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Abstract: Deniable encryption, first introduced by Canetti et al. (CRYPTO 1997), allows equiv-
ocation of encrypted communication. In this work we generalize its study to functional encryption
(FE). Our results are summarized as follows:

We first put forward and motivate the concept of receiver deniable FE, for which we consider
two models. In the first model, as previously considered by O’Neill et al. (CRYPTO 2011) in the
case of identity-based encryption, a receiver gets assistance from the master authority to generate a
fake secret key. In the second model, there are “normal” and “deniable” secret keys, and a receiver
in possession of a deniable secret key can produce a fake but authentic-looking normal key on its
own.

In the first model, we show a compiler from any FE scheme for the general circuit functionality
to a FE scheme having receiver deniability. In addition we show an efficient receiver deniable FE
scheme for Boolean Formulae from bilinear maps. In the second (multi-distributional) model, we
present a specific FE scheme for the general circuit functionality having receiver deniability. To
our knowledge, a scheme in the multi-distributional model was not previously known even for the
special case of identity-based encryption.

Finally, we construct the first sender (non-multi-distributional) deniable FE scheme.

1. Introduction

Deniable encryption, formalized by Canetti et al. in 1997 [19], allows the sender and/or receiver
of encrypted communication, after having already exchanged an encrypted message, to produce
fake but authentic-looking random coins that “open” the ciphertext to a different message. Canetti
et al. distinguish between two different models of deniability. The first is deniability, in which the
parties always run the prescribed key generation and encryption algorithms, and can equivocate
their messages later on. The second model is called multi-distributional deniability, in which there
exist alternative deniable algorithms whose outputs can be equivocated, so that it appears as if the
prescribed algorithms had been used all along. O’Neill et al. [40] construct “bideniable” public-key
encryption schemes, namely where the sender and receiver can simultaneously equivocate without
any coordination, albeit in the multidistributional model. O’Neill et al. also present a bideniable
construction for identity-based encryption [42, 13] in which the receiver needs assistance from the
master authority to produce fake secret keys.
Deniability for Functional Encryption. In this work, we generalize the study of deniability to
functional encryption (FE) [15]. Deniability for identity-based encryption, that is a very special
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case of FE, was also previously considered by [40]. Whereas traditional public-key encryption
decryption is an all-or-nothing affair (i.e., a receiver is either able to recover the entire message
using its key, or nothing), in FE is possible to finely control the amount of information revealed
by a ciphertext to a given receiver. Precisely, in a FE scheme for functionality F , each secret key
(generated by a master authority) is associated with some value k. Anyone can encrypt via the
public parameters. When a ciphertext Ctx that encrypts x is decrypted using a secret key Skk for
value k, the result is F (k, x). Intuitively, security requires that a receiver in possession of Skk
learns nothing beyond F (k, x). We motivate the importance of deniability in the context of FE.
For example, consider an encrypted email server that uses FE, where the server is in possession
of keys that allow it to do searches, spam filtering, targeted advertising, etc. If the government
coerces the email server to provide its keys or requests additional keys from the client, the server
can do so in a way that again reveals any apparent values it likes. This is pertinent in light of
recent political events and the closing of several email providers that did not want to comply with
NSA demands (Lavabit and Silent Circle). As another scenario, consider a secure routing protocol
implemented by means of FE, where each node receives an encrypted packet and using a secret key
corresponding to its routing table is able to forward the packet to the right port without knowing
the next destinations of the packet. The NSA could attempt to coerce the nodes to reveal their
respective routing tables to trace the final destinations of the packet. If the FE system is receiver
deniable, there is no rationale for the NSA to coerce a node as a node could just reveal a fake secret
key.
Model and Definitions. Firstly, we put forth the concept of receiver-deniable FE and later, we
will introduce sender deniability. For intuition, suppose the coercer has observed a ciphertext Ctx
that encrypts some string x. Informally, receiver-deniable FE allows the sender to produce “fake”
secret key Sk′k that makes equivocate Ctx as encryption of any other x′ so that the fake secret key
decrypts to F (k, x′). But this intuition for the definition hides several details. First, what if the
coercer is able to coerce many receivers, thus seeing many secret keys? In the case of identity-
based encryption, it was previously observed by O’Neill et al. [40] that this case is equivalent
via a hybrid argument to equivocation of a single ciphertext and secret key. However, this hybrid
argument fails in our more general setting. Therefore, in our modeling we consider what we call
(nc, nk)-receiver-deniability, denoting that the coercer requests nc challenge ciphertexts and nk
secret keys (i.e, receiver-coerce queries) adaptively. Note that what we have described above is the
“full”, rather than “multi-distributional”, model of deniability. While this avoids the need for the
receiver to run special “deniable” algorithms in order to equivocate, it does mean that we need to
assume the receiver can get assistance from the master authority to generate a fake secret key Sk′k,
and that the latter cannot be coerced (e.g., because it is geographically outside the jurisdiction of
the coercer). Note that previous works treated IBE in this model due to the belief that coordination
with master authority was necessary to obtain receiver deniability.

Surprisingly, we show that this belief is not correct. In the multi-distributional model, (which
is incomparable the full model), receiver-deniability can be obtained. We present a formal security
definition for receiver-deniability in the multi-distributional model. In this model, the receiver
needs to run special “deniable” algorithms in order to equivocate. The benefit is that the receiver
does not need to get assistance from the master authority.

Indeed, as observed by [40], this is inherent for full deniability even in the simple case of
IBE, due to an impossibility result of [10]. (Namely, while the result of [10] shows that fully
receiver-deniable PKE is impossible, the result easily extends to IBE.) In the case that one of these
parameters is polynomially unbounded, meaning that a bound is not fixed a priori, we denote it by

2



poly. Specifically, we envisage that the coercer should not be able to distinguish the equivocated
coins of both the sender and receiver from an “honest transcript,” even after requesting arbitrary
secret keys and equivocations of its choice.
“Full” Receiver Deniability from Trapdoor Circuits. Next we show show how to transform
any “IND-secure” FE scheme for general circuits (i.e., where its functionality F computes general
boolean circuits on some input length) into a FE for the same functionality that is (nc, poly)-
receiver-deniable in the full model (but where the receiver gets assistance from the master authority
to equivocate) without introducing any additional assumption. In particular, recent works [26, 17,
44, 28] show IND-secure FE for general circuits whose security is based either on indistinguishable
obfuscation and its variants or polynomial hardness of simple assumptions on multi-linear maps.
We can use any of these schemes in our construction. We present a direct black-box transformation,
making use of the “trapdoor circuits” technique, introduced by De Caro et al. [24] to show how to
bootstrap IND-secure for circuits to the stronger notion of simulation security (SIM-security). The
idea of the trapdoor mechanism is to replace the original circuit C with a trapdoor circuit Trap[C]
that the receiver faking algorithm can then use to program the output in some way.

To give some intuition, let us consider for simplicity the case of equivocating a single ciphertext
and secret key. Then, a plaintext will have two slots where the first slot will be the actual message
x. The second slot will be a random string s, some sort of tag used to identify the ciphertext. On the
other hand, Trap[C], where for simplicity we restrict C to be one-bit output circuit, will have two
slots embedded in it, let us call them trapdoor values. Both the slots will be random strings r1, r2
used as formal variables to represent Boolean values 0 and 1. Now, if it happens that s = r1 then
Trap[C] returns 0, if s = r2 then it returns 1, otherwise Trap[C] returns C(x). Notice that, when
s, r1 and r2 are chosen uniformly and independently at the random then the above events happen
with negligible probability thus this trapdoor mechanism does not influence the correctness of the
scheme. On the other hand, it is easy to see how the receiver faking algorithm works by setting r1
or r2 to s depending on the expected faked output. Clearly, the receiver needs the master authority
to generate a new secret key, corresponding to circuit Trap[C], with tailored embedded r1 and
r2. Moreover, the above solution fails when more secret keys have to be equivocated. In fact, s
then would appear in all the faked secret keys and this would be easily recognizable by the the
adversary. A trivial fix is to put in the ciphertexts as many different s’s as the number of secret
keys to be faked but this will create an unnecessary dependence that can be removed by using a
PRF as a compact source of randomness. In the conference version [21] we presented the result in
full details.
Efficient Receiver Deniable FE for Boolean Formulae. We study the possibility of achiev-
ing receiver deniability for weaker classes of functionalities more efficiently and assuming more
standard assumptions. We show how to do this for Boolean formulae, namely we show how to
transform any IND-secure FE scheme for Boolean formulate into one that is (nc, nd)-receiver de-
niable. Note that Katz, Sahai and Waters [35] show how to construct an FE scheme for Boolean
formulae given an FE scheme for the inner-product predicate whose security, by the result of
Okamoto and Takashima [38], can be based only on the Decisional Linear Assumption in bilinear
groups. An interesting point, however, is that these schemes for boolean formulae allow polyno-
mials in t variables with degree at most d in each variable, only if dt is polynomial in the security
parameter. This will mean that in order for our scheme to be efficient, the trapdoor mechanism
will have a non-negligible probability of being activated by an honest encryption (i.e., correctness
is non-negligible). We fix this issue by using parallel repetition. The resulting scheme achieves
(nc, nk)-receiver deniable but we do not know how to achieve nk = poly.
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“Multi-distributional” Receiver Deniability from “Delayed Trapdoor Circuits”. In the pre-
vious receiver deniable FE schemes, the receiver crucially relies on the assistance of the master
authority to generate a new secret key with tailored embedded r1 and r2, the trapdoor values. To
avoid this, we need to find a way for the master authority to release a fake key that allows the
receiver to modify the trapdoor values at any stage when required. This is solved using the new
technique of delayed trapdoor circuits. Instead of embedding directly the trapdoor values in the
Trap[C], they are encrypted using an CCA-like encryption scheme to avoid that the adversary can
maul those values and learn something it should not learn. The resulting ciphertext, let us call it
Ct′, has to be linked to the corresponding Trap[C] by using a one-way function f as follows: a fresh
random value z in the domain of f will be encrypted along with the trapdoor values, t = f(z) will
be embedded in trapdoor circuit. Trap[C] then will take in input also Ct′ and verify that it encrypts
a pre-image of t, before proceeding more. It is easy to see then that the fake key we were looking
for is z. Knowing z allows to generate a new Ct′ for different trapdoor values. Our construction
starts from that of Garg et al. [26] but departs from it in many technicalities needed to face the
challenges met in the hybrid experiments. For instance, as in Garg et al. a ciphertext of the func-
tional encryption scheme for x corresponds to a double encryption, à la Naor-Yung [37], of x, using
a statistical simulation-soundness NIZK. A secret key for circuit C is instead the differing-input
obfuscation [6, 3, 17] of a trapdoor circuit Trap[C] that takes in input the double encryption of x
and the double encryption of the trapdoor values related to Trap[C]. Intuitively, differing-input ob-
fuscation is required because there are certain Ct′ that allows to discriminate, for example, which
secret key Trap[C] is used to decrypt the double encryption of x. The actual construction is more
involved, and is presented in full details in Section 4. We point out that in some concurrent works
Apon et al.[4, 5] construct bi-deniable inner-product and attribute-based encryption schemes in the
multidistributional model from LWE.
Sender deniability for FE from indistinguishability obfuscation. Sender deniability can be
argued to be less important than receiver deniability in general. In fact the sender can always
claim to have erased the random coins. Nonetheless, for some applications, sender deniability is
fundamental. For instance, in some protocols the sender might have economic interest in selling
the random coins (e.g., like it is the case in e-voting) and sender deniability is the right tool to
prevent such problem.

We next show that any FE scheme for a functionalityF can be upgraded to one that is (poly, poly)-
sender deniable assuming indistinguishability obfuscation. For this transformation we use the
techniques introduced by Sahai and Waters in [41], who showed how to make any public-key
encryption scheme sender-deniable. In this sense, we generalize their result from public-key en-
cryption to any FE scheme for an arbitrary functionality. As compared to their result, we simply
need to observe that their security proof holds even if the adversary knows the secret key of the
starting encryption scheme. This result is presented in the Section 5 and the relevant definitions in
Section 2.2.

We note that our assumption of indistinguishability obfuscation is already known to imply FE
for the general circuit functionality [44], but we prefer to phrase our result as upgrading an arbitrary
functionality rather than the former. The reason is that the techniques of Sahai and Waters [41] may
not necessarily be tied to indistinguishability obfuscation, and if future work develops techniques
for constructing deniable PKE based on weaker assumptions we hope they will transfer to our
context as well.

We also note that this transformation also preserves receiver deniability of the starting scheme,
and thus can be applied to the schemes obtained from our first result (on receiver deniability). In
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this way we achieve (nc, poly) bideniable FE for circuits assuming IND-secure FE for circuits and
indistinguishability obfuscation. We remark that in the works of Apon et al.[4, 5] the notion of
sender deniability achieved is multi-distributional.
Relation to Simulation-Based Security. As observed by [40], in the case of PKE, deniabil-
ity implies a scheme is also non-committing [20, 22] and secure under key-revealing selective-
opening attacks (SOA-K) [25, 8]. On the other hand, it was recently observed by [9] that the
notion of simulation-based (SIM) security for FE implicitly incorporates SOA-K. SIM-security is
a stronger notion of security for FE than IND-security and has been the subject of multiple recent
works [39, 15, 9, 1, 24, 31, 7]. In both notions the adversary makes secret key queries interleaved
with queries for challenge ciphertexts. IND-security asks that the adversary cannot distinguish
between encryptions of messages that it cannot trivially distinguish using the keys. SIM-security
requires that the “view” of the adversary can be simulated by a simulator given only the corre-
sponding outputs of the functionality on the underlying plaintexts. This leads to the interesting
result that a receiver-deniable FE scheme necessarily achieves some form of SIM-security. To for-
malize it, recall from [24] that (q1, `, q2)-SIM security denotes SIM-security where the adversary
is allowed to make at most q1 non-adaptive key queries, ` encryption queries (challenge cipher-
texts), and q2 adaptive key queries. We show that an (nc, nk)-receiver deniable FE scheme is also
(0, nc, nk)-SIM-secure (see the conference version [21] for a formal theorem and proof). On the
other hand we stress deniability is stronger in the respect that equivocable ciphertexts and keys
must decrypt correctly in the real system. Our results on receiver deniability can be seen as show-
ing that the techniques of [24] are sufficient not just for achieving SIM-security but for deniability
as well. Moreover, this implication implies that known impossibility results for SIM-secure FE
[15, 9, 1, 24, 23, 2] mean that in the receiver deniable case (nc, poly)-deniability (which we achieve
assuming IND-secure FE for the circuit functionality) is in fact optimal. Iovino and Żebrowski [34]
show how to overcome known impossibility results in the programmable RO model assuming that
the time of decryption grow as the number of oracle queries. In the case of deniability it is unclear
how programmable ROs could help since programmability only helps in a simulation whereas de-
niability refers to the behaviour of the real system. In other words, we show that the techniques
of [24] are sufficient not only to achieve (q1, `, poly)-SIM secure FE in the standard model but
also receiver deniability for the analogous parameters (to add sender deniability we use different
techniques, as SIM-security seems orthogonal).

2. Definitions

We first present formal definition of functional encryption [15, 27], and its security, and deniable
functional encryption and its security. Due to space constraints we defer to [6, 3, 17] for definitions
of differing-inputs obfuscation, and to Garg et al.. [26] for the definition of statistical simulation-
sound non-interactive zero-knowledge proofs (SSS-NIZK, in short).
Functional Encryption. We define the primitive and its security following Boneh et al. [15]
notation.

Definition 2.1. [Functionality] A functionality F = {Fn}n>0 is a family of functions Fn : Kn ×
Xn → Σ where Kn is the key space for parameter n, Xn is the message space for parameter n and
Σ is the output space. We will refer to functionality F as a function from F : K × X → Σ with
K = ∪nKn and X = ∪nXn.

Notice that, when ~x = (x1, . . . , x`) is a vector of messages, for any k ∈ K, we denote by
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F (k, ~x) the vector of evaluations (F (k, x1), . . . , F (k, x`)).

Definition 2.2. [Functional Encryption Scheme] A functional encryption scheme for functional-
ity F defined over (K,X) is a tuple FE = (Setup,KeyGen,Enc,Dec) of 4 algorithms with the
following syntax:

1. Setup(1λ, 1n) outputs public and master secret keys (Mpk,Msk) for security parameter λ and
length parameter n that are polynomially related.

2. KeyGen(Msk, k), on input Msk for security parameter λ and k ∈ Kn outputs secret key Sk.
3. Enc(Mpk, x), on input Mpk for security parameter λ and x ∈ Xn outputs ciphertext Ct;
4. Dec(Mpk,Ct, Sk) outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Mpk,Msk) ← Setup(1λ, 1n),
all k ∈ Kn and x ∈ Xn, the following probability taken over the random coins of the KeyGen and
Enc algorithms is overwhelming: Dec(Mpk,Ct, Sk) = F (k, x) whenever F (k, x) 6= ⊥,1 where
Sk← KeyGen(Msk, k) and Ct← Enc(Mpk, x).

Definition 2.3. [Circuit Functionality] The Circuit functionality has key spaceKn equals to the set
of all n-input Boolean circuits and message space Xn the set {0, 1}n of n-bit strings. For C ∈ Kn

and x ∈ Xn, we have Circuit(C, x) = C(x), that is, the output of circuit C on input x.

Indistinguishability-based Security. The indistinguishability-based notion of security for func-
tional encryption scheme FE = (Setup,KeyGen,Enc,Dec) for functionality F defined over (K,X)
is formalized by means of the following game INDFE

A between an adversary A = (A0,A1) and a
challenger C.

INDFE
A (1λ)

1. C generates (Mpk,Msk)← Setup(1λ) and runs A0 on input Mpk;
2. A0, during its computation, issues q1 non-adaptive key-generation queries. C on input

key k ∈ K computes Sk = KeyGen(Msk, k) and sends it to A0.
When A0 stops, it outputs two challenge messages vectors, of length `, ~x0, ~x1 ∈ X`

and its internal state st.
3. C picks b ∈ {0, 1} at random, and, for i ∈ `, computes the challenge ciphertexts

Cti = Enc(Mpk, xb[i]). Then C sends (Cti)i∈[`] to A1 that resumes its computation
from state st.

4. A1, during its computation, issues q2 adaptive key-generation queries. C on input key
k ∈ K computes Sk = KeyGen(Msk, k) and sends it to A1.

5. When A1 stops, it outputs b′.
6. Output: if b = b′, for each i ∈ [`], |xi0| = |xi1|, and F (k, ~x0) = F (k, ~x1) for each k

for which A has issued a key-generation query, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,INDA (1λ) = Prob[INDFE
A (1λ) = 1]− 1/2

Definition 2.4. We say that FE is (q1, `, q2)-indistinguishably secure ((q1, `, q2)-IND-Secure, for
short) where q1 = q1(λ), ` = `(λ)q2 = q2(λ) are polynomials in the security parameter λ that are
fixed a priori, if all probabilistic polynomial-time adversaries A issuing at most q1 non-adaptive
key queries, q2 adaptive key queries and output challenge message vectors of length and most `,
have at most negligible advantage in the above game. Notice that, in the case that a parameter is
an unbounded polynomial we use the notation poly. If a parameter is not specified then it assumed
to be poly.

1See [9] for a discussion about this condition.
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Receiver-Deniable Functional Encryption Scheme. We define the primitive and its security in
the following way:

Definition 2.5. [Receiver-Deniable Functional Encryption Scheme] A (nc, nk)- receiver-deniable
functional encryption scheme for functionality F defined over (K,X), where nc = nc(λ), nk =
nk(λ) are polynomials in the security parameter λ that are fixed a priori, is made up of the algo-
rithms RecDenFE = (Setup,Enc,KeyGen,Dec) of a standard FE scheme for F (Definition 2.2)
and in addition the following algorithm:

• RecFake(Msk, k,Ct,x). The receiver faking algorithm, on input the master secret key Msk, a key
k, at most nc ciphertexts Ct = (Ct1, . . . ,Ctnc) and messages x = (x1, . . . , xnc), outputs faked
secret key SkC .
Correctness is defined as in Definition 2.2 and indistinguishability as in Definition 2.4.

Definition 2.6. [Receiver-Deniability] We require that for every PPT adversary A = (A0,A1),
issuing at most nk receiver-coerce queries to the oraclesK1 andK2, the following two experiments
are computationally indistinguishable.

RealRecDenExpRecDenFE
A (1λ)

(Mpk,Msk)← Setup(1λ);
(x?,y?, st)← AO1,O2

0 (Mpk);
(Ct?i ← Enc(Mpk, xi; ri))i∈[nc];
Output: AO1,O2,K1(·,Ct?,x?)

1 (Ct?, st)

FakeRecDenExpRecDenFE
A (1λ)

(Mpk,Msk)← Setup(1λ);
(x?,y?, st)← AO1,O2

0 (Mpk);
(Ct?i ← Enc(Mpk, yi; ri))i∈[nc];
Output: AO1,O2,K2(·,Ct?,x?)

1 (Ct?, st)

where x? = (x?1, . . . , x
?
nc), y? = (y?1, . . . , y

?
nc), and Ct? = (Ct?1, . . . ,Ct

?
nc). (K1,K2) are the

receiver-coerce oracles.
All the oracles declared above are defined as follows:

K1(k,Ct,x)
Skk ← KeyGen(Msk, k);
Output: Skk

K2(k,Ct,x)
Skk ← RecFake(Msk, k,Ct, ~x);
Output: Skk

O1(k, x, y)
Ct← Enc(Mpk, x; r);
Skk ← KeyGen(Msk, k);
Output: (Ct,Skk)

O2(k, x, y)
Ct← Enc(Mpk, y; r);
Skk ← RecFake(Msk, k,Ct, x);
Output: (Ct, Skk)

In the above experiments, we require the following:
1. There is no query (k, x, y) issued to O1 and at same time a query (k,Ct?,x) for some x issued

to K1 and there is no query (k, x, y) issued to O2 and at same time a query (k,Ct?,x) for some x
issued to K2, where we consider all queries issued during the entire course of the experiment; i.e.,
when counting all the queries made by A0 and A1 together.

2. For any query issued by A1 to its oracle K1 or K2 oracle for key k?, neither A0 nor A1 queries k?

to either of their oracles O1,O2; i.e., they do not make any query (k?, x, y) for some x, y to O1 or
O2.

3. For each key k different from any of the challenge keys k?i queried by A0 and A1 to oracles O1 or
O2, it holds that F (k,x?) = F (k,y?).
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2.1. Multi-Distributional Receiver-Deniable Functional Encryption Scheme

Definition 2.7. [Multi-Distributional Receiver-Deniable FE] A (nc, nk)-multi-distributional receiver-
deniable functional encryption scheme for functionality F defined over (K,X), where nc =
nc(λ), nk = nk(λ) are polynomials in the security parameter λ that are fixed a priori, is made
up of the algorithms MDRecDenFE = (Setup,Enc,KeyGen,Dec) of a standard FE scheme for F
(Definition 2.2) and in addition the following two algorithms:

• DenKeyGen(Msk, k). The deniable key generation algorithm, on input the master secret key Msk,
and key k, outputs secret key Skk and fake key Fkk.

• RecFake(Skk,Fkk,Ct,x). The receiver faking algorithm, on input secret key and fake key Skk,Fkk
for key k, at most nc ciphertexts Ct = (Ct1, . . . ,Ctnc) and messages x = (x1, . . . , xnc), outputs
faked secret key Sk′k.

Correctness is defined as in Definition 2.2 and indistinguishability as in Definition 2.4. We also
require the following security property.

Definition 2.8. [Multi-Distributional Receiver Deniability] We require that for every PPT adver-
sary A = (A0,A1), issuing at most nk receiver-coerce queries to the oracles K1 and K2, the
following two experiments are computationally indistinguishable.

RealMDRecDenExpRecDenFE
A (1λ)

(x?,y?, st)← A0(1
λ);

(Mpk,Msk)← Setup(1λ);
(Ct?i ← Enc(Mpk, xi; ri))i∈[nc];
Output: AO1,O2,K1(·,Ct?,x?)

1 (Mpk,Ct?, st)

FakeMDRecDenExpRecDenFE
A (1λ)

(x?,y?, st)← A0(1
λ);

(Mpk,Msk)← Setup(1λ);
(Ct?i ← Enc(Mpk, yi; ri))i∈[nc];
Output: AO1,O2,K2(·,Ct?,x?)

1 (Mpk,Ct?, st)

where x? = (x?1, . . . , x
?
nc), y? = (y?1, . . . , y

?
nc), and Ct? = (Ct?1, . . . ,Ct

?
nc). (K1,K2) are the

receiver-coerce oracles.
All the oracles declared above are defined as follows:

K1(k,Ct,x)
Skk ← KeyGen(Msk, k);
Output: Skk

K2(k,Ct,x)
(Skk,Fkk)← DenKeyGen(Msk, k);
Sk′k ← RecFake(Skk,Fkk,Ct,x);
Output: Sk′k

O1(k, x, y)
Ct← Enc(Mpk, x; r);
Skk ← KeyGen(Msk, k);
Output: (Ct, Skk)

O2(k, x, y)
Ct← Enc(Mpk, y; r);
(Skk,Fkk)← DenKeyGen(Msk, k);
Sk′k ← RecFake(Skk,Fkk,Ct, x);
Output: (Ct,Sk′k)

In the above experiments, we require the following:
1. There is no query (k, x, y) issued to O1 and at same time a query (k,Ct?,x) for some x issued

to K1 and there is no query (k, x, y) issued to O2 and at same time a query (k,Ct?,x) for some x
issued to K2, where we consider all queries issued during the entire course of the experiment; i.e.,
when counting all the queries made by A0 and A1 together.

2. For any query issued by A1 to its oracle K1 or K2 for key k?, neither A0 nor A1 queries k? to
either of their oraclesO1,O2; i.e., they do not make any query (k?, x, y) for some x, y toO1 orO2.

8



3. For each key k different from any of the challenge keys k?i queried by A to oracles O1 or O2, it
holds that F (k,x?) = F (k,y?).

Remark 2.9. Our security notion is selective, in that the adversary commits to (x, y) before it
sees Mpk. It is possible to bootstrap selectively-secure scheme to full security using standard
complexity leveraging arguments [12, 32] at the price of a 2|x| loss in the security reduction.

2.2. Sender-Deniable Functional Encryption Scheme

In this Section we define sender-deniable FE. First we recall some relevant definitions.
Publicly Deniable Encryption In [41], Sahai and Waters introduced the strong notion of publicly
deniable encryption and the related security properties. Specifically:

Definition 2.10. [Publicly Deniable Encryption] A publicly deniable encryption scheme over a
message space X = Xλ consists of four algorithms PDE = (Setup,Enc,Dec,Explain) with the
following semantics:

• Setup(1λ) is a polynomial time algorithm that takes as input the unary representation of the security
parameter λ and outputs a public key Mpk and a secret key Sk.

• Enc(Mpk, x ∈ X;u) is a polynomial time algorithm that takes as input the public key Mpk a
message x and uses random coins u. It outputs a ciphertext Ct.

• Dec(Sk,Ct) is a polynomial time algorithm that takes as input a secret key Sk and ciphertext Ct,
and outputs a message x.

• Explain(Mpk,Ct, x; r) is a polynomial time algorithm that takes as input a public key Mpk, a ci-
phertext Ct, and a message x, and outputs and a string e, that is the same size as the randomness u
taken by Enc algorithm above.

We say that a publicly deniable encryption scheme is correct if for all messages x ∈ X

Pr[(Mpk, Sk)← Setup(1λ);Dec(Sk,Enc(Mpk, x;u)) 6= x] = negl(λ)

The security requirements for a publicly deniable encryption system are two and are defined as
follows.
Indistinguishability-based Security. This is exactly the same security game [30] as in standard
public key encryption schemes.
Indistinguishability of Explanation. Formally, the indistinguishability of explanation notion of
security for public deniable encryption scheme PDE = (Setup,Enc,Dec,Explain) is formalized by
means of the following game IND-EXPLPDE

A between an adversaryA = (A0,A1) and a challenger
C.

IND-EXPLPDE
A (1λ)

1. C generates (Mpk, Sk)← Setup(1λ) and runs A0 on input Mpk;
2. When A0 stops, it outputs a single message x ∈ X and its internal state
st. C creates Ct ← Enc(Mpk, x;u) for random u and it computes e ←
Explain(Mpk,Ct, x; r) for random r. Then, C flips a coin b ← {0, 1}. If b = 0,
C sends (Ct, u) to A1 that resumes its computation from state st. Otherwise, if
b = 1, C sends (Ct, e).

3. When A1 stops, it outputs b′.
4. Output: if b = b′, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvPDE,IND-EXPL
A (1λ) = Prob[IND-EXPLPDE

A (1λ) = 1]− 1/2
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Definition 2.11. We say that PDE has indistinguishably of explanation if all probabilistic polyno-
mial time adversaries A have at most negligible advantage in the above game.

Generic Transformation. In [41], Sahai and Waters show how to transform any public key
encryption scheme E in a publicly deniable encryption scheme PDE by using indistinguishability
obfuscation and punctured pseudo-random functions [29, 16, 36, 18]. In particular, for the so
obtained PDE scheme, indistinguishability of explanation holds also when the adversary is given
the secret key of the underlying public key encryption scheme E .
Publicly Deniable Functional Encryption

Definition 2.12. [Publicly Deniable Functional Encryption] A publicly deniable functional encryp-
tion scheme PDFE for functionality F defined over (K,X) consists of the algorithms that make
up a functional encryption scheme for the same functionality (Definition 2.2), with in addition an
explanation algorithm as defined in Definition 2.10.

Security.: Indistinguishability-based security and indistinguishability of explanation of PDFE
are defined exactly the same way as Definition 2.4 and 2.11, respectively.

3. Receiver Deniable FE for Boolean Formulae

The previous construction for general circuits is based on obfuscation and thus represents currently
only a feasibility result.

In this section we consider receiver deniability for weaker classes of functionalities that still
support some form of trapdoor mechanism and for which a functional encryption scheme can be
constructed more efficiently and assuming standard assumptions. Namely, we are interested in con-
structing a receiver deniable FE for Boolean formulae in which Boolean variables are encrypted
and the receiver, having a secret key for a Boolean formula, test whether the variables in the ci-
phertext satisfy the formula in the key. In [35], Katz, Sahai and Waters show how to construct a
functional encryption scheme for Boolean formulae given a functional encryption scheme for the
inner-product whose security, by the result of Okamoto and Takashima [38], can be based only on
the Decisional Linear Assumption in bilinear groups. To construct a functional encryption scheme
for Boolean formulae, [35] first shows how to construct functional encryption schemes for predi-
cates corresponding to univariate polynomials whose degree d is at most polynomial in the security
parameter. This can be generalized to the case of polynomials in t variables, and degree at most d in
each variable but the drawback is that dt has to be polynomial in the security parameter. Given the
polynomial encryption construction, [35] shows that for Boolean variables it is possible to handle
CNF or DNF formulae by observing that the predicate ORI1,I2 , where ORI1,I2(x1, x2) = 1 iff ei-
ther x1 = I1 or x2 = I2, can be encoded as the bivariate polynomial p(x1, x2) = (x1−I1)·(x2−I2)
and the predicate ANDI1,I2 , where ANDI1,I2(x1, x2) = 1 if both x1 = I1 and x2 = I2, correspond
to the polynomial p(x1, x2) = (x1 − I1) + (x2 − I2). The complexity of the resulting scheme
depends polynomially on dt, where t is the number of variables and d is the maximum degree of
the resulting polynomial in each variable. This bound will critically influence our construction
of receiver deniable scheme as we will show in the next section. Specifically, the length of the
additional slots used in trapdoor mechanism of the previous section will be independent of the
security parameter to avoid the exponential blowup of the complexity of the resulting scheme. As
a consequence, the trapdoor mechanism has unluckily a non-negligible probability of being active
in the real scheme thus influencing the decryption error probability. Finally, parallel repetition will

10



fix this issue and the overall construction will have negligible error and efficiency polynomially
related to the one of the underlying inner-product encrption scheme.

3.1. Our Construction

Overview.: The trapdoor formula will follow the same design of the trapdoor circuit con-
struction with the main difference being the length of the slots which will be here constant and
independent from the security parameter to avoid the exponential blowup in the [35]’s construc-
tion. The plaintext will have two slots where the first slot will be the actual message x to encrypt.
The second slot will be a random string s. On the other hand, a secret key for Boolean formula f
will also have two slots to represent Boolean values 0 and 1. Specifically:

Construction 3.1. [Trapdoor Boolean Formula] Let f be a Boolean formula on n-bits. For any
two strings r0, r1 ∈ {0, 1}`, define the corresponding trapdoor boolean formula Trap[f ]r0,r1 on
(n+ `)-bit inputs as follows: FormulaTrap[f ]r0,r1(x, s) := (s = r1) ∨ [f(x) ∧ ¬(s = r0)], where
the expression (s = r) is the comparison bit-a-bit.

We are now ready to present our RecDenFE scheme.

Construction 3.2. [Receiver Deniable Functional Encryption for Boolean Formulae] Let FE =
(FE.Setup,FE.Enc,FE.KeyGen,FE.Eval) be the functional encryption scheme for the functionality
Boolean Formulae. For any constant ` > 3, we define our receiver deniable functional encryption
scheme RecDenFE = (Setup,KeyGen,Enc,Dec,RecFake) for Boolean formulae as follows.

• Setup(1λ, 1n, 1m), for each i ∈ [m], runs FE.Setup(1λ, 1n+`) to get the pair (FE.Mpki,FE.Mski).
Then, the master public key is Mpk = (FE.Mpk)i∈[m] and the master secret key is Msk = (FE.Msk)i∈[m].
The algorithm returns the pair (Mpk,Msk).

• Enc(Mpk, x), on input master public key Mpk = (FE.Mpki)i∈[m] and message x ∈ {0, 1}n, for each
i ∈ [m], chooses a random si ∈ {0, 1}` and sets Cti = FE.Enc(FE.Mpki, (x, si)). The algorithm
returns the ciphertext Ct = (Cti)i∈[m].

• KeyGen(Msk, f), on input master secret key Msk = (FE.Msk)i∈[m] and a n-input Boolean formula
f , for each i ∈ [m], chooses two random strings ri0, r

i
1 ∈ {0, 1}`, such that ri0 6= ri1, and computes

secret key FE.Skif = FE.KeyGen(FE.Mski,Trap[f ]r
i
0,r

i
1). The algorithm returns the secret key

Skf = (ri0, r
i
1,FE.Sk

i
f )i∈[m].

• Dec(Mpk,Ct, Skf ), on input master public key Mpk = (FE.Mpk)i∈[m], Ct = (Cti)i∈[m] and secret
key Skf = (ri0, r

i
1,FE.Sk

i
f )i∈[m] for Boolean formula f , for i ∈ [m], computes Boolean value bi =

FE.Eval(FE.Mpki,Cti,FE.Sk
i
f ), and returns as output the Boolean value on which the majority of

bi’s have agreed on.
• RecFake(Msk, f,Ct, x′), on input the master secret key Msk = (FE.Mski)i∈[m], an n-input Boolean

formula f , ciphertext Ct = (Cti)i∈[m] and message x′, for all i ∈ [m], the algorithm extracts si
from Cti by using FE.Mski. Now, RecFake chooses the ri0’s and ri1’s by following a binomial
distribution with number of trials equals to m and success probability p = (1− 2−`). Specifically,
RecFake distinguishes between the following two cases. Let b′ = f(x′), for each i ∈ [m], if
there is a success in the i-th trial then RecFake sets rib′ = si and ri1−b to a random value different
from si. Otherwise, RecFake sets ri1−b′ = si and rb to a random value different from si. Finally,
RecFake computes secret key FE.Skif = FE.KeyGen(FE.Mski,Trap[f ]r

i
0,r

i
1), and returns the secret

key Skf = (ri0, r
i
1,FE.Sk

i
f )i∈[m] as faking key.

Correctness. Notice that for any i ∈ [m], the probability that si = ri0 ∨ si = ri1 is at most 2−`+1.
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Thus the output of the decryption is correct, i.e. Trap[f ]r
i
0,r

i
1(x, si) = f(x), with probability at

least 1− 2−`+1.
Thus on average, an (1 − 2−`+1) fraction of the ciphertexts will be decrypted to the correct

value and for large enough m, the Chernoff bound guarantees that the correctness of RecDenFE
hold with overwhelming probability.
Security. The proof that RecDenFE is a (1, 1)-receiver deniable functional encryption scheme for
Boolean formulae is essentially that for general functionalities of the conference version [21] and
we omit further details. In fact, observe that Boolean formulae are a very special case of general
circuits and as such the proof follows the same structure.

We note that one can extend the scheme to (nc, nk)-receiver deniability in a simple way but we
cannot achieve nk = poly in this case, however, because we cannot use symmetric encryption (at
least in a straightforward way).

4. Multi-Distributional Receiver Deniable FE from diO

To not overburden the notation and to make the presentation easier to follow, we present a construc-
tion of a (1, 1)-multi-distributional receiver deniable functional encryption scheme for Circuit.

4.0.1. Overview.: Our construction resembles that of Garg et al. [26] but with some differences.
A ciphertext of the functional encryption scheme for x corresponds to a double encryption, à la
Naor-Yung [37], of x, using a statistical simulation-soundness NIZK. Nevertheless, in our con-
struction a secret key for circuit C is the differing-input obfuscation of a trapdoor circuit Trap[C]
that takes in input the double encryption of x and the double encryption of the trapdoor values.

Construction 4.1. [Multi-Distributional Receiver Deniable FE] Given an IND-CPA PKE sys-
tem E = (E .Setup, E .Enc, E .Dec) with perfect correctness, a differing-inputs obfuscator diO,
an SSS-NIZK proof system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify,NIZK.Sim) and a
one-way function f , we define our multi-distributional receiver deniable functional encryption
MDRecDenFE = (Setup,KeyGen,Enc,DenKeyGen,RecFake,Dec) as follows:

1. Setup(1λ) takes in input the security parameter λ and computes the following: For i ∈ [4],
(pki, ski)← E .Setup(1λ). Then, crs← NIZK.Setup(1λ). The algorithm sets Mpk = ((pki)i∈[4], f, crs),
Msk = ((ski)i∈[4]).

2. KeyGen(Msk, C) takes in input master secret key Msk = ((ski)i∈[4]), and circuit C, and does
the following: Computes common reference string crs′ ← NIZK.Setup(1λ). Then, sample ran-
dom z in the domain of f and set t = f(z) and compute Ct′ := (ct3, ct4, π2), where ct3 ←
E .Enc(pk3, (z, 0n, 0λ); r3) and ct4 ← E .Enc(pk4, (z, 0n, 0λ); r4), and π2 is a NIZK proof of Equa-
tion 2. Finally, the algorithm computes a differing-input obfuscation diOTrap1,3 for the trapdoor
circuit Trap1,3[C, crs, crs′, sk1, sk3, f, t]. The algorithm outputs secret key for the circuit C, SkC =
(diOTrap1,3 , t,Ct

′).
3. DenKeyGen(Msk, C) takes in inputMsk = ((ski)i∈[4]) and circuitC, and computes SkC = KeyGen(Msk, C).

The algorithm outputs SkC as the secret key for the circuit C and FkC = z.
4. Enc(Mpk, x), on input master public key Mpk = ((pki)i∈[4], f, crs) and messages x ∈ Xn, com-

putes Ct = (ct1, ct2, π1), where ct1 ← E .Enc(pk1, x; r1) and ct2 ← E .Enc(pk2, x; r2) and π1 is a
NIZK proof of Equation 1. The algorithm outputs ciphertext Ct.

5. Dec(SkC ,Ct) on input secret key SkC = (diOTrap1,3 , t,Ct
′) and ciphertext Ct, the algorithm outputs

diOTrap1,3(Ct,Ct
′).
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6. RecFake(SkC ,FkC ,Ct, x) on input secret key SkC = (diOTrap1,3 , t,Ct
′), fake key FkC = z, where

t = f(z), ciphertext Ct = (ct1, ct2, π1) and message x, does the following: Compute Ĉt :=
(ĉt3, ĉt4, π̂2), where ĉt3 ← E .Enc(pk3, (z,Ct, x); r3) and ĉt4 ← E .Enc(pk4, (z,Ct, x); r4) and π̂2 is
a NIZK proof of Equation 2. The new secret key for circuit C is SkC = (diOTrap1,3 , t, Ĉt).

Correctness follows immediately from the correctness of the diO, PKE, SSS-NIZK, and the
description of the trapdoor circuits described below.

Trapi,j [C, crs, crs
′, ski, skj , f, t](Ct = (ct1, ct2, π1),Ct

′ = (ct3, ct4, π2))

The algorithm does the following:
1. Check that π1 is valid NIZK proof (using the NIZK.Verify algorithm and crs) for the

NP-statement

∃x, r1, r2 :

ct1 = E .Enc(pk1, x; r1) and ct2 = E .Enc(pk2, x; r2)
(1)

2. Check that π2 is valid NIZK proof (using the NIZK.Verify algorithm and crs′) for the
NP-statement

∃z, c, x, r3, r4 :

ct3 = E .Enc(pk3, (z, c, x); r3) and ct4 = E .Enc(pk4, (z, c, x); r4) and f(z) = t
(2)

3. If any check fails output 0.
4. (z′, c′, x′)← E .Dec(skj , ctj)
5. if c′ = Ct then output C(x′); otherwise output C(E .Dec(ski, cti)).

Remark 4.2. To allow a secret key to support faking against nc ciphertexts, like it is done in the
receiver deniable scheme of the conference version, we attach to a secret key nc ciphertexts Ct′i,
each being the double encryption of (zi, 0

n, 0λ) for different zi’s. Then, Trapi,j will contain the
images under the one-way function f of all zi’s.

4.0.2. Proof of Security.: We state the following theorem.

Theorem 4.3. If diO is an differing-input obfuscator, E is IND-CPA and f is a one-way function
then MDRecDenFE is a (1, 1)-multi-distributional receiver deniable in the sense of Definition 2.6.

The proof is given in [21].

5. Sender Deniability via Indistinguishability Obfuscation

In this section, we show how to add sender deniability to any FE scheme for a functionality F by
using the techniques introduced by Sahai and Waters in [41] for public deniability. Furthermore,
the construction preserves any form of receiver deniability the starting scheme has. In particular,
applying by adding sender deniability to the receiver deniable FE scheme of the conference version
[21], we get a bi-deniable FE scheme for Circuit (DenFE, for short),

In Section 2.2 we introduced the publicly deniable functional encryption primitive and we now
show how to modify the receiver deniable scheme of the conference version [21] to add sender
deniability.

Construction.: By applying the Sahai-Waters [41] generic transformation to a functional en-
cryption FE, we obtain a publicly deniable functional encryption scheme PDFE whose indistin-
guishability of explanation holds also when the adversary is given the master secret key of the
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underlying functional encryption scheme FE. We will use critically this property during the se-
curity proof of our DenFE scheme. In fact, when invoking the indistinguishability of explanation
having the master secret key of the underlying functional encryption scheme enables the simulator
to generate the secret keys requested by the adversary.

5.1. Our Construction

Overview. The main difference with the receiver deniable FE of the conference version [21] is
that we now employ a publicly deniable functional encryption scheme. Then the sender faking
algorithm will correspond to the PDFE’s explanation algorithm. Specifically, our DenFE scheme
is defined as follows:

Definition 5.1. [Bideniable Functional Encryption for Circuit] Let PDFE = (PDFE.Setup,PDFE.Enc,
PDFE.KeyGen,PDFE.Eval,PDFE.Explain) be the publicly deniable functional encryption scheme
for the functionality Circuit. and F = {fs : s ∈ {0, 1}λ}λ∈N be a pseudo-random function family
of functions with domain {0, 1}l(λ) and range {0, 1}L(λ). We define our bi-deniable functional en-
cryption scheme DenFE = (Setup,KeyGen,Enc,Dec, SendFake,RecFake) for Circuit as follows.

• Setup(1λ, 1n) runs PDFE.Setup(1λ, 1n+λ) to get the pair (PDFE.Mpk,PDFE.Msk). Then, the mas-
ter public key is Mpk = PDFE.Mpk and the master secret key is Msk = PDFE.Msk. The algorithm
returns the pair (Mpk,Msk).

• Enc(Mpk, x) on input master public key Mpk = PDFE.Mpk, and message x ∈ {0, 1}n, chooses a
random s ∈ {0, 1}λ and sets x′ = (x, s). Then the algorithm computes and returns the ciphertext

Ct = PDFE.Enc(PDFE.Mpk, x′) .

• KeyGen(Msk, C) on input master secret key Msk = PDFE.Msk and a n-input Boolean circuit C,
chooses, for i ∈ [nc], random strings ti, t′i ∈ {0, 1}l(λ), zi, z′i ∈ {0, 1}L(λ) and computes

PDFE.SkC = PDFE.KeyGen(PDFE.Msk,Trap[C,F ]t,z,t
′,z′) ,

where t = (t1, . . . , tnc), z = (z1, . . . , znc), t
′ = (t′1, . . . , t

′
nc), z

′ = (z′1, . . . , z
′
nc) and Trap[C,F ]t,z,t

′,z′(x, s)
is defined in the following way: if there exists some i ∈ [nc] such that fs(ti) = zi (resp. fs(t′i) =
z′i), then return 1 (resp. 0), otherwise return C(x).

The algorithm returns the secret key SkC = (t, z, t′, z′,PDFE.SkC).
• Eval(Mpk,Ct, SkC) on input master public key Mpk = PDFE.Mpk, Ct and secret key SkC =

(t, z, t′, z′,PDFE.SkC) for circuitC, returns the output of PDFE.Eval(PDFE.Mpk,Ct,PDFE.SkC).
• SendFake(Mpk,Ct, x) on input master public key Mpk = PDFE.Msk, ciphertext Ct and mes-

sage x ∈ {0, 1}n, chooses a random s ∈ {0, 1}λ and sets x′ = (x, s). Then, SendFake runs
PDFE.Explain on input ciphertext Ct and message x′ to get faked randomness e, and returns
rS = s||e as faked sender randomness.

• RecFake(Msk, C,Ct,x) on input the master secret key Msk = PDFE.Msk, a Boolean circuit C on
n-bits input and 1-bit output, at most nc ciphertexts Ct = (Ct1, . . . ,Ct`), for ` ≤ nc, and messages
x = (x1, . . . , x`), extracts si from each ciphertext Cti by using PDFE.Msk. Then, for each i ∈ [`],
RecFake chooses random ti and t′i in {0, 1}l(λ) and distinguishes between the following two case:
• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′i = fsi(t

′
i) and chooses random zi ∈ {0, 1}L(λ).

Finally, RecFake computes PDFE.SkC = PDFE.KeyGen(PDFE.Msk,Trap[C,F ]t,z,t
′,z′), and re-

turns secret key SkC = (t, z, t′, z′,PDFE.SkC).
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Correctness of our DenFE scheme follows from the correctness of the PDFE scheme and from the
observation that, for randomly chosen t, z, t′, z′ and s and for all x, Trap[C,F ]t,z,t

′,z′(x, s) = C(x)
except with negligible probability.

5.2. Proof of Security

The proof of security is simlar to that of the receiver deniable FE scheme of the conference version
[21]. The main point here is to show that public deniability interact nicely with receiver deniable
and allows to obtain bi-deniability.

More specifically, we prove the following main theorems.

Theorem 5.2. If PDFE is IND-Secure, then DenFE is IND-Secure as well.

The proof of Theorem 5.2 is straightforward and we omit it.

Theorem 5.3. If PDFE is (poly, 1, poly)-IND-Secure then DenFE is a (nc, poly)-bideniable in the
sense of Definition 2.6, for any constant nc.

Proof. We prove security via a sequence of hybrid experiments. To do so, we will make use of the
same simulation receiver faking algorithm of that used in the security for the receiver deniable FE
of the conference version. We report it here for completeness.

Sim.RecFakePDFE.KeyGen(PDFE.Msk,·)(C,x, s)

The algorithm takes in input a circuit C, messages x = (x1, . . . , x`), strings
s = (s1, . . . , s`) each in {0, 1}λ, and oracle access to the PDFE key generation
algorithm. Then, for each i ∈ [`], the algorithm chooses random ti and t′i in {0, 1}l(λ)
and distinguishes between the following two case:
• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′i = fsi(t

′
i) and chooses random zi ∈ {0, 1}L(λ).

Finally, the algorithm computes PDFE.SkC = PDFE.KeyGen(
PDFE.Msk,Trap[C,F ]t,z,t

′,z′), and returns secret key SkC = (t, z, t′, z′,PDFE.SkC).

We are now ready to describe the hybrids. The change between the presented hybrid and the
previous will be denoted by boxing the modified parts.

1. Hybrid H1: This is the real experiment RealDenExp where the sender-coerce oracle, let us call it
E?1 , and the receiver-coerce oracle, let us call it K?1, are the following:

E?1 (x,y)
(si ← {0, 1}λ)i∈[nc]
(Cti ← PDFE.Enc(Mpk, (xi, si); ri))i∈[nc]
Output: ((Cti), (si, ri))

K?1(C,Ct,x)
SkC ← KeyGen(Msk, C);
Output: Skk

Notice that E?1 is exactly E1 with the only difference that we have unrolled the call to the RecDenFE
encryption algorithm for the sake of clarity, and K?1 = K1.

2. Hybrid H2: This is the same as H1 except that the sender-coerce oracle and receiver-coerce oracle
are modified as follows:
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E?2 (x,y)
(si ← {0, 1}λ)i∈[nc]
(s′i ← {0, 1}λ)i∈[nc]

(Cti ← PDFE.Enc(Mpk, (xi, si); ri))i∈[nc]
Output: ((Cti), (si, ri))

K?2(C,Ct,x)

SkC ← Sim.RecFakePDFE.KeyGen(PDFE.Msk,·)(C,x, s′)

Output: SkC

where s′ = (s′1, . . . , s
′
nc) is the randomness sampled by E?2 .

3. Hybrid H3: This is the same as H2 except that the sender-coerce oracle is modified as follows.

E?3 (x,y)
(si ← {0, 1}λ)i∈[nc]
(s′i ← {0, 1}λ)i∈[nc]
(Cti ← PDFE.Enc(Mpk, (xi, si)))i∈[nc]

(ei ← PDFE.Explain(Cti, (xi, si)))i∈[nc]

Output: ((Cti), (si, ei)

K?3(C,Ct,x)

SkC ← Sim.RecFakePDFE.KeyGen(PDFE.Msk,·)(C,x, s′)

Output: SkC

4. Hybrid H4: This is the same as H3 except that the sender-coerce oracle is modified as follows.

E?4 (x,y)
(si ← {0, 1}λ)i∈[nc]
(s′i ← {0, 1}λ)i∈[nc]

(Cti ← PDFE.Enc(Mpk, (yi, s
′
i)))i∈[nc]

(ei ← PDFE.Explain(Cti, (xi, si)))i∈[nc]
Output: ((Cti), ∅)

K?4(C,Ct,x)

SkC ← Sim.RecFakePDFE.KeyGen(PDFE.Msk,·)(C,x, s)

Output: SkC

Finally, notice that H4 is exactly the faking experiment FakeDenExp where E2 = E?4 and K2 =
K?4.

We now show that the relevant distinguishing probabilities between adjacent hybrids are negli-
gible, which completes the proof.
Indistinguishability of H1 and H2: This step is exactly the same of the proof for the receiver
deniable FE of the conference version.
Indistinguishability of H2 and H3: To prove indistinguishability we use the following sequence
of hybrid experiments.

• Hybrid H2,j , for 1 ≤ j ≤ nc + 1: This is the same as H2 except that the following new sender-
coercer oracle is used:

E?2,j(x,y)

(si ← {0, 1}λ)i∈[nc]
(s′i ← {0, 1}λ)i∈[nc]

Cti ← PDFE.Enc(Mpk, (xi, si); ri)
Then, for i < j, ei ← PDFE.Explain(Cti, (xi, si)))i∈[nc],
Output: ((Cti), ((s1, e1), . . . , (sj−1, ej−1), (sj, rj), . . . , (snc , rnc)))

Then, notice that H2 = H2,1 and H3 = H2,nc+1. Thus, it is sufficient to prove that H2,k
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is computational indistinguishable from H2,k+1. This can be reduced to the indistinguishability
of explanation of PDFE. In fact, notice that H1,k+1 is the same as H1,k except that the explain
algorithm is used to fake sender randomness rk. Notice that, in this step, we use the fact that the
indistinguishability of explanation of PDFE scheme holds also when the adversary is given the
master secret key of the underlying functional encryption scheme.

Thus, for sake of contradiction, suppose there exists a distinguisher D and adversary A =
(A0,A1) for which H2,k and H2,k+1 are not computationally indistinguishable. Then A and D can
be used to construct a successful IND-EXPL adversary B for PDFE. Specifically, B = (B0,B1)
does the following.

• B0 on input PDFE master public key Mpk, and master secret key of the PDFE’s underlying func-
tional encryption FE.Msk, runs A0 on input master public key Mpk and answers A0’s queries to
O1 and O2 by using Mpk and FE.Msk.

Eventually, A0 outputs x? = (x?1, . . . , x
?
nc),y

? = (y?1, . . . , y
?
nc) and its state st.

Then, B0 chooses random s ∈ {0, 1}n and outputs (x?k, s
?), and put in its state the state of A0

and its entire computation.
• B1 on input ciphertext Ct?, encryption of (x?k, s

?), randomness r?, which is the real randomness
used to generate Ct? or the randomness obtained by the explain algorithm, and state st, does the
following: B1, chooses (si ← {0, 1}λ)i∈[nc] and (s′i ← {0, 1}λ)i∈[nc], then, for i ∈ [nc] \ {k}, sets
Ct?i = Encrypt(Mpk, (x?i , si)), and for index k, B1 sets Ct?k = Ct?. Finally, for i < j, B1 sets
ei ← PDFE.Explain(Cti, (xi, si)))i∈[nc],

Finally, B1 runs A1 on input challenge ciphertexts and sender randomness Ct?1, . . . ,Ct
?
nc and

sender randomness ((s1, e1), . . . , (sj−1, ej−1), (sj, rj), . . . , (snc , rnc)), and answersA1’s queries to
O1 and O2 and to the receiver-coerce oracle K, by using Mpk and FE.Msk.

Eventually, A1 returns its output and B1 passes it to the distinguisher D and returns D’s output
as its own output.

Now notice that if r? is the real randomness used to encrypt (x?k, s
?) then B is simulating H2,k.

On the other hand if r? has been generated by the explain algorithm then B is simulating H2,k+1.
Indistinguishability of H3 and H4: This step is exactly the same of the proof for the receiver
deniable FE of the conference version, here we proof that H2 is computational indistinguishable
from H3 under the IND security of the underlying functional encryption scheme.

This concludes the proof.

6. Open problems and future work

Our work leaves open the problem of a construction of a multidistributional deniable FE for general
functionalities that avoid the use of diO. It is also worthy to investigate whether our techniques can
be used to add deniability to other flavors of FE, e.g., [43, 11, 14, 33].
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