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Simultaneous Sensing and Transmission for
Cognitive Radios with Imperfect Signal Cancellation

Christos Politis, Sina Maleki, Christos Tsinos, Konstantinos Liolis, Symeon Chatzinotas, and Björn Ottersten

Abstract—In conventional cognitive radio systems, the sec-
ondary user employs a “listen-before-talk” paradigm, where it
senses if the primary user is active or idle, before it decides to ac-
cess the licensed spectrum. However, this method faces challenges
with the most important being the reduction of the secondary
user’s throughput, as no data transmission takes place during the
sensing period. In this context, the idea of simultaneous spectrum
sensing and data transmission is proposed. The present work
studies a system model where this concept is obtained through
the collaboration of the secondary transmitter with the secondary
receiver. First, the secondary receiver decodes the signal from the
secondary transmitter, subsequently, removes it from the total
received signal and then, carries out spectrum sensing in the
remaining signal in order to decide about the presence/absence of
the primary user. Different from the existing literature, this paper
takes into account the imperfect signal cancellation, evaluating
how the decoding errors affect the sensing reliability and derives
the analytical expressions for the probability of false alarm.
Finally, numerical results are presented illustrating the accuracy
of the proposed analysis.

Index Terms—Cognitive radio, simultaneous sensing and trans-
mission, Energy Detector, imperfect signal cancellation, truncated
chi-squared distribution.

I. INTRODUCTION

COGNITIVE radio has become a promising technology in

wireless communications, because of its capability to be

aware of the environment, and hence offering efficient use of

the spectrum [1]-[2]. Spectrum sensing is the key functionality

of a cognitive radio system that can be utilized in other

applications as well, such as network management services

[3] and interference detection [4]. Here, we are interested in

using the information from spectrum sensing, for protecting

the primary user (PU) from the interference caused by the

secondary user (SU), or for allowing the SU to access the

spectrum when it is not occupied by the PU. The common

spectrum sensing techniques, in terms of the way that the

cognitive radio users can detect the presence or absence of the

PU are presented in [5], and include matched filter detection
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[6], energy detection [7]-[10], cyclostationary detection [11]

and eigenvalue based detection [12]-[14].

On the other hand, the spectrum sensing paradigms discussed

in the literature, according to the way that the cognitive radio

users can access the licensed spectrum, are divided into the

following two categories: i) quiet [15] and ii) active [16].

In quiet spectrum sensing, the SU devotes τ units of time

(quiet period) in order to sense the presence or absence of

the PU user before it starts the transmission. If the frequency

band is detected idle (the PU is absent), the SU employs the

remaining frame duration T − τ for data transmission. This

strategy is depicted in Figure 1a, where each frame is divided

into two parts: i) the spectrum sensing period and ii) the data

transmission period. The main advantage of this method is

the hardware simplicity, as the switch from the sensing to

communication mode can be obtained by using a single radio

architecture [17]. However, this approach uses a quiet period for

spectrum sensing resulting in the reduction of SU’s throughput,

as no data transmission takes place during the sensing period.

To address this issue, the idea of simultaneous sensing and

data transmission has been proposed and the frame structure

is presented in Figure 1b. These works are distinguished into

two main types: i) techniques that apply the concept at the SU

transmitter side [18]-[21] and ii) techniques that enable the

cooperation between the SU transmitter and an inactive SU

[16], [22] or between the SU transmitter and the SU receiver

via a control channel [23]. These approaches are summarized

as follows.

In the first category, the same CR device performs simul-

taneous sensing and communication, where the transmitter is

equipped with both a sensing and transmit unit. The critical

issue of this method is the self-interference, created between

the sensing and communication path because of the close

proximity of the antennas. Therefore, the functionality of

this method is completely based on the ability to isolate the

antennas of the transmit and sensing unit and cancel the self-

interference. In [18], an approach was proposed based on

the idea of spatial filtering for achieving a tolerable level

of isolation. However, a stronger isolation is required and is

obtained by equipping the transmitter with redundant antennas.

In [19], the work of [20] was extended by proposing a multi-

antenna structure, which adaptively uses spatial resources

regarding the surrounding environment. However, this technique

limits its applicability only to SUs equipped with multiple

antennas. Furthermore, in [20] a “listen-and-talk” protocol was

proposed that enables simultaneous sensing and transmission by

adopting the Energy Detector (ED) as sensing scheme, where

the threshold adaptively changes, in terms of the secondary
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(a) Quiet spectrum sensing. (b) Simultaneous spectrum sensing and data transmission.

Fig. 1: Frame structure.

transmitter activity. In [21] a two-phase concurrent sensing and

transmission scheme was proposed employing a suitable control

power mechanism. Nevertheless, an important drawback of

these techniques is the requirement for extra dedicated hardware

(antennas) for sensing that increases the cost of the system.

Moreover, as mentioned earlier, these approaches introduce

the phenomenon of self-interference, which degrades the

sensing performance, and hence, self-interference cancellation

schemes have to be adopted, which however, increase the power

consumption of the system with their turn.

On the other hand, there are works which propose simul-

taneous sensing and transmission using an inactive SU. In

[16] a cognitive radio system was proposed, which performs

spectrum sensing through an inactive SU, while an active SU

is transmitting. A similar analysis is proposed in [22], where

a cognitive base station transmits data to some SUs using zero

forcing, while some other SUs carry out spectrum sensing.

However, again, these approaches face challenges, such as the

extra power consumption and waste of resources by using an

inactive SU or some other SUs for spectrum sensing.

In [23], a different concept was proposed, where the simul-

taneous spectrum sensing and data transmission is obtained

through the collaboration of the SU transmitter and the SU

receiver, which perform in different nodes. The SU transmitter

is responsible for the data transmission, while the SU receiver

decodes the signal from the secondary transmitter, removes it

from the total received signal and carries out spectrum sensing

in the remaining signal. The two main advantages of this

technique compared to the approach at the transmitter’s side are

that i) it does not use extra antennas for the spectrum sensing,

hence, it can be easily implemented in the current systems with

no additional hardware change and also, ii) it does not face the

problem of self-interference that described earlier. Furthermore,

this approach offers much better detection performance than

that of using inactive SUs, if we assume that the adopted

detection scheme is the Energy Detector. The reason is that

the decoding and cancellation of the SU transmitted signal is

almost impossible by using the inactive SU, because the latter

needs information about the channel, modulation and coding

and etc., which are hardly available in practice. However, the

work of [23] is under the ideal assumption of perfect signal

decoding.

In this context, the contributions of this paper are three-fold:

• Unlike existing works that assume perfect signal cancel-

lation, in this paper, we investigate simultaneous sensing

and transmission taking the imperfect signal cancellation

into account. Energy detection is then applied on the

remaining signal to detect the presence or absence of the

PU.

• We evaluate how the imperfect signal cancellation due

to decoding errors, affects the sensing performance. In

addition, we derive the sensing performance parameters

i.e., probability of detection (PD) and probability of false

alarm (PFA) for BPSK, QPSK, and general M-QAM SU

signals.

• It is shown that the remaining signal, and consequently

its energy follows a truncated distribution. Applying the

concept of truncated distribution, we derive the mean

and variance of a truncated central or non-central chi-

squared variable. Further, in combination with central

limit theorem (CLT), the distribution, mean and variance

of the sum of N truncated central or non-central chi-

squared variables are derived. This is used to model the

distribution of the energy detection test statistics. Finally,

the approximated expressions are evaluated by numerical

results which verify the accuracy.

The rest of the paper is organized as follows. In Section

II, the system model and the proposed method are described.

Section III presents the derivation of the PFA and PD for BPSK

and QPSK SU modulated signals, while Section IV provides

the expression of PFA for any M-QAM SU modulated scheme.

Numerical results are illustrated in Section V. Finally, Section

VI concludes the paper.

Notation: Bold-face lower case letters are used to declare

vectors. R{·} and I {·} denote the real and the imaginary

part of {·}, respectively, while E {·} and V {·} represent

the expectation and the variance of {·}, respectively. The

superscript (·)T represents the transpose of (·). ‖·‖ denotes

the standard vector norm, while |·| is the absolute value. The

chi-squared distribution with q degrees of freedom is denoted

by χ2
q .

II. SYSTEM MODEL

A. Signal Model

We consider a cognitive radio system as shown in Figure 2,

where the primary user transmitter (PU-Tx) and the secondary

user transmitter/receiver (SU-Tx/Rx) are equipped with one

antenna. The goal of this system is to detect if the PU is

active or idle following the concept of simultaneous spectrum

sensing and data transmission through the cooperation of the

SU-Tx and the SU-Rx. Therefore, the detection problem can

be formulated as the following binary hypothesis test, which

is a baseband symbol sampled model:

H0 : y=hs+w, (1)

H1 : y=xp+hs+w, (2)

where h denotes the scalar flat fading channel from the SU-

Tx to the SU-Rx, which is assumed to be known at the
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Fig. 2: System model.

Fig. 3: Receiver structure of the proposed method

for spectrum sensing and data transmission at the

same time.

secondary users as in [23], and it is also assumed to be

real after the phase compensation with channel power γ,

s = [s (1) · · · s (N)]
T

denotes an N × 1 vector, which is

the signal transmitted by the SU-Tx with power Ps and it

is a modulated signal, xp = [xp (1) · · ·xp (N)]
T

denotes an

N × 1 vector, referred to as the received (faded) signal from

the PU-Tx, w = [w (1) · · ·w (N)]
T

denotes an N × 1 vector,

which is the additive noise at the receiving antenna of the

SU-Rx, modelled as an independent and identically distributed

(i.i.d.) complex Gaussian vector with zero mean and covariance

matrix given by E
{
wwH

}
= σ2

wIN , where IN denotes an

identity matrix of size N , and y = [y (1) · · · y (N)]
T

denotes

an N × 1 vector, referred to as the total received signal at the

SU-Rx.

As mentioned, in this paper we assume that the channel is

known. However, in reality, the channel should be estimated.

Therefore, the channel estimation error is an important factor

which has to be taken into account in our analysis, constituting

a valuable idea for future studies. Nevertheless, in Section V,

we present preliminary results how this uncertainty affects the

sensing performance of our proposed detector.

B. Method Description

In a cognitive radio network, the goal of the SU-Tx is to

access the spectrum when it is not occupied by the PU and thus

avoiding interference to the PU network (this is obtained by

considering a high target probability of detection). Therefore, in

the beginning, namely during the very first frame of cognitive

data transmission, the SU-Tx divides the frame in two time

slots: i) one sensing period (τ units of time) and ii) one data

transmission period (T units of time). If the PU is detected to

be idle during the sensing period, the SU-Tx changes mode

and starts the data transmission to the SU-Rx. Then, in the

following frames the SU-Rx decodes the signal of the SU-Tx

and removes it from the total received signal. Subsequently,

a detector is applied to the remaining signal for spectrum

sensing. At the end of the frame, if the SU detects a change

in the state of the PU (e.g. the PU starts the transmission after

the sensing period), then the SU-Rx informs the SU-Tx via a

control channel and the latter stops the transmission in order to

avoid causing interference to the PU. Hence, in the next frame,

the SU-Tx, again, divides the frame in two time slots and the

above process is repeated. However, at the end of the frame, if

the SU detects that the frequency band is idle (absence of the

Fig. 4: Frame structure of the proposed simultaneous sensing

and transmission method.

PU), there is no need to devote a period for sensing during the

next frame, and then, the idea of simultaneous spectrum sensing

and data transmission is applied improving the SU’s throughput.

The structure of the secondary receiver is depicted in Figure 3,

while the frame structure of this method is presented in Figure

4.

C. Proposed Algorithm
The aforementioned methodology can be applied for any

modulation scheme, but in this step, for simplicity, we consider

that the transmitted signal from the SU is BPSK modulated and

the noise is a real (not complex) Gaussian vector. Later, we will

show how the proposed algorithm can be applied for QPSK and

any M-QAM modulated signal with complex Gaussian noise.

Hence, following these assumptions the detection problem of

(1)-(2) can be reformulated via the following procedure.

1) After the initial stage of sensing, the SU Rx tries to

decode the signal transmitted by the SU Tx, using the

BPSK demodulator, which is based on the Euclidean

distance [24]. Note that given that the transmitted symbol

is s =
√
Ps, the correctly decoded signal is ŝ =

√
Ps,

while the wrongly decoded signal is ŝ = −√
Ps or more

generally

ŝ =

{
+s → correct decoding,
−s → wrong decoding.

(3)
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2) Then, the decoded signal is removed from the total

received signal and the new hypothesis test is expressed

as follows:

H0B =

{H00B : y′ (n) = w (n) ,
H01B : y′ (n) = 2hs (n) + w (n) ,

(4)

H1B =

{H10B : y′ (n) = xp(n) + w (n) ,
H11B : y′ (n) = xp(n) + 2hs (n) + w (n) ,

(5)

where n = 0, 1, ..., N − 1, the index B in the hypothesis

test denotes the BPSK scenario, H00B and H10B corre-

spond to the hypothesis of correct decoding of the received

signal, while the PU is idle and active, respectively, while

H01B and H11B represent the wrong decoding case, while

the PU is idle and active, respectively. Now, it is clear

that without considering the decoding errors (hypotheses

H01B and H11B ), the new hypothesis test is the same as

the one of quiet spectrum sensing, with the difference that

here, the whole duration of the frame is used for spectrum

sensing instead of a small quiet period.

3) The last step is the application of the ED in the remaining

signal, examining how the decoding errors affect the

sensing performance. We selected the ED as detection

technique due to the fact that it does not require knowledge

of the PU characteristics (modulation type, pulse shaping,

etc.), which are often unknown. The ED is shown in (6)

T (y) = ‖y‖2 =

N−1∑
n=0

|y (n)|2 < ε → H0B

> ε → H1B
, (6)

where ε denotes a properly defined threshold, responsible

for the decision about the presence or absence of the PU.

III. PROBABILITY OF FALSE ALARM AND PROBABILITY OF

DETECTION

The calculation of the detection threshold ε is independent

from the transmitted primary signal and hence, the evaluation

of our proposed detection scheme is obtained via the derivation

of the PFA. Therefore, in this section, we mainly derive the

PFA, first for BPSK and then for QPSK SU modulated signals.

Furthermore, for the same SU modulated signals, we derive

the PD under the assumption that the primary user is Gaussian-

distributed.

A. Probability of false alarm for BPSK signals

In this subsection, the probability of false alarm for the

BPSK case (PFAB
) is determined by Theorem 1, which is

subsequently proved.

Theorem 1: Consider a secondary user with one receive

antenna, which collects a large number of samples N . The

SU-Rx decodes the received samples, removes them from the

total received signal and applies an ED in the remaining signal.

Then, the PFAB
is defined by

PFAB
=

N∑
k=0

(
N
k

)
PkB

P k
eB (1− PeB )

N−k
, (7)

where k denotes the number of wrong decoded bits, PeB =

Q
(√

γPs

σ2
w

)
is the probability of bit error for BPSK [24] and

PkB
is the probability of false alarm for the case that k bits

are decoded wrongly, which can be approximated as follows:

PkB
= Q

(
ε− μH0B√

VH0B

)
, (8)

where μH0B
and VH0B

are the mean and variance of the test

statistic T (y′ |H0B ), respectively.

Proof: The Binomial distribution [25] is used for the proof

of the first part of Theorem 1, due to the fact that considering

independent experiments, the number of wrong decoded bits

is different in each of them, ranging from 0 to N with a

corresponding probability. For the second part, the probability

of false alarm PkB
of the ED of (6) is determined by PkB

(ε) =
Pr (T (y′) > ε|H0B ), where the derivation of the distribution

of the test statistic T (y′ |H0B ) is required.

Focusing on H00B , we can notice that the remaining signal,

after the cancellation of the correct decoded signal, consists

only of noise. This vector includes the set of noise values,

which let the BPSK demodulator to decide correctly about

the transmitted symbol. Then, the Cumulative Distribution

Function (CDF) of the remaining signal under H00B can be

written as follows:

Fy (g |H00B ) = P {y ≤ g|H00B }
= P

{
y ≤ g|cB , s = +

√
Ps

}
P
(
s = +

√
Ps

)
+ P

{
y ≤ g|cB , s = −

√
Ps

}
P
(
s = −

√
Ps

)
=

1

2
P
{
w ≤ g|g ≥ −

√
Ps

}
+

1

2
P
{
w ≤ g|g ≤ +

√
Ps

}
,

where the symbols are assumed to be of equal probability

(P (s = +
√
Ps) = P (s = −√

Ps) = 1/2), cB denotes

the correct decision event under the BPSK scenario and

Fy (g|H00B ) represents the CDF of y under H00B . As it

can be seen, the CDF is related to two cases: i) correct

decoding given that the transmitted symbol is s = +
√
Ps

or ii) correct decoding given that the transmitted symbol

is s = −√
Ps. Then, the distribution of noise for both

scenarios is depicted in Figures 5a and 5b. A very interesting

information which can be extracted by these two figures is

that the received signal is always decoded correctly in the

region where −
√

γPs

σ2
w

≤ w ≤ +
√

γPs

σ2
w

, while it is sometimes

decoded correctly and some other wrongly in the region

where w ≥
√

γPs

σ2
w

or w ≤ −
√

γPs

σ2
w

, based on the fact if the

transmitted symbol is s =
√
Ps or s = −√

Ps. This analysis

shows that the remaining noise under H00B follows a truncated

normal distribution [26]-[27] in the following intervals: i)

w ≤ −√
Pt, ii) −√

Pt ≤w ≤ +
√
Pt and iii) w ≥ +

√
Pt,

where for the rest of this paper, we assume that Pt = γPs

σ2
w

.

Now, it becomes clear that we should determine what is the

distribution of the sum of N truncated central and/or non-

central chi-squared random variables. However, the closed form

expression of this distribution is not mathematically tractable.

Therefore, we should examine if the distribution of the test

statistic T (y′ |H0B ) can be approximated by using the CLT
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Fig. 5: Distribution of noise under the hypothesis H00B .

[28].

The test statistic T (y′ |H0B ) consists of variables under one

of the following cases: i) always correct decoding, ii) always

wrong decoding and iii) sometimes correct and some other

wrong decoding. The first two categories include a sequence

of i.i.d random variables and hence, assuming a large number

of samples the CLT can be applied. However, an independent

but not identically distributed sequence is involved in the third

case. Nevertheless, even in this case, the CLT can be used since

the Lyapunov’s and Lindeberg’s conditions for non-identical

variables [29] are satisfied. Thus, the mean and variance of

T (y′ |H0B ) are respectively given by μH0B
= (N−k)μH00B

+
kμH01B

and VH0B
= (N − k)VH00B

+ kVH01B
, where μH00B

,

μH01B
, VH00B

and VH01B
are the mean and variance of the

test statistic T (y′ |H00B ) and T (y′ |H01B ), respectively, with

y′ meaning only one sample. �
Hence, the derivation of the mean and variance for

T (y′ |H00B ) and T (y′ |H01B ) is required. However, the

calculation of these parameters is obtained with the help of

the following three lemmas. Lemma 1 is valid for all truncated

central chi-squared variables, Lemma 2 is valid, only when

the non-central chi-squared variable is truncated to the interval

[a, b] where 0 ≤ a ≤ b < ∞, while when b = ∞, Lemma 3 is

used to evaluate the truncated non-central chi-squared variable.

Lemma 1: The mean μ
[a,b]
c and variance V

[a,b]
c of a central

chi-squared variable with one degree of freedom, truncated to

the interval [a, b] where 0 ≤ a ≤ b ≤ ∞, is given by

μ[a,b]
c = 1 + 2

[
af

χ2
1

(a)− bfχ2
1
(b)

Fχ2
1
(b)− Fχ2

1
(a)

]
, (9)

V [a,b]
c = 2− 4

[
afχ2

1
(a)− bfχ2

1
(b)

Fχ2
1
(b)− Fχ2

1
(a)

]2

+ 2

[
a2fχ2

1
(a) + afχ2

1
(a)− b2fχ2

1
(b)− bfχ2

1
(b)

Fχ2
1
(b)− Fχ2

1
(a)

]
,

(10)

where Fχ2
1

and fχ2
1

denote respectively the CDF and the

Probability Density Function (PDF) of a central chi-squared

variable with one degree of freedom.

Proof: Let F [a,b]
χ2
1T

and f [a,b]
χ2
1T

denote respectively the CDF

and PDF of a central chi-squared variable with one degree of

freedom, truncated to the interval [a, b] where 0 ≤ a ≤ b ≤ ∞.

For the untracated case, i.e. a = 0 and b = ∞, we drop the

superscript and note only Fχ2
1

and fχ2
1
. Then, for x ∈ [a, b],

F [a,b]
χ2
1T

(x) =
F

χ2
1
(x)−F

χ2
1
(a)

F
χ2
1
(b)−F

χ2
1
(a) and f [a,b]

χ2
1T

(x) =
f
χ2
1
(x)

F
χ2
1
(b)−F

χ2
1
(a) .

According to [30], the moment generating function (MGF)

for a truncated central chi-squared random variable X ∼ χ2
1T

is given as follows:

MX (t) =

[
Fχ2

1
(b (1− 2t))− Fχ2

1
(a (1− 2t))

Fχ2
1
(b)− Fχ2

1
(a)

]
(1− 2t)

−1/2
.

(11)

Then, we can use the MGF to calculate the mean

and variance of a truncated central chi-squared

variable with one degree of freedom as follows:

μ
[a,b]
c = E {X |a ≤ X ≤ b} = M ′

X (t) |t=0 and

V
[a,b]
c = V {X |a ≤ X ≤ b} = E

{
X2 |a ≤ X ≤ b

} −
(E {X |a ≤ X ≤ b})2, where

E
{
X2 |a ≤ X ≤ b

}
= M ′′

X (t) |t=0

= 3 + 4

[
afχ2

1
(a)− bfχ2

1
(b)

Fχ2
1
(b)− Fχ2

1
(a)

]

+ 2

[
a2fχ2

1
(a) + afχ2

1
(a)− b2fχ2

1
(b)− bfχ2

1
(b)

Fχ2
1
(b)− Fχ2

1
(a)

]
. (12)

�

Lemma 2: The mean μ
[a,b]
c and variance V

[a,b]
c of a non-

central chi-squared variable with one degree of freedom and

non-centrality parameter λ, truncated to the interval [a, b] where

0 ≤ a ≤ b < ∞, is given by

μ[a,b]
nc =

Fχ2
3,λ

(b)− Fχ2
3,λ

(a) + λ
[
Fχ2

5,λ
(b)− Fχ2

5,λ
(a)
]

Fχ2
1,λ

(b)− Fχ2
1,λ

(a)
,

(13)
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V [a,b]
nc =

3
[
Fχ2

5,λ
(b)− Fχ2

5,λ
(a)
]

Fχ2
1,λ

(b)− Fχ2
1,λ

(a)

+
6λ
[
Fχ2

7,λ
(b)− Fχ2

7,λ
(a)
]

Fχ2
1,λ

(b)− Fχ2
1,λ

(a)

+
λ2
[
Fχ2

9,λ
(b)− Fχ2

9,λ
(a)
]

Fχ2
1,λ

(b)− Fχ2
1,λ

(a)
−
(
μ[a,b]
nc

)2
, (14)

where Fχ2
1,λ

denotes the CDF of a non-central chi-squared vari-

able with one degree of freedom and non-centrality parameter

λ.

Proof: Let F [a,b]
χ2
1T,λ

denotes the CDF of a non-central chi-

squared variable with one degree of freedom, truncated to

the interval [a, b] where 0 ≤ a ≤ b < ∞ and non-centrality

parameter λ. For the non-truncated case, i.e. a = 0 and b =
∞, we drop the superscript and note only Fχ2

1,λ
. Then, for

y ∈ [a, b], F [a,b]
χ2
1T,λ

(y) =
F

χ2
1,λ

(y)−F
χ2
1,λ

(a)

F
χ2
1,λ

(b)−F
χ2
1,λ

(a) .

According to [31], the moments of the truncated non-central

chi-squared distribution can be calculated as follows

E
{
T i
}
=

h (i, p, λ)

h (0, p, λ)
, (15)

where i ∈ {0, 1, 2, ...}, h (0, p, λ) = Fχ2
p,λ

(b)− Fχ2
p,λ

(a) and

h (i, p, λ) = 2i
i∑

k=0

(
i
k

)(
λ

2

)k Γ
(
p
2 + i

)
Γ
(
p
2 + k

)×
× h (0, p+ 2i+ 2k, λ) . (16)

Then, the mean and variance of a truncated non-central chi-

squared variable Y with one degree of freedom is derived

as follows μ
[a,b]
nc = E {Y |a ≤ Y ≤ b} = E {Y |a ≤ Y ≤ b}

and V
[a,b]
nc = V {Y |a ≤ Y ≤ b} = E

{
Y 2 |a ≤ Y ≤ b

} −
(E {Y |a ≤ Y ≤ b})2. �

Lemma 3: The mean μ
[−∞,a]
nc inf and V

[−∞,a]
nc inf of a squared

Gaussian variable, where the Gaussian variable is truncated to

the interval [a,∞] or [−∞, α], with mean μ and variance σ2,

is given by

μ
[−∞,a]
nc inf = μ2 − 2μσ

fx (d)

Fx (d)
+ σ2

(
1− d

fx (d)

Fx (d)

)
, (17)

V
[−∞,a]
nc inf = μ4 − 4μ3σ

fx (d)

Fx (d)
+ 6μ2σ2

(
1− d

fx (d)

Fx (d)

)
+ 4μσ3

(
−d2

fx (d)

Fx (d)
− 2

fx (d)

Fx (d)

)
+ σ4

(
−d3

fx (d)

Fx (d)
− 3d

fx (d)

Fx (d)
+ 3

)
−
(
μ
[−∞,a]
nc inf

)2
,

(18)

where d = a− μ and Fx, fx denote the CDF and DPF of a

normally distributed variable x.

Proof: Let x = μ+ w be a normally distributed random

variable with mean μ and variance σ2, truncated to the interval

[−∞, a]. Then, the mean of the truncated variable x2 is given

by

μ
[−∞,a]
nc inf = E

{
x2 |x ≤ a

}
= E

{
x2 |x ≤ a

}
= E

{
|μ+ w|2 |μ+ w ≤ a

}
= μ2 + 2μE {w |w ≤ a− μ}+ E

{
w2 |w ≤ a− μ

}
,

(19)

while the variance is given by

V
[−∞,a]
nc inf = V

{
x2 |x ≤ a

}
= E

{
x4 |x ≤ a

}− (E {x2 |x ≤ a
})2

= E
{
|μ+ w|4 |μ+ w ≤ a

}
−
(
E
{
|μ+ w|2 |μ+ w ≤ a

})2
= μ4 + 4μ3E {w |w ≤ a− μ}+ 6μ2E

{
w2 |w ≤ a− μ

}
+ 4μE

{
w3 |w ≤ a− μ

}
+ E

{
w4 |w ≤ a− μ

}
−
(
μ
[−∞,a]
nc inf

)2
. (20)

Then, according to [32], the expression of E {um |u ≤ a}, for

some fixed a is given by

E {um |u ≤ a} =

m∑
r=0

(
m
r

)
μm−rσrIr, (21)

where

Ir = −dr−1 fx (d)

Fx (d)
+ (r − 1) Ir−2, (22)

with the following initial conditions: i) I0 = 1 and ii)

I1 = − fx(d)
Fx(d)

. Therefore, using (21) and (22) and the fact that

the noise has been assumed to be Gaussian with zero mean,

the first moments of the truncated distribution are derived

as follows: E
{
w0 |w ≤ a

}
= I0 = 1, E

{
w1 |w ≤ a

}
=

σI1 = −σ fx(d)
Fx(d)

, E
{
w2 |w ≤ a

}
= σ2I2 = σ2

(
1− d fx(d)

Fx(d)

)
,

E
{
w3 |w ≤ a

}
= σ3I3 = σ3

(
−d2 fx(d)

Fx(d)
− 2 fx(d)

Fx(d)

)
and

E
{
w4 |w ≤ a

}
= σ4I4 = σ4

(
−d3 fx(d)

Fx(d)
− 3d fx(d)

Fx(d)
+ 3
)

.

Finally, using (19)-(22), we can prove the mean and variance

of (17) and (18), respectively. �
Then, with the results of Lemma 1, we can develop Theorem

2, which defines the mean μH00B
and variance VH00B

, required

for the calculation of μH0B
and VH0B

.

Theorem 2: Consider a secondary user with one receive

antenna, which collects a number of samples N . The SU-Rx

decodes the samples, removes them from the total received

signal and applies the Energy Detector in the remaining

signal. Then, the mean and variance of T (y′ |H00B ) can be

respectively defined as follows:

μH00B
= μ[0,Pt]

c P
[−

√
Pt,

√
Pt]

w + μ[Pt,∞]
c P

[
√
Pt,∞]

w , (23)

V H00B
= V [0,Pt]

c P
[−

√
Pt,

√
Pt]

w + V [Pt,∞]
c P

[
√
Pt,∞]

w

+
(
μ[Pt,∞]
c

)2(
1− P

[
√
Pt,∞]

w

)
P
[
√
Pt,∞]

w

+
(
μ[0,Pt]
c

)2(
1− P

[−
√
Pt,

√
Pt]

w

)
P
[−

√
Pt,

√
Pt]

w

− 2μ[0,Pt]
c μ[Pt,∞]

c P
[−

√
Pt,

√
Pt]

w P
[
√
Pt,∞]

w , (24)
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where μ
[0,Pt]
c , V

[0,Pt]
c , μ

[Pt,∞]
c and V

[Pt,∞]
c are defined

by Lemma 1, while P
[−

√
Pt,

√
Pt]

w and P
[
√
Pt,∞]

w are ex-

pressed as follows: P
[−

√
Pt,

√
Pt]

w =
P(−

√
Pt≤w≤√

Pt)
PcB

=

Fy(
√
Pt)−Fy(−

√
Pt)

PcB
and P

[
√
Pt,∞]

w =
P(w≥√

Pt)
PcB

=
Fy(−

√
Pt)

PcB
,

where Fy (·) is the CDF of a normally distributed variable y
and PcB is the probability of correct decision for BPSK [33].

Proof: The proof of (23) and (24) is described in Appendix

A and B, respectively. �

In a similar manner, following the results of Lemma 2 and

3, we develop Theorem 3, which defines the mean μH01B

and variance VH01B
, required for the calculation of μH0B

and

VH0B
.

Theorem 3: Consider a secondary user with one receive

antenna, which collects a number of samples N . The SU-Rx

decodes the samples, removes them from the total received

signal and applies the Energy Detector in the remaining

signal. Then, the mean and variance of T (y′ |H01B ) can be

respectively defined as follows:

μH01B
= μ[0,Pt]

nc P
[
√
Pt,3

√
Pt]

w + μ
[3
√
Pt,∞]

ncinf P
[3
√
Pt,∞]

w , (25)

V H01B
= V [0,Pt]

nc P
[
√
Pt,3

√
Pt]

w + V
[3
√
Pt,∞]

ncinf P
[3
√
Pt,∞]

w

+

(
μ
[3
√
Pt,∞]

ncinf

)2(
1− P

[3
√
Pt,∞]

w

)
P
[3
√
Pt,∞]

w

+
(
μ[0,Pt]
nc

)2(
1− P

[
√
Pt,3

√
Pt]

w

)
P
[
√
Pt,3

√
Pt]

w ]

− 2μ[0,Pt]
nc μ

[3
√
Pt,∞]

ncinf P
[
√
Pt,3

√
Pt,]

w P
[3
√
Pt,∞]

w , (26)

where P
[
√
Pt,3

√
Pt]

w =
P(

√
Pt≤w≤3

√
Pt)

Pc B
=

Fx(3
√
Pt)−Fx(

√
Pt)

Pc B
,

P
[3
√
Pt,∞]

w =
P(w≥3

√
Pt)

Pc B
=

Fx(−3
√
Pt)

Pc B
and μ

[0,Pt]
nc , V

[0,Pt]
nc ,

μ
[Pt,∞]
ncinf , V

[Pt,∞]
ncinf are defined by Lemma 2 and Lemma 3.

Proof: The proof of (25) and (26) is similar to that presented

in Appendix A and B. �

Therefore, all the parameters of (7) have been derived. How-

ever, as mentioned, the required condition for the evaluation of

the detector is the proper calculation of the detection threshold

ε, which is significantly complex through (7), particularly as N
increases. For this reason, an approximated expression for the

probability of false alarm is derived in this paper as follows:

PFABapr
= Q

⎛
⎝ε−N (1− PeB )μH00B

−NPeBμH01B√
N (1− PeB )V H00B

+NPeBV H01B

⎞
⎠ ,

(27)

where the index Bapr denotes approximation under the BPSK

scenario. This equation simplifies (7), based on the fact that

for a large number of samples, the expected number of correct

and wrong decoded bits can be approximated with the help

of the probability of correct (1 − PeB ) and wrong bits PeB ,

respectively. Now, according to (27) the computation of ε
requires the inverse Q function which can be computed directly

in most of the mathematical software packages.

B. Probability of false alarm for QPSK signals

In this subsection, we derive the PFA under the QPSK

scenario. If we apply the algorithm proposed in Section II in

under the QPSK scenario, the hypothesis test of (1) can be

reformulated as in (28) at the top of the next page, where

n = 0, 1, ..., N − 1, the index Q corresponds to the QPSK

scenario, the hypothesis H00Q represents the case that the

received signal is decoded correctly, while the hypotheses

H01Q , H02Q and H03Q correspond to the wrong decoding

case and more specifically: i) H01Q : the real part is decoded

wrongly and the imaginary part is correctly decoded, ii) H02Q :

the real part is correctly decoded and the imaginary part is

wrongly decoded and iii) H03Q : both the real and imaginary

part are wrongly decoded.

Based on Theorem 1, for the derivation of the probability of

false alarm under the BPSK scenario, the extension to QPSK

case is straightforward and it is given as follows

PFAQ
=

2N∑
k=0

(
2N
k

)
PkQ

P k
eQ

(
1− PeQ

)2N−k
, (29)

where PkQ
= PkB

and PeQ is the probability of bit error for

QPSK, same as for BPSK, namely PeQ = PeB , while the

factor 2 is due to the fact that a QPSK signal consists of

two orthogonal BPSK ones. Furthermore, the corresponding

approximated PFAQapr
is given by (30) at the top of the

next page, where μH00Q
= 2μH00B

and VH00Q
= 2VH00B

because both the real and imaginary part follow a truncated

central chi-squared distribution, μH01Q
= μH00B

+ μH01B
and

VH01Q
= VH00B

+ VH01B
, because the real part follows a

truncated non-central chi-squared distribution, while the imagi-

nary part follows a truncated central chi-squared distribution,

μH02Q
= μH00B

+ μH01B
and VH02Q

= VH00B
+ VH01B

,

because the real part follows a truncated central chi-squared

distribution, while the imaginary part follows a truncated non-

central chi-squared distribution and finally, μH03Q
= 2μH01B

and VH03Q
= 2VH01B

, because both the real and imaginary

part follow a truncated non-central chi-squared distribution.

C. Probability of detection

In this subsection, we derive the probability of detection

assuming that the primary signal follows a Gaussian distribution

with zero mean and variance σ2
PU . This is a valid assumption,

e.g. with an OFDM signal, where independent data streams are

used for the modulation of each carrier [34]. Furthermore, it is

customary to assume that xp is Gaussian-distributed, because

the modulation and generally the symbols of the primary user

are unknown [13]. Similar signal modeling is frequently used

in cognitive radio literature, e.g. [35]-[37]. Therefore, under the

scenario that the SU signal is BPSK modulated, the theoretical

expression for the PD is also given by (27) by substituting

σ2
w with σ2

w + σ2
PU in the related parts. Specifically, the PD

is given by

PDBapr
= Q

⎛
⎝ε−N

(
1− P ′

eB

)
μH10B

−NP ′
eBμH11B√

N
(
1− P ′

eB

)
V H10B

+NP ′
eBV H11B

⎞
⎠ ,

(31)
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H0Q :

⎧⎪⎪⎨
⎪⎪⎩

H00Q : y (n) = R{w (n)}+ I {w (n)} ,
H01Q : y (n) = 2hR{s (n)}+R{w (n)}+ I {w (n)} ,
H02Q : y (n) = 2hI {s (n)}+R{w (n)}+ I {w (n)} ,
H03Q : y (n) = 2hR{s (n)}+ 2hI {s (n)}+R{w (n)}+ I {w (n)} ,

(28)

PFAQapr
= Q

⎛
⎜⎜⎝ ε−N

(
1− PeQ

)2
μH00Q

−N
(
1− PeQ

)
PeQ

(
μH01Q

+ μH02Q

)
−NP 2

eQμH03Q√
N
(
1− PeQ

)2
V H00Q

+N
(
1− PeQ

)
PeQ

(
V H01Q

+ V H02Q

)
+NP 2

eQV H03Q

⎞
⎟⎟⎠ . (30)

where the mean μH10B
, μH11B

and variance VH10B
, VH11B

are defined by (23), (24), (25) and (26), respectively, with

the difference being that now, the probability of bit error and

the interval of interest are not anymore related to PeB =

Q
(√

γPs

σ2
w

)
and Pt = γPs

σ2
w+σ2

PU
, but they are based on the

following parameters: P ′
eB = Q

(√
γPs

σ2
w+σ2

PU

)
, Pd = γPs

σ2
w+σ2

PU
.

Similarly, the PD under the scenario that the SU signal is

QPSK modulated is given by (30) by substituting again σ2
w

with σ2
w + σ2

PU in the related parts.

As mentioned, in this paper, we derive the PD under the

assumption that the primary signal is Gaussian-distributed.

Deriving the PD for the case that the primary signal has

different distribution is a valuable idea for future studies.

IV. PROBABILITY OF FALSE ALARM FOR M-QAM

In the previous section, we discussed the derivation of the

PFA and PD under the BPSK and QPSK scenarios. However,

in this section, we generalize our work to higher modulation

schemes, and particularly, we examine the PFA for M-QAM

modulated signals. The derivation of the PD is straightforward

as in Section III. Furthermore, we should note that here we

focus on the derivation of the approximated PFA, because as

mentioned earlier, the calculation of the detection threshold

ε through the accurate PFA is complicated, especially as N
increases and the situation becomes more complex under the

M-QAM scenario due to the fact that under the wrong decoding

case the estimated symbol can be anyone of M − 1 possible

symbols.

The approximated probability of false alarm for the M-QAM

case (PFAM−Qapr
) is defined by

PFAM−Qapr
=

= Q

⎛
⎜⎜⎜⎜⎝
ε−N

M∑
k=1

M∑
t=1

P (s = sk)P (ŝ = st |s = sk )μH0,k,t√
N

M∑
k=1

M∑
t=1

P (s = sk)P (ŝ = st |s = sk )VH0,k,t

⎞
⎟⎟⎟⎟⎠

(32)

where sk denotes the transmitted symbol, st denotes the esti-

mated symbol, while μH0,k,t
and VH0,k,t

represent, respectively,

the mean and variance of the test statistic of (6) under each case

of correct or wrong decoding under H0 hypothesis, expressed

as follows:

μH0,k,t
= μR{sk}−R{st}√

Ps

+ μI{sk}−I{st}√
Ps

, (33)

VH0,k,t
= VR{sk}−R{st}√

Ps

+ VI{sk}−I{st}√
Ps

, (34)

where μR{sk}−R{st}√
Ps

, μI{sk}−I{st}√
Ps

, VR{sk}−R{st}√
Ps

,

VI{sk}−I{st}√
Ps

, are derived by Theorems 4 and 5.

For the case of correct decoding, namely when k = t, it is

obvious that (33) and (34) are expressed as follows: μH0,k,t
=

μ0 + μ0 and VH0,k,t
= V0 + V0. Therefore, the derivation of

the mean and variance under the scenario of correct decoding

for M-QAM signals is required and it is given by Theorem 4.

Theorem 4: Consider a secondary user with one receive

antenna, which collects a number of samples N . The SU-Rx

decodes the samples, removes them from the total received

signal and applies the Energy Detector in the remaining signal.

Then, the mean and variance of T (y′ |H0,k=t,t=k ) can be

respectively defined as follows:

μH0,k=t,t=k
= 2μ0 = E

{
|y′|2|H 0,k=t,t=k

}
= 2E

{R2 {y′} |0 ≤ R2 {w} ≤ Pt

}
P1

+ 2
2√
M

E
{R2 {y′} ∣∣R2 {w} ≥ Pt

}
P2, (35)

VH0,k=t,t=k
= 2V0 = V

{
|y′|2|H 0,k=t,t=k

}
= 2V

{R2 {y′} |0 ≤ R2 {w} ≤ Pt

}
P1

+ 2
2√
M

V
{R2 {y′} ∣∣R2 {w} ≥ Pt

}
P2

+ 2
(
E
{R2 {y′} |0 ≤ R2 {w} ≤ Pt})2P1P2

+ 2
2√
M

(
E
{R2 {y′} ∣∣R2 {w} ≥ Pt

})2
P1P2

− 2
4√
M

E
{R2 {y′} |0 ≤ R2 {w} ≤ Pt

}
× E

{R2 {y′} ∣∣R2 {w} ≥ Pt

}
P1P2, (36)

where H0,k=t,t=k represents the case of correct decoding for

M-QAM signals under H0 hypothesis, M denotes the size

of the constellation, PcM−Q
corresponds to the probability of

correct symbol for M-QAM modulation [24] and P1, P2 are

respectively obtained by (37) and (38) at the top of the next

page.

Proof: The proof of (35) is presented in Appendix C, while

the proof of (36) is similar to that of (35). �
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P1 = P
(
−
√

Pt ≤ R{w} ≤
√
Pt

)[ P
(−√

Pt ≤ I {w} ≤ √
Pt

)
+

+2P
(I {w} ≥ √

Pt

)
/
√
M

]/
Pc M−Q, (37)

P2 = P
(
R{w} ≥

√
Pt

)[ P
(−√

Pt ≤ I {w} ≤ √
Pt

)
+

+2P
(I {w} ≥ √

Pt

)
/
√
M

]/
PcM−Q

, (38)

Furthermore, the derivation of the mean and variance

under the scenario of wrong decoding for M-QAM signals is

necessary and it is given by Theorem 5.

Theorem 5: Consider a secondary user with one receive

antenna, which collects a number of samples N . The SU-Rx

decodes the samples, removes them from the total received

signal and applies the Energy Detector in the remaining signal.

Then, the mean and variance of T (y′ |H0,k �=t,t �=k ) are defined

by (33) and (34), respectively, where μR{sk}−R{st}√
Ps

= μ2l and

VR{sk}−R{st}√
Ps

= V2l with l = 1−
√
M
1 , ...,

√
M − 1. The same

range is also valid for μI{sk}−I{st}√
Ps

and VI{sk}−I{st}√
Ps

. More

specifically the mean μ2l, for the whole range, is derived as

follows:

μ2r =

(
1 +

2r√
M

)
× E

{
|R {y′}|2

∣∣∣∣0 ≤
∣∣∣2r√Pt +R{w}

∣∣∣2 ≤ Pt

}
P3

+
2√
M

E

{
|R {y′}|2

∣∣∣∣∣∣∣2r√Pt +R{w}
∣∣∣2 ≥ Pt

}
P4,

(39)

μ2d =

= E

{∣∣∣2d√Pt +R{w}
∣∣∣2 ∣∣∣∣0 ≤

∣∣∣2d√Pt +R{w}
∣∣∣2 ≤ Pt

}
× P5. (40)

μ2f = E

{
|R {y′}|2

∣∣∣∣0 ≤
∣∣∣2f√Pt +R{w}

∣∣∣2 ≤ Pt

}
P6

+
2√
M

E

{
|R {y′}|2

∣∣∣∣∣∣∣2f√Pt +R{w}
∣∣∣2 ≥ Pt

}
P7,

(41)

μ2q =

(
2− 2q√

M

)
× E

{
|R {y′}|2

∣∣∣∣0 ≤
∣∣∣2q√Pt +R{w}

∣∣∣2 ≤ Pt

}
P8

+
2√
M

E

{
|R {y′}|2

∣∣∣∣∣∣∣2q√Pt +R{w}
∣∣∣2 ≥ Pt

}
P9,

(42)

where r = 1−
√
M
2 , ...,−1, d = 1, ...,

√
M
2 − 1, f =

√
M
2 and

q =
√
M
2 + 1, ...,

√
M − 1, while the variance V2r is obtained

as follows:

V2r =

(
1 +

2r√
M

)

× V

{
|R {y′}|2

∣∣∣∣0 ≤
∣∣∣2r√Pt +R{w}

∣∣∣2 ≤ Pt

}
P3

+
2√
M

V

{
|R {y′}|2

∣∣∣∣∣∣∣2r√Pt +R{w}
∣∣∣2 ≥ Pt

}
P4

+

(
1 +

2r√
M

)

×
(
E

{
|R {y′}|2

∣∣∣∣0 ≤
∣∣∣2r√Pt +R{w}

∣∣∣2 ≤ Pt

})2

P3P4

+
2√
M

(
E

{
|R {y′}|2

∣∣∣∣∣∣∣2r√Pt +R{w}
∣∣∣2 ≥ Pt

})2

P3P4

− 2

(
1 +

2r√
M

)
2√
M

× E

{
|R {y′}|2

∣∣∣∣0 ≤
∣∣∣2r√Pt +R{w}

∣∣∣2 ≤ Pt

}
×E

{
|R {y′}|2

∣∣∣∣∣∣∣2r√Pt +R{w}
∣∣∣2 ≥ Pt

}
P3P4, (43)

where r = 1 −
√
M
2 , ...,−1, while the probabilities

P3, P4, P5, P6, P7, P8 and P9 are given by

P3 =
P
(−√

Pt − 2r
√
Pt ≤ R{w} ≤ √

Pt − 2r
√
Pt

)
PwM−Q

P4 =
P
(R{w} ≥ √

Pt − 2r
√
Pt

)
PwM−Q

P5 =
P
(−√

Pt − 2d
√
Pt ≤ R{w} ≤ √

Pt − 2d
√
Pt

)
PwM−Q

P6 =
P
(−√

Pt − 2f
√
Pt ≤ R{w} ≤ √

Pt − 2f
√
Pt

)
PwM−Q

P7 =
P
(R{w} ≥ √

Pt − 2f
√
Pt

)
PwM−Q

P8 =
P
(−√

Pt − 2q
√
Pt ≤ R{w} ≤ √

Pt − 2q
√
Pt

)
PwM−Q

P9 =
P
(R{w} ≥ √

Pt − 2q
√
Pt

)
PwM−Q

, (44)

while H0,k �=t,t �=k represents the case of wrong decoding for

M-QAM signals under H0 hypothesis and PwM−Q
denotes the

probability of wrong symbol detection for M-QAM modulation

[24]. Finally, we should mention that the derivation of the

variances V2d, V2f and V2q is not provided in this paper due

to lack of space, but they can be defined following the same

methodology as for (43).

Proof: The proof of Theorem 5 is presented in Appendix D.

�
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T (y|H0B ) ∼ N
(
N (1− PeB )μH00B

+NPeBμH01B
, N (1− PeB )V H00B

+NPeBV H01B

)
. (45)

3200 3400 3600 3800 4000 4200 4400
T(y|H0

B
)

0

0.5

1

1.5

2

2.5

3

3.5

4 10-3

Gaussian approx.
Histogram of H0

B

(a)

3500 3600 3700 3800 3900 4000 4100 4200
T(y|H0

Q
)

0

1

2

3

4

5

6 10-3

Gaussian approx.
Histogram of H0

Q

(b)

1800 1850 1900 1950 2000 2050 2100 2150 2200
T(y|H0

16QAM
)

0

1

2

3

4

5

6

7

8

9 10-3

Gaussian approx.
Histogram of H0

16QAM

(c)

Fig. 6: Theoretical and empirical distributions of (a) T (y|H0B ), (b) T
(
y|H0Q

)
and (c) T

(
y|H016−QAM

)
with N = 2000,

Es = 10 dB and σ2
w = 2 dB.

V. NUMERICAL RESULTS

In this section, we present simulation results in order to i)

verify the derived expressions of (27), (30) and (32) for the

PFA, ii) compare our proposed system with the conventional

one in terms of the throughput, iii) evaluate the detection

reliability of the “ED with imperfect signal cancellation

(EDISC)” for the case of perfect channel estimation and iv)

examine the PD of our proposed method taking into account

the channel estimation error.

A. Evaluation of the probability of false alarm
We should mention that under the assumption of a large

number of samples N and the use of the CLT, the relationship

between the PFA and the corresponding distribution of the

test statistic is the following: T (y) ∼ N (μ, V ) => PFA =

Q
(

ε−μ√
V

)
, where N (μ, V ) denotes a Gaussian distribution with

mean μ and variance V . Therefore, the verification of the PFA

under the BPSK (27), QPSK (30) and M-QAM (32) scenarios

can be obtained through the verification of the distribution

of the test statistic under the BPSK (T (y|H0B )), QPSK(
T
(
y|H0Q

))
and 16-QAM

(
T
(
y|H016−QAM

))
scenarios. The

distribution of T (y|H0B ) is given by (45) at the top of the

page. With similar manner, we can derive the distribution of

T
(
y|H0Q

)
and T

(
y|H016−QAM

)
, which we will not show

here due to lack of space.
Figures 6a, 6b and 6c depict the histogram obtained from

10000 Monte-Carlo realizations of T (y|H0B ), T
(
y|H0Q

)
and T

(
y|H016−QAM

)
, respectively, where the number of

measurement samples is set to N = 2000. In this figure,

we show that the CLT provides good approximation for the

distribution of T (y|H0B ), T
(
y|H0Q

)
and T

(
y|H016−QAM

)
,

verifying with this way the Gaussian approximations of (27),

(30) and (32) for the PFA.

B. Performance analysis with respect to throughput
In this subsection, we compare our proposed scheme with te

conventional one in terms of the average achievable throughput.

As we follow the same model as in [23], we can use the same

approach for the evaluation of the throughput, replacing the

PFA and PD under the case of perfect signal cancellation with

our deriving expressions for the PFA and PD under the case

of imperfect signal cancellation. For conciseness, we refer the

readers to [23] for the details of the throughput derivation.

The frame duration is T = 100 ms, the sampling frequency

f = 6 MHz and for both cases, we assume a target probability

of detection PD = 0.9, while the secondary transmit and

primary received SNR are considered as SNRSU = 7 dB and

SNRPU = −20 dB.

Figure 7 depicts the average achievable throughput versus the

sensing time τ , where it is obvious that the proposed cognitive

radio systems exhibits higher average achievable throughput

than the conventional one despite the fact of considering

imperfect signal cancellation.

C. Performance analysis with respect to PD

In this paper, we assume that the PU is either absent or

present for a long period as in fixed networks, e.g. TV channels

and backhaul networks. Therefore, in this section, we present

simulation results to analyze the detection reliability of the

“ED with imperfect signal cancellation (EDISC)” for the frame

that the simultaneous spectrum sensing and data transmission

takes place. We compare this scheme with the “ED with perfect

signal cancellation (EDPSC)” as proposed in [23] and with the

case that the SU-Rx informs the SU-Tx about the status of the

PU by using a “Conventional ED (CED)” as given by (5) in

[38], where there is no need for decoding, and hence signal

cancellation. For simplicity, we assume that the PU follows

a Gaussian distribution with zero mean and variance σ2
PU ,

while the transmitted signal from the SU-TX is BPSK, QPSK,

16-QAM or 64-QAM modulated. Furthermore, the channel is

assumed to be of unit power, the probability of false alarm is

set to PFA = 0.1, while the received PU Signal to Interference

plus Noise Ratio (SINR) at the SU-Rx (SINRPU =
σ2
PU

Ps+σ2
w

)
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(b) Probability of PU being active P (H0) = 0.8.

Fig. 7: Average achievable throughput of the proposed and conventional cognitive radio system versus the sensing time

with secondary transmit SNR, SNRSU = 7dB, received primary SNR, SNRPU = −20 dB and target detection probability

PD = 0.9.
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Fig. 8: PD versus the SINR of the PU, under the

BPSK scenario, for N = 100, Es = 10 dB and

σ2
w = 2 dB.
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Fig. 9: PD versus the SINR of the PU, under the

QPSK scenario, for N = 100, Es = 10 dB and

σ2
w = 2 dB.

varies from −25 to 5 dB. Here, we should mention that by

saying interference we mean the presence of the SU-Tx.

Figures 8, 9, 10 and 11 depict the PD as a function of the

SINR of the PU comparing the aforementioned three techniques:

i) CED, ii) EDPSC and iii) EDISC. The number of samples

is set N = 100 and it is observed that our proposed detection

scheme provides significantly better detection performance than

the CED for all the cases. Furthermore, it is observed that the

EDISC approaches the detection performance of the EDPSC

performing slightly worse, under the BPSK and QPSK scenario,

while it presents inferior performance for 16-QAM and 64-

QAM compared to ones for BPSK/QPSK, but still better. This

can be explained by the fact that our technique considers a more

realistic scenario taking into account the decoding errors and

the probability of correct decision deteriorates as we employ

higher order constellations (especially for low SINR values).

Moreover, Figures 8 and 9 show that the performance of the

PD based on the calculated decision threshold related to the

approximated PFA (i.e. (27) and (30) for Figure 8 and Figure

9, respectively) is very close to the PD based on the calculated

decision threshold related to the more accurate PFA (i.e. (7)

and (29) for Figure 8 and Figure 9, respectively), validating

the reliability of (27) and (30), respectively.

Finally, from Figure 12 is observed that the difference

in the detection performance between the simulation and

approximated results decreases as the number of samples

increases. The reason is that our theoretical approximated

expression is based on the CLT which requires a large number

of samples for better reliability.

D. Performance analysis with respect to channel estimation
error

In the following experiment, we evaluate the performance

of the EDISC with respect to the channel uncertainty under

the BPSK case. The estimated channel ĥ can be modeled as

ĥ = h + ε, where the channel estimation error ε follows a

Gaussian distribution with zero mean and variance σ2
ε [38]-

[39]. Therefore, in the simulations, the channel estimation error

varies in each realization.

Figure 13 depicts the PD as a function of the SINR of the PU

for the BPSK case considering imperfect channel estimation.

This figure shows that the channel uncertainty degrades the

detection performance of the EDISC. Furthermore, we see that
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Fig. 10: PD versus the SINR of the PU, under the

16-QAM scenario, for N = 100, Es = 10 dB and

σ2
w = 2 dB.
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when the channel estimation is more accurate σ2
ε = 0.002,

the effect of the channel estimation error reduces, but our

detector, still, performs well for moderate channel uncertainty

σ2
ε = 0.02.

VI. CONCLUSIONS

In this paper, we investigated the idea of simultaneous

spectrum sensing and data transmission considering imperfect

signal cancellation in the data domain. We analyzed how the

decoding errors affect the detection reliability of the system and

derived the analytical expressions for the probability of false

alarm assuming digitally modulated signals (i.e. BPSK, QPSK,

M-QAM). Furthermore, we presented a detailed analysis around

the distribution of the sum of N truncated central or non-central

chi-squared random variables. Finally, the numerical results

showed that the detection performance of our proposed scheme

is considerably better than the conventional ED, verifying in

this way the accuracy of the proposed study. Future works

include i) the derivation of the analytical expressions for the

PFA under the channel estimation errors, ii) the derivation

of the PD for the case that the primary signal has different

distribution than Gaussian and iii) the adaptation of our scheme

in a more dynamic traffic pattern.

APPENDIX A

DERIVATION OF THE MEAN μH00B

For the derivation of the mean μH00B
, we use the law of

total expectation [40] as follows:

E
{
|y′|2|H 00B

}
=

= E
{
|y′|2

∣∣∣s = +
√

Ps , ŝ = +
√
Ps

}
× P

(
s = +

√
Ps

)
P
(
ŝ = +

√
Ps |cB

)
+ E

{
|y′|2

∣∣∣s = −
√

Ps, ŝ = −
√

Ps

}
× P

(
s = −

√
Ps

)
P
(
ŝ = −

√
Ps |cB

)
, (46)

where the expression of (46) can be extended as follows:

E
{
|y′|2|H 00B

}
=

=
1

2
E
{
|y′|2 |w ≥ −

√
Pt

}
P
(
w ≥ −

√
Pt |cB

)
+

1

2
E
{
|y′|2 |w ≤ +

√
Pt

}
P
(
w ≤ +

√
Pt |cB

)
. (47)
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However, the remaining noise under H00B follows a truncated

normal distribution in the following intervals: i) w ≤ −√
Pt,

ii) −√
Pt ≤ w ≤ √

Pt and iii) w ≥ √
Pt. Thus, exploiting the

symmetry of the BPSK constellation, (47) can be further

expressed by

E
{
|y′|2|H 00B

}
=

= E
{
|y′|2

∣∣∣−√Pt ≤ w ≤
√

Pt

}
× P

(
−
√

Pt ≤ w ≤
√

Pt |cB
)

+ E
{
|y′|2 |w ≥

√
Pt

}
× P

(
w ≥ +

√
Pt |cB

)
, (48)

where according to Bayes’ Theorem [41]

P
(−√

Pt ≤ w ≤ √
Pt ≤

√
Pt |cB

)
=

P(−
√
Pt≤w≤√

Pt)
PcB

and P
(
w ≥ +

√
Pt |cB

)
=

P(w≥√
Pt)

PcB
. Then, in terms of

Lemma 1, we are interested in finding the interval of |w|2,

and hence, (48) is given by

μH00B
= E

{
|y′|2 |H00B

}
= E

{
|w|2

∣∣∣0 ≤ |w|2 ≤ Pt

} P
(−√

Pt ≤ w ≤ √
Pt

)
PcB

+ E
{
|w|2

∣∣∣|w|2 ≥ Pt

} P
(
w ≥ √

Pt

)
PcB

. (49)

Finally, according to Lemma 1, (49) takes its final shape given

by (23).

APPENDIX B

DERIVATION OF THE VARIANCE VH00B

The derivation of the variance VH00B
is based on the law

of the total variance [40] and can be written as follows:

V
{
|y′|2|H 00B

}
= V

{
|y′|2

∣∣∣s = +
√

Ps , ŝ = +
√
Ps

}
× P

(
ŝ = +

√
Ps

)
P
(
ŝ = +

√
Ps |cB

)
+ V

{
|y′|2

∣∣∣s = −
√

Ps , ŝ = −
√
Ps

}
× P

(
ŝ = −

√
Ps

)
P
(
ŝ = −

√
Ps |cB

)
+ E

{
|y′|2

∣∣∣s =√Ps , ŝ =
√
Ps

}2

×
(
1− P

(
s =

√
Ps

)
P
(
ŝ =

√
Ps |cB

))
× P

(
ŝ =

√
Ps

)
P
(
ŝ =

√
Ps |cB

)
+ E

{
|y′|2

∣∣∣s = −
√

Ps , ŝ = −
√
Ps

}2

×
(
1− P

(
s = −

√
Ps

)
P
(
ŝ = −

√
Ps |cB

))
× P

(
ŝ = −

√
Ps

)
P
(
ŝ = −

√
Ps |cB

)
− 2E

{
|y′|2

∣∣∣s =√Ps , ŝ =
√

Ps

}
× P

(
s =

√
Ps

)
P
(
s =

√
Ps |cB

)

Fig. 14: Constellation for 64-QAM modulation.

× E
{
|y′|2

∣∣∣s = −
√

Ps , ŝ = −
√
Ps

}
× P

(
s = −

√
Ps

)
P
(
s = −

√
Ps |cB

)
. (50)

Then, following the same methodology as the one of the

derivation of the mean μH00B
, the expression of (50) is

simplified to (24).

APPENDIX C

DERIVATION OF THE MEAN μH0,k=t,t=k
FOR M-QAM

SIGNALS

The derivation of μH0,k=t,t=k
under any M-QAM scenario

is obtained considering the example of 64-QAM modulation.

The constellation of 64-QAM is depicted in Figure 14, where

the red symbols represent the inner-constellation symbols, the

black symbols represent the outer-constellation symbols, while

the blue symbols correspond to the outermost-constellation

symbols.

• For the inner-constellation symbols, the received signal is

decoded correctly according to the following constraints

C1, C2:

C1 : −√
Pt ≤ R{w} ≤ √

Pt,
C2 : −√

Pt ≤ I {w} ≤ √
Pt.

(51)

• For the outer-constellation symbols the received signal is

decoded correctly according to the following constraints

C1, C2:

C1 : −√
Pt ≤ R{w} ≤ +

√
Pt

C2 : I {w} ≥ −√
Pt

horizontal up,

C1 : −√
Pt ≤ R{w} ≤ +

√
Pt

C2 : I {w} ≤ +
√
Pt

horizontal down,

C1 : R{w} ≥ −√
Pt

C2 : −√
Pt ≤ I {w} ≤ +

√
Pt

vertical right,

C1 : R{w} ≤ +
√
Pt

C2 : −√
Pt ≤ I {w} < +

√
Pt

vertical left.

(52)

• For the outermost-constellation symbols the received

signal is decoded correctly according to the following

constraints C1, C2:

C1 : R{w} ≥ −√
Pt

C2 : I {w} ≥ −√
Pt

right up,
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C1 : R{w} ≥ −√
Pt

C2 : I {w} ≤ +
√
Pt

right down,

C1 : R{w} ≤ +
√
Pt

C2 : I {w} ≥ −√
Pt

left up,

C1 : R{w} ≤ +
√
Pt

C2 : I {w} ≤ +
√
Pt

left down. (53)

We can generalize by saying that the intervals of interest

for any M-QAM modulation scheme, under the case of correct

decoding, are the following for the real part: i) R{w} ≤ −√
Pt,

ii) −√
Pt ≤ R{w} ≤ √

Pt and iii) R{w} ≥ √
Pt. The same

intervals are valid for the imaginary part. Then, the mean

value for any M-QAM modulation scheme can be expressed

as follows:

E
{
|y′|2|H 0,k=t,t=k

}
=

M∑
k=1

E
{
|y′|2 |s = sk, ŝ = sk

}
× P (ŝ = sk |cM−Q )P (s = sk) ,

(54)

where cM−Q represents the correct decision for M-QAM.

Based on the constraints of (51)-(53) and following the

same methodology as in Appendix A, (54) can be further

determined by (55) at the top of the next page, where the

factor 2 expresses the symmetry between the real and imag-

inary part, Pint =
P(−

√
Pt≤R{w}≤√

Pt) P(−
√
Pt≤I{w}≤√

Pt)
PcM−Q

,

Pext1 =
P(−

√
Pt≤R{w}≤√

Pt)P(I{w}≥√
Pt)

PcM−Q
, and Pext2 =

P(R{w}≥√
Pt)P(I{w}≥√

Pt)
PcM−Q

. The first item of (55), defined as

A, is valid for all the transmitted symbols of (54), the second

and third item, defined as B and C, respectively, are valid for

all the symbols except the inter-constellation symbols and for

this reason are weighted by the factor 2√
M

, while the fourth

item, defined as D, is only valid for the outermost-constellation

symbols and that’s why is weighted by the factor 4
M . Based

on this analysis, the proof of (35) is obtained.

APPENDIX D

DERIVATION OF THE MEAN μH0,k �=t,t �=k
FOR M-QAM

SIGNALS

Let’s assume that the symbol of interest is s29 =
√
Ps +

j
√
Ps. Then, the received signal is wrongly decoded according

to the following constraints for the real part of noise:

C1 : −6
√
Pt +R{w} ≥ −√

Pt

C2 : −√
Pt ≤ −4

√
Pt +R{w} ≤ +

√
Pt

C3 : −√
Pt ≤ −2

√
Pt +R{w} ≤ +

√
Pt

C4 : −√
Pt ≤ +2

√
Pt +R{w} ≤ +

√
Pt

C5 : −√
Pt ≤ +4

√
Pt +R{w} ≤ +

√
Pt

C6 : −√
Pt ≤ +6

√
Pt +R{w} ≤ +

√
Pt

C7 : +8
√
Pt +R{w} ≤ +

√
Pt.

(56)

First, we show why the constraint C3 takes this shape and then,

the rest constraints are proved similarly. The constraint C3 is

valid when we decide wrongly that the transmitted symbol is

the symbol s30 or any another symbol in the same column

with s30 (Figure 14). Thus, the condition which guarantees

that the estimated symbol is ŝ = s30 = 3
√
Ps+ j

√
Ps is given

as follows:

2
√
Pt ≤

√
Pt +R{w} ≤ 4

√
Pt =>√

Pt ≤ +R{w} ≤ 3
√
Pt. (57)

Following the steps of the proposed algorithm in Section II, it

can be shown that

R (y′) = R{s29}+R{w} −R{s30}
=
√
Pt +R{w} − 3

√
Pt = −2

√
Pt +R{w} .

(58)

Because we apply the ED in the signal of (58), we are interested

in the constraints of this quantity. Therefore, adding the factor

−2
√
Pt in (57), the constraint C3 is proved.

Our goal is to derive the total mean of the symbols which

follow the constraint C1, the total mean of the symbols which

follow the constraint C2 and etc. For example, the constraint

C3 is validated when the transmitted symbol is s29 and the

decoded symbol is one of them in the green circle of Figure

14, or when the transmitted symbol is s30 and the decoded

symbol is one of them in the same column with s31 and etc.

Now, for the case that the transmitted symbol is s29 and the

decoded symbol is ŝ30, we can write that

E
{R2

{
y′29,30

}}
=

=
1

M
E
{
R
{∣∣y′29,30∣∣2} |R {s} = R{s29} ,R{ŝ} = R{s30}

}
× P (R{ŝ} = R{s30} |wM−Q ) , (59)

where wM−Q represents the wrong symbol decision for M-

QAM, while y′29,30 denotes the remaining signal when the

transmitted symbol is s29 and the decoded symbol is ŝ30.

However, (59) can be further expressed as follows:

E
{R2

{
y′29,30

}}
=

1

M
E {E}

× P
(√

Pt ≤ R{w} ≤ 3
√
Pt

)
P
(−√

Pt ≤ I {w} ≤ √
Pt

)
PwM−Q

.

(60)

where

E =
∣∣−2

√
Pt +R{w}∣∣2 ∣∣−√

Pt ≤ −2
√
Pt +R{w} ≤ √

Pt.

Furthermore, if the transmitted symbol is s29 and the decoded

symbol is s20, the final result is

E
{R2

{
y′29,30

}}
=

1

M
E {E}

× P
(√

Pt ≤ R{w} ≤ 3
√
Pt

)
P
(√

Pt ≤ I {w} ≤ 3
√
Pt

)
PwM−Q

.

(61)

Taking into account all these symbols, the final expression is

given by (s29 and ŝ14, ŝ22, ŝ30, ŝ38, ŝ46, ŝ54, ŝ62):

E
{R2

{
y′−2,29,C3

}}
=

1

M
E {E}

× P
(√

Pt ≤ R{w} ≤ 3
√
Pt

)
Pw M−Q

, (62)

where E
{R2

{
y′−2,29,C3

}}
denotes the mean when the
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E
{
|y′|2|H 0,k=t,t=k

}
= 2E

{
R2 {y′}

∣∣∣−√Pt ≤ R{w} ≤
√
Pt

}
Pint︸ ︷︷ ︸

A

+ 2E
{
R2 {y′}

∣∣∣−√Pt ≤ R{w} ≤
√
Pt

}
Pext1︸ ︷︷ ︸

B

+2
2√
M

E
{
R2 {y′}

∣∣∣R{w} ≥
√
Pt

}
Pext2︸ ︷︷ ︸

C

+ 2
4√
M

E
{
R2 {y′}

∣∣∣R{w} ≥
√
Pt

}
Pext3︸ ︷︷ ︸

D

, (55)

transmitted symbol is s29 and the decoded symbol has taken

into account all the symbols which satisfy the constraint C3,

while the index −2 denotes the difference between the real

part of the transmitted symbol with the real part of the decoded

symbols, namely
Rs29

−Rs30√
Pt

.

We assume, now, that the transmitted symbol is

s21 and the decoded symbol is one of the following:

ŝ14, ŝ22, ŝ30, ŝ38, ŝ46, ŝ54, ŝ62. Then, the mean is like in (62),

namely E
{R2

{
y′−2,21,C1

}}
= E

{R2
{
y′−2,29,C1

}}
. There-

fore, the total mean of the constraint C3 (μ−2) is given by

μ−2 = = 1− 2√
M

E {E}

× P
(√

Pt ≤ R{w} ≤ 3
√
Pt

)
Pw M−Q

, (63)

where we explained earlier what is the meaning of the index

−2, while the weight (1 − 2√
M

) comes from the fact that

the desired symbols, based on the constraint C3, are all the

symbols, except them of the first and last column of the M-

QAM constellation. This analysis proves (39) for r = −1.

Similar methodology is followed for the derivation of (40),

(41), (42) and (43).
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