
 

 
 

PhD-FSTC-2017-34 

The Faculty of Sciences, Technology and Communication 

 

 
DISSERTATION 

 
Defense held on 22/06/2017 in Luxembourg  

 

to obtain the degree of 

  

 

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG 
 

EN BIOLOGIE 
 

by 
 

Stefanía MAGNÚSDÓTTIR 
Born on 21 January 1988 in Reykjavík, Iceland 

 
 

 DEVELOPMENT AND ANALYSIS OF INDIVIDUAL-
BASED GUT MICROBIOME METABOLIC MODELS 

 
Dissertation defense committee 

Dr Ines Thiele, dissertation supervisor 
Luxembourg Centre for Systems Biomedicine 

Associate Professor, Université du Luxembourg 

 

Dr Christophe Lacroix 
Professor, ETH Zürich, Switzerland 

 

Dr Paul Wilmes, Chairman 
Luxembourg Centre for Systems Biomedicine 

Associate Professor, Université du Luxembourg 

 

Dr Francisco Planes 
CEIT and Tecnun 

Associate Professor, University of Navarra, Spain 

 

Dr Ronan Fleming, Vice Chairman 
Luxembourg Centre for Systems Biomedicine 

Collaborateur scientifique (Senior), Université du Luxembourg 

 



II

Molecular Systems Physiology

Luxembourg Centre for Systems Biomedicine

Faculty of Life Sciences, Technology and Communication

Doctoral School in Systems and Molecular Biomedicine

Supported by Fonds National de la Recherche (FNR), Luxembourg (6951193)

Disseration Defence Committee:

Committee members: A-Prof. Dr. Paul Wilmes

Dr. Ronan M. T. Fleming

Prof. Dr. Christophe Lacroix

A-Prof. Dr. Francisco Planes

Supervisor: A-Prof. Dr. Ines Thiele





IV



Contents

List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII

Summary XIII

1 Introduction: COBRA modeling of the human gut microbiome 3

1.1 Human gut microbiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Constraint-based reconstruction and analysis . . . . . . . . . . . . . . . . . 5

1.2.1 Genome-scale metabolic reconstructions . . . . . . . . . . . . . . 5

1.2.2 Conversion to mathematical format . . . . . . . . . . . . . . . . . 8

1.2.3 Metabolic modeling . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Flux balance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Comparative genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 In silico metabolic modeling of the human gut microbiome . . . . . . . . . 12

1.5 Microbe community modeling . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 COBRA studies of the gut microbiome . . . . . . . . . . . . . . . 14

1.5.2 Host-microbiome community models . . . . . . . . . . . . . . . . 15

1.6 Scope and aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Systematic genome assessment of B-vitamin biosynthesis suggests co-operation

among gut microbes 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Pathway Descriptions, Prediction Criteria, and Predictions . . . . . 25

2.3.2 Comparison with experimental data . . . . . . . . . . . . . . . . . 38

V



VI CONTENTS

2.3.3 B-vitamin synthesis Patterns in HGM and other Microbial Genomes 40

2.3.4 Amount of HGM B-vitamins Available to the Gut . . . . . . . . . . 43

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Generation of genome-scale metabolic reconstructions for 773 members of the

human gut microbiota 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Metabolic reconstruction pipeline . . . . . . . . . . . . . . . . . . 62

3.3.2 Features of reconstructions . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Metabolic diversity of AGORA reconstructions . . . . . . . . . . . 66

3.3.4 Validation of AGORA model predictions . . . . . . . . . . . . . . 68

3.3.5 Pairwise interactions of models . . . . . . . . . . . . . . . . . . . 68

3.3.6 Integrating metagenomics and 16S rRNA with AGORA . . . . . . 69

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Individual-based gut microbiome models 79

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Metagenomic reads . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Mapping metagenomic reads to AGORA . . . . . . . . . . . . . . 82

4.3.3 Personalized gut microbiome reconstructions . . . . . . . . . . . . 82

4.3.4 Coupling constraints . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.5 Leak test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.6 Individual metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.8 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Metagenomic mapping to AGORA genomes . . . . . . . . . . . . 87

4.4.2 Microbiome model features . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS VII

4.4.3 Microbiome vitamin biosynthesis . . . . . . . . . . . . . . . . . . 89

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Concluding remarks 99

5.1 Comparative genomics to predict microbial metabolism . . . . . . . . . . . 100

5.2 Gut microbial metabolic reconstructions . . . . . . . . . . . . . . . . . . . 101

5.3 Human gut microbiome metabolic reconstructions . . . . . . . . . . . . . . 102

5.4 COBRA in microbiome modeling . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A Supplementary Information for Chapter 2 127

A.1 Supplementary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Supplementary Information for Chapter 3 129

B.1 Online Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2 Supplementary Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2.1 Description of QC/QA and data-driven curation efforts. . . . . . . . 133

B.2.2 Comparison with published reconstructions. . . . . . . . . . . . . . 134

B.2.3 In vitro cell cultures and cell counting. . . . . . . . . . . . . . . . . 135

B.2.4 Fermentation and carbon source utilization pathways captured by

AGORA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2.5 Definition of sub-pathways. . . . . . . . . . . . . . . . . . . . . . 137

B.2.6 Curation of respiration and quinone biosynthesis in AGORA. . . . 137

B.2.7 Curation of nutrient requirements. . . . . . . . . . . . . . . . . . . 139

B.2.8 Metabolite extraction. . . . . . . . . . . . . . . . . . . . . . . . . 139



VIII CONTENTS



List of Figures

1.1 Genome-scale metabolic reconstruction and flux balance analysis. . . . . . 6

1.2 Difference between a reconstruction and model. . . . . . . . . . . . . . . . 10

2.1 Biotin (vitamin B8) biosynthesis pathways. . . . . . . . . . . . . . . . . . 26

2.2 Cobalamin (vitamin B12) biosynthesis pathways. . . . . . . . . . . . . . . 28

2.3 Folate (vitamin B9) biosynthesis pathways. . . . . . . . . . . . . . . . . . 29

2.4 Niacin (vitamin B3) biosynthesis pathways. . . . . . . . . . . . . . . . . . 31

2.5 Pantothenate (vitamin B5) biosynthesis pathways. . . . . . . . . . . . . . . 33

2.6 Pyridoxine (vitamin B6) biosynthesis pathways. . . . . . . . . . . . . . . . 34

2.7 Riboflavin (vitamin B2) biosynthesis pathways. . . . . . . . . . . . . . . . 36

2.8 Thiamin (vitamin B1) biosynthesis pathways. . . . . . . . . . . . . . . . . 37

2.9 Taxonomic trees showing the presence and absence of B-vitamin biosynthe-

sis pathways in all genomes. . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Comparison of inversed B-vitamin biosynthesis patterns. . . . . . . . . . . 42

3.1 The reconstruction refinement pipeline and model properties. . . . . . . . . 64

3.2 Taxonomic and metabolic diversity of the 773 reconstructions. . . . . . . . 67

3.3 Carbon source uptake and fermentation product secretion in AGORA. . . . 73

3.4 Comparison of in vitro experiments and in silico simulations. . . . . . . . . 74

3.5 Pairwise interactions of all AGORA metabolic models. . . . . . . . . . . . 76

3.6 Metabolic diversity of individual human gut microbiomes. . . . . . . . . . 78

4.1 Ratio of metagenomic reads that mapped to AGORA. . . . . . . . . . . . . 87

4.2 Number of unique reactions and subsystems in each microbiome. . . . . . . 93

4.3 Effects of age, BMI, gender, and diabetic status on microbiome model size. 94

IX



X LIST OF FIGURES

4.4 Total relative abundance captured in the 53 microbiomes. . . . . . . . . . . 94

4.5 Min. possible thiamine uptake fluxes. . . . . . . . . . . . . . . . . . . . . 95

4.6 Max. possible riboflavin secretion fluxes. . . . . . . . . . . . . . . . . . . 95

4.7 PCA of flux distributions from max. riboflavin secretion and min. thiamine

uptake simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Effects of P. copri abundance on min. thiamine uptake and max. riboflavin

secretion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 Comparison of metabolite stoichiometric and flux consistency of draft and

AGORA reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.2 Comparison of reaction stoichiometric and flux consistency of draft and

AGORA reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.3 Sensitivity of carbon source uptake and fermentation product secretion of

seven published models and the corresponding AGORA models. . . . . . . 146

B.4 Metabolic distances between the 773 AGORA reconstructions. . . . . . . . 147

B.5 Metabolomic measurements for two bacterial strains grown in vitro. . . . . 148

B.6 Clustering of the ratio of pairwise interaction types on the genus level per

growth condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.7 Metabolic distances plotted by the six types of interactions between the

298,378 microbe-microbe pairs by diet. . . . . . . . . . . . . . . . . . . . 151

B.8 Example of a typical futile cycle resolved during curation. . . . . . . . . . 152



List of Tables

1.1 Platforms for automatic generation of genome-scale metabolic reconstructions. 7

1.2 Genome-scale metabolic reconstructions of human gut microbes. . . . . . . 12

2.1 B-vitamin subystems in PubSEED. . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Essential functional roles for B-vitamin biosynthesis. . . . . . . . . . . . . 23

2.3 Intracellular vitamin concentrations in selected gut microbes. . . . . . . . . 25

2.4 Comparison of genomic predictions and experimental evidence of bacteria

B-vitamin requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Estimated B-vitamin daily reference intake percentage provided by the gut

microbiota. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Individual sample metadata. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Microbiome model sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 Peer-reviewed references and books used for knowledge-driven refinement

of AGORA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.1 Peer-reviewed references and books used for knowledge-driven refinement

of AGORA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2 Central metabolic pathways that were curated using a comparative genomics

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.3 Stoichiometric and flux consistency of draft and AGORA reconstructions. . 130

B.4 Description of each reconstructed strain including taxonomy, biological traits,

and reconstruction size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.5 In silico growth rates on Western and high fiber diets. . . . . . . . . . . . . 130

XI



XII LIST OF TABLES

B.6 Metabolic distance and pairwise growth rates of all AGORA microbe-microbe

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.7 PCoA eigenvalues and reactions using Eldermet pan-species reconstruction

reaction sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.8 Unique reactions and metabolites present in the 773 reconstructions. . . . . 131

B.9 Translation of draft reconstruction reaction and metabolite IDs to the corre-

sponding VMH IDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.10 Reactions added to or deleted during the curation process. . . . . . . . . . . 132

B.11 Predicted presence or absence of eight B-vitamin biosynthesis pathways in

the 773 AGORA organisms. . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.12 The list of AGORA reconstructions that were mapped to each of the HMP

and ELDERMET individual samples. . . . . . . . . . . . . . . . . . . . . 132

B.13 List of tests that the AGORA reconstructions were subjected to evaluate the

curation effort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.14 Comparison of reaction content in AGORA and published reconstructions. . 154

B.15 Subsystem coverage of reactions overlapping between curated reconstruc-

tions and published reconstructions. . . . . . . . . . . . . . . . . . . . . . 155

B.16 Cell counts, optical density, and pH values of B. caccae and LGG cell cultures.157

B.17 DMEM medium uptake rates for simulation. . . . . . . . . . . . . . . . . . 157

B.18 Western and high fiber diet uptake rates for simulation. . . . . . . . . . . . 158

B.19 Reactions associated with functional roles in B-vitamin biosynthesis pathways.162

B.20 GC-MS dwell times and quantification and qualification ions. . . . . . . . . 165



List of Abbreviations

AGORA Assembly of gut organisms through reconstruction and analysis
ATP Adenine triphosphate
BOF Biomass objective function
CoA Coenzyme A
COBRA Constraint-based reconstruction and analysis
DHF Dihydrofolate
DNA Deoxyribonucleic acid
DRI Daily reference intake
FBA Flux balance analysis
FNR Fonds national de la recherche
FVA Flux variability analysis
gDW Grams dry weight
GENRE Genome-scale network reconstruction
GI Gastrointestinal
GPR Gene-protein-reaction
HGM Human gut microbiota
ORF Open reading frame
PABA p-Aminobenzoic acid
PEG Protein encoding gene
RNA Ribonucleic acid
TCA Tricarboxylic acid cycle
THF Tetrahydrofolate
WGS Whole-genome shotgun
VMH Virtual metabolic human

XIII



XIV LIST OF ABBREVIATIONS



Summary

The human gut microbiota plays a large role in the metabolism of our diet. These microor-

ganisms can break down indigestible materials such as polysaccharides and convert them

into metabolites that the human body can take up and utilize (e.g., vitamins, essential amino

acids, and short-chain fatty acids). Disbalances in the gut microbiome have been associated

with several diseases, including diabetes and obesity. However, little is known about the de-

tailed metabolic crosstalk that occurs between individual organisms within the microbiome

and between the microbiome and the human intestinal cells. Because of the complexity of

the intestinal ecosystem, these interactions are difficult to determine using existing experi-

mental methods. Constraint-based reconstruction and analysis (COBRA) can help identify

the possible metabolic mechanisms at play in the human gut. By combining mathematical,

computational, and experimental methods, we can generate hypotheses and design targeted

experiments to elucidate the metabolic mechanisms in the gut microbiome.

In this thesis, I first applied comparative genomics to analyze the biosynthesis pathways

of eight B-vitamins in hundreds of human gut microbial species. The results suggested that

many gut microbes do not synthesize any B-vitamins, that is, they depend on the host’s diet

and neighboring bacteria for these essential nutrients. Second, I developed a semi-automatic

reconstruction refinement pipeline that quickly generates biologically relevant genome-scale

metabolic reconstructions (GENREs) of human gut microbes based on automatically gen-

erated metabolic reconstructions, comparative genomics data, and data extracted from bio-

chemical experiments on the relevant organisms. The pipeline generated metabolically di-

verse reconstructions that maintain high accuracy with known biochemical data. Finally, the

refined GENREs were combined with metagenomic data from individual stool samples to

build personalized human gut microbiome metabolic reconstructions. The resulting large-

scale microbiome models were both taxonomically and functionally diverse.
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SUMMARY 1

The work presented in this thesis has enabled the generation of biologically relevant

human gut microbiome metabolic reconstructions. Metabolic models resulting from such

reconstructions can be applied to study metabolism within the human gut microbiome and

between the gut microbiome and the human host. Additionally, they can be used to study the

effects of different dietary components on the metabolic exchanges in the gut microbiome

and the metabolic differences between healthy and diseased microbiomes.



2 SUMMARY



Chapter 1

Introduction: COBRA modeling of the

human gut microbiome

Manuscript in preparation.

1.1 Human gut microbiome

The gut microbiome serves an important purpose in human metabolism and most intestinal

microbes are beneficial; they break down large indigestible compounds from the diet and

secrete essential nutrients. Human gut microbes can digest dietary fibers [59] and secrete

fermentation products, including short-chain fatty acids, which can be taken up by the human

cells and used as energy precursors [60]. In addition, gut microbes secrete essential amino

acids and vitamins that the intestinal cells can take up [205].

Despite the known benefits of the intestinal microbes, studies have also reported connec-

tions between an imbalance in the microbiome ("dysbiosis") [39] and several diseases [129,

234, 56, 87, 169]. However, most of these studies investigated correlations between the

microbiome and disease status, meaning that the detailed metabolic pathways that underlie

these observations are not known. Present experimental methods are not capable of detect-

ing such detailed mechanisms of metabolic exchanges among hundreds of microbes and how

those exchanges affect the human metabolism.

With the rise of high-throughput genome sequencing methods, scientists have started to

grasp the complexity of the human gut as an ecosystem. Metagenomics is presently the most

3



4 CHAPTER 1. INTRODUCTION

commonly used method when studying the microbial diversity in the human gut. In short,

the microbial gene content of a given sample, usually a stool sample, is characterized either

by identifying the 16S ribosomal RNA (rRNA) gene content or using whole genome shotgun

(WGS) sequencing. The identification of rRNA genes has long been used to assign microbial

organisms to taxonomic groups [244] and has been applied in many studies of the human gut

microbiome [233, 37, 3, 106]. However, the 16S rRNA sequencing results cannot give a

comprehensive view on the species or strain composition of a gut microbiome sample [239].

In contrast, WGS sequencing is more refined and can give information on individual strains

when aligning the metagenomic sequence reads to a set of reference genomes [168, 41, 42,

24], identifying microbial clade marker genes [203], or using genome-specific markers [232].

In a WGS metagenomics study of the human gut in 2010, Qin et al. [168] found that every

individual carries more than 160 microbial species in their intestine, and more than 1,000 mi-

crobes were identified among the cohort of only 124 people. In 2011, a study by Arumugam

et al. [10] suggested that the human microbiome could be categorized based on the abun-

dances of different taxonomic groups. However, others have challenged their hypothesis and

suggest that the gut microbiome composition is highly variable among individuals [42].

The gut microbiome has been shown to respond to changes in several different factors.

Claesson et al. (2012) [37] observed that microbiomes among elderly individuals varied

more than the microbiomes among their young control subjects and that the composition cor-

related with both diet and health. That same year, Yatsunenko et al. [249] also observed age-

related changes in the gut microbiomes of their subjects, as well as between the geographical

locations of their cohorts. Several studies have shown that modifications to the host’s diet

can shift the microbiome composition [47, 217, 30]. However, David et al. (2014) [47]

showed that while lifestyle changes made short-term alterations to individual microbiomes,

the overall community structure was stable long-term. In addition, despite the high vari-

ability of the microbiome among individuals and the diverse influences to the microbiome

composition, the functional annotations seem to be stable among diverse microbiomes in

healthy individuals [42].

Despite what is known about the microbiome, there is much to be discovered about the

detailed metabolic mechanisms by which the microbes interact, both among each other and

with the human intestinal cells. Computational methods can help to guide the exploration
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of the microbiome by forming hypotheses based on knowledge-based models and testing

them in the laboratory. One such method is constraint-based reconstruction and analysis

(COBRA) [201], which has been successfully applied in studies on metabolism and analysis

of complex metabolic networks.

1.2 Constraint-based reconstruction and analysis

COBRA can be used to study metabolic pathways, individual species metabolism, and inter-

species metabolic interactions [157, 164]. The work in this thesis builds on the use of

genome-scale metabolic reconstructions (GENREs), which represent the full set of metabolic

pathways that occur in that organism based on genomic and experimental knowledge.

1.2.1 Genome-scale metabolic reconstructions

GENREs are based on a collection of metabolic functions that can be inferred from the list

of genes identified in an organism [226]. First, the genome sequence is annotated and the re-

sulting set of genes encoding for metabolic enzymes is extracted. From the set of metabolic

enzymes, we can infer the list of metabolic reactions that can occur in the organism. To-

day, GENREs can be created automatically through several different platforms; a few exam-

ples are listed in Table 1.1. Such automatic tools have made it possible to generate GEN-

REs in only a few minutes to hours, a task that was previously very time-consuming [226].

However, these automatically created reconstructions require manual refinement to resolve

various issues, including stoichiometric consistency [72], reaction directionality [73], gene

mis-annotations [85], and known biological functions of the organism based on experimen-

tal knowledge [226]. Therefore, automatically generated GENREs are often referred to as

"draft” reconstructions (Fig. 1.1a).

GENREs contain gene-protein-reaction (GPR) associations where the genes that are

responsible for each metabolic enzyme are linked to the corresponding metabolic reac-

tions [226]. Often, the relation between a gene and an enzyme is not straight-forward. In the

case of isoenzymes, i.e., multiple enzymes that can perform the same metabolic reaction, we

introduce an "OR" rule, meaning that at least one of the different genes must be present to

allow flux through the reaction in question. In the case of enzyme complexes, where multiple
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Figure 1.1: Illustration of genome-scale metabolic reconstruction and flux balance analysis.
a) Genome-scale metabolic reconstructions are built in two steps. First, several platforms
exist for the generation of a gap-filled draft metabolic reconstruction based on genome an-
notations (Table 1.1). Second, the draft reconstructions needs to be refined based on known
experimental and biochemical data from literature. Novel experiments can be performed on
the organism and the reconstruction refined accordingly. b) In flux balance analysis (FBA),
the metabolic reconstruction containing n reactions and m metabolites is converted to a sto-
ichiometric matrix S. FBA solves an optimization problem where an objective function Z is
maximized or minimized. Z is formed by multiplying every reaction flux vi with a predeter-
mined constant, ci, and adding up the resulting values. FBA solves a steady state, S · v = 0.
Every reaction i is bound by two values: an upper bound (ubi) and lower bound (lbi).
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Table 1.1: Platforms for automatic generation of genome-scale metabolic reconstructions.

Platform Author (year)
CellNetAnalyzer Klamt et al. (2007) [118]
DOE Systems Biology Knowledgebase (KBase) Arkin et al. (2016) [9]
Flux Analysis and Modeling Environment (FAME) Boele et al. (2012) [27]
MicrobesFlux Feng et al. (2012) [70]
ModelSEED Henry et al., (2010) [102]
Pathway Tools Karp et al. (2016) [113]
Reconstruction, Analysis and Visualization of
Metabolic Networks (RAVEN)

Agren et al. (2013) [2]

SuBliMinaL Toolbox Swainston et al. (2011) [218]

genes encode different subunits of a metabolic enzyme, we introduce an "AND" rule, mean-

ing that all the responsible genes are required to enable flux through that reaction. The GPR

associations are used when integrating gene expression data or performing gene knock-out

simulations [164].

Draft GENREs can rarely be converted directly into functional metabolic models and

must be refined to be used for biologically accurate modeling. Such manual curations can be

very time consuming. Manual curations are data- and knowledge-based modifications to the

draft GENREs. Per literature and experimental data, it is known that the organism performs

certain biochemical functions that sometimes are not captured fully by the genome because

of missing annotations or possible alternate pathways. This is also referred to as gap-filling

the metabolic network. The gaps that are filled can be gaps that connect metabolic pathways

or reactions that supply or remove side-substrates or products. Numerous algorithms have

been developed to accelerate and facilitate the gap-filling process [159] (e.g., SMILEY [178],

GapFind [196], fastGapFill [228], SONEC [25], and EnsemblFBA [26]. While each of

these algorithms have different algorithms and thus result in potential alternate gap filling

solutions, they all require experimental data to produce potential gap filling solutions and

manual evaluation of the biological relevance of these solutions.

In microbial reconstructions, the cytosol and extracellular space are represented by sep-

arating metabolites into two compartments. This separation is symbolized using the suffixes

[c] for the cytosol and [e] for the extracellular space. Metabolites that can be transported

across the cell membrane are thus represented twice in the same reconstruction, once for

each compartment. Some researchers choose to also represent the periplasmic space when
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reconstructing Gram-negative microbes, e.g., the Escherichia coli reconstruction by Feist et

al. (2007) [68]. Such reconstructions contain an additional compartment, [p], and separate

transporters that carry metabolites from the extracellular space to the periplasm, and from

the periplasm to the cytosol.

Traditionally, a biomass function [69] is defined in microbial in silico modeling. The

substrates of the biomass function are metabolites that are necessary components of a cell

and needed for cell replication. Many such components are universal among organisms [248]

and include micro- and macromolecules such as nucleotides, amino acids, ATP, water, lipids,

and vitamins. Platforms that automatically generate GENREs will usually include a biomass

function that is defined based on metabolic network [102], and external platforms exist that

can estimate the biomass composition of an organism based on genomic information [195].

However, such automatically generated biomass functions need to be manually refined and

verified. Unfortunately, detailed biomass compositions have not been experimentally de-

termined for many organisms, making it difficult to refine the biomass functions of many

microbes.

1.2.2 Conversion to mathematical format

First, a metabolic reconstruction is assembled from the list of relevant biochemical reactions.

Each reaction is written out as a chemical equation where substrates are consumed (left side)

and products are produced (right side) [163]. The set of chemical reactions are represented

by a stoichiometric matrix, S, in which rows represent the unique set of metabolites in the

network and the columns represent the metabolic reactions (Fig. 1.1b). For every metabolite

that appears in a reaction, the corresponding rows are filled with the stoichiometric coeffi-

cients from the chemical reaction. Metabolites on the left-hand side of the equation (sub-

strates) get a negative coefficient, and right-hand side metabolites (products) have a positive

coefficient.

1.2.3 Metabolic modeling

A GENRE can be converted into a condition-specific model with the application of con-

straints. Many different condition-specific models can be derived from a single reconstruc-
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tion (Fig. 1.2). There are many different types of constraints to consider in biology, and

COBRA metabolic modeling mainly accounts for three types of constraints: physicochemi-

cal, environmental, and regulatory [163].

Physicochemical constraints ensure that the laws of thermodynamics are met and that

metabolite mass- and charge is balanced in the model. Thus, energy and mass cannot be

created or destroyed by the model. For every reaction, the sum of every element and the sum

of chemical charges must be equal on both the substrate and product sides. Environmental

constraints represent the growth media of microbial cells, gases, and the media pH level. In

human gut microbe simulations, the growth media is represented by the human diet. Envi-

ronmental metabolites can enter the model through exchange reactions, which bring metabo-

lites from an undefined outer source into the extracellular space [226]. The same exchange

reactions are used to remove any secreted metabolites from the extracellular space. Regula-

tory constraints refer to the genomic regulation of an organism. Regulatory constraints are

made necessary by a cell’s topological constraints, e.g., crowding effects caused by the cell

hosting large molecules, such as DNA and proteins. In addition, the organism has limited

resources [153], e.g., nucleotides, amino acids, and energy, to regulate, translate, and tran-

scribe genes, and thus cannot make use of its full metabolic network at a given time. The

organism will express different sets of genes at any given moment, and to activate a new

pathway, it must allocate resources to that task.

1.2.4 Flux balance analysis

The most commonly used method to analyze metabolic models is flux balance analysis

(FBA) [159]. FBA is a biased method that seeks to identify a set of flux values that will

satisfy a given objective. An objective function, Z , is defined as the dot product of a column

vector, c, which contains weight coefficients for all n reactions in the network, and the flux

column vector, v. Then the following linear programming problem is solved:

min./max. Z = cᵀ · v, such that

S · v = 0
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Figure 1.2: Illustration of the difference between a metabolic reconstruction and condition-
specific metabolic models. Many models can be derived from a single reconstruction by
applying different constraints. Here, a simplified metabolic reconstruction has the reactions
to convert glucose (glc_D) to pyruvate (pyr). Pyruvate can either be converted to ethanol
(etoh) through fermentation when no oxygen (O2) is present in the environment, or enter
the tricarboxylic acid cycle (TCA) when oxygen is present. In the latter case, ethanol is not
produced by the model. Both models produce biomass (BM), but the amount of biomass
produced is higher in the model in the aerobic environment.

and for every reaction flux i: lbi ≤ vi ≤ ubi

where S is the network stoichiometric matrix, lbi is the lower bound and ubi is the up-

per bound of reaction flux i in the network. Traditionally in microbe modeling, the objective

function is set as the biomass reaction [69]. However, it is also possible to set other reactions,

or combination of reactions, from the network as objective functions [211]. For example, it

can be an ATP demand reaction to investigate the ATP generating power of the model, or

it can be an exchange reaction of a metabolite to simulate maximum uptake or secretion of

the metabolite. FBA gives a non-unique flux vector as a solution. Metabolic reconstructions

usually have a higher number of reactions than metabolites, making their S-matrix an un-

derdetermined system. Therefore, there are many possible solution vectors that result in the

same optimal value for the given problem. Flux variability analysis (FVA) [89] gives us the

minimal and maximal flux values that every reaction in the network can have to achieve the

optimal flux value for the objective function. However, FVA gives us information about the
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extremes in the network, but does not give information about the likelihood of the flux values

between the two extremes as can be done with sampling [200, 91].

1.3 Comparative genomics

Other computational methods can be used to investigate microbial metabolism. One such

method is comparative genomics, which uses nucleotide and amino acid sequence alignments

to analyze the genomic content in organisms [121]. Such studies rely on that nucleotide

and amino acid sequences, and protein domain structures are widely conserved [142, 6].

Comparative genomics are commonly applied in microbial evolution studies [120, 166, 104,

16] and gene function discoveries [160, 177, 51, 52]. By combining sequence alignments

with functional predictions on the gene or protein level [161, 162], it is possible to use

comparative genomics to predict functional metabolic pathways in organisms.

Comparative genomics has been applied in several analyses of metabolic functions in mi-

crobes. In 2006, Gerdes et al. [81] used functional annotations of microbial genes to analyze

NAD biosynthesis in cyanobacteria. In 2013, Ravcheev et al. [173] analyzed polysaccha-

ride metabolism in Bacteroidetes thetaiotaomicron and reconstructed a regulatory network

that could be used to refine polysaccharide metabolism in metabolic reconstructions of the

bacterium. The following year, Ravcheev and Thiele (2014) [174] showed how aerobic and

anaerobic reductases in the respiratory chain are distributed among 254 different human gut

microbes. In 2016, the team applied the same analysis method to show the distribution

of quinone (vitamin K) biosynthesis pathways in human gut microbes and propose novel

biochemical reactions in menaquinone biosynthesis [175]. Additionally, Khoroshkin et al.

(2016) analyzed the the carbohydrate utilization pathways in Bifidobacteria [116]. A recent

study combined comparative genomics and experimental growth results to analyze metabolic

enzyme cofactor dependencies in a microbiome community of 19 microbes and proposed the

cofactor exchanges among the different microbes [185].

Chapter 2 in this thesis describes the application of comparative genomics to analyze

the distribution of B-vitamin biosynthesis among human gut microbes. In Chapter 3, the

comparative genomics-based analyses of B-vitamin biosynthesis [140], vitamin K biosyn-

thesis [175], the respiratory chain [174], and several central metabolic pathways were used
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in the refinement of the metabolic pathways and gene-protein-reaction (GPR) associations

of hundreds of human gut genome-scale metabolic reconstructions (GENREs).

1.4 In silico metabolic modeling of the human gut micro-

biome

Until the work presented in this thesis, genome-scale metabolic reconstructions had been

curated and published for only 15 human gut microbial species (Table 1.2). Even though

many aspects of microbial and host-microbial metabolism could be studied using these re-

constructions, having such a limited set available meant that we could not investigate detailed

microbiomes that represent the diversity found in the human microbiome. However, previous

studies have modeled microbiomes using small sets microbial GENREs as representatives of

their respective taxonomic group [209, 208].

Table 1.2: Genome-scale metabolic reconstructions of human gut microbes.

Species Author (year)
Bifidobacterium adolescentis El-Semman et al. (2014) [63]
Bacteroides thetaiotaomicron Heinken et al. (2013) [96], Shoaie et al. (2013) [209]
Enterococcus faecalis Veith et al. (2015) [236]
Escherichia coli Feist et al. (2007) [68], Baumler et al. (2011) [20]
Eubacterium rectale Shoaie et al, (2013) [209]
Helicobacter pylori Thiele et al. (2005) [229]
Faecalibacterium prausnitzii Heinken et al. (2014) [95], El-Semman et al. (2014) [63]
Klebsiella pneumoniae Liao et al. (2011) [133]
Lactobacillus plantarum Teusink et al. (2006) [224]
Lactobacillus reuteri Saulnier et al. (2011) [197]
Lactococcus lactis Flahaut et al. (2013) [71]
Methanobrevibacter smithii Shoaie et al. (2013) [209]
Pseudomonas aeruginosa Oberhardt et al. (2008) [158], Bartell et al. (2017) [17]
Salmonella Typhimurium Raghunathan et al. (2009) [171], Thiele et al. (2011) [225]
Streptococcus thermophilus Pastink et al. (2009) [165]

1.5 Microbe community modeling

In the first microbial community COBRA model, Stolyar et al. (2007) [216] structured their

pairwise community model based on the organelle compartmentalization of eukaryotic GEN-
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REs. This community model structure has largely been maintained throughout multi-species

modeling to date. Two years later, Taffs et al. (2009) [219] compared three different meth-

ods on modeling microbial communities and provided guidance of when each of the three

methods is applicable. The three model set-ups were i) a compartmentalized model such as

presented by Stolyar et al., ii) a pooled model that ignores the metabolic interactions within

the community and focuses on the overall community metabolic potential, and iii) a nested

model that uses an elementary node analysis on the microbial community using the results

from the elementary node analyses on each microbe in the community. In 2012, Zomorrodi

and Maranas [255] presented OptCom, a COBRA microbial community modeling frame-

work that could model more than one objective function at the same time. OptCom allowed

the user to model a system where both the overall community biomass and each individual

microbe’s biomass were optimized at the same time.

Klitgord and Segre (2010) [119] were the first to systematically investigate the effects of

different environmental metabolites on the metabolic interactions between metabolic mod-

els. Using a compartmentalized approach, for every pair of seven microbial GENREs, they

could identify growth media that could induce syntrophic interactions among the microbes.

They hypothesized that environmental changes can more readily drive beneficial interactions

between microbes than genomic changes. In turn, Chubiz et al. (2015) [33] performed gene

knock-out studies using in silico microbial pairs and found that cooperating species were

less affected by gene deletions than species that competed for resources.

Freilich et al. (2011) [76] were the first to look at competition between two microbial

GENREs. They performed a large-scale pairwise interaction study using 118 GENREs and

found that most their model pairs would compete for resources and impact each other neg-

atively rather than cooperate. They found that cooperating GENRE pairs usually had few

growth-requiring metabolites in common. Also using a large set of microbial reconstruc-

tions, Zelezniak et al. (2015) [251] found that community models of microbes that could

cooperate required fewer metabolites in their growth medium than microbial communities

with few cooperating species.

Microbiome communities are dynamic environment and using traditional COBRA meth-

ods alone these dynamics are often ignored. It is therefore also of interest to add a dy-

namics layer on top of the COBRA modeling techniques to capture these community prop-
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erties. The first dynamic modeling of a GENRE community was presented by Zhuang et

al. (2011) [253] as the "Dynamic Multi-species Metabolic Modeling" (DMMM) frame-

work. The simulated growth ratios of two Fe(III)-reducing bacteria matched experimentally

determined data. The model was also used to predict the metabolic mechanisms underly-

ing observed behavior of the microbial pair under nitrogen-fixation. In 2014, Harcombe et

al. [92] presented a modeling framework called "Computation of Microbial Ecosystems in

Time and Space"(COMETS), enabling the dynamic modeling of metabolic exchanges be-

tween multi-species bacterial colonies. The same year, Zomorrodi et al. [254] presented an

extension to the aforementioned OptCom framework, d-OptCom, which models dynamic

changes in the extracellular metabolites and individual microbe biomass concentrations. Re-

cently, an additional platform, BacArena, was published [19]. BacArena combines COBRA

with agent-based modeling to simulate spatio-temporal dynamics of metabolic interactions

in microbial communities. Additionally, since multiple copies of individual strains can be

simulated simultaneously in BacArena, it can be used to explore different metabolic pheno-

types of a single strain at different times or locations in a microbial community.

Taken together, significant efforts have been made to model metabolic exchanges among

microbial communities. The studies have diverse model setups, including simulations be-

tween two or more coupled microbial GENREs and the coupling of COBRA modeling with

other modeling methods to simulate dynamic changes in the microbiome metabolism. How-

ever, none of the aforementioned methods have been applied to microbial community sizes

similar to the human gut microbiome.

1.5.1 COBRA studies of the gut microbiome

In the decade since the first microbial community COBRA model was published, very few

community models have been used to study gut microbial interactions. The first multi-gut

microbe metabolic model was published by Shoaie et al. (2013) [209] where they compared

in silico simulations of small microbial communities consisting of two and three different

bacteria with experimentally measured carbohydrate uptake rates and fermentation product

secretion rates from germ-free mice colonized with the same microbes. In 2014, El-Semman

et al. [63] applied the OptCom [255] framework to model the interactions between the gut
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microbes Bifidobacterium adolescentis and Faecalibacterium prausnitzii. They found that

the F. prausnitzii model could secrete more butyrate in the presence of B. adolecentis model

through its acetate secretion. Later, Mardinoglu et al. (2015) [144] investigated how the gut

microbiome could affect host amino acid metabolism by simulating the in silico co-culture

of two microbes, Bacteroides thetaiotamicron and Eubacterium rectale, and comparing their

predicted amino acid metabolism with metabolic measurements from germ-free and conven-

tionally raised mice. That same year, Shoaie et al. (2015) [208] matched in silico simulations

of microbial communities consisting of with fecal metabolomics data and metabolite serum

levels in germ-free mice colonized with the same microbial communities. Finally, Heinken

and Thiele (2015) [97], found that removing oxygen from the environment promoted mu-

tualism in pairwise interaction metabolic models of 11 human gut microbes. Additionally,

Heinken and Thiele coupled the paired microbial reconstructions with a reconstruction of the

human small intestine [190], and found that the presence of a host cell drove the microbial

pairs to competitive interactions due to host-derived carbohydrates.

1.5.2 Host-microbiome community models

The first study of a metabolic model between a mammalian host and a microbe was published

by Bordbar et al. in 2010 [28]. To date, only two studies have been published on in silico

modeling of a gut microbiome using host metabolic models. In the first study in 2013,

Heinken et al. [96] combined a mouse metabolic reconstruction with a reconstruction of the

human gut microbe Bacteroidetes thetaiotaomicron. They found that the presence of the

microbe could rescue the phenotype of the mouse reconstruction simulated with an inborn

error of metabolism. Two years later, Heinken and Thiele [98] published a study on the

effects of different microbial communities on the metabolism of a human small intestinal

cell [190]. They found that a community consisting of pathogenic microbes resulted in that

the human cell could secrete less metabolites into its lumen compartment than a community

of commensal microbes.

The largest host-microbiome model to date was the model presented by Heinken and

Thiele (2015) using 11 human gut microbe GENREs coupled with a human small intestinal

cell reconstruction. The work in this thesis has enabled the generation of large-scale human
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gut microbiome metabolic reconstructions that can be applied in host-microbiome metabolic

modeling. Chapter 3 describes the development of 773 GENREs of human gut microbial

reconstructions that can be directly coupled with the human metabolic reconstruction Re-

con 2 [227] to simulate host-microbiome metabolism. Chapter 4 describes the generation

and analysis of personalized human gut microbiome reconstructions based on metagenomic

reads from individual stool samples. Such microbiome reconstructions can further be cou-

pled and simulated with the human metabolic reconstruction.

1.6 Scope and aim of the thesis

The project described in this thesis was built on three main objectives. First, to generate

a semi-automatic reconstruction tool that could be used to refine genome-scale metabolic

reconstructions based on biochemical data. Second, to apply the aforementioned tool to a set

of microbial representatives of the human gut microbiome. Last, to combine the microbial

metabolic reconstructions into a microbiome model and investigate metabolic potentials of

the microbial community.

This thesis describes my work on building up to personalized human gut microbiome

metabolic models. First, I present a comparative genomics analysis of B-vitamin biosynthe-

sis by human gut microbes (Chapter 2). Second, I show how data from comparative genomics

of multiple metabolic pathways, in addition to data collected from literature, was used to

GENREs of 773 human gut microbes (Chapter 3). Finally, I show how metagenomic reads

can be mapped to the collection of microbial metabolic reconstructions to create personal-

ized metabolic models of human gut microbiomes (Chapter 4). Below are short descriptions

of each chapter and the detailed contributions of the collaborators involved in the different

projects.

Chapter 2: Systematic genome assessment of B-vitamin biosynthesis sug-

gests co-operation among gut microbes

Chapter 2 describes the comparative genomics analysis of B-vitamin biosynthesis in the

human gut microbiome. The chapter is a full reprint of the paper published in Frontiers in
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Genetics in April 2015 [140]. The B-vitamin biosynthesis analysis described in this chapter

was further integrated into genome-scale metabolic reconstructions of hundreds of microbial

reconstructions (Chapter 3).

Contributions

Stefanía Magnúsdóttir (S.M.) and Ines Thiele (I.T.) wrote the manuscript. All authors read

and edited the manuscript. S.M., Valerie de Crécy-Lagard, and I.T. designed the study.

Dmitry Ravcheev (D.R.) performed the subsystems analysis on the cobalamin subsystem.

S.M. analyzed the data and designed the figures.

Chapter 3: Generation of genome-scale metabolic reconstructions for

773 members of the human gut microbiota

Chapter 3 describes the large-scale curation effort of 773 genome-scale metabolic recon-

structions of known human gut microbes. The resulting resource was named "assembly of

gut organisms through reconstruction and analysis" (AGORA) and was published in Nature

Biotechnology in January 2017 [139]. The chapter is a full reprint of the published article.

The AGORA resource enabled the generation of large-scale personalized gut microbiome

metabolic models described in Chapter 4.

Contributions

S.M. and I.T. wrote the manuscript. All authors read and edited the manuscript. S.M., Almut

Heinken (A.H.), and I.T. designed the study. S.M. and A.H. reconstructed the pipeline.

A.H. and Laura Kutt (L.K.) performed literature searches. S.M., A.H., and Eugen Bauer

analyzed data. D.R. and L.K. performed genome analyses on metabolic pathways. Ronan

M. T. Fleming performed quality analysis on all reconstructions. Alberto Noronha built the

VMH database for the AGORA reconstructions. Kacy Greenhalgh, Joanna Baginska, and

Paul Wilmes (P.W.) designed and performed in vitro experiments. Christian Jäger performed

the metabolomic analysis. I.T. conceived and supervised the project.
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Chapter 4: Individual-based gut microbiome models

Chapter 4 describes the generation of personalized metabolic models of human gut micro-

biomes based on metagenomics data from individual stool samples. The results showed that

the AGORA is a comprehensive resource of human gut GENREs and can be combined with

unbiased metagenomic reads to create personalized microbiome metabolic reconstructions.

The individual microbiome models are taxonomically and functionally diverse, and while

showing functional similarities among models based on individuals from different groups,

i.e., gender, family, and diabetic status.

Contributions

S.M. wrote the text, carried metabolic modeling simulations and analyses, and designed the

figures. S.M. and I.T. designed the study. Anna Heintz-Buschart (A.H-B.) and P.W. provided

the metagenomics data reads for the study. A.H-B. aligned the metagenomic reads to the

AGORA microbial genomes and calculated the coverage depth and breadth, and the relative

abundance.

Chapter 5: Concluding remarks

Chapter 5 contains the conclusions of the presented thesis and the author’s personal outlook

on the future directions of metabolic modeling of the human gut microbiome.

Contributions

The text was written in full by S.M.



Chapter 2

Systematic genome assessment of

B-vitamin biosynthesis suggests

co-operation among gut microbes

Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., and Thiele, I. (2015). Systematic
genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes.
Front Genet, 6:148. DOI: 10.3389/fgene.2015.00148.

Abstract
The human gut microbiota supplies its host with essential nutrients, including B-vitamins.
Using the PubSEED platform, we systematically assessed the genomes of 256 common hu-
man gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin,
cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of
the presence and absence of genome annotations, we predicted that each of the eight vita-
mins was produced by 40–65% of the 256 human gut microbes. The distribution of synthesis
pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others
contained no de novo synthesis pathways. We compared our predictions to experimental data
from 16 organisms and found 88% of our predictions to be in agreement with published data.
In addition, we identified several pairs of organisms whose vitamin synthesis pathway pat-
tern complemented those of other organisms. This analysis suggests that human gut bacteria
actively exchange B-vitamins among each other, thereby enabling the survival of organisms
that do not synthesize any of these essential cofactors. This result indicates the co-evolution
of the gut microbes in the human gut environment. Our work presents the first comprehen-
sive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We
propose that in addition to diet, the gut microbiota is an important source of B-vitamins,
and that changes in the gut microbiota composition can severely affect our dietary B-vitamin
requirements.
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2.1 Introduction

The human gut microbiota (HGM) supplies its host with severa lnutrients, including amino

acids [151] and certain B-vitamins [105, 186]. B-vitamins are necessary cofactors for nu-

merous aspects of human metabolism, including fat andc arbohydrate metabolism and DNA

synthesis. Human cells are not capable of producing B-vitamins in sufficient amounts; thus,

these cells must obtain such vitamins either from the human diet or the gut microbiota [188].

B-vitamins are found in many food products, but they are water-soluble andm any of them

are temperature sensitive; thus, these vitamins can easily be removed or destroyed during

the cooking process. B-vitamin deficiency is common in humans and supplements of these

vitamins are often used because deficiencies in these vitamins can lead to several diseases,

such as pellagra [188]. Therefore, there is great interest in the B-vitamin production by the

gut microbiota, particularly because this production is thought to play a role in maintaining

the vitamin homeostasis in colonocytes [188]. Because of the large number of gut microbial

species, most of which have not been cultured, experimental validation of the HGM B-

vitamin pathways is infeasible, at least with the current technologies. Genome annotations

provide a method for both systematic and large-scale predictions of pathways for vitamin

metabolism, enabling assessments of the potential of each species for vitamin biosynthesis.

Genome annotations can be obtained using, among other methods, a genomics-based

approach implemented in the PubSEED platform [161, 57]. PubSEED is a multifunctional

web platform, in which one can inspect defined sets of gene functional roles (annotations) for

multiple genomes at once and assign annotations to protein encoding genes (PEGs), which

refer to open reading frames (ORFs). A functional role can refer to any protein encoding gene

and represents the protein function. Communities of experts define sets of functional roles,

called subsystems. These subsystems usually contain functiona lroles that together form a

metabolic pathway for a particular subset of metabolism, for example, the biosynthesis of

vitamin B1 (thiamin). The subsystem can then be annotated over any number of genomes at

once. In addition, the PubSEED platform offers multiple methods for the manual curation,

discovery, and assignment of functional roles.

In this study, we used the PubSEED platform to analyze 256 HGM organisms for their

ability to synthesize eight B-vitamins. The genomes were selected based on a published
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collection of microorganisms commonly found in the human gut [168]. We used eight B-

vitamin subsystems, which correspond to the biosynthesis of the active form of each vitamin

from its known precursors, to predict the possible B-vitamin producers in the human gut as

well as the potential competitors for resources from the vitamin pools in the gut. In addition,

we compared our predictions to experimental data available in the literature on the B-vitamin

requirements of 16 human gut microorganisms. This work presents a comprehensive assess-

ment of the B-vitamin synthesis capabilities of the human gut microbiota.

2.2 Methods

The PubSEED platform (http://pubseed.theseed.org/) [161, 162, 57] contains fully annotated

subsystems for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridox-

ine, riboflavin, and thiamin (Table 2.1). The subsystems were populated with 256 HGM

genomes. The genomes were selected based on a study by Qin et al. (2010) [168], which re-

ported microorganisms commonly found in the human gut. A further selection criterion was

that the microbes appeared in at least 50% of the participants in the aforementioned study

and that their genomes were present in PubSEED (Supplementary Table A.1). For compar-

ison, the subsystems were also populated with 257 non-HGM genomes that were isolated

from human body sites other than the intestine (Supplementary Table A.1). The non-HGM

genomes were chosen in the following way: (1) All genomes from the Human Microbiome

Project (HMP, http://www.hmpdacc.org/HMRGD/) [41, 42] isolated from a human body site

were selected; (2) HMP genomes with the body site “Gastrointestinal tract” (i.e., isolated

from intestine) were excluded; (3) all genomes absent from PubSEED were excluded; (4)

only one genome per species was selected; (5) among the multiple genomes for the same

species, a genome with a minimal number of contigs (i.e., definitive) was selected; (6) if

more than one genome with the minimal number of contigs existed, the genome with the

maximal CDS number was selected. The non-HGM genomes were isolated from the follow-

ing body sites: oral (127 genomes), urogenital tract (68 genomes), airways (28 genomes),

skin (25 genomes), blood (7 genomes), liver (1 genome), and heart (1 genome).

http://www.hmpdacc.org/HMRGD/
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Table 2.1: Subsystems analyzed for the studied B-vitamins.

Vitamin Subsystem Subsystem Curator
Biotin “Biotin biosynthesis” Dmitry Rodionov
Cobalamin “Coenzyme B12 biosynthesis” Dmitry Rodionov
Folate "Folate Biosynthesis" Valérie de Crécy-

Lagard
Niacin “NAD and NADP cofactor biosynthesis global" Andrei Osterman
Pantothenate “Coenzyme A Biosynthesis" Andrei Osterman
Pyridoxine “Pyridoxin (Vitamin B6) Biosynthesis" Olga Zagnitko
Riboflavin “Riboflavin, FMN, and FAD metabolism Ex-

tended"
Sveta Gerdes

Thiamin “Thiamin biosynthesis" Dmitry Rodionov
The subsystems can be accessed on the PubSEED Subsystems Editor website:
http://pubseed.theseed.org/

Preparing and Populating the Subsystems

We first inspected the existing B-vitamin metabolism subsystems and determined whether

the functional roles associated with the metabolism of each vitamin were consistent with

most of the recent reports. To enable us to manually curate the functional roles involved in the

biosynthesis of each vitamin, we copied the existing subsystems to new subsystems. We then

compiled a list of HGM genomes by selecting a genome in the “Spreadsheet” tab and clicking

“save genome selection”. Using “Edit List”, we selected our genomes and saved the list.

Within the spreadsheet for each subsystem, we limited the display of genomes to our genome

list in the window “UserSets”. To simplify our analysis, we compiled functional roles with

the same metabolic functions into subsets using the “Subsets” tab. Protein encoding genes

(PEGs), which encode functional roles belonging to a certain pathway, often cluster together

on a chromosome. In the tab “ColorSpreadsheet”, we colored the genes by cluster to better

identify these co-occurring genes. Finally, for each B-vitamin subsystem, we determined

sets of essential functional roles that should be present in a genome for the corresponding

organism to be considered a vitamin producer (Table 2.2). Missing essential roles in HGM

genomes were manually curated where possible as described below. The 257 non-HGM

genomes were subjected to the same criteria as those for the 256 HGM genomes.
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Table 2.2: Combinations of essential functional roles for the biosynthesis of B-vitamins.

Pathway Essential functional roles
Biotin BioW + BioFADB

BioC + BioFADB
Cobalamin CbiL + CobG + CbiGF + (CobF or CbiD) + CbiECA + CobNST+ CobAT +

CbiPB + CobUS
(CbiKX or CysG) + CbiLGF + (CobF or CbiD) + CbiECA + CobAT + CbiPB
+ CobUS

Folate FolEBKP + pabAc + DHFS + DHFR + FPGS
Niacin ASPOX + QSYN + QAPRT + NaMNAT + NADS
Pantothenate KPHMT + KPRED + ASPDC + PBAL + PANK + PPCS + PPCDC + DPCK
Pyridoxin dxs + gapA + PdxBFAJH

PdxTS
Riboflavin GTPCH2 + PyrDR + DHBPS + DMRLS + RSA + RK + FMNAT
Thiamin (ThiH or ThiO) + ThiGSF + ThiCDE

Thi4 + ThiCDE
When more than one biosynthetic pathway for one vitamin is possible, several combinations
of the essential roles are listed. Each abbreviation corresponds to the single functional role
(Supplementary Table A.1).

Manual curation

The PubSEED platform offers several methods for manual curation. The function “Find

candidates” uses four steps to search for a functional role in a target genome. First, it

looks for the role in the target genome’s existing gene annotations. Then, it searches for

matching proteins in the genome by performing a similarity check with protein BLAST al-

gorithm [6], where it compares the amino acid sequence of the gene from another genome

with the amino acid sequences of all PEGs in the target genome. The third step searches

for genes, which are co-localized on the chromosome with other genes from the subsystem

in the target genome. Finally, a translated BLAST (tblastn) is performed, in which a query

protein sequence is compared with the six-frame translation of the target genome .Another

way to search for functional roles in the PubSEED platform is to examine genome annota-

tion phylogenetic trees for sets of related proteins. Such trees show similarities among the

amino acid sequences of proteins from different genome clusters together with the annotated

functional role of each PEG. Trees often reveal mis-annotations of the target genes and also

provide hints of the level of conservation of the sequence. For every protein encoding gen

ein the PubSEED platform, it is possible to examine the NCBI Conserved Domains Database
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(CDD) [143]. The database performs an RPS-BLAST algorithm (a stand-alone tool in the

NCBI toolkit distribution), presents the resulting protein domain annotations on the query

sequence, and lists the resulting E-values. High-confidence matches between the query se-

quence and conserved domains are listed as “specific hits”. Once a candidate gene was found

in a genome, the functional role of the PEG was changed manually on the condition that the

existing annotation was not associated with another subsystem, because changing the anno-

tation of a PEG affects all subsystems that list the current annotation can alterthe results of

an existing subsystem without notifying its author. Either a new functional role was assigned

to the PEG,or in the case of multiple domains or functions, the new annotation was appended

to the existing ones.

Calculation of Vitamin Produced by Gut Microbes

We calculated the minimal number of microbes needed to supply a human host with the

necessary B-vitamins using the following assumptions: (i) The number of bacterial cells

in the colonic space is 1014 cells [198]. (ii) The dry weight of a single bacterial cell is

4.89×10−13gDW cell−1 [135]. (iii) Intracellular vitamins in bacteria become available to the

host upon cell lysis. (iv) 31.7% of bacterial cells in fecal matter has been reported to consist

of dead cells [23]. The ratio of dead cells in the colon could not be found, and we therefore

use the measured ratio of dead cells in the feces in our calculations. (v) The intracellular

concentration of vitamins was retrieved from the literature (Table 2.3) but represents only

the capacity of those bacteria and not all gut bacteria in general. (vi) The volume of an

E.coli cell is 1.1 µm3 [123]. (vii) The dry weight of an Escherichia coli cell is 4.89 ×

10−13 gDW [135]. (viii) E.coli grows anaerobically at 0.26 h−1 [93]. The ratio of the human

daily reference intake of each vitamin coming from bacteria could then be calculated in the

following manner:

% of DRI =
Intracellular concentration ×Weight of bacteria × AM × HGM ratio

DRI
× 100

(2.1)

where DRI is the recommended dietary reference intake in mg/day, AM is the atomic mass

of the vitamin values from ChEBI [94], and HGM is the ratio of HGM producers as predicted

in this study.
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Table 2.3: Intracellular vitamin concentrations in selected gut microbes.

Vitamin Organism Reported value References
Biotin Escherichia coli 40 µM [35]
Cobalamin Lactobacillus reuteri CE 50 µg/L [220]
Flavin E. coli 4 µM [242]
Folate derivatives Lactobacillus casei 22 µM [206]
Niacin E. coli 1.12 × 106 molecules in a single cell [149]
Pantothenate E. coli < 1 µM [109]
Pyridoxine E. coli 1.5 × 10−10 mol h−1 mgDW−1 [55]
Thiamin Lactobacillus fermenti 3 µg/gDW [212]

2.3 Results

2.3.1 Pathway Descriptions, Prediction Criteria, and Predictions

For each of the eight B-vitamins, we describe the known biosynthesis pathways and for each

pathway, we present the frequency of the respective functional roles in the analyzed taxo-

nomic groups. Based on the functional roles present in the subsystems, each HGM organism

was predicted to be a producer or non-producer of the eight B-vitamins (Supplementary Ta-

ble A.1).

Biotin (Vitamin B8)

Biotin can by synthesized de novo from two pimeloyl precursors, malonyl-ACP and pimelate

(Fig. 2.1). There are five different synthesis routes [183, 134] but only three, via BioG, BioH,

and BioW, could be identified in the 256 HGM genomes. We examined the prevalence of

the BioC route using the BioG role in the 256 HGM genomes. Almost all genomes from the

phylum Bacteroidetes (96%) were predicted to synthesize biotin through this route. All an-

alyzed genomes from the phylum Fusobacteria were predicted to synthesize biotin through

the BioC route with BioG. A single Fusobacteria genome, Fusobacterium sp. D11, was miss-

ing the essential role BioC, but it was still predicted to be a producer because the genome

contained all other essential roles and all its related genomes contained BioC. In the phylum

Proteobacteria, 84% of the genomes were predicted to synthesize biotin. Producers from

the class Epsilonproteobacteria contained the BioG role, whereas the remaining producers

in the phylum, which were mostly from the class Gammaproteobacteria, contained a BioH.
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Only a single Gammaproteobacteria, Escherichia sp. 1_1_43, was a predicted non-producer.

We then examined the second biosynthesis route, in which BioW is used to convert salvaged

Figure 2.1: Biotin biosynthesis. The biotin biosynthesis subsystem contains 9 functional
roles (Supplementary Table A.1) and 10 metabolites. Functional roles are represented by
rectangles. The major biosynthesis routes are colored green, alternative routes are blue,
salvage routes are red, and known transporters are yellow. Metabolites are represented by
circles, and yellow circles represent metabolites that can be salvaged from the environment
in some cases. Only the core metabolites of the biosynthesis pathway are listed. Each bar
grpah represents the percentage of organisms in each phylum that contain the functional role.

pimelate to pimeloyl-CoA. The BioFADB pathway is then used to convert pimeloyl-CoA

to biotin. This route was only observed in the Firmicutes phylum in five genomes from

the Clostridia class and in Bacillus subtilis subsp. subtilis str. 168. During our analysis,

we observed that all Actinobacteria genomes lacked the essential biotin biosynthesis roles.

However, 19 of the 23 (83%) Actinobacteria genomes contained a BioY biotin transporter,

indicating a need for biotin. The remaining four genomes, all from the family Coriobacteri-

aceae, contained no functional roles in the pathway at all, but they did contain biotin-protein

ligases, suggesting that they require biotin.
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Taken together, these findings show that the majority of Bacteroidetes, Fusobacteria, and

Proteobacteria genomes contain the essential roles for biotin biosynthesis (Fig. 2.1). The

synthesis of this vitamin is completely absent in Actinobacteria genomes and is very rare

in genomes of the Firmicutes phylum. In total, biotin biosynthesis is present in 40% of the

HGM genomes.

Cobalamin (Vitamin B12)

Cobalamin biosynthesis contains the longest pathway of eight vitamins, where adenosyl-

cobalamin is synthesized from precorrin 2 (Fig. 2.2). The cobalamin can be synthesized

either aerobically or anaerobically (blue and green pathways in (Fig. 2.2), respectively).

No HGM microbe used the aerobic biosynthesis route, whereas some non-HGM producers

contained the aerobic pathway specific roles CobG and CobNST. Only two Actinobacteria

of the Coriobacteriaceae family were predicted cobalamin producers, Collinsella aerofa-

ciens ATCC 25986 and Gordonibacter pamelaeae 7-10-1-b. Only half of the genomes in

the Bacteroidetes phylum (26 of 51) were predicted to be a cobalamin producers being the

lowest producer ratio observed for the Bacteroidetes of all eight vitamins. No taxonomic pat-

terns were observed for the Bacteroidetes producers. Nearly half of the Firmicutes genomes

(43%) were predicted to synthesize cobalamin. All Lactobacillales were predicted to be non-

producers, except the six Lactobacillus reuteri strains that have been previously known to

have this pathway [194]. Only a single other Bacilli, Listeria monocytogenes str. 1/2a F6854,

was a predicted producer of this vitamin. The remaining cobalamin producers in the Firmi-

cutes phylum belonged to the Clostridia class, but no specific taxonomic pattern was ob-

served. All 14 Fusobacteria were predicted to be cobalamin producers. The Proteobacteria

phylum contained only ten producers, three from Delta- and seven from Gammaproteobac-

teria.

Taken together, we find that cobalamin biosynthesis is present in 42% of the HGM

genomes. The synthesis of cobalamin is present in all Fusobacteria, but is rare in Actinobac-

teria and Proteobacteria. Half of the Bacteroidetes genomes are missing the biosynthesis

pathway, making cobalamin the least produced of the eight vitamins in the phylum.
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Figure 2.2: Cobalamin biosynthesis. The cobalamin biosynthesis subsystem contains 17
functional roles (Supplementary Table A.1) and 15 metabolites. Refer to Figure 2.1 for
figure descriptions. Note that we show only CbiD since none of the HGM genomes contained
CobF. The “*” or “**” text in the first green box on the top left corner of the figure refer to
two functional roles, “*CbiKX” and “**CysG”. The corresponding bar charts for the two
functional roles are shown below the green box, just above the “Abbr./Metabolites” table.

Folate (Vitamin B9)

Folate biosynthesis includes the combination of two metabolic branches (Fig. 2.3). The

first branch converts guanosine triphosphate (GTP) to 6-hydromethyl-7,8-dihydropterin and

the second branch converts chorismate to p-aminobenzoic acid (PABA). Most living organ-

isms contain more than one folate derivative. However, because these folates are derived

from dihydrofolate (DHF) or tetrahydrofolate (THF), we considered the production of either

metabolite to be sufficient to assign folate producer status to a genome. From our data, we

identified 109 predicted folate producers, 86% of which included all the functional roles of

the pathway or were only missing the FolQ role, which is commonly missing in genome

annotations [80]. All producers were required to have the pabAc role of the PABA synthesis
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Figure 2.3: Folate biosynthesis. The folate biosynthesis subsystem contains 11 functional
roles (Supplementary Table A.1) and 14 metabolites. Refer to Figure 2.1 for figure descrip-
tions.

branch of the pathway. The two other roles, pabAa and pabAb, were commonly missing

from our genomes, and the assignment of the roles from manual inspection was not trivial.

Therefore, the presence of pabAa or pabAb was not considered essential, although these

roles, along with pabAc, are needed for the synthesis of PABA. A PABA auxotroph must ac-

quire the metabolite from its growth medium and was therefore not considered to be capable

of producing folates de novo. Only six (26%) Actinobacteria were predicted producers: five

from the order Bifidobacteriales and one from the order Actinomycetales. Although most

genomes in this phylum had all the necessary functional roles for THF production, they did

not contain pabAc. All but four (92%) Bacteroidetes were predicted to synthesize folates;

the four exceptions lacked pabAc. Only 18 Firmicutes had complete synthesis pathways. Of

the remaining 112 Firmicutes genomes, 49 contained a full biosynthesis pathway but were

missing the PABA branch. The other genomes were predicted non-producers, but contained
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roles for the conversion of dihydropteroate to THF, suggesting that they rely on folate up-

take. Three Fusobacteria were predicted to be PABA auxotrophs, whereas the remaining 11

(79%) genomes contained all the essential roles for folate biosynthesis. The Proteobacteria

phylum demonstrated more variability and class-specific patterns, with 71% of the organ-

isms predicted as producers. The Betaproteobacteria included three producers, whereas two

genomes from this class were missing PABA biosynthesis. All Deltaproteobacteria were

predicted to be non-producers. The Gammaproteobacteria demonstrated the highest con-

servation of the pathway; all functional roles were present. Only two non-producers were

observed in the class: Succinatimonas hippei YIT 12066 was missing the PABA branch, and

Escherichia sp. 1_1_43 was missing the PABA branch, FolE, DHFS, and FPGS.

Taken together, these findings show that the folate biosynthesis pathway is present in

nearly all Bacteroidetes genomes as well as in most Fusobacteria and Proteobacteria. Folate

synthesis is rare in the Actinobacteria and Firmicutes genomes, mostly because of the ab-

sence of the PABA biosynthesis pathway. In total, folate biosynthesis is complete in 43% of

the 256 HGM genomes tested.

Niacin (Vitamin B3)

Niacin is a group term for nicotinamide and nicotinic acid, and both of these metabolites are

precursors for nicotinamide adenine dinucleotide (NAD). Nicotinamide and nicotinic acid

can either be salvaged from the environment or produced through the recycling of NAD

within the cell [84]. In this study, an organism was considered a niacin producer when it

contained the de novo synthesis pathway of NAD [21] (Fig. 2.4). The first route uses the

functional role NaMNAT to produce deamino-NAD, which in turn is converted to NAD

by NADS. NADS requires ammonia, or alternatively, NADS is coupled to a glutaminase

domain (GAT) that supplies ammonia [53]. In this study, the presence or absence of the

GAT domain did not affect our predictions. All predicted producers among the 256 genomes

contained both NaMNAT and NADS. In the case of Firmicutes, the Bacilli class contained

only five producers and the Clostridia class included 44 predicted niacin producers. Most

Fusobacteria were predicted to synthesize niacin, with only two predicted non-producers.

Proteobacteria contained 29 predicted niacin synthesizers, but no taxa-specific patterns were

observed.
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Figure 2.4: Niacin biosynthesis. The niacin biosynthesis subsystem contains 14 functional
roles (Supplementary Table A.1) and 10 metabolites. Refer to Figure 2.1 for figure descrip-
tions.

Considering the prevalence of the first biosynthesis route in the gut microbiota, we won-

dered how common the alternative synthesis route was in these genomes. This route pro-

duces nicotinate D-ribonucleotide from quinolinic acid through NMNS and converts it to

NAD using NMNAT. Only eight of the analyzed genomes contained both of these functional

roles, and all contained the roles NaMNAT and NADS from the first route as well. All eight

genomes belonged to the Firmicutes phylum, seven from the Clostridia class and one from

Erysipelotrichia. Some prokaryotic cells share the eukaryotic NAD biosynthesis pathway

from tryptophan [124]. However, we did not observe any evidence of an active tryptophan

pathway in our list of HGM genomes. Because niacin is known to be salvaged from the

environment, we investigated the functional roles associated with the uptake of three NAD

precursors: nicotinamide, nicotinic acid, and N-ribosylnicotinamide. We found that the roles

associated with the uptake of the nicotinamide and nicotinic acid (Fig. 2.4) were only present
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in Actinobacteria, Firmicutes, and a single Proteobacteria. Two roles associated with the con-

version of salvaged niacin to nicotinate mononucleotide (NAM and NAPRT) were present in

all five phyla, but these roles are involved in the recycling of NAD [84] and therefore do not

necessarily indicate the presence of niacin salvage. The salvage of N-ribosylnicotinamide

through PnuC, RNK, and NMNAT was only present in four Firmicutes and 18 Proteobacte-

ria.

Taken together, these findings show that niacin biosynthesis is present in the majority of

the HGM genomes. The phyla Actinobacteria and Firmicutes contain lower ratios of de novo

producers than the other three, and in these phyla, we observed the presence of the niacin

salvage pathways, which are not present in the Fusobacteria and Bacteroidetes genomes. A

total of 63% of all the investigated genomes contained the NAD biosynthesis pathways.

Pantothenate (Vitamin B5)

Pantothenate is a precursor for coenzyme A (CoA) and it can be synthesized de novo from

2-dihydropantoate and β-alanine (Fig. 2.5). Because CoA is the active form of pantothenate,

we considered the de novo pantothenate biosynthesis pathway to be complete when a genome

contained the functional roles needed for CoA biosynthesis. Although this pathway is well

defined, it caused many uncertainties in our analysis. Many of the analyzed genomes were

missing the roles KPHMT or ASPDC. When a genome was missing a single enzyme in the

branched pathway, the organisms were still predicted to be a pantothenate producer. Some

genomes were lacking the role PBAL, which is the final step of pantothenate biosynthe-

sis. Hence, the absence of PBAL always resulted in a non-producer prediction.. According

to our predictions, Fusobacteria, certain Actinobacteria, and Firmicutes do not possess the

ability to synthesize pantothenate (Fig. 2.5). These predictions were mostly based on the

absence of two or more of the functional roles KPHMT, KPRED, ASPDC, and PBAL. All

Bacteroidetes and 36 (95%) of the Proteobacteria genomes were predicted to be CoA produc-

ers. Only three Actinobacteria were predicted CoA producers: two of the Actinomycetales

order and one Coriobacteriales. None of the Bifidobacteriales contained a full CoA biosyn-

thesis pathway, but all genomes in the order contained the pantothenate transporter PANF.

The four non-producing Coriobacteriales genomes did not contain a PANF transporter. Fir-

micutes displayed certain class-level similarities, with 32% of the genomes containing the
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Figure 2.5: Pantothenate biosynthesis. The pantothenate biosynthesis subsystem contains
10 functional roles (Supplementary Table A.1) and 12 metabolites. Refer to Figure 2.1 for
figure descriptions.

essential roles for CoA biosynthesis. Only seven Bacilli, including three Bacillales and four

Lactobacillales, contained all CoA-biosynthesis roles. The Clostridia class demonstrated

considerable variability in the presence of roles, and no specific pattern could be observed

for the lower taxa. In the phylum Proteobacteria, all organisms of the Betaproteobacteria

class except one contained all essential functional roles for CoA biosynthesis, whereas none

of the producers presented a PANF transporter. All Delta- and Epsilonproteobacteria were

predicted to be producers. All Gammaproteobacteria contained all roles in the pathway, ex-

cept a single genome of the order Aeromonadales was missing three out of the four necessary

steps for pantothenate biosynthesis.

Taken together, these findings demonstrate that the synthesis of CoA from pantothenate

is present in nearly all HGM genomes. However, pantothenate biosynthesis is not present

in Fusobacteria and is only present in a few Actinobacteria and Firmicutes. Nearly all Bac-
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teroidetes and Proteobacteria contain a full biosynthesis pathway for both pantothenate and

CoA. CoA biosynthesis is present in 51% of the HGM genomes.

Pyridoxine (Vitamin B6)

The coenzyme form of pyridoxine is pyridoxal 5’-phosphate and is required for several en-

zymes in the cell, mainly those required for the metabolism of amino acids [46]. Pyridoxal

5’-phosphate can be synthesized de novo via two different routes (Fig. 2.6). We first analyzed

Figure 2.6: Pyridoxine biosynthesis. The pyridoxine biosynthesis subsystem contains 11
functional roles (Supplementary Table A.1) and 16 metabolites. Refer to Figure 2.1 for
figure descriptions.

the shorter biosynthesis route, which uses a single enzyme with two domains, represented

by the functional roles PdxS and PdxT. This route joins glyceraldehyde 3-phosphate and

D-ribulose 5-phosphate to produce pyridoxal 5’-phosphate. Both roles must be present for

an organism to be a predicted producer. The 20 Actinobacteria and 33 Firmicutes genomes

that were predicted to be pyridoxine producers contained the PdxTS roles. Only three Bac-
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teroidetes producers contained the PdxTS route: two from the Prevotellaceae family and one

Rikenellaceae, A. indistinctus YIT 12060, which also contained the alternative biosynthesis

route described below. The three Fusobacteria producers contained PdxTS; four Proteobac-

teria producers (i.e., the three Deltaproteobacteria and a single Gammaproteobacteria, A.

junii SH205) also contained PdxTS.

We then examined the alternative synthesis route, which requires seven functional roles

for a complete pathway made of two branches. One branch converts D-erythrose-4-phosphate

to 3-amino-2-oxopropyl phosphate in four steps. The other branch converts D-glyceraldehyde-

3-phosphate to 1-deoxy-D-xylulose-5-phosphate with the functional role dxs (Fig. 2.6). The

two end-metabolites are joined by PdxJ and converted to pyridoxal 5’-phosphate by PdxH.

Both PdxJ and PdxH were required for an organism to be a predicted pyridoxine synthe-

sizer. Only genomes from the Bacteroidetes and Proteobacteria phyla contained the roles

PdxJ and PdxH in addition to the remaining essential functional roles of the pathway (Ta-

ble 2.2); therefore, Bacteroidetes and Proteobacteria were the only phyla predicted to synthe-

size pyridoxine via this route. All Gammaproteobacteria, with the exception of Escherichia

sp. 1_1_43, contained a full PdxJH biosynthesis route. Only three Bacteroidetes genomes–

Bacteroides coprocola DSM 17136, Bacteroides coprophilus DSM 18228, and Bacteroides

plebeius DSM 17135–were predicted to be non-producers. All three genomes were missing

PdxH but contained all other functional roles of the pathway.

The results for the two routes showed that the majority of Actinobacteria, Bacteroidetes,

and Proteobacteria have the ability to synthesize pyridoxal 5’-phosphate; most Bacteroidetes

and Proteobacteria use the longer route, and all Actinobacteria contain the shorter synthesis

route. Few Firmicutes and Fusobacteria can synthesize pyridoxal 5’-phosphate, but those

that do use the shorter PdxTS route. Taken together, these findings reveal that the de novo

biosynthesis of pyridoxal 5’-phosphate is present in 50% of the tested HGM genomes. The

majority of genomes from all phyla, except for Fusobacteria, contained the role PdxK, which

is involved in the salvage of pyridoxal 5’-phosphate and its two precursors.

Riboflavin (Vitamin B2)

Riboflavin can only be synthesized through one known pathway from GTP and D-ribulose-

5-phosphate (Fig. 2.7). The role PyrP is commonly missing in our genomes and is com-



36 CHAPTER 2. GENOMIC ANALYSIS OF B-VITAMINS

monly missing in plants [80]; thus, its absence did not affect our predictions. For an organ-

ism to be considered a predicted producer, its genome had to present all other functional

roles to produce the redox cofactors FMN and FAD. All Bacteroidetes and Fusobacteria and

Figure 2.7: Riboflavin biosynthesis. The riboflavin biosynthesis subsystem contains 10 func-
tional roles (Supplementary Table A.1) and 11 metabolites. Refer to Figure 2.1 for figure
descriptions.

36 genomes (92%) of Proteobacteria contained all essential functional roles for riboflavin

biosynthesis (Fig. 2.7, Table 2.2). Half of the Firmicutes were predicted to be riboflavin

producers. This ratio is the largest in Firmicutes producers among all of the vitamins in our

analysis. Although riboflavin biosynthesis was the most prominent in Firmicutes, no taxa-

specific patterns were found. Only two genomes in the Actinobacteria phylum had all the

essential roles for riboflavin biosynthesis: Corynebacterium ammoniagenes DSM 20306 and

Bifidobacterium longum ATCC 15697. All Bacteroidetes were predicted producers. All but

two genomes from Proteobacteria were predicted to synthesize riboflavin.

The riboflavin biosynthesis pathway was the most preserved of the eight vitamins we
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examined, although it was absent in most of the Actinobacteria genomes and half of the

Firmicutes genomes. However, all non-producing organisms from the two phyla contained

the RibU riboflavin transporter role, indicating their need for the riboflavin-derived cofactors

FMN and FAD. RibU was almost completely absent in the Bacteroidetes, Fusobacteria, and

Proteobacteria, whereas the de novo synthesis pathway was found in nearly all genomes of

the three phyla. The majority of all 256 genomes (65%) had the ability to produce riboflavin.

Thiamin (Vitamin B1)

The thiamin biosynthesis pathway consists of two branches that are joined in the final step to

produce thiamin monophosphate (Fig. 2.8) [110]. All genomes in our analysis contained the

Figure 2.8: Thiamin biosynthesis. The thiamin biosynthesis subsystem contains 9 functional
roles (Supplementary Table A.1) and 10 metabolites. One functional role, sulfur carrier
protein ThiS, is drawn as a metabolite because it is combined with other metabolites and
recycled in the pathway. Refer to Figure 2.1 for figure descriptions.

ThiCD functional roles. The Thi4 role was only found in nine genomes, which were all from
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the Bacteroidetes phylum. The second HET-P synthesis route requires four functional roles:

ThiS, ThiG, ThiF, and ThiO or ThiH. The roles ThiO and ThiH convert glycine and tyrosine,

respectively, to glycine imine. The role ThiS carries a sulfur group to ThiG, which com-

bines the sulfur with glycine imine and DXP to produce HET-P. Most predicted producers

in our analysis used the ThiH role except for four genomes that contained ThiO (two from

the Proteobacteria, one from the Actinobacteria, and one from the Firmicutes phylum). Only

two Actinobacteria out of its 15 producers contained the ThiH or ThiO part of the pathway;

because their genomes contained all other functional roles, they were predicted to be produc-

ers. In the final step, HET-P and HMP-PP are combined to produce thiamin monophosphate

by ThiE. Although thiamin diphosphate is the functional version of thiamin, the production

of thiamin monophosphate was considered sufficient for producer status. Only a single Bac-

teroidetes genome, Prevotella salivae DSM 15606, was missing essential functional roles

for thiamin biosynthesis. In the Firmicutes phylum, no Bacilli received a producer status,

whereas half of the Clostridia class genomes were predicted to synthesize thiamin. In Pro-

teobacteria, all but one Gammaproteobacteria genome were predicted to be producers. The

remaining seven producers from the phylum belonged to the Beta-, Delta-, and Epsilonpro-

teobacteria classes.

Taken together, these results show that the synthesis of thiamin monophosphate is present

in the majority of all phyla, except for Firmicutes, and this synthesis is most prevalent in

Bacteroidetes and Fusobacteria. Only a few genomes in the Bacteroidetes phylum contain

the role Thi4, which can replace the longer HET-P biosynthesis route. The ThiH role in the

longer HET-P synthesis route is most commonly used by HGM organisms; in contrast, the

ThiO role is rarely present and is only present in Actinobacteria and Proteobacteria genomes.

In total, 56% of the HGM organisms have the ability to produce thiamin.

2.3.2 Comparison with experimental data

To assess the validity of our predictions, we compared our results with existing experimental

data in the literature. Here, we considered only experimental studies that used defined media

added specific B-vitamins for growth, or that tested for B-vitamin requirements or secretions

specifically. We found experimental evidence of B-vitamin requirements or secretions for
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11 of our HGM species. However, for four of these species, experimental data were not

found for the specific species that we analyzed. In these cases, we compared the data to our

analyzed strains while keeping in mind that strains within a species can differ substantially

[132]. In total, we made eight predictions for each of the 16 strains, resulting in 128 predic-

tions. We found that 113 of our predictions matched the experimental data (88%, Table 2.4).

This result suggests that predictions concerning bacterial metabolism can be made based on

well-annotated genomes.

Table 2.4: Comparison of genomic predictions and experimental evidence.

Organism B C F N P B6 R T Ref.
Bacteroides fragilis NCTC 9343 (272569.17) • � • • • • • • [235]
Bacteroides thetaiotaomicron VPI-5482
(226186.1)

• • • • • • • • [235]

Bacteroides vulgatus ATCC 8482 (435590.6) • � • • • • • • [235]
Clostridium difficile CD196 (645462.3)a • • • • � • • • [112]
Clostridium difficile NAP07 (525258.3)a • • • • � • • • [112]
Clostridium difficile NAP08 (525259.3)a • • • • � • • • [112]
Escherichia coli str. K-12 substr. MG1655
(511145.6)

• • • • • • • • [49]

Faecalibacterium prausnitzii A2-165
(411483.3)

• � • • • • • • [95]

Faecalibacterium cf. prausnitzii KLE1256 (748224.3)b• � • • • • � • [95]
Faecalibacterium prausnitzii L2-6 (718252.3)b • � • • • • � • [95]
Faecalibacterium prausnitzii SL3/3 (657322.3)b • � • • • • � • [95]
Helicobacter pylori 26695 (85962.1) • • • • • • • • [222]
Klebsiella pneumoniae 1162281 (1037908.3)c • • • • • • • • [7]
Lactobacillus plantarum WCFS1 (220668.1) ◦ • ◦ • • • • ◦ [240]
Listeria monocytogenes str. 1/2a F6854 (267409.1)d• • • • • • • • [231]
Salmonella enterica subsp. enterica serovar Ty-
phimurium str. TN061786 (946034.3)

• • • • • • • � [210]

B: biotin, C: cobalamin, F: folate, N: niacin, P: pantothenate, B6: pyridoxine, R: riboflavin,
T: thiamin. Filled circles represent agreeing predictions and data, empty shapes represent
mismatches. •: predicted producers, •: predicted non-producers, �: predicted producers,
◦: predicted non-producers. Footnotes list the comparative strain in the cases where the
predicted and experimental strains are different.
aC. difficile VPI 10463, KZ 1626, K 1630, KZ 1647, and KZ 1748.
bF. prausnitzi A2-165.
cK. pneumonia Kp1 and Kp102M.
dL. monocytogenes 10403, EGD-e, and L028.
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2.3.3 B-vitamin synthesis Patterns in HGM and other Microbial Genomes

Examining the variation of the different synthesis pathways in our former analysis, we won-

dered how the combinations of the vitamins synthesized varied across the HGM genomes.

Our data consist of binary information regarding the distribution of pathways in 256 HGM

and 257 non-HGM genomes, i.e., the presence or absence of a vitamin biosynthesis path-

way in a genome (Fig. 2.9). We investigated the 28 = 256 possible patterns of the eight

studied pathways. Only 68 (27%) of the 256 possible pathway patterns were found in the

256 HGM genomes (Supplementary Table A.1), suggesting that the occurrences of these

B-vitamin pathways may not be independent. To determine whether the pattern occurrence

Figure 2.9: NCBI based taxonomic tree and the prsence or absence of the eight B-vitamin
biosynthesis pathways. The two taxonomic trees show the (A) 256 HGM genomes and
(B) the 257 non-HGM genomes, along with the heatmaps showing the presence (green)
or absence (black) of each vitamin pathway. The taxonomic trees were produced using
PhyloT: a tree generator (http://phylot.biobyte.de/index.html) and visualized through iTOL
(http://itol.embl.de/) [127, 128].

and distribution was HGM specific or a general feature of bacteria, we inspected the B-

vitamin metabolism distribution in 257 bacterial genomes (non-HGM). We identified four

groups: (1) 32 HGM-specific patterns, (2) 36 patterns present in both HGM and non-HGM

sets, (3) 36 patterns found only in non-HGM genomes, and (4) 152 patterns found in neither.

The 32 HGM-specific patterns were present in 68 (27%) of the HGM genomes, and each

pattern was found in eight or fewer genomes. Three HGM-specific patterns were found in

http://phylot.biobyte.de/index.html
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eight genomes each: (i) the presence of only niacin, pyridoxine, and thiamin pathways was

found only in Actinobacteria, (ii) the absence of all pathways except for niacin was found

in six Firmicutes and two Actinobacteria genomes, (iii) the presence of all pathways ex-

cept for biotin and folate biosynthesis was found in five Firmicutes and three Proteobacteria

genomes. The remaining HGM-specific patterns were found in four or fewer genomes each.

The presence of these HGM-specific vitamin biosynthesis patterns suggests that human gut

microbes have evolved to suit gut-specific conditions, resulting in complementary combina-

tions of synthesized B-vitamins. Accordingly, we observed ten pairs of inversed patterns, in

which pathways that were present or absent in one genome were absent or present in another,

respectively (Fig. 2.10). Such pairs of organisms may be candidates for mutualistic or symbi-

otic interactions. For example, several Bacteroidetes and Proteobacteria genomes contained

all biosynthesis pathways, except for cobalamin synthesis. In the complementary pattern,

found in eight Firmicutes genomes, all biosynthesis pathways, except for cobalamin synthe-

sis, were absent. In comparison, only five pairs of inversed patterns were observed in the

analyzed non-HGM genomes. We analyzed the distribution of pathway patterns of the HGM

genomes and noted similarities in the eight vitamin biosynthesis capabilities at the phy-

lum, class, order, and family levels. Genomes in the phylum Actinobacteria demonstrated

variations in pathway distributions; however, the most conserved pattern, the biosynthesis

of niacin, pyridoxine, and thiamin, was present in eight (35%) genomes, and all of these

genomes were from the order Bifidobacteriales and the family Bifidobacteriaceae (Fig. 2.9,

Supplementary Table A.1). Pathway distribution was highly conserved in the phylum Bac-

teroidetes, which displayed only six different patterns. The two most common patterns in

the Bacteroidetes phylum were the biosynthesis of all eight vitamins, which was present in

26 (51%) of the genomes in the phylum, and the synthesis of all vitamins except for cobal-

amin, which appeared in 17 (33%) of the Bacteroidetes genomes. Three genomes could not

produce cobalamin and pyridoxin, and three did not meet the requirements for consideration

as cobalamin and folate producers. A single organism in the Bacteroidetes phylum could

produce all vitamins except for biotin and cobalamin. One genome of the family Prevotel-

laceae, P. salivae DSM 15606, was missing four biosynthesis pathways, and this organism

only produced pantothenate, pyridoxine, and riboflavin. The phylum Firmicutes demon-

strates the highest variability in pathway patterns, containing 43 patterns in 130 genomes.
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Figure 2.10: Inversed pattern pairs of HGM and non-HGM genomes. The HGM genomes
showed ten pairs of inversed patterns, whereas the non-HGM contained 5 pairs.

However, this variability is not surprising in light of the taxonomic diversity within the phy-

lum itself. The most common pattern was the absence of all biosynthesis pathways and was

found in 30 genomes, 26 of which belong to the Lactobacillales order of the Bacilli class.

The Lactobacillales order also contained 9 out of 10 Firmicutes genomes that contained only

riboflavin biosynthesis. Genomes of the Clostridia class showed an even larger diversity of

pathway patterns; these genomes contained 28 out of the 43 Firmicutes patterns. The most

common Clostridia pattern, the absence of all synthesis pathways except cobalamin, was
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found in seven organisms. All the analyzed Fusobacteria genomes belonged to the family

Fusobacteriaceae and displayed conserved patterns of pathways. The most common pattern

in nine of the 14 genomes was the absence of only the pantothenate and pyridoxine syn-

thesis pathways. The pantothenate biosynthesis pathway was absent in all of the genomes,

whereas all genomes contained the biosynthesis pathways for biotin, cobalamin, riboflavin,

and thiamin. The phylum Proteobacteria showed surprisingly conserved patterns in light of

the high divergence of the taxon. The class Gammaproteobacteria contained 12 out of the

13 Proteobacteria genomes that contained the biosynthesis of all vitamins except for cobal-

amin. The only other genome to show this pattern was the Betaproteobacteria Ralstonia

sp. 5_7_47FAA. The remaining 14 patterns were only found in six or fewer genomes in the

phylum, and ten patterns were observed in only a single organism each. Finally, few path-

way patterns were shared between the five phyla. The presence of all pathways, except for

cobalamin, was observed in Bacteroidetes, Firmicutes, and Proteobacteria in 17, 1, and 13

genomes, respectively. Only nine out of the 68 patterns observed in the HGM genomes were

shared between two phyla, whereas 58 patterns appeared in a single phylum each.

Taken together, the distribution of pathway patterns was relatively conserved, with only

68 patterns appearing in the 256 HGM genomes. A third of these patterns (20 out of 68)

were the inverse of another pattern, suggesting the existence of symbiotic relationships for

B-vitamin metabolism in the gut microbiota.

2.3.4 Amount of HGM B-vitamins Available to the Gut

Considering that the B-vitamin biosynthesis pathways seem to be prevalent in the human

gut microbiota genomes, we wondered whether gut bacteria have the collective capacity to

produce sufficient B-vitamins for daily human requirements. The assumptions underlying the

calculation are described in the Method Section. Overall, only four of the eight B-vitamins

are predicted to be produced in amounts that could cover at least a quarter of the suggested

dietary intake (Table 2.5). It must be noted that the calculated values are speculative and do

not represent the true amount of B-vitamins provided by the human gut microbiota.
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Table 2.5: Estimated maximal percentage of daily reference intake of the eight vitamins that
could be provided by the human gut microbiota.

Vitamin Intracellular concentra-
tion [mmol/gDW]

DRIa

[mg/dayl]
HGMratio % DRI

from HGM
Biotin 9.0 × 10−7 0.03 0.40 4.5
Cobalamin 8.5 × 10−8 0.0024 0.42 31
Folateb 5.0 × 10−5 0.4 0.43 37
Niacinb 3.3 × 10−3 15 0.63 27
Pantothenate 2.3 × 10−6 5 0.51 0.078
Pyridoxineb 5.8 × 10−4 1.3 0.50 86
Riboflavin 9.0 × 10−6 376.4 0.65 2.8
Thiaminb 8.7 × 10−6 1.15 0.56 2.3

aDietary reference intakes [214]. Values averaged for male and female references intakes
(ages 19-50).
bAtomic mass for dihydrofolic acid, nicotinic acid, pyridoxine 5’-phosphate, and thiamine
monophoshate.

2.4 Discussion

In this study, we predicted the B-vitamin biosynthesis of 256 known human gut microor-

ganisms based on their genome annotations alone. Our key results are the following: (i) the

majority of our genome-based predictions match published experimental data; (ii) B-vitamin

biosynthesis is common in the HGM; and iii) inversed patterns of vitamin synthesis suggest

symbiotic relationships among HGM organisms with regard to B-vitamins. Taken together,

our data support the idea that the human gut microbiota has co-evolved relationships that are

specific to the gut environment.

The predictions of B-vitamin synthesis capability agreed well with experimental data

suggesting that the genomic analyses of well-defined pathways can provide much informa-

tion regarding strain-specific metabolism. The prediction had a 12% error rate, which repre-

sents a lower bound for the other HGM capabilities (Table 2.4) as we compared against well-

studied organisms with a higher genome completeness than expected for genomes assembled

from metagenomic studies. One example of a wrong prediction is L. plantarum WCFS1, in

which all necessary functional roles of the biotin pathway were missing. Because biotin is

not required for its growth [240], either the organism does not need biotin or the manual

curation of the pathway requires additional data. The L. plantarum WCFS1 genome con-

tains the biotin-dependent protein biotin-protein ligase (Supplementary Table A.1), which
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suggests a need for biotin. All analyzed C. difficile genomes were predicted to produce

pantothenate as they contained all essential roles except ASPDC. However, pantothenate is

required in the growth medium of the comparison strain [112]. The strain difference may

explain the discrepancy but it is also possible that our essential role constraints are too loose

and that the absence of ASPDC should lead to a negative prediction, even when it is the only

missing functional role in the pathway. The four F. prausnitzii genomes were missing all

essential roles for folate production and were therefore predicted to require folate in their

growth media. In contrast, no significant folic acid consumption of F. prausnitzii A2-165 has

been reported [95] and additionally, it can grow in folic acid free medium (personal com-

munication, Dr. Delphine Saulnier). However, the genome of F. prausnitzii A2-165 contains

an annotated folate transporter [95] and the folate-dependent methionyl-tRNA formyltrans-

ferase (UniProt ID: C7H5H7). We propose that F. prausnitzii A2-165 does not require folates

for growth, although the presence of folate in the growth medium might enhance the growth

rate. L. plantarum WCFS1 is missing all PABA functional roles while it has been shown to

synthesize folate in the absence of folate precursors and PABA in the growth medium [240].

This contradiction suggests an unknown route for PABA biosynthesis, which is likely con-

sidering that two missing archaeal enzyme families in the folate biosynthesis pathway had

recently been discovered [52].

The two most commonly synthesized vitamins of the human gut microbiota genomes

were riboflavin and niacin, with 166 and 162 predicted producers, respectively. The gut-

microbial production of riboflavin has been associated with the immune response through

the activation of T-cells [117]. Riboflavin has also been shown to be involved in the extra-

cellular electron transport chain in F. prausnitzii [115]. The conservation of the riboflavin

biosynthesis pathway can be explained by the exclusive importance of its derivatives, FAD

and FMN, because approximately 1–3% of cellular proteins are flavoproteins [50, 1]. Niacin,

a precursor for NAD, is another essential cofactor. NAD and its reduced and phosphorylated

derivatives (NADH, NADP, and NADPH) have many functions in cells, such as serving as

hydride donors and acceptors in redox reactions [22, 107], participation in bacterial and DNA

ligase reactions [241], and roles as molecules that signal the cellular redox status [107]. How-

ever, the two synthesis pathways are distributed differently over the five phyla. Riboflavin

synthesis is mainly found in Bacteroidetes, Proteobacteria, and Fusobacteria, but it is only
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found in half of the Firmicutes genomes and very few Actinobacteria (Fig. 2.7). In contrast,

the niacin biosynthesis pathway is more evenly distributed over the genomes of the five phyla

(Fig. 2.4). Such differences between the distributions of these two pathways can have various

explanations. First, this variation may reflect their evolutionary history; riboflavin synthesis

appears to be more ancient than the NAD biosynthesis pathway [78]. Second, the biosyn-

thesis of riboflavin and its derivatives is a quite straightforward pathway [1], whereas the

biosynthesis of NAD is very complex and includes numerous versions of salvage pathways

in various bacterial taxa [124, 81, 77, 34].

The human gut microbiota is a large microbial community, in which metabolites are

shared among individual microorganisms [245, 31]. The production of all vitamins and the

absence of all biosynthesis pathways was one of the most common patterns in the HGM

(Fig. 2.10). The absence of all biosynthesis pathways was only found in the Firmicutes phy-

lum, whereas the presence of all eight pathways was found mainly in the Bacteroidetes and

in several Proteobacteria (Fig. 2.9, Supplementary Table A.1).This distribution of vitamin

biosynthesis patterns is interesting given that a higher ratio of Bacteroidetes to Firmicutes

has been linked to a healthier gut microbiota compared with that in obese individuals [234].

Inversed pattern pairs in HGM was twice as frequent than in non-HGM, and 70% more

genomes were associated with these pairs in the HGM compared to non-HGM (Fig. 2.10).

These results suggest that the trait of sharing B-vitamins has evolved in the gut microbes.

HGM can supply the host with biotin, folate, and riboflavin [105, 186]. Human colono-

cytes contain transporters for several B-vitamins, such as RFT1 for riboflavin [250], FOLR1

for folate [45], and the multivitamin transporters SMCT1 [131] and SMVT [167]. It has

therefore been speculated that the HGM contributes to B-vitamin homeostasis [191] because

most of the dietary vitamin absorption occurs in the small intestine. The large intestine con-

tains the highest density of microbes in the human gut; thus, it seems likely that bacteria

provide human intestinal cells with sufficient B-vitamins to avoid deficiencies during short

periods of vitamin-poor diet. According to our estimation, the gut microbiota would not be

able to provide the host with the daily recommended intake of B-vitamins (Table 2.5) and a

large portion of these vitamins may be taken up by non-producing gut microbes, which com-

pete with the host. In fact, our results indicate that human gut microbes actively synthesize

B-vitamins and provide them to their neighboring bacteria through symbiotic relationships.
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A high fraction of the recommended pyridoxine intake and about a third of the recommended

intake of cobalamin and folate could be available from the gut bacteria (Table 2.5). Consis-

tently, these vitamins are thought to be produced by the human gut microbiota in addition

to dietary uptake [103, 187, 126]. In fact, pyridoxine deficiency due to dietary deficiency

is rarely observed [188]. Cobalamin and folate deficiencies are mainly reported in elderly

people [103, 8, 38], who have been shown to have a less diverse and metabolically active

microbiota [246, 36]. In addition, cobalamin and folate have several metabolites derived be-

yond their basic forms, and the host may not absorb these compounds. For example, it has

been shown that little of the corrinoids found in human feces are gut-bacteria derived [5],

and it has been proposed that the most of the corrinoids produced by the gut bacteria are

taken up by non-producers in the gut [54]. Vitamin B12 has recently been suggested as a

modulator of gut microbial ecology [54]. We propose that other B-vitamins could also have

a gut microbiota-modulating role. In this study, we have not analyzed vitamin transporters

because little is known about the B-vitamin export from bacterial cells [184]. However, if B-

vitamins are released into the gut during cell lysis, any vitamin producer can be considered a

vitaminsource, regardless of its transporter expression. Taken together, our results highlight

the fact that the microbiota does indeed contribute to the B-vitamin pool of the gut and that

the host can benefit to some extent from the B-vitamin biosynthesis of the microbiota.
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Generation of genome-scale metabolic

reconstructions for 773 members of the

human gut microbiota
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Abstract
Genome-scale metabolic models derived from human gut metagenomic data can be used
as a framework to elucidate how microbial communities modulate human metabolism and
health. We present AGORA (assembly of gut organisms through reconstruction and analy-
sis), a resource of genome-scale metabolic reconstructions semi-automatically generated for
773 human gut bacteria. Using this resource, we identified a defined growth medium for
Bacteroides caccae ATCC 34185. We also showed that interactions among modeled species
depend on both the metabolic potential of each species and the nutrients available. AGORA
reconstructions can integrate either metagenomic or 16S rRNA sequencing data sets to infer
the metabolic diversity of microbial communities. AGORA reconstructions could provide
a starting point for the generation of high-quality, manually curated metabolic reconstruc-
tions. AGORA is fully compatible with Recon 2, a comprehensive metabolic reconstruction
of human metabolism, which will facilitate studies of host–microbiome interactions.
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3.1 Introduction

Changes in the composition of the human gut microbiota have been associated with the de-

velopment of chronic diseases including type 2 diabetes, obesity, and colorectal cancer [39].

Gut bacterial functions, such as synthesis of amino acids and vitamins [205], breakdown

of indigestible plant polysaccharides [59], and production of metabolites involved in energy

metabolism [60], have been linked to human health. The use of ’omics approaches to study

human microbiome communities has led to the generation of enormous data sets whose in-

terpretations require systems biology tools to shed light on the functional capacity of gut

microbiomes and their interactions with the human host [66].

In order to infer the metabolic repertoire of a gut metagenome data set, researchers usu-

ally map sequenced genes or organisms onto metabolic networks derived from the Kyoto En-

cyclopedia of Genes and Genomes (KEGG) [111], and functional annotations from KEGG

ontologies [87]. However, this approach cannot identify the contribution of each bacterial

species to the metabolic repertoire of the whole gut microbiome, nor can it infer the effects

of different gut microbial communities on host metabolism.

A technique that can bridge this gap is constraint-based reconstruction and analysis (CO-

BRA) [201] using genome-scale metabolic reconstructions (GENREs) of individual human

gut microbes. GENREs are assembled using the genome sequence and experimental in-

formation [226]. These reconstructions form the basis for the development of condition-

specific metabolic models whose functions are simulated and validated by comparison with

experimental results. The models can be used to investigate genotype–phenotype relation-

ships [148], microbe–microbe interactions [99], and host–microbe interactions [99]. Nu-

merous tools can be used to automatically generate draft GENREs but such models contain

errors [90] and are incomplete. Manual curation of draft reconstructions is time consuming

because it involves an extensive literature review and experimental validation of metabolic

functions [226].

To provide an extensive resource of GENREs for human gut microbes, we developed a

comparative metabolic reconstruction method that enables any refinement to one metabolic

reconstruction to be propagated to others. This accelerates reconstruction and improves

model quality. We generated AGORA, which includes 773 gut microbes, comprising 205
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genera and 605 species. All reconstructions were based on literature-derived experimental

data and comparative genomics. The metabolic predictions of two AGORA reconstructions

and their derived metabolic models were validated against experimental data.

3.2 Methods

Access to AGORA reconstructions.

AGORA is an ongoing resource of GENREs and that keeps abreast of human gut microbial

knowledge and can be easily accessed via the Virtual Metabolic Human (VMH) database

website (http://vmh.life), which allows querying each reconstructions’ content and data gath-

ered from the literature search performed in this study. Any AGORA reconstruction can

be downloaded in SBML format from the VMH website on the "Downloads" page. The

website also hosts the human metabolic reconstruction, Recon 2 (ref. [227]). New content

can be added to an AGORA reconstruction manually or automatically, for example, using

rBioNet [230], which is compatible with the COBRA toolbox [201] and ensures all QC/QA

measures defined by the community as described by Thiele and Palsson (2010) [226]. The

"Feedback" tab provides contact information to the VMH developers regarding improve-

ments to any resources available on the VMH webpage, where additions to any resource will

be upheld by the VMH developers.

Genome selection and draft reconstructions.

In a previous study [18], we retrieved 301 draft reconstructions from Model SEED [102].

Based on lists of human gut microbes reported by Qin et al. (2010) [168] and by Rajilić-

Stojanović and de Vos (2014) [172], we obtained 472 additional draft reconstructions from

Model SEED and KBase [9], both of which use the RAST annotation server [12] to annotate

the genomes and build the draft metabolic networks [102]. All reconstructions were down-

loaded in SBML format and imported into Matlab (Mathworks, Inc., Natick, MA, USA)

using the COBRA Toolbox [201]. Each reconstruction was refined using the rBioNet exten-

sion [230] to the COBRA Toolbox. We manually translated reaction and metabolite names

into the VMH nomenclature (Supplementary Tables B.8 and B.9).

http://vmh.life
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In silico simulations.

All simulations were performed in Matlab using the COBRA Toolbox [201] (https://opencobra.github.io/)

and the linear programming solver CPLEX (IBM, Inc.) through the Tomlab interface (Tom-

lab, Inc.).

The curation process.

Note that we refer to a model, which was derived from the corresponding reconstruction,

whenever simulations under a specified condition were carried out.

Reaction directionalities.

To ensure consistency with published reconstructions, the direction of each reaction in a draft

reconstruction was set in agreement with the VMH database. This curation prevented fluxes

from occurring in thermodynamically unfavorable directions. In several cases, the change of

directionality resulted in blocked reactions and/or resulted in a nonzero flux through the

biomass objective function (BOF) [69]. For example, the reaction alpha,alphatrehalose-

phosphate synthase (VMH ID: TRE6PS) has been reported to be irreversible [29], but was

reversible in each draft reconstruction and was required for the synthesis of UDP-glucose.

We corrected this by adding the enzyme that synthesizes UDP-glucose (UTP-glucose-1-

phosphate uridylyltransferase, VMH ID: GALU) after setting the reaction TRE6PS to be

irreversible. In a similar manner, we manually identified solutions to the other blockages

and added appropriate corrections to the reconstructions. Note that when an AGORA model

is used to represent a bacterium within a particular part of the intestine, context-specific pa-

rameters (temperature, pH, ionic strength, cytoplasmic electrical potential difference, and

metabolite concentrations) should be used when checking for consistency between the direc-

tion of each reaction and those obtained by context-specific thermodynamic estimates [155]

(Supplementary Note B.2.1).

Anaerobic growth.

The majority of intestinal microbes are strict or facultative anaerobes, while strict aerobes

colonizing the gut are rare [64]. A total of 192 draft-reconstruction-derived models could not

https://opencobra.github.io/
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carry flux through the BOF on anaerobic rich medium (all exchange reactions open, aside

from the oxygen exchange reaction). Anaerobic growth was enabled by adding oxygeninde-

pendent reactions for gene products known to be functional under anaerobic conditions. For

example, L-aspartate oxidase (EC 1.4.3.16) functions under both aerobic and anaerobic con-

ditions [146]; therefore the anaerobic, fumarate-using L-aspartate oxidase reaction (VMH

ID: ASPO5) was added to those reconstructions containing the oxygen-using L-aspartate

oxidase reaction (VMH ID: ASPO6).

Removal of infeasible flux loops.

Futile cycles are sets of reactions that result in thermodynamically infeasible fluxes and are a

common problem in reconstructions with many transport reactions [226]. Each draft model

had an unfeasibly high export flux of protons from the cytosol, resulting in biologically

implausibly high ATP production (average flux of 933 ± 229 mmol/gDW/h in the absence

and of 933 ± 227 mmol/gDW/h in the presence of oxygen, on Western diet, Supplementary

Table B.18). We identified futile cycles by constraining each reaction flux to zero individ-

ually and computed the flux through the ATP demand reaction using flux balance analysis

(FBA) [159]. No flux was forced through the BOF. Each deleted reaction lowering the ATP

demand flux was inspected manually and replaced by an appropriate irreversible reaction

in all reconstructions containing that futile cycle. If such change prevented the model from

producing biomass, the change was reversed and another reaction eliminating the futile cy-

cle was identified (Supplementary Fig. B.8). After the curation, the average ATP production

flux was 19 ± 13 mmol/gDW/h in the absence and 38 ± 23 mmol/gDW/h in the presence of

oxygen.

Curation of fermentation pathways.

An extensive literature search on the distribution and the structure of fermentation pathways

in the considered gut microbes was performed on the genus level and, where possible, on the

species level (Supplementary Note B.2.4). Drawing on information from two books and 112

publications, we curated 28 fermentation pathways, of which 20 were either absent from or

nonfunctional in all draft reconstructions. Published information on fermentation products

was available for 765 out of 773 reconstructed microbes (Supplementary Table B.1)
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Curation of carbon source utilization pathways.

A thorough literature search was performed to assess the carbon source utilization on a

species and strain level (Supplementary Note B.2.4). Pathways for 95 distinct carbon sources

were added to the reconstructions based on evidence from two books [62, 122] and 199 pub-

lications (Supplementary Table B.1). The draft reconstructions captured 35 of the 95 carbon

sources but did not contain any of the 31 oligo- and polysaccharides (Fig. 3.1e). Published

information about carbon source utilization capabilities was available for 731 out of 773 re-

constructed microbial strains (Supplementary Table B.1). To verify the functionality of new

fermentation and carbon source utilization pathways, flux variability analysis (FVA) [89]

was performed on each refined model with all exchange reactions open and no flux forced

through the BOF.

Comparative genomics analysis.

We used the results of two previous studies on respiratory reductases [174] and B-vitamin

synthesis pathways [140]. We extended the previous analyses to the 612 of our 773 organ-

isms that were available in PubSEED [13]. In the case of missing annotations, a similarity

search was performed with a BLAST algorithm implemented in PubSEED (cutoff = e−20).

In ambiguous situations, phylogenetic trees and genomic context for the corresponding pro-

teins were analyzed as follows. The neighbor-joining approach implemented in PubSEED

was used (default parameters) to construct the phylogenetic trees. Analysis of the genomic

context was done using the tools available in PubSEED. Incorrect and inaccurate PubSEED

annotations were edited and the corresponding genes were added to the relevant subsystems.

Reactions were formulated for all pathways as needed and added to the reconstructions. Ad-

ditionally, gene-protein-reaction associations (GPRs) of the corresponding reactions were

corrected based on the refined organisms’ gene annotations (Supplementary Note B.2.5). If

a reaction was present in a draft reconstruction but the associated gene was not identified

in the organism by comparative genomics, the reaction was removed if the deletion did not

disable growth on rich medium.
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Respiratory pathways and quinone biosynthesis.

The presence of biosynthetic pathways for three main respiratory quinones (ubiquinone,

menaquinone, and 2-demethylmenaquinone) as well as for proton-driven ATP synthases

were genomically analyzed (Supplementary Table B.10 and Supplementary Note B.2.6).

Quinone-dependent reactions were added in agreement with the repertoire of quinones syn-

thesized by the corresponding organism [175]. If no known quinone biosynthesis pathways

were found in a genome, we assumed that the organism utilizes extracellular menaquinone

and added the corresponding transport and exchange reactions [207]. All annotations are

available in PubSEED [162] (http://pubseed.theseed.org/, under the subsystems "Res-

piration HGM", "Respiration HGM New", "Quinones biosynthesis HGM", "Quinones biosyn-

thesis HGM New", "ATP Synthases HGM New", and "ATP Synthases HGM").

B-vitamin biosynthesis.

Eight B-vitamins (i.e., biotin, cobalamin (B12), folate, niacin, pantothenate (B6), pyridoxine,

riboflavin, and thiamin) were considered. Based on the genomic predictions and available

experimental data, biosynthesis pathways for the B-vitamins were curated in the reconstruc-

tions (Supplementary Tables B.10, B.19, and B.11). For the cases where genomic predictions

contradicted published data, the experimental data on growth requirements was used for the

curation of our reconstructions. If a vitamin biosynthesis pathway was present in a recon-

struction that should not synthesize the vitamin based on genomic and experimental data, we

added a transport and exchange reaction for the vitamin and removed the reaction(s) that had

been gap-filled by the Model SEED or KBase pipelines.

Central metabolic pathways.

In order to close gaps and improve gene-proteinreaction associations in central metabolic

pathways, a comparative genomic analysis was performed for (i) glycolysis and gluconeo-

genesis, (ii) the pentose phosphate pathway, (iii) the Entner-Doudoroff pathway, (iv) the

citric acid cycle and the glyoxylate shunt, (v) the biosynthesis of purine and pyrimidine nu-

cleotides, (vi) amino acid biosynthesis pathways, and (vii) the N-acetylglucosamine utiliza-

tion for polysaccharide biosynthesis (Supplementary Table B.2). In total, one to 96 (median

http:// pubseed.theseed.org/
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34) reactions participating in the 28 central metabolic pathways, represented by 20 PubSEED

subsystems, were added to 627 reconstructions.

Nutrient requirements.

To ensure that each model could grow on biologically plausible in silico growth media, man-

ual curation of in silico growth requirements was systematically performed by (i) removing

unlikely growth requirements, (ii) gap-filling biomass precursor biosynthesis pathways based

on comparative genomics (see above), and (iii) curating and validating the models against

experimentally determined growth requirements reported in the literature. A preliminary

defined medium was identified serving as a starting point for curation of the nutrient re-

quirements (Supplementary Note B.2.7). Microbial growth requirements for 64 nutrients,

including amino acids, vitamins, and nucleobases, were identified for 244 bacteria from one

book [122] and 72 peer-reviewed papers (Supplementary Table B.1). False-positive pre-

dictions (nutrients that were reported to be nonessential in literature, but required for in

silico growth) and false-negative predictions (nutrients that were reported to be essential,

but nonessential in silico) were inspected and eliminated where possible (Supplementary

Note B.2.7). The curation resolved 413 false-positive and 245 false-negative predictions for

64 metabolites in 244 microbial reconstructions, increasing the prediction sensitivity from

0.32 to 0.68 and specificity from 0.92 to 0.98. All compounds identified as essential for at

least one reconstruction after the curation were added to the in silico diets (Supplementary

Table B.18).

Leak test.

We ensured that no metabolite in a model could be produced from nothing, which would

indicate mass or charge imbalanced reactions. Therefore, the lower bounds for all exchange

and sink reactions were set to zero to prevent any influx of metabolites. A demand reaction

was then added for each metabolite in the reconstruction and maximized. A metabolite could

be produced from nothing if the objective value was greater than zero and the responsible

reaction(s) was corrected.
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Mycoplasma and Ureaplasma sp.

The reconstructions of Mycoplasma pneumoniae, Mycoplasma hominis, Ureaplasma parvum,

and Ureaplasma urealyticum, which do not contain a cell wall [122] required further refine-

ment to the respective BOF. We removed cell wall components from the BOF of all four

reconstructions. Since the Mycoplasma genus requires cholesterol for growth [122], we

added cholesterol to the BOF substrate lists of both Mycoplasma sp. reconstructions as well

as transport and exchange reactions for cholesterol. To the two Ureaplasma sp. reconstruc-

tions, urea transport and exchange reactions were added as this genus requires urea [122].

Organization of the pipeline.

The reconstruction curation, validation, and content expansion steps described above were

integrated into one pipeline (Fig. 3.1a). As all draft reconstructions stemmed from Model

SEED or KBase, issues in one draft reconstruction were thus systemic for a subset or all

reconstructions, and could be corrected in a consistent manner by propagating curation and

QC/QA insights gained for one draft reconstruction to the remainder (Fig. 3.1c). This ’com-

parative reconstruction’ approach allowed for the curation of hundreds of draft reconstruc-

tions at once.

Stoichiometric and flux consistency.

The rank of a stoichiometric matrix is an objective measure of the comprehensiveness of a

reconstruction as it represents the number of linearly independent constraints on a steady-

state reaction flux. The matrix rank was computed with numerical linear algebra. A set of

stoichiometrically (mass balanced) reactions is mathematically defined by the existence of

at least one, such that, where is a vector of the molecular mass of molecular species and is a

stoichiometric matrix. We computed the largest stoichiometrically consistent subset of each

draft and AGORA stoichiometric matrix using numerical linear optimization [72]. We say a

matrix S is net flux consistent if there exist matrices and such that, where each row contains

at least one nonzero entry. This condition ensures that a reaction admits a nonzero net flux in

some flux distribution. Flux consistency was tested using numerical linear optimization [238]

as described in Fleming et al. [72].
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Gene sequence acquisition.

We retrieved the nucleotide gene sequence of each microbe using the Perl API from the

Model SEED and KBase web interface. We expanded these files with the appropriate gene

sequences for respiration, quinone biosynthesis, B-vitamin synthesis, and central metabolic

pathways were retrieved from the web interface of the PubSEED platform [13]. The final

compiled gene sequences for each organism can be found in the VMH database.

Diet definitions.

We defined two different diets, a Western diet and a high fiber diet (Supplementary Ta-

ble B.18). The diets varied in fat, simple sugar, starch, and fiber content. Additionally, both

diets contained amino acids, vitamins, minerals, water, methanol [14], and other metabo-

lites, each of which was required for a nonzero biomass reaction flux in at least one of the

773 models (Supplementary Note B.2.7).

Metabolic distance.

The metabolic distance (MD) between two microbes was calculated using the Jaccard dis-

tance, such that MD = 1 − |Ri ∩ R j |/|Ri ∪ R j |, where Ri is the list of reactions from recon-

struction i and R j is the list of reactions present in reconstruction j. MD of 1 means that the

two reconstructions share no reactions, and MD of zero means that the two reconstructions

have identical reaction lists.

Carbon source and fermentation phenotypes.

We set the lower bound of the BOF in a model to 0.001 h−1 to ensure its minimum growth,

performed flux variability analysis (FVA) [89], and inspected minimal and maximal possible

flux values through the exchange reactions. A model was considered to be able to take up a

carbon source if the minimal possible flux through a carbon source exchange reaction was

negative (≤ −10−6 mmol/gDW/h). Similarly, a model was considered to be able to secrete

a fermentation product if the maximum possible flux through the fermentation product ex-

change reaction was positive (> 10−6 mmol/gDW/h). Even though several amino acids can
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be used as carbon sources they were excluded from this analysis because amino acids are

directly required in the BOFs.

Gene essentiality analysis.

Gene essentiality data were available for six AGORA microbes (Fig. 3.1d) [137]. We re-

trieved the gene sequences for the six draft reconstructions from the Model SEED and KBase

platforms. Published reconstructions of the same strains were available for four of these mi-

crobes [229, 20, 225, 96]. Their gene sequences were retrieved from the NCBI database [43].

We used the BLAST search option of the database (http://www.essentialgene.org/) [137]

to identify the in vitro–validated essential genes for each microbe. The in silico gene essen-

tiality analysis was carried out under rich medium conditions for the draft, AGORA, and

published models, by constraining the flux through all reactions associated with a deleted

gene to 0 mmol/gDW/h and maximizing the BOF. A gene was considered essential in silico

if its deletion resulted in a biomass reaction flux of zero.

Pairwise model simulations.

Pairwise simulations were performed on every possible pair of the 773 AGORA metabolic

reconstructions (298,378 pairs). Microbial models were paired by introducing a common

lumen compartment, as described elsewhere [97], in which each model could secrete or

from which it could take up metabolites. Dietary compounds were added to the lumen and

byproducts were removed. To prevent biologically implausible solutions, in which microbes

benefit the paired microbe without producing any biomass, coupling constraints were added

to the joined models [96]. Briefly, all reactions in a model were stoichiometrically cou-

pled to its BOF, thereby enforcing a nonzero flux through the BOF if reaction fluxes were

nonzero. Using FBA, growth of the microbial pair was maximized under both diets (Western

and high-fiber diet), aerobically and anaerobically (Supplementary Table B.6). The maxi-

mal possible BOF of the individual microbe in the pair was determined by inactivating all

reactions belonging to the other paired microbe. A minimal microbial BOF flux for each

microbe of 0.001 h−1 was enforced. A model was considered to grow faster in the co-growth

simulation when its paired growth rate was more than 10% higher than the individual growth

http://www.essentialgene.org/


60 CHAPTER 3. AGORA RECONSTRUCTIONS

rate of the same microbe under the same condition (Supplementary Table B.18). A model

was considered to grow slower in the co-growth simulation when its paired growth rate was

more than 10% lower than the individual growth rate of the same microbe under the same

condition.

Random order microbial assembly.

We selected randomly a reconstruction to obtain its reaction list and appended it to the grow-

ing unique reaction list until all 773 strain-resolved reconstructions were considered once

(Fig. 3.6b). We monitored the number of reactions added by each new reconstruction. We

repeated this procedure 1,000 times. On the species level, we randomly selected a species

and obtained the unique reaction list of all strain-resolved reconstructions belonging to that

species. We appended the list of reactions until all 605 species captured by AGORA were

considered once (Fig. 3.6d). We monitored the number of reactions added by each new

species. We repeated this procedure 1,000 times.

Comparison with Recon 2.

The human metabolic reconstruction, Recon 2.04 (ref. [227]), containing 5,063 metabolites

and 7,440 reactions, was retrieved from http://vmh.life. A decompartmentalized Recon was

created by placing all reactions occurring in one of the seven intracellular compartments into

the cytosol. The extracellular compartment was retained. Duplicate reactions and reactions

with identical sets of metabolites occurring on both sides of the chemical equation were

removed, resulting in 6,256 unique metabolic reactions.

Metagenomic and 16S rRNA analysis.

Information on metagenomic reads from gastrointestinal tract samples mapped onto a set

of reference genomes was downloaded ()http://hmpdacc.org/ for 149 healthy US individuals

aged 18–40 (ref. [41]). We matched the strain names of the mapped reference genomes to

245 AGORA reconstructions (Supplementary Table B.12) and identified the unique reaction

set (i.e., metabolic diversity) for each individual. Using the read depth information, we

calculated the read number covered by AGORA.

http://vmh.life
http://hmpdacc.org/
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For the ELDERMET [37] data, annotated species lists for 177 individuals from processed

16S rRNA data were retrieved from MG-RAST [152] (http://metagenomics.anl.gov/linkin.cgi?project=154).

An individual’s unique reaction set was obtained by mapping the reported species onto the

pan-species reconstructions (Supplementary Table B.12). Principal coordinate analysis was

performed on the metabolic distance between each individual’s reaction set.

In vitro cell cultures.

B. caccae ATCC 43185 and L. rhamnosus GG ATCC 53103 (LGG) were precultured for 20 h

in Brain Heart Infusion Broth (BHIS; Sigma), supplemented with 1% hemin under anaerobic

conditions and shaking at 37◦C (Supplementary Note B.2.3). After washing and resuspend-

ing in 10 ml of 0.9% w/v NaCl solution, they were inoculated in DMEM 6429 supplemented

with 1% hemin and 3.33% vitamin K, with or without arabinogalactan (Sigma; 9.4 g/l), and

maintained under anaerobic conditions. B. caccae and LGG were cultured for 33 and 44 h

on average, respectively. Cells were harvested for cell counting by centrifugation (4,700g)

and 750 µL aliquots of supernatant were removed for subsequent metabolite extraction. The

aliquots were snap-frozen and placed at -80◦C until dedicated analysis. The cultures were

confirmed using 16S rRNA sequencing.

Metabolomic analysis.

The extraction and GC-MS measurement of shortchain fatty acids was based on a proto-

col from Moreau et al. [154] (Supplementary Note B.2.8 and Supplementary Table B.20).

Extracellular polar metabolites from the supernatant samples and external concentration

curves for each compound of interest were extracted applying a liquid–liquid extraction

(Methanol/Water). GC-MS analysis was performed using an Agilent 7890A GC coupled

to an Agilent 5975C inert XL Mass Selective Detector (Agilent Technologies). All GC-

MS chromatograms were processed using MetaboliteDetector software, v3.020151231Ra72

(Supplementary Note B.2.8). In addition, absolute quantitative values for lactic acid, glu-

tamine, glutamic acid, and glucose were acquired using a 2950D Biochemistry Analyzer

(YSI) (Supplementary Note B.2.8).

http://metagenomics.anl.gov/linkin.cgi?project=154
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In silico simulations of B. caccae and LGG.

The single models as well as the pairwise model of B. caccae and LGG were subjected to

an in silico medium mimicking the supplemented DMEM 6429 medium without and with

arabinogalactan (Supplementary Table B.17). Single and combined growth was predicted as

described above. The potential of B. caccae and LGG to consume and produce metabolites

in silico was computed using FVA [89] and compared with GC-MS measurements. To iden-

tify the cross-feeding between the two species at optimal growth, FBA was performed with

simultaneous growth as the objective function while minimizing the sum of internal fluxes.

3.3 Results

3.3.1 Metabolic reconstruction pipeline

We devised a comparative metabolic reconstruction method (Fig. 3.1a,c), which is analogous

to the comparative microbial genome annotation approach [161] that has enabled accelerated

annotation by propagation of refinements to one genome to others. First, we downloaded

draft GENREs using Model SEED [102] and KBase [9]. In both platforms, the genome

sequence of an organism is automatically annotated and a metabolic reconstruction is as-

sembled based on the identified metabolic functions. Gaps in the draft reconstruction are au-

tomatically filled, building a metabolic reconstruction whose condition-specific models can

carry flux through a defined biomass objective function. We refined the draft reconstructions

using rBioNet [230] and performed quality control and quality assurance (QC/QA) tests,

including the verification of reaction directionality and mass and charge balance (Online

Methods and Supplementary Note 1) to ensure that the reconstructions meet the quality stan-

dards set by Thiele and Palsson (2010) [226]. We expanded the reconstructions by refining

gut-microbiota-specific and central metabolic subsystems, and curated all of the reconstruc-

tions by reference to 236 publications, two reference books (Supplementary Table B.1), and

comparative genomics analyses (Online Methods and Supplementary Table B.2). Anaerobic

growth was enabled for all genome-scale models (Fig. 3.1e) because the human gut is usu-

ally anaerobic or microaerobic [64]. We tested the metabolic capabilities of each model, as

defined by published data, at the genus, species, and strain level. During the generation and
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validation of each model, solutions to QC/QA problems or failure of the metabolic capability

tests of a model were used to improve the quality of others. The propagation of such refine-

ments among all the models was facilitated because all microbes share the same human gut

environment.

Our pipeline increased both the proportion and total number of stoichiometrically and

flux-consistent reactions [72], that is, mass balanced and admitting a nonzero steady state

flux (Fig. 3.1f,g, Supplementary Table B.3 and Supplementary Figs. B.1 and B.2). The re-

finement process increased the predictive potential of AGORA models compared with the

draft metabolic models; the AGORA models predicted gene essentiality more accurately

than the draft models (Fig. 3.1d), and sensitivity to carbon source, fermentation product,

and nutrient requirement data was greatly increased in the AGORA models with an aver-

age sensitivity of 1.00 ± 0.02 compared to 0.06 ± 0.09 for the draft models (Fig. 3.1h and

Supplementary Table B.13).

3.3.2 Features of reconstructions

The 773 AGORA reconstructions contained an average of 771±262 genes, 1, 198±241 reac-

tions, and 933±139 metabolites (Fig. 3.1b and Supplementary Table B.4). We found that tax-

onomic classes containing well-studied organisms, such as Gammaproteobacteria, had larger

sets of genes and reactions than reconstructions of other classes. An AGORA reconstruction

uses a generalized microbial biomass reaction, which summarizes the fractional contribu-

tion of a biomass precursor (e.g., amino acids and lipids) to the synthesis of a new cell,

as provided in the draft reconstructions from Model SEED and KBase. The biomass reac-

tions were not curated, because species-specific information is required for such refinements

(Supplementary Note B.2.2). Qualitative growth predictions are not affected by generalized

biomass equations, whereas information on species- and conditionspecific cellular composi-

tion is required for accurate quantitative prediction [69]. Nonetheless, the predicted average

microbial doubling time of 2.3 h on a Western diet under anaerobic conditions (Fig. 3.1b and

Supplementary Table B.5) was close to reported doubling times of single microbes in the

mouse gastrointestinal tract [82].

When comparing eight AGORA reconstructions with the published genome-scale metabolic
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Figure 3.1

reconstructions for the same species, we found that the main differences in reaction content

were in lipopolysaccharide biosynthesis and transport pathways (Supplementary Tables B.14

and B.15). Cell wall and lipopolysaccharide structures are species-specific and cannot easily
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Figure 3.1: The reconstruction refinement pipeline and properties of the metabolic mod-
els, derived from the reconstructions. (a) The refinement pipeline starts with an automatic
draft reconstruction generation from the online platforms Model SEED [102] and KBase [9],
followed by the translation of reaction and metabolite identifiers to match those of the hu-
man metabolic reconstruction, Recon 2.04 (ref. [227]). The reconstructions are then tested
for QC/QA measures and 162 metabolic functions are curated based on available knowledge
and genomic evidence. A microbial reconstruction can be converted into a condition-specific
model by the application of condition-specific constraints. All AGORA reconstructions are
available at http://vmh.life. (b) Boxplots of the number of genes, reactions, and metabo-
lites for reconstructions belonging to the 13 phyla captured in AGORA (Supplementary Ta-
ble B.4). Dashed lines represent the average over all 773 reconstructions. The number of
reconstructions per phylum is shown above the phylum name. Whiskers show the mini-
mum and maximum values. Values below Q1 − 1.5 × IQR and above Q3 + 1.5 × IQR
are plotted as outliers. Q1: first quartile, Q3: third quartile, IQR: interquartile range. (c)
Differences in the gap-filling process of manually curated reconstructions and AGORA. In
AGORA, gap filling of a certain pathway in one reconstruction is propagated to all N recon-
structions that share the same gap and should perform the metabolic function in question.
For manually curated reconstructions, every gap is filled with organism-specific reactions
based on the available organism-specific data and experimental validations. (d) Gene essen-
tiality accuracy predicted by the draft reconstructions, the AGORA reconstructions, and four
published reconstructions (Supplementary Note B.2.2) when compared against in vitro data
sets [137]. (e) Table showing the number of AGORA and draft models that grow anaerobi-
cally on rich medium and the number of carbon sources, and fermentation products captured
by draft reconstructions and AGORA reconstructions. (f) The number of stoichiometrically-
and flux-consistent reactions in each draft versus the corresponding AGORA reconstruction.
(g) Change in number of stoichiometrically and flux consistent reactions. (h) Comparison
of the predictive potential of the draft reconstructions and the AGORA reconstructions. The
sensitivity (true-positive rate) of known fermentation products, carbon sources, and growth
requirements captured by the corresponding metabolic models.

be derived from gene annotations alone [79, 15] (Supplementary Note B.2.2). The curation

of such pathways requires experimental data that are currently not available for AGORA

organisms. AGORA models were equivalent to published GENREs in terms of capturing

gene essentiality, as reported in the literature (Fig. 3.1d). The AGORA models have been

curated for carbon source utilization and fermentation product secretion; they outperformed

the published models for those functions, as measured by a sensitivity analysis of the car-

bon source uptake and fermentation product secretion of both seven published models and

AGORA models (Supplementary Fig. B.3). Until now, manually curated reconstructions

have been refined to fit certain applications and, consequently, curated to different extents.

As they are not comparable in scope, they may not be a good choice for investigating mi-

http://vmh.life


66 CHAPTER 3. AGORA RECONSTRUCTIONS

crobe interactions. In contrast, all AGORA reconstructions have been curated for the same

metabolic pathways (Fig. 3.1a).

We determined the overlap of microbial metabolism with human metabolism. Two cel-

lular compartments are common between human and microbes, the cytosol and extracellular

space. To compare the metabolic functions, we decompartmentalized the human metabolic

reactions by placing all metabolites that occur in an organelle (e.g., mitochondria) com-

partment in the human metabolic reconstruction Recon 2 (ref. [227]), into the cytosol, and

removed duplicate reactions, resulting in 6,256 unique metabolic reactions. Collectively,

the AGORA reconstructions account for 3,192 unique metabolic reactions, 695 of which

are shared with Recon 2, including 162 (23%) exchange reactions. We found that 89%

(5,561/6,256) of human metabolic reactions were unique to the human reconstruction, and

78% (2,495/3,192) of AGORA metabolic reactions were unique to the microbial reconstruc-

tions.

3.3.3 Metabolic diversity of AGORA reconstructions

The variety of AGORA reconstructions is shown in Figure 3.2a. To prove that our method

produced metabolically distinct reconstructions for each organism, we computed the metabolic

distance of every reconstruction pair (298,378 pairs; Supplementary Table B.6) using the

Jaccard distance between the reaction lists from each reconstruction. Metabolic distances

range from zero to 1 with identical reconstructions having a metabolic distance of zero and

completely dissimilar reconstructions having a metabolic distance of 1. As expected, taxo-

nomically related bacteria shared more reactions than taxonomically distant bacteria (Sup-

plementary Fig. B.4). Bacilli and Clostridia had high metabolic distances, reflecting the

metabolic and phenotypic differences between these two classes (Supplementary Fig. B.4).

Notably, low metabolic distances were only observed within a class, but not between mem-

bers of a phylum or between taxonomic classes. Overall, the average metabolic distance

was 0.48, which is consistent with other reports of metabolic and functional distances be-

tween microbes based on the presence of KEGG enzymes and KEGG orthology annota-

tions [147, 32]. Metabolic pathway enrichment was detected at different taxonomic levels

(Fig. 3.2b); for example, plant polysaccharide degradation was mainly present in Bacteroidia,
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O-glycan degradation in the genera Akkermansia spp., Bifidobacterium spp., and Bacteroides

spp., and methane metabolism was unique to four archaea. As expected, lipopolysaccharide

biosynthesis was found only in Gram-negative bacteria. Only 69 reactions were common to

all 773 reconstructions. To assess whether the known functional diversity of the gut micro-

Figure 3.2: Taxonomic and metabolic diversity of the 773 genome-scale metabolic re-
constructions. (a) Taxonomic tree of the 773 organisms showing the diversity of the
AGORA resource. Colors correspond to the taxonomic classes. The tree was created using
GraPhlAn [11]. (b) Hierarchical clustering of the average ratio of reactions per subsystems
found in the reconstructions of the 25 taxonomic classes. The reconstructions are ordered
based on phyla and taxonomic classes.

biota was captured in our models, we tested for the uptake of 74 different carbon sources and

for the secretion of 18 fermentation products (Fig. 3.3) using flux variability analysis [89].

The known distribution of short-chain fatty acid production in the gut was wellrepresented

in our models (Fig. 3.3); most models fermented sugars into short-chain fatty acids and or-

ganic acids, with acetate, succinate, formate, lactate, propionate, and ethanol being the most

commonly produced metabolites. As expected, butyrate was secreted by the Fusobacteria

models [237] and by many Firmicutes models [136], and methane secretion was specific

to the Euryarchaeota. Carbon source utilization capabilities were found to be in agreement

with the literature [74]. Notably, only certain genera (e.g., Bacteroides spp. and Akkermansia

spp.) can utilize diet- and host-derived polysaccharides (Fig. 3.3).
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3.3.4 Validation of AGORA model predictions

We demonstrated the predictive capability of AGORA models using two models, Bacteroides

caccae ATCC 34185 (a fiber-degrading symbiont common in microbiomes of Western indi-

viduals [168, 150]) and Lactobacillus rhamnosus GG (LGG), a common human probiotic

strain [204]. No chemically defined medium has been reported for B. caccae. We predicted

that B. caccae should be able to grow on DMEM 6429 defined culture medium supplemented

with vitamin K, hemin, and arabinogalactan under anaerobic conditions. In the laboratory,

B. caccae was cultured on this medium in a flask under anaerobic conditions (Online Meth-

ods, Supplementary Note B.2.3 and Supplementary Table B.16). This medium would not

support growth of LGG, according to our in silico predictions, and growth was unstable

in flask cultures using this medium. The reported chemically defined growth medium for

LGG contains all amino acids and most vitamins [199] but our in silico predictions sug-

gested that these could be supplemented by growing LGG with B. caccae (Fig. 3.4). When

modeled in silico in co-culture in DMEM 6429 defined culture medium supplemented with

vitamin K, hemin, and arabinogalactan, both bacteria grew (Fig. 3.4d and Supplementary

Table B.17). We predicted that B. caccae would supply LGG with alanine, asparagine, and

nicotinic acid, while LGG would provide lactate to B. caccae (Fig. 3.4d). The addition of

alanine and nicotinic acid to the defined medium was sufficient in silico to enable the single

growth of the LGG model (Fig. 3.4c). Using gas chromatography–mass spectrometry (GC-

MS)-based metabolomic analysis, we confirmed the secretion of numerous metabolites by

the two strains grown individually, including alanine secretion by B. caccae (Fig. 3.4a and

Supplementary Fig. B.5), thus supporting the predicted cross-feeding.

3.3.5 Pairwise interactions of models

We computed the pairwise growth interactions (’co-growth’) of every pair of microbes in the

AGORA resource (298, 378 pairs). Each model was grown in silico on its own and as part of

a pair with every other model on two different diets with and without oxygen (Online Meth-

ods and Supplementary Tables B.6 and B.18). Under all conditions, the most commonly

predicted pairwise co-growth relationships were parasitism or commensalism (Fig. 3.5a).

Consistent with one previous in silico study [97], the presence of oxygen resulted in a de-
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crease in commensalism and mutualism, especially for Gammaproteobacteria (Supplemen-

tary Fig. B.6). Competitive and amensal interactions increased in the presence of oxygen

(Fig. 3.5a). The effects of a typical Western diet and a diet high in fibers, such as arabino-

galactan and xylan, on pairwise interactions among models were also evaluated. The high

fiber diet led to a higher proportion of commensal and mutualistic interactions (Fig. 3.5a),

which, using flux balance analysis[159], was found to be due to cross-feeding of metabolites

between species. Low-fiber diets are thought to modulate the microbiota composition by

depleting commensal microbe-to-microbe interactions[58]. Based on hierarchical clustering

of the ratio of pairwise interaction type per condition per taxonomical family (Fig. 3.5b), our

simulations predict that the carbohydrate fermentation capacity defines the type of interaction

between microbes when considering the family level. Cluster 1 contained saccharolytic mi-

crobes that do not produce butyrate and respiratory bacteria and was enriched in commensal

interactions. Clusters 2a and 2b were enriched in butyrate and lactate fermenters and gener-

alists related to Bacillaceae, respectively. Both subclusters were mostly negatively affected

by parasitic interactions. Cluster 3 contained the majority of asaccharolytic and proteolytic

families, which mainly benefitted from the pairwise interactions. The effect of carbohydrate

fermentation capacity holds true for the genus level (Supplementary Fig. B.6). Even though

most interactions were observed over a wide range of metabolic distances, positive inter-

actions, in which the growth rates of one or both microbes are neutral or enhanced in the

pairwise simulation, occurred only among metabolically distant organisms (Supplementary

Fig. B.7), in agreement with previous computational studies[147, 32].

3.3.6 Integrating metagenomics and 16S rRNA with AGORA

We tested whether AGORA can be used to analyze metagenomic data. We retrieved strain-

resolved metagenomic data from 149 healthy individuals from the human microbiome project

(HMP; Fig. 3.6a) [41]. AGORA microbes mapped to, on average, 91% of the strains in the

HMP individuals with comparable reaction diversity for all individuals (Fig. 3.6b), highlight-

ing that AGORA is representative of the human gut microbiota.

We then mapped published species-resolved 16S rRNA data of 164 elderly and 13 young

individuals (“ELDERMET”) [37] onto AGORA (Fig. 3.6c,d). The 210 ± 39 species present
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in each individual mapped to 108 ± 16 AGORA pan-species reconstructions, which are the

union of reactions from all strain-specific reconstructions in AGORA of one species. Two

clusters were observed (Fig. 3.6d). The cluster with more reactions was characterized by

the presence of Gammaproteobacteria (Fig. 3.6d). The corresponding reconstructions con-

tain on average more reactions compared to other taxonomic classes (Fig. 3.1b). Princi-

pal coordinate analysis, using each individual microbiota’s metabolic reaction set, revealed

that the clusters separated owing to reactions associated with glycerophospholipid and cell

wall metabolism (Supplementary Table B.7), consistent with the Gram-negative nature of

Gammaproteobacteria. The second principal coordinate was mainly associated with the pres-

ence of methanogenesis reactions that are unique to the methanogenic archaea.

3.4 Discussion

AGORA reconstructions were assembled using a comparative metabolic reconstruction ap-

proach that speeded up curation and provided knowledge-driven refinement of gut-specific

metabolic microbial functions that were not present in the draft reconstructions (Fig. 3.1a).

Our pipeline included extensive QC/QA and curation against available knowledge, which is

not done by pipelines that automatically generate GENREs. The resulting models signifi-

cantly outperformed the draft models in correctly capturing gene essentiality in addition to

known carbon sources, fermentation products, and essential nutrients (Fig. 3.1d,h). Even

though AGORA reconstructions do not cover all of the species-specific aspects of manually

curated reconstructions (e.g., lipopolysaccharide biosynthesis), the performance of each of

eight AGORA models was on par with that of their previously published, manually curated

models of the same strain (Fig. 3.1d and Supplementary Fig. B.3). This resource of recon-

structions helps to address the need for literature-curated GENREs to help to analyze gut

metagenomic data [86].

GENREs have previously been used to design chemically defined growth media using

an iterative in silico, in vitro, and metabolomics approach [95]. The predicted growth of

B. caccae in extended DMEM medium supplemented with arabinogalactan under anaerobic

conditions was validated. However, the in vitro growth of LGG was unstable, but our in

silico co-culture simulations suggest that its growth could be enhanced by the presence of
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B. caccae. This example highlights how metabolic models can serve as a starting point for

generating experimentally testable hypotheses.

Bacteria in ecosystems engage in complex trophic webs based on interspecies interac-

tions [88], which cannot be inferred from microbial abundance [67]. We explored pairwise

interactions between gut microbiome models under four conditions. We found that cen-

tral metabolic traits were predicted to define co-growth interactions as a function of diet

composition and oxygen availability (Fig. 3.5 and Supplementary Figs. B.6 and B.7. In-

flammation of the digestive tract can disrupt the intestinal cell barrier, thereby increasing

the oxygen level in the normally anaerobic intestine [182] and reducing species variety in

the gut microbiome [141]. A high-fiber diet might protect against the depletion of positive

microbe–microbe interactions caused by the presence of oxygen. Negative interactions have

been found to dominate stable microbial communities [44]. Based on our simulations, we

propose that a small number of positive interactions may be sufficient to maintain a healthy

microbial community.

Metabolic models have been used to map and analyze omics data for single organ-

isms [202]. Here, we report that AGORA enables such analyses for a much larger set of

human gut microbial communities, as most of metagenomic sequence reads and 16S rRNA

data from a typical microbiome can be mapped onto our models (Fig. 3.6), resulting in

metabolically diverse microbiota reconstructions that can be used to construct and simulate

individual-specific metabolic models. The metabolic overlap between the human metabolic

reconstruction and AGORA was enriched in exchange reactions, which supports the hy-

pothesis that co-evolution driven by cross-feeding between the host and the microbes has

occurred.

AGORA reconstructions are especially suited to studies in which multiple reconstruc-

tions are coupled together to simulate microbial interactions. However, the existence of con-

sistent biases, owing to the semi-automated model generation means that additional strain-

specific refinements may be necessary in order to use AGORA models in organism-specific

applications, for example, bioengineering. AGORA reconstructions are missing non-dietary

microbial functions, such as xenobiotic metabolism, which have not yet been extensively

studied in human gut microbes. Because the focus of the curation has been on gut microbial

functions, the resource is best suitable for studies on dietary effects on the human microbiota.
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One open question in microbiome research is which functions microbes carry out and

how those functions interface with host metabolism and affect host phenotypes. About a

quarter of AGORA metabolic reactions were also present in Recon 2 (ref. [227]), the hu-

man metabolism reconstruction, highlighting the complementarity of host and microbial

metabolisms. So far, a handful of studies have attempted to predict the metabolic effect of dif-

ferent microbiomes on host metabolism based on topological network approaches [213, 221],

which cannot address functional links in the human-gut microbiota axis. AGORA enables

superior simulations to address mechanistic questions about host–microbe co-metabolism.

We envisage the combination of AGORA models into strain-resolved microbial commu-

nity models and predictions of how those community models interact with human metabolic

models [227] could be used to systematically investigate host–microbiome interactions [99].
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Figure 3.3: Carbon source uptake and fermentation product secretion capabilities in
AGORA. Number of AGORA models in each phylum that can consume the different car-
bon sources and secrete the tested fermentation products. The total number of models in
each phylum is reported in parentheses. The models’ capabilities to consume or secrete the
different metabolites were determined using flux variability analysis.
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Figure 3.4
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Figure 3.4: Comparison of in vitro experiments and in silico simulations for Bacteroides cac-
cae ATCC 43185 and Lactobacillus rhamnosus GG ATCC 53103. (a) Both microbes were
grown anaerobically on DMEM 6429 medium supplemented with hemin, vitamin K, and
arabinogalactan. The composition of fresh medium and spent medium after cultivation was
determined using GC-MS (Supplementary Fig. B.5). Only statistically significant metabo-
lite uptake and secretion is shown. A paired t-test was performed for statistical significance.
∗ ∗ P < 0.005 and ∗P < 0.01. The same medium composition was used for in silico simu-
lations, and uptake and secretion capabilities were predicted using flux variability analysis.
(b) In silico single culture fluxes of B. caccae on DMEM medium without and with arabino-
galactan. Growth rates (h−1) and predicted uptake and secretion fluxes (mmol/gDW/h) of
major exchanged metabolites are shown in blue without arabinogalactan and in purple with
arabinogalactan. (c) In silico single culture fluxes of LGG on DMEM medium without and
with arabinogalactan. The in silico medium was supplemented with L-alanine and nicotinic
acid, which were predicted to be essential for growth. Growth rates and uptake and secretion
fluxes are depicted as described for b. (d) In silico co-culture fluxes of B. caccae and L.
rhamnosus on DMEM medium without and with arabinogalactan. Growth rates, and uptake
and secretion fluxes are depicted as described for panel b.
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Figure 3.5
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Figure 3.5: Pairwise interactions of all AGORA metabolic models. (a) The number and per-
centage of pairs that exhibit each of six different interaction types during in silico simulations
under four different conditions; Western and high-fiber diets in the presence and absence of
oxygen. Competition: both microbes’ in silico growth rates (Supplementary Table B.6) are
slower in the paired simulation compared with each microbe’s in silico mono-culture growth
rate on the same diet (Supplementary Table B.18). Parasitism: one microbe grows faster
(Taker) in the paired simulation while the other microbe grows slower (Giver). Amensal-
ism: one microbe grows slower (Affected) in the paired simulation while the other microbe’s
growth rate is unaffected (Unaffected). Neutralism: both microbes’ growth rates are unaf-
fected in the paired simulation. Commensalism: one microbe grows faster (Taker) in the
paired simulation while the other microbe’s growth is unaffected (Giver). Mutualism: both
microbes grow faster in the paired simulation. (b) Hierarchical clustering (Euclidean dis-
tance) of the ratio of pairwise interaction types per condition (i.e., diet and oxygen presence)
on the taxonomic family level. See a for a description of the interaction types. Three main
clusters were identified, each enriched in microbes with different carbohydrate fermentation
capabilities, belonging to the clustered families.
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Figure 3.6: Metabolic diversity of individual human gut microbiomes. The average number
of unique reactions was computed based on 1, 000 random orders of metabolic reconstruction
additions. Dark and light gray areas correspond to one and two s.d., respectively. (a) Human
samples of HMP, which have been mapped onto a set of reference genomes, were used to
determine how many AGORA organisms are overlapping with each individual. (b) Mapped
AGORA strains per HMP sample with their corresponding collective reaction diversity and
the percentage of mapped reads they capture for three taxonomic groups. In AGORA, all
microbial reconstructions were needed to achieve full metabolic diversity (i.e., 3, 192 unique
reactions). Also shown are the number of reconstructions needed to capture 75%, 90%, and
95% of the full reaction diversity. To obtain 75% and 95% of the unique reactions, 12 and
123 reconstructions, respectively, were sufficient on average. (c) 16S rRNA results from
Claesson et al. (2012) [37] (’ELDERMET’) were used to determine how many pan-species
reconstructions of AGORA are overlapping with each individual. (d) Mapped AGORA pan-
species reconstructions per ELDERMET sample with their corresponding collective reaction
diversity (i.e., 3, 188 unique reactions). Also shown are the number of reconstructions needed
to capture 75%, 90%, and 95% of the full reaction diversity. The metabolic repertoire of the
individual mapped microbiomes was analyzed by principal coordinate analysis in terms of
the metabolic distance between the reaction sets of the mapped pan-species reconstructions.
The presence and absence of methanogens and Gammaproteobacteria per individual mapped
microbiome is shown.



Chapter 4

Individual-based gut microbiome models

Manuscript in preparation.

4.1 Abstract
By mapping metagenomic reads from individual stool samples to the genomes of the AGORA
reconstructions, we created 53 personalized gut microbiome metabolic models based on
metagenomic samples from 20 individuals. We showed that the resulting microbiome recon-
structions are both taxonomically and functionally diverse. We found significant differences
in maximum possible riboflavin secretion of the microbiomes of healthy and diabetic indi-
viduals, and a difference in the minimum thiamine uptake flux required by models based on
individuals from different families. These differences in B-vitamin metabolism were driven
by the presence of the microbe Prevotella copri, which can synthesize both thiamine and
riboflavin. Gut microbiome metabolic models can be applied in a variety of studies, and
can be further coupled with the human metabolic reconstruction Recon 2 to investigate host-
microbiome metabolic exchanges.

79



80 CHAPTER 4. INDIVIDUAL-BASED GUT MICROBIOME MODELS

4.2 Introduction

T1D is an autoimmune disease where the β-pancreatic cells are attacked by the host’s own

immune system resulting in a reduced production of insulin by the host cells. Several

studies have investigated the link between the human gut microbiome and type 1 diabetes

(T1D) [83, 61, 114, 145]. One such study by Heintz-Buschart et al. (2016) [100] used a

variety of meta-omics analyses to investigate the microbial taxonomic and functional links

with T1D. The study reported metagenomics, metatranscriptomic, and metaproteomic data

of stool samples from 20 individuals, 12 of which were diagnosed with T1D. The study

found that the functional transcript levels of the thiamine biosynthesis enzyme thiazole syn-

thase (ThiG) were positively correlated with with relative protein abundances of the amylase

proteins AMY2A and AMY2B, which were less abundant in individuals with T1D. The

study failed to identify significant differences in thiamine plasma levels between healthy and

diabetic individuals and did not correlate with thiG plasma levels. However, seven individu-

als in the cohort regularly ingested vitamin supplements that included thiamine, and this link

between microbial thiamine biosynthesis and T1D would therefore be better investigated in

a follow-up study where subjects would not ingest thiamine supplements.

Metagenomic studies have provided insight into several aspects of the human gut micro-

biome, including the compositional variability among individuals and metabolic functions

occurring in the microbiome [42]. However, such data cannot provide information on the

metabolic interactions among the different microbes found in the microbiome. A method

that can help us investigate the metabolic exchanges among microbes in a community is

constraint-based reconstruction and analysis (COBRA) [201] using genome-scale metabolic

reconstructions (GENREs) [226] of the corresponding microorganisms. GENREs can be

used to simulate the flow of metabolites in a system [226]. In short, based on the anno-

tated genome of an organism, it is possible to derive the set of metabolic enzymes present in

the cell. The corresponding metabolic reactions can be connected in a metabolic network,

where the metabolites make up the nodes of the network, and the metabolic reactions link the

nodes together [163]. Metabolic models derived from GENREs have been used to inspect

the metabolic functions of microbial cells [148] as well as metabolic interactions between

multiple microbes and host-microbe interactions [99].



4.3. METHODS 81

Our aim was to map the different metagenomic read libraries from the study by Heintz-

Buschart et al. to genomes of the AGORA collection of gut microbial GENREs [139]

and create a personalized gut microbiome metabolic model for every sample. Because

the AGORA GENREs were specifically curated for B-vitamin biosynthesis [140], we used

metabolic modeling to investigate differences in thiamine biosynthesis between models based

on healthy and diabetic microbiomes. We found no significant difference in thiamine uptake

or secretion fluxes between microbiomes of healthy or diabetic individuals, but did observe

differences between the four different families in the study. However, we identified a higher

riboflavin biosynthesis capability in the microbiome models based on healthy individuals

compared to those of diabetics. We found that the presence of the microbe Prevotella copri

has the largest influence on the separation of the 53 samples based on their flux distributions

when maximizing either thiamine or riboflavin exchange reaction in the models.

Taken together, this study illustrates that large and diverse microbiome metabolic recon-

structions can be generated by mapping metagenomic reads from individual stool samples

onto a large resource of GENREs [139]. The derived metabolic models show differences in

their metabolic capabilities and such models could be applied in further studies to hypothe-

size about metabolic mechanisms underlying differences in gut microbiomes.

4.3 Methods

4.3.1 Metagenomic reads

We obtained metagenomic reads from 53 stool samples of 20 individuals from a multi-

omics study on the human gut microbiome in type 1 diabetes by Heintz-Buschart, et al.

(2016) [100]. In short, DNA was extracted from freshly frozen stool samples using 101 base

pair (bp) paired-end sequencing of 350 bp inserts on a HiSeq2000 system (Illumina). The

reads were quality-filtered and any reads mapping that mapped to a human genome were

removed. The 53 individual metagenomic read libraries are available through NCBI BioPro-

jects (PRJNA289586).

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA289586
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4.3.2 Mapping metagenomic reads to AGORA

We retrieved the genomes of 773 human gut microbial strains that were used to create a

resource of 773 genome-scale metabolic reconstructions (AGORA v1.0) [139]. The genomes

and corresponding reconstructions are available on the Virtual Metabolic Human database

(http://vmh.life). All 773 AGORA genomes were concatenated while preserving the genome

identifiers. For each of the 53 individual samples, the metagenomic reads were mapped to

the concatenated genomes using Bowtie22 [125] with default parameters.

For every genomic contig, we calculated the coverage depth using SAMtools depth

tool [130] and a perl script (adapted with correction from Albertsen, M., Hugenholtz, P.,

Skarshewski, A., Nielsen, K. L., Tyson, G. W., & Nielsen, P. H. (2013)). Using a custom

R [170] script, the depths of coverage and length of covered regions were aggregated for

each genome. The relative abundance (RA) of every microbial strain i was estimated by nor-

malizing the average coverage depth (CD) of the genome to the sum of all coverage depths in

the sample and multiplying this by the proportion of metagenomic reads (MR) in the sample

that mapped to any genome:

RAi =
CDi

CDtotal
·

M Rmapped

M Rtotal

For every sample, we sorted the mapped AGORA genomes into three categories that repre-

sented the confidence level that the genome was found in the sample. Genomes that mapped

with low confidence had a coverage breadth of minimum 10%. Genomes with good con-

fidence had an average coverage depth of 1 and more than 60% coverage breadth. High

confidence genomes had an average coverage depth higher than 8. All other genomes were

defined as absent from the sample. For genomes with high confidence in a given sample, the

coverage depths of all genes were extracted using the SAMtools bedcov [130] and an awk

script [4].

4.3.3 Personalized gut microbiome reconstructions

For every individual sample, we extracted the list of AGORA reconstructions that mapped

to the metagenomic reads with good confidence. Every AGORA reconstruction has two

http://vmh.life


4.3. METHODS 83

compartments, the cytosol, [c], and extracellular space, [e]. When combining the microbial

reconstructions, we applied a compartmentalized approach [216, 219, 98] in which we define

a new lumen compartment, [u], that is shared by all the reconstructions. Dietary metabolites

enter the lumen where they can be taken up by any of the AGORA reconstructions. The

microbial reconstructions secrete metabolites into the lumen. These metabolites can either

be taken up by the other reconstructions or removed from the lumen compartment as byprod-

ucts.

Every microbial reconstruction reserved its own biomass reaction where a placeholder

metabolite called “Mic_biomass[c]” was produced, where “Mic” represents the microbe

identifier in the reconstruction. To simulate the microbiome community biomass, we in-

troduced a novel reaction whose substrates are each individual microbe reconstruction’s

biomass metabolite and the stoichiometric coefficients are the microbes’ relative abundances

in the sample. The “communityBiomass” function of a microbial community of n microbes

is therefore represented by the following demand reaction:

RA1BM1[c] + RA2BM2[c] + · · · + RAnBMn[c]→

4.3.4 Coupling constraints

For every microbial strain in a microbiome model, we coupled the strain-specific metabolic

reactions to the strain-specific biomass reaction as done by Heinken et al. (2013) [96]. This

prevents one strain from utilizing the metabolic network of another strain without a non-zero

flux through the biomass reaction of the second strain. In short, for all n strain-specific GEN-

REs in the microbiome reconstruction, the flux through every reaction i (vin) was coupled

to the flux through the strain’s biomass reaction (vBn). The ratio between the reactions was

bound with a constant c such that vin − c · vBn ≥ u in the forward direction of all reactions.

For reversible reactions, the reverse direction was bound with vin +c ·vBn ≤ u. The constant c

was set to 400. The constant u represents a maintenance flux through the cell’s reactions, i.e.,

when the cell maintains metabolic maintenance but does not actively divide. The constant u

was set to 0 mmol/gDW/h.
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4.3.5 Leak test

We performed a leak test to ensure that the microbiome community models could not “leak”

metabolites, i.e., secrete metabolites without influx into the model. First, the lower bounds of

all exchange, demand, and sink reactions were set to zero. Then, one by one, every exchange

reaction was set as the objective function and the flux through the reaction optimized using

flux balance analysis (FBA) [159]. If the maximum flux through the reaction was higher than

the threshold 1E-6, the model was defined as “leaking” the corresponding metabolite. None

of the 53 models leaked any metabolites.

4.3.6 Individual metadata

Metadata was gathered on the 20 individuals from the supplementary data form the study by

Heintz-Buschart et al. [100] (Table 4.1). Eight of the 20 individuals reported taking dietary

supplements containing either riboflavin or thiamine (Table 4.1).

4.3.7 Simulations

All simulations were performed using Matlab 2016a (Mathworks, Inc., Natick, MA, USA)

using the COBRA Toolbox [201] (https://opencobra.github.io/) and the linear programming

solver CPLEX (IBM, Inc.) through the Tomlab interface (Tomlab, Inc.).

Constraints

We simulated the metabolic potential of all 53 personalized microbe community models on

a Western diet Table B.18 under anaerobic conditions. Based on Table I (column “Weight of

faecal solids (g/day)”) and Table II (column “Percentage of solids in fraction C”) from a study

by Stephen and Cummings (1980) [215], we calculated the hourly human fecal bacterial

output and found it to be in the range of 0.44–0.73 gDW/h. We applied this range to the

microbiome community biomass reaction in every model by setting the lower bound to 0.44

1/h and the upper bound to 0.73 1/h.

https://opencobra.github.io/
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Table 4.1: Metadata on the 20 subjects from the study by Heintz-Buschart et al. [100]. Thi-
amine and riboflavin supplement amounts are reported on a weekly (w) or daily (d) basis. F:
Female. M: Male. BMI: Body mass index. BMI is reported for all visits separately (V1-V3).

Individual Diabetic Age Gender BMI (V1 - V2 - V3) Thiamine
(mg)

Riboflavin
(mg)

M1D1 Yes 62 M 25.2 - 27.19 - NA 1.4 (w) 1.6 (w)
M1D2 No 60 F 26.39 - 26.24 - NA 0 0
M1D3 No 57 F 37.12 - 37.21 - 36.99 0 0
M1D4 Yes 37 F 36.52 - 36.33 - 37.11 0 0
M1D5 No 6 M NA - 18.31 - NA 0 0
M2D1 Yes 58 M 23.17 - 23.13 - 23.25 0 0
M2D2 Yes 24 F 19.54 - 19.44 - 19.22 0 0
M2D3 Yes 30 M 20.9 - 20.23 - 20.28 0 0
M2D4 No 58 F 20.76 - 20.59 - 20.57 60 (d) 0
M2D5 Yes 28 F 21.37 - 21.05 - NA 60 (d) 0
M3D1 No 50 F NA - 16.93 - 17.03 1.375 (d) 1.61 (d)
M3D3 No 14 F 19.72 - 18.65 - 19.86 0.66 (d) 0.98 (d)
M3D4 Yes 17 F 21.07 - 20.57 - 20.51 1.5 (d) 1.7 (d)
M3D5 Yes 19 F 24.54 - NA - NA 1.375 (d) 1.61 (d)
M4D1 No 34 F 38.48 - NA - 37.96 0 0
M4D2 Yes 5 M 14.01 - 14.74 - 14.65 0 0
M4D3 Yes 9 M 24.47 - NA - 24.57 0 0
M4D4 No 12 F 29.9 - NA - 29.84 0 0
M4D5 No 16 F 29.32 - NA - 28.7 0 0
M4D6 No 43 M 35.35 - 34.89 - 35.82 0 0

Minimum thiamine uptake flux

For every microbiome model, we applied the constraints described in the “Constraints” sec-

tion above. We set the thiamine exchange reaction (“EX_thm[u]”) as the objective function

of the models and maximized the flux through the objective function using FBA. Two micro-

biome models representing the samples “M2D1V3” and “M3D5V2’ were infeasible under

the set constraints. For the remaining models, the maximum possible flux through the ob-

jective function was negative, meaning that dietary thiamine uptake was essential in all the

models and none of the microbiome community models can secrete thiamine.

Maximum riboflavin secretion flux

For every microbiome model, we applied the constraints described in the “Constraints” sec-

tion above. We set the riboflavin exchange reaction (“EX_ribflv[u]”) as the objective func-
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tion of the models and maximized the flux through the objective function using FBA. Two

microbiome models representing the samples “M2D4V1” and “M3D4V3” were infeasible

under the set constraints. The remaining 51 models were feasible with a positive maximum

flux through the objective function, meaning that all the models could secrete riboflavin.

Thiamine and riboflavin secreting microbe models

For all 773 microbial GENREs, we checked whether the corresponding metabolic model

on unlimited media could secrete thiamine or riboflavin. We set the lower bounds on all

exchange reactions in the model to -1000 mmol/gDW/h and set the lower bound of the

microbe’s biomass reaction to 0.001 1/h to ensure that minimal biomass could be pro-

duced. We then set the exchange reaction for either thiamine (“EX_thm[u]”) or riboflavin

(“EX_ribflv[u]”) as the objective function and maximized the flux through the reaction using

FBA. If the maximum flux through the objective reaction was higher than 1E-6 mmol/gDW/h,

the microbe model was classified as a thiamine or riboflavin producer.

4.3.8 Statistics

P-values of differences in maximum secretion flux values between healthy and diabetic mi-

crobiomes were calculated using the Wilcoxon rank-sum test method implemented in Matlab

with default parameters.

4.4 Results

First, we assessed the effects of different thresholds on the metagenomic reads mapping

parameters on the resulting microbiome metabolic reconstruction sizes and content. By

comparing the taxonomic and functional content of the microbiome reconstructions under

different cut-off levels, we determined appropriate thresholds for deciding which genomes to

include in the individual microbiome reconstructions. Second, we compared the reconstruc-

tion sizes with the subjects’ age, body mass index, gender, and diabetic status. Finally, we

simulated the individual models’ biosynthesis capabilities of the two B-vitamins thiamine

and riboflavin, and despite high variability among the different models, we saw significant
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differences in B-vitamin biosynthesis of models based individuals belonging to different fam-

ilies, genders, and diabetic statuses.

4.4.1 Metagenomic mapping to AGORA genomes

We mapped the metagenomic reads from 53 individual stool samples [100] onto the set of

773 microbial genomes underlying the AGORA reconstructions (Chapter 3). On average,

half of the metagenomic reads from every sample could be mapped to the AGORA genomes

(53 ± 12%, Fig. 4.1).

Figure 4.1: Ratio of metagenomic reads that mapped to any of the 773 AGORA genomes.
a) Histogram of the ratio of metagenomic reads that mapped to the 53 samples. b) The
ratio of metagenomic reads that mapped to the 53 samples as a function of their sampling
date. The family trees, colors, and shapes are based on those in figures from the study by
Heintz-Buschart et al. [100]. Individual identifiers correspond to those in Table 4.1.

For every genome sequence, we calculated the percentage of the sequence that was

mapped by any read (coverage breadth) and how often each part of the genome was mapped

by reads (coverage depth). Based on the average coverage depth of the genome and the ra-

tio of mapped reads, we calculated the relative abundance of every mapped genome in the
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sample (Fig. 4.2a).

To determine which microbes should be included in each microbiome model, we defined

three confidence levels based on the average coverage depth and breadth: i) at least 10% of

the genome is mapped to by metagenomic reads, ii) at least 60% of the genome is mapped

to by metagenomic reads and the average coverage depth of the genome is one, and iii) the

genome has an average coverage depth of eight. The confidence levels greatly affected the

microbiome community size (Fig. 4.2b). As expected, the higher the thresholds, the fewer

microbes could be mapped per sample. Additionally, we observed that adding microbes to

the community increased number of metabolic functions that occur in any of the microbes in

the community (Fig. 4.2c).

Based on the aforementioned results, we chose to simulate microbiome models based on

genomes that were identified with the middle confidence level, i.e., with coverage breadth

larger than or equal to 60% and a minimum average coverage depth of one. The average

number of strains per microbiome model was 45 ± 9 (Fig. 4.2b). This confidence level was

chosen because these microbiomes capture significantly more microbe strains (p=7E-19), re-

actions (p=1E-16) and subsystems (p=4E-16) than the higher confidence level (Figs. 4.2b-c),

while still having high confidence that the microbes mapped are appropriate. The lower con-

fidence level captures more microbes, but we expect a higher level of false-positive microbes

in those microbiomes.

4.4.2 Microbiome model features

The average number of genomes that mapped to each sample was 45±9 (Fig. 4.3, Table 4.2).

The number of genomes mapped to each sample did not correlate with age, body mass index,

diabetic status, or gender (Fig. 4.3). However, it was noted that the larger microbiomes, i.e.,

55 or more strains, were only found in samples of young (<20 years) and older (50+ years)

individuals.

The total relative abundance of mapped genomes in each sample was 0.43±0.11 (Fig. 4.4a,

Table 4.2). The total relative abundance did not correlate with the number of genomes that

mapped to each sample (Fig. 4.4b).
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Table 4.2: Number of microbial strains and relative abundance (RA) in the 53 individual
microbiome models at the three different coverage depth and breadth cut-off levels.

Visit 1 Visit 2 Visit 3 Average ± sd
Individual Strains RA Strains RA Strains RA Strains RA
M1D1 50 0.27 46 0.28 50 0.25 49 ± 2 0.27 ± 0.02
M1D2 63 0.52 50 0.48 54 0.53 56 ± 7 0.49 ± 0.06
M1D3 44 0.36 45 0.42 43 0.51 44 ± 1 0.43 ± 0.08
M1D4 33 0.20 47 0.21 34 0.32 38 ± 8 0.24 ± 0.07
M1D5 NA NA 49 0.31 41 0.37 45 ± 6 0.34 ± 0.04
M2D1 42 0.43 41 0.42 52 0.56 45 ± 6 0.47 ± 0.08
M2D2 32 0.32 39 0.35 39 0.36 37 ± 4 0.34 ± 0.02
M2D3 36 0.52 39 0.54 41 0.54 39 ± 3 0.53 ± 0.01
M2D4 57 0.33 32 0.33 63 0.33 51 ± 16 0.33 ± 0.00
M2D5 41 0.48 37 0.47 NA NA 39 ± 3 0.48 ± 0.01
M3D1 NA NA 50 0.32 53 0.27 52 ± 2 0.30 ± 0.04
M3D3 57 0.55 66 0.61 68 0.63 64 ± 6 0.60 ± 0.04
M3D4 51 0.51 52 0.46 64 0.46 56 ± 7 0.48 ± 0.03
M3D5 38 0.62 50 0.58 NA NA 44 ± 8 0.60 ± 0.03
M4D1 35 0.41 NA NA 34 0.42 35 ± 1 0.42 ± 0.01
M4D2 37 0.36 51 0.44 31 0.33 40 ± 10 0.38 ± 0.06
M4D3 49 0.52 NA NA 40 0.50 45 ± 6 0.51 ± 0.01
M4D4 52 0.55 NA NA 42 0.50 47 ± 7 0.53 ± 0.04
M4D5 39 0.40 51 0.45 43 0.50 44 ± 6 0.45 ± 0.05
M4D6 40 0.44 33 0.41 43 0.39 39 ± 5 0.41 ± 0.03

4.4.3 Microbiome vitamin biosynthesis

None of the microbiome models could secrete thiamine and we therefore assessed the mini-

mum thiamine requirements of each microbiome model. The microbiome models of healthy

and diabetic individuals did not have significantly different thiamine requirements (p=0.93,

Fig. 4.5a). However, when inspecting the thiamine requirements of different families, we

found that families 1 and 4 require a significantly lower influx of thiamine than those of

families 2 and 3 (p=0.0037–0.035). We inspected this difference among families and found

that the major difference is that several individuals in families 1 and 4 have Prevotella copri

strains presents, whereas none of the samples from families 2 and 3 do.

We observe a mild difference in the maximum possible riboflavin secretion between the

diabetic and healthy microbiome models (p=0.033, Fig. 4.6a). However, when we split

the samples further by gender, we see that the microbiomes based on healthy females can

secrete higher fluxes of riboflavin than those based on diabetic females (p=0.011, Fig. 4.6b).
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No difference in riboflavin secretion was observed among the male samples (p=0.82).

We further performed a principal component analysis (PCA) on the flux vectors that re-

sulted in the differences in thiamine and riboflavin biosynthesis fluxes. In both cases, by

looking at the separation of the samples by the first component, we saw that most samples

from families 1 and 4 were separated from the others (Fig. 4.7a,b). We inspected the un-

derlying scores, and found that the separation of the first component was mostly driven by

reactions from the reconstruction Prevotella copri CB7 DSM 18205, which was only found

in several samples from families 1 and 4, but not in any samples from families 2 and 3.

The separation on the second component was found to be driven by exchange reactions of

fermentation productions (Fig. 4.7c-d).

In light of these results, we investigated the effect of relative abundance of P. copri on the

minimum possible thiamine uptake fluxes. Although we did not see a correlation between

the relative abundance of P. copri and the minimum thiamine uptake fluxes (Fig. 4.8a), we

saw a significant difference (p=2.1E-5) between microbiome models that contain P. copri in

any abundance compared with those microbiome models that do not contain the microbe

(Fig. 4.8b). No such effects were observed on the maximum riboflavin secretion fluxes

(p=0.24, Fig. 4.8c-d).

Taken together, we have shown that it is possible to combine metagenomics with genome-

scale metabolic reconstructions to create personalized microbiome metabolic models. The

chosen cut-off parameters for selecting the mapped microbes have a large influence on the

size and functionality of the resulting microbiome models. Finally, the different micro-

biome metabolic models showed variable metabolic capabilities when comparing maximum

riboflavin secretion and the minimum thiamine uptake fluxes, while retaining differences

between groups such as gender, families, and diabetic status.

4.5 Discussion

In this study, we mapped metagenomic reads from 53 individual stool samples to a reference

library of microbial genomes to create personalized gut microbiome metabolic models. We

illustrate the importance of choosing appropriate thresholds for metagenomic mapping cov-

erage as the number of mapped microbes per sample depends on the chosen coverage depth
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threshold. We observed that the microbiome models that were based on healthy individuals

could secrete higher fluxes of riboflavin than those of diabetic individuals. Finally, we found

that microbiomes containing the microbe P. copri required significantly lower uptake fluxes

of thiamine than other microbiomes.

We mapped metagenomic reads from an unrelated data set to the genome sequences un-

derlying the AGORA resource [139]. On average, more than half of the total metagenomic

reads from each sample aligned to the AGORA genomes (Fig. 4.4), which shows that the

AGORA microbes are suitable for applications in human gut microbiome studies. We ob-

served high variability among the different samples, with the lowest mapping ratio of 28%

and the highest mapping ratio of 76%. However, since 40% of the samples had less than

half of the metagenomic reads mapped, the AGORA resource could be expanded to increase

metagenomic read coverage for future studies.

We illustrated the importance of carefully choosing appropriate parameters when map-

ping metagenomic reads to a set of microbial genomes. Not only does the number of iden-

tified genomes highly depend on these coverage depth and breadth, but the taxonomic and

functional diversity is largely affected as well (Fig. 4.2). Therefore, choosing a higher thresh-

old will increase the confidence that the identified microbes are biologically correct, but at

the same time will exclude biologically meaningful microbes that are in low abundance.

Even though these microbes are in lower abundance, they can have important roles in the

microbial community.

When creating gut microbiome metabolic models, in addition to parameter thresholds,

we are limited by the fact that we can only map the metagenomic reads to the genomes of

a set of microbes that have genome-scale metabolic reconstructions available. Currently,

it is not possible to fully automatically generate biologically correct GENREs. However,

the work presented in Chapter 3 has enabled us to generate individualized gut microbiome

models using hundreds of genomes for our reference library.

The microbiome models of healthy individuals could secrete higher fluxes of riboflavin

than the models of diabetic microbiomes (Fig. 4.6). This difference in riboflavin production

capabilities is interesting in the light of a study by Cole et al. (1976) [40], which showed

that riboflavin deficiency was more common in diabetic children than in non-diabetics. The

riboflavin secretion of our in silico models did not correlate with the number or summed rela-
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tive abundance of the microbial strains in the model, suggesting that the metabolic cross-talk

between microbes community affects the maximum riboflavin secretion of the community.

We also found a significant difference between the minimum thiamine uptake fluxes between

models based individuals of different families (Fig. 4.5b).

We observed that the metabolic flux differences among the 53 samples when optimizing

for minimum thiamine uptake and maximum riboflavin secretion was driven by the presence

of Prevotella copri in the microbiomes. The P. copri genome suggests that the microbe can

synthesize both riboflavin and thiamine (Chapter 2, [140]) and the proposed microbiome

"enterotype" that is rich with organisms from the Prevotella genus was reported to have

higher amounts of genes involved in thiamine biosynthesis [10]. The observed effect on

minimum thiamine uptake of the models was not correlated with the relative abundance of

P. copri (Fig. 4.8a). Interestingly, the original study by Heintz-Buschart et al. reported a

correlation between the expression levels of thiamine biosynthesis gene thiG and amylase

proteins, which were less abundant in diabetic individuals. The thiG of highest abundance

were linked to P. copri contigs. However, it must be noted that the aforementioned results

are based on non-unique flux balance analysis [159] flux vectors. It would be of value to

repeat the analysis using the minimum and maximum flux values from a flux variability

analysis [89] or flux value probabilities from sampling [91].

Taken together, we have shown that metagenomic reads from stool samples can be aligned

with genomes of AGORA, a resource of gut microbial GENREs, to create personalized mi-

crobiome metabolic models. We have shown that the resulting microbiomes are taxonom-

ically and functionally diverse and show significant differences in the maximum secretion

and minimum uptake fluxes of two B-vitamins. Similar methods could be applied in various

studies of the human gut microbiome, e.g., to investigate the effects of dietary metabolites

on metabolic capabilities of different microbiome models or the metabolic exchanges among

the individual microbe strains. By coupling the microbiome reconstructions to the human

metabolic reconstruction Recon 2 [227], it would be possible to assess the metabolic effects

of different microbiomes on human metabolism.
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Figure 4.2: Relative abundance, unique reactions and subsystems, and taxonomic classes in
each of the 53 microbiomes under the three confidence levels. a) Total relative abundance
captured per sample plotted by the number of strains mapped per sample. b) The number of
unique reactions in each microbiome model as a function of the number of microbial strains
in the microbiomes. c) The number of unique subsystems in each microbiome model as a
function of the number of microbial strains in the microbiomes. d) Presence of subsystems
in each sample at the different confidence levels. e) Presence of taxonomic classes in each
sample at the different confidence levels. Blue: Present in all confidence levels. Green:
Present in confidence levels 1 (coverage breadth ≤ 10%) and 2 (coverage breadth ≤ 60%,
coverage depth ≤ 1). Yellow: Present only in confidence level 1. White: Not present in any
confidence levels.
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Figure 4.3: The effects of a) age, b) Body mass index (BMI), c) gender, and d) diabetic status
on the number of microbial strains in the 53 microbiome reconstructions. For marker legend,
refer to Figure 4.1.

Figure 4.4: Total relative abundance captured in the 53 microbiomes based on the middle
confidence level, i.e., min. coverage breadth of 60% and min. average coverage depth of one.
a) Histogram of the total relative abundance per microbiome. b) Total relative abundance per
microbiome plotted against the number of microbial strains. For marker legend, refer to
Figure 4.1.
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Figure 4.5: Minimum possible thiamine uptake fluxes (mmol/gDW/h) per microbiome. a)
Comparison of min. thiamine uptake fluxes between healthy and diabetic individuals. b)
Comparison of min. thiamine uptake fluxes between individuals from different families. The
graphs show box plots based on the data from each group, overlaid with the data points
showing the different samples. For marker legend, refer to Figure 4.1.

Figure 4.6: Maximum possible riboflavin secretion fluxes (mmol/gDW/h) per microbiome.
a) Comparison of max. riboflavin secretion fluxes between healthy and diabetic individuals.
b) Comparison of max. riboflavin secretion fluxes between healthy and diabetic individuals
separated by gender. The graphs show box plots based on the data from each group, overlaid
with the data points showing the different samples. For marker legend, refer to Figure 4.1.
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Figure 4.7: Principal component analysis (PCA) of FBA solution flux vectors from a) min.
thiamine uptake simulations and b) max. riboflavin secretion. For marker legend, refer to
Figure 4.1. Score plots of PCA results based on c) min. thiamine uptake simulations and
d) max. riboflavin secretion. Reactions belonging to Prevotella copri are colored in blue,
exchange reactions are marked with green.
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Figure 4.8: a) Min. possible thiamine uptake fluxes and c) max. possible riboflavin secretion
fluxes plotted as a function of relative abundance of P. copri. b) Min. possible thiamine
uptake fluxes and d) max. possible riboflavin secretion fluxes of microbiome models with
(+) and without (-) P. copri. For marker legend, refer to Figure 4.1.
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Chapter 5

Concluding remarks

Since the emergence of high-throughput methods that can be applied to study the various

omics of the human gut microbiome, one of the largest challenges is to analyze the data that

is being produced. Metagenomics analyses of individual gut microbiomes have identified

microbial dysbiosis in several diseases, but the detailed mechanisms behind these implica-

tions have yet to be determined. A major factor contributing to this is the complexity of the

gut microbiome. Every individual harbors hundreds of microbial species in their gut [168],

and even more numerous strains. In addition, the microbial composition very diverse be-

tween individuals [42] and is affected by changes in dietary composition [47]. One method

to elucidate the metabolic interactions within the gut microbiome is to use constraint-based

reconstruction and analysis (COBRA). Before the work of this thesis, one of the issues with

using COBRA modeling methods to analyze the human gut microbiome was that very few

gut microbe GENREs had been built (Table 1.2), thus limiting the number of microbes that

could be simulated simultaneously in a single microbiome metabolic model.

The work of this thesis describes the use of comparative genomics to analyze B-vitamin

biosynthesis in human gut microbes (Chapter 2). The results showed that many intestinal

microbes lack the ability to synthesize B-vitamins and since most dietary B-vitamins are

absorbed through the small intestine [192], it is likely that these microbes acquire these es-

sential nutrients from their neighboring bacteria, indicating cooperation among the microbes

in the gut. The comparative genomics data of B-vitamin biosynthesis, in addition to similar

analyses of multiple other vitamin and central metabolic pathways, was integrated into the

development of "assembly of gut organisms through reconstruction and analysis" (AGORA),

99
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a resource of 773 GENREs representing human gut microbes (Chapter 3). The AGORA re-

constructions were further refined based on experimental data of carbohydrate uptake and

fermentation pathways. The generation of AGORA enabled the creation of personalized hu-

man gut microbiome models that contained an average of 45 microbial strains per model

(Chapter 4). These personalized models showed differences in taxonomic and metabolic

subsystem composition, and we observed differences in B-vitamin metabolism between dif-

ferent groups of individuals based on gender, family, and diabetic status.

5.1 Comparative genomics to predict microbial metabolism

Even though comparative genomics studies can help us elucidate metabolic pathways in

human gut microbes [173, 174, 140, 175, 176], the method has some limitations.

First, predicting the presence of a metabolic pathway in an organism requires a consistent

set of rules to determine which functional roles should be present in the genome to define

the pathway as present or absent. However, such rules require detailed knowledge about the

metabolic pathway. For example, if a genome that is missing a single functional role from a

pathway is automatically predicted to contain the metabolic function, it is still possible that

the role in question has a key function in the pathway, and that without the particular enzyme

the function cannot be performed.

Second, even though many human gut microbes have now been successfully cultured [172],

detailed growth experiments, biochemical assays, and gene essentiality analyses have not

been carried out for most of these microbes. As shown in Chapter 2, most of the compar-

ative genomics predictions of B-vitamin biosynthesis were accurate (Table 2.4). However,

this comparison was performed on few microbes since limited experimental data exists on

the B-vitamin requirements of human gut microbes. Once more detailed growth experiments

and biochemical knowledge is available on individual human gut microbial strains, it would

be interesting to extend such evaluations of the comparative genomics results in order to

assess how accurately they capture gut microbiome metabolism.
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5.2 Gut microbial metabolic reconstructions

The generation of the AGORA resource has enabled us to build biologically relevant large-

scale gut microbiome metabolic reconstructions. Such reconstructions were not possible

before because of the lack of refined human gut microbe GENREs (Table 1.2).

The AGORA reconstructions were curated with a focus on metabolic functions concern-

ing the human diet, i.e., simple sugar and polysaccharide uptake, carbohydrate fermentation,

and vitamin metabolism. While these curations make AGORA suitable to study dietary

effects on gut microbiome metabolism, we cannot model the microbiome effects on drug

metabolism or other xenobiotics, which are also important factors in biomedicine. These

pathways were left out of AGORA because xenobiotic and drug metabolism is not yet well

studied in human gut microbes. These metabolic functions could be added to the AGORA

reconstructions in future efforts when more data is available on the metabolism of such

compounds by human gut microbes. Such an extension would make it possible to model

microbial roles in human drug metabolism as efforts to include drug metabolism in the

human metabolic reconstruction Recon 2 [227] have already been started by Sahoo et al.

(2015) [189].

The AGORA resource should be continuously updated as growth experiments, gene stud-

ies, and information on nutrient requirements become available on the individual strains. The

reconstructions were curated using a propagation method where refinements from one re-

constructions were propagated to other reconstructions with the same gaps. This refinement

method enabled the generation of hundreds of microbial GENREs, but such a method is only

applicable in the absence of detailed biochemical evidence on the organisms. The propaga-

tion method ensures that the condition-specific metabolic models can perform the metabolic

functions that were reported in literature. However, it is possible that the specific metabolic

pathway that the individual strains utilize in nature are different than the propagated pathway,

and such cases will need to be refined as strain-specific biochemical information becomes

available.
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5.3 Human gut microbiome metabolic reconstructions

When creating personalized gut microbiome models, we are limited by the number of biolog-

ically relevant gut microbial GENREs. The AGORA resource has made it possible to create

such microbiome reconstructions. However, the human gut microbiome is very diverse, as

demonstrated by more than 1,100 human gut microbial strains identified in a single study

cohort [168]. Presently, it is not possible to automatically generate biologically feasible

GENREs, and we are thus biased to include the microbial reconstructions that are available

in AGORA. As observed in Chapter 4, the AGORA resource could be mapped to half of the

metagenomic reads from an independent study [100] (Fig. 4.1). Future efforts could extend

the AGORA resource with additional human gut microbial strains to capture a larger ratio of

individual metagenomic samples.

5.4 COBRA in microbiome modeling

COBRA modeling is based on a steady-state assumption, meaning that metabolite concen-

trations in the microbial cell or microbiome are stable over time [163]. This approach has

proven to be very useful when studying single cell metabolism and small microbial commu-

nities [157], but since it models snapshots in time, COBRA cannot be applied on its own

to study dynamic changes in metabolism [163]. However, as previously mentioned, several

methods have been developed that couple COBRA with other modeling methods in order to

simulate dynamic changes in single cell or microbial community metabolism (see Chapter 1).

COBRA is a highly scalable modeling technique and is suitable for simulating large-scale

microbiome reconstructions [101]. However, the some of the limitations we currently face

in simulating such large models are computational power, data analysis, and experimental

design. Simulations with large-scale metabolic model can generate large amounts of data; a

single FBA optimization on a microbiome model from Chapter 4 will generate a flux vector

with about 50,000 flux values. This amount doubles when looking at FVA data, and is

multiplied further if looking at a data set from sampling. It is therefore necessary to have

clear goals and analysis strategies before starting simulations on such large models.

Further analyses of large-scale microbiome metabolic models are needed in order to in-
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vestigate which factors in the microbiome reconstructions can influence the results and in

what way. For example, should the dietary input fluxes be scaled based the number of mi-

crobes in a microbiome community model or the relative abundances of the individual mi-

crobes? How do personalized microbiome models compare with randomly generated models

of diverse sizes? How do the community biomass reaction flux limits affect the metabolic in-

teractions within the microbiome? It is necessary to address such concerns before using such

large-scale microbiome models to generate hypotheses on metabolic differences between gut

microbiomes.

5.5 Future perspectives

Personalized human gut microbiome metabolic models have several possible applications.

One application is to identify metabolic differences between groups of individuals as was

done in Chapter 4. Such results could be useful when designing experimental studies, e.g.,

to help identify metabolites of interest that could be tested in the subjects. Another use

would be to identify dietary metabolites or probiotic bacteria that could be ingested by one

group to drive their metabolic features closer to the other group, e.g., bringing the metabolic

regimes of diseased microbiomes towards those of healthy individuals. Gut microbiome

metabolic models could also be used to identify “keystone” microbes in the human gut, e.g.,

by removing individual microbe reconstructions from the microbiome model and comparing

the impact on the reduced microbiome’s metabolism.

A future step in personalized metabolic modeling of the gut microbiome is to couple

metegenomics-based microbiome models with human metabolism. Additionally, individual-

specific genomic data could be integrated with the human-microbiome metabolic reconstruc-

tions, resulting in further individual-specific simulations of human-micobiome metabolism.

Such models could provide insights into how different individuals respond differently to

variations in the gut microbiome or diet. Personal nutrition could be applied to the different

microbiomes to see how they could differently affect human metabolism under a variety of

dietary regimes. However, as mentioned before, the gut microbiome composition is heavily

influenced by the diet [47]. An individual’s diet varies from day to day, as well as through-

out the day. It might therefore be more applicable to design dietary model inputs based on a



104 CHAPTER 5. CONCLUDING REMARKS

weekly food journal and averaging the nutrient levels out instead of looking at a single day

to assess the diet. Personalized metabolic models could also be applied to design personal

diets for different purposes, e.g., to reduce the metabolic flux through a certain metabolic

pathway, similar to the phenylalanine-reduced diets of phenylketonuria patients [247].
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Appendix A

Supplementary Information for
Chapter 2

A.1 Supplementary Data

The file “PEG.fasta” contains amino acid sequences of all protein encoding genes (PEGs)
that appear in the eight subsystems for the 256 human gut microbiota (HGM) genomes. Di-
rect download: http://journal.frontiersin.org/file/downloadfile/129714_supplementary-materials_datasheets_peg_fasta/octet-
stream/PEG.FASTA/1/129714.

A.2 Supplementary Tables

The following tables are too large to be displayed in text and are available via the publisher’s
website. All tables can be found in the file “SupplementaryTables.xlsx”. Direct download:
http://journal.frontiersin.org/file/downloadfile/129714_supplementary-materials_tables_supplementarytables_xlsx/octet-
stream/SupplementaryTables.XLSX/1/129714.
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Table A.1: List of all peer-reviewed references and books used for knowledge-
driven refinement of the AGORA reconstructions. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S2.xlsx

Sheet Description
Table S1 Presence (1) and absence (0) of the eight B-vitamin biosynthesis pathways in

the 256 HGM and 257 non-HGM genomes.
Table S2 All PubSEED functional roles associated with each abbreviation used in Ta-

ble 2.2 and Figures 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, and 2.8.
Table S3 Biotin biosynthesis subsystem, HGM genomes. PEG numbers of each func-

tional role found in the subsystem for the 256 HGM genomes.
Table S4 Cobalamin biosynthesis subsystem, HGM genomes. PEG numbers of each

functional role found in the subsystem for the 256 HGM genomes.
Table S5 Folate biosynthesis subsystem, HGM genomes. PEG numbers of each func-

tional role found in the subsystem for the 256 HGM genomes.
Table S6 Niacin biosynthesis subsystem, HGM genomes. PEG numbers of each func-

tional role found in the subsystem for the 256 HGM genomes.
Table S7 Pantothenate biosynthesis subsystem, HGM genomes. PEG numbers of each

functional role found in the subsystem for the 256 HGM genomes.
Table S8 Pyridoxine biosynthesis subsystem, HGM genomes. PEG numbers of each

functional role found in the subsystem for the 256 HGM genomes.
Table S9 Riboflavin biosynthesis subsystem, HGM genomes. PEG numbers of each

functional role found in the subsystem for the 256 HGM genomes.
Table S10 Thiamin biosynthesis subsystem, HGM genomes. PEG numbers of each

functional role found in the subsystem for the 256 HGM genomes.
Table S11 Biotin biosynthesis subsystem, non-HGM genomes. PEG numbers of each

functional role found in the subsystem for the 257 non-HGM genomes.
Table S12 Cobalamin biosynthesis subsystem, non-HGM genomes. PEG numbers of

each functional role found in the subsystem for the 257 non-HGM genomes.
Table S13 Folate biosynthesis subsystem, non-HGM genomes. PEG numbers of each

functional role found in the subsystem for the 257 non-HGM genomes.
Table S14 Niacin biosynthesis subsystem, non-HGM genomes. PEG numbers of each

functional role found in the subsystem for the 257 non-HGM genomes.
Table S15 Pantothenate biosynthesis subsystem, non-HGM genomes. PEG numbers of

each functional role found in the subsystem for the 257 non-HGM genomes.
Table S16 Pyridoxine biosynthesis subsystem, non-HGM genomes. PEG numbers of

each functional role found in the subsystem for the 257 non-HGM genomes.
Table S17 Riboflavin biosynthesis subsystem, non-HGM genomes. PEG numbers of

each functional role found in the subsystem for the 257 non-HGM genomes.
Table S18 Thiamin biosynthesis subsystem, non-HGM genomes. PEG numbers of each

functional role found in the subsystem for the 257 non-HGM genomes.
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Supplementary Information for
Chapter 3

B.1 Online Supplementary Material

The following tables are too large to be displayed in text and are available via the publisher’s
website.

Table B.1: List of all peer-reviewed references and books used for knowledge-
driven refinement of the AGORA reconstructions. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S2.xlsx

Sheet Description
CarbonSourceReferences Summary of the carbon source utilization pathways in-

cluded in the 773 gut microbe reconstructions, and sup-
porting references. (1) = presence, (0) = absence.

FermentationReferences Summary of the fermentation pathways included in the
773 gut microbe reconstructions, and supporting refer-
ences. (1) = presence, (0) = absence.

NutrientRequirementReferences Summary of nutrient requirements of the microbes
reported in literature that were used for reconstruc-
tion curation and validation. (1)=essential in vivo, (-
1)=nonessential in vivo, (0)=no information available.
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Table B.2: List of the central metabolic pathways that were curated using a comparative
genomics approach. Comparative genomics analysis was performed using PubSEED sub-
systems [13]. Direct download: http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-
S3.xlsx

Sheet names
1. Comments 8. Glu, Gln, As, & Asp 15. Phe & Tyr biosynthesis
2. Purine biosynthesis 9. Cys biosynthesis 16. Pro biosynthesis
3. Pyrimidine biosynthesis 10. Gly biosynthesis 17. Ser biosynthesis
4. TCA and glyoxylate pathway 11. His bioysnthesis 18. Thr biosynthesis
5. Glycolytic pathways 12. Leu, Ile, & Val biosynthesis 19. Trp biosynthesis
6. Ala biosynthesis 13. Lys biosynthesis 20. GlcNAc for polysaccharides
7. Arg biosynthesis 14. Met biosynthesis

Table B.3: Comparison of stoichiometric consistency and flux consistency between the
draft reconstructions and the resulting curated AGORA reconstructions. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S4.xlsx

Sheet Description
StoichiometricConsistency Number of reactants (metabolites) and reactions, stoichio-

metrically and flux consistent reactions and metabolites, and
rank of the draft reconstructions (ReconstructionName_B)
and the resulting curated AGORA reconstructions (Recon-
structionName_A).

Table B.4: Description of each reconstructed strain including tax-
onomy, biological traits, and reconstruction size. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S5.xlsx

Sheet
OrganismInformation

Table B.5: Predicted in silico growth rates (1/h) of AGORA models on Western
and high fiber diets in the absence and presence of oxygen. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S6.xlsx

Sheet Description
GrowthRatesDiets The input fluxes of Western and high fiber diets are described in Sup-

plementary Table B.18.
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Table B.6: Metabolic distance and pairwise growth rates of all
AGORA microbe-microbe pairs under four conditions. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S7.xlsx

Sheet Description
Sheet1 Pairwise in silico growth rates calculated for all 298,378 microbe-microbe pairs

on each diet (Supplementary Table B.18) and each pair’s metabolic distance
(Chapter 3: Methods).

Table B.7: Eigenvalues and reactions from a principal coordinate analysis using
each Eldermet individual’s pan-species reconstruction reaction set. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S8.xlsx

Sheet Description
PCoA_eigenvalues The pan-species reconstruction reaction set is obtained by taking the

union of reactions from all strain-resolved reconstructions of a cer-
tain species. The Eldermet dataset refers to the paper Claesson et al.
(2012) [37].

Table B.8: Detailed information on the unique reactions and
metabolites present in the 773 reconstructions. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S9.xlsx

Sheet Description
Unique_reactions Reaction VMH abbreviation, full name, formula, EC number, Sub-

system, KEGG Orthology ID, KEGG reaction ID, and COG ID.
Unique_metabolites Metabolite abbreviations, full description, charged formula, and

charge.

Table B.9: Translation of draft reconstruction reaction and metabo-
lite IDs to the corresponding VMH IDs. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S10.xlsx

Sheet Description
RxnMetTranslation Model SEED [102] and KBase [9] draft reconstructions use the

same reaction and metabolite IDs. We translated these to the corre-
sponding VMH IDs (http://vmh.uni.lu/) for compatability with the
human metaboli reconstruction Recon 2 [227].

http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S7.xlsx
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S8.xlsx
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Table B.10: Reactions added to or deleted from each of the 773
draft reconstructions during the curation process. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S11.xlsx

Sheet Description
GapfilledReactions Summary of reactions that were gapfilled manu-

ally to enable biomass production aerobically and
anaerobically after translating reaction directionali-
ties to BiGG and VMH database standards.

DeletedReactions Summary of reactions that were gap-filled by the
Model SEED and KBase pipelines and were re-
moved from the AGORA reconstructions.

AddedReactions_GenomicAnalysis Summary of respiration, vitamin biosynthesis, cen-
tral metabolism, pyrimidine, purine, and amino acid
biosynthesis reactions added based on comparative
genomic analysis.

FermentationReactions Summary of fermentation pathways reactions
added based on a thorough literature review (see
Supplementary Table B.1).

CarbonSourceReactions Summary of carbon source utilization reactions
added based on a thorough literature review (see
Supplementary Table B.1).

Table B.11: Predicted presence or absence of eight B-vitamin biosyn-
thesis pathways in the 773 AGORA organisms. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S12.xlsx

Sheet Description
VitaminPredictions Predicted presence (1) and absence (0) of eight B-vitamin biosyn-

thesis pathways based on genome analyses (Magnusdottir et al.
(2015) [140]) and published experimental data (green cells).

Table B.12: The list of AGORA reconstructions that were mapped to
each of the HMP and ELDERMET individual samples. Direct download:
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S13.xlsx

Sheet Description
HMP_Mapping AGORA reconstructions mapped to 149 HMP individual metage-

nomic samples (The Human Microbiome Project Consortium
(2012) [42]). 1: mapped to sample, 0: not mapped to sample.

Eldermet_Mapping AGORA species mapped to 177 Eldermet individual 16S rRNA
samples (Claesson et al. (2012) [37]). 1: mapped to sample, 0:
not mapped to sample.

http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S11.xlsx
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S12.xlsx
http://www.nature.com/nbt/journal/v35/n1/extref/nbt.3703-S13.xlsx
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B.2 Supplementary Notes

B.2.1 Description of QC/QA and data-driven curation efforts.

We have compared and evaluated the predictive accuracy of AGORA against numerous re-
sources, including genome-scale single gene deletion data (Fig. 3.1d), which are generally
accepted as gold standard for the evaluation of the predictive potential of microbial metabolic
models. The resources, which we used to assess and demonstrate the prediction accuracy, in-
clude (i) Genome-scale gene essentiality data (taken from http://www.essentialgene.
org/). (ii) Experimental data on the utilization of all main groups of carbon sources. (iii)
Experimental data on the major fermentation pathways in the human gut microbiota. (iv)
Experimentally determined defined media/ nutrient requirements. The latter three data have
been collected from more than 170 primary research papers (Supplementary Table B.1) and
the books: "Bergey’s manual of systematic bacteriology" and "The prokaryotes: a handbook
on the biology of bacteria". As such, we demonstrated the predictive sensitivity of AGORA
using information generally accepted as gold standards by the field. The results can be
found in Figures 3.1 and 3.3 in the main text, Supplementary Table B.13, and Supplemen-
tary Fig. B.3. We would like to highlight that inter-organism propagations were performed
on the species level and in limited cases on the genus level. Hence, the metabolic functions
were not inferred from distant organisms. It is to be noted that molecular systems biology
is characterized by an iterative cycle of model predictions and experimental validation. It is
natural in such a process for either prediction or validation to be one step ahead of the other.
Compared to other biological domains, our experimental knowledge of the gut microbiome
lags behind. Genome-scale models, such as those in AGORA, can be used to provide novel
insight into the biology of the considered gut microbe and to drive the design of experimental
projects.

Reaction directionality was propagated from biochemically curated reactions in the VMH
database (http://vmh.life) and each was checked for consistency with thermodynamic
estimates of maximum and minimum standard transformed Gibbs energy for each reaction
using our state of the art Component Contribution method1. As documented on the VMH
database, the following conditions were assumed: (i) temperature 310.15K; (ii) cytosol pH
7.2, extracellular pH 7.4; (iii) ionic strength 0.15 mol/L; (iv) 30 mV electrical potential
difference between extracellular space and cytosol; and (v) minimum and maximum con-
centration range from 10−7 to 10−2 mol/L. The transformed Gibbs energy of formation of a
metabolite is the sum of standard transformed Gibbs energy of formation and an RTlog(x)
term, where R is the gas constant, T is temperature and x is the absolute concentration of the
metabolite. Note using this approach, the activity coefficient is absorbed into the standard
transformed Gibbs energy of formation. If we assume that the conditions above do vary, let
us consider them one by one. (i) Temperature varies only slightly, and there are not enough
enthalpic data to make a temperature adjustment beyond what we do. (ii) Our choice of pH
7.4 is representative of the terminal ileum. According to Fallingborg J. [65] "The intralumi-
nal pH is rapidly changed from highly acid in the stomach to about pH 6 in the duodenum.
The pH gradually increases in the small intestine from pH 6 to about pH 7.4 in the termi-
nal ileum. The pH drops to 5.7 in the caecum, but again gradually increases, reaching pH
6.7 in the rectum." This slight variation in small and large intestinal pH might change the
direction of some cytoplasmic transport reactions. (iii) The ionic strength is not known ac-

http://www.essentialgene.org/
http://www.essentialgene.org/
http://vmh.life


134 APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3

curately, for any cell. We use 0.15 mol/L as is standard in the biochemical thermodynamic
literature. Experimental evidence would be required to justify the use of a different value.
(iv) The electrical potential difference between extracellular space and cytosol could indeed
vary, however, then one would be modeling the same organism in two different conditions so
one would expect the model predictions to be different. (v) There is insufficient data on the
absolute concentrations of the metabolome in the cytoplasm in any cell. With gut microbial
species, the paucity of data is even more acute. Without further data, one could not safely
assume a tighter concentration range.

B.2.2 Comparison with published reconstructions.

We compared all 3,192 unique reactions included in the 773 AGORA reconstructions with
the 4,608 unique reactions included in 11 published gut microbe reconstructions previously
used to simulate a model gut community [98] after unifying the reaction namespaces. Ad-
ditionally, the reconstructions of eight strains in AGORA overlapped with published recon-
structed strains [96, 165, 224, 225, 229, 20, 133] and were compared against each other
directly. Subsystems were assigned to every reaction in the AGORA and the published re-
constructions based on the subsystem nomenclature in Recon2 [227]. The results are shown
in Supplementary Tables B.14 and B.15

Between 310 and 1,058 (mean 682 ± 290) reactions overlapped between the respective
AGORA and published reconstructions. Between 305 and 934 (mean 770 ± 227) reactions
were unique to the curated reconstructions, and between 229 and 1,776 (mean 956 ± 678)
reactions were unique to the published reconstructions (Supplementary Table B.14). Most
of the reactions that were unique to the published reconstructions belonged to exchange and
transport subsystems, particularly for Escherichia coli K-12 substr. MG1655, Escherichia
coli O157H7 substr. Sakai, Klebsiella pneumoniae MGH78578, and Salmonella enterica sv.
typhimurium LT-2 (Supplementary Table B.15). These reconstructions used the Escherichia
coli reconstruction iAF1260 [68] as a template, which includes a periplasm compartment.
Thus, the majority of reaction content unique to these reconstructions could be attributed
to the presence of the additional periplasm compartment, which requires additional trans-
port reactions. For example, the Escherichia coli K-12 substr. MG1655 reconstruction
iEco1339_MG1655 [20] contains 1,573 reactions not found in the AGORA reconstruction.
Of those, 913 reactions take place in the periplasmic compartment. Of the 934 reactions
found only in the AGORA Escherichia coli K-12 substr. MG1655 reconstruction, 197 are
cytosolic versions of reactions that take place in the periplasm in the published reconstruc-
tion. Another major reason for discrepancies between the AGORA and published recon-
struction was the captured cell wall and lipopolysaccharide biosynthesis pathways. Cell wall
and lipopolysaccharide structures are species-specific and generally poorly annotated, and
hence difficult to curate. Consequently, between 30 and 299 reactions from cell wall and
lipopolysaccharide biosynthesis were unique to the published reconstructions (Supplemen-
tary Table B.15). Curating for cell wall and lipopolysaccharides structures and including
accurate transport mechanisms would require experimental data, which is not available for
most AGORA organisms. Thus, these curation steps were not performed in the present
study, with the exception of reconstructions from two genera, Mycoplasma and Ureoplasma
(Chapter 3: Methods). At the same time, 161 reactions from cell wall and lipopolysaccha-
ride biosynthesis were present in the E. coli draft reconstruction, and thus also present in
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its AGORA version, but not in the published reconstruction iEco1339_MG1655 (Supple-
mentary Table B.15). These reactions are involved in fatty acid biosynthesis, as the ones
catalyzed by the 3-oxoacyl-acyl-carrier-protein reductase. Since the presence of these en-
zymes in E. coli is supported by genome annotation, these reactions should also be included
in the published reconstruction. Another example is dipeptide degradation, which is sup-
ported by genome annotation in the AGORA reconstruction but is absent from the published
E. coli reconstruction.

The eight AGORA reconstructions had on average a higher number of blocked reactions
that the respective published reconstructions (31 ± 9% compared with 13 ± 6%). This was
mainly due to the deletion of reactions that were added during the automated gap-filling step
of the draft reconstructing pipelines and were found to no longer be required for biomass
production. Since the presence of these reactions is not supported by gene annotation or
experimental data, corresponding to a confidence score of 1 [226], their inclusion is hypo-
thetical. Another cause for blocked reactions in AGORA reconstructions was the adjustment
of reaction reversibilities to VMH standards. This led to some pathways that were carry-
ing flux in an infeasible direction in the draft reconstructions to be blocked in the resulting
AGORA reconstructions. For example, the vitamin B12 biosynthesis pathway was reversible
in many draft reconstructions and often allowed to produce downstream biomass precursors
from cobalamin. Making this pathway irreversible caused it to be blocked in many recon-
structions due to missing steps, in agreement with many microbes being unable to synthesize
cobalamin [140] (Supplementary Table B.11). Nonetheless, the QC/QA curation effort led
to an increase of the overall stoichiometric and flux-consistent reactions in the AGORA re-
constructions compared to the draft reconstructions (Fig. 3.1, Supplementary Figs. B.1 and
B.2).

B.2.3 In vitro cell cultures and cell counting.

In vitro cell culture: Pre-cultures of Bacteroides caccae ATCC 43185 (B. caccae) and Lac-
tobacillus rhamnosus GG ATCC 53103 (LGG) were prepared using Brain Heart Infusion
Broth (BHIS; Sigma) supplemented with 1% hemin. The pre-cultures were run for 20 hours
under anaerobic conditions and while shaking at 37◦C. The volume of the cell suspension
was adjusted to a maximum optical density (OD) at 600 nm of 0.8 using sterile 0.9% w/v
NaCl solution to obtain reliable OD measurements. Following pre-culturing, centrifugation
was carried out at 4,700 x g for 10 min at room temperature. The resulting cell pellets were
washed twice in 0.9% w/v NaCl solution and subsequently resuspended in 10 ml of 0.9%
w/v NaCl solution. Subsequently, 1 ml of the cell suspensions were inoculated in DMEM
6429 supplemented with 1% hemin and 3.33% vitamin with a starting OD of 0.1 and K
maintained under anaerobic conditions. Culture was carried out in media with or without
the addition of arabinogalactan (Sigma; 9.4 g/l). B. caccae and LGG were cultured for 33
and 44 hours of culture for B. caccae and LGG, respectively. Cells were harvested for cell
counting by centrifugation (4,700 g) and 750 µL aliquots of supernatant were removed for
subsequent metabolite extraction. The aliquots were snap-frozen and placed at −80◦C until
analysis. The measured ODs and pH values are listed in Supplementary Table B.16.

Cell counting: Bacterial pellets were thawed and subsequently stained with the Texas
Red®-X dye–labeled Wheat Germ Aglutinin component which selectively binds to the sur-
face of gram-positive bacteria, effectively distinguishing them from gram-negative bacteria.
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Cells were washed, resuspended in sterile 0.9% w/v NaCl solution and quantified by flow
cytometry (BD Fortessa) using negative beads (Thermo Fischer) as a standard for the vol-
ume of suspension. The resulting data were analyzed using the DIVA 8.0.1 software (BD
Biosciences). The cell counts are shown in Supplementary Table B.16.

Real-time PCR (RT-PCR): The presence of B. caccae cells in the cultures were validated
using qPCR. Microbial genomic DNA was extracted using the PowerSoil DNA Isolsation
Kit from MoBio accordingly to the manufacturer’s protocol. qPCR was performed using B.
caccae-specific primers (Eurogentec). The B. caccae-specific primers were 5’-CCC GGA
GTT GGA AAA CAA TG-3’ (forward) and 3’-CCT CTT CAG AAA TGA GCT TTT GC-
3’ (reverse). 5 ng of DNA were used in a 20 µl PCR reaction mixture containing 10 µl iQTM

SYBR®Green Supermix (Bio-Rad) and 500 nM of each primer. PCR amplifications were
performed on a LightCycler®480 Instrument (40 cycles at 95◦C for 10 sec and 55◦C for 20
sec; Roche).

B.2.4 Fermentation and carbon source utilization pathways captured
by AGORA.

A thorough literature search was performed for the reconstruction of the main fermentation
pathways in the human gut and their distribution across phyla. The main products of carbo-
hydrate and protein fermentation by the human gut microbiota are the short-chain fatty acids
(SCFAs) acetate, propionate, and butyrate [138]. The different routes leading to these prod-
ucts were reconstructed for all AGORA organisms reported to carry these pathways and are
briefly described below. Acetate is produced via the widespread acetate kinase [122]. More-
over, bacteria in the Bifidobacterium genus produce acetate via the bifid shunt [122], and
the genera Blautia and Marvinbryantia convert CO2 and hydrogen to acetate via acetogene-
sis [180]. Three pathways exist for the conversion of carbohydrates and amino acids to pro-
pionate, with succinate, propane-1,2-diol, and lactate, respectively, as intermediates [179].
Their distribution in the human gut microbiota has been analyzed by comparative genomics
and experimentally validated [179]. Carbohydrate and amino acid fermentation to butyrate
is carried out via five routes, with acetyl-CoA, glutarate, lysine, 4-aminobutyrate, and suc-
cinate, respectively, as intermediates [237]. A genomic analysis of their distribution across
several phyla has been performed [237]. Moreover, gut microbes produce lactate, formate,
butanol, acetoin, 2,3-butanediol, and ethanol, as well as carbon dioxide and hydrogen [122].
For most gut microbes, the capabilities to produce these acids and gases are well described in
the literature [122]. Produced hydrogen is cross-fed to other species in three ways: methano-
genesis by archaeal representatives resulting in methane production [193], dissimilatory sul-
fate reduction to sulfide [181], and acetogenesis yielding acetate [180]. Amino acid fer-
mentation results in the production of not only SCFAs and gases, but also the branched-
chain fatty acids isobutyrate and isovalerate, as well as phenols (e.g., phenylacetate) and
indoles [138, 48]. The pathways described above, resulting in 16 fermentation products and
two gases in total, were included in the respective AGORA reconstructions.

The available literature was also searched for the utilization of carbon sources by AGORA
organisms. The gut microbiota utilizes a variety of diet-and host-derived carbon sources,
including simple sugars, starch, fiber, host-derived polysaccharides, protein, and organic
acids [74]. The potential to exploit carbon sources is species-specific. While the ability to
utilize mono- and disaccharides is widely spread [122], the capability to break down diet-
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and host-derived polysaccharides is limited to certain genera, e.g., Bacteroides, Bifidobac-
terium, Roseburia, and Ruminococcus [75]. Some species utilize amino acids as carbon and
energy sources, e.g., Clostridium difficile, Pseudomonas aeruginosa, and Porphyromonas
gingivalis [122], and some utilize intermediates of central metabolism and organic acids,
e.g., Bacillus cereus, Citrobacter sp., Oxalobacter formigenes, and Veillonella sp. [122]. A
thorough literature search was performed for the distribution of these four groups of car-
bon sources utilized by the AGORA organisms: (i) simple sugars and oligosaccharides, (ii)
polysaccharides and fibers, (iii) amino acids, and (iv) organic acids and other metabolic in-
termediates. In total, information on the utilization of 95 carbon sources was gathered and
the corresponding pathways were included in the respective AGORA reconstructions.

B.2.5 Definition of sub-pathways.

A sub-pathway was determined as any set of reactions that converts an initial substrate of the
pathway into the final product(s) of the pathway. For example, the biosynthesis of a purine
nucleotide has one initial substrate, phosphoribosyl pyrophosphate, and two final products,
AMP and GMP. Thus, this pathway includes two sub-pathways. A sub-pathway was con-
sidered complete if all genes required for all the reactions in the sub-pathway were present
in the subsystem. A sub-pathway was gap-filled if the length of a gap in the pathway did
not exceed one reaction. In this case, the gaps were filled by reactions not associated with
GPRs. Sub-pathways with gaps longer than one reaction were considered incomplete and
reactions for these subpathways were not included in reconstructions. These criteria were
applied to all the reconstructed pathways except the citric acid cycle, because the presence
of an incomplete citric acid cycle has been confirmed for multiple microbial genomes [108].
These incomplete versions of the citric acid cycle are used for the biosynthesis of various
compounds, such as fatty and amino acids [108]. Thus, no gap-filling was performed for the
citric acid cycle and reactions for this pathway were included in the reconstructions regard-
less of the pathway’s completeness in the genome.

B.2.6 Curation of respiration and quinone biosynthesis in AGORA.

The genomes of the reconstructed gut bacteria contain multiple aerobic reductases as well
as anaerobic reductases for tetrathionate, thiosulfate, polysulfide, sulfite, adenylyl sulfate,
heterodisulfides, fumarate, trimethylamine N-oxide, dimethyl sulfoxide, nitrate, nitrate, ni-
trogen oxide, nitrous oxide, selenate, and arsenate [174]. Nonetheless, the reactions for
reduction of respiratory electron acceptors should include two half-reactions, one for a re-
duction of the electron acceptor itself and another for an oxidation of the corresponding
quinone. Since the repertoire of synthesized quinones varies among bacterial taxa [156] and
quinones demonstrate specificity for their electron acceptors [243], the inclusion of respira-
tory reactions into the models was preceded by the reconstruction of the quinone biosynthetic
pathways.

In bacteria, one pathway has been described for ubiquinone (UQ) biosynthesis. For
menaquinone (MK) biosynthesis, two different pathways are known, the first one through O-
succinylbenzoate and the second one through futalosine [156]. The last steps of MK biosyn-
thesis through futalosine are unknown, but are proposed to be catalyzed by a polyprenyltrans-
ferase, a carboxy-lyase, and a methyltransferase [252]. All three steps of polyprenylation,
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carboxyl elimination, and methylation are present also in UQ biosynthesis and in MK biosyn-
thesis O-succinylbenzoate biosynthesis in the same order as listed above. So, we proposed
that this reaction mechanism should be conserved in MK through futalosine biosynthesis.
Thus, in analogy with the corresponding steps in the UQ and MK via O-succinylbenzoate
biosynthesis pathways, we predicted the three last steps of the MK through futalosine path-
way in the analyzed genomes:

• Polyprenyltransferase

1,4-dihydroxy-6-naphthoate + polyprenyl-pyrophosphate→
3-polyprenyl-1,4-dihydroxy-6-naphthoate + pyrophosphate

• Carboxy-lyase

3-polyprenyl-1,4-dihydroxy-6-naphthoate→ 2-demethyl menaquinol + CO2

• Methyltransferase

2-demethyl menaquinol + S-adenosyl-L-methionine→
menaquinol + S-adenosyl-L-homocysteine + H+

The reactions for the respiratory reduction of electron acceptors were constructed in
agreement with the following features, (1) the presence of the quinone biosynthetic path-
ways in the analyzed genome, (2) specificity of the electron acceptor to quinones, and (3)
subcellular localization of an active center of the corresponding reductase. For example,
the Bacteroides thetaiotaomicron genome contains the biosynthesis pathway for MK and
2-demethylmenaquinone (DMK), one aerobic reductase with the cytoplasmic active center,
and two anaerobic reductases: a nitrite reductase with an extracellular active center and a
fumarate reductase with a cytoplasmic active center. Because oxygen can be reduced with
MK, whereas nitrite and fumarate can be reduced with both MK and DMK [243], the respi-
ratory reduction of electron acceptors in Bacteroides thetaiotaomicron is carried out by the
following five reactions:

• Cyd: aerobic reductase

0.5 O2[c] + menaquinol[c] + 2 H+[c]→ H2O[c] + menaquinone[c] + 2 H+[e]

• Nrf: nitrite reductase

NO2[e] + 3 menaquinol[c] + 2 H+[c]→ NH+
4 [c] + 3 menaquinone[c] + H2O[c]

NO2[e] + 3 2-demethyl menaquinol[c] + 2 H+[c]→
NH+

4 [c] + 3 menaquinone[c] + H2O[c]

• Frd: fumarate reductase

fumarate[c] + menaquinol[c]→ succinate[c] + menaquinone[c]
fumarate[c] + 2-demethyl menaquinol[c]→

succinate[c] + 2-demethyl menaquinone[c]
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Reactions for ATP synthesis via proton-driven ATP synthases were also added to the re-
constructions. All analyzed genomes have genes for F-type or V-type ATP synthases. All
added respiration, quinone biosynthesis, and ATP synthase reactions are listed in Supple-
mentary Table B.10.

B.2.7 Curation of nutrient requirements.

The in silico growth requirements were computed by setting the lower bounds for all ex-
change reactions to zero individually and predicting if the model could still produce biomass.
The analysis revealed essential metabolites for in silico growth that are unlikely to be found
in the human gut, such as end products of coenzyme biosynthesis, including CoA and
NAD(P)H. Bacteria take up precursors of these coenzymes in the form of vitamins, such
as pantothenic acid or nicotinic acid. Exchange and transport reactions for vitamins were
added where necessary and we ensured that CoA synthesis from pantothenic acid, as well
as NADH biosynthesis from nicotinic acid, were unblocked in all metabolic reconstructions.
In some cases, a draft reconstructions required dimers or oligomers in the in silico growth
medium to fulfill a monomer requirement. As it can be expected that uptake of the monomer
itself would also satisfy the growth requirement, exchange and transport reactions for the
corresponding monomers were added. For example, the galactose-containing oligosaccha-
rides stachyose, melibiose, and lactose were in some cases essential for a model to satisfy its
requirement for galactose. Similarly, some draft models depended on dipeptides for certain
amino acids, so we enabled the uptake of amino acid monomers.

False negative predictions were resolved in the following ways: (i) for essential nutrients,
if they were not yet present in the reconstruction, exchange and transport reactions were
added, (ii) for metabolites not included in the biomass reaction, a demand reaction was
added for metabolites required in vitro and a minimal flux through the demand reaction was
enforced, and (iii) for metabolites that were false positives due to gap-filled reactions in the
biosynthesis pathways, those gap-filled reactions were removed. False positive predictions
were resolved by manually inspecting and gap-filling the corresponding pathways to enable
production or consumption of dead-end metabolites. This curation was performed for 244
models.

After curation, 173 false positive predictions remained, which were due to multiple gaps
in the networks that could not be resolved without further experimental and genomic evi-
dence. For most of the 219 remaining false negative predictions, the compounds were essen-
tial in vitro although the biosynthesis pathways were completely annotated in the bacterial
genomes. This has been previously observed, e.g., in Lactobacillus plantarum WCFS1, and
may be explained by feedback inhibition of the biosynthesis pathways in vitro [223].

B.2.8 Metabolite extraction.

Short chain fatty acid extraction, derivatization, and GC-MS measurement

The extraction of short chain fatty acids was based on a protocol from Moreau et al. [154].
Briefly, 10 µL of the internal standard (2-Ethylbutyric acid, c = 200 mmol/L) were added to
190 µL of medium. After acidification with 10 µL of hydrochloric acid (c = 1 mol/L), 1 mL
of diethyl ether was added and the samples were vortexed for 10 min at 1400 rpm at room
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temperature (Eppendorf Thermomixer). The upper organic phase was separated by centrifu-
gation (5 min, 21,000 xg) and 900 µL were collected in a new reaction tube. Again, 1 mL of
diethyl ether were added to the medium, incubated and separated by centrifugation. 900 µL
of the organic phase were combined with the first extract. Then, 250 µl were transferred into
a GC glass vial with micro insert (5-250 µL) in triplicates. For derivatization, 25 µL of N-
tert-Butyldimethylsilyl-Nmethyltrifluoroacetamide with 1% tert-Butyldimethylchlorosilane
(MTBSTFA + 1% TBDMSCI, Restek) was added and the samples were incubated for a
minimum of 1 hour at room temperature. To determine retention times and evaluate separa-
tion efficiency, a Volatile Free Acid Mix (Sigma-Aldrich) including all compounds of interest
was prepared, extracted, and derivatized as described before.

GC-MS analysis was performed by using an Agilent 7890A GC coupled to an Agilent
5975C inert XL Mass Selective Detector (Agilent Technologies). A sample volume of 1 µl
was injected into a Split/Splitless inlet, operating in split mode (20:1) at 270◦C. The gas
chromatograph was equipped with a 20 m (I.D. 180 µm, film 0.18 µm) DB-1MS capillary
column (Agilent J&W GC Column). Helium was used as carrier gas with a constant flow
rate of 1.0 ml/min. The GC oven temperature was held at 80◦C for 0.75 min and increased to
150◦C at 15◦C/min. After 2 min, the temperature was increased at 50◦C/min to 280◦C and
held for 2 min. The total run time was 12.017 min. The transfer line temperature was set to
280◦C. The mass selective detector (MSD) was operating under electron ionization at 70 eV.
The MS source was held at 230◦C and the quadrupole at 150◦C. The detector was switched
off during elution of MTBSTFA. For quantification, measurements of the compounds of in-
terest were performed in selected ion monitoring mode. Dwell times as well as quantification
and qualification ions (m/z) are shown in Supplementary Table B.20.

Absolute quantification of medium components using the YSI Biochemistry Analyzer

Prior to measurement, media samples were filtrated (PHENEX-RC 4mm, 0.2 µm; Phe-
nomenex) to remove particles. Absolute quantitative values for lactic acid, glutamine, glu-
tamic acid, and glucose were acquired using the 2950D Biochemistry Analyzer (YSI). In
addition, for a precise and reliable quantification, external concentration curves for each
compound of interest were prepared and measured in triplicate.

Polar metabolite extraction, derivatization, and GC-MS measurement

Extracellular metabolites from media samples were extracted in triplicate using ice-cold ex-
traction fluid (5:1 methanol/water, v/v) containing the internal standards [U-13C]ribitol (c
= 10 µg/mL; Omicron Biochemicals, Inc) and pentanedioic acid-D6 (c = 4 µg/mL; C/D/N
Isotopes Inc.). 20 µL of medium was added to 180 µL ice-cold extraction fluid, vortexed for
15 min at 4◦C and 1,400 rpm (Eppendorf Thermomixer), then, centrifuged at 21,000 xg for
5 min at 4◦C. 50 µL of medium extracts were transferred to GC glass vial with micro insert
(5-250 µL) and evaporated under vacuum to dry at −4◦C. For absolute metabolite quantifica-
tion, a dilution series of a standard mixture containing all metabolites of interest was included
in the extraction procedure and measured in triplicates. Metabolite derivatization was per-
formed by using a multipurpose sampler (Gerstel). Dried medium extracts were dissolved
in 15 µl pyridine, containing 20 mg/ml methoxyamine hydrochloride (Sigma-Aldrich), at
55◦C for 90 min under shaking. After adding 15 µl MTBSTFA + 1% TBDMSCI (Restek),
samples were incubated at 55◦C for 60 min under continuous shaking.
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GC-MS analysis was performed by using an Agilent 7890A GC coupled to an Agilent
5975C inert XL Mass Selective Detector (Agilent Technologies). A sample volume of 1 µl
was injected into a Split/Splitless inlet, operating in split mode (10:1) at 270◦C. The gas
chromatograph was equipped with a 30 m (I.D. 250 µm, film 0.25 µm) DB-35MS capil-
lary column + 5 m DuraGuard column in front of the analytical column (Agilent J&W GC
Column). Helium was used as carrier gas with a constant flow rate of 1.0 ml/min. The GC
oven temperature was held at 100◦C for 2 min and increased to 300◦C at 10◦C/min and held
for 4 min. The total run time was 26 min. The transfer line temperature was set to 280◦C.
The MSD was operating under electron ionization at 70 eV. The MS source was held at
230◦C and the quadrupole at 150◦C. For precise quantification, GC-MS measurements of
the derivatives of interest were performed in selected ion monitoring mode. Dwell times as
well as quantification and qualification ions (m/z) are shown in Supplementary Table B.20.

Data normalization and data processing

All GC-MS chromatograms were processed using MetaboliteDetector, v3.020151231Ra32.
The software package supports automatic deconvolution of all mass spectra. Compounds
were annotated by retention time and mass spectrum. The internal standards were added at
the same concentration to every medium sample to correct for uncontrolled sample losses
and analyte degradation during metabolite extraction. The data set was normalized by using
the response ratio of the QI_Analyte and the QI_Internal Standard (peak area of the analyte
divided by the peak area of the internal standard). Absolute concentrations were determined
using calibration curves from external standards. To evaluate the variability of independent
cultivations, mean values of three technical replicates have been calculated for each biologi-
cal replicate.
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Figure B.1
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Figure B.1: Comparison of metabolite stoichiometric and flux consistency [72] of draft and
AGORA reconstructions (Supplementary Table B.3). The figures highlight two groups in
the draft reconstruction set. We identified the time of download as the key separating factor.
Those reconstructions that have been obtained from Model SEED before summer 2015 had
a smaller reaction (and metabolite) content, than those ones downloaded from model SEED
or KBase afterwards. Model SEED/KBase updated and expanded their underlying database
substantially in 2015 to include secondary metabolite, xenobiotics, and plant metabolism.
Consequently, the average size of the draft reconstructions increased. These metabolic path-
ways were outside the scope of the current reconstruction effort and thus were not retained
in AGORA reconstructions of the black group. Further experimental data and comparative
genomic efforts will be required to establish that those out-of-scope reactions do indeed oc-
cur in the respective gut microbes. All reconstructions of the black group thus fall below the
red line, meaning that the AGORA counterpart is smaller in terms of metabolites. However,
it is notable and thanks to the QC/QA effort applied to all AGORA reconstructions that the
there is no observable difference between the two groups when comparing the stoichiometric
and flux consistent metabolites. In all cases, we improved the quality of the reconstructions
when considering this measure over the draft reconstructions. (a) The number of metabolites
in each AGORA reconstruction versus the corresponding draft reconstruction. The red line
shows the line y = x, where the number of metabolites in the AGORA reconstruction is
the same as the number of metabolites in the draft reconstruction. (b) Histograms showing
the change in number of metabolites after the curation of the draft reconstructions of the
two groups. The mean and standard deviation of the change in number of metabolites is
shown for both groups. A similar separation was observed for (c-d) the rank of the draft
and AGORA stoichiometric matrices and (e-f) the number of stoichiometrically consistent
metabolites in AGORA versus the draft reconstructions. (g-h) In most organisms of both
groups, the number of stoichiometrically and flux consistent metabolites was increased by
the AGORA curation process.
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Figure B.2
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Figure B.2: Comparison of reaction stoichiometric and flux consistency [72] of draft and
AGORA reconstructions (Supplementary Table B.3). The figures highlight two groups in
the draft reconstruction set. We identified the time of download as the key separating factor.
Those reconstructions that have been obtained from Model SEED before summer 2015 had
a smaller reaction (and metabolite) content, than those ones downloaded from model SEED
or KBase afterwards. Model SEED/KBase updated and expanded their underlying database
substantially in 2015 to include secondary metabolite, xenobiotics, and plant metabolism.
Consequently, the average size of the draft reconstructions increased. These metabolic path-
ways were outside the scope of the current reconstruction effort and thus were not retained in
AGORA reconstructions of the black group. Further experimental data and comparative ge-
nomic efforts will be required to establish that those out-of-scope reactions do indeed occur
in the respective gut microbes. All reconstructions of the black group thus fall below the red
line, meaning that the AGORA counterpart is smaller in terms of reactions. However, it is
notable and thanks to the QC/QA effort applied to all AGORA reconstructions that the there
is no observable difference between the two groups when comparing the stoichiometric and
flux consistent reactions. In all cases, we improved the quality of the reconstructions when
considering this measure over the draft reconstructions. (a) The number of reactions in each
AGORA reconstruction versus the corresponding draft reconstruction. The red line shows
the line y = x, where the number of reactions in the AGORA reconstruction is the same as
the number of metabolites in the draft reconstruction. (b) Histograms showing the change
in number of reactions after the curation of the draft reconstructions of the two groups. The
mean and standard deviation of the change in number of reactions is shown for both groups.
A similar separation was observed for (c-d) the number of exchange reactions and (e-f) the
number of stoichiometrically consistent reactions in AGORA versus the draft reconstruc-
tions. (g-h) In most organisms of both groups, reaction stoichiometric and flux consistency
was improved by the AGORA curation process.
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Figure B.3: Sensitivity of carbon source uptake and fermentation product secretion of seven
published models [165, 224, 225, 20, 133] and the corresponding AGORA models. In
the parentheses are the number of carbon sources or fermentation products that the mod-
els should take up or secrete, respectively, according to data from literature (Supplementary
Table B.1). Uptake and secretion capabilities were determined using flux variability analysis.
All exchange reactions had unlimited upper and lower bounds and a minimum flux of 0.001
1/h through the biomass objective function enforced.
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Figure B.4: Metabolic distances between the 773 AGORA reconstructions. Reconstructions
with identical reaction content have a metabolic distance of zero, while reconstructions hav-
ing no overlap have a metabolic distance of 1 (Supplementary Table B.6). Reconstructions
are ordered based on phyla and taxonomic classes (Supplementary Table B.4).
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Figure B.5: Metabolomic measurements for two bacterial strains grown in vitro. Bar graphs
showing the average metabolomic measurements determined for Bacteroides caccae ATCC
43185 and Lactobacillus rhamnosus GG ATCC 53103 during growth on DMEM 6429
medium supplemented with arabinogalactan (Supplementary Note B.2.3). Error bars show
the standard deviation. Statistically significant uptake and secreted is shown and compared
with in silico predictions in Fig. 3.4a.
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Figure B.6
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Figure B.6: Clustering of the ratio of pairwise interaction types on the genus level per growth
condition. The growth of all AGORA microbe pairs (298,378 pairs) was simulated under
four different conditions; using either Western diet or a high fiber diet (Supplementary Ta-
ble B.18) with and without oxygen. Depending on whether each microbe grew faster or
slower in the co-culture simulation compared with by itself under the same condition (Sup-
plementary Tables B.5 and B.6), the interaction between the two microbes was categorized
as i) mutualism: both microbes grow faster, ii) commensalism: one microbe grows faster
(Taker) while the other’s growth rate is not affected (Giver), iii) neutralism: neither mi-
crobe’s growth rate is affected, iv) amensalism: one microbe grows slower (Affected) while
the other’s growth rate is not affected (Unaffected), v) parasitism: one microbe grows faster
(Taker) while the other grows slower (Giver), and vi) competition: both microbes grow
slower. The heatmap shows the ratio of microbes per genus that have each interaction type
per condition, e.g., the cell in the first row and first column shows that about 40% of microbes
belonging to the Parvimonas genus have the interaction type “ParasitismTaker” on Western
diet under anaerobic conditions.



B.2. SUPPLEMENTARY NOTES 151

Figure B.7: Metabolic distances plotted by the six types of interactions between the 298,378
microbe-microbe pairs by diet. The growth of all AGORA microbe pairs (298,378 pairs)
was simulated under four different conditions; using either Western diet or a high fiber diet
(Supplementary Table B.18) with and without oxygen. Depending on whether each microbe
grew faster or slower in the co-culture simulation compared with by itself under the same
condition (Supplementary Tables B.5 and B.6), the interaction between the two microbes
was categorized as: mutualism (both microbes grow faster), commensalism (one microbe
grows faster while the other’s growth rate is not affected), neutralism (neither microbe’s
growth rate is affected), amensalism (one microbe grows slower while the other’s growth
rate is not affected), parasitism (one microbe grows faster while the other grows slower),
and competition (both microbes grow slower). Based on the Jaccard index between the
reaction content of the reconstructions of the two microbes, the metabolic distance between
them was calculated (Online Methods, Supplementary Table B.6). Reconstructions with
identical reaction content have a metabolic distance of zero, whereas reconstructions sharing
no reactions have a metabolic distance of 1.
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Figure B.8: Example of a typical futile cycle resolved during curation. a) When the ATP
demand reaction is optimized, flux in the reverse direction through the potassium uniporter
(Kt1r) and the potassium antiporter (Kt3r) leads to an unfeasibly high secretion flux of proton
into the extracellular space. This leads to a corresponding flux through the ATP synthase
(ATPS4), resulting in unfeasible ATP production. b) The futile cycle is resolved by replacing
Kt3r with the irreversible version Kt3. This prevents infeasible ATP production while still
allowing potassium transport in both directions.
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Table B.13: List of tests that the AGORA reconstructions were subjected to evaluate the
curation effort. The number of reconstructions that could be curated and number of recon-
structions that passed the tests are shown. Several genomes were missing from the PubSEED
platform [12] and could thus not be curated based on the comparative genomic analyses
(Supplementary Table B.2). Similarly, a few organisms were not captured in the literature-
driven curation on carbon sources and fermentation pathways (Supplementary Table B.1).
Less than a third of the AGORA organisms had literature information on essential nutrients
(Supplementary Table B.1) and were curated based on the available information.

Test # of reconstruc-
tions that could
be curated

# of reconstruc-
tions that passed
the tests

Reaction and metabolite nomenclature stan-
dardized with VMH database

773 773

Reaction constraints standardized with VMH
database

773 773

Can grow anaerobically 773 773
No metabolites are produced from nothing 773 773
ATP production rates from the available carbon
sources are feasible

773 773

Metabolite formulas are defined and mass-
charge balanced

773 773

Number of gap-filling reactions that were in-
cluded for modeling purposes only is mini-
mized

773 773

In silico growth rates on the defined diets are in
realistic ranges

773 773

Gene-protein-reaction associations and reac-
tions in aerobic and anaerobic respiration, B-
vitamin biosynthesis pathways, central carbon
metabolism, amino acid biosynthesis and/or
pyrimidine and purine biosynthesis determined
by a comparative genomics approach are imple-
mented

612 612

Carbon source utilization pathways supported
by evidence from literature are present and can
carry flux

732 732

Fermentation pathways supported by evidence
from literature are present and can carry flux

765 765

Species’ capabilities/ incapabilities to synthe-
size essential biomass precursors are captured

244 112 passed all
tests, the remain-
ing 132 have
one or more
false positive or
false negative
predictions.
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Table B.14: Overview of the comparison of the reaction content between AGORA recon-
structions and published reconstructions targeting the same strain. Also shown is the com-
parison between all 773 AGORA reconstructions and 11 published gut microbe reconstruc-
tions that were previously used to construct a simplified gut microbe community model [98].
Eight strains overlapped between both reconstruction collections and were compared di-
rectly. Shown is the comparison between the eight overlapping strains individually, an be-
tween the pooled reactions of all 11 published and all 773 AGORA reconstructions. recon.
= reconstruction.

Reconstructed
Species

Total
reac-
tions in
AGORA
recon.

Total
reac-
tions
in pub-
lished
recon.

Over-
lapping
reac-
tions

Reactions
only in
AGORA
recon.

Reactions
only in
pub-
lished
recon.

Ref. for
pub-
lished
recon.

Bacteroides thetaio-
taomicron VPI 5482

1,362 1,528 1,058 305 470 [96]

Lactobacillus plan-
tarum WCFS1

1,213 777 395 818 382 [224]

Streptococcus ther-
mophilus LMG
18311

927 556 327 600 229 [165]

Escherichia coli
str. K12 substr.
MG1655

1,786 2,426 853 934 1,573 [20]

Escherichia coli
O157 H7 str. Sakai

1,742 2,372 821 922 1,551 [20]

Helicobacter pylori
26695

1,014 555 310 705 245 [229]

Klebsiella pneumo-
niae MGH78578

1,801 2,262 843 959 1,419 [133]

Salmonella enterica
sv. Typhimurium
LT2

1,765 2,623 847 919 1,776 [225]

All reconstructions
(11 vs . 773)

3,192 4,608 2,066 1,127 1,540 [20, 96,
133,
165,
224,
229,
225, 95,
71]
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Table B.15: Subsystem coverage of reactions that are overlapping between curated reconstructions and published reconstructions targeting the
same strain. Also shown are differences in subsystem coverage between all 773 reconstructions and 11 published gut microbe reconstructions.
Shown is the comparison between the eight overlapping strains individually, and between the pooled reactions of all 11 published and all
773 AGORA reconstructions. For references for the published reconstructions, refer to Supplementary Table B.14. PPP = pentose phosphate
pathway.
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Bacteroides
thetaiotaomicron
VPI 5482

Overlapping 151 0 28 118 63 181 118 2 6 46 65 100 73 0 108
AGORA only 36 1 13 61 22 34 2 1 7 7 3 18 49 1 49
Published only 47 1 18 59 22 107 13 0 4 12 35 14 104 0 33

Lactobacillus
plantarum WCFS1

Overlapping 70 0 14 17 38 70 1 0 5 25 3 67 41 1 43
AGORA only 82 1 23 193 43 86 119 5 7 16 6 51 116 0 70
Published only 56 2 15 57 24 44 15 6 7 4 0 31 83 18 20

Streptococcus
thermophilus LMG
18311

Overlapping 69 0 11 11 26 35 0 0 2 13 0 82 41 1 35
AGORA only 77 1 11 135 39 73 82 2 8 8 1 47 69 0 46
Published only 33 1 5 52 16 9 17 2 2 3 0 16 40 18 16

Escherichia coli str
K 12 substr.
MG1655

Overlapping 131 0 35 133 89 160 45 5 8 44 1 100 0 2 100
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AGORA only 93 1 14 161 73 59 107 16 11 23 3 58 238 0 77
Published only 72 2 79 261 65 146 66 37 15 11 1 64 686 21 47

Escherichia coli
O157 H7 str. Sakai

Overlapping 123 0 34 131 85 151 45 5 7 38 1 99 0 2 100
AGORA only 97 1 15 160 72 57 107 16 12 18 4 59 227 0 77
Published only 72 2 75 254 66 154 66 36 15 12 1 65 665 21 47

Helicobacter pylori
26695

Overlapping 59 0 6 20 19 55 4 0 2 13 0 47 29 2 54
AGORA only 64 1 1 208 38 63 111 3 11 11 1 39 82 0 73
Published only 39 1 5 30 34 23 7 2 2 5 0 21 48 0 28

Klebsiella
pneumoniae
MGH78578

Overlapping 141 0 31 127 83 144 43 4 10 38 1 99 2 2 111
AGORA only 109 1 15 165 73 70 101 11 19 23 8 50 227 0 83
Published only 73 1 63 238 52 149 61 12 12 9 1 61 629 21 44

Salmonella enterica
sv. Typhimurium
LT2

Overlapping 131 0 33 132 73 169 45 5 9 44 1 100 0 2 103
AGORA only 92 1 14 160 79 39 107 17 11 23 3 59 213 0 102
Published only 70 3 63 299 73 198 65 59 18 7 1 61 778 21 60

All reconstructions
(11 vs. 773)

Overlapping 271 0 66 286 163 332 165 11 20 74 69 149 243 2 214
AGORA only 130 1 26 85 134 91 42 38 29 30 10 50 192 0 65
Published only 158 12 102 443 115 252 64 70 40 17 38 83 1,033 24 88
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Table B.16: Cell count per ml, optical density (OD), and pH values before and after cell
culture of Bacteroides caccae ATCC 43185 (B. caccae) and Lactobacillus rhamnosus GG
ATCC 53103 (LGG). All samples were grown on DMEM 6429 medium supplemented with
1% haemin, 3.33% vitamin K, and 9.4 g/L arabinogalactan.

Sample OD
initial
(time=0)

OD
end-
point

Cell count
at end-
point

Time
(hours) of
culture

pH be-
fore

pH
after

B. caccae (1) 0.09 0.49 2.86E+07 31 8.05 NA
B. caccae (2) 0.05 0.56 2.79E+06 27 8.05 7.16
B. caccae (3) 0.09 0.42 3.09E+05 27 8.05 7.27
LGG (1) 0.09 0.55 5.38E+07 31 8.2 5.72
LGG (2) 0.12 0.1 1.27E+05 48 8.2 7.1
LGG (3) 0.1 0.14 1.76E+05 48 8.2 6.64

Table B.17: Uptake rates (mmol/gDW/h) implemented to simulate DMEM 6429 medium.

Metabolite ID Exchange reaction ID Metabolite name Uptake rate
ala_L EX_ala_L(e) L-alanine 1
arg_L EX_arg_L(e) L-arginine 1
asn_L EX_asn_L(e) L-asparagine 1
asp_L EX_asp_L(e) L-aspartate 1
cys_L EX_cys_L(e) L-cysteine 1
gln_L EX_gln_L(e) L-glutamine 1
glu_L EX_glu_L(e) L-glutamate 1
gly EX_gly(e) Glycine 1
his_L EX_his_L(e) L-histidine 1
ile_L EX_ile_L(e) L-isoleucine 1
leu_L EX_leu_L(e) L-leucine 1
lys_L EX_lys_L(e) L-lysine 1
met_L EX_met_L(e) L-methionine 1
phe_L EX_phe_L(e) L-phenylalanine 1
pro_L EX_pro_L(e) L-proline 1
ser_L EX_ser_L(e) L-serine 1
thr_L EX_thr_L(e) L-threonine 1
trp_L EX_trp_L(e) L-tryptophan 1
tyr_L EX_tyr_L(e) L-tyrosine 1
val_L EX_val_L(e) L-valine 1
glc_D EX_glc(e) Glucose 4.5
pyr EX_pyr(e) Pyruvate 1
ca2 EX_ca2(e) Calcium(2+) 1
chol EX_chol(e) Choline 1
cl EX_cl(e) Chloride 1
cobalt2 EX_cobalt2(e) Co2+ 1
cu2 EX_cu2(e) Cu2+ 1
fe2 EX_fe2(e) Fe2+ 1
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fe3 EX_fe3(e) Fe3+ 1
fol EX_fol(e) Folate 1
k EX_k(e) Potassium 1
h2o EX_h2o(e) Water 10
h2s EX_h2s(e) Hydrogen sulfide 1
inost EX_inost(e) Inositol 1
mg2 EX_mg2(e) Magnesium 1
mn2 EX_mn2(e) Manganese 1
ncam EX_ncam(e) Nicotinamide 1
pi EX_pi(e) Hydrogenphosphate 10
pnto_R EX_pnto_R(e) Pantothenate 1
pydxn EX_pydxn(e) Pyridoxine 1
ribflv EX_ribflv(e) Riboflavin 1
so4 EX_so4(e) Sulfate 1
thm EX_thm(e) Thiamin 1
zn2 EX_zn2(e) Zinc 1
mqn7 EX_mqn7(e) Menaquinone 7 1
mqn8 EX_mqn8(e) Menaquinone 8 1
pheme EX_pheme(e) Protoheme 1
arabinogal EX_arabinogal(e) Larch arabinogalactan 0.0094
q8 EX_q8(e) Ubiquinone-8 1
sheme EX_sheme(e) Siroheme 1

Table B.18: Uptake rates (mmol/gDW/h) for dietary compounds implemented to simulate
Western and high fiber diet.

Metabolite
ID

Exchange reac-
tion ID

Metabolite name Western
diet

High fiber
diet

arab_L EX_arab_L(e) L-arabinose 0.17878295 0.04736842
cellb EX_cellb(e) Cellobiose 0.07449289 0.01973684
drib EX_drib(e) 2-deoxy-D-ribose 0.17878295 0.04736842
fru EX_fru(e) D-Fructose 0.14898579 0.03947368
fuc_L EX_fuc_L(e) L-fucose 0.14898579 0.03947368
gal EX_gal(e) D-Galactose 0.14898579 0.03947368
glc_D EX_glc(e) D-glucose 0.14898579 0.03947368
glcn EX_glcn(e) D-gluconate 0.14898579 0.03947368
lcts EX_lcts(e) Lactose 0.07449289 0.01973684
malt EX_malt(e) Maltose 0.07449289 0.01973684
man EX_man(e) D-Mannose 0.14898579 0.03947368
melib EX_melib(e) Melibiose 0.07449289 0.01973684
mnl EX_mnl(e) D-Mannitol 0.14898579 0.03947368
oxa EX_oxa(e) Oxalate(2-) 0.44695737 0.11842105
rib_D EX_rib_D(e) D-ribose 0.17878295 0.04736842
rmn EX_rmn(e) L-Rhamnose 0.14898579 0.03947368
sucr EX_sucr(e) Sucrose 0.07449289 0.01973684
tre EX_tre(e) Trehalose 0.07449289 0.01973684
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xyl_D EX_xyl_D(e) D-xylose 0.17878295 0.04736842
strch1 EX_strch1(e) Starch 0.25733909 0.06818182
amylopect900 EX_amylopect900(e)Amylopectin 0.00001567 0.00034722
amylose300 EX_amylose300(e) Amylose 0.00004702 0.00104167
arabinan101 EX_arabinan101(e) Arabinan 0.00016628 0.00368369
arabinogal EX_arabinogal(e) Larch arabinogalactan 0.00002191 0.00048550
arabinoxyl EX_arabinoxyl(e) Arabinoxylan 0.00030665 0.00679348
bglc EX_bglc(e) Beta-glucan 0.00000007 0.00000156
cellul EX_cellul(e) Cellulose 0.00002821 0.00062500
dextran40 EX_dextran40(e) Dextran 40, 1,6-alpha-

DGlucan
0.00017632 0.00390625

galmannan EX_galmannan(e) Carob galactomannan 0.00001411 0.00031250
glcmannan EX_glcmannan(e) Konjac glucomannan 0.00003288 0.00072844
homogal EX_homogal(e) Homogalacturonan 0.00012823 0.00284091
inulin EX_inulin(e) Chicory inuli n

0.00047019
0.01041667

kestopt EX_kestopt(e) Kestopentaose 0.00282117 0.06250000
levan1000 EX_levan1000(e) Levan, 1000 fructose

units
0.00001411 0.00031250

lichn EX_lichn(e) Lichenin from Ice-
landic moss

0.00008298 0.00183824

lmn30 EX_lmn30(e) Laminarin 0.00047019 0.01041667
pect EX_pect(e) Pectin 0.00003339 0.00073964
pullulan1200 EX_pullulan1200(e) Pullulan 0.00001175 0.00026042
raffin EX_raffin(e) Raf-

finose
0.00470194 0.10416667

rhamnogalurI EX_rhamnogalurI(e)Potato rhamnogalactur-
onan I

0.00001449 0.00032106

rhamnogalurII EX_rhamnogalurII(e)Wine rhamnogalacturo-
nan II

0.00026699 0.00591483

starch1200 EX_starch1200(e) Resistant starch 0.00001175 0.00026042
xylan EX_xylan(e) Oat spelt xylan 0.00003206 0.00071023
xyluglc EX_xyluglc(e) Xyluglucan 0.00001315 0.00029124
arachd EX_arachd(e) Arachidonate 0.00332813 0.00166406
chsterol EX_chsterol(e) Cholesterol 0.00495795 0.00247898
glyc EX_glyc(e) Glycerol 1.79965486 0.89982743
hdca EX_hdca(e) Hexadecanoate (n-

C16:0)
0.39637090 0.19818545

hdcea EX_hdcea(e) Hexadecenoate (n-
C16:1)

0.03651697 0.01825848

lnlc EX_lnlc(e) Linoleate 0.35910921 0.17955461
lnlnca EX_lnlnca(e) Alpha-linolenate 0.01756512 0.00878256
lnlncg EX_lnlncg(e) Gamma-linolenate 0.01756512 0.00878256
ocdca EX_ocdca(e) Octadecanoate (n-

C18:0)
0.16928260 0.08464130
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ocdcea EX_ocdcea(e) Octadecenoate (n-
C18:1)

0.68144465 0.34072233

octa EX_octa(e) Octanoate (n-C8:0) 0.01294272 0.00647136
ttdca EX_ttdca(e) Tetradecanoate (n-

C14:0)
0.06867567 0.03433784

ala_L EX_ala_L(e) L-alanine 1 1
arg_L EX_arg_L(e) L-arginine 0.15 0.15
asn_L EX_asn_L(e) L-asparagine 0.225 0.225
asp_L EX_asp_L(e) L-aspartate 0.225 0.225
cys_L EX_cys_L(e) L-cysteine 1 1
gln_L EX_gln_L(e) L-glutamine 0.18 0.18
glu_L EX_glu_L(e) L-glutamate 0.18 0.18
gly EX_gly(e) Glycine 0.45 0.45
his_L EX_his_L(e) L-histidine 0.15 0.15
ile_L EX_ile_L(e) L-isoleucine 0.15 0.15
leu_L EX_leu_L(e) L-leucine 0.15 0.15
lys_L EX_lys_L(e) L-lysine 0.15 0.15
met_L EX_met_L(e) L-methionine 0.18 0.18
phe_L EX_phe_L(e) L-phenylalanine 1 1
pro_L EX_pro_L(e) L-proline 0.18 0.18
ser_L EX_ser_L(e) L-serine 1 1
thr_L EX_thr_L(e) L-threonine 0.225 0.225
trp_L EX_trp_L(e) L-tryptophan 0.08181818 0.08181818
tyr_L EX_tyr_L(e) L-tyrosine 1 1
val_L EX_val_L(e) L-valine 0.18 0.18
12dgr180 EX_12dgr180(e) 1,2-Diacyl-sn-glycerol

(dioctadecanoyl, n-
C18:0)

1 1

26dap_M EX_26dap_M(e) meso-2,6-
Diaminoheptanedioate

1 1

2dmmq8 EX_2dmmq8(e) 2-
Demethylmenaquinone
8

1 1

2obut EX_2obut(e) 2-Oxobutanoate 1 1
3mop EX_3mop(e) 3-methyl-2-

oxopentanoate
1 1

4abz EX_4abz(e) 4-Aminobenzoate 1 1
4hbz EX_4hbz(e) 4-hydroxybenzoate 1 1
ac EX_ac(e) Acetate 1 1
acgam EX_acgam(e) N-acetyl-D-

glucosamine
1 1

acmana EX_acmana(e) N-acetyl-D-
mannosamine

1 1

acnam EX_acnam(e) N-acetylneuraminate 1 1
ade EX_ade(e) Adenine 1 1
adn EX_adn(e) Adenosine 1 1
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adocbl EX_adocbl(e) Adenosylcobalamin 1 1
ala_D EX_ala_D(e) D-alanine 1 1
amp EX_amp(e) AMP 1 1
arab_D EX_arab_D(e) D-Arabinose 1 1
btn EX_btn(e) Biotin 1 1
ca2 EX_ca2(e) Calcium(2+) 1 1
cbl1 EX_cbl1(e) Cob(I)alamin 1 1
cgly EX_cgly(e) L-cysteinylglycine 1 1
chol EX_chol(e) Choline 1 1
chor EX_chor(e) Chorismate 1 1
cit EX_cit(e) Citrate 1 1
cl EX_cl(e) Chloride 1 1
cobalt2 EX_cobalt2(e) Co2+ 1 1
csn EX_csn(e) Cytosine 1 1
cu2 EX_cu2(e) Cu2+ 1 1
dad_2 EX_dad_2(e) 2-deoxyadenosine 1 1
dcyt EX_dcyt(e) Deoxycytidine 1 1
ddca EX_ddca(e) Laurate 1 1
dgsn EX_dgsn(e) Deoxyguanosine 1 1
fe2 EX_fe2(e) Fe2+ 1 1
fe3 EX_fe3(e) Fe3+ 1 1
fe3dcit EX_fe3dcit(e) Fe(III)dicitrate 1 1
fald EX_fald(e) Formaldehyde 1 1
fol EX_fol(e) Folate 1 1
for EX_for(e) Formate 1 1
fum EX_fum(e) Fumarate 1 1
gam EX_gam(e) D-Glucosamine 1 1
glu_D EX_glu_D(e) D-Glutamate 1 1
glyc3p EX_glyc3p(e) Glycerol 3-phosphate 1 1
gthox EX_gthox(e) Oxidized glutathione 1 1
gthrd EX_gthrd(e) Reduced glutathione 1 1
gua EX_gua(e) Guanine 1 1
h EX_h(e) Proton 1 1
H2 EX_h2(e) Hydrogen 1 1
h2o EX_h2o(e) Water 10 10
h2s EX_h2s(e) Hydrogen sulfide 1 1
hxan EX_hxan(e) Hypoxanthine 1 1
indole EX_indole(e) Indole 1 1
k EX_k(e) Potassium 1 1
lanost EX_lanost(e) lanosterol 1 1
meoh EX_meoh(e) Methanol 10 10
metsox_S_L EX_metsox_S_L(e) L-Methionine Sulfox-

ide
1 1

mg2 EX_mg2(e) Magnesium 1 1
mn2 EX_mn2(e) Mn2+ 1 1
mobd EX_mobd(e) Molybdate 1 1
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mqn7 EX_mqn7(e) Menaquinone 7 1 1
mqn8 EX_mqn8(e) Menaquinone 8 1 1
na1 EX_na1(e) Sodium 1 1
nac EX_nac(e) Nicotinate 1 1
ncam EX_ncam(e) Nicotinamide 1 1
nmn EX_nmn(e) NMN 1 1
no2 EX_no2(e) Nitrite 1 1
no3 EX_no3(e) Nitrate 1 1
orn EX_orn(e) Ornithine 1 1
pheme EX_pheme(e) Protoheme 1 1
pi EX_pi(e) Hydrogenphosphate 1 1
pime EX_pime(e) Pimelate 1 1
pnto_R EX_pnto_R(e) (R)-Pantothenate 1 1
ptrc EX_ptrc(e) Putrescine 1 1
pydam EX_pydam(e) Pyridoxamine 1 1
pydx EX_pydx(e) Pyridoxal 1 1
pydx5p EX_pydx5p(e) P yridoxal 5-phosphate 1 1
pydxn EX_pydxn(e) Pyridoxine 1 1
q8 EX_q8(e) Ubiquinone-8 1 1
ribflv EX_ribflv(e) Riboflavin 1 1
sel EX_sel(e) Selenate 1 1
sheme EX_sheme(e) Siroheme 1 1
so4 EX_so4(e) Sulfate 1 1
spmd EX_spmd(e) Spermidine 1 1
thm EX_thm(e) Thiamin 1 1
thymd EX_thymd(e) Thymidine 1 1
ura EX_ura(e) Uracil 1 1
uri EX_uri(e) Uridine 1 1
xan EX_xan(e) Xanthine 1 1
zn2 EX_zn2(e) Zinc 1 1

Table B.19: Reactions associated with functional roles of the eight different B-vitamin
biosynthesis pathways. The functional roles involved in the eight B-vitamin biosynthesis
pathways are the same as described in a study by Magnusdottir et al. [140].

B-vitamin Functional role VMH Reaction(s)
Biotin BioH / BioG PMACPME
Biotin BioW EX_pime(e), PIMEtr
Biotin BioC ACS, ACCOAC, MACPMT, MAL-

COACD, 3OAACPR1, 3HACPR1,
EACPR1, GACPCD, 3OAACPR2,
3HACPR2, EACPR2

Biotin BioF AOXSr2
Biotin BioA AMAOTr
Biotin BioD DBTS
Biotin BioB BTS4



B.2. SUPPLEMENTARY NOTES 163

Cobalamin CysG / CbiKX SHCHCC
Cobalamin CbiL CPC2MT
Cobalamin CbiG CPC3MT
Cobalamin CbiF CPC4MT
Cobalamin CobF CPC5MT
Cobalamin CbiJ CPC6R
Cobalamin CbiE / CbiT CPC6MT
Cobalamin CbiC CPC8MM
Cobalamin CbiA CYRDAS
Cobalamin CobAT CYRDAR, CYRDAAT
Cobalamin CbiP ADCYRS
Cobalamin CbiB ADCPS2
Cobalamin CobU ACBIPGT
Cobalamin CobS ADOCBLS
Folate FolE1 / FolE2 GTPCI
Folate folQ2 / folQ3 DNTPPA
Folate FolB / ptpS-III DHNPA2
Folate FolK HPPK2
Folate FolP DHPS2
Folate pabAc / pabAb ADCS
Folate pabAa ADCL
Folate FolCDHFS DHFS
Folate FolCFPGS /

FolC2
FPGS

Folate Dhfr0 / Dhfr1 /

Dhfr2
DHFR

Niacin ASPOX ASPO7
Niacin ASPDH ASPO2
Niacin QSYN QULNS
Niacin QAPRT NNDPR
Niacin NaMNAT_D NNATr
Niacin NADS NADS1
Niacin NMNS R0527
Niacin NMNAT /

NMNAT_R /

NMNAT_M

NMNAT

Niacin NADK NADK
Pantothenate ASPDC ASP1DC
Pantothenate KPHMT MOHMT
Pantothenate KPRED /

KARED
DPR

Pantothenate PBAL PANTS
Pantothenate PANK / PANK2 /

PANK3
PNTK

Pantothenate PPCS PPNCL3
Pantothenate PPCDC PPCDC
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Pantothenate PPAT PTPAT
Pantothenate DPCK DPCOAK
Pyridoxine PdxT / PdxS PLPS
Pyridoxine Dxs DXPS
Pyridoxine gapA E4PD
Pyridoxine PdxB PERD
Pyridoxine PdxF / PdxA OHPBAT
Pyridoxine PdxJ PDX5PS
Pyridoxine PdxH PDX5PO2, PYAM5POr
Riboflavin GTPCH2 GTPCII2
Riboflavin PyrD / PyrD-a DHPPDA2
Riboflavin PyrR APRAUR
Riboflavin PyrP PMDPHT
Riboflavin DHBPS DB4PS
Riboflavin DMRLS RBFSa
Riboflavin RSAe / RSAal-

pha
RBFSb

Riboflavin RK RBFK
Riboflavin FMNAT FMNAT
Thiamin ThiG THZPSN
Thiamin ThiC AMPMS2
Thiamin ThiD / ThiD_alt PMPK, HMPK1
Thiamin TMP-Pase(ThiE) TMPPP
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Table B.20: GC-MS dwell times and quantification and qualification ions (m/z) for the mea-
sured short-chain fatty acids and amino acids.

Derivatives Quant-Ion
(m/z)

Qual-Ion
(m/z)

Qual-Ion
(m/z)

Dwell
Time (ms)

Short-chain fatty acids
Formic acid 1TBDMS 103.0 75.0 99.0 20
Acetic acid 1TBDMS 117.0 75.0 99.0 20
Butyric acid 1TBDMS 145.1 75.0 115.1 20
Isobutyric acid 1TBDMS 145.1 75.0 115.1 20
Valeric acid 1TBDMS 159.1 75.0 201.1 20
IS 2-Ethylbutyric acid 1TBDMS 173.1 115.1 99.0 20
4-Methylvaleric acid 1TBDMS 173.1 215.1 99.0 20
Hexanoic acid 1TBDMS 173.1 75.0 131.0 20
Polar metabolites
Alanine 2TBDMS 260.2 158.1 232.1 70
Glycine 2TBDMS 246.1 189.1 218.1 50
Valine 2TBDMS 288.6 186.1 260.2 70
Leucine 2TBDMS 302.2 200.0 274.2 70
Isoleucine 2TBDMS 302.2 200.2 274.2 70
Threonine 2TBDMS 290.2 159.1 303.2 50
Proline 2TBDMS 286.2 184.1 258.2 50
Succinic acid 2TBDMS 289.1 215.1 331.2 50
IS Glutaric acid-D6 2TBDMS 309.2 235.2 351.3 70
Serine 3TBDMS 390.2 302.2 362.2 50
Threonine 3TBDMS 404.2 376.3 417.3 70
Methionine 2TBDMS 320.2 218.1 292.2 50
Malic acid 3TBDMS 419.2 287.1 403.2 50
Phenylalanine 2TBDMS 336.2 308.2 combined 50
Aspartic acid 3TBDMS 418.2 316.2 (coeluting)
Ornithine 3TBDMS 474.4 184.1 286.2 50
Glutamic acid_3TBDMS 432.3 330.2 404.3 50
Lysine 3TBDMS 431.3 300.2 488.4 70
Tyrosine 3TBDMS 466.3 302.2 438.3 50
Histidine 3TBDMS 440.3 338.3 196.1 70
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