
Reified Input/Output logic:

Combining Input/Output logic and Reification to

represent norms coming from existing legislation

Livio Robaldo and Xin Sun

University of Luxembourg∗

{xin.sun, livio.robaldo}@uni.lu

February 20, 2017

Abstract

In this paper, we propose to combine Input/Output logic, a well-known
formalism for normative reasoning, with the reification-based approach of
Jerry R. Hobbs. The latter is a wide-coverage logic for Natural Language
Semantics able to handle a fairly large set of linguistic phenomena into
a simple logical formalism. The result is a new framework that we will
call ‘reified Input/Output logic’. This paper represents the first step of a
long-term research aiming at filling the gap between Input/Output logic
and the richness of Natural Language Semantics. We plan in our future
work to use reified Input/Output logic as the underlying formalism for
applications in legal informatics to process and reason on existing legal
texts, which are available in natural language only.

1 Introduction

Legal informatics is experiencing growth in activity, also at the industrial level
(cf. (Boella et al., 2016), (Ajani et al., 2017)). Several research/industrial
projects aimed at designing or extending platforms, via Natural Language Pro-
cessing (NLP) techniques, for helping legal professionals to retrieve the infor-
mation they are interested in have been funded recently by the EU commission
and other institutions. Recent projects along this line are Legivoc1 (Vibert,

∗Livio Robaldo has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk lodowska-Curie grant agreement No 661007 for the
project “ProLeMAS: PROcessing LEgal language in normative Multi-Agent Systems”. Xin
Sun has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 690974 for the project
“MIREL: MIning and REasoning with Legal texts”.

1http://www.legivoc.eu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84742782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jouvelot, and Pin, 2013), Openlaws2 (Winkels, 2015), and EUCases3 (Boella et
al., 2015).

Although state-of-the-art solutions, e.g. (Boella, Di Caro, and Robaldo,
2013) and (Boella et al., 2013), help navigate legislation and retrieve informa-
tion, the overall usefulness of the systems are limited due to their focus on
terminological issues and information retrieval while disregarding the specific
semantic aspects, which allow for legal reasoning. Just as standard deontic
logic focused mostly on the notion of obligation, subsequent developments in
deontic logic also adopt an abstract view of law, with a very loose connection
with the texts of regulations. For lawyers, the meaning of laws can only be really
understood in the rich expressiveness of natural language since “like language
generally, legal discourse can never escape its own textuality” (Peller, 1985).

There is thus a gap between a powerful reasoning mechanism on the formal-
ization of law and the textuality of law, which can be addressed with solutions
coming from the literature on Natural Language Semantics (NLS). For this rea-
son, two ongoing research projects in legal informatics aiming at applying past
research on NLS and NLP to the legal domain have been recently approved
by the EU: ProLeMAS4 (PROcessing LEgal language in normative Multi-Agent
Systems) and MIREL5 (MIning and REasoning with Legal texts).

This paper considers Input/Output logic as a promising formalism for the
legal domain. Such a direction has already been advocated in (Boella and
van der Torre, 2004), where the application of the framework in legal reasoning
is mentioned as possible future work, but this has been never done.

Input/Output logic takes its origin in the study of conditional norms and
it has been originally introduced in (Makinson and van der Torre, 2000). As
explained in (Makinson and van der Torre, 2000), (Makinson and van der Torre,
2003), and (Gabbay et al., 2013), such a kind of operational semantics solves
the well-known (Jørgensen, 1937)’s dilemma, which roughly says that a proper
truth-conditional logic of norms is impossible in that norms do not carry truth
values. (Makinson and van der Torre, 2000) explicitly state: “Only declarative
statements may bear truth-values, but norms are items of another kind. They
may be respected (or not), and may also be assessed from the standpoint of
other norms, for example when a legal norm is judged from a moral point of
view (or viceversa). But it makes no sense to describe norms as true or as false.”.
Thanks to its operational semantics, Input/Output logic is able to properly deal
with typical theoretical problems of standard deontic logic, such as contrary-to-
duty reasoning (see (Makinson and Van der Torre, 2001)) and moral conflicts
(see (Parent, 2011)).

The main limitation of Input/Output logic with respect to our long-term
research objectives is that all Input/Output systems studied so far are strictly
propositional, i.e. their basic components are whole propositions. A proposi-
tion basically refers to a whole sentence. On the other hand, NLS includes a

2http://www.openlaws.eu
3http://eucases.eu
4http://www.liviorobaldo.com/ProLeMAS.html
5http://www.mirelproject.eu

2

wide range of fine-grained intra-sentence linguistic phenomena: named entities,
anaphora, quantifiers, etc. It is then necessary to move beyond the propositional
level, in order to handle the meaning of the phrases constituting the sentences.

Being the first attempt to integrate solutions coming from the literature on
NLS in Input/Output logic, this paper focuses on the basic definitions in (Makin-
son and van der Torre, 2000), in order to address basic kinds of norms. In partic-
ular, we will restrict our attention to the basic instances of the well-known dis-
tinction between regulative norms (obligations, permissions, and prohibitions6)
and constitutive norms identified by (Searle, 1995) and (Sartor, 2005), among
others. In our future works, we will generalize the formalization below towards
more advanced Input/Output systems, in order to properly handle special sub-
types of obligations and permissions, e.g., those identified in (Makinson and
van der Torre, 2003), (Parent, 2011), and (Governatori et al., 2013).

Furthermore, we aim at keeping the architecture of the formulae as simple
as possible, in order to increase readability and to help controlling the overall
computational complexity. Since legislation is huge, we believe that simplicity
is a necessary feature for a logical formalism designed for applications in legal
informatics, in order to foster active collaboration of legal practitioners, usually
having little expertise in logic, who can contribute to the building of large
knowledge bases of formulae.

To achieve this two-fold goal, this paper proposes to wrap Input/Output logic
around the approach of Jerry R. Hobbs, grounded on the notion of reification.

Reification is a concept originally introduced by the philosopher Donald
Davidson in (Davidson, 1967). Modern logical approaches based on reification
are known in the literature as ‘neo-Davidsonian’ approaches. Reification allows
a wide variety of complex NL statements to be expressed in First Order Logic
(FOL). NL statements are formalized such that events, states, etc., correspond
to FOL terms (constants, variables, and functional terms). In other words, the
states and events denoted by these terms are conceived as things in the world.

In line with (Bach, 1981), we use in this paper the term “eventuality” to
denote both the reification of a state and the one of an event/action.

Reification allows us to move from standard notations in FOL such as the
atomic formula ‘(give a b c)’, asserting that ‘a’ gives ‘b’ to ‘c’, to another7

notation in FOL ‘(give′ e a b c)’, where e is the reification of the giving action.
The expression ‘(give′ e a b c)’ reads: ‘e’ is a giving event by ‘a’ of ‘b’ to ‘c’.
‘e’ is a FOL term exactly as ‘a’, ‘b’, and ‘c’. In other words, we introduced a
first-order term that explicitly denotes the action.

As it will be extensively explained and exemplified below, the crucial feature
of Hobbs’s logic, which convinced us to use it for achieving our research goals,

6It is standardly assumed that prohibitions are indeed obligations; something is prohibited
if and only if there is obligation to its contrary. In this paper, we assume the term “obligation”
also encompasses prohibitions.

7Consistently with (Hobbs, 1998), we will use two related sets of predications: primed and
unprimed. For instance, the 3-ary predication ‘(give a b c)’ seen above is paired up with the
4-ary predication ‘(give′ e a b c)’, where ‘e’ is the reification of the former and refers to the
“giving” action between the three individuals.

3

is that it allows to model complex linguistic phenomena via flat representations
in FOL. By “flat”, we mean that the resulting formulae do not contain nestings
of subformulae within other operators. In logic, high-order operators, such
as modal, temporal, etc. operators, as well as boolean connectives, usually
outscope predicates and possibly other operators, thus introducing a hierarchy
between the predications. In Hobbs’s, those operators are modeled via other
first-order predicates asserted on eventualities, thus allowing to: (1) handle
several linguistic phenomena that can be hardly modeled via standard FOL
representations, based on subformulae-embeddings, and (2) build formulae that
are mere conjunctions of atomic FOL predicates.

In light of this, in our view Hobbs’s logic is a promising choice to achieve our
objectives, in that it allows to keep the formulae simple and readable as well as
to control computational complexity.

To capture the full richness of legal language in the way it expresses norms,
we started by studying a corpus of EU legislation in English on a variety of
topics. The corpus includes twenty European Directives from 1998 to 2011,
covering a range of subjects, e.g., the profession of lawyer, passenger ships,
biotechnological inventions, electronic signatures, seafarers’ hours of work, etc.

The following are three norms extracted from the corpus, that we will use
below to illustrate our logical framework. We did not find relevant differences
between (1.a-c) and the other norms in the corpus, thus we assume our formal-
ization is general enough to cover a representative part of EU legislation.

(1) a. A lawyer who wishes to practise in a Member State other than that
in which he obtained his professional qualification shall register with
the competent authority in that State.

(From: Directive 98/5/EC of the EU Parliament and of the Council of 16/2/1998

to facilitate practice of the profession of lawyer on a permanent basis in a Member

State other than that in which the qualification was obtained.)

b. Where baker’s honey has been used as an ingredient in a compound
foodstuff, the term ‘honey’ may be used in the product name of the
compound food instead of the term ‘baker’s honey’.

(From: Council Directive 2001/110/EC of 20/12/2001 relating to honey.)

c. Member States shall take the necessary measures to allow any airport
user wishing to use the tailored services or dedicated terminal or part
of a terminal, to have access to these services and terminal or part of
a terminal.

(From: Directive 2009/12/EC of the EU Parliament and of the Council of

11/3/2009 on airport charges.)

(1.a) is an obligation that must be respected by lawyers who wish to practise
in EU but outside the State where they obtained their qualification. (1.b) is
a permission. It states that it is possible/permitted to use the term ‘honey’
in place of ‘baker’s honey’ even when the latter is used as an ingredient of a
compound foodstuff. In case permissions are not respected, they of course do

4

not result in any violation. (1.c) is the trickiest of the three examples in (1)
because it contains both a permission and an obligation. Airport users are
allowed to use the tailored services or dedicated terminal or part of a terminal.
On the other hand, Member States are obliged to guarantee that all airports
allow their users to use them. Indeed, this is a linguistic pattern quite common
in law: “someone is obliged to guarantee some permissions to someone else”.

The paper is organized as follows. Section 2 briefly discusses some previ-
ous similar approaches for modeling NL utterances found in legal documents,
particularly the ones making use of reification. The section will show that the
semantic representations employed are very reminiscent of standard approaches
in NLS, such as Discourse Representation Theory (Kamp and Reyle, 1993) and
Minimal Recursion Semantics (Copestake, Flickinger, and Sag, 2005), and so
they suffer of the same limitations extensively discussed by both J.R. Hobbs in
(Hobbs, 2001), (Montazeri and Hobbs, 2011) and the first author of this paper
in (Robaldo, 2010a) and (Robaldo, 2010b), among others.

Section 3 and section 4 introduce the two formal instruments at the basis
of our logical formalization: Hobbs’s logic and Input/Output logic. As pointed
out above, so far the two logical frameworks have been studied in isolation, so
that the two sections are completely unrelated.

Section 5 shows how it is possible to wrap Input/Output logic around Hobbs’s
logic, by extending the basic Input/Output logic definitions to this end, while
section 6 will show how the resulting logical framework can be used to model
norms taken from existing legislation, such as the ones shown in (1).

Section 7 addresses future works, by focusing on how we plan to use the
formalism in a specific research project we will carry out in the next years:
the project proposes to formalize norms coming from the forthcoming General
Data Protection Regulation (GDPR) and to correlate them with norms found
in existing ISO standards. Section 8 concludes the paper.

2 Related works

Few approaches in legal informatics try to model NL sentences coming from
existing legal norms, such as those in (1). The most representative work is
perhaps (Sergot et al., 1986). Examples of real norms formalized, in deontic
logic, may be also found in (Governatori et al., 2013).

Some other approaches try to formalize legal knowledge via Event Calculus
(Kowalski and Sergot, 1986) (Miller and Shanahan, 1999). Event Calculus is
a neo-Davidsonian logical language that extends the original account of reifi-
cation by Davidson (see (Galton, 2006) for a discussion). In particular, Event
Calculus introduces special terms and predicates to deal with time points and
time periods, such as the predicate HoldsAt, used to assert that a fluent, which
is basically an eventuality that can change over time, holds at a certain time.

A recent approach in the line is (Hashmi, Governatori, and Wynn, 2014),
where it is argued that Event Calculus predicates for handling time cannot
be also used for handling deontic meaning. Therefore, a new version of these

5

predicates is proposed (e.g., DHoldsAt, where “D” stands for “deontic”) to
incorporate the deontic effect of norms, so that they can be used for compliance
checking. Similar proposals are (Paschke and Bichler, 2005), (Evans and Eyers,
2008), and (Fornara and Colombetti, 2009). However, (Hashmi, Governatori,
and Wynn, 2014) appears to be superior in that it identifies and formalizes
much more fine-grained and complex obligation modalities. And, violations
of the obligations and compensations of such violations are taken into great
account and formalized in a time perspective.

To our knowledge, the approach that appears to be closest to the one we
are going to propose below is perhaps McCarty’s Language for Legal Discourse
(LLD) (McCarty, 2002), (McCarty, 2007). This approach is strongly drawn on
previous studies in Natural Language Semantics, it uses reification, and it has
been specifically developed to model existing legal text. For this reason, we will
dedicate to McCarty’s approach the next subsection.

2.1 McCarty’s Language for Legal Discourse (LLD)

McCarty’s Language for Legal Discourse (LLD) is an intuitionistic first-order
language that incorporates insights from previous literature in NLS. It has been
originally defined in (McCarty, 1989), and it uses reification for handling ac-
tions/states, time, obligations and permissions in a single uniform language.

(McCarty, 2007) presents an extension of DLL and an experiment where
well-formed structures in extended DLL are generated from federal civil cases
in the appellate courts in USA via Collins’ NLP parser (Collins, 2003).

An excerpt of legal text and its formalization, taken from (McCarty, 2007),
is shown in (2). The sentence in (2) is represented via the structure below it.

In (2), sterm, nterm, aterm, and pterm are reified terms of different kind.
sterms are terms referring to reified relations, such as the action denoted by the
main verb “contends” (cf. the first line of the formula in (2)). nterm refers to
objects and actors such as “the petitioner” and “the jury”. Finally, aterm and
pterm refer to the reified relations denoted by adverbial/adjectival modifiers
and prepositional modifiers respectively.

6

(2) “The petitioner contends that the regulatory takings claim should not
have been decided by the jury”

sterm(contends, A,

[nterm(petitioner, B, [])

/det(The, nn),

sterm(decided, C,

[D,

aterm(regulatory,E,[F]) &

nterm(takings,G,[]) &

nterm(claim,F,[])

/det(the, nn)])

&& H∧pterm(by, H,

[C,

nterm(jury,I,[])

/det(the, nn)])

/[modal(should),negative,perfect,passive]])

We skip the technical details of the representation in (2). The crucial feature
of the semantic structure in (2) is its close architectural relation with the syn-
tactic constituency structure of the sentence (Chomsky, 1957). A rough (non-
detailed) syntactic constituency structure of the sentence in (2) is shown in (3).
NP, AP, PP, and VP stands for “noun phrase”, “adjectival phrase”, “prepositional
phrase”, and “verbal phrase” respectively. S marks a sentence-phrase.

(3) [[[The petitioner]NP
[contends that

[[the [regulatory takings]AP claim]NP
[should not[have been decided [by [the jury]NP]PP]VP]VP]S]VP]S

The syntactic structure in (3) and the semantic structure in (2) are closely
related both from a lexical point of view and from a syntactic point of view:

(4) a. Close relation with the lexicon : The first argument of each *term in
(2) is a lexical entry of the sentence, e.g. “contends”, “petitioner”,
“decided”, etc. *terms are also sub-classified with respect to the
part-of-speech of the head of the constituents they refer to: sterm

for sentence and verbal phrases, nterm for noun phrases, aterm and
pterm for adverbial/adjectival and prepositional phrases.

b. Close relation with the syntax : *terms outscope other *terms by
roughly mirroring the inclusion of the constituents associated with
the narrow-scope *terms within the constituents associated with the
wide-scope *terms. For instance, in (2), the main sterm outscopes
the nterm associated with the noun phrase “the petitioner” and the
sterm associated with the sentence-phrase “the regulatory takings
claim should not have been decided by the jury”. In the syntactic
representation in (3), these two phrases are combined into the bigger
sentence-phrase associated with the main sterm.

7

The representation in (2) is very reminiscent of formalisms standardly used in
NLS, such as Montague’s Universal Grammar (Montague, 1970), Discourse Rep-
resentation Theory (DRT) (Kamp and Reyle, 1993), as well as underspecified
logics such as Minimal Recursion Semantics (MRS) (Copestake, Flickinger, and
Sag, 2005). Specifically, LLD is drawn from Quasi Logical Form (QLF) (Al-
shawi, 1992), which is considered one of the precursors of MRS. The reader is
addressed to (Robaldo, 2007) for a full overview and comparison between QLF,
MRS, and other similar formalisms.

The close relation between syntax and semantics, and in particular the two
architectural choices in (4.a-b), is the main consequence of the application of the
well-known Montague’s principle of compositionality8, a cornerstone of standard
formalisms used in NLS. According to Montague, natural language is itself a
logic, where “the meaning of the whole is a function of the meanings of its parts
and their mode of syntactic combination”.

Nevertheless, it has been shown by (Hobbs, 2008) and (Robaldo, Szymanik,
and Meijering, 2014), among others, that a strict observance of the principle
of compositionality prevents several readings indeed available in NL. In order
to properly represent these readings, these authors propose flat semantic for-
malisms, in the sense that embeddings of terms within the scope of other terms
(i.e., (4.b)) are always avoided. In other words, formulae do not establish any
hierarchy among the predications occurring therein. The next subsection dis-
cusses some of these readings. Afterwards, we will present the flat reified logic
by J. R. Hobbs.

2.2 The richness of Natural Language: anaphora, hidden
eventualities, scopeless readings

As extensively discussed by both J.R. Hobbs in (Hobbs, 2001), (Montazeri
and Hobbs, 2011) and the first author of this paper in (Robaldo, 2010a) and
(Robaldo, 2010b), the two architectural choices in (4.a-b) are too rigid to prop-
erly handle NLS, in that they tend to mirror the architecture of the syntactic
structures in the architecture of the semantic ones. The former are based on
(recurring) embeddings of phrases within the scope of other phrases. On the
other hand, at the semantic level, more flexibility is needed.

It is quite common in our everyday life to abstract complex actions and
situations and treat them as atomic units while building “separate” meanings.
A logical formalization based on embeddings imposes a hierarchical order be-
tween the predications. As a result, several available readings are intrinsically
prevented, and more complex operators, able to connect the predications across
the hierarchy, must be introduced in order to properly represent these readings.

For instance, consider the sentences in (5), which are similar to the examples
considered by Hobbs and Robaldo in their past research in NLS.

8http://plato.stanford.edu/entries/montague-semantics/#Com

8

(5) a. Reimbursement may be obtained, but it could take some months.

b. The city does not have a train station, but it has a bus station.

c. If the parents of a student earn less than 20k euros per year, then the
student is eligible.

In sentence (5.a), the pronoun “it” refers to the obtaining of the reimbursement.
The interpretation of this pronoun differs from the interpretations of the pro-
nouns “he” and “his” in (1.a) or the pronoun “it” in (5.b). The pronoun “it” in
(5.a) refers to an eventuality which must be abstracted from the first sentence.
On the other hand, the pronouns in (1.a) and (5.b) refer to (possibly quantified)
non-eventuality individuals of the domain (lawyers and cities). Other complex
cases of anaphoric references to eventualities are discussed in (Hobbs, 1998).

(5.b) is an example of concessive relation, one of the most trickiest seman-
tic relations occurring in NL. The first clause creates the expectation that the
city is unreachable by public transportation. The second clause denies that
expectation. Note that the expectation is an “hidden” clause, thus it is not
associated with any lexical item. For this reason, (5.b) cannot be represented
in LLD via its basic constructs, due to (4.a). (Robaldo and Miltsakaki, 2014)
proposes a solution to model concessive relations in Hobbs’s logic, based on
an empirical analysis of more than 1000 occurrences of concession taken from
the Penn Discourse Treebank (Prasad et al., 2008), (Miltsakaki et al., 2008).
Concessive relations are special cases of elliptical sentences. It is easy to under-
stand that a close relation with the lexicon, i.e., (4.a), makes difficult the formal
representation of elliptical sentences, in that they are the result of an inference
process from the content of the sentence and the background knowledge. Again,
we need more flexibility on the syntax-semantics interface, and, in particular,
we need to neatly decouple the semantic structures from the syntactic ones, in
order to avoid bringing in the former language-dependent characteristics that
pertain only to the grammar.

Finally, (5.c) shows that standard approaches to NLS are indeed even unable
to properly deal with non-eventuality individuals. (5.c) is an example of cumu-
lative reading, which is a special kind of scopeless reading9. In the preferred
reading of (5.c), if the money cumulatively earned by at least one of the parents,
or by both together10, is less than 20k euros, the student is eligible. Scopeless
readings, which are indeed quite widespread in NL (cf. (Robaldo and Di Carlo,
2013)), have been extensively studied in a reification setting in (Robaldo, 2011)
and (Robaldo, 2013). And, in (Robaldo, 2010b) it has been argued that the
principle of compositionality intrinsically prevents the proper representation of
these readings, unless introducing further complex operators such as polyadic
quantifiers (cf. (van Benthem, 1989)). The principle of compositionality im-
poses to embed quantifiers within the scope of other ones, so that, in (5.c),

9The term “scopeless reading” comes from the fact that, as explained in the text, in order
to properly interpret the sentence, the two quantifiers must be interpreted in parallel, i.e.
neither of the two must include the other in its scope.

10For instance, suppose they rent an apartment they co-own.

9

only the interpretation where the parents of a student earn less than 20k euros
each is possible. In (Robaldo, 2011), the quantified sets are reified into spe-
cial predicates, which are all conjoined at the same level of scope. Then, it is
either possible to establish Skolem-like functional dependencies between these
sets (thus representing readings where some sets depend on other ones) or to
evaluate the sets in parallel (thus representing scopeless readings).

To summarize, Hobbs and Robaldo propose to use reification and flat for-
mulae in order to maximize the convenience of talking about states and events
in the world. As a result, a wide set of complex linguistic phenomena, including
those exemplified in (5), can be straightforwardly handled via a simple formal-
ism. States and events may be reified at any level of abstraction. Separate
predications are asserted on such reified terms and, possibly, reified again into
new eventualities. This is the formal mechanism at the basis of Hobbs’s logic.

Hobbs’s logic will be presented in the next section. In the subsequent one,
we will present Input/Output logic. Then, we will propose to use Hobbs’s logic
as the object logic of those Input/Output systems used for normative reasoning.

3 Hobbs’ logical framework

Jerry R. Hobbs defines a wide-coverage first order logic (FOL) for NLS cen-
tered on the notion of reification. See (Hobbs, 1998) and several other earlier
publications by the same author11.

Hobbs distinguishes two parallel sets of predicates: primed and unprimed.
The unprimed predicates are standard FOL predicates commonly used in logical
representations. For example, (give a b c) asserts that a gives b to c in the real
world. The primed predicate represents the reification of the corresponding
unprimed relation. The expression (give′ e a b c) says that e is a giving event
by a of b to c. Alternatively, we may think of e as “the fact that” a gives b to
c or, in line with the terminology used in (Hobbs, 1998), as the “giving-ness”
performed by a of b to c. Formally, e is a FOL term exactly as a, b, and c.

Eventualities may be possible or actual. In Hobbs’, this distinction is repre-
sented via a unary predicate Rexist that holds for eventualities really existing
in the world. To give an example cited in Hobbs, if I want to fly, my wanting
really exists, but my flying does not. This is represented as12:

∃e∃e1[(Rexist e) ∧ (want′ e I e1) ∧ (fly′ e1 I)]

Eventualities can be treated as the objects of human thoughts. Reified
eventualities are inserted as parameters of such predicates as believe, think,

11Hobbs implements a fairly large set of linguistic and semantic concepts including sets,
composite entities, scales, change, causality, time, event structure, etc., into an integrated
first order logical formalism. The reader is addressed to the manuscripts at http://

www.isi.edu/~hobbs/csk.html and http://www.isi.edu/~hobbs/csknowledge-references/

csknowledge-references.html.
12‘I’ is a FOL constant deictically referring to the speaker. Analogously, in the next example,

John and Jack are FOL constants respectively referring to the two boys.

10

want, etc. Reification can be applied recursively. The fact that “John believes
that Jack wants to eat an ice cream” is represented as an eventuality e such
that it holds:

∃e∃e1∃e2∃x[(Rexist e) ∧ (believe′ e John e1) ∧
(want′ e1 Jack e2) ∧ (eat′ e2 Jack x) ∧ (iceCream′ e3 x)]

An unprimed predicate is true if and only if the eventuality of its primed version
really exists13; for a generic unary predicate p, this is formalized as:

(6) ∀e∀x[(p x) ↔ ((Rexist e) ∧ (p’ e x))]

As already mentioned above, the crucial feature of Hobbs’ logic, which dis-
tinguishes it from all other neo-Davidsonian approaches, such as McCarty’s LLD
or the other logics based on Event Calculus mentioned above, is that all formulae
are “flat”, in the sense that they are mere conjunctions of atomic predications
asserted on FOL terms. There are no embeddings of subformulae within other
operators, i.e. no hierarchies of predications.

As (Hobbs, 1998), pp.5, states: “There has been an attempt to make the
notation as ‘flat’ as possible. All knowledge is knowledge of predications. Con-
stants14 are only handles. The intuition is that in natural language we cannot
communicate entities directly. We can only communicate properties and hope
that the listener can determine the entity we are attempting to refer to.”

3.1 Modelling meaning in Hobbs’s logic

Hobbs’s logic is a restricted fragment of standard first order logic: in Hobbs’s,
well-formed formulae are conjunctions of atomic predicates instantiated on FOL
terms (costants, functions, and variables). In other words, the only FOL oper-
ator used in Hobbs’s logic is “∧”, and so the only possible standard FOL infer-
ences are the ones enabled by “∧”, i.e. “(A∧B) ` A,B” and “A,B ` (A∧B)”.

On the other hand, standard FOL, including all its connectives (∧, ¬, ∨,
←, ↔), is used as a meta-language to build another semantics, centered on the
predicate Rexist (cf. below in (7), (8), (9), etc.). As said above, the predicate
Rexist is used to assert which eventualities really exist in the current world 15.

Negation, conjunction, and disjunction on eventualities are defined via three
predicates16 not, and, and or. These must not be confused with standard FOL
boolean operators “¬”, “∧”, and “∨”.

The assertion (not′ e e1) simply states that the two eventualities e and e1
are related via a particular relation: e is the negation of e1 (and viceversa) in
the sense that when one of the two really exists the other one does not.

13Cf. http://www.isi.edu/~hobbs/bgt-evstruct.text
14And other FOL terms (e.d.). In the formalization below, all eventualities will be quantified

variables.
15Real existence is only one of the possible modalities of the logic. At http://www.isi.edu/

~hobbs/bgt-modality.text, it is explained how it is possible to deal with other modalities.
16See http://www.isi.edu/~hobbs/bgt-logic.text.

11

The semantics of not′ may be then defined by the interpretation rule in (7),
expressed in standard FOL.

(7) ∀e∀e1 [(not′ e e1) → ((Rexist e) ↔ ¬(Rexist e1))]

In other words, if (not′ e e1) is true, all what we know is that the individuals e
and e1 are related via the not′ predication. But this does not tell us anything
about the real existence of either e or e1. And, the semantics of not′ in (7)
simply states that when the real existence (or the real non-existence) of one of
the two eventualities is known, then the real existence (or the real non-existence)
of the other may be inferred.

Similarly, the assertion (and′ e e1 e2) states that e, e1, e2 are related via a
particular “conjunctive” relation such that:

(8) ∀e∀e1∀e2 [(and′ e e1 e2) → ((Rexist e) ↔ ((Rexist e1) ∧ (Rexist e2)))]

And, the assertion (or′ e e1 e2) states that e, e1, e2 are related via a particular
“disjunctive” relation such that:

(9) ∀e∀e1∀e2 [(or′ e e1 e2) → ((Rexist e) ↔ ((Rexist e1) ∨ (Rexist e2)))]

Finally, the assertion (imply′ e e1 e2) states that e, e1, e2 are related via a
particular “implicative” relation such that:

(10) ∀e∀e1∀e2 [(imply′ e e1 e2) → ((Rexist e) ↔ ((Rexist e1) → (Rexist e2)))]

From the definitions of not′, and′, or′, and imply′ introduced above, we are
ready to prove some theorems. For instance, in Hobbs’s logic, it holds the
following theorem, which parallels the well-known equivalence in standard FOL
“∀x[(A(x)→ B(x)) ↔ (¬A(x) ∨B(x))]”:

(11) ∀ei∀eo∀e1∀en1 ∀e2 [((imply′ ei e1 e2) ∧ (not′ en1 e1) ∧ (or′ eo en1 e2)) →
((Rexist ei) ↔ (Rexist eo))]

(11) may be proved in all possible directions via the interpretation rules in (7),
(8), (9), and (10). For instance, if (Rexist eo) is true, by (9) also the disjunction
((Rexist en1) ∨ (Rexist e2)) is true, i.e. at least one of the two eventualities
en1 and e2 really exist. If (Rexist en1) is true, then (Rexist e1) is false, by (7).
Then, independently of the truth value of (Rexist e2), (Rexist ei) is true by
(10). On the other hand, if (Rexist en1) is false, then both (Rexist e1) and
(Rexist e2) are true, and (Rexist ei) is again true by (10.a) �.

We stress again that, although the theorem in (11) parallels the well-known
FOL theorem “∀x[(A(x)→ B(x)) ↔ (¬A(x) ∨B(x))]”, the two theorems have
nothing to do with each other, in that they belong to different logical systems.
(11) simply says that if there are four eventualities ei, eo, e1, en1 , and e2 related
via those particular predications, then that particular bi-equivalence holds be-
tween two of the four eventualities, i.e., ei and eo.

Another example is given in (12). The theorem in (12) parallels the well-
known De Morgan rule “∀x[¬(A(x) ∨ B(x)) ↔ (¬A(x) ∧ ¬B(x))]”. We omit
the proofs.

12

(12) ∀eno ∀eo∀ea∀e1∀e2∀en1 ∀en2 [

((not′ eno eo) ∧ (or′ eo e1 e2) ∧ (and′ ea en1 en2) ∧ (not′ en1 e1) ∧ (not′ en2 e2))→
((Rexist eno) ↔ (Rexist ea))]

3.2 Adding axiom schemas to the TBox

In our logical framework, we distinguish between formulae belonging to the
assertive contextual statements (ABox) from formulae belonging to the ter-
minological declarative statements (TBox), i.e., the definitions, axioms, and
constraints on the predicates used in the ABox formulae.

In (7), (8), (9), and (10) we have seen examples of definitions in Hobbs’s
logic: new predicates are introduced and their semantics is defined with respect
to a meta-language, which is a fragment of standard FOL in our case. On the
other hand, in (11) and (12) we have seen two examples of theorems in Hobbs’s
logic: statements that may be derived from the definitions. Both are declarative
statements, so they both belong to the TBox. On the other hand, the ABox
will contain the formulae corresponding to the norms in legislation, e.g., the
translation in logic of the sentences in (1) (see below).

It is then possible to add further axiom schemas to the TBox of the knowl-
edge base. Axiom schemas, like definitions, further restrict/model the meaning
of the predicates, and other theorems may be derived from them. For instance,
we may add an axiom schema stating that all lawyers are humans:

(13) ∀e1∀x[((lawyer’ e1 x) ∧ (Rexist e1)) → ∃e2 [(human’ e2 x) ∧ (Rexist e2)]

According to Hobbs’s terminology, in (13) e1 and e2 have to be thought as the
“lawyer-ness” and the “human nature” of the second argument of the predicates
lawyer’ and human’. From (13) and (10) it may be of course derived that for
every individual x who is a lawyer, i.e., for whom his “lawyer-ness” really exists,
also the human nature of x really exists, i.e. x is also a human.

Hobbs and his followers defined axiom schemas to handle several complex
phenomena in NLS, among which composite entities, causality, time, defeasi-
bility, event structure, etc., thus allowing the logic to properly represent the
meaning of NL sentences such as those exemplified in (5). Of course, in the
present paper we will not present the solutions for dealing with each of these
phenomena, but we simply address the reader to the relevant literature17.

A major problem in the legal domain concerns the availability of different
legal interpretations of the statements in the law (cf. (MacCormick and Sum-
mers, 1991) among others). For instance, consider sentence (1.a) above. To
what extent should we think of a lawyer who wishes to practise in a Member
State different from the one he obtained his professional qualification? Under a
strictly literal interpretation, a lawyer who simply tells some friends he would

17We specifically suggest the reader to refer to the manuscripts at http://

www.isi.edu/~hobbs/csk.html and http://www.isi.edu/~hobbs/csknowledge-references/

csknowledge-references.html.

13

like to practice in that Member State already violates the norm, if he is not
registered with the competent authority. Of course that is not the intended
meaning of the norm. A reasonable interpretation of the norm is that the norm
is violated only if the non-registered lawyer performs some formal action, such
as defending some clients in court or requesting the commune the permission
to open his law office in the city. According to the norm, that action should be
blocked or, in case it is too late for that, the lawyer must pay a penalty.

Analogously, in (1.c), how do we define users wishing to use the mentioned
services? And, what exactly are the mentioned “necessary measures”? In case
the users do not experience any access problem, the Member State are not
required to do anything, indeed. Thus, a reasonable legal interpretation of (1.c)
is that the norm is violated only if users try to use the services and they do not
succeed (after a reasonable number of attempts).

In real situations there are of course much more borderline cases concerning
the proper interpretation of laws in given situations, which is up to the judges
in courts (Liebwald, 2013). The handling of legal interpretations in a logical
framework has been recently addressed by (Governatori, Rotolo, and Sartor,
2015), which introduce specific defeasible operators in order to allow certain
legal interpretations to override others.

Following (Governatori, Rotolo, and Sartor, 2015), in this paper we will
use the methodology18 proposed in Hobbs’s to deal with defeasibility, which is
drawn from Circumscriptive Logic (McCarthy, 1980).

The idea behind Circumscriptive Logic is simple and we illustrate it with an
example. The fact that every bird flies is represented in FOL as:

(14) ∀x[bird(x)→fly(x)]

In order to render the rule defeasible, we add another predicate normalBF
stating that birds fly only if it is “normal” to assume so:

(15) ∀x[(bird(x)∧ normalBF (x))→fly(x)]

Adding that penguins are non-flying birds, i.e.

(16) ∀x[penguin(x)→(bird(x)∧¬fly(x))]

does not entail an inconsistency. It entails that normalBF (x) is false for each
penguin x. In this sense, (18) is stronger than (15), i.e. it has “higher priority”.
Alternatively, we may simply directly assert that penguins are not “normal”
with respect to the property of flying:

(17) ∀x[penguin(x)→¬normalBF(x)]

Note that the predicate normalBF only refers to the property of flying. In other
words, other (different) predicates must be added for all defeasible properties of
birds or other classes we want to model.

18http://www.isi.edu/~hobbs/bgt-defeasibility.text

14

Note also that predicates normal∗ are always assumed to be true, unless it
is explicitly asserted they are not. For instance, in order to infer that birds fly,
normalBF must be assumed to be true, expect in the case of penguins, where
this assumption would lead to a contradiction. By assuming that a predicate
normal∗ is true, it may be derived that other predicates normal∗ are false. For
instance, let’s (recursively) modify (18) and (17) by asserting that penguins do
not fly only if it is “normal” to assume so:

(18) ∀x[(penguin(x) ∧ normalPDF(x))→(bird(x)∧¬fly(x))] ∧
∀x[(penguin(x) ∧ normalPDF(x))→¬normalBF(x)]

In (18), assuming that, for each penguin x, normalPDF(x) is true entails that
normalBF(x) is false. Symmetrically, in (18) assuming that, for each penguin
x, normalBF(x) is true entails that normalPDF(x) is false. Of course, in real-
world contexts the first assumption must be adopted, i.e. it must be established
that the priority of normalPDF is higher than the one of normalBF.

The great advantage of Circumscriptive Logic is that it does not require the
definition of additional meta-operators to establish priorities among the inter-
pretations, in order to solve conflicts. This feature makes the mechanism directly
integrable in Hobbs’s logic, whose main goal is to keep the formal machinery as
simple as possible, i.e. not beyond standard FOL.

The different legal interpretations of “who wishes to practise ... his pro-
fessional qualification” in (1.a) are similarly handled. Let us assume that if a
lawyer x simply says he wishes to practise in a Member State y, then he really
wishes to do it (literal interpretation). In Hobbs’s logic, this is formalized via
the following axiom schema:

(19) ∀x∀y∀e1∀e2∀e3 [((lawyer x) ∧ (MS y) ∧ (say’ e1 x e2) ∧
(wish’ e2 x e3) ∧ (practice’ e3 x) ∧ (in e3 y) ∧ (Rexist e1)) →

(Rexist e2)]

To make the axiom schema in (19) defeasible, we add a predicate normalSP
stating that the entailment is valid only if it is “normal” to assume it:

(20) ∀x∀y∀e1∀e2∀e3∀en∀ea [((lawyer x) ∧ (MS y) ∧ (say’ e1 x e2) ∧
(wish’ e2 x e3) ∧ (practice’ e3 x) ∧ (in e3 y) ∧
(normalSP ’ en e1) ∧ (and ′ ea e1 en) ∧ (Rexist ea)) →

(Rexist e2)]

The real existence of e1 is no longer sufficient to entail the one of e2. In order
to enable the entailment, the real existence of en is also needed, i.e., it must be
asserted that, with respect to the entailment, assuming e1 is “normal”. Now, a
judge may reasonably decide that it is not normal assuming that a lawyer who
says he will practice in a Member State entails that he really “wishes” (in the
sense of (1.a)) to do so, i.e.:

15

(21) ∀x∀y∀e1∀e2∀e3 [((lawyer x) ∧ (MS y) ∧ (say’ e1 x e2) ∧
(wish’ e2 x e3) ∧ (practice’ e3 x) ∧ (in e3 y) ∧ (Rexist e1)) →

∃enn [(not′ enn en) ∧ (Rexist enn) ∧ (normalSP ’ en e1)]

From (21), in case a lawyer x simply says he wishes to practice in a Member
State y, we infer that en does not really exist. Thus, it is no longer possible to
infer, from (20), whether e2 really exists or not.

To summarize, in our logical framework axiom schemas (as well as definitions
and theorems) are FOL formulae intended to populate the TBox: their role is
the one of restricting the meaning of the predicates in the ABox. Since the
formulae in the ABox will be mere conjunctions of FOL predicates, it is clear
that the complexity of the formalism is fully moved to the TBox, in that the
complexity of the ABox is trivial. In our view, this feature deems pivotal from
a computational point of view, in that, in practical applications, the size of the
TBox is usually much lower than the size of the ABox. Thus, the complexity of
the logic should be easier to control. In case axiom schemas are allowed to be
implications in standard FOL, the logic possibly turns out to be semi-decidable
because, as it is well-known, standard FOL is semi-decidable. However, we may
require the axiom schemas to be asserted within a fragment of standard FOL,
thus obtaining decidable and/or tractable formalisms.

In the next section, we will present Input/Output logic, the logic for norma-
tive reasoning that we chose to wrap around Hobbs’s logic in order to properly
represent the meaning of norms expressed in natural language. Afterwards, we
will show how the integration of the two logics is possible.

4 Input/Output logic

Input/Output logic takes its origin in the study of conditional norms and it
has been originally introduced in (Makinson and van der Torre, 2000). In-
put/Output logic is not a single logic but a family of logics, just like modal
logic is a family of logics containing systems K, KD, S4, S5, etc. However, unlike
modal logic, which usually uses possible world semantics, Input/Output logic
mainly adopts operational semantics.

An Input/Output system is conceived as a deductive machine, like a “black
box” which produces statements as output, when we feed it factual statements
as input. Figure 1 is a brief visualization of a generic Input/Output system.

D � f(a; b); (b;)

(; d); (; e); : : :g

Dedutive mahine

fa; ; : : :g fb; d; e; : : :g

input

output

Figure 1: general Input/Output logic system

16

The set D represents a set of deductive rules. Formally, it is a set of pairs
(x, y), where x and y are formulae in some object logic. Each pair (x, y) in
D is called a “generator” and refers to a rule. The set D corresponds to the
deduction machine of the Input/Output system: whenever one of the formulae
in the left-hand sides of the pairs is given in input, the corresponding right-hand
sides are given in output.

In order to obtain a family of Input/Output logics, we add axioms to the
deductive system exemplified in Figure 1, thus constraining the set of pairs be-
longing to D (see examples below). But the pairs in D are never evaluated with
respect to a model, i.e. associated with a truth value. The deductive machine
simply matches the input with the left-hand sides of the pairs and returns the
corresponding right-hand sides. In that sense the semantics is operational.

Input/Output logic is a general framework that, like modal logic, may be
used to model a great variety of different meanings and forms of reasoning.
For instance, (Bochman, 2003) and (Bochman, 2004) use it to model causal
reasoning. In our research, we aim at using it for modeling legal reasoning, as
an underlying formalism for applications in legal informatics.

As pointed out in the Introduction, we start from the basic definitions in
(Makinson and van der Torre, 2000) and from the standard distinction between
regulative norms (obligations and permissions) and constitutive norms, identi-
fied in (Searle, 1995) and (Sartor, 2005), among others.

In Input/Output logic, a solution for distinguishing between regulative and
constitutive norms has been firstly proposed in (Boella and van der Torre, 2004)
and then formalized in (Sun and van der Torre, 2014) in terms of two sequential
“black boxes” (see Figure 2):

C � f(a; b); (b;)

(; d); (; e); : : :g

onstitutive norms

fa; ; : : :g fb; d; e; : : :g

fats instit. fats

O � f(b; e); (d; f); : : :g

P � f(; g); (b; h); : : :g

regulative norms

f; f; : : :g; fg; h; : : :g

obligations&

permissions

Figure 2: Input/Output logic system for the legal domain

The set C is the set of constitutive norms. It takes as input the facts of the
domain and returns the institutional facts, i.e., it defines when something counts
as something else in the domain (cf. (Searle, 1995)). The output of the first
“black box” is then given in input to the second “black box”, which implements
regulative norms.

In reified Input/Output logic, the first “black box” implements the axiom
schemas of the underlying object logic discussed in subsection 3.2 above, i.e., the
TBox of the reference ontology. On the other hand, the set O and the set P are
respectively the set of obligations and the set of permissions of the normative
system. A generator (x, y) in O reads as “given x, y is obligatory”, while a
generator (z, w) in P reads as “given z, w is permitted”.

(Makinson and Van der Torre, 2001) defines additional meta-structure to

17

perform contrary-to-duty reasoning, i.e., to determine which obligations are op-
erative in a situation that already violates some of them. On the other hand,
(Parent, 2011) enrich the Input/Output generators with priorities that allow to
handle moral conflicts. Finally, (Makinson and van der Torre, 2003) integrates
in Input/Output logic the standard distinction between “negative permissions”
and “positive permissions” originally identified by (von Wright, 1959) and fur-
ther addressed in (Alchourrón and Bulygin, 1984), among others.

A proposition is negatively permitted if and only if it is not prohibited by
the norms, i.e. if and only if its negation is not obligatory. On the other
hand, a proposition is positively permitted by a normative code if and only if
it can be derived from the code. Explicitly stated permissions, such as those
asserted in P , are positive permissions in that they trivially entail themselves.
Other positive permissions may be derived from P and O. However, since in
logic there are basically two ways of inferring new propositions, i.e. deductively
or by contradiction, and since these two ways could have different outcomes,
(Makinson and van der Torre, 2003) further sub-classify positive permissions
into static positive permissions and dynamic positive permissions, depending on
how they are derived from P and O. Finally, they introduce additional meta-
structures in the Input/Output system in order to infer the set of negative,
static positive, and dynamic positive permissions from P and O.

In this paper we are not interested in theoretical issues such as contrary-
to-duty reasoning and moral conflicts, nor in the distinction between negative
permissions and static/dynamic positive permissions. The aim of this paper is
the one of translating natural language norms in reified Input/Output logic, in
order to create a version of Input/Output logic that may be used in practical
(computational) applications for processing and reasoning on legal texts.

Therefore, below in this section we only give some details about the axioms
needed to obtain the basic Input/Output systems introduced in (Makinson and
van der Torre, 2000). In (Makinson and van der Torre, 2000), these axioms have
been asserted in terms of standard propositional logic. In the next sections, they
will be generalized in our logical framework.

Let L be the object logic. The set of obligatory norms O can be viewed as
a function from 2L to 2L such that for a set A of formulas, O(A) = {x ∈ L :
(a, x) ∈ O for some a ∈ A}. Depending on the pairs included in O, a different
output is produced against an input A. (Makinson and van der Torre, 2000)
introduce four basic relevant outputs for an input A, called out1, out2, out3,
and out4. These are functions taking O and A as arguments defined as follows:

(22) • out1(O,A) = Cn(O(Cn(A)))

• out2(O,A) =
⋂
{Cn(O(V)) : A ⊆ V, V is complete}

• out3(O,A) =
⋂
{Cn(O(B)) : A ⊆ B = Cn(B) ⊇ O(B)}

• out4(O,A) =
⋂
{Cn(O(V) : A ⊆ V ⊇ O(V)), V is complete}

Here Cn is the classical consequence operator: Cn(A) = {a ∈ L : A ` a}. A
set of formulas V is complete if it is either maximally consistent or equal to

18

L. These four sets are called ‘simple-minded output’, ‘basic output’, ‘simple-
minded reusable output’ and ‘basic reusable output’ respectively.

For each of these sets, a throughput version that allows inputs to reappear
as outputs is defined as out+i (O,A) = outi(Oid, A), where Oid = O ∪ {(a, a) :
a ∈ L}. When A is a singleton, we write outi(O, a) for outi(N, {a}). Thus, we
obtain eight basic Input/Output systems in total.

Input/Output logics are given a proof theoretic characterization. We say
that an ordered pair of formulae is derivable from a set O iff (a, x) is in the least
set that extends O ∪ {(>,>)} and is closed under a number of derivation rules
(axioms). The following are the derivation rules we need for out1 to out+4 :

(23) • SI (strengthening the input): from (a, x) to (b, x), whenever a ∈Cn({b})

• WO (weakening the output): from (a, x) to (a, y), whenever y ∈ Cn({x})

• AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y)

• OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x)

• CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y)

• ID (identity): from nothing to (a, a)

The derivation system based on the rules SI, WO and AND is called deriv1.
Adding OR to deriv1 gives deriv2. Adding CT to deriv1 gives deriv3. The five
rules together give deriv4. Adding ID to derivi gives deriv+i for i ∈ {1, 2, 3, 4}.

In (Makinson and van der Torre, 2000), it is proved that each derivi is sound

and complete with respect to out
(+)
i .

Note that the semantics in (22) and the derivations rules in (23) concern the
set of obligations O only. On the other hand, the set P is a mere unconstrained
list of pairs, i.e., P is not required to satisfy any axiom. P is only used to
determine the set of negative, static positive, and dynamic positive permissions
(cf. (Makinson and van der Torre, 2003)).

Examples of how the axioms in (23) work in practice are provided below
directly on our first-order object logic. We will show that Hobbs’s logic, thanks
to its formal simplicity, allows us to enhance the expressivity of Input/Output
systems to the first-order level via small modifications of its definitions.

On the other hand, it is important to understand that the axioms in (23)
are not always suitable for every Input/Output system. It depends on what we
want to model. For instance, the axioms ID and OR are suitable to model the
Input/Output system in Figure 2 implementing constitutive rules. Whenever
two facts a and b hold in the input, they also hold as institutional facts, as well
as their disjunction. On the contrary, ID and OR do not appear to be suitable for
handling legal reasoning, i.e., for modeling the Input/Output system in Figure
2 that implement regulative rules. It is easy to see that by imposing ID on that
“black box”, we would obtain that for every institutional fact a, a is obligatory
in the context, which is clearly not the case. To see why also OR seems to be
problematic, consider the following obligations: “If someone kills a dog, s/he

19

has to spend two years in prison” and “If someone robs a bank s/he has to
spend two years in prison”. And, suppose we know that John did one of the
two, but there is no way to understand which one, i.e. if either he killed a dog or
he robbed a bank. Logically, John must spend two years in prison. But on the
perspective of legal reasoning, he must not: only if concrete evidence of what
he did is found, obligations apply.

On the other hand, (Parent and van der Torre, 2014) observed that although
axioms CT and WO are indeed able to handle most inferences allowed in normative
reasoning, some counter-examples where they lead to incorrect derivations exist.
In light of this, they propose to respectively substitute them with the following
(stricter) axioms, ACT and OEQ:

(24) • ACT: from (a, x) and (a ∧ x, y) to (a, x ∧ y)

• OEQ: from (a, x) to (a, y), whenever y ∈ Cn({x}) and x ∈ Cn({y})

Analogously to what it has been said above about axioms schemas, i.e. that
the present paper is presenting reified Input/Output logic in general, while it
leaves the definition of the axioms schemas needed to properly model legisla-
tion to further studies, below we will refer to the derivation rules in (23) only,
without addressing whether they are truly appropriate to model norms or not.
The reader is addressed to the relevant literature in Input/Output logic and
normative reasoning for further detailed studies.

5 Combining Input/Output logic and Hobbs’s
to represent obligations and permissions

The present section shows how it is possible to combine Input/Output logic and
Hobbs’s logic, i.e. to use the latter as the object logic of the former. In line
with the spirit and the insights at the basis of Hobbs’s formalization, we aim at
keeping the formalization as simple as possible.

Hobbs’s formulae in the ABox are conjunctions of atomic FOL predicates
instantiated on FOL terms. These are used to make assertive contextual state-
ments corresponding to the norms found in legislation, in order to populate the
set O and P of the Input/Output system implementing the regulative norms.
On the other hand, formulae in the TBox are FOL implications in prenex nor-
mal form, which define the predicates used in the ABox; they are intended to
be used in the generators populating the set C of the Input/Output system
implementing the constitutive norms.

For the Input/Output generators in O and P (ABox), the left-hand side
(LHS) and the right-hand side (RHS) are each required to assert exactly one
Rexist predicate on the main eventuality. The reason is that we want the
formulae in the ABox to be conjunctions of atomic predicates, and to clearly
identify when an obligation and a permission really exists whenever certain facts
really exists. On the other hand, the Input/Output generators in C (TBox)
are not required to be flat formulae, i.e. conjunctions of atomic predicates.

20

Therefore, they may involve non-reified standard FOL predicates that do not
involve any Rexist predicate. However, we can of course convert them into their
reified counterparts via the axiom (6), shown above.

The formulae in the object logic will involve FOL variables. Some of those
variables will occur both in the left-hand side (LHS) and the right-hand side
(RHS) of an Input/Output generator, while the others will occur either in the
LHS or in the RHS. The variables occurring in both will be universally quan-
tified, while the ones occurring in either one of the two will be existentially
quantified. Universal quantifiers will outscope the Input/Ouput generators,
thus allowing to “iterate” the generators over all individuals in the domain. In
other words, they act as “bridges” between the LHS and the RHS, in order to
“carry” single individuals from the input to the output.

On the other hand, existential quantifiers will only outscope the LHSs or the
RHSs where their corresponding variables occur.

Therefore, the single formal construct introduced in the original Input/Output
definitions are universal quantifiers outscoping the generators. The LHSs and
RHSs of the generators are formulae in first-order logic within the generators.
In other words, the (propositional) (Makinson and van der Torre, 2000)’s gen-
erators in the form:

(LHS, RHS)

where LHS and RHS are formulae in standard propositional logic, are gener-
alized into (first-order) generators in the form:

∀x1
∀x2

. . . ∀xn
(LHS(x1, x2, . . . , xn), RHS(x1, x2, . . . , xn))

where LHS(x1, x2, . . . , xn) and RHS(x1, x2, . . . , xn) are FOL formulae. The
variables x1, x2, . . . , xn are free in LHS and RHS but they are externally bound
by universal quantifiers. LHS and RHS possibly include other existentially
quantified variables. But the existential quantifiers binding them are outscoped
by the generators, and so by the universal quantifiers.

This architectural choice is motivated by an empirical analysis of the obli-
gations and permissions in our corpus of European Directives. Obligations and
permissions found in legislation are typically universal assertions that hold for all
members in a certain set of individuals, e.g., the set of all lawyers in the domain.
For instance, (1.a) states that for each lawyer x having some characteristics, x
is obliged to take some actions. But x does not refer to any specific lawyer. In
case the model includes several lawyers having the required characteristics, each
of them is obliged to take the actions. As said above, the universal quantifier on
x acts as a “bridge” to “carry” to the output all lawyers who match the input.

On the other hand, we did not find in our corpus any obligation or permission
in the form “If a lawyer exists, then he is obliged to take some actions”. This
sounds quite intuitive: as said above, statements in legislation are typically
universal assertions, i.e., they do not hold for single specific individuals.

Note that, in any case, as long as quantifiers have always wide scope with
respect to the other FOL items, existentials can be easily removed via skolem-
ization. A generator in the form ∃x(LHS(x), RHS(x)) can be substituted by

21

(LHS(i), RHS(i)), where i is a FOL constant skolemizing ∃x. On the other
hand, a generator in the form ∀x(∃yLHS(x, y), RHS(x)) can be substituted
by ∀x(LHS(x, f(x)), RHS(x)), where f is a FOL function skolemizing ∃x.

Similarly, it must be observed that, in finite domains, universal quantifiers
are just a compact way to refer to all individuals in the universe. We obtain
an equivalent set of generators by substituting the universally quantified vari-
ables with all constants referring each to an individual in the universe. For
instance, assuming the universe includes the individuals a, b, c only, the gen-
erator ∀x(LHS(x), RHS(x)) is equivalent to the set of generators (LHS(a),
RHS(a)), (LHS(b), RHS(b)), and (LHS(c), RHS(c)).

In light of this, it should be clear that, provided the universe is finite, our
first-order generators can be easily reduced to sets of propositional generators,
by removing existential and universal quantifiers via skolemization and enumer-
ation respectively.

In the next two subsections, we will formally define our object logic and the
generalized version of the axioms in (23). Afterwards, we will show a possible
formalization of the examples in (1) in the resulting formalism.

5.1 The object logic

Definition 1 defines the syntax of our object logic. Universal quantifiers are not
allowed in the object logic, but only existential ones. Variables that will be
bound by (external) universal quantifiers are free in the object logic.

Since, as said above, we distinguish between the regulative norms (sets O and
P , i.e., the ABox) and constitutive norms (set C, i.e., the TBox), implemented
via two different Input/Ouput systems, we define two different object logics:
one for the formulae in the ABox and one for the formulae in the TBox. The
former are conjunctions of FOL predicates while the latter are FOL implications
in prenex normal form. As said above, well-formed formulae of the object logic
for the sets O and P are required to include each exactly one Rexist predicate,
while well-formed formulae of the object logic for the set C are not.

Definition 1. Syntax of the object logic for generators in O and P
The object logic is a fragment of First Order Logic (FOL) defined as follows:

22

- The vocabulary includes FOL terms (constants, variables, and functions),
FOL predicates, the connective ∧ and the quantifier ∃.

- If p is an n-ary FOL predicate different from Rexist, the term e is an eventu-
ality, and a1, . . . , an are FOL terms, then (p a1 . . . an) and (p′ e a1 . . . an)
are atomic predicates. (p′ e a1 . . . an) is the reified version of (p a1 . . . an),
i.e. e is the eventuality that reifies (p a1 . . . an).

- If Φ1 . . .Φn are atomic predicates as previously defined, the FOL formula:

∃e∃x1
. . . ∃xm

[(Rexist e) ∧ Φ1 ∧ . . . ∧ Φn]

is a well-formed formula. The set x1 . . . xm may be empty. Φ1, . . . ,Φn possi-
bly include free variables which are bound by external universal quantifiers.

The definition of the object logic for the generators in C is simpler, in that
formulae are simply required to be in prenex normal form.

Definition 2. Syntax of the object logic for generators in C
The object logic is a fragment of First Order Logic (FOL) defined as follows:

- The vocabulary includes FOL terms (constants, variables, and functions),
FOL predicates, the connectives ¬, ∧, ∨, →, ↔, and the quantifier ∃.

- If p is an n-ary FOL predicate, the term e is an eventuality, and a1, . . . , an
are FOL terms, then (p a1 . . . an) and (p′ e a1 . . . an) are atomic predicates.
(p′ e a1 . . . an) is the reified version of (p a1 . . . an), i.e. e is the eventuality
that reifies (p a1 . . . an).

- If Φ1 and Φ2 are FOL formulae composed by predicates as previously defined
and the connectives ¬, ∧, ∨, →, and ↔, the FOL formula:

∃y1 . . . ∃ym [Φ1 → Φ2]

is a well-formed formula. The set y1 . . . ym may be empty. Φ1 and Φ2 possi-
bly include free variables which are bound by external universal quantifiers.

Note that for the LHSs and RHSs of a generator in O and P , the predicate
Rexist must be unique within a well-formed formula, i.e., a well-formed formula
contains only one occurrence of the Rexist predicate. The predicate and defined
above in (8) is used in case multiple eventualities really exist in the current
world. For instance, the sentence “John is an happy lawyer” is represented by
the following well-formed formula:

∃e∃e1∃e1 [(Rexist e) ∧ (and′ e e1 e2) ∧ (lawyer′ e1 John) ∧ (happy′ e2 John)]

According to the semantics of and specified in (8), e really exists if and only if
both e1 and e2 really exist, i.e. if and only if both the “lawyer-ness” and the
“happy-ness” of John really exist.

23

A final clarification concerns the input formulae. In (Makinson and van der
Torre, 2000), both the formulae in the generators and the ones in the input are
asserted in propositional logic. On the contrary, in our framework the input
formulae may contain existentially quantified variables.

Therefore, while in (Makinson and van der Torre, 2000) we must look for gen-
erators whose LHS is equal to some input formulae, in our framework we must,
more generally, look for input formulae that match the LHSs of the generators.
In case the input formulae contains constants, those need to be unified with the
quantified variables. For instance, the generator ∀x(LHS(x), RHS(x)) matches
the input formula LHS(a), where a is a FOL constant. The corresponding out-
put formula is of course RHS(a). Similarly, in case the input formulae contain
existentially quantified variables, those need to be unified with the quantified
variables in the generators and the existential quantifiers are “carried” to the
output. For instance, ∀x(LHS(x), RHS(x)) also matches the input formula
∃y[LHS(y)] and the corresponding output formula is ∃y[RHS(y)]. Since these
notions are quite intuitive, we omit formal details.

5.2 Generalizing Input/Output logic axioms

We have shown above how it is possible to model complex NL statements found
in existing legislation by combining Input/Ouput logic and reification. Also the
axioms in (23) need to be generalized in order to make them working with reified
formulae. This section only shows two examples, i.e. the generalization in this
sense of the axioms CT and OR. The generalizations of the other axioms in (23)
are similar so that we omit them.

The axiom CT (cumulative transitivity), copied again in (25) for reader’s
convenience, is generalized as in (26). In (26), Ψ′1, Ψ′2, and Ψ′3 are conjunctions
of FOL predicates, different from Rexist, where x1 . . . xn occur free while all
other variables are bound by existential quantifiers.

(25) CT: from (a, x) and (a ∧ x, y) to (a, y)

(26)

from: ∀x1 . . .∀xn(∃e11∃y11 . . . ∃y1i [(Rexist e11) ∧ (Ψ′1 e11 y11 . . . y1i x1 . . . xn)],

∃e21∃y21
. . . ∃y2j

[(Rexist e21) ∧ (Ψ′2 e21 y21 . . . y2j x1 . . . xn)])

and: ∀x1 . . .∀xn(∃e∃e11∃y11 . . . ∃y1i∃e21∃y21 . . . ∃y2j[(Rexist e)∧ (and′ e e11 e21) ∧
(Ψ′1 e11 y11 . . . y1i x1 . . . xn) ∧ (Ψ′2 e21 y21 . . . y2j x1 . . . xn)],

∃e31∃y31 . . . ∃y3k
[(Rexist e31) ∧ (Ψ′3 e31 y31 . . . y3k x1 . . . xn)])

to: ∀x1
. . . ∀xn

(∃e11∃y11
. . . ∃y1i

[(Rexist e11) ∧ (Ψ′1 e11 y11 . . . y1i x1 . . . xn)],

∃e31∃y31 . . . ∃y3k
[(Rexist e31) ∧ (Ψ′3 e31 y31 . . . y3k x1 . . . xn)])

24

Note that, since x1, . . . , xn is the set of free variables occurring in both the LHS
and the RHS of the generators, the three generators in (26) must have the same
number of free variables. An example of (26)’s instantiation is: given “Every
lawyer is obliged to run” and “Every lawyer who runs is obliged to wear a red
hat”, formalized in (27) and (28) respectively:

(27) ∀x(∃e11 [(Rexist e11) ∧ (lawyer′ e11 x)], ∃e21 [(Rexist e21) ∧ (run′ e21 x)])

(28) ∀x(∃e∃e11∃e21 [(Rexist e)∧(and′ e e11 e21)∧(lawyer′ e11 x)∧(run′ e21 x)],

∃e31∃z[(Rexist e31) ∧ (wear′ e31 x z) ∧ (redHat z)])

in case the Input/Output system includes the generalized CT axiom in (26), the
set O must include (29): “Every lawyer is obliged to wear a red hat”.

(29) ∀x(∃e11 [(Rexist e11) ∧ (lawyer′ e11 x) ∧ (run′ e21 x)],

∃e31∃z[(Rexist e31) ∧ (wear′ e31 x z) ∧ (redHat z)])

On the other hand, the axiom OR (disjunction of input), copied in (30) for
reader’s convenience, is generalized as in (31).

(30) OR: from (a, x) and (b, x) to (a ∨ b, x)

is generalized as follows:

(31)

from: ∀x1
. . .∀xn

(∃e11∃y11
. . . ∃y1i

[(Rexist e11) ∧ (Ψ′1 e11 y11 . . . y1i x1 . . . xn)],

∃e21∃y21
. . . ∃y2j

[(Rexist e21) ∧ (Ψ′2 e21 y21 . . . y2j x1 . . . xn)])

and: ∀x1
. . .∀xn

(∃e31∃y31
. . . ∃y3k

[(Rexist e31) ∧ (Ψ′3 e31 y31 . . . y3k x1 . . . xn)],

∃e21∃y21
. . . ∃y2j

[(Rexist e21) ∧ (Ψ′2 e21 y21 . . . y2j x1 . . . xn)])

to: ∀x1
. . .∀xn

(∃e∃e11∃y11
. . . ∃y1i

∃e31∃y31
. . . ∃y3k

[(Rexist e)∧ (or′ e e11 e31) ∧
(Ψ′1 e11 y11 . . . y1i x1 . . . xn) ∧ (Ψ′3 e31 y31 . . . y3k x1 . . . xn)],

∃e21∃y21
. . . ∃y2j

[(Rexist e21) ∧ (Ψ′2 e21 y21 . . . y2j x1 . . . xn)])

An example of (31)’s instantiation is: given “Every lawyer is obliged to run”
and “Every judge is obliged to run”, formalized in (32) and (33):

(32) ∀x(∃e11 [(Rexist e11) ∧ (lawyer′ e11 x)], ∃e21 [(Rexist e21) ∧ (run′ e21 x)])

(33) ∀x(∃e31 [(Rexist e31) ∧ (judge′ e31 x)], ∃e21 [(Rexist e21) ∧ (run′ e21 x)])

in case the Input/Output system includes the generalized OR axiom in (31), the
set O must include (34): “Every lawyer or judge is obliged to run”.

25

(34)

∀x1..xn
(∃e∃e11∃e31 [(Rexist e)∧(or′ e e11 e31)∧(lawyer′ e11 x)∧(judge′ e31 x)],

∃e21 [(Rexist e21) ∧ (run′ e21 x)])

According to the semantics of the predicate or reported above in (9), e really
exists if and only if either e11 or e31 (or both) really exist, i.e. if and only if
either the “lawyer-ness” or the “judge-ness” of x really exists.

6 Formalizing natural language norms in reified
Input/Output logic

We have now all the ingredients needed to build the formulae representing the
norms in (1.a-c), copied again in (35) for reader’s convenience. As said above,
we did not find relevant differences between these norms and the other norms
in our corpus, thus we assume our formalization is general enough to cover a
representative part of EU legislation.

(35) a. A lawyer who wishes to practise in a Member State other than that
in which he obtained his professional qualification shall register with
the competent authority in that State.

b. Where baker’s honey has been used as an ingredient in a compound
foodstuff, the term ‘honey’ may be used in the product name of the
compound food instead of the term ‘baker’s honey’.

c. Member States shall take the necessary measures to allow any airport
user wishing to use the tailored services or dedicated terminal or part
of a terminal, to have access to these services and terminal or part of
a terminal.

The basic components of every logical framework are terms and predications, the
former referring to individuals in the universe, the latter referring to the truth
values of assertions made on these individuals. In standard FOL, terms are con-
stants, variables and functions, while predications are predicates, boolean con-
nectives, and the quantifiers ∀ and ∃. Further predications (e.g., modal, deontic,
temporal, etc., operators) may be added to handle more complex meanings, but,
in this way, we are no longer in standard FOL.

In Hobbs’s, every predication can be reified in a predicate including at least
one eventuality among its arguments, thus allowing to handle complex meanings
in standard FOL. While the previous sections should have already made clear
how predications are dealt with in Hobbs’s, some more clarifications are needed
for the identification of terms in the sentences in (35).

As it is well-known in NLS, specifically in the study of generics (Carlson,
1982), “a lawyer” and “a Member State” in (35.a) and “a compound foodstuff”
in (35.b) do not refer to a specific single lawyer, a specific single Member State,
and a specific single compound foodstuff. Rather, they refer to every lawyer,

26

every Member State, and every compound foodstuff. Therefore, each of the
three noun phrases must be associated with a universally quantified variable
that respectively ranges over the set of lawyers, the set of Member States, and
the set of compound foodstuffs.

More subtle considerations ought to be done for the expressions “that in
which he obtained his professional qualification” and “the competent authority
in that State” in (35.a). These expressions indeed refer to functional terms.

Given a lawyer x, it can be functionally determined the Member State where
he obtained his professional qualification. For instance, the lawyer “John” ob-
tained his professional qualification in France, the lawyer “Jack” in Greece, etc.
Same considerations hold for “the competent authority in that State”: for Italy
it could be the Ministry of Justice, for Germany it could be the Court of Cas-
sation, etc. At the level of the logical formulae, the first expression could be
then represented via a function f(x), that takes in input a lawyer and returns
a Member State. At the implementation level, f may correspond to a query on
some databases that store information about lawyers practising in Europe. The
expression “the competent authority in that State” is analogously represented.

Other problems concern mass terms. A mass term is an uncountable term
such that any quantity of it is treated as an undifferentiated unit. For instance,
“baker’s honey” in (35.b) is a mass term in that sub-quantities of baker’s honey19

are again baker’s honey. A standard way to deal with mass terms in logic is to
introduce a predicate part-of to relate (sub-)quantities of mass terms. Such a
solution has been developed in (Bunt, 1985), among others. This paper neglects
a proper treatment of mass terms. We will simply treat them as countable terms.
Thus, baker’s honey is represented via a predicate bakersHoney(x), where x has
to be thought as an “atomic countable unit” of baker’s honey.

Finally, it seems that the sentences in (35) do not contain expressions denot-
ing FOL constants. In legal documents, in the standard case these are denoted
by specific named entities: institutions such as “the Court of Justice”, dates
such as “16/2/1998”, quantities of money such as “1000 euros”, references to
other legal documents such as “the Directive 98/5/EC”, etc.

However, a closer look reveals that legal texts contain many other named en-
tities. For instance, in (35.b), “the term ‘honey’ ” and “the term ‘baker’s honey’ ”
do not refer to honey and baker’s honey, i.e., the two foods, but to the two ex-
pressions used in English to talk about the two foods. Those may be used, for
instance, to label jars containing honey and baker’s honey. These two expres-
sions are then represented via FOL constants.

6.1 Formalizing the examples

In our logical framework we represent the obligation in (35.a) as:

19According to the definitions in the directive, “baker’s honey” is “honey which is (a)
suitable for industrial uses or as an ingredient in other foodstuffs which are then processed
and (b) may have a foreign taste or odour, or have begun to ferment or have fermented, or
have been overheated.” A specific definition may be added to the TBox, i.e., the set C, in
order to represent this meaning.

27

(36) ∀x∀y(∃e1∃e2 [(Rexist e1) ∧ (lawyer x) ∧ (MS y) ∧ (wish’ e1 x e2) ∧
(practice’ e2 x) ∧ (in e2 y) ∧ diffFrom(y f1(x))],

∃e3 [(Rexist e3) ∧ (register’ e3 x) ∧ (at e3 f2(y))])

As discussed above, the noun phrases “that in which he obtained his professional
qualification” and “the competent authority in that State” are formalized in
terms of two functions, which we called f1 and f2 in (36). f1 takes a lawyer and
returns the country where he obtained his qualification; f2 takes a Member State
and returns the competent authority in that state. At the implementation level,
f1 and f2 may correspond to queries on some databases that store information
about lawyers practising in Europe and EU Member States.

On the other hand, as discussed above in section 3, the predicate wish may
be subject to different legal interpretations, whose proper handling requires the
introduction of defeasible axiom schemas in the TBox. For instance, we can
take the literal interpretation of “wish” as default interpretation by converting
the implication in (20) into an Input/Output generator to be added to the set
C, i.e., the set of constitutive rules:

(37) ∀x∀y∀e1∀e2∀e3∀en∀ea((lawyer x) ∧ (MS y) ∧ (say’ e1 x e2) ∧
(wish’ e2 x e3) ∧ (practice’ e3 x) ∧ (in e3 y) ∧
(normalSP ’ en e1) ∧ (and ′ ea e1 en) ∧ (Rexist ea),

(Rexist e2))

The permission in (35.b) is similarly formalized in (38). Of course, since (35.a)
is an obligation while (35.b) is a permission, (36) is inserted in the set O of the
Input/Output system implementing regulative norms, while (38) is inserted in
the set P of the same Input/Output system.

(38) ∀y(∃x∃e1 [(Rexist e1)∧ (ingrOf’ e1 x y)∧ (bakerHoney x)∧ (foodStuff y)],

∃e2 [(Rexist e2) ∧ (substitute’ e2 Th Tbh) ∧ (in e2 f3(y))])

As discussed above, the noun phrases “the term ‘honey’ ” and “the term ‘baker’s
honey’ ” correspond to FOL constants, which we called Th and Tbh; f3 is a FOL
function that takes a compound foodstuff and returns its product name.

Note that the verbal construction “may be used . . . instead of” has been
represented via the predicate substitute. As in the case of wish in (36), substitute
may be subject to multiple legal interpretations: judges are in charge of deciding
whether, in specific contexts, the way the term ‘honey’ has been used in the
product name instead of the term ‘baker’s honey’ is compliant with (35.b), i.e.,
whether that way indeed entails the predicate substitute.

Note also that the variable x only occurs in the LHS of the formula, thus
it is existentially quantified. The formula in (38) reads as follows: for each
compound foodstuff y for which it is “true” (in the sense that it really exists in
the current world) the fact that one of its ingredients is baker’s honey, then the

28

norm permits the real existence of the fact that the term ‘honey’ is substituted
by the term ‘baker’s honey’ in the product name of y.

Finally, (35.c) is formalized via two reified Input/Output logic generators.
As pointed out above at the end of the Introduction, (35.c) contains both a
permission and an obligation. Airport users are allowed to use the tailored
services or dedicated terminal or part of a terminal. On the other hand, Member
States are obliged to guarantee that all airports allow their users to use them.

It seems then that the easiest way to represent (35.c) is to associate it with
both an obligation and a permission, and keep them independent of one another.
In other words, the permission will be not included in the obligation, as the
wording would suggest at first glance. Rather, the obligation instantiates the
same logical items used in the permission, i.e. it “copies” its formalization. Of
course, for the sake of computational efficiency, at the implementation level the
two formalizations may be somehow related, in order to evaluate the logical
items that occur in both only once and then propagate their truth values to
all copies. Nevertheless, at the level of the logical forms, such implementation
details are of course immaterial.

The generator in (39) represents the permission in (35.c): airport users wish-
ing to use the tailored services or dedicated terminal or part of a terminal are
permitted to have access to these services or terminal or part of a terminal.

(39) ∀x∀y(∃e1∃e2 [(Rexist e1) ∧ (airpUser x) ∧ (tsOrDtOrPt y) ∧
(wish’ e1 x e2) ∧ (use’ e2 x y)],

∃e3 [(Rexist e3) ∧ (access’ e3 x y)])

The unary predicate tsOrDtOrPt is true if its argument is either a tailored
service or a dedicated terminal or a part of a terminal. This predicate has been
introduced for the sake of (39)’s readability only. The following axiom schema
must be added to C in order to get the intended meaning. Note that (40) uses
the boolean connective ‘∨’, belonging to standard FOL.

(40) ∀y((ts y) ∨ (dt y) ∨ (pt y), (tsOrDtOrPt y))

The axiom schema in (40) states that a tailored service or a dedicated terminal
or a part of a terminal counts as a “tsOrDtOrPt”. Note that, via the axioms
in (6) and (9), it is possible to build a fully-reified version of (40), which is
equivalent but clearly more verbose than (40):

(41) ∀e∀y((Rexist eo1) ∧ (or′ eo1 e1 eo2) ∧ (or′ eo2 e2 e3) ∧
(ts’ e1 y) ∨ (dt’ e2 y) ∨ (pt’ e3 y),

∃e5 [(Rexist e5) ∧ (tsOrDtOrPt’ e5 y)])

The generator representing the obligation in (1.c) is then drawn from (39). We
instantiate the same predicates and we add other ones requiring each Member
State z to guarantee the permission e3. The generator is shown in (42).

29

(42) ∀x∀y∀z(∃e1∃e2 [(Rexist e1) ∧ (airpUser x) ∧ (tsOrDtOrPt y) ∧ (MS z) ∧
(wish’ e1 x e2) ∧ (use’ e2 x y)],

∃e4∃e3 [(Rexist e4) ∧ (guarantee’ e4 z e3) ∧ (access’ e3 x y)])

We stress again: (42) does not include (39): the predicates occurring in the
former are copies of the ones occurring in the latter. And, (42) is inserted in
the set O of the Input/Output system implementing regulative norms while
(39) is inserted in P . Of course, this does not necessarily mean that, at the
implementation level, these predicates must be evaluated twice. To enhance
computational efficiency, at the implementation level the two formalizations
may be somehow related, in order to evaluate the logical items only once and
then propagate their truth values to all copies. Such implementation details are
of course beyond the goal of the present paper.

The following axiom schema defines a default semantics for guarantee:

(43) ∀e1∀e2∀en1 ∀en2 ∀x((guarantee’ e1 x e2) ∧ (not’ en2 e2) ∧ (Rexist en2),

(not’ en1 e1) ∧ (Rexist en1))

In (43), e1 is the fact that an individual x is in charge of guaranteeing another
eventuality e2. (43) states that if e2 does not really exists then e1 does not
really exist too. For instance, in (42), if e3 does not really exist, i.e., the user
x does not have access to y, then also e4, i.e., the fact that the Member State
z guarantees e3, does not really exist. In other words, if the user x does not
have access to y, then the Member State z is not guaranteeing the access to y.
Therefore, the RHS of the generator in (42) turns out to be false, and we can
infer that the obligation in (42) has been violated.

Again, we can create a defeasible version of (43) via the methodology drawn
from Circumscriptive Logic that has been explained above in section 3.2, i.e.,
by adding in (43) a predicate stating that guarantee has the (default) meaning
in (43) if and only if it is “normal” to assume so. The same may be done for the
predicate access: we may add in the TBox a defeasible axiom schema assigning
the literal meaning of the verb to the predicate. According to that semantics,
if a user makes an attempt to access the services and he does not manage, then
the accessibility of the services does not really exist. A judge may later override
that (default) semantics by stating that the user could have tried more than
one time before saying that the services were not accessible.

7 Future works: the forthcoming General Data
Protection Regulation (GDPR), a case study

The previous sections have proposed a new general logical framework which
may be possibly used to represent the meaning of norms expressed in natural
language, e.g. those found in existing legislation. Logical representations have

30

been exemplified on some norms selected from a corpus of EU directives that
we used in our past research projects.

This section discusses some future applicability of reified Input/Output logic,
namely a case study in which the logical framework will be employed. In our
future works we want to formalize the norms occurring in the upcoming Euro-
pean General Data Protection Regulation (GDPR)20, which will enter into force
from 25 May 2018, and to correlate them with the norms occurring in existing
(industrial) ISO standards.

ISO standards do not per se guarantee legal compliance21. On the other
hand, ISO standards can be certified by means of auditing procedures from
qualified bodies, so that the adoption of ISO standards may provide arguments
to demonstrate that adequate measures were taken to achieve legal compliance.

Therefore, the development of a knowledge base of machine-readable repre-
sentations correlating the GDPR and the ISO standards could, in our view, help
legal experts to assess the requirements of the GDPR that have been met by
implementing certain ISO standards, as well as to distinguish them from those
that still need to be fulfilled.

Note that also correlations between the GDPR and the ISO standards are
subject to legal interpretation, i.e., they may be overridden by judges in court
or by other legal authorities. The knowledge base must be able to keep track of
the different legal interpretations over time, thus the need of constructs imple-
menting defeasibility such as the one adopted in reified Input/Output logic.

In this section, we present an example of correlation between an obligation in
the GDPR and one in the ISO/IEC 27001:2013 standard22, in order to exemplify
the use of reified Input/Output logic in our future research projects. The two
obligations are shown in (44).

(44) a. GDPR, Article 46.1: “[. . .] a controller or processor may transfer per-
sonal data to a third country or an international organization only if
the controller or processor has provided appropriate safeguards [. . .]”

b. ISO 27001, Article. 13.2.1: “Formal transfer policies, procedures and
controls shall be in place to protect the transfer of information through
the use of all types of communication facilities.”

The formalization of (44.a-b) in reified Input/Output logic is rather straight-
forward. The predicates used in the ABox formulae will reflect the vagueness
of the terms occurring in the sentences. Then, as discussed above, further ax-
iom schemas could be added to the TBox, in order to define/constrain these
predicates, as well as to attribute them default interpretations and stronger
(overriding) ones. Correlations between the GDPR and the ISO standards will

20Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data (General Data Protection Regulation), http://data.europa.
eu/eli/reg/2016/679/oj.

21Except when the standard is endorsed by the law itself; such exceptions are however rare.
22http://www.iso.org/iso/catalogue_detail?csnumber=54534.

31

be achieved via additional axiom schemas connecting at least two predicates
that respectively occur in a formula associated with a GDPR norm and in a
formula associated with a norm of the ISO standards.

The obligations in (44.a-b) are respectively formalized in (45.a-b):

(45) a. ∀k(∃e∃x∃y∃z∃w[

(dataController x) ∧ (personalData y) ∧ (dataSubject z) ∧
(thirdCountryOrIntOrg w z) ∧ (Rexist e) ∧
(transfer’ e x y w) ∧ (instrOf e k)],

(appropriate k))

b. ∀k(∃e∃x∃y∃w[

(information y) ∧ (Rexist e) ∧ (transfer’ e x y w) ∧ (instrOf e k)],

(secure k))

In (45.a), e refers to the event of transfer of y performed by the agent x to w.
x has to be a data controller23 while y refers to personal data of a data subject
z. k is the instrument of the action e, i.e., the communication facility through
which data are transferred. The predicate thirdCountryOrIntOrg is a convenient
predicate to state that its first argument is either an international organization
or a country different from the one where the data subject lives; this is enforced
by adding (46.a) to the set of constitutive rules C (TBox):

The obligation in (45.a) requires the communication facility k to be “appro-
priate”. Of course, appropriateness (with respect to the GDPR) of a communi-
cation facility is a vague and highly debatable concept, but this has been done
on purpose by the legislator(s) who wrote the GDPR, in order to encompass all
scenarios where the legislative document must be applied.

Similarly, (45.b) states that, with respect to the ISO/IEC 27001:2013, every
communication facility k (involved in a transfer e of information y from an agent
x to a receiver z) must be “secure”. Note that personal data are a particular
subclass of information; this is formalized via the generator in (46.b), which
must be added to the set of constitutive rules C.

(46) a. ∀y∀w∀c((IntOrg w) ∨ ((diffFrom w c) ∧ (countryOf c z)),

(thirdCountryOrIntOrg w z))

b. ∀y((personalData y), (information y))

As said above, the predicates “appropriate” and “secure” need to be specialized
via further axiom schemas defining their default interpretations. In other words,
those axiom schemas will define when, in real scenarios, the communication

23Or a data processor, but in this example we assume for simplicity that the provision only
refers to data controllers.

32

facility is assumed to be either appropriate (with respect to the GDPR) or
secure (with respect to the ISO/IEC 27001).

Since ISO standards are consolidated best practices, it is easier to iden-
tify when a communication facility is assumed to be secure with respect to
the ISO/IEC 27001. For instance, assuming that an undertaking certified to
ISO/IEC 27001 has adopted a formal transfer policy according to which data
transfers must take place via email with electronic signature or registered (hard)
mail, the following two axiom schemas may be added to the C:

(47) ∀x((emailWithES x) ∧ (normalEeIsAp x), (secure x))

∀x((regMail x) ∧ (normalRmIsAp x), (secure x))

On the other hand, the key idea of our future research project is the one of
modeling the meaning of predicates used in the formulae representing GDPR
norms, such as “appropriate”, in terms of the predicates used in the formulae
representing norms occurring in the ISO standards, thus creating correlations
between the GDPR and the ISO standards. In light of this, we add to C the fol-
lowing constitutive rule, stating that being secure with respect to the ISO/IEC
27001 (defeasibly) entails being appropriate with respect to the GDPR.

(48) ∀x((secure x) ∧ (normalSecAppr x), (appropriate x))

The entailments in (47) and (48) are defeasible, i.e., they only hold when it
is “normal” to assume them. On the contrary, in case a judicial authority
later decides, for example, that not all electronic emails are secure means, but
only those featuring certain underspecified properties “P ”, the following axiom
schemas may be added to the TBox in order to override (47.a):

(49) ∀x((emailWithES x), ¬(normalEeIsAp x))

∀x((emailWithES x) ∧ (P x), (secure x))

By adding (49), from the knowledge base it cannot be derived anymore that
electronic emails are secure with respect to the ISO/IEC 27001 and (in turn)
appropriate with respect to the GDPR. Such derivations are allowed only for
those electronic emails featuring the property “P”.

Similarly, a judicial authority could decide that although some communi-
cation facilities are deemed to be secure with respect to the ISO/IEC 27001,
nonetheless they are not fully appropriate with the respect to the protection of
personal data. In order to be appropriate with the respect to the GDPR, they
must also feature another (underspecified) characteristic “C”. The following
axioms are then added to the knowledge base, in order to override (48):

(50) ∀x((secure x), ¬(normalSecAppr x))

∀x((secure x) ∧ (C x), (appropriate x))

33

Of course, axioms may be associated with time stamps (although this is not
shown in the formulae above), so that (50) overrides (48) only for transfer
actions performed after a certain date, i.e., the one from which the judicial
authority has been issued. On the other hand, (48) will still assert that email
with electronic signature are appropriate communication facilities for all transfer
actions performed before that date.

8 Conclusions

The results presented in this paper are collocated within a long-term research
aiming at devising a logical framework for modeling norms in natural language,
in order to build applications in legal informatics.

We chose Input/Output logic and Hobbs’s logic as the two basic frameworks,
in Deontic Logic and Natural Language Semantics respectively, that need to be
integrated and further developed together.

Input/Output logic is a well-studied framework in normative reasoning; it
is indeed a meta-logic that may be wrapped around another logic, termed in
this paper as ‘the object logic’. Input/Output logic overcomes crucial theoret-
ical limitations of standard deontic logic, above all contrary-to-duty reasoning
and moral conflicts. However, it is in turn limited with respect to its expres-
sivity: all Input/Output systems proposed so far in the literature are defined
on object logics which are strictly propositional. These Input/Output systems
are unable to handle norms coming from existing legislation: real-world norms
need first-order constructs able to distinguish between terms (named entities,
functional expressions, and variables ranging over all members of a certain set
of individuals) and predications applied to these terms.

This paper proposes to extend the expressivity of Input/Output logic beyond
the propositional level by using constructs coming from Hobbs’s logic, which is
grounded on the notion of reification. The result is a new logical framework
that we called ‘reified Input/Output logic’.

Hobbs’s logic is able to represent a wide range of linguistic phenomena that
can be hardly modeled via standard formalisms for Natural Language Semantics
such as Discourse Representation Theory, Minimal Recursion Semantics, and
McCarty’s Language for Legal Discourse, which are grounded on the well-known
Montague’s principle of compositionality.

Furthermore, Hobbs’s logic allows to distinguish between assertions in the
TBox of the ontology, which correspond to constitutive norms in the legal do-
main, from assertions in the ABox, which correspond to regulative norms in
the legal domain. The TBox will contain the axiom schemas that define the
semantics of the predicates used in the formulae and that enable inferences
from them. On the other hand, the Input/Output generators corresponding to
obligations/prohibitions and permissions are intended to populate the ABox.
While the assertions in the TBox are FOL formulae in prenex normal form, the
assertions in the ABox are mere conjunctions of atomic FOL predicates.

34

In our view, such a separation between assertions in the TBox from those in
the ABox features a twofold advantage.

First of all, the complexity of reified Input/Output logic is fully moved to
the TBox of the ontology. In our view, this feature deems pivotal from a com-
putational point of view, in that, in practical applications, the size of the TBox
is usually much lower than the size of the ABox. Thus, the complexity of the
logic is expected to be easier to control. While first-order logic is known to
be semi-decidable, we can restrict the expressivity of the axiom schemas in the
TBox so that the Input/Output systems using them turn out to be tractable,
i.e. usable in practical applications. Computational complexity has been iden-
tified as a thorny issue for Input/Output logic, in that main reasoning tasks in
Input/Output systems turn out to be intractable even when the object logic is
taken to be propositional logic only (Sun and Robaldo, 2016), (Sun and Robaldo,
2017). In our future works, we will investigate the dependencies between the
expressivity/complexity of the axiom schemas and the one of the Input/Output
systems using them.

Of course, in case applications will require more expressivity, i.e. in case
we are forced to sacrifice computational complexity in order to express the
semantics we do need in our applications, the implemented Input/Output system
must include a way to block long-time derivations, e.g. a timeout. This appears
to be a very näıve solution, but it is indeed the only reasonable way to handle
intractable tasks in practical applications. For instance, in the TACITUS system
(Hobbs, 1986) (Montazeri and Hobbs, 2011), which implements Hobbs’s logic,
there is no control on the FOL formulae allowed in the knowledge base, so that
computational complexity is constrained by positing time thresholds and setting
maximum depth of inferences (cf. (Ovchinnikova et al., 2011)).

Secondly, the reified Input/Output generators in the ABox, being mere con-
junctions of atomic FOL predicates, are easier to read and to edit by legal
practitioners, who usually have little expertise in logic. They could then ac-
tively collaborate in the building of (large) ABoxes of formulae representing
regulative norms occurring in existing legislation.

Specifically, we plan, in our future works, to develop ad-hoc semi-automatic
systems such as editors to help the manual construction of ABoxes containing
the assertive contextual statements, i.e., the regulative norms.

On the one hand, we need to overcome the limitation of the manual trans-
lation of the norms, which would be highly time-consuming and error-prone.
On the other hand, we believe that current NLP technologies, even at the best
of their performances, are however unable to automatically translate from text
to generators in our framework with a reasonable level of accuracy. For this
reason, we advocate a translation of the norms in a semi-automatic fashion.

Automatic means are intended to assist the annotation. For instance, back-
ground reasoners may be incorporated in the editor in order to check the con-
sistency of the knowledge base as long as new formulae are added to it. It is
likewise important to guarantee a uniformity of translations for excerpts of text
that are similar to each other. The problem concerns translations in general,
e.g., translations of documents from English to French. Here, human trans-

35

lators are helped by tools such a the Trados Studio24, which suggest them
how to translate a sentence on the basis of the translations of similar sentences
that have been previously established and stored in the translation memory.
By looking at previous translations, human-translators are induced to translate
new sentences in a similar (uniform) way. Previously translated sentences are
found via text-similarity pattern-recognition NLP techniques such as (Mihalcea,
Corley, and Strapparava, 2006) and (Boella et al., 2014).

The first case study for the ad-hoc editor we are planning to implement
will be the norms included in the recently-approved General Data Protection
Regulation (GDPR) and in existing ISO standards, as discussed in section 7
above. The case study will possibly require to study new special sub-types
of obligations and permissions such as those studied in (Governatori et al.,
2013) and (Makinson and van der Torre, 2003), as well as the dependencies
between deontic predications and other linguistic phenomena. For instance,
(Hashmi, Governatori, and Wynn, 2014) study the connections between deontic
assertions and time and model them in a framework based on Event Calculus.
In our future works, we plan to properly deal with time by incorporating the
insights at the basis of OWL-Time25 (Hobbs and Pan, 2004) and by, of course,
adapting and extending them to the legal domain in light of the work done
by (Hashmi, Governatori, and Wynn, 2014), among others. Some preliminary
work in that sense has been already done by the first author of this paper in
(Robaldo et al., 2011).

In line with what is done in past research in both Input/Output logic and in
Hobbs’s logic, we plan to handle all such further refinements, stemming from as-
sertions occurring in existing legislation, by defining new specific Input/Output
axioms and/or new specific Hobbs’s axioms schema, while proving they are
sound and complete with respect to the desired semantics.

References

Ajani, G., G. Boella, L. Di Caro, L. Robaldo, L. Humphreys, S. Praduroux,
P. Rossi, and A. Violato. 2017. The european legal taxonomy syllabus: A
multi-lingual, multi-level ontology framework to untangle the web of euro-
pean legal terminology. Applied Ontology, to appear.

Alchourrón, C.E. and E. Bulygin. 1984. Permission and permissive norms. In
Theorie der Normen. Duncker-Humblot, Berlin.

Alshawi, H., editor. 1992. The Core Language Engine. Mit Press, Cambridge,
MA.

24http://www.translationzone.com/products/sdl-trados-studio
25See http://www.w3.org/TR/owl-time and http://www.isi.edu/~hobbs/owl-time.html.

See also http://www.isi.edu/~hobbs/bgt-time.text, where some predicates and axiom
schemas to associate events with time instants or time intervals are defined.

36

Bach, E. 1981. On time, tense, and aspect: An essay in english metaphysics.
In P. Cole, editor, Radical Pragmatics. Academic Press, New York, pages
63–81.

Bochman, Alexander. 2003. A logic for causal reasoning. In Georg Gottlob and
Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15,
2003, pages 141–146. Morgan Kaufmann.

Bochman, Alexander. 2004. A causal approach to nonmonotonic reasoning.
Artificial Intelligence, 160(1-2):105–143.

Boella, G., L. Di Caro, L. Humphreys, L. Robaldo, R. Rossi, and L. van der
Torre. 2016. Eunomos, a legal document and knowledge management sys-
tem for the web to provide relevant, reliable and up-to-date information on
the law. Artificial Intelligence and Law, 4.

Boella, G., L. Di Caro, A. Ruggeri, and L. Robaldo. 2014. Learning from syntax
generalizations for automatic semantic annotation. Journal of Intelligent
Information Systems, 43(2):231–246.

Boella, Guido, Luigi Di Caro, Michele Graziadei, Loredana Cupi, Carlo Emilio
Salaroglio, Llio Humphreys, Hristo Konstantinov, Kornel Marko, Livio
Robaldo, Claudio Ruffini, Kiril Simov, Andrea Violato, and Veli Stroet-
mann. 2015. Linking legal open data: Breaking the accessibility and lan-
guage barrier in european legislation and case law. In Proceedings of the
15th International Conference on Artificial Intelligence and Law, ICAIL ’15,
pages 171–175, New York, NY, USA. ACM.

Boella, Guido, Luigi Di Caro, Daniele Rispoli, and Livio Robaldo. 2013. A sys-
tem for classifying multi-label text into eurovoc. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Law, ICAIL
’13, pages 239–240, New York, NY, USA. ACM.

Boella, Guido, Luigi Di Caro, and Livio Robaldo, 2013. Semantic Relation
Extraction from Legislative Text Using Generalized Syntactic Dependencies
and Support Vector Machines, pages 218–225. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Boella, Guido and Leendert W. N. van der Torre. 2004. Regulative and consti-
tutive norms in normative multiagent systems. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Ninth International Con-
ference (KR2004), pages 255–266.

Bunt, H.C. 1985. Mass Terms and Model-Theoretic Semantics. Cambridge
Studies in Linguistics. Cambridge University Press.

Cariani, Fabrizio, Davide Grossi, Joke Meheus, and Xavier Parent, editors.
2014. Deontic Logic and Normative Systems - 12th International Confer-
ence, DEON 2014, Ghent, Belgium, July 12-15, 2014. Proceedings, volume
8554 of Lecture Notes in Computer Science. Springer.

37

Carlson, Greg N. 1982. Generic terms and generic sentences. Journal of Philo-
sophical Logic, 11(2).

Chomsky, N. 1957. Syntactic Structures. Mouton and Co, The Hague.

Collins, M. 2003. Head-driven statistical models for natural language parsing.
Computational Linguistics, 29(4):589–637.

Copestake, A., D. Flickinger, and I.A. Sag. 2005. Minimal Recursion Seman-
tics. An introduction. Journal of Research on Language and Computation.,
2?(3):281–?32.

Davidson, D. 1967. The logical form of action sentences. In Nicholas Rescher,
editor, The Logic of Decision and Action. University of Pittsburgh Press.

Evans, D. and D. Eyers. 2008. Deontic logic for modelling data flow and use
compliance. In Proceedings of the 6th International Workshop on Middle-
ware for Pervasive and Ad-hoc Computing, pages 19–24, New York, NY,
USA. ACM.

Fornara, N. and M. Colombetti. 2009. Specifying artificial institutions in the
event calculus. In V. Dignum editor, Handbook of Research on Multi-Agent
Systems: Semantics and Dynamics of Organizational Models. IGI Global,
pages 335–366.

Gabbay, D., J. Horty, X. Parent, R. van der Meyden, and L. (eds.) van der
Torre. 2013. Handbook of Deontic Logic and Normative Systems. College
Publications.

Galton, Antony. 2006. Operators vs. arguments: The ins and outs of reification.
Synthese, 150(3):415–441.

Governatori, G., F. Olivieri, A. Rotolo, and S. Scannapieco. 2013. Computing
strong and weak permissions in defeasible logic. Journal of Philosophical
Logic, 6(42):799–829.

Governatori, Guido, Antonino Rotolo, and Giovanni Sartor. 2015. Deontic
defeasible reasoning in legal interpretation. In Katie Atkinson, editor, The
15th International Conference on Artificial Intelligence & Law, San Diego,
USA.

Hashmi, M., G. Governatori, and M. Wynn. 2014. Modeling obligations with
event-calculus. In Antonis Bikakis, Paul Fodor, and Dumitru Roman, edi-
tors, Rules on the Web. From Theory to Applications, volume 8620 of Lecture
Notes in Computer Science. Springer International Publishing, pages 296–
310.

Hobbs, J. R. 2008. Deep lexical semantics. In Proc. of the 9th International
Conference on Intelligent Text Processing and Computational Linguistics
(CICLing-2008), Haifa, Israel.

38

Hobbs, J. R. and F. Pan. 2004. An ontology of time for the semantic web.
ACM Transactions on Asian Language Processing (TALIP): Special issue
on Temporal Information Processing, 3(1):66–85.

Hobbs, J.R. 1986. Overview of the TACITUS project. Computational Linguis-
tics, 12(3).

Hobbs, J.R. 1998. The logical notation: Ontological promiscuity. In Chapter 2
of Discourse and Inference. Available at http://www.isi.edu/∼hobbs/disinf-
tc.html.

Hobbs, J.R. 2001. Syntax and metonymy. In Bouillon P. e Busa F., editor, The
Language of Word Meaning. Cambridge University Press, pages 302–361.

Jørgensen, Jorgen. 1937. Imperatives and logic. Erkenntnis, 7:288–296.

Kamp, H. and U. Reyle. 1993. From Discourse to Logic: an introduction to
model-theoretic semantics, formal logic and Discourse Representation The-
ory. Kluwer Academic Publishers, Dordrecht.

Kowalski, R and M Sergot. 1986. A logic-based calculus of events. New Gen-
eration Computing, 4(1):67–95.

Liebwald, Doris. 2013. Vagueness in law: A stimulus for ’artificial intelligence &
law’. In Proc. of the 14th International Conference on Artificial Intelligence
and Law, ICAIL ’13, pages 207–211.

MacCormick, N. and R.S. Summers. 1991. Interpreting Statutes: A Compara-
tive Study. Applied legal philosophy. Dartmouth.

Makinson, D. and L. Van der Torre. 2001. Constraints for input/output logics.
Journal of Philosophical Logic, 30(2):155–185.

Makinson, David and Leendert van der Torre. 2003. Permission from an in-
put/output perspective. Journal of Philosophical Logic, 32:391–416.

Makinson, David and Leendert W. N. van der Torre. 2000. Input/output logics.
Journal of Philosophical Logic, 29(4):383–408.

McCarthy, J. 1980. Circumscription: A form of nonmonotonic reasoning. Ar-
tificial Intelligence, (13):27–39.

McCarty, L. T. 1989. A language for legal discourse i. basic features. In Proc. of
the 2nd International Conference on Artificial Intelligence and Law (ICAIL
’89), ACM Press.

McCarty, L. T. 2002. Ownership: A case study in the representation of legal
concepts. Artificial Intelligence and Law, 10(1-3):135–161.

39

McCarty, L. T. 2007. Deep semantic interpretations of legal texts. In The
Eleventh International Conference on Artificial Intelligence and Law, Pro-
ceedings of the Conference, June 4-8, 2007, Stanford Law School, Stanford,
California, USA, pages 217–224.

Mihalcea, Rada, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based
and knowledge-based measures of text semantic similarity. In Proceedings of
the 21st National Conference on Artificial Intelligence - Volume 1, AAAI’06,
pages 775–780. AAAI Press.

Miller, R. and M. Shanahan. 1999. The event calculus in classical logicalter-
native axiomatizations. Electronic Transactions on Artificial Intelligence,
16(4).

Miltsakaki, Eleni, Livio Robaldo, Alan Lee, and Aravind Joshi, 2008. Sense
Annotation in the Penn Discourse Treebank, pages 275–286. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Montague, R. 1970. Universal grammar. Theoria, 36(3):373–398.

Montazeri, N. and J.R. Hobbs. 2011. Elaborating a knowledge base for deep
lexical semantics. In J. Bos and S. Pulman, editors, In Proc. of 9th Inter-
national Workshop on Computational Semantics, pages 195–204.

Ovchinnikova, E., N. Montazeri, T. Alexandrov, J.R. Hobbs, M.C. McCord, and
R. Mulkar-Mehta. 2011. Abductive reasoning with a large knowledge base
for discourse processing. In Proc. of the Ninth International Conference on
Computational Semantics (IWCS 2011), pages 225–234.

Parent, Xavier. 2011. Moral particularism in the light of deontic logic. Artif.
Intell. Law, 19(2-3):75–98.

Parent, Xavier and Leendert W. N. van der Torre. 2014. ”sing and dance!”
- input/output logics without weakening. In Cariani et al. (Cariani et al.,
2014), pages 149–165.

Paschke, A. and M. Bichler. 2005. SLA representation, management and
enforcement. In 2005 IEEE International Conference on e-Technology, e-
Commerce, and e-Services (EEE 2005), 29 March - 1 April 2005, Hong
Kong, China, pages 158–163.

Peller, G. 1985. The metaphysics of American law, volume 73. California Law
Review.

Prasad, R., N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Web-
ber. 2008. The penn discourse treebank 2.0. In Proc. of the 6th International
Conference on Language Resources and Evaluation (LREC 2008).

Robaldo, L. 2007. Dependency Tree Semantics. Ph.D. thesis, University of
Turin.

40

Robaldo, L. 2010a. Independent set readings and generalized quantifiers. The
Journal of Philosophical Logic, 39(1):23–58.

Robaldo, L. 2010b. Interpretation and inference with maximal referential terms.
The Journal of Computer and System Sciences, 76(5):373–388.

Robaldo, L. 2011. Distributivity, collectivity, and cumulativity in terms of
(in)dependence and maximality. The Journal of Logic, Language, and In-
formation, 20(2):233–271.

Robaldo, L. 2013. Conservativity: a necessary property for the maximization
of witness sets. The Logic Journal of the IGPL, 21(5):853–878.

Robaldo, L. and J. Di Carlo. 2013. Flexible disambiguation and expressive com-
pleteness in dependency tree semantics. The Journal of Semantics, 30(2).

Robaldo, L. and E. Miltsakaki. 2014. Corpus-driven semantics of concession:
Where do expectations come from? Dialogue&Discourse, 5(1).

Robaldo, L., J. Szymanik, and B. Meijering. 2014. On the identification of
quantifiers’ witness sets: a study of multi-quantifier sentences. The Journal
of Logic, Language, and Information., 23(1).

Robaldo, Livio, Tommaso Caselli, Irene Russo, and Matteo Grella. 2011. From
italian text to timeml document via dependency parsing. In Computational
Linguistics and Intelligent Text Processing - 12th International Conference,
CICLing 2011, Tokyo, Japan, 2011., pages 177–187.

Sartor, G. 2005. Legal Reasoning: A Cognitive Approach to the Law. Treatise
of legal philosophy and general jurisprudence / ed.-in-chief Enrico Pattaro.
Springer.

Searle, John R. 1995. The construction of social reality. The Free Press, New
York.

Sergot, M. J., F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T.
Cory. 1986. The british nationality act as a logic program. Commun. ACM,
29(5):370–386.

Sun, X. and L. Robaldo, 2016. Logic and Games for Ethical Agents in Normative
Multi-agent Systems, pages 367–375. Springer International Publishing.

Sun, X. and L. Robaldo. 2017. On the complexity of input/output logic.
Manuscript submitted to the Journal of Applied Logic.

Sun, Xin and Leendert W. N. van der Torre. 2014. Combining constitutive
and regulative norms in input/output logic. In Cariani et al. (Cariani et al.,
2014), pages 241–257.

van Benthem, Johan. 1989. Polyadic quantifiers. Linguistics and Philosophy,
12(4):437–464.

41

Vibert, Hughes-Jehan, Pierre Jouvelot, and Benôıt Pin. 2013. Legivoc - con-
nectings laws in a changing world. Journal of Open Access to Law, 1(1).

von Wright, G.H. 1959. On the Logic of Negation. Societas scientiarum fennica.
Commentationes physico-mathematicae, XXII, 4.

Winkels, R.G.F., editor. 2015. The OpenLaws project: Big Open Legal Data,
Proceedings of the International Legal Informatics Symposium (IRIS 2015),
Salzburg, pp. 189-196.

42

