. K. Jain and D. Shanbhag, “Addressing security and privacy risks in
mobile applications,” IT Professional, vol. 14, no. 5, pp. 28–33, 2012.

[2] “EDLAH2: Active and Assisted Living Programme,” http://www.
aal-europe.eu/projects/edlah2/.

[3] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: Defining ”gamification”,” in MindTrek’11.
ACM, 2011, pp. 9–15.

[4] J. McDermott and C. Fox, “Using abuse case models for security
requirements analysis,” in ACSAC’99, 1999.

[5] J. McDermott, “Abuse-case-based assurance arguments,” in ACSAC’01,
2001.

[6] D. G. Firesmith, “Security use cases,” Journal of Object Technology,
vol. 2, no. 3, pp. 53–64, 2003.

[7] A. L. Opdahl and G. Sindre, “Experimental comparison of attack trees
and misuse cases for security threat identification,” Information and
Software Technology, vol. 51, pp. 916–932, 2009.

[8] L. Rostad, “An extended misuse case notation: Including vulnerabilities
and the insider threat,” in REFSQ’06, 2006, pp. 33–43.

[9] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse
cases,” Requirements Engineering, vol. 10, pp. 34–44, 2005.

[10] ——, “Templates for misuse case description,” in REFSQ’01, 2001.
[11] T. Yue, L. C. Briand, and Y. Labiche, “Facilitating the transition from

use case models to analysis models: Approach and experiments,” ACM
Transactions on Software Engineering and Methodology, vol. 22, no. 1,
pp. 1–38, 2013.

[12] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and M. Z. Z. Iqbal,
“Automatic generation of system test cases from use case specifications,”
in ISSTA’15, 2015, pp. 385–396.

[13] ——, “UMTG: a toolset to automatically generate system test cases
from use case specifications,” in ESEC/FSE’15, 2015, pp. 942–945.

[14] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany, “Applying product
line use case modeling in an industrial automotive embedded system:
Lessons learned and a refined approach,” in MODELS’15, 2015, pp.
338–347.

[15] ——, “Configuring use case models in product families,” Software and
Systems Modeling, 2016.

[16] ——, “PUMConf: a tool to configure product specific use case and
domain models in a product line,” in FSE’16, 2016, pp. 1008–1012.

[17] X. P. Mai, “RMCM-V: a tool for checking consistencies between
misuse case diagram, specifications, and restricted misuse case modeling
templates,” https://sites.google.com/site/rmcmverifier/, 2017.

[18] “Papyrus,” https://www.eclipse.org/papyrus.
[19] “IBM Doors,” http://www.ibm.com/software/products/ca/en/ratidoor.
[20] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.
[21] F. Armour and G. Miller, Advanced Use Case Modeling: Software

Systems. Addison-Wesley, 2001.
[22] D. Kulak and E. Guiney, Use Cases: Requirements in Context. Addison-

Wesley, 2003.
[23] “OWASP Top 10 Mobile Security Risks,” https://www.owasp.org/index.

php/Mobile Top 10 2016-Top 10.
[24] B. Fabian, S. Gurses, M. Heisel, T. Santen, and H. Schmidt, “A com-

parison of security requirements engineering methods,” Requirements
Engineering, vol. 15, pp. 7–40, 2010.

[25] D. Mellado, C. Blanco, L. E. Sanchez, and E. Fernandez-Medina,
“A systematic review of security requirements engineering,” Computer
Standards & Interfaces, vol. 32, pp. 153–165, 2010.

[26] A. Souag, R. Mazo, C. Salinesi, and I. Comny-Wattiau, “Reusable
knowledge in security requirements engineering: a systematic mapping
study,” Requirements Engineering, vol. 21, pp. 251–283, 2016.

[27] P. Salini and S. Kanmani, “Survey and analysis on security requirements
engineering,” Computers and Electrical Engineering, vol. 38, pp. 1785–
1797, 2012.

[28] I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security requirements
for the rest of us: A survey,” IEEE Software, vol. 25, no. 1, pp. 20–27,
2008.

[29] S. Gurses, B. Berendt, and T. Santen, “Multilateral security require-
ments analysis for preserving privacy in ubiquitous environments,” in
UKDU’06, 2006.

[30] N. R. Mead, E. D. Hough, and T. R. Stehney, “Security quality require-
ments engineering (square) methodology,” Carnegie Mellon Software
Engineering Institute, CMU/SEI-2005-TR-009, 2005.

[31] T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUML: A UML-based
modeling language for model-driven security,” in UML’02, 2002, pp.
426–441.

[32] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy requirements
analysis within a social setting,” in RE’03, 2003, pp. 151–161.

[33] H. Mouratidis and P. Giorgini, “Secure tropos: a security-oriented
extension of the tropos methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17, no. 2, pp. 285–309,
2007.

[34] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse frames to
bound the scope of security problems,” in RE’04, 2004, pp. 354–355.

[35] D. Hatebur, M. Heisel, and H. Schmidt, “Security engineering using
problem frames,” in ETRICS’06, 2006, pp. 238–253.

[36] F. den Braber, I. Hogganvik, M. S. Lund, K. Stolen, and F. Vraalsen,
“Model-based security analysis in seven steps — a guided tour to the
CORAS method,” BT Technology Journal, pp. 101–117, 2007.

[37] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone, “From trust to
dependability through risk analysis,” in ARES’07, 2007, pp. 19–26.

[38] D. Mellado, E. Fernandez-Medina, and M. Piattini, “A comparison of
the Common Criteria with proposals of information systems security
requirements,” in ARES’06, 2006, pp. 654–661.

[39] ——, “Applying a security requirements engineering process,” in ES-
ORICS’06, 2006, pp. 192–206.

[40] I. Alexander, “Misuse cases: Use cases with hostile intent,” IEEE
Software, vol. 20, no. 1, pp. 58–66, 2003.

[41] ——, “Misuse cases help to elicit non-functional requirements,” Com-
puting & Control Engineering Journal, vol. 14, no. 1, pp. 40–45, 2003.

[42] ——, “Initial industrial experience of misuse cases in trade-off analysis,”
in RE’02, 2002, pp. 61–70.

[43] D. G. Rosado, E. Fernandez-Medina, and J. Lopez, “Applying a UML
extension to build use cases diagrams in a secure mobile grid applica-
tion,” in ER’09 Workshops, 2009, pp. 126–136.

[44] G. Sindre, A. L. Opdahl, and G. F. Brevik, “Generalization/specialization
as a structuring mechanism for misuse cases,” in SREIS’02, 2002.

[45] G. Sindre, D. G. Firesmith, and A. L. Opdahl, “A reuse-based approach
to determining security requirements,” in REFSQ’03, 2003.

[46] M. El-Attar, “Towards developing consistent misuse case models,”
Journal of Systems and Software, vol. 85, no. 2, pp. 323–339, 2012.

[47] ——, “Using SMCD to reduce inconsistencies in misuse case models:
A subject-based empirical evaluation,” Journal of Systems and Software,
vol. 87, pp. 104–118, 2014.

[48] J. Whittle, D. Wijesekera, and M. Hartong, “Executable misuse cases
for modeling security concerns,” in ICSE’08, 2008, pp. 121–130.

[49] H. Cunningham et al, “Developing language processing components
with gate version 8 (a user guide), http://gate.ac.uk/sale/tao/tao.pdf.”

[50] [Online]. Available: https://goo.gl/forms/OrAZcZLvsVm5tUN13
[51] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude

Measurement. Continuum, 2005.

12

http://www.aal-europe.eu/projects/edlah2/
http://www.aal-europe.eu/projects/edlah2/
https://sites.google.com/site/rmcmverifier/
https://www.eclipse.org/papyrus
http://www.ibm.com/software/products/ca/en/ratidoor
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
http://gate.ac.uk/sale/tao/tao.pdf
https://goo.gl/forms/OrAZcZLvsVm5tUN13

	Introduction
	Context and Motivation
	Related Work
	Overview of Our Modeling Method
	Capturing Security Requirements
	Use Case Diagram with Misuse Case Extensions
	Misuse Case and Security Use Case Specifications
	Mitigation Schemes

	Tool Support
	Industrial Case Study
	Conclusion
	References

