
Argon2: new generation of memory-hard functions
for password hashing and other applications

Alex Biryukov
University of Luxembourg

alex.biryukov@uni.lu

Daniel Dinu
University of Luxembourg
dumitru-daniel.dinu@uni.lu

Dmitry Khovratovich
University of Luxembourg
khovratovich@gmail.com

Abstract—We present a new hash function Argon2, which is
oriented at protection of low-entropy secrets without secret keys.
It requires a certain (but tunable) amount of memory, imposes
prohibitive time-memory and computation-memory tradeoffs on
memory-saving users, and is exceptionally fast on regular PC.
Overall, it can provide ASIC- and botnet-resistance by filling the
memory in 0.6 cycles per byte in the non-compressible way.

I. INTRODUCTION

Passwords, despite all their drawbcks, remain the primary
form of authentication on various web-services. Passwords are
usually stored in a hashed form in a server’s database. These
databases are quite often captured by the adversaries, who
then apply dictionary attacks since passwords tend to have
low entropy. Protocol designers use a number of tricks to
mitigate these issues. Starting from the late 70’s, a password is
hashed together with a random salt value to prevent detection
of identical passwords across different users and services. The
hash function computations, which became faster and faster
due to Moore’s law have been called multiple times to increase
the cost of password trial for the attacker.

In the meanwhile, the password crackers migrated to new ar-
chitectures, such as FPGAs, multiple-core GPUs and dedicated
ASIC modules, where the amortized cost of a multiple-iterated
hash function is much lower. It was quickly noted that these
new environments are great when the computation is almost
memoryless, but they experience difficulties when operating
on a large amount of memory. The defenders responded
by designing memory-hard functions, which require a large
amount of memory to be computed, and impose computational
penalties if less memory is used. The password hashing
scheme scrypt [13] is an instance of such function.

Memory-hard schemes also have other applications. They
can be used for key derivation from low-entropy sources.
Memory-hard schemes are also welcome in cryptocurrency
designs [11] if a creator wants to demotivate the use of
GPUs and ASICs for mining and promote the use of standard
desktops.

a) Problems of existing schemes: A trivial solution for
password hashing is a keyed hash function such as HMAC. If
the protocol designer prefers hashing without secret keys to
avoid all the problems with key generation, storage, and up-
date, then he has few alternatives: the generic mode PBKDF2,
the Blowfish-based bcrypt, and scrypt. Among those, only
scrypt aims for high memory, but the existence of a trivial

time-memory tradeoff [7] allows compact implementations
with the same energy cost.

Design of a memory-hard function proved to be a tough
problem. Since early 80’s it has been known that many
cryptographic problems that seemingly require large memory
actually allow for a time-memory tradeoff [10], where the
adversary can trade memory for time and do his job on
fast hardware with low memory. In application to password-
hashing schemes, this means that the password crackers can
still be implemented on a dedicated hardware even though at
some additional cost.

Another problem with the existing schemes is their com-
plexity. The same scrypt calls a stack of subprocedures, whose
design rationale has not been fully motivated (e.g, scrypt calls
SMix, which calls ROMix, which calls BlockMix, which calls
Salsa20/8 etc.). It is hard to analyze and, moreover, hard to
achieve confidence. Finally, it is not flexible in separating
time and memory costs. At the same time, the story of
cryptographic competitions [12], [15] has demonstrated that
the most secure designs come with simplicity, where every
element is well motivated and a cryptanalyst has as few entry
points as possible.

The Password Hashing Competition1, which started in 2014,
highlighted the following problems:
• Should the memory addressing (indexing functions) be

input-independent or input-dependent, or hybrid? The
first type of schemes, where the memory read location
are known in advance, is immediately vulnerable to time-
space tradeoff attacks, since an adversary can precompute
the missing block by the time it is needed [3]. In turn, the
input-dependent schemes are vulnerable to side-channel
attacks [14], as the timing information allows for much
faster password search.

• Is it better to fill more memory but suffer from time-
space tradeoffs, or make more passes over the memory
to be more robust? This question was quite difficult to
answer due to absence of generic tradeoff tools, which
would analyze the security against tradeoff attacks, and
the absence of unified metric to measure adversary’s
costs.

• How should the input-independent addresses be com-
puted? Several seemingly secure options have been at-

1Argon2 was selected as the PHC winner in July 2015.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84743067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tacked [3].
• How large a single memory block should be? Reading

smaller random-placed blocks is slower (in cycles per
byte) due to the spacial locality principle of the CPU
cache. In turn, larger blocks are difficult to process due
to the limited number of long registers.

• If the block is large, how to choose the internal com-
pression function? Should it be cryptographically secure
or more lightweight, providing only basic mixing of the
inputs? Many candidates simply proposed an iterative
construction and argued against cryptographically strong
transformations.

• How to exploit multiple cores of modern CPUs, when
they are available? Parallelizing calls to the hashing
function without any interaction is subject to simple
tradeoff attacks.
b) Our solution: We offer a hashing scheme called Ar-

gon2. Argon2 summarizes the state of the art in the design of
memory-hard functions. It is a streamlined and simple design.
It aims at the highest memory filling rate and effective use of
multiple computing units, while still providing defense against
tradeoff attacks. Argon2 is optimized for the x86 architecture
and exploits the cache and memory organization of the recent
Intel and AMD processors. Argon2 has two variants: Argon2d
and Argon2i. Argon2d is faster and uses data-depending
memory access, which makes it suitable for cryptocurrencies
and applications with no threats from side-channel timing
attacks. Argon2i uses data-independent memory access, which
is preferred for password hashing and password-based key
derivation. Argon2i is slower as it makes more passes over
the memory to protect from tradeoff attacks.

We recommend Argon2 for the applications that aim for
high performance. Both versions of Argon2 allow to fill 1
GB of RAM in a fraction of second, and smaller amounts
even faster. It scales easily to the arbitrary number of parallel
computing units. Its design is also optimized for clarity to ease
analysis and implementation.

Our scheme provides more features and better tradeoff
resilience than pre-PHC designs and equals in performance
with the top PHC competitors [4].

II. DEFINITIONS

A. Motivation

We aim to maximize the cost of password cracking on
ASICs. There can be different approaches to measure this
cost, but we turn to one of the most popular – the time-area
product [2], [16]. We assume that the password P is hashed
with salt S but without secret keys, and the hashes may leak
to the adversaries together with salts:

Tag← H(P, S);

Cracker← {(Tagi, Si)}.
In the case of the password hashing, we suppose that the

defender allocates certain amount of time (e.g., 1 second) per
password and a certain number of CPU cores (e.g., 4 cores).

Then he hashes the password using the maximum amount M
of memory. This memory size translates to certain ASIC area
A. The running ASIC time T is determined by the length of the
longest computational chain and by the ASIC memory latency.
Therefore, we maximize the value AT . The other usecases
follow a similar procedure.

Suppose that an ASIC designer that wants to reduce the
memory and thus the area wants to compute H using αM
memory only for some α < 1. Using some tradeoff specific to
H, he has to spend C(α) times as much computation and his
running time increases by at least the factor D(α). Therefore,
the maximum possible gain E in the time-area product is

Emax = max
α

1

αD(α)
.

The hash function is called memory-hard if D(α) > 1/α as
α → 0. Clearly, in this case the time-area product does not
decrease. Moreover, the following aspects may further increase
it:
• Computing cores needed to implement the C(α) penalty

may occupy significant area.
• If the tradeoff requires significant communication be-

tween the computing cores, the memory bandwidth limits
may impose additional restrictions on the running time.

In the following text, we will not attempt to estimate time
and area with large precision. However, an interested reader
may use the following implementations as reference:
• The 50-nm DRAM implementation [8] takes 550 mm2

per GByte;
• The Blake2b implementation in the 65-nm process should

take about 0.1 mm2 (using Blake-512 implementation
in [9]);

• The maximum memory bandwidth achieved by modern
GPUs is around 400 GB/sec.

B. Model for memory-hard functions

The memory-hard functions that we explore use the follow-
ing mode of operation. The memory array B[] is filled with
the compression function G:

B[0] = H(P, S);
for j from 1 to t

B[j] = G
(
B[φ1(j)], B[φ2(j)], · · · , B[φk(j)]

)
,

(1)
where φi() are some indexing functions.

We distinguish two types of indexing functions:
• Independent of the password and salt, but possibly depen-

dent on other public parameters (data-independent). Thus
the addresses can be calculated by the adversaries. We
suppose that the dedicated hardware can handle parallel
memory access, so that the cracker can prefetch the
data from the memory. Moreover, if she implements a
time-space tradeoff, then the missing blocks can be also
precomputed without losing time. Let the single G core
occupy the area equivalent to the β of the entire memory.

2

Then if we use αM memory, then the gain in the time-
area product is

E(α) =
1

α+ C(α)β
.

• Dependent on the password (data-dependent), in our
case: φ(j) = g(B[j − 1]). This choice prevents the
adversary from prefetching and precomputing missing
data. The adversary figures out what he has to recompute
only at the time the element is needed. If an element is
recomputed as a tree of F calls of average depth D, then
the total processing time is multiplied by D. The gain in
the time-area product is

E(α) =
1

(α+ C(α)β)D(α)
.

The maximum bandwidth Bwmax is a hypothetical upper
bound on the memory bandwidth on the adversary’s archi-
tecture. Suppose that for each call to G an adversary has to
load R(α) blocks from the memory on average. Therefore, the
adversary can keep the execution time the same as long as

R(alpha)Bw ≤ Bwmax,

where Bw is the bandwidth achieved by a full-space imple-
mentation. In the tradeoff attacks that we apply the following
holds:

R(alpha) = C(alpha).

III. SPECIFICATION

There are two flavors of Argon2 – Argon2d and Argon2i.
The former one uses data-dependent memory access to thwart
tradeoff attacks. However, this makes it vulnerable for side-
channel attacks, so Argon2d is recommended primarily for
cryptocurrencies and backend servers. Argon2i uses data-
independent memory access, which is recommended for pass-
word hashing and password-based key derivation.

A. Inputs

Argon2 has two types of inputs: primary inputs and sec-
ondary inputs, or parameters. Primary inputs are message P
and nonce S, which are password and salt, respectively, for
the password hashing. Primary inputs must always be given
by the user such that
• Message P may have any length from 0 to 232−1 bytes;
• Nonce S may have any length from 8 to 232 − 1 bytes

(16 bytes is recommended for password hashing).
Secondary inputs have the following restrictions:
• Degree of parallelism p determines how many indepen-

dent (but synchronizing) computational chains can be run.
It may take any integer value from 1 to 64.

• Tag length τ may be any integer number of bytes from
4 to 232 − 1.

• Memory size m can be any integer number of kilobytes
from 8p to 232− 1, but it is rounded down to the nearest
multiple of 4p.

• Number of iterations t (used to tune the running time
independently of the memory size) can be any integer
number from 1 to 232 − 1;

• Version number v is one byte 0x10;
• Secret value K (serves as key if necessary, but we do

not assume any key use by default) may have any length
from 0 to 32 bytes.

• Associated data X may have any length from 0 to 232−1
bytes.

Argon2 uses internal compression function G with two
1024-byte inputs and a 1024-byte output, and internal hash
function H . Here H is the Blake2b hash function, and G is
based on its internal permutation. The mode of operation of
Argon2 is quite simple when no parallelism is used: function
G is iterated m times. At step i a block with index φ(i) < i
is taken from the memory (Figure 1), where φ(i) is either
determined by the previous block in Argon2d, or is a fixed
value in Argon2i.

G GG

ii− 1 i+ 1φ(i+ 1)φ(i)

Fig. 1. Argon2 mode of operation with no parallelism.

B. Operation

Argon2 follows the extract-then-expand concept. First, it
extracts entropy from message and nonce by hashing it. All
the other parameters are also added to the input. The variable
length inputs P, S,K,X are prepended with their lengths:

H0 = H(d, τ,m, t, v, 〈P 〉, P, 〈S〉, S, 〈K〉,K, 〈X〉, X).

Here H0 is 32-byte value.
Argon2 then fills the memory with m 1024-byte blocks. For

tunable parallelism with p threads, the memory is organized in
a matrix B[i][j] of blocks with p rows (lanes) and q = bm/dc
columns. Blocks are computed as follows:

B[i][0] = G(H0, 0︸︷︷︸
4 bytes

|| i︸︷︷︸
4 bytes

), 0 ≤ i < p;

B[i][1] = G(H0, 1︸︷︷︸
4 bytes

|| 0︸︷︷︸
4 bytes

), 0 ≤ i < p;

B[i][j] = G(B[i][j − 1], B[i′][j′]), 0 ≤ i < p, 2 ≤ j < q.

where block index [i′][j′] is determined differently for Ar-
gon2d and Argon2i, and G is the compression function. Both
will be fully defined in the further text. The inputs to G that

3

are not full blocks, are prepended by necessary number of
zeros.

If t > 1, we repeat the procedure; however the first two
columns are now computed in the same way:

B[i][0] = G(B[i][q − 1], B[i′][j′]);

B[i][j] = G(B[i][j − 1], B[i′][j′]).

When we have done t iterations over the memory, we
compute the final block Bm as the XOR of the last column:

Bm = B[0][q − 1]⊕B[1][q − 1]⊕ · · · ⊕B[d− 1][q − 1].

The output tag is produced as follows. The hash function
H is applied iteratively to Bm, each time outputting the first
32 bytes of the 64-byte hash value, until the total number of
output bytes reaches τ .

p lanes

4 slices

message

nonce

parameters

H

B[0][0]

B[p− 1][0]

HHH

Tag

Fig. 2. Single-pass Argon2 with p lanes and 4 slices.

C. Indexing

Now we explain how the index [i′][j′] of the reference block
is computed. First, we determine the set of indices R that can
be referenced for given [i][j]. For that we further partition the
memory matrix into l = 4 vertical slices. Intersection of a
slice and a lane is segment of length q/l. Thus segments form
their own matrix Q of size p× l. Segments of the same slice
are computed in parallel, and may not reference blocks from
each other. All other blocks can be referenced. Suppose we
are computing a block in a segment Q[r][s]. Then R includes
blocks according to the following rules:

1) All blocks of segments Q[r′][∗], where r′ < r and ∗
takes all possible values from 0 to p− 1.

2) All blocks of segments Q[r′][∗], where r′ > r and ∗
takes all possible values from 0 to p − 1 — if it is the
second or later pass over the memory.

3) All blocks of segment Q[r][s] (current segment) except
for the previous block;

4) For the first block of the segment R does not include
the previous block of any lane.

In Argon2d we select the first 32 bits of block B[i][j − 1]
and denote this value by J1. Then we take the next 32 bits
of B[i][j − 1] and denote this value by J2. The value l =
J2 mod p determines the index of the lane from which the
block will be taken. Then let Rl be the set of blocks from R

that belong to lane l. We are going to take a block from Rl
with a non-uniform distribution. More precisely, we take

φ← d(264 − (J1)2) · |Rl|/264e
as the block index within Rl, where blocks are enumerated in
the order of production.

In Argon2i we run G2 — the 2-round compression function
G – in the counter mode, where the first input is all-zero block,
and the second input is constructed as

(r︸︷︷︸
4 bytes

|| l︸︷︷︸
4 bytes

|| s︸︷︷︸
4 bytes

|| i︸︷︷︸
4 bytes

|| 0︸︷︷︸
1008 bytes

,

where r is the pass number, l is the lane, s is the slice, and
i is is the counter starting in each segment from 0. Then we
increase the counter so that each application of G2 gives 128
64-bit values J1||J2, which are used to reference available
blocks exactly as in Argon2d.

D. Compression function G

Compression function G is built upon the Blake2b round
function P (fully defined in Section A). P operates on the
128-byte input, which can be viewed as 8 16-byte registers
(see details below):

P(A0, A1, . . . , A7) = (B0, B1, . . . , B7).

Compression function G(X,Y) operates on two 1024-byte
blocks X and Y . It first computes R = X ⊕ Y . Then R is
viewed as a 8×8-matrix of 16-byte registers R0, R1, . . . , R63.
Then P is first applied rowwise, and then columnwise to get
Z:

(Q0, Q1, . . . , Q7)← P(R0, R1, . . . , R7);

(Q8, Q9, . . . , Q15)← P(R8, R9, . . . , R15);

. . .

(Q56, Q57, . . . , Q63)← P(R56, R57, . . . , R63);

(Z0, Z8, Z16, . . . , Z56)← P(Q0, Q8, Q16, . . . , Q56);

(Z1, Z9, Z17, . . . , Z57)← P(Q1, Q9, Q17, . . . , Q57);

. . .

(Z7, Z15, Z23, . . . , Z63)← P(Q7, Q15, Q23, . . . , Q63).

Finally, G outputs Z ⊕R:

G : (X,Y) → R = X ⊕ Y P−→ Q
P−→ Z → Z ⊕R.

IV. FEATURES

Argon2 is a multi-purpose family of hashing schemes,
which is suitable for password hashing, key derivation, cryp-
tocurrencies and other applications that require provably high
memory use. Argon2 is optimized for the x86 architecture,
but it does not slow much on older processors. The key
feature of Argon2 is its performance and the ability to use
multiple computational cores in a way that prohibit time-
memory tradeoffs. Several features are not included into this
version, but can be easily added later.

4

P
P

P

X Y

R

Q

P P P

Z

Blake2b
round

Fig. 3. Argon2 compression function G.

A. Available features

Now we provide an extensive list of features of Argon2.
Performance. Argon2 fills memory very fast, thus increas-

ing the area multiplier in the time-area product for ASIC-
equipped adversaries. Data-independent version Argon2i se-
curely fills the memory spending about 2 CPU cycles per byte,
and Argon2d is three times as fast. This makes it suitable
for applications that need memory-hardness but can not allow
much CPU time, like cryptocurrency peer software.

Tradeoff resilience. Despite high performance, Argon2
provides reasonable level of tradeoff resilience. Our tradeoff
attacks previously applied to Catena and Lyra2 show the
following. With default number of passes over memory (1 for
Argon2d, 3 for Argon2i, an ASIC-equipped adversary can not
decrease the time-area product if the memory is reduced by
the factor of 4 or more. Much higher penalties apply if more
passes over the memory are made.

Scalability. Argon2 is scalable both in time and memory
dimensions. Both parameters can be changed independently
provided that a certain amount of time is always needed to fill
the memory.

Parallelism. Argon2 may use up to 64 threads in parallel,
although in our experiments 8 threads already exhaust the
available bandwidth and computing power of the machine.

GPU/FPGA/ASIC-unfriendly. Argon2 is heavily opti-
mized for the x86 architecture, so that implementing it on
dedicated cracking hardware should be neither cheaper nor

faster. Even specialized ASICs would require significant area
and would not allow reduction in the time-area product.

Additional input support. Argon2 supports additional
input, which is syntactically separated from the message and
nonce, such as secret key, environment parameters, user data,
etc..

B. Possible future extensions

Argon2 can be rather easily tuned to support other com-
pression functions, hash functions and block sizes. ROM can
be easily integrated into Argon2 by simply including it into
the area where the blocks are referenced from.

V. SECURITY ANALYSIS

A. Ranking tradeoff attack

To figure out the costs of the ASIC-equipped adversary, we
first need to calculate the time-space tradeoffs for Argon2.
To the best of our knowledge, the first generic tradeoffs
attacks were reported in [3], and they apply to both data-
dependent and data-independent schemes. The idea of the
ranking method [3] is as follows. When we generate a memory
block B[l], we make a decision, to store it or not. If we do not
store it, we calculate the access complexity of this block —
the number of calls to F needed to compute the block, which
is based on the access complexity of B[l − 1] and B[φ(l)].
The detailed strategy is as follows:

1) Select an integer q (for the sake of simplicity let q divide
T).

2) Store B[kq] for all k;
3) Store all ri and all access complexities;
4) Store the T/q highest access complexities. If B[i] refers

to a vertex from this top, we store B[i].
The memory reduction is a probabilistic function of q. We
applied the algorithm to the indexing function of Argon2 and
obtained the results in Table I. Each recomputation is a tree
of certain depth, also given in the table.

We conclude that for data-dependent one-pass schemes the
adversary is always able to reduce the memory by the factor
of 4 and still keep the time-area product the same.

α 1
2

1
3

1
4

1
5

1
6

1
7

C(α) 1.5 4 20.2 344 4660 218

(D(α) 1.5 2.8 5.5 10.3 17 27

TABLE I
TIME AND COMPUTATION PENALTIES FOR THE RANKING TRADEOFF

ATTACK FOR THE ARGON2 INDEXING FUNCTION.

B. Security of Argon2 to generic attacks

Now we consider preimage and collision resistance of both
versions of Argon2. Variable-length inputs are prepended with
their lengths, which shall ensure the absence of equal input
strings. Inputs are processed by a cryptographic hash function,
so no collisions should occur at this stage.

5

c) Internal collision resistance.: The compression func-
tion G is not claimed to be collision resistant, so it may happen
that distinct inputs produce identical outputs. Recall that G
works as follows:

G(X,Y) = P (Z)⊕ (Z), Z = X ⊕ Y.
where P is a permutation based on the 2-round Blake2b
permutation. Let us prove that all Z are different under certain
assumptions.

Theorem 1. Let Π be Argon2d or Argon2i with d lanes, s
slices, and t passes over memory. Assume that
• P (Z)⊕Z is collision-resistant, i.e. it is hard to find a, b

such that P (a)⊕ a = P (b)⊕ b.
• P (Z) ⊕ Z is 4-generalized-birthday-resistant, i.e. it is

hard to find distinct a, b, c, d such that P (a) ⊕ P (b) ⊕
P (c)⊕ P (d) = a⊕ b⊕ c⊕ d.

Then all the blocks B[i] generated in those t passes are
different.

Proof. By specification, the value of Z is different for the first
two blocks of each segment in the first slice in the first pass.
Consider the other blocks.

Let us enumerate the blocks according to the moment they
are computed. Within a slice, where segments can be computed
in parallel, we enumerate lane 0 fully first, then lane 1,
etc.. Slices are then computed and enumerated sequentially.
Suppose the proposition is wrong, and let (B[a], B[b]) be a
block collision such that x < y and y is the smallest among
all such collisions. As F (Z) ⊕ Z is collision resistant, the
collision occurs in Z, i.e.

Zx = Zy.

Let rx, ry be reference block indices for B[x] and B[y],
respectively, and let px, py be previous block indices for
B[x], B[y]. Then we get

B[rx]⊕B[px] = B[ry]⊕B[py].

As we assume 4-generalized-birthday-resistance, some argu-
ments are equal. Consider three cases:
• rx = px. This is forbidden by the rule 3 in Section III-C.
• rx = ry . We get B[px] = B[py]. As px, py < y, and y

is the smallest yielding such a collision, we get px = py .
However, by construction px 6= py for x 6= y.

• rx = py . Then we get B[ry] = B[px]. As ry < y and
px < x < y, we obtain ry = px. Since py = rx < x < y,
we get that x and y are in the same , we have two options:

– py is the last block of a segment. Then y is the first
block of a segment in the next slice. Since rx is the
last block of a segment, and x < y, x must be in the
same slice as y, and x can not be the first block in
a segment by the rule 4 in Section III-C. Therefore,
ry = px = x− 1. However, this is impossible, as ry
can not belong to the same slice as y.

– py is not the last block of a segment. Then rx =
py = y− 1, which implies that rx ≥ x. The latter is
forbidden.

Thus we get a contradiction in all cases. This ends the proof.

The compression function G is not claimed to be collision
resistant nor preimage-resistant. However, as the attacker has
no control over its input, the collisions are highly unlikely.
We only take care that the starting blocks are not identical by
producing the first two blocks with a counter and forbidding to
reference from the memory the last block as (pseudo)random.

Argon2d does not overwrite the memory, hence it is vul-
nerable to garbage-collector attacks and similar ones, and is
not recommended to use in the setting where these threats
are possible. Argon2i with 3 passes overwrites the memory
twice, thus thwarting the memory-leak attacks. Even if the
entire working memory of Argon2i is leaked after the hash is
computed, the adversary would have to compute two passes
over the memory to try the password.

C. Security of Argon2 to tradeoff attacks

Time and computational penalties for 1-pass Argon2d are
given in Table I. It suggests that the adversary can reduce
memory by the factor of 3 at most while keeping the time-
area product the same.

Argon2i is more vulnerable to tradeoff attacks due to its
data-independent addressing scheme. We applied the ranking
algorithm to 3-pass Argon2i to calculate time and compu-
tational penalties. We found out that the memory reduction
by the factor of 3 already gives the computational penalty of
around 214. The 214 Blake2b cores would take more area than
1 GB of RAM (Section II-A), thus prohibiting the adversary
to further reduce the time-area product. We conclude that the
time-area product cost for Argon2d can be reduced by 3 at
best.

VI. DESIGN RATIONALE

Argon2 was designed with the following primary goal: to
maximize the cost of exhaustive search on non-x86 architec-
tures, so that the switch even to dedicated ASICs would not
give significant advantage over doing the exhaustive search on
defender’s machine.

A. Indexing function

The basic scheme (1) was extended to implement:
• Tunable parallelism;
• Several passes over memory.
For the data-dependent addressing we set φ(l) = g(B[l]),

where g simply truncates the block and takes the result modulo
l − 1. We considered taking the address not from the block
B[l−1] but from the block B[l−2], which should have allowed
to prefetch the block earlier. However, not only the gain in
our implementations is limited, but also this benefit can be
exploited by the adversary. Indeed, the efficient depth D(q) is
now reduced to D(q) − 1, since the adversary has one extra
timeslot. Table I implies that then the adversary would be able
to reduce the memory by the factor of 5 without increasing the
time-area product (which is a 25% increase in the reduction
factor compared to the standard approach).

6

For the data-independent addressing we use a simple PRNG,
in particular the compression function G in the counter mode.
Due to its long output, one call (or two consecutive calls)
would produce hundreds of addresses, thus minimizing the
overhead. This approach does not give provable tradeoff
bounds, but instead allows the analysis with the tradeoff
algorithms suited for data-dependent addressing.

d) Motivation for our indexing functions: Initially, we
considered uniform selection of referenced blocks, but then
we considered a more generic case:

φ← d(264 − (J1)γ) · |Rl|/264e

We tried to choose the γ which would maximize the
adversary’s costs if he applies the tradeoff based on the
ranking method. We also attempted to make the reference
block distribution close to uniform, so that each memory block
is referenced similar number of times.

For each 1 ≤ γ ≤ 5 with step 0.1 we applied the ranking
method with sliding window and selected the best available
tradeoffs. We obtained a set of time penalties {Dγ(α)} and
computational penalties {Cγ(α)} for 0.01 < α < 1. We also
calculated the reference block distribution for all possible γ.
We considered two possible metrics:

1) Minimum time-area product

ATγ = min
α
{α ·Dγ(α)}.

2) Maximum memory reduction which reduces the time-
area product compared to the original:

αγ = min
α
{α |Dγ(α) < α}.

3) The goodness-of-fit value of the reference block distri-
bution w.r.t. the uniform distribution with n bins:

χ2 =
∑
i

(pi − 1
n)2

1
n

,

where pi is the average probability of the block from i-th
bin to be referenced. For example, if p3 = 0.2, n = 10
and there are 1000 blocks, then blocks from 201 to 300
are referenced 1000 · 0.2 = 200 times throughout the
computation.

We got the following results for n = 10:

γ ATγ αγ χ2

1 0.78 3.95 0.89
2 0.72 3.2 0.35
3 0.67 3.48 0.2
4 0.63 3.9 0.13
5 0.59 4.38 0.09

We conclude that the time-area product achievable by the
attacker slowly decreases as γ grows. However, the difference
between γ = 1 and γ = 5 is only the factor of 1.3. We also
see that the time-area product can be kept below the original
up to q = 3.2 for γ = 2, whereas for γ = 4 and γ = 1 such q
is close to 4. To avoid floating-point computations, we restrict

to integer γ. Thus the optimal values are γ = 2 and γ = 3,
where the former is slightly better in the first two metrics.

However, if we consider the reference block uniformity, the
situation favors larger γ considerably. We see that the χ2 value
is decreased by the factor of 2.5 when going from γ = 1
to γ = 2, and by the factor of 1.8 further to γ = 3. In
concrete probabilities (see also Figure 4), the first 20% of
blocks accumulate 40% of all reference hits for γ = 2 and
32% for γ = 3 (23.8% vs 19.3% hit for the first 10% of
blocks).

To summarize, γ = 2 and γ = 3 both are better against one
specific attacker and slightly worse against the other. We take
γ = 2 as the value that minimizes the AT gain, as we consider
this metric more important.

Memory fraction (1/q) 1
2

1
3

1
4

1
5

1
6

γ = 1 1.6 2.9 7.3 16.4 59

γ = 2 1.5 4 20.2 344 4700

γ = 3 1.4 4.3 28.1 1040 217

TABLE II
COMPUTATIONAL PENALTIES FOR THE RANKING TRADEOFF ATTACK WITH

A SLIDING WINDOW, 1 PASS.

Memory fraction (1/q) 1
2

1
3

1
4

1
5

1
6

γ = 1 1.6 2.5 4 5.8 8.7

γ = 2 1.5 2.6 5.4 10.7 17

γ = 3 1.3 2.5 5.3 10.1 18

TABLE III
DEPTH PENALTIES FOR THE RANKING TRADEOFF ATTACK WITH A SLIDING

WINDOW, 1 PASS.

Fig. 4. Access frequency for different memory segments (10%-buckets) and
different exponents (from γ = 1 to γ = 5) in the indexing functions.

B. Implementing parallelism
As modern CPUs have several cores possibly available for

hashing, it is tempting to use these cores to increase the
bandwidth, the amount of filled memory, and the CPU load.
The cores of the recent Intel CPU share the L3 cache and the
entire memory, which both have large latencies (100 cycles and
more). Therefore, the inter-processor communication should
be minimal to avoid delays.

The simplest way to use p parallel cores is to compute and
XOR p independent calls to H:

H ′(P, S) = H(P, S, 0)⊕H(P, S, 1)⊕ · · · ⊕H(P, S, p).

7

If a single call uses m memory units, then p calls use pm units.
However, this method admits a trivial tradeoff: an adversary
just makes p sequential calls to H using only m memory in
total, which keeps the time-area product constant.

We suggest the following solution for p cores: the entire
memory is split into p lanes of l equal slices each, which can
be viewed as elements of a (p × l)-matrix Q[i][j]. Consider
the class of schemes given by Equation (1). We modify it as
follows:
• p invocations to H run in parallel on the first column
Q[∗][0] of the memory matrix. Their indexing functions
refer to their own slices only;

• For each column j > 0, l invocations to H continue to
run in parallel, but the indexing functions now may refer
not only to their own slice, but also to all jp slices of
previous columns Q[∗][0], Q[∗][1], . . . , Q[∗][j − 1].

• The last blocks produced in each slice of the last column
are XORed.

This idea is easily implemented in software with p threads and
l joining points. It is easy to see that the adversary can use
less memory when computing the last column, for instance by
computing the slices sequentially and storing only the slice
which is currently computed. Then his time is multiplied by
(1+ p−1

l), whereas the memory use is multiplied by (1− p−1
pl),

so the time-area product is modified as

ATnew = AT

(
1− p− 1

pl

)(
1 +

p− 1

l

)
.

For 2 ≤ p, l ≤ 10 this value is always between 1.05 and 3. We
have selected l = 4 as this value gives low synchronisation
overhead while imposing time-area penalties on the adversary
who reduces the memory even by the factor 3/4. We note that
values l = 8 or l = 16 could be chosen.

If the compression function is collision-resistant, then one
may easily prove that block collisions are highly unlikely.
However, we employ a weaker compression function, for
which the following holds:

G(X,Y) = F (X ⊕ Y),

which is invariant to swap of inputs and is not collision-free.
We take special care to ensure that the mode of operation does
not allow such collisions by introducing additional rule:
• First block of a segment can not refer to the last block

of any segment in the previous slice.
We prove that block collisions are unlikely under reasonable
conditions on F in Section V-B.

C. Compression function design

1) Overview: In contrast to attacks on regular hash func-
tions, the adversary does not control inputs to the compres-
sion function G in our scheme. Intuitively, this should relax
the cryptographic properties required from the compression
function and allow for a faster primitive. To avoid being the
bottleneck, the compression function ideally should be on par
with the performance of memcpy() or similar function, which

may run at 0.1 cycle per byte or even faster. This much faster
than ordinary stream ciphers or hash functions, but we might
not need strong properties of those primitives.

However, we first have to determine the optimal block size.
When we request a block from a random location in the
memory, we most likely get a cache miss. The first bytes would
arrive at the CPU from RAM within at best 10 ns, which
accounts for 30 cycles. In practice, the latency of a single
load instruction may reach 100 cycles and more. However,
this number can be amortized if we request a large block of
sequentially stored bytes. When the first bytes are requested,
the CPU stores the next ones in the L1 cache, automatically or
using the prefetch instruction. The data from the L1 cache
can be loaded as fast as 64 bytes per cycle on the Haswell
architecture, though we did not manage to reach this speed in
our application.

Therefore, the larger the block is, the higher the through-
put is. We have made a series of experiments with a non-
cryptographic compression function, which does little beyond
simple XOR of its inputs, and achieved the performance of
around 0.7 cycles per byte per core with block sizes of 1024
bits and larger.

2) Design criteria: It was demonstrated that a compression
function with a large block size may be vulnerable to tradeoff
attacks if it has a simple iterative structure, like modes of
operation for a blockcipher [3] (some details in Appendix B).

Thus we formulate the following design criteria:

• The compression function must require about t bits of
storage (excluding inputs) to compute any output bit.

• Each output byte of F must be a nonlinear function
of all input bytes, so that the function has differential
probability below certain level, for example 1

4 .

These criteria ensure that the attacker is unable to compute
an output bit using only a few input bits or a few stored
bits. Moreover, the output bits should not be (almost) linear
functions of input bits, as otherwise the function tree would
collapse.

We have not found any generic design strategy for such
large-block compression functions. It is difficult to maintain
diffusion on large memory blocks due to the lack of CPU
instructions that interleave many registers at once. A naive
approach would be to apply a linear transformation with
certain branch number. However, even if we operate on 16-
byte registers, a 1024-byte block would consist of 64 elements.
A 64 × 64-matrix would require 32 XORs per register to
implement, which gives a penalty about 2 cycles per byte.

Instead, we propose to build the compression function on the
top of a transformation P that already mixes several registers.
We apply P in parallel (having a P-box), then shuffle the
output registers and apply it again. If P handles p registers,
then the compression function may transform a block of p2

registers with 2 rounds of P-boxes. We do not have to manually
shuffle the data, we just change the inputs to P-boxes. As an
example, an implementation of the Blake2b [1] permutation
processes 8 128-bit registers, so with 2 rounds of Blake2b

8

we can design a compression function that mixes the 8192-
bit block. We stress that this approach is not possible with
dedicated AES instructions. Even though they are very fast,
they apply only to the 128-bit block, and we still have to
diffuse its content across other blocks.

D. User-controlled parameters

We have made a number of design choices, which we
consider optimal for a wide range of applications. Some
parameters can be altered, some should be kept as is. We give
a user full control over:
• Amount M of memory filled by algorithm. This value,

evidently, depends on the application and the environ-
ment. There is no ”insecure” value for this parameter,
though clearly the more memory the better.

• Number T of passes over the memory. The running time
depends linearly on this parameter. We expect that the
user chooses this number according to the time con-
straints on the application. Again, there is no ”insecure
value” for T .

• Degree d of parallelism. This number determines the
number of threads used by an optimized implementation
of Argon2. We expect that the user is restricted by a
number of CPU cores (or half-cores) that can be devoted
to the hash function, and chooses d accordingly (double
the number of cores).

• Length of password/message, salt/nonce, and tag (except
for some low, insecure values for salt and tag lengths).

We allow to choose another compression function G, hash
function H , block size b, and number of slices l. However, we
do not provide this flexibility in a reference implementation
as we guess that the vast majority of the users would prefer
as few parameters as possible.

VII. PERFORMANCE

A. x86 architecture

To optimize the data load and store from/to memory, the
memory that will be processed has to be alligned on 16-
byte boundary when loaded/stored into/from 128-bit registers
and on 32-byte boundary when loaded/stored into/from 256-
bit registers. If the memory is not aligned on the specified
boundaries, then each memory operation may take one extra
CPU cycle, which may cause consistent penalties for many
memory accesses.

The results presented are obtained using the gcc
4.8.2 compiler with the following options: -m64 -mavx
-std=c++11 -pthread -O3. The cycle count value was
measured using the __rdtscp Intel intrinsics C function
which inlines the RDTSCP assembly instruction that returns
the 64-bit Time Stamp Counter (TSC) value. The instruction
waits for prevoius instruction to finish and then is executed,
but meanwhile the next instructions may begin before the
value is read. Although this shortcoming, we used this method
because it is the most realiable handy method to measure the
execution time and also it is widely used in other cryptographic
operations benchmarking.

Argon2d (1 pass) Argon2i (3 passes)
Processor Threads Cycles/Byte Bandwidth Cycles/Byte Bandwidth

(GB/s) (GB/s)
i7-4500U 1 1.6 2.2 4.7 2.6
i7-4500U 2 1.0 3.6 2.8 4.5
i7-4500U 4 0.7 5.1 2 5.4
i7-4500U 8 0.7 5.1 1.9 5.8

TABLE IV
SPEED AND MEMORY BANDWIDTH OF ARGON2(D/I) MEASURED ON 1 GB
MEMORY FILLED. CORE I7-4500U — INTEL HASWELL 1.8 GHZ, 4 CORES

VIII. APPLICATIONS

Argon2d is optimized for settings where the adversary does
not get regular access to system memory or CPU, i.e. he can
not run side-channel attacks based on the timing information,
nor he can recover the password much faster using garbage
collection [5]. These settings are more typical for backend
servers and cryptocurrency minings. For practice we suggest
the following settings:
• Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz

CPU using 1 core — Argon2d with 2 lanes and 250 MB
of RAM;

• Backend server authentication, that takes 0.5 seconds on
a 2 GHz CPU using 4 cores — Argon2d with 8 lanes
and 4 GB of RAM.

Argon2i is optimized for more dangerous settings, where
the adversary possibly can access the same machine, use its
CPU or mount cold-boot attacks. We use three passes to get
rid entirely of the password in the memory. We suggest the
following settings:
• Key derivation for hard-drive encryption, that takes 3

seconds on a 2 GHz CPU using 2 cores — Argon2iwith
4 lanes and 6 GB of RAM;

• Frontend server authentication, that takes 0.5 seconds on
a 2 GHz CPU using 2 cores — Argon2i with 4 lanes and
1 GB of RAM.

IX. CONCLUSION

We presented the memory-hard function Argon2, which
maximizes the ASIC implementation costs for given CPU
computing time. We aimed to make the design clear and
compact, so that any feature and operation has certain ratio-
nale. The clarity and brevity of the Argon2 design has been
confirmed by its eventual selection as the PHC winner.

Further development of tradeoff attacks with dedication to
Argon2 is the subject of future work. It also remains to be
seen how Argon2 withstands GPU cracking with low memory
requirements.

REFERENCES

[1] J. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: simpler, smaller, fast as MD5,” in ACNS’13, ser. Lecture
Notes in Computer Science, vol. 7954. Springer, 2013, pp. 119–135.

[2] D. J. Bernstein and T. Lange, “Non-uniform cracks in the concrete: The
power of free precomputation,” in ASIACRYPT’13, ser. Lecture Notes
in Computer Science, vol. 8270. Springer, 2013, pp. 321–340.

9

[3] A. Biryukov and D. Khovratovich, “Tradeoff cryptanalysis of memory-
hard functions,” in Advances in Cryptology - ASIACRYPT 2015, ser.
Lecture Notes in Computer Science, T. Iwata and J. H. Cheon, Eds.,
vol. 9453. Springer, 2015, pp. 633–657.

[4] M. Broz, “Phc benchmarks,” 2015,
https://github.com/mbroz/PHCtest/blob/master/output/phc round2.pdf.

[5] C. Forler, E. List, S. Lucks, and J. Wenzel, “Overview of the candidates
for the password hashing competition - and their resistance against
garbage-collector attacks,” Cryptology ePrint Archive, Report 2014/881,
2014, http://eprint.iacr.org/.

[6] C. Forler, S. Lucks, and J. Wenzel, “Catena: A memory-
consuming password scrambler,” IACR Cryptology ePrint
Archive, Report 2013/525, 2013, non-tweaked version
http://eprint.iacr.org/2013/525/20140105:194859.

[7] ——, “Memory-demanding password scrambling,” in ASIACRYPT’14,
ser. Lecture Notes in Computer Science, vol. 8874. Springer, 2014, pp.
289–305, tweaked version of [6].

[8] B. Giridhar, M. Cieslak, D. Duggal, R. G. Dreslinski, H. M. Chen,
R. Patti, B. Hold, C. Chakrabarti, T. N. Mudge, and D. Blaauw,
“Exploring DRAM organizations for energy-efficient and resilient ex-
ascale memories,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2013). ACM, 2013,
pp. 23–35.

[9] F. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Ro-
gawski, H. Kaeslin, and J.-P. Kaps, “Lessons learned from designing
a 65nm ASIC for evaluating third round SHA-3 candidates,” in Third
SHA-3 Candidate Conference, Mar. 2012.

[10] M. E. Hellman, “A cryptanalytic time-memory trade-off,” Information
Theory, IEEE Transactions on, vol. 26, no. 4, pp. 401–406, 1980.

[11] C. Lee, “Litecoin - open source p2p digital currency,”
https://bitcointalk.org/index.php?topic=47417.0, 2011,
https://litecoin.org/.

[12] NIST, SHA-3 competition, 2007, http://csrc.nist.gov/groups/ST/hash/sha-
3/index.html.

[13] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions,” 2009, http://www.tarsnap.com/scrypt/scrypt.pdf.

[14] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in ACM CCS’09, 2009, pp. 199–212.

[15] M. Robshaw and O. Billet, New stream cipher designs: the eSTREAM
finalists. Springer, 2008, vol. 4986.

[16] C. D. Thompson, “Area-time complexity for VLSI,” in STOC’79. ACM,
1979, pp. 81–88.

APPENDIX

A. Permutation P

Permutation P is based on the round function of Blake2b
and works as follows. Its 8 16-byte inputs S0, S1, . . . , S7

are viewed as a 4 × 4-matrix of 64-bit words, where Si =
(v2i+1||v2i):

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

Then we do

G(v0, v4, v8, v12) G(v1, v5, v9, v13)

G(v2, v6, v10, v14) G(v3, v7, v11, v15)

G(v0, v5, v10, v15) G(v1, v6, v11, v12)

G(v2, v7, v8, v13) G(v3, v4, v9, v14),

where G applies to (a, b, c, d) as follows:

a← a+ b+ 2 ∗ aL ∗ bL;

d← (d⊕ a) ≫ 32;

c← c+ d+ 2 ∗ cL ∗ dL;

b← (b⊕ c) ≫ 24;

a← a+ b+ 2 ∗ aL ∗ bL;

d← (d⊕ a) ≫ 16;

c← c+ d+ 2 ∗ cL ∗ dL;

b← (b⊕ c) ≫ 63;

(2)

Here + are additions modulo 264 and ≫ are 64-bit rotations
to the right. xL is the 64-bit integer x truncated to the 32 least
significant bits. The modular additions in G are combined with
64-bit multiplications (that is the only difference to the original
Blake2 design).

Our motivation in adding multiplications is to increase
the circuit depth (and thus the running time) of a potential
ASIC implementation while having roughly the same running
time on CPU thanks to parallelism and pipelining. Extra
multiplications in the scheme serve well, as the best addition-
based circuits for multiplication have latency about 4-5 times
the addition latency for 32-bit multiplication (or roughly logn
for n-bit multiplication).

As a result, any output 64-bit word of P is implemented
by a chain of additions, multiplications, XORs, and rotations.
The shortest possible chain for the 1 KB-block (e.g, from v0
to v0) consists of 12 MULs, 12 XORs, and 12 rotations.

B. Attack on iterative compression function

Let us consider the following structure of the compression
function F (X,Y), where X and Y are input blocks:

• The input blocks of size t are divided into shorter sub-
blocks of length t′ (for instance, 128 bits) X0, X1, X2, . . .
and Y0, Y1, Y2,

• The output block Z is computed subblockwise:

Z0 = G(X0, Y0);

Zi = G(Xi, Yi, Zi−1), i > 0.

This scheme resembles the duplex authenticated encryption
mode, which is secure under certain assumptions on G.
However, it is totally insecure against tradeoff adversaries, as
shown below.

Suppose that an adversary computes Z = F (X,Y) but Y is
not stored. Suppose that Y is a tree function of stored elements
of depth D. The adversary starts with computing Z0, which
requires only Y0. In turn, Y0 = G(X ′0, Y

′
0) for some X ′, Y ′.

Therefore, the adversary computes the tree of the same depth
D, but with the function G instead of F . Z1 is then a tree
function of depth D+ 1, Z2 of depth D+ 2, etc. In total, the
recomputation takes (D + s)LG time, where s is the number
of subblocks and LG is the latency of G. This should be
compared to the full-space implementation, which takes time

10

sLG. Therefore, if the memory is reduced by the factor q, then
the time-area product is changed as

ATnew =
D(q) + s

sq
AT.

Therefore, if
D(q) ≤ s(q − 1), (3)

the adversary wins.
One may think of using the Zm−1[l − 1] as input to

computing Z0[l]. Clearly, this changes little in adversary’s
strategy, who could simply store all Zm−1, which is feasible
for large m. In concrete proposals, s can be 64, 128, 256 and
even larger.

We conclude that F with an iterative structure is insecure.
We note that this attack applies also to other PHC candidates
with iterative compression function.

11

