
LIPS vs MOSA: a Replicated Empirical Study
on Automated Test Case Generation

Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

1 University of Luxembourg
2 Fondazione Bruno Kessler, Trento, Italy

annibale.panichella@uni.lu, {kifetew,tonella}@fbk.eu

Abstract. Replication is a fundamental pillar in the construction of
scientific knowledge. Test data generation for procedural programs can
be tackled using a single-target or a many-objective approach. The pro-
ponents of LIPS, a novel single-target test generator, conducted a pre-
liminary empirical study to compare their approach with MOSA, an
alternative many-objective test generator. However, their empirical in-
vestigation suffers from several external and internal validity threats,
does not consider complex programs with many branches and does not
include any qualitative analysis to interpret the results. In this paper,
we report the results of a replication of the original study designed to
address its major limitations and threats to validity. The new findings
draw a completely different picture on the pros and cons of single-target
vs many-objective approaches to test case generation.

1 Introduction

Replications are one of the key scientific practices that allow researchers to con-
firm, refute or adjust the validity of previous findings. In recent years, the soft-
ware engineering community has seen an increasing awareness about the impor-
tance of replications and several authors view replications as a fundamental step
toward the construction of solid empirical evidence in the field [7, 12, 13].

Search based test case generation aims at automatically generating a set of
input vectors that reach the desired level of adequacy (e.g., branch coverage)
once they are turned into test cases and executed. While the first proposals of
test generators addressed one coverage target at a time [8, 14], recent approaches
consider all coverage targets at the same time and either compute an aggregate
fitness function for all yet uncovered targets [5] or apply a truly many-objective
search to the test generation problem [10]. A novel single-target approach has
been proposed in a recent paper by Scalabrino et al. [11]. The paper includes a
comparison between their test generator LIPS (Linearly Independent Path based
Search) and MOSA (Many-Objective Sorting Algorithm) [10]. We find the em-
pirical investigation very interesting, since it tries to shed some light on the pros
and cons of adopting a single-target vs many-objective test generation approach.
However, the core contribution of the paper is not empirical. In fact, the paper
is mostly focused on the novel ideas implemented in LIPS and the empirical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/84742704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

study is a very preliminary study, conducted on a few, small C functions. Since
the research question (single-target vs many-objective test generation) behind
the empirical part of the LIPS paper is a key research question in search based
testing, we decided to replicate and extend the empirical study reported in the
LIPS paper [11].

The replicated empirical study described in this paper addresses the main
threats to validity and limitations of the original study – namely, the threats
to the external validity of the results, due to the size and complexity of the
sample of C functions considered in the study, the threats to the internal va-
lidity, due to the way efficiency was measured and the way the parameters of
the algorithms were set, and the lack of a detailed qualitative analysis of the
reasons for the reported quantitative differences. The new empirical study was
designed to evaluate effectiveness, efficiency and convergence of LIPS vs MOSA.
Quite surprisingly, the findings of the new study differ remarkably from the
original results. The new results show an undisputed superiority of the many-
objective approach in all considered dimensions. The qualitative analysis of the
results shows that MOSA makes a better usage of the available search budget
by avoiding its allocation to a single target. Although the dynamic allocation of
the search budget to a target presumably improves over its static allocation to
the targets, according to our new study the many-objective approaches, which
do not perform any kind of budget allocation, converge more quickly and on
average achieve higher coverage.

2 Background

This section describes the two approaches being compared, LIPS and MOSA.

Linearly Independent Path based Search (LIPS). LIPS is a single-
target approach proposed by Scalabrino et al. [11] for procedural languages. It
uses single-objective genetic algorithms to optimise (cover) one branch (target)
at a time. The fitness function for a branch is determined by the traditional
approach level and branch distance [8]. In order to cover linearly independent
paths to the targets, the branch selected as target is the last uncovered branch
appearing in the path of the last test case that is added to the final test suite.
Such a target is updated over the generations depending on whether (i) it is cov-
ered or (ii) the search budget allocated for the single target is consumed. In turn,
the search budget allocated to each target is determined dynamically, as the to-
tal remaining search budget divided by the targets that are yet uncovered and
that were never selected as single coverage targets in a previous generation. In
this way, infeasible or difficult targets do not consume the overall search budget,
because they are allocated only a fraction of the entire search budget. Moreover,
even if they are not covered in the generation cycle allocated to them, they re-
main still coverable in successive generations thanks to collateral coverage (i.e.,
coverage achieved by a test case generated for a different target) or in case some
residual budget remains at the end, due to easy to cover targets considered late
in the process. For completeness, Algorithm 1 reports the pseudo-code for LIPS.

Title Suppressed Due to Excessive Length 3

Algorithm 1: LIPS
Input: B = {b1, . . . , bm} the set of branches to cover in the program.

Population size M
Result: A test suite T

1 begin
2 tc0 ←− randomly generated input vector
3 T ←− {tc0}
4 worklist←− uncovered branches ordered as in the path traversed by tc0
5 target←− pop last branch from worklist
6 START-CLOCK-FOR-TARGET(target)
7 budget←− LOCAL-BUDGET()
8 t←− 0 // current generation
9 Pt ←− RANDOM-POPULATION(M − 1)

⋃
{tc0} // Initial population

10 while | worklist |> 0 AND not(overall search budget consumed) do
11 if t > 0 then
12 Pt ←− GENERATE-OFFSPRING(Pt−1)

13 COLLATERAL-COVERAGE(Pt, worklist)
14 if target is covered then
15 T ←− T

⋃
{test tc covering target}

16 worklist←− UPDATE-WORKLIST(tc)
17 target←− pop last branch from worklist
18 START-CLOCK-FOR-TARGET(target)

19 else if CLOCK-FOR-TARGET(target) ≥ budget then
20 target←− pop last branch from worklist
21 START-CLOCK-FOR-TARGET(target)

22 budget←− LOCAL-BUDGET()
23 t←− t + 1

It should be noted that no pseudo-code is available in the paper by Scalabrino
et al.[11]. Moreover, the source code of the tool is also not available. Hence, we
have elaborated the pseudo-code by trying to follow the specifications of LIPS
available in the paper as strictly as possible. However, sometimes the descrip-
tion in the paper is not detailed enough for unambiguous interpretation and we
had to make decisions on what to implement. While this might have produced
differences between our and the original implementation of LIPS, we think that
the key ideas behind LIPS, i.e., the ordering of the targets by execution path
and the dynamic re-allocation of the search budget, are captured faithfully in
our implementation. Moreover, by providing the pseudo-code for LIPS in our
paper we contribute to the disambiguation of the minor, yet important, details
behind the ideas described in the paper.

LIPS starts with an initial, randomly generated test case tc0 (line 2 in Al-
gorithm 1), which represents the input vector for the program under test [11].
Such a test is executed and the uncovered branches for all decision nodes in the
execution path of tc0 are added to a worklist (line 4 in Algorithm 1) in the order
in which they are encountered. The worklist represents the queue of branches
that can be potentially considered as search targets. Starting from tc0, the ge-
netic algorithm is initialised as follows [11]: (i) the initial search target is the last
branch added to the worklist (line 5), and (ii) an initial population that includes
tc0 is randomly generated (line 9). In the evolutionary iterations, new tests are
generated using crossover and mutation (GENERATE-OFFSPRING at line 12).
Parents are selected using the tournament selection and according to the single
fitness function of the current target [11]. Whenever a newly generated test tc
covers the current target, (i) it is added to the test suite (at line 15), (ii) all the
uncovered branches of decision nodes on the path covered by tc are added to the
worklist in the order in which they are encountered (UPDATE-WORKLIST at
line 16). If some of the uncovered targets in the path of tc were selected before
as coverage targets, they are added at the front of the worklist, so that they

4 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

are selected as current coverage targets only when all the other targets, which
were never tried before, are covered, using the residual (if any) search budget.
The last branch added to the worklist is selected as new target (line 17). The
branches in the worklist that are covered (by chance) by the newly generated
tests are removed from the worklist and marked as “covered” (COLLATERAL-
COVERAGE at line 13). Since LIPS targets one branch at a time, it has to
allocate a portion of the overall search budget for each uncovered and not previ-
ously selected branch. To account for collateral coverage, which could free some
search budget, at each generation the budget is re-computed as SB/n, where
SB is the budget that remained available after last target selection and n is
the number of remaining uncovered branches that were never selected before
(LOCAL-BUDGET at line 22). If the current target is not covered within the
allocated budget, a new target is selected from the worklist (lines 19-20). The
main loop at lines 10-23 is repeated until all the branches are covered or the
total search budget is consumed [11].

LIPS has been defined for procedural programs written in C. Therefore, it
does not address the problem of generating method sequences [14], which means
it is not directly applicable to object-oriented programs. Moreover, the length of
the chromosome used by LIPS is fixed, which means that data structures with
variable size (e.g., arrays) are assigned a predefined, fixed size. This may prevent
coverage of targets requiring a specific, special value of size (e.g., a condition that
checks if an array has size zero). Finally, although not stated explicitly in the
paper [11], we assume that LIPS uses elitism in GENERATE-OFFSPRING (line
11), given the fact the elitism has been shown to positively affect the convergence
speed of GAs in various optimisation problems and it is also used (although in
a different way) in MOSA.

Many-Objective Sorting Algorithm (MOSA). MOSA is a many-objective
genetic algorithm proposed by Panichella et al. [10] for Java classes and imple-
mented in EvoSuite3. A test case in MOSA is a method sequence (including in-
put data) of variable length, which is evaluated against all uncovered branches.
MOSA targets all uncovered branches at once by considering them as different
(many) objectives to be optimised in parallel. It shares the same main loop with
NSGA-II [4], which is one of the most popular multi-objective genetic algorithms.
However, it differs on three key aspects: (i) it selects test cases according to a
preference criterion suitably defined for the test case generation problem; (ii) it
considers as objectives only the yet uncovered coverage branches (i.e., the set
of optimisation objectives changes across generations); (iii) it uses an archive to
store all test cases satisfying one or more previously uncovered branches. The
pseudo-code of MOSA is shown in Algorithm 2 [10].

MOSA starts with an initial set of randomly generated test cases (line 3 of
Algorithm 2); then, new test cases (offspring) are created using crossover and
mutation (GENERATE-OFFSPRING, at line 6 of Algorithm 2). Then, parents
and offspring are selected to form the next generation according to their ranks,

3 https://github.com/EvoSuite/evosuite/tree/master/client/src/main/java/

org/evosuite/ga/metaheuristics/mosa

Title Suppressed Due to Excessive Length 5

Algorithm 2: MOSA
Input: B = {b1, . . . , bm} the set of coverage targets of a program.

Population size M
Result: A test suite T

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(M)
4 archive ←− UPDATE-ARCHIVE(Pt, ∅)
5 while not (search budget consumed) do
6 Qt ←− GENERATE-OFFSPRING(Pt)
7 archive ←− UPDATE-ARCHIVE(Qt, archive)
8 Rt ←− Pt

⋃
Qt

9 F←− PREFERENCE-SORTING(Rt)
10 Pt+1 ←− ∅
11 d←− 0
12 while | Pt+1 | + | Fd |6 M do
13 CROWDING-DISTANCE-ASSIGNMENT(Fd)
14 Pt+1 ←− Pt+1

⋃
Fd

15 d←− d + 1

16 SORT(Fd) //according to the crowding distance
17 Pt+1 ←− Pt+1

⋃
Fd[1 : (M− | Pt+1 |)]

18 t←− t + 1

19 T ←− archive

as determined by the PREFERENCE-SORTING routine [10] (line 9). Tests
that satisfy the preference criterion are assigned to the first front F0 while all
the remaining tests are ranked using the non-dominated sorting algorithm of
NSGA-II [4]. The preference criterion prioritises test cases that are closer to one
or more uncovered branches (according to the corresponding branch distance
and approach level scores). When there are multiple test cases with the same
objective scores, the preference criterion uses the test case length as secondary
selection criterion [10], i.e., shorter tests are preferred. The population for the
next generation is formed using the loop at lines 12-15: test cases are selected
starting from those in front F0, then those in front F1, and so on. At the end
of the loop (lines 16-17), the remaining test cases are selected from the current
front Fd according to the descending order of crowding distance. Finally, MOSA
uses an archive, to keep track of the shorter test cases that cover the branches
of the program under test. Whenever new test cases are generated (either at the
beginning of the search or when creating offspring), MOSA stores those tests
that cover previously uncovered targets in the archive as candidates to form the
final test suite (function UPDATE-ARCHIVE at lines 4 and 7).

MOSA has been defined for Java classes. Therefore, it addresses both test
data and method sequence generation. Since it is implemented in EvoSuite, it
can handle complex data structures as input, such as objects and arrays of ob-
jects. The encoding schema (the standard one in EvoSuite [6]) allows to create
test cases (i.e., method sequences) as well as test inputs (e.g., arrays) with vari-
able length. Finally, MOSA uses elitism: test cases closer to satisfying uncovered
branches (or with minimum length at the same level of “closeness”) are guaran-
teed to survive in the next generation [10].

3 Summary of the replicated empirical study

This section summarises the empirical study published by Scalabrino et al. [11]
comparing LIPS and their reimplementation of MOSA when generating test
inputs for C functions. The empirical evaluation was performed on 35 C functions

6 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

with number of branches ranging between 2 and 64 (15 branches per function on
average). These C functions are taken from different open-source C libraries [11]:
(i) 21 functions from gimp, an open source GNU image manipulation software;
(ii) five functions from GSL, the GNU Scientific Library; (iii) three functions from
SGLIB, a generic library for C; (iv) three functions from spice, an analogue
circuit simulator; (v) one function from bibclean; and (vi) two functions from
previous work on test data generation for the C language.

The comparison is performed on three different dimensions: (i) branch cov-
erage (effectiveness), (ii) execution time (efficiency), (iii) number of tests in the
final test suite (oracle cost). According to the results of the study, there is no
difference in terms of branch coverage between LIPS and MOSA for the majority
of the C functions. In ten out of 35 functions LIPS has a better branch coverage
than MOSA and for these cases the average difference is 5.72%. In two out of 35
cases MOSA outperforms LIPS and the average difference in branch coverage for
these cases is 5.61%. Notice that these average values are obtained from Table
2 of the LIPS paper [11]. LIPS is reported to be more efficient than MOSA for
all C functions, with an average improvement around 66% in terms or running
time. Scalabrino et al. [11] measure efficiency as the execution time required to
perform 200,000 fitness function evaluations for the 27 functions with less than
100% coverage. Finally, they report that MOSA produces significantly shorter
test suites compared to LIPS in 32 out of 35 functions. However, the differences
are easily ironed out by greedy algorithms for test suite minimisation [11]. As
reported in [11], the execution time for the minimisation is negligible given the
small size of the functions under test and of the generated test suites.

3.1 Threats to validity

We have identified the following threats to the validity of the original study and
we believe that a replication of the study is very important to address them.

Threats to external validity affect the generalisation of the results. Among
them, the number and size/complexity of the considered C functions affect the
external validity of the reported findings to a major extent. Size/complexity of
the functions: the selected functions are small and contain few branches. Only
two functions have more than 50 branches (i.e., 56 and 64 branches) and 16 out
of 35 functions (46%) have less than ten branches each. For comparison, MOSA
was originally evaluated on Java classes with at least 50 branches each [10].
Therefore, it is not clear to what extent results are generalisable to functions
with more than 50 branches. Number of functions: the empirical study considers
only 35 small C functions. A larger sample is needed to extend the validity of
the findings of the study.

Threats to internal validity regard internal factors that could have influ-
enced the experimental results. Among them, the measurement of efficiency and
the setting of some critical parameters of the algorithms might have affected the
internal validity of the study. Measurement of efficiency : efficiency is measured
as the execution time required by each algorithm to run until 200,000 fitness
function evaluations are made and not as the execution time needed to reach

Title Suppressed Due to Excessive Length 7

maximum coverage. The chosen setting favours LIPS by design, since each gen-
eration of MOSA is more expensive to compute, due to the cost of the ranking
procedure. Therefore, it is not clear whether the execution time needed by the
two algorithms to reach maximum coverage differs or not.

Moreover, looking at the results reported in the original study in Table 2, we
observed some inconsistencies in the execution time between LIPS and MOSA
for simple C functions, where 100% of coverage is reached. For example, for
function gimp hsl value int LIPS required less than 10 milliseconds to reach
100% coverage. Since this function is very simple, it can be presumably covered
fully in the first generation (i.e., with no need for evolution). However, for MOSA
the reported running time to reach full coverage on the same function is 10.23s.
If the initial populations for MOSA and LIPS are the same (i.e., randomly
generated), both algorithms should achieve full coverage within approximately
the same time. We observed the same inconsistency in seven other very simple
C functions used in the study [11].

3.2 Reasons to replicate

In addition to the possibility of addressing some of the threats to the validity of
the original study, there are further reasons for replicating the empirical study
by Scalabrino et al. [11]. First, the study provides only a quantitative analysis
of the collected results, without attempting to interpret them qualitatively. An
in-depth qualitative analysis would allow us to better understand under which
conditions one algorithm outperforms the other. Moreover, a further study is
needed to better understand how LIPS and MOSA perform on programs with
a large number of branches (> 50). In fact, a recent study [9] involving classes
with both low and high number of branches confirmed the higher effectiveness
and efficiency of MOSA (and its improved variant DynaMOSA) for classes with
high number of branches (high cyclomatic complexity) [9]. On the other hand,
Scalabrino et al. [11] compared LIPS and MOSA on C functions with less than
20 branches on average (only one function has slightly more than 50 branches).
Hence, there is a strong need for a larger study, with both small (< 50 branches)
and large (≥ 50 branches) programs.

3.3 How to replicate

In principle, the simplest option to replicate the study would be to re-run LIPS
and MOSA on a larger sample of C functions using OCELOT, i.e., the tool that
implements LIPS [11]. However, this option is not viable since OCELOT and
the code for LIPS are not publicly available at the time of this submission.

The viable alternative is to re-implement LIPS in EvoSuite. Differently from
OCELOT, EvoSuite is publicly available on GitHub4 and it already contains the
original code of MOSA [10]. An important drawback of this choice is that Evo-
Suite generates test suites for Java classes and not for C functions. Therefore, this

4 https://github.com/EvoSuite/evosuite

8 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

option requires the conversion of the C functions used in the original study [11]
into Java static methods. Fortunately, this conversion is straightforward since
the selected C functions do not have complex input parameters with advanced C
syntax (e.g., pointers to complex structures). Since EvoSuite supports the gener-
ation of test cases and input data (e.g., arrays) of variable length, as a side effect
of using EvoSuite we also overcome one of the limitations of LIPS/OCELOT:
the fixed chromosome size, discussed in Section 2.

4 Design of the new study

We first describe our re-implementation of LIPS within EvoSuite. Then we de-
scribe the selected subjects, the research questions and the metrics we adopt to
answer them.

Implementation of LIPS in EvoSuite: We have re-implemented LIPS
based on the pseudo-code in Algorithm 1, within EvoSuite version 1.0.5, avail-
able from GitHub on March 12th, 2017. The main differences between the origi-
nal version of LIPS [11] and our re-implementation regard the encoding schema
and the genetic operators, for which we use the default settings in EvoSuite [5].
In EvoSuite [5], a test case is a sequence of statements, which is composed of
method calls (i.e., call to static methods) and data inputs (e.g., arrays, strings).
New test cases are generated by applying single-point crossover and uniform
mutation. The latter can remove, change, or add statements from/in/to the test
cases. While we allow the length of the test cases to vary during the GA search,
so that the length of input arrays, strings, etc., can change, we only allow one
method execution for the class under test, i.e., the execution of the static method
under test, because we are interested in evaluating LIPS vs. MOSA for procedu-
ral, stateless methods only. Selection is tournament selection, the same operator
originally proposed for LIPS [11]. The encoding schema and genetic operators
are the same for MOSA [10, 9], i.e., they work at test case level.

In the original LIPS implementation [11], the length of the chromosomes is
fixed a priori, which might prevent coverage of specific branches. In addition, the
original genetic operators [11] are blend-crossover (BLX) and polynomial muta-
tion, which can be applied only to chromosomes with fixed length and containing
only numerical values [3]. Since our re-implementation of LIPS in EvoSuite does
not have such constraints, we deem it as superior to the original implementa-
tion and eventually able to cover more branches. We found this conjecture to be
empirically true by comparing the results of our re-implementation with the re-
sults reported in the original study, considering the common subset of programs
under test (see Section 5). It should be noticed that the core novelties of LIPS,
namely the order by which branches are selected as targets and the dynamic
allocation of the search budget, are kept identical to the original formulation
in our re-implementation. Our re-implementation of LIPS is publicly available
for download on GitHub: https://github.com/apanichella/evosuite/tree/
LIPS_replication.

Title Suppressed Due to Excessive Length 9

Benchmark: Since LIPS was originally defined for procedural functions and
not for object oriented programs, in our replication study we target only static
methods with purely procedural behaviour. Our benchmark contains 70 static
methods characterised as follows: (i) 33 static methods are the Java equivalent of
the C functions used in the original study [11]; (ii) 37 additional static methods
have been randomly selected from Java open-source libraries. Notice that we
excluded two of the 35 functions used in [11], namely Csqrt and triangle,
for which we could not find the source code. Our benchmark contains twice as
many subjects as the original study [11]. Moreover, 14 subjects have more than 50
branches each, thus allowing to compare LIPS and MOSA on very large/complex
functions. In general, the number of branches5 in each static method ranges
between 3 and 425. The characteristics of the Java static methods (i.e., name
and number of branches) are detailed in Table 1.

Porting the old benchmark to Java. All C functions used in the original study
take as input primitive data types, pointers to primitive data types and arrays.
Therefore, porting such functions to Java was straightforward: for each function
f, we create a corresponding Java class containing only one single static method
with the same content and the same parameters of f.

New subjects. To increase the size of the benchmark, we randomly selected 37
Java static methods from seven open-source libraries. In particular, we selected:
(i) 17 methods from the apache commons math (math in Table 1); (ii) seven from
apache commons lang (lang); (iii) two from apache commons io (io); (iv) three
from joptimizer6 (IOpt.); (v) two from nd4j7 (nd4j); (vi) one from google

gson (Gson); (vii) three from apache commons imaging (imaging) (viii) two
from apache commons bcel (Bcel).

4.1 Research questions and performance metrics

We investigate the following research questions:

– RQ1: How do LIPS and MOSA perform in terms of effectiveness?
– RQ2: How do LIPS and MOSA perform in terms of efficiency?
– RQ3: Does the program size (number of branches) affect the performance of

LIPS and MOSA?

To answer RQ1, we use the same measure of effectiveness used in the original
study, i.e., the percentage of covered branches. For the efficiency (RQ2), we do
not use the measure used by Scalabrino et al. [11]. This is because, as explained
in Section 3, the execution time required by each approach to perform 200,000
fitness function evaluations penalises by design MOSA and does not consider the
time actually needed to reach maximum coverage, independently of the number

5 The number of branches reported here is sometimes slightly different from that
of the original study because EvoSuite performs the instrumentation and counts
thebranches at the byte code, not source code, level.

6 http://www.joptimizer.com
7 http://nd4j.org

10 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

of fitness evaluations consumed to reach it. Instead, we use an overall maximum
allowed execution time as stop condition, i.e., the two approaches are executed
for the same amount of time (if full coverage is not reached; otherwise execution
stops earlier). Then, we measure the efficiency as the execution time required
by each approach to reach maximum branch coverage. Moreover, we consider
efficiency as a secondary performance metric: we compare LIPS and MOSA
in terms of efficiency only for those subjects with no statistically significant
difference in effectiveness. Notice that we do not compare the length of the test
cases since EvoSuite applies test minimisation by default.

For each subject, each search approach (LIPS or MOSA) is run 50 times to
address the random nature of the genetic algorithms. In each run, we collect the
percentage of covered branches (RQ1) as well as the elapsed time between the
start of the search and the latest increment in branch coverage (RQ2). We report
the average coverage and execution time achieved by LIPS and MOSA over these
independent runs. To provide statistical support to the analysis of the results,
we apply the non-parametric Wilcoxon Rank Sum test [2] with a significance
level of α = 0.05. We also measure the effect size (i.e., the magnitude) of the
differences (if any) in effectiveness or efficiency using the Vargha-Delaney (Â12)
statistic [15]. Finally, to answer RQ3, we use the one-way permutation test [1] to
verify whether there is any significant interaction between effectiveness/efficiency
of the two approaches on one side and complexity of the static method under test,
measured as the number of branches to cover, on the other side. In particular,
we use the number of branches in the methods as independent variable and the
Â12 statistics (obtained from the comparison) as dependent variable. We set the
test with a significance level of α = 0.05 and a number of iterations equal to 108

(a number of iterations > 1, 000 is recommended for this test [1]). The one-way
permutation test is a non-parametric test, thus, it does not make any assumption
on data distributions.

Parameter setting. We adopted the default parameter values used by Evo-
Suite[5] for both LIPS and MOSA, with the only exception of those parameters
explicitly mentioned in the original study [11]. Therefore, we set the popula-
tion size to 100 individuals and the crossover probability to 0.90. For the search
budget, we fix the same maximum execution time of one minute for both LIPS
and MOSA. This value (60 seconds) corresponds to the largest running time ob-
served in the original study. Therefore, LIPS and MOSA terminate either when
100% of branch coverage is reached or when the maximum search budget of one
minute is consumed.

5 Experimental results

Table 1 reports the mean branch coverage (RQ1) and mean execution time
(RQ2) achieved by LIPS and MOSA for each Java static method over 50 inde-
pendent runs. The table also reports the p-values of the Wilcoxon test as well
as the corresponding Â12 statistics (effect size). Notice that values of Â12 > 0.5
indicate that LIPS is more effective (higher branch coverage) or more efficient

Title Suppressed Due to Excessive Length 11

0 100 200 300
0

20

40

60

80

Search budget in seconds

%
B

ra
n
ch

C
o
v
e
ra

g
e MOSA LIPS

(a) Percentage of covered branches over
search time

0 100 200 300
0

0.5

1

1.5

2

Search budget in seconds

F
it

n
e
ss

F
u
n
c
ti

o
n MOSA LIPS

(b) Fitness values for one of the branches
covered by MOSA but not by LIPS

Fig. 1. Comparison between LIPS and MOSA with a larger search budget of five
minutes for method BasicCParser.preprocess

(lower execution time) than MOSA; values of Â12 < 0.5 indicate that MOSA is
more effective or more efficient than LIPS.

Results for RQ1. From columns 4-7 of Table 1, we can observe that in 45
out of 70 subjects (64%) there is no statistically significant difference in terms of
branch coverage between LIPS and MOSA. Among these 45 subjects, 26 (60%)
are trivial subjects that are fully covered in few seconds and 20 come from the
original study [11]. In none of the remaining subjects LIPS could outperform
MOSA in terms of branch coverage. Instead, MOSA achieves statistically signif-
icantly higher branch coverage than LIPS in 25 out of 70 subjects (36%). In these
cases, the average (mean) difference in branch coverage is 7.67%, with a mini-
mum of 0.92% and a maximum of 22.94%. The subject with the largest difference
is NumberUtils.createNumber from apache commons math, which contains 115
branches. For this method, LIPS achieved 65.43% branch coverage compared to
88.36% achieved by MOSA (+26 covered branches) within one minute.

To better understand whether the observed differences vary when increas-
ing the search budget, Figure 1-(a) shows the average branch coverage achieved
by LIPS and MOSA over a larger search budget of five minutes for method
BasicCParser.preprocess from apache common imaging. In the first gener-
ation (i.e., at time zero), the two approaches have the same average coverage
since they both start with a randomly generated population. However, after the
first 20s the scenario dramatically changes: MOSA yields a higher coverage for
the rest of the search, leading to a difference of +25% at the end of the search.
Figure 1-(b) depicts the fitness function values for the false branch b30 of the
statement if (c==‘\r’ || c==‘\n’) at line 196 of class BasicCParser and
placed inside multiple if statements within a for loop. MOSA takes around
205s to cover b30, although this is one of the targets since the beginning of the
search. Instead, LIPS selects this branch as its current target after 236s and
only for 3s in total, which is not enough to cover it. Moreover, the fitness func-
tion curve is not monotonic in LIPS: it decreases between 194s and 200s but
it increases in the next generations since b30 is not yet considered as the cur-
rent target. A similar trend can be observed between 218s and 229s. Instead, in

12 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

Table 1. Average (mean) results for RQ1 (effectiveness) and RQ2 (efficiency)

Project Method/Function Name Tot. % Branch Coverage Execution Time (ms)

Branches LIPS MOSA p-value Â12 LIPS MOSA p-value Â12

bibclean check ISBN 47 89.36 89.66 0.16 0.48 511 313 <0.01 0.10
gimp gimp cmyk to rgb int 3 100.00 100.00 1.00 0.50 248 217 <0.01 0.15
gimp gimp cmyk to rgb 7 98.86 100.00 0.16 0.48 348 320 <0.01 0.29
gimp gimp gradient calc bilinear factor 9 94.00 100.00 <0.01 0.00
gimp gimp gradient calc conical asym factor 9 100.00 100.00 1.00 0.50 500 295 <0.01 0.00
gimp gimp gradient calc conical sym factor 11 99.42 100.00 0.15 0.48 525 311 <0.01 0.00
gimp gimp gradient calc linear factor 13 100.00 100.00 1.00 0.50 884 547 <0.01 0.24
gimp gimp gradient calc radial factor 9 88.89 88.89 1.00 0.50 477 289 <0.01 0.09
gimp gimp gradient calc spiral factor 11 100.00 100.00 1.00 0.50 552 289 <0.01 0.02
gimp gimp gradient calc square factor 9 88.89 88.89 1.00 0.50 551 287 <0.01 0.04
gimp gimp hsl to rgb int 5 100.00 100.00 1.00 0.50 478 236 <0.01 0.00
gimp gimp hsl to rgb 9 98.89 100.00 0.02 0.45
gimp gimp hsl value int 11 100.00 100.00 1.00 0.50 501 260 <0.01 0.00
gimp gimp hsl value 11 100.00 100.00 1.00 0.50 415 269 <0.01 0.05
gimp gimp hsv to rgb 23 99.83 100.00 0.16 0.48 19773 6223 <0.01 0.03
gimp gimp rgb to cmyk 13 99.08 100.00 0.04 0.46
gimp gimp rgb to hsl int 15 100.00 100.00 1.00 0.50 2167 1231 <0.01 0.23
gimp gimp rgb to hsl 17 93.77 94.12 0.16 0.48 791 339 <0.01 0.01
gimp gimp rgb to hsv int 17 94.12 94.12 1.00 0.50 958 455 <0.01 0.10
gimp gimp rgb to hsv4 17 86.00 88.24 <0.01 0.31
gimp gimp rgb to hwb 11 100.00 100.00 1.00 0.50 623 312 <0.01 0.00
gimp gimp rgb to l int 3 100.00 100.00 1.00 0.50 341 166 <0.01 0.00
gsl gsl poly complex solve cubic 23 86.96 86.96 1.00 0.50 623 350 <0.01 0.03
gsl gsl poly complex solve quadratic 15 100.00 100.00 1.00 0.50 528 393 <0.01 0.06
gsl gsl poly eval derivs 13 100.00 100.00 1.00 0.50 1995 1472 0.07 0.40
gsl gsl poly solve cubic 21 85.71 85.71 1.00 0.50 723 353 <0.01 0.01
gsl gsl poly solve quadratic 15 100.00 100.00 1.00 0.50 406 357 0.01 0.34
sglib sglib int array binary search 11 100.00 100.00 1.00 0.50 424 367 <0.01 0.31
sglib sglib int array heap sort 18 100.00 100.00 1.00 0.50 1963 1222 <0.01 0.27
sglib sglib int array quick sort 37 97.30 97.30 1.00 0.50 3778 2467 <0.01 0.25
spice clip line 47 78.47 80.21 <0.01 0.32
spice clip to circle 57 93.54 96.18 <0.01 0.12
spice cliparc 95 97.41 98.95 <0.01 0.10
math ArithmeticUtils.gcd 29 96.55 96.55 1.00 0.50 1410 439 <0.01 0.05
math ArithmeticUtils.mulAndCheck 17 100.00 100.00 1.00 0.50 538 383 <0.01 0.01
math CombinatoricsUtils.binomialCoefficient 21 100.00 100.00 1.00 0.50 3202 1845 <0.01 0.21
math CombinatoricsUtils.binomialCoefficientLong 19 100.00 100.00 1.00 0.50 2588 1818 <0.01 0.31
math CombinatoricsUtils.strirlingS2 29 86.14 96.55 <0.01 0.36
math MathArrays.checkOrder 25 96.00 96.00 1.00 0.50 380 337 <0.01 0.30
math MathArrays.isMonotonic 21 95.14 95.24 0.33 0.49 400 384 0.22 0.43
math MathArrays.safeNorm 21 100.00 100.00 1.00 0.50 9346 3931 <0.01 0.29
math MathArrays.shuffle 15 93.33 93.33 1.00 0.50 567 517 0.60 0.47
math MathArrays.sortInPlace 26 92.31 92.31 1.00 0.50 1357 2964 <0.01 0.79
math MedianOf3PivotingStrategy 11 81.64 96.18 <0.01 0.34
math OpenIntToDoubleHashMap.findInsertionIndex 23 94.17 99.30 <0.01 0.28
math OpenIntToFieldHashMap.findInsertionIndex 23 94.00 99.30 <0.01 0.22
math FastMath.scalb 41 93.85 97.51 <0.01 0.26
math FastMath.exp 25 97.28 98.64 <0.01 0.34
math FastMath.atan 19 100.00 100.00 1.00 0.50 638 800 0.07 0.61
math FastMath.atan2 69 74.58 81.16 <0.01 0.03
lang NumberUtils.isCreatable 121 71.97 89.69 <0.01 0.00
lang NumberUtils.createNumber 115 65.43 88.37 <0.01 0.00
lang Fraction.greatestCommonDivisor 33 96.97 96.97 1.00 0.50 697 370 <0.01 0.25
lang RandomStringUtils.random 53 81.40 88.30 <0.01 0.12
lang DurationFormatUtils.formatPeriod 47 87.15 90.43 <0.01 0.08
lang DateUtils.modify 71 1.41 1.41 1.00 0.50 460 481 0.62 0.53
lang WordUtils.wrap 27 100.00 100.00 1.00 0.50 1965 2547 0.93 0.51
IO FilenameUtils.getPrefixLength 51 88.71 99.84 <0.01 0.02
IO FilenameUtils.wildcardMatch 37 93.19 96.86 <0.01 0.22
JOpt. ColtUtils.squareMatrixInverse 3 100.00 100.00 1.00 0.50 999 1042 0.70 0.48
JOpt. ColtUtils.getMatrixScalingFactors 51 81.57 84.31 0.16 0.48 1056 1013 0.30 0.44
JOpt. ColtUtils.calculateDeterminant 19 93.16 96.95 0.80 0.49 8576 9742 0.95 0.50
nd4j BigDecimalMath.Gamma 15 94.13 92.78 0.10 0.59 32969 29776 0.21 0.43
nd4j BigDecimalMath.zeta 21 100.00 100.00 1.00 0.50 23734 16530 <0.01 0.30
Gson ISO8601Utils.parse 83 21.01 33.86 <0.01 0.03
Imaging BasicCParser.preprocess 109 31.63 45.91 <0.01 0.14
Imaging BasicCParser.unescapeString 71 22.11 36.48 0.02 0.36
Imaging T4AndT6Compression.compressT4 2D 39 100.00 100.00 1.00 0.50 4111 3251 0.17 0.37
Bcel Utility.signatureToString 83 74.41 80.75 <0.01 0.05
Bcel Utility.codeToString 425 73.13 88.34 <0.01 0.00

Average (mean) results 89.18 92.06 7217 5380

MOSA the fitness function curve is monotonic because the best test case for b30

is preserved (elitism) until a better test is found in the subsequent generations.
Instead, in LIPS (as well as in any other single objective genetic algorithm),
elitism holds only for the single fitness function being optimised (i.e., only for
the current target).

Results for RQ2. For the 45 methods with no statistically significant dif-
ference in effectiveness, we compare the execution time required by LIPS and

Title Suppressed Due to Excessive Length 13

MOSA to achieve the highest coverage. The results of this comparison are re-
ported in columns 8-11 of Table 1. Out of 45 methods, LIPS is significantly more
efficient than MOSA in only one method, i.e., MathArrays.sortInPlace. For
this method, LIPS required 1.36s on average to reach a coverage of 92% while
MOSA spent 2.96s on average to reach the same branch coverage. On the other
hand, MOSA is significantly more efficient than LIPS in 33 methods (73%). The
minimum (yet significant) difference of 0.28s is observed for gimp cmyk to rgb

while the maximum of 13.55s is observed for gimp hsv to rgb. For the remaining
11 methods, there is no significant difference between LIPS and MOSA.

Results for RQ3. For what concerns coverage, the one-way permutation
test reveals that the Â12 statistics is significantly influenced by the number of
branches of the function/method under test (p-value < 0.01). In other words,
MOSA achieves significantly higher branch coverage over LIPS especially for
methods with high number of branches. For the execution time, the one-way
permutation test reveals a marginally significant interaction between Â12 statis-
tics and the number of branches (p-value=0.06). Thus, we can conclude that the
size/complexity of the program under test affects the performance (coverage and
execution times) of LIPS and MOSA: the former approach is less scalable than
the latter when the number of branches to cover increases.

5.1 Comparison between old and new results

We draw completely different conclusions from our results with respect to the
original study. The main differences and observations are summarised below.

Superiority of our re-implementation of LIPS. For the 33 subjects
shared with the original study, we observe that our re-implementation of LIPS
could achieve 100% of coverage for 15 methods within 0.80s on average. Instead,
in the original study LIPS reached 100% of coverage in only 8 cases [11]. This
highlights the superiority of our re-implementation in EvoSuite compared to the
original implementation, confirming our theoretical observations in Section 4.
For example, for function gimp rgb to hwb the original LIPS implementation
reached only 50% coverage in 7.97s [11]. Instead, LIPS re-implemented in Evo-
Suite achieved 100% coverage in 0.62s.

MOSA is more effective than LIPS. Despite these improvements, LIPS
could never achieve significantly higher coverage than MOSA. Instead, MOSA
achieved significantly higher coverage on 36% of the subjects. To understand
these results, let us consider Utility.codeToString, which has 425 branches.
Given the high number of branches, LIPS can allocate a limited search bud-
get to each branch, even in the presence of dynamic budget reallocation. As a
consequence, LIPS can cover only the trivial branches that do not need many
generations of test evolution. Instead, MOSA evolves test cases targeting all the
branches at the same time, for the whole duration of the search budget.

MOSA is more efficient than LIPS. Our results contradict the results of
the original study in terms of efficiency [11]. The main reason for such different
conclusions is the different stop condition considered in the two studies: time
required to perform 200,000 fitness evaluations (original study) vs. time needed

14 Annibale Panichella1, Fitsum Meshesha Kifetew2, and Paolo Tonella2

to reach the same final coverage (new study). We believe the new stop condition
provides a fair measurement of the respective time performance of the two al-
gorithms, since 200,000 fitness evaluations are not necessarily required by both
algorithms to reach the final coverage – indeed, they typically need a different
number of fitness evaluations.

Most subjects in the original study are trivial. As reported in Section 5,
the majority of the subjects (20 out of 35) used in the original study [11] can be
fully covered in few seconds. We have run random search (RS) on the 33 subjects
of the original study. In particular, we set RS with the same stop conditions used
in LIPS and MOSA: either 100% of branch coverage is reached or the maximum
budget of one minute is consumed. Results show that RS achieves 100% coverage
in 18 out of 33 subjects (54%). It is also statistically equivalent to LIPS in other
9 subjects in terms of branch coverage. Thus, the large majority of subjects
(27/35 ≈ 77%) used by Scalabrino et al. [11] are too easy to cover to draw
any conclusion about the different performance of the two approaches. For this
reason, we have extended the benchmark by adding more complex subjects.

5.2 Threats to validity

Threats to construct validity. Since the tool OCELOT is not publicly available,
we had to re-implement LIPS in EvoSuite. While our re-implementation may
slightly differ from the original one, we strictly followed the descriptions pro-
vided by Scalabrino et al. [11] with particular attention to the key contributions
of LIPS (target selection order and dynamic budget allocation). As discussed in
Section 5.1, our re-implementation is superior to the original one on the bench-
mark programs of the original study. Another construct validity threat regards
the conversion of C functions to Java static methods. As indicated in Section 4,
this conversion was straightforward since the considered functions do not have
complex input parameters and do not involve advanced C constructs.

Threats to internal validity. Compared to the original study, we have in-
creased the number of repetitions for MOSA and LIPS from 30 to 50 runs, to
increase the statistical power of the analysis. We used the same termination
criterion for LIPS and MOSA in terms of execution time. We used a different
metric to measure efficiency, defined so as to remove the arbitrary constraint
that both algorithms should consume 200,000 fitness evaluations.

Threats to external validity. To address the external validity threat of the
original study, we have increased the size of the benchmark from 35 to 70 subjects
by including methods with a larger number of branches (up to 425).

6 Conclusions and future work

We have replicated an empirical study comparing the test generators LIPS and
MOSA. The former is a single-target approach with dynamic allocation of the
search budget to each uncovered branch. The latter is a many-objective approach
that targets all the branches at once. Our replication addresses several threats

Title Suppressed Due to Excessive Length 15

to external and internal validity of the preliminary study [11]. The new results
differ remarkably from the original study: (i) MOSA is more effective than LIPS,
especially for subjects with a large number of branches; (ii) MOSA is more
efficient than LIPS, in terms of time needed to achieve the same, final coverage.
Our implementation of LIPS together with the implementation of MOSA and
a complete replication package are publicly available on GitHub as a fork of
EvoSuite at the following link https://github.com/apanichella/evosuite/

tree/LIPS_replication.
Our future agenda includes extending this study to non-procedural Java code

and considering DynaMOSA [9], a recent, more advanced version of MOSA.

References

1. Baker, R.D.: Modern permutation test software. In: Edgington, E. (ed.) Random-
ization Tests. Marcel Decker (1995)

2. Conover, W.J.: Practical Nonparametric Statistics. Wiley, 3rd edition edn. (1998)
3. Deb, K., Deb, D.: Analysing mutation schemes for real-parameter genetic algo-

rithms. Int. J. Artif. Intell. Soft Comput. 4(1), 1–28 (2014)
4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp 6, 182–197 (2000)
5. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software Eng.

39(2), 276–291 (2013)
6. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation

using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (Dec 2014),
http://doi.acm.org/10.1145/2685612

7. Juzgado, N.J., Vegas, S.: The role of non-exact replications in software engineering
experiments. Empirical Software Engineering 16(3), 295–324 (2011)

8. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

9. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans-
actions on Software Engineering PP(99), 1–1 (2017), pre-print available online

10. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 8th IEEE International Conference on
Software Testing, Verification and Validation, ICST. pp. 1–10 (2015)

11. Scalabrino, S., Grano, G., Di Nucci, D., Oliveto, R., De Lucia, A.: Search-
Based Testing of Procedural Programs: Iterative Single-Target or Multi-target
Approach?, pp. 64–79. Springer International Publishing, Cham (2016)

12. Shull, F., Basili, V.R., Carver, J., Maldonado, J.C., Travassos, G.H., Mendonça,
M.G., Fabbri, S.C.P.F.: Replicating software engineering experiments: Addressing
the tacit knowledge problem. In: 2002 International Symposium on Empirical Soft-
ware Engineering (ISESE 2002), 3-4 October 2002, Nara, Japan. pp. 7–16 (2002)

13. Shull, F., Carver, J.C., Vegas, S., Juzgado, N.J.: The role of replications in empirical
software engineering. Empirical Software Engineering 13(2), 211–218 (2008)

14. Tonella, P.: Evolutionary testing of classes. In: ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. pp. 119–128. ISSTA ’04, ACM (2004)

15. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of mcgraw and wong. Journal of Educational and Be-
havioral Statistics 25(2), 101–132 (2000)

