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ABSTRACT

In this paper, we introduce a novel method to transfer the
deformation of a human body to another directly on a mani-
fold. There exists a rich literature on transferring deforma-
tions based on Euclidean representations. However, a 3D
human shape and pose live on a manifold and have a Rie-
mannian structure. The proposed method uses the Lie Bodies
manifold representation of 3D triangulated bodies. Its bene-
fits are preserved, namely, minimum required degrees of free-
dom for any triangle deformation and no heuristics to con-
strain excessive ones. We give a closed form solution for
deformation transfer directly on the Lie Bodies. The defor-
mations have strictly positive determinants ensuring that non-
physical deformations are removed. We show examples on
three datasets, and highlight differences with the Euclidean
deformation transfer.

Index Terms— Deformation transfer, Lie Bodies, shape
modeling, pose modeling.

1. INTRODUCTION

Deforming meshes is essential for animation and computer
modeling applications. Hand-crafting deformations can take
a considerable time as it requires special skills and an artistic
touch. Moreover, if the created deformation is to be reused for
another shape, the deformation parameters need to be adapted
to it. This might be as time consuming as the original crafting.

In this work, we focus on shape and pose deformation
transfer from a 3D human body to another. The mesh is rep-
resented as a triangulated mesh and deformations are modeled
as triangle deformations. Deformation transfer commonly
takes place on the mesh surface [1, 2, 3, 4], on a dual domain
based on dual Laplacian coordinates [5], or on a lower dimen-
sional embedded space [6, 7, 8, 9]. Techniques working di-
rectly on the surface produce a true copy of the original defor-
mation example. However, they suffer low performance and
slow convergence for dense meshes which are poorly sam-
pled. Techniques based on lower dimensional space embed-
dings have a high performance and a fast convergence even
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Fig. 1: Transfer a target pose from a reference (a) to a new
subject (b) given known initial poses in Lie Bodies [10].

with relative sparse meshes. However, they suffer a serious
distortion with detailed deformations and it is difficult to con-
struct an appropriate embedding space. Deforming on the
dual domain can have a better performance than working di-
rectly on the surface and is able to handle sparse meshes.

All existent deformation transfer approaches use Euclidean
representations for the triangle deformation and hence an ex-
cessive number of degrees of freedoms. One of the standard
techniques in the graphics community is [1] which provides a
faithful copy of triangular deformations [5]. The triangle de-
formation is defined by a (3×3) deformation matrix and a 3D
displacement vector. Deformations outside the triangle plane
are undefined, hence the nine dimensional space of deforma-
tions is under-constrained. They deal with this heuristically
by adding a fourth virtual vertex defined by the cross product
of two of the triangle edges. As a result, deformations may
have zero or a negative determinant (inconsistent deforma-
tions), thus do not exclude non-physical deformations. Other
methods [2, 3, 7, 6, 8, 5, 9] have variations on these repre-
sentations on heuristics or the space to define the parameters
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but all of them finally use Euclidean representations of the
deformation matrix. In this work, our objective is to use a
true representation for non-rigid deformations and articula-
tions which respects its underlying geometry.
The work of [10] proposed a manifold for shape represen-
tation where they represent human body shapes by using a
Lie group of deformations. This Riemannian structure re-
spects the geometry of the deformations space. It leads into
eliminating redundant degrees of freedom in Euclidean rep-
resentation of deformations, guarantees to use no heuristics
in deformation composition and removes non-physical defor-
mations which have negative or zero determinants. 3D shape
processing takes place on the tangent space which is inher-
ently Euclidean. Human poses are only introduced by means
of interpolation/extrapolation in this tangent space.

The present work extends [10] to fit both human shapes
and poses. We propose to represent new unseen poses on the
manifold using the same Lie group of deformations for hu-
man shapes. Moreover, we give a novel deformation transfer
approach directly expressed on the manifold with no need to
lift up to the tangent space. The main contributions of this
work are: (1) deformation transfer is defined on manifolds
which respect the 3D human shape Riemannian structure, (2)
the method guarantees to use no heuristics, remove inconsis-
tent deformations, and use minimal required degrees of free-
dom, and (3) it is less computationally expensive as it can be
parallelized, having the same process per triangle, and being
performed directly on the manifold without lifting to the tan-
gent space.

The paper is organized as follows: Section 2 presents the
mathematical formulation of triangle deformation on mani-
folds. The novel deformation transfer on manifolds is ex-
plained in Section 3. The experimental results are reported
in Section 4 and the work is finally concluded in Section 5.

2. MATHEMATICAL MODEL

We manipulate deformations on triangulated meshes where
each 3D human body mesh is composed of N triangles. This
work uses the Lie Bodies manifold representation of 3D trian-
gulated bodies [10] and builds upon it. Hence, a similar math-
ematical model is adopted with new propositions. Below, we
explain the considered triangle deformation representation.

A non-degenerate triangle can be defined by three vertices
{v0, v1, v2} ⊂ R3, and represented, without loss of general-
ity, by its edge matrix [v1 − v0, v2 − v0] ∈ R3×2. Deforming
a triangle T1 by a deformation D ∈ R3×3 is not unique as the
triangle T2 = DT1 has six constraints only. Some methods in
the literature use heuristics, however [10] proposes working
in a non-linear 6-dimensional (6D) space. The idea is based
on the ability to deform T1 to T2 by combining isotropic scal-
ing, in-plane deformation and a 3D rotation. These deforma-
tions overcome the problems of Euclidean deformations (e.g.,
having a negative determinant which represents non-physical

deformations). The used deformations impose a group struc-
ture of three components. The first one is GS which denotes
R+, the group for isotropic scaling with a standard multipli-
cation operation. The second component is GP defined as:

GP , {P =

(
1 F
0 H

)
: F ∈ R, H > 0}. (1)

The third component is the rotation special orthogonal group
of degree 3 denoted SO(3) and defined as:

SO(3) = {R : RTR = I, det(R) = +1}, (2)

where det(·) denotes the matrix determinant and T the matrix
transpose. GP and SO(3) are subgroups of GL(3), the gen-
eral linear group of degree 3 which has the set of (3× 3) real
non-singular matrices, together with the operation of matrix
multiplication. The two elements P ∈ GP and S ∈ GS act
on a canonical triangle which is relaxed in this work by a new
definition to work for arbitrary mesh triangles. P and S are
computed using the input and deformed triangles [10].
A canonical triangle is represented by an edge matrix in which
[v1−v0, v2−v0] = [(x1, 0, 0), (x2, y2, 0)], such that x1 > 0
and x2, y2 ∈ R. Given two canonical triangles C1 and C2,
there exists a unique (P, S) ∈ GP × GS such that C2 =
PSC1. A canonical triangle C can always be found by a ro-
tation matrix RC ∈ SO(3) such that C = RCT is canonical
and T is any triangle.
Finally, if T1 and T2 are any arbitrary triangles then there exist
two rotation matrices R1 and R2 such that R2T2 = PSR1T1.
Hence, a triangle T1 is deformed into T2 as follows:

T2 = RT
2 PSR1T1. (3)

There exists R ∈ SO(3) such that RT
2 = RRT

1 , then T2 =
RRT

1 PSR1T1. The group (R, P, S) has six degrees of free-
dom: 1 for S, 2 for P and 3 for R. We also have:

det(RRT
1 PSR1) = HS > 0, (4)

which is a (3×3) invertible matrix deforming T1 to T2 and has
six degrees of freedom only. Having the determinant strictly
positive removes any non-physical deformations like reflec-
tions. Now, we may define the triangle deformation group
GT as the set of R, P and S which is the direct product of
SO(3), GP and GS .

3. DEFORMATION TRANSFER ON MANIFOLDS

The Lie group of triangle mesh deformations can be defined
as a smooth manifoldM , GN

T of dimension 6N where each
mesh Sji is a set of N triangles. We write Sji = {T k

(i,j), k =

1, ..., N}, such that i is the index for a given human body
shape and j is the index for its current pose. Given a reference
subject, i = 0, under two poses j = 0 and j = 1 represented
by S00 and S10 , respectively, our objective is to transfer the



Fig. 2: Transfer of transformations on manifolds.

target pose corresponding to j = 1 to a new subject i = 1,
for which only the mesh S01 for the initial pose is known, see
Fig. 1. We assume that all input meshes are registered1.
Considering (3), we may define three manifolds M1,M2,
and M3 such that S00 ,S01 ∈ M1, S00 ,S10 ∈ M2, S01 ,S11 ∈
M3, and for all k, we have
M1 : S01 3 T k

(1,0) = (Rk
(1,0))

TP k
M1

Sk
M1

Rk
(0,0)T

k
(0,0),

M2 : S10 3 T k
(0,1) = (Rk

(0,1))
T
P k
M2

Sk
M2

Rk
(0,0)T

k
(0,0),

M3 : S11 3 T k
(1,1) = (Rk

(1,1))
TP k
M3

Sk
M3

Rk
(1,0)T

k
(1,0).

(5)
The transformations P and S as well as the rotations R
for M1 and M2 can be computed from the available input
meshes [10]. The goal is to estimate S11 , which from (5), boils
down to finding the transformations Rk

(1,1), P
k
M3

, and Sk
M3

.
The proposed solution is based on copying the deformation of
the reference subject, i = 0, to the new subject, i = 1, which
we translate to applying P k

M2
Sk
M2

on S01 . The assumption is:

P k
M2

Sk
M2
∼= P k

M3
Sk
M3

, ∀k. (6)

The next step is to estimate the rotations Rk
(1,1). Since Rk

(0,0),
Rk

(1,0), R
k
(0,1), and Rk

(1,1) are all elements of SO(3), then

∃ Ak ∈ SO(3) s.t. Rk
(1,0) = AkRk

(0,0), ∀k. (7)

We assume that the same transformations Ak transform Rk
(0,1)

to Rk
(1,1). We may then use Ak = Rk

(1,0)(R
k
(0,0))

T to estimate
Rk

(1,1) as:

R̂k
(1,1) = AkRk

(0,1), ∀k. (8)

This can be thought of as having a parallel transfer of rotations
on SO(3), where Ak, k = 1, · · · , N , transfer the canonical
transformations Rk

(0,0) of S00 to the canonical transformations
Rk

(1,0) of S01 . This can be seen as parallel to the transfer from
the S10 canonical transformations Rk

(0,1) to the S11 canonical

1Note that the same work is applicable to any triangulated meshes, and
not limited to human bodies.

transformations Rk
(1,1). A visual explanation of the consid-

ered assumptions is shown in Fig. 2. From equations (5), (6),
and (8), we may compute an estimate of S11 as follows:

Ŝ11 3 T̂ k
(1,1) = (AkRk

(0,1))
TP k
M2

Sk
M2

Rk
(1,0)T

k
(1,0), ∀k.

(9)
Finally, after applying (9) to estimate the triangles T̂ k

(1,1), k =

1, · · · , N , the final estimated triangulated mesh Ŝ11 is recon-
structed using the same technique of [1, 12].

4. DISCUSSION AND RESULTS

Three datasets have been used for the evaluation: the SHREC
synthetic dataset [11], the FAUST dataset of real scans [13],
and 3D human meshes generated using the SMPL model [14].
The proposed method outperforms [1] in computing realistic
3D shape normals and poses. This can be seen in the light
reflections on the meshes, plotted using MeshLab [15], as
shown in Fig. 3 and Fig. 4. The first columns to the left
in these figures show the input initial poses, also known as
“rest” poses, and the first row shows the input target poses of
the first subject to be transferred to the second subject. The
unrealistic light reflections in the third row are due to having
transformations with negative or zero determinants computed
by [1]. Our result shows the same realistic light reflection pat-
tern of the ground truth in the first rows and first columns in
Fig. 3 and Fig. 4, which is a direct result of (4). The problem
of having unrealistic poses with [1] can be clearly seen in the
third row in Fig. 4. In general, our generated poses are closer
to the original intended target poses. The slight differences,
in Fig. 4, between the second and third rows compared to the
first row are the direct interpretation of having the initial rest
poses different from each other, see Fig. 5.
In order to evaluate the accuracy of the proposed method, we
use the SHREC dataset [11] and the SMPL model [14] to gen-
erate synthetic meshes with accurate ground truth. Unfortu-
nately, the FAUST dataset [13] can not be used for a quantita-
tive comparison because all its initial rest poses are not iden-

Fig. 4: Comparison with [1] on the FAUST dataset [13]. 1st

column: rest poses, the 1st row: Ground truth target poses,
2nd row: our results, 3rd row: results of [1].



Fig. 3: Comparison of the proposed deformation transfer on manifolds to the work of [1] on the SHREC dataset [11]. 1st

column: input rest poses; 1st row: target poses to be transferred to the 2nd subject.2nd row: our results. 3rd row: results of [1].

Fig. 5: Rest poses for the FAUST dataset. Left: all poses,
right: poses used in Fig. 4.

tical, see Fig. 5. Hence, this difference will naturally prop-
agate into the output deformation in any deformation trans-
fer method, see Fig. 4. This directly results in having un-
reliable ground truth meshes for FAUST dataset to compute
the deformation error. The computed mean error, between
the ground truth 3D points and the reconstructed 3D points
of the deformed meshes for the SHREC dataset is very close
to zero (10−15) after centering to a zero mean and normaliz-
ing to a unit norm. Our method produces physically correct
poses with correctly computed normals as shown in Fig. 3 and
Fig. 4. The third pose from the left at the bottom in Fig. 4 can
give a good view of serious errors to be avoided in real data
using the proposed method. We have generated 3D human
shapes and poses using the SMPL parametric model [14] for
male and female subjects, see Fig. 6. On the left hand-side,
the generated meshes using SMPL [14] are shown. Three
poses are generated for each subject: the rest pose and two
random poses. The same poses are generated for two males
(first two rows) and two females (last two rows). Each in-
put rest pose in the first column has been transferred to the
other two poses of the three other persons. An example of
the ground truth pose (top) and the output from our method
(bottom) is shown on the right hand-side. As expected, the
mean error is very close to zero as the generated meshes and
poses are far less complex than the SHREC dataset in terms

Fig. 6: Generated meshes using SMPL [14]. Left: ground
truth, right: example of input (top) and our result (bottom).

of poses and mesh resolution. Each mesh in SHREC is com-
posed of 59727 vertices and 119344 faces (triangles) while
each mesh in the generated models using SMPL is composed
of 6890 vertices and 13776 faces.

5. CONCLUSION

This work proposes a novel technique to copy deformations
on manifolds in a closed form. It works on triangulated
meshes which are the most common representation for 3D
meshes. This automatic copy of transformations saves a huge
amount of manual efforts and time. The main advantages of
our technique are: (1) it uses the minimal required number of
degrees of freedom for deformations as opposed to Euclidean
space based deformations, (2) the deformations have positive
determinants which guarantees consistent deformations (only
physically plausible deformations are allowed), (3) it does
not need heuristics to compute the deformations to solve the
ambiguity in the space perpendicular to the triangle plane,
and (4) the technique is less computationally expensive as
it takes place directly on the manifold without lifting up to
the tangent space. Our method outperformes [1] in terms of
having realistic deformations where only physically correct
deformations are allowed.
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Popović, “Semantic deformation transfer,” ACM Trans.
Graph., vol. 28, no. 3, pp. 36:1–36:6, July 2009.

[4] Kun Zhou, Weiwei Xu, Yiying Tong, and Mathieu Des-
brun, “Deformation transfer to multi-component ob-
jects,” Comput. Graph. Forum, vol. 29, no. 2, pp. 319–
325, 2010.

[5] Yong Zhao, Bin Pan, Chunxia Xiao, and Qunsheng
Peng, “Dual-domain deformation transfer for triangu-
lar meshes,” Comput. Animat. Virtual Worlds, vol. 23,
no. 3-4, pp. 447–456, May 2012.

[6] Yong Zhao, Xinguo Liu, Chunxia Xiao, and Qunsheng
Peng, “A unified shape editing framework based on
tetrahedral control mesh,” Comput. Animat. Virtual
Worlds, vol. 20, pp. 301–310, June 2009.

[7] Mirela Ben-Chen, Ofir Weber, and Craig Gotsman,
“Spatial deformation transfer,” in Proceedings of the
2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, New York, NY, USA, 2009, SCA
’09, pp. 67–74, ACM.

[8] Lu Chen, Jin Huang, Hanqiu Sun, and Hujun Bao,
“Cage-based deformation transfer,” Computers &
Graphics, vol. 34, no. 2, pp. 107–118, 2010.

[9] Chin-chia Tung, Tsung-Hua Li, Hong Shiang Lin, and
Ming Ouhyoung, “Cage-based deformation transfer us-
ing mass spring system,” in Special Interest Group on
Computer Graphics and Interactive Techniques Confer-
ence, SIGGRAPH ’14, Vancouver, Canada, August 10-
14, 2014, Posters Proceedings, 2014, p. 34:1.

[10] Oren Freifeld and Michael J. Black, “Lie bodies: A
manifold representation of 3d human shape,” in Pro-
ceedings of the 12th European Conference on Com-
puter Vision - Volume Part I, Berlin, Heidelberg, 2012,
ECCV’12, pp. 1–14, Springer-Verlag.

[11] Z. Lähner, E. Rodolà, M. M. Bronstein, D. Cremers,
O. Burghard, L. Cosmo, A. Dieckmann, R. Klein, and
Y. Sahillioglu, “Shrec’ 16: Matching of deformable
shapes with topological noise,” in Proc. of Eurographics
Workshop on 3D Object Retrieval (3DOR), 2016.

[12] Dragomir Anguelov, Praveen Srinivasan, Daphne
Koller, Sebastian Thrun, Jim Rodgers, and James Davis,
“Scape: Shape completion and animation of people,”
ACM Trans. Graph., vol. 24, no. 3, pp. 408–416, July
2005.

[13] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J. Black, “FAUST: Dataset and evaluation for
3D mesh registration,” in Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Pis-
cataway, NJ, USA, June 2014, IEEE.

[14] Matthew Loper, Naureen Mahmood, Javier Romero,
Gerard Pons-Moll, and Michael J. Black, “Smpl:
A skinned multi-person linear model,” ACM Trans.
Graph., vol. 34, no. 6, pp. 248:1–248:16, Oct. 2015.

[15] Paolo Cignoni, Marco Callieri, Massimiliano Corsini,
Matteo Dellepiane, Fabio Ganovelli, and Guido
Ranzuglia, “Meshlab: an open-source mesh process-
ing tool,” in Eurographics Italian Chapter Conference,
2008.


	 Introduction
	 Mathematical model
	 Deformation Transfer on Manifolds
	 Discussion and Results
	 Conclusion
	 References



