
Identity Merging and Identity Revision in

Talmudic Logic: An outline paper

M. Abraham, I. Belfer, D. Gabbay and U. Schild

No Institute Given

Abstract. Suppose we are given a monadic theory T about the con-
stants x and y. So T is built up in classical logic from monadic predi-
cates {P1, P2, ...} and the classical connectives and the quantifiers and
possibly the equality symbol =. For example the theory T may have
in it P (x) and ¬P (y). We now add to the theory the revision input
x = y. The new theory may be inconsistent. We need a belief revision
mechanism to revise T so that it is consistent with the input. This is
a very specific form of input and belief revision, of the form which we
are calling “identity merging”. We present in outline how the Talmud
deals with this type of revision.

1 Background and orientation

Suppose we are given a monadic theory T about the free variables x and y. If
x and y are never quantified upon in T they can also be viewed as constants x

and y. So T is built up in classical logic from monadic predicates {P1, P2, . . .}
and the classical connectives {¬,∧,∨,→} and the quantifiers ∀, ∃ and possibly
the equality symbol =.

For example the theory T may have in it P (x) and ¬P (y).
We now add to the theory the revision input x = y. The new theory is Tx=y,

T ∪ {x = y} is inconsistent. We need a belief revision mechanism to revise T

so that it is consistent with the input. We can of course use one of the many
AGM approaches and algorithms for this case, but these are too general and we
need a more specialised tailored approach for our case. This is a very specific
form of input and belief revision, of the form which we are calling “identity
merging”. We have knowledge about two distinct individuals (so we believe)
and we discover that they are the same individuals. Now we have to reconcile
what we know. Another very common case is where two conflicting bodies of
laws apply to the same individual case and we need to decide how to proceed.
Such cases require specialised procedures possibly tailored for each application
area (case study). So formally we have a theory T and two distinct constants
or variables x and y and we add the input x = y. We need not necessarily
deal with a language with identity. If we do not have “=” in the language, we
can still take T and take a new variable z and substitute in T the variable z

for every free occurrence of x or of y. We will get a new theory which we can
denote by T(x = y = z) which is inconsistent (containing P (z) and ¬P (z)) and
in need for revision. Note on the notation side, we can regard x and y either as
constants or as free variables, this does not matter as long as we do not apply

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84742895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

any quantifiers to them. So in the sequel we might talk about constants a or b

or variables x and y. The choice depends on stylistic reasons.
We have three options here for revision.

1. Use the well known AGM machinery, [1, 2], which is this case means we
choose one of each atomic contradicting pair {P (z),¬P (z)};

2. Use some new approach taking advantage of the specific form of the revision
problem.

3. Use the Talmudic Logic approach;

Let us give some examples before we continue.

Example 1. Consider a university sysem with a Rector x and Head of Depart-
ment of Informatics y. The university has regulations which say among others
that:

1. The Rector can offer a position to a candidate and this is legally binding.
2. A Head of Department can offer a position to a candidate (in his depart-

ment) but it is not legally binding, but is subject to approval by the Rector.
The Head of Department should use a standard letter form which makes
this clear.

Suppose now that there is a big fight between the Head of Department and his
professors and the Head resigns and there is no agreement about a successor.
Someone has to run the day-to-day matters of the Department, and so the
Rector becomes acting Head of this Department for the time being. The Rector
in his capacity as Head, offers a position in the Department to a candidate c.
The standard letter which one sends in such a case says that this offer still
requires the approval of the Rector but that the Department and its Head are
confident that the Rector will approve the offer.

In this case the Head, who writes the letter as Head, is also the Rector, who
needs to approve the appointment. The question is:

Is this letter binding or not?1

We have:

Rector writes → binding
Heads writes → ¬ binding

If we revise by the input Rector = Head, do we take binding or ¬ binding?
Commonsense says that this is a binding offer.

1 This actually happened to D. Gabbay in 1972. The perceptive reader might wonder
why the Rector was ambiguous in his letter? Well, it may have been deliberate or
he may have wanted to follow clear procedural lines and first write as Head and
follow it up as Rector. There is more to it than that. Can the recipient of the letter
assume that for all practical purposes he/she actually got the job or is there still
a practical possibility that the Rector would say “I approve the appointment as
Head of Department but I do not approve it as Rector”?

Example 2. This is a real example recently discussed in the American press. It
relates to the Boston terrorist bombing.2 The terrorists were American citizens
and so there were two options:

1. Viewed as terrorists, send them to military trial or even to Guantanamo
Bay detention camp.

2. Treat them as American citizens and send them through the American legal
system.

In principle what is happening here is that we have two bodies of laws and
regulations:

T1(a) = Rules for a, a typical terrorist
T2(b) = Rules for b, a typical US citizen.

The theory is T = T1(a)∪T2(b). The input, forced upon us by the real world,
is a = b.

The aim of this paper is to formalise and introduce the Talmudic approach.
The approach is general and can be used in AI for this case, as an alternative
methodology to AGM.

The AGM approach would simply take out from T one of {P (z),¬P (z)}
and restore consistency (assuming P is atomic).

The Talmudic approach will do something different. To introduce it, how-
ever, we begin with describing an intermediate non-monotonic approach which
is not the Talmudic one, but has an independent interest and would lead into
the Talmudic approach.

The non-monotonic approach (ANM vs. AGM) says that the language of T

(i.e. P1, P2, P3, . . .) is only a surface language M and the fact that T contains
P (x) and ¬P (y) stems from deeper level non-monotonic considerations in a
deeper language L. When we revise with x = y = z, we have to go to the
deep level non-monotonic theory governing P, x and y and see what happens
there and then decide whether to contract P (x) or to contract ¬P (y). Thus
the non-monotonic approach is a refinement of the AGM approach, where the
choice of which of the contradicting pair {P (z),¬P (z)} to take out is made
using the extra non-monotonic machinery available in the system. This is best
understood when actually defined. Let us propose an ANM model.

Definition 1.

1. Let M be the monadic classical predicate language with unary predicates
{P1, P2, . . .} and variables and constants {x, y, z, c1, c2, . . .}. We say that
{Pi, cj} are the predicates and constants of M. Let L be an expansion of M
with additional predicates and constants {A, B, . . .} and and {d1, d2, ...}.

2. With each constant c and predicate P of M we associate a family of predi-
cates and constants from L (which include P and c). Let us use the notation
F(P, c) for this family. For example, let

F(P, a) = {A} ∪ {P, a}
F(P, b) = {B} ∪ {P, b}.

2 https://en.wikipedia.org/wiki/Boston_Marathon_bombing, http://www.

britannica.com/event/Boston-Marathon-bombing-of-2013.

(We will not repeat “{P, c}” any more.)
3. Assume that we have a non-monotonic consequence
 governing the lan-

guage L and a theory ∆ of facts for the new predicates {A, B . . .} of L
which contains M.

4. Assume that our surface theory T is the result of ∆. Namely

P (x) ∈ T∆,F iff ∆ ↾ F(P, x)
 P (x).

5. We say that T = T∆,F is derived from ∆ using
.

Example 3. Consider the surface predicates and constants of T to be P, a, b.
Let

F(P, a) = {A}
F(P, b) = {B}

Assume our non-monotonic logic for L relies on more specificity and that we
have a theory ∆ with the following rules:

1. A(a) → P (a)
2. B(b) → ¬P (b)
3. A(b) ∧ B(b) → P (b)
4. A(a)
5. B(b)

Our theory T will contain therefore P (a) and ¬P (b). This is because showing
P (a) we can use only clauses 1. and 4. and showing P (b) we can use only clauses
2. and 5.

Now let us see what happens if we add the input a = b. This changes
the language we consider from the separate F(P, a) and F(P, b) into the joint
F′ = F(P, a) ∪ F(P, b). Now the clauses to consider from ∆ are 1. to 5.

But now, because of more specificity

∆ ↾ F′

 P (b)

and so we revise T in view of the input a = b by contracting ¬P (b). Thus we
see that whereas ordinary AGM theory allowed for arbitrary choice in either
contracting P (b) or contracting ¬P (b), the non-monotonic background theory
∆, recommended contracting ¬P (b). Intuitively we asked ourselves (and asked
∆) where do T ⊢ P (a) and T ⊢ ¬P (b) come from and we made a decision
based on the answer.

We realise that perhaps the non-monotonic system may not resolve the
issue. We can rely on another level (i.e. another ∆′ related to ∆ in a similar
way to the relation of ∆ to T) and language to resolve the issue. The details
are not so important as the overall approach.

Let us now work towards giving a complete formal presentation of the above
ideas.3

3 The perceptive reader might ask: “Where does the richer language theory ∆ come
from? Isn’t it a bit artificial, to introduce it just to solve the problem, like a special
distance/choice function for AGM revision?

Definition 2. Let L be a language containing ¬ and let (∆,
) be a non-
monotonic theory in L. This means that ∆ is a set of formulas of L and

is a consequence relation of the form

A1, . . . , An
 B

where Ai, B are formulas of L and
 satisfies the following conditions:

1. Reflexivity
A1, . . . , An
 B, if B ∈ {Ai}

2. Cut
A1, . . . , AnX
 B

and
A1, . . . , An
 X

imply
A1, . . . , An
 B

3. Restricted monotonicity
A1, . . . , An
 B

and
A1, . . . , An
 C

imply
A1, . . . , An, B
 C.

4. Let θ′, θ ⊆ ∆ be two finite subsets of ∆.
We may have θ
 B but θ∪ θ′
 ¬B or alteratively θ
 ¬B but θ ∪ θ′
 B.

5. (∆,
) is said to be consistent iff for no B, θ ⊆ ∆, θ finite, we have θ
 B

and θ
 ¬B.
6. θ is said to decide a wff B if we have either θ
 B or θ
 ¬B (as opposed

to neither).
7. θ is said to be minimal theory deciding B, if θ decides B and no θ′ $ θ

decides B.
8. We say that ∆
 B iff there is a θ ⊆ ∆, θ finite, which decides B and for

every minimal θ which decides B we have θ
 B.

Definition 3. 1. Let T be a classical consistent set of wff, (considered as a
theory) in a language M. Let ∆ be a consistent non-monotonic set of wffs
(considered a theory) in a richer langauge L ⊇ M. Let
 be its conse-
quence relation. Let P be a unary atomic predicate of M and let ai, i =
1, . . . , k be distinct constants of M. Let F be a function giving for each

I see how it works and where it comes from in the examples, but in the general
case?”.

Our answer to this is that indeed laws and regulations come from practical sit-
uations where in the background there are undesirable cases to be avoided. So for
each specific T tailored for a specific application area there will be a corresponding
∆. For a general theory we must stipulate and study a general recursive hierarchy
of Tn, where Tn+1 acts as the “∆” of Tn.

α = {P, a1, . . . , ak} a sublanguge F(α) of L. We assume that α ⊆ F(α).
Note that we may have

∆ ↾ F(α)
 ±P (a)

but
∆ ↾ F(β)
 ∓P (a),

for β % α. This can happen because
 is non-monotonic.
2. Let T and ∆ be as in (1) above. We say that ∆ supports T if the follwing

(*) holds for each unary P and constant a:
(*) T ⊢ P (a) iff ∆ ↾ F(P, a)
 P (a).
3. Let a, b be two distinct constants of T. Denote by Ta/b the theory obtained

from T by replacing every occurrence of a by the constant b.
4. Similarly, let P, Q be two unary predicates, we let TP/Q be the theory ob-

tained by replacing every occurence of P by Q.

Remark 1. Let T be a monadic theory with monadic predicates {P1, . . . , Pk}
and constants {c1, . . . , cm}. Let m be a classical model of the language with
{Pj , ci,¬,∧,∨,→, ∀, ∃, =}. For this language, any model m has to say the fol-
lowing

1. For each ci and Pj m has to say whether Pj(ci) or ¬Pj(ci) holds.
2. For each vector ε of {0, 1} values of length k, let

αε(x) =
k∧

j=1

P
εj

j (x)

where P 1

j (x) = Pj(x) and P 0

j (x) = ¬Pj(x), and x is a variable. Then
the model m has to say whether ∃xαε(x) holds for each ε and, if equal-
ity is in the language, m has to say how many different such elements exist,
0, 1, 2. . . or infinity, i.e. for each n,m must say whether ∃x1, . . . , xn

∧
i6=j xi 6=

xj .

If there is no equality in the language then a model m for the language can be
characterised by a wff ϕm of the form

ϕm =
∧

ε

±∃xαε(x) ∧
∧

i,ε

±αε(ci).

Let us assume we do not have equality.
Then we can assume that any T has only a finite number of finite models.

Remark 2. Let T be a monadic theory without equality as in Remark 1. Let
m be a model for the language of the form ϕm as in Remark 1.

We now investigate the effect of the additional revision/input information
that c1 and c2 are the same (i.e. c1 = c2). We ask whether ϕm is still consistent
under the substituation of c2 for c1 (or c1 = c2)?

This depends on what conjuncts appear in ϕm. The critical ones to be
watched are triples ε, ε′, P such that

ϕm ⊢ αε(c1) ∧ αε′(c2)

and such that
αε(c1) ⊢ P (c1) and αε′ (c2) ⊢ ¬P (c2).

In other words, the problem is that the model m says for some set of unary
predicates {Pi1 , . . . , Pin

} the opposing pair {±Pir
(c1) and ∓Pir

(c2)}.
Since we are claiming c1 = c2, we need to choose only one of them, if we

want to maintain consistency.
We have a similar problem if we input equality of two predicates, say P1 =

P2. There may be some cj1 , . . . , cjn
, which the model says

±P1(cjr
) and ∓ P2(cjr

)

again, we have opposing pairs and again we need to choose one of them if we
want to maintain consistency.

Our theory of identity merging will tell us how to choose one from each
opposing pair and thus maintain consistency. Our identity merging theory is a
refienment of AGM for this particular case. AGM does not care how we choose.

Definition 4. Let T be a complete and consistent monadic theory with con-
stants {ci} and unary predicates {Pj}, and let (∆,
) be a supporting theory
for T as in Definition 3. Let a, b be two distinct constants and consider Ta/b

and assume that it is inconsistent. The merge revision of Ta/b is performed as
follows.

Since T is complete, Ta/b being inconsistent means that either T ⊢ P (a) ∧
¬P (b) or that T ⊢ ¬P (a) ∧ P (b) for some predicates P .

Assume without loss of generality that the former holds. Then we have that

∆ ↾ F({P, a})
 P (a)
∆ ↾ F({P, b})
 ¬P (b)

Consider θ = ∆ ↾ F({P, a, b}) we may have θ
 P (a) or θ
 ¬P (a) or neither
(but not both!). Similarly we have for the case of P (b). We may now have that
θ proves P (a) and θ does not prove ¬P (b) or θ proves ¬P (a) and does not
prove P (b) or θ proves P (b) and does not prove ¬P (a) or θ proves ¬P (b) and
does not prove P (a). In each of these cases we know how to revise.

If we still have that θ proves P (a) and ¬P (b) or θ proves ¬P (a) and P (b)
or that θ proves nothing, then we revise arbitrarily.

Following the discussion of Remark 2, we can make a choice of whether to
take +P (a) or ¬P (a) for our revised model. If
 does not tell us which one to
take we can make an arbitrary choice. The algorithm is as follows:

1. If θ
 P (a), then delete all occurrences of ±P (b) from ϕm to get ϕ′
m

.
If θ
 ¬P (b) then delete all occurences of ±P (a) from ϕm to get ϕ′′

m
.

Otherwise delete ±P (b).
Since we assume that a = b, we have that ϕ′

m
= ϕ′′

m
and this is our revised

model. The revised theory Ta/b is the theory of this model.

Similar considerations will apply to TP/Q.
This completes our discussion of the non-monotonic identity merging method.

This method is, however, not how the Talmud handles the case.

The above discussion of the obvious solution now has prepared us for the
introduction of the Talmudic approach, as well as providing us with the means
of comparison.

A theory can be revised by introducing new items of data which affect what
it can prove. A theory can be revised also by cancelling or restricting the proof
rules it can use. The latter method is used in resolving logical paradoxes. The
data is fixed and leads to a paradox (inconsistency or unintuitive results). So
one blocks some of the proofs and thus resolves the paradox.The Talmud revises
by using a hierarchy of rules cancellations as we explain in the next section.

2 The Talmudic approach

Let us look at a well known example (x is universally quantified):

1. Bird(x) → Fly(x)
2. Penguin(x) → Bird(x)
3. Penguin(x) → ¬ Fly (x)
4. Penguin (a)

We say that in viewing the above data, since Penguin is a more specific bird,
then it wins and so we deduce ¬Fly(a).

Let us look now at the following data:

5. Aeroplane 747 Flight BA101 → Land at Heathrow
A → L.

6. Aeroplane 747 Flight BA101 and Bad Weather → ¬ Land at Heathrow
A ∧ W → ¬L

7. Aeroplane 747 Flight BA101 and Bad Weather and Short on Fuel → Land
at Heathrow
A ∧ W ∧ F → L.

We may look at this again using the principle that the more specific assumptions
(i.e. the antecedent of the rule contains more conjuncts than the other rule)
win. So if we have only the information that an Aeroplane 747 Flight BA101
wants to land, we conclude that it can land. If we also add the conjunct that
the weather is bad then it cannot land and if we even further add the conjunct
that it is also short of fuel then it can land.

The Talmud looks at this differently as in Figure 1. W and F are meta-level
principles. In the Figure ordinary arrow → means support and double arrow
։ means attack.

The basic principle is A → L. The weather conditions involve a meta-level
principle which cancel the arrow leading from A to L.4

The fuel shortage is involved in another meta-level principle which cancels
the cancellation. So we are not dealing here with more specific knowledge but we
are dealing with levels of meta-knowledge and a calculus of cancellations. The

4 Think of it as a rule of wisdom based on experience. “Just do not land in bad
weather”. Another such a rule is “If you are short of fuel land as soon as you can”.

W

A L

F

Fig. 1.

appropriate modelling of this is higher level attack and support (argumentation)
networks.

So the Talmud uses a calculus of cancellations to resolve identity merging,
as opposed to our previous proposal of non-monotonic support.

Let us give some examples.

Example 4. This example is really from Talmudic logic, recast in everyday mod-
ern situation.

1. The story runs as follows:
We have a duty to maintain our homes. We also have the instinct to save
money. We believe in professional people doing jobs for us, but if we can
do it properly ourselves, then we do it ourselves, and not call the expert
and thus save money.
So, if the kitchen sink is blocked, we do not call a plumber to do the job
but do it ourselves and save money (a plumber home visit costs about $50
just to come, independent of the job he does).
If the problem is more serious, say a blocked toilet, then better call a
plumber and not take the risk of doing the job yourself. This case does
need an expert!
We can write these rules in non-monotonic logic as follows
(a) x is blocked → repair x yourself
(b) x is blocked ∧x is a serious job → get John the plumber to repair x

(c) sink is blocked
(d) toilet is blocked
(e) repairing the toilet is a serious job, but not the sink.
The problem with the above is that it implies that we call John the plumber
and he repairs the toilet while we repair the sink. Common sense dictates
that since the plumber is available he should repair the sink as well! We
could add a new clause (f) to help:
f. x is blocked ∧ John the plumber repairs y → get John the plumber to

repair x.
Clause (f) says that if x is blocked and there is any y which John the
plumber repairs y5 then John the plumber to repair x. The format of clause

5 We tacitly assume here that they are all in the same, say, apartment building to
be considered the same “call” by the plumber.

(f) is not the usual monadic one, and does not make the information on
x more specific. We can artificially fix this by adding a dummy universal
predicate U(x, y) which relates any two elements (something like ((x =
y)

∨
¬(x = y))) and write (f*)

f*. x is blocked
∧

(John the plumber repairs y
∧

U(x, y)) → get John the
plumber to repair x.

Now (f*) is more specific than (a) on account of the additional predicate
V (x) = (John the plumber repairs y

∧
U(x, y)) This is clearly a fiddle and

it departs from the intuitive understanding of what is going on, which is
clearly two meta-principles, namely save money but not at the expense of
needed expertise!

Let us see how the Talmudic calculus of cancellations overcomes this prob-
lem.

Figures 2 and 3 describe these rules. The description is intuitive and not
formal. The meaning of the nodes and arrows can be read intuitively from
the figures.

The question arises what to do if both the sink and the toilet are blocked?
If we just take the union of the two figures, (i.e. union of Figure 2 and
Figure 3) i.e. update that the two plumbers a and b are equal, we will get
that we call a plumber, the plumber does the toilet and at the same time
we do the sink ourselves. It is more reasonable, however, since the plumber
is already coming (and the $50 call fee is to be paid anyway) to have the
plumber do the sink as well.
Thus the “merging” of the two cases, i.e. merging of the two figures for the
case that both the sink and the toilet are blocked is just a union of the
graphs of the two figures. We will get Figure 4.

save money

α β B(x)
duty to
maintain

always bring kitchen sink x
is blockedexpert

P (x, J) Expert plumber

J fixes x

γ = always

Fig. 2.

2. We now explain our notation.

(a) x, y, . . . denote objects like x = kitchen sink, y = toilet.

δ

P (y, J) Expert plumber

J fixes y

γ

α β toilet y is blocked

B(y)

Fig. 3.

P (y, J) ∧ P (x, J)

γ

α

δ

B(y)β B(x)

Fig. 4.

(b) B, P denote predicates which when applied to objects give states:
B(x) = kitchen sink is blocked, B(y) = toilet is blocked.
P (x, z) = kitchen sink is repaired by plumber z, P (y, z) = toilet is
repaired by plumber z.

(c) α, β, γ are policies. For example:
α = policy to maintain your house
β = policy to always use experts
γ = policy to always save money
δ = policy to not take any risk for heavy maintenance jobs, if possible.

(d) A word about our notation: We denote the transition from one state to
another by an arrow.
Figure 5 shows such notation. The π annotates the arrow. This means

B(x)
π

−→ P (x, a)

Fig. 5.

that because of policy π we take action and move from B(x) to P (x, a).
It may be that several policies come together and are involved in moti-
vating some action, or it may be the case that some policies may cancel
or overrule other policies. So we allow for alternative notation which
we can use as well, when there are lots of policies to denote.
Figure 5 can be equivalently presented as Figure 6 or as Figure 7.

π and B(x) → P (x, a)

Fig. 6. Alternative notation to Figure 5

P (x, a)B(x)

π

and

Fig. 7. Alternative notation to Figure 5

(e) Cancellation is done by double arrow.
Figure 8 shows some cancellations from some policies. It has no mean-
ing, just a sample technical figure illustrating the notation.

i. π1 and π2 support together the move from B(x) to P (x, a).
ii. π3 cancels the support of π1 but allows the action to go forward on

the basis of π2.
iii. π5 cancels the move to P (x, a) no matter what, but also does not

think that the support of π4 to Q(y) is a reason to cancel π2 →
P (x, a).

Q(y)

π1

π2

π4

B(x) P (x, a)and

π3

π5

Fig. 8.

Remark 3. The perceptive reader might think that the model of arrow can-
cellations as presented in Figures 2, 3 and 4 is nothing special and is just a
notational variant of defeasible logic with specificity. Thus using the notation
of Example 4 we can write a defeasible database ∆ with the following universal
formulas clauses, with w, z universal variables.

1. B(w) ∧ α ∧ β ∧ γ → ¬P (w, z)
2. B(w) ∧ α ∧ β ∧ γ ∧ δ(w) → P (w, z)

If we instantiate (1) with w = x, z = a and (2) with w = y, z = b we get

1*. B(x) ∧ α ∧ β ∧ γ → ¬P (x, a).
This is Figure 2 with x = sink and z = plumber a.

2*. B(y) ∧ α ∧ β ∧ γ ∧ δ(y) → P (y, b)
This is Figure 3 with y = toilet and z = plumber b.

If we put (1*) and (2*) together in the same database and add the input
a = b = e, then the database is consisent and the same plumber e will repair
the toilet but not the sink. Defeasible logic based on specificity cannot tell us
that because we have (2*) with P (y, e) plumber e, we reverse and defeat (1*)
and conclude P (x, e) as well.

However, if we use the figures with the cancellation arrows, it is easier to
model this feature. Figure 9 sums it all up. This is a predicate argumentation
network involving joint attacks and higher order attacks, see [3].

and

B(w)

¬B(w)

∃w′[δ(w′) ∧ P (w′, z)]

¬∃w′[δ(w′) ∧ P (w′, z)]

P (w, z)

α, β, γ, . . .

and

Fig. 9.

3 Conclusion

We presented an outline paper showing how Talmudic logic uses a calculus of
cancellation to execute identity merging. In this conclusion section we want to
impress upon the reader the schematic advantage of the calculus of cancellation.

Suppose we have two clauses

1. α ∧ A → ∃xC(x)
2. β ∧ B → ∃x¬D(x).

We want to put (1) and (2) together in the same database and

(a) maintain consistency
(b) have the existential quantifiers pick up the same element.

The mechanisms we use are

(i) to take the specificity formulas out of the clauses and consider them as
meta-principles, which are subject to being prioritised and apply to them
the calculus of cancellations.

So we have

3. {α, β} : A ∧ B → ∃xC(x) ∧ ∃x¬D(x).

(ii) Convert
A → ∃xC(x)
B → ∃x¬D(x)

into respective figures and turn (3) into

4. {α, β}: union of Figures.

In the process of taking union of Figures we get that ∃x chooses the same x.

Acknowledgement

The authors are grateful to the referees for their most valuable comments.

References

1. C. E. Alchourròn, P. Gärdenfors, and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic

Logic, 50:510–530, 1985.
2. http://en.wikipedia.org/wiki/Belief_revision

3. D. Gabbay. Theory of Semi-instantiation in Abstract Argumentation. To appear
Logica Universalis. http://arxiv.org/abs/1504.07020

