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Abstract—After four successful JUnit tool competitions, we
report on the achievements of a new Java Unit Testing Tool
Competition. This 5th contest introduces statistical analyses in
the benchmark infrastructure and has been validated with signif-
icance against the results of the previous 4th edition. Overall, the
competition evaluates four automated JUnit testing tools taking
as baseline human written test cases from real projects. The
paper details the modifications performed to the methodology
and provides full results of the competition.
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I. INTRODUCTION

The key objective in the past four editions of the Java Unit
Testing Tool Competition emerges from the need to advance
research in the automated testing field. We have evidence
from the results of the past edition [1]: each single automated
testing tool performed worse than human written test cases.
Using benchmarking [2] provides a means to mature the state
of development of testing tools. Additionally, a benchmark
can report useful data to interested parties, e.g. the software
industry.

Following the benchmarking infrastructure of previous con-
tests [1], [3], [4] we continue evaluating JUnit (Java Unit)
testing tools targeting Java classes. Firstly, we define a new
set of target classes to guarantee that no tool participant takes
advantage of knowing the contest’ benchmark Java classes.
However, the introduction of DEFECTS4J1, a database of
existing faults to enabling controlled testing studies for Java,
forces to prepare the new benchmark Java classes for this
framework. It allowed to measure test effectiveness on real
faults found in projects. Nevertheless, mutation analysis is
applied when no real faults are available and we aim to
increase the flexibility of introducing new target classes on
demand. Thus, we have reverted the benchmark infrastructure
to the original JaCoCo (code coverage) and PITest (muta-
tion analysis) configuration to measure the test effectiveness.
Together with a more automated infrastructure to run the
benchmarks we aim at providing it the capability to define
and run new benchmarks as agile as possible.

In this edition of the competition, we evaluate four tools:
EVOSUITE [5], JTEXPERT [6], T3 [7], [8] and RANDOOP [9].
The former two tools are submitted by participating developers

1https://github.com/rjust/defects4j

while the last two are used as baselines for the competition.
All tools use the same versions from past edition, with the only
exception of EVOSUITE for which the developer participants
submitted a new version for this competition. Additionally,
we evaluate the human written test cases for the benchmark
subjects. Furthermore, this year’s competition differs from
previous edition in the following ways:

a) Benchmark subjects: The benchmarks for the last
edition of the competition were Java classes extracted from the
DEFECTS4J data set [10], which provides information about
real faults, and code fixes applied by the original developers
of the java libraries. While we could have opted for using
DEFECTS4J for this edition as well, we decided to change
it in order to have a more flexible infrastructure that can be
applied for any Java library. In addition, DEFECTS4J contains
a limited number of Java libraries and real faults (per library)
and it could have been used by participants to over-tune their
tools since the DEFECTS4J dataset was already used in the
past edition.

Therefore, for this edition we used the following eight well-
known open source Java libraries:

• Apache commons BCEL2: it is a Byte Code Engineering
Library which provides utility classes to analyze, create,
and manipulate (binary) Java class files. This library
contains 431 classes.

• Apache commons jxpath3: it contains 180 classes im-
plementing utility routines for manipulating Java Beans
using the XPath syntax.

• Apache commons imaging4: it is a large framework with
427 Java classes that support writing and reading oper-
ations for a variety of image formats, as well as image
info manipulation (e.g., image size).

• Freehep5: this open-source repository providing Java
utilities for high energy physics applications. For this
competition, we focused on the JMinuit sub-library that
contains 180 Java classes.

• Gson6: it is a well-known open-source library developed
by Google that supports the conversion of Java Objects

2https://commons.apache.org/proper/commons-bcel/
3https://commons.apache.org/proper/commons-jxpath/
4https://commons.apache.org/proper/commons-imaging/
5http://java.freehep.org
6https://github.com/google/gson/blob/master/UserGuide.md
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into their JSON representation and vice versa. It contains
174 Java classes.

• Re2j7: it is a regular expression engine developed by
Google for time-linear regular expression matching. With
47 Java classes, it is the smallest library in our bench-
mark.

• LA4J8: it contains 208 Java classes that provide Linear
Algebra primitives (matrices and vectors) and algorithms.

• Okhttp9: it is an HTTP and HTTP/2 client for Android
and Java applications containing 193 Java classes.

Similar to the previous editions of the contest, we selected as
subjects few Java classes randomly sampled from each library
in our benchmark. Section II describes the selection procedure
and the characteristics of the selected subjects.

b) Benchmark infrastructure: We modified the bench-
mark infrastructure from the last edition of the contest to allow
the evaluation of the participant tools using the libraries in
our benchmark that do not belong to the DEFECTS4J data
set. In particular, we developed our own analysis engine that
combines JaCoCo and PITest for code coverage and mutation
analysis while the previous benchmark infrastructure relied on
DEFECTS4J to this aim. Section IV details the benchmark
infrastructure and the competition methodology.

c) Flaky tests: As done in the previous edition of the
contest, this year’s competition penalized the generation of
flaky tests (i.e., a test that does not reliably pass when executed
multiple times on the same program version) and uncompilable
test classes. The current benchmark infrastructure automat-
ically detects flaky tests and ignore them when computing
coverage and mutation coverage scores. Further details about
the detection of flaky tests are reported in Section IV-C.

d) Time budgets: The high acceptance of the time bud-
geting [1] pushed us to continue using different time budgets
to evaluate the tools. We have included two additional small
time budgets (10 seconds and half minute) to measure the
performance of the tools when the time resource is critical,
and an additional 5min budget. That makes a total of 7 time
budgets per benchmark subject (10s, 30s, 1min, 2min, 4min,
5min and 8min). Software industry is potentially interested
in the automated tools performance for full software projects.
To provide orientative data in this line we roughly estimate
the time required to generating automated unit tests for a full
project as: the time budget used multiplied by the number of
CUTs in each project. Table I displays a rough estimation of
the test generation time scale (in hours) for the full projects,
between the lowest new 10 seconds budget and the highest
8min budget from past edition.

e) Statistical analyses: This year we are introducing sta-
tistical analyses with Friedman’s and post-hoc Conover’s test
for multiple pairwise comparison. This has been integrated into
the benchmark infrastructure using R packages for significance
validation of the results and has been cross-validated with the
results from previous year’s results.

7https://github.com/google/re2j
8http://la4j.org
9http://square.github.io/okhttp/

TABLE I
NUMBER OF CUTS PER PROJECT AND TEST GEN. TIMES.

Project #CUTs 10s 8m

apache commons BCEL 431 1,2h 57.5h
apache commons imaging 427 1.2h 57h
LA4J 208 0.6h 27.7h
Okhttp 193 0.5h 25,7h
apache commons jxpath 180 0.5h 24h
freehep-jminuit 180 0.5h 24h
Gson 174 0.5h 23.2h
Re2j 47 0.1h 6.3h

II. THE BENCHMARK SUBJECTS

For the competition, we randomly selected classes from the
eight java open-source libraries considered in our benchmark.
However, we took into account the McCabe’s cyclomatic com-
plexity during the sampling procedure to avoid the selection of
trivial classes. Given a method m, the McCabe’s cyclomatic
complexity is defined as the number of branches in m plus
one, which corresponds to the total number of independent
paths in the control flow graph [11]. Methods in a class with
a cyclomatic complexity equal to one are trivial since they
do not contain branches and, thus, can be fully covered by
a simple method call. To increase the challenge for the test
case generation tools, we excluded for the competition classes
having only methods with a low cyclomatic complexity.

To this aim, we follow the same procedure used in [12]:
we first computed the McCabe’s cyclomatic complexity for
all methods in each java library in our benchmark using the
extended CKJM library10. Then, we pruned the benchmark
java libraries by removing all trivial classes, i.e., classes that
contains only methods with a McCabe’s cyclomatic complex-
ity lower than three. We used this threshold for our filtering
because a method with cyclomatic complexity equal to three
contains at least one conditional statement.

From the pruned open-source libraries, we randomly se-
lected (non-trivial) classes as follows: four classes from
apache commons image, eight classes from okhttp and re2j,
nine classes from google gson and ten classes from apache
commons bcel, apache commons jxpath, LA4J and freehep-
jminuit respectively. This resulted in 69 randomly selected
non-trivial classes with a total number of branches11 ranging
between 20 and 872, number of lines ranging between 26 and
1076, and number of mutants generated by PIT raging between
32 and 352.

III. BASELINE AND PARTICIPANTS

This year we are using three baselines: manual written tests
(available from real projects), RANDOOP and T3; the last two
from past edition versions. The active tool participants are
EVOSUITE and JTEXPERT, while only the first did make mod-
ifications for this year competition (JTEXPERT participants

10http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
11The number of branches in a class is equal to the sum of the branches

contained in its methods.



TABLE II
SUMMARY OF JUNIT CONTEST TOOLS.

Tool Technique Static
analysis

EVOSUITE [5] evolutionary algorithm yes
JTEXPERT [6] guided random testing yes
T3 [7], [8] random testing no
RANDOOP (baseline) [9] random testing no

checked that the past year contest version was good enough).
EVOSUITE had 5 days to test and update the tool. Table II
provides a summary of the contest JUnit tools.

However, due to modifications to this year infrastructure we
updated the RANDOOP runtool wrapper (check chapter IV) for
the tool configuration as it requires to provide all dependency
classes to exercise in order to create tests for the target class.
This is performed using the option (classlist) on a per-
CUT basis, but this year we have had to remove the list of
fault-related classes for each fault that DEFECTS4J provided
past edition. No additional modifications were performed for
RANDOOP.

Automated JUnit tools aim to mitigate the industry costs in
guaranteeing the quality of (Java) software. Thus, we provide
human written test cases as baseline for comparison of the
tools. However, we can only compare on the effectiveness of
the created tests because human developed tests inside real
projects are not limited by a time budget at a scale of the
competition (10 seconds to 8 minutes). The developer-written
test suites have evolved over years and it is not possible for
us to estimate the amount of human effort that was required
to produce them.

IV. METHODOLOGY

Current year competition shares a similar structure in the
methodology compared to previous editions, illustrated in
Figure 1. Each JUnit tool is connected to the benchmark
infrastructure by implementing a runtool wrapper, a simple
communication protocol described in [1]. A benchmark tool
is responsible of performing tools benchmarking for a set of
predefined target Java CUTs, which have been selected as
described above. A set of time budgets (as depicted above) is
used to evaluate tools performance at several time windows,
which provide insight on the stopping criteria a potential tool
user could apply whenever time is a critical resource.

Past edition did parallelize the whole benchmark process
due to the large number of executions, which included 4 tools,
4 time budgets, 68 CUTs and 6 repeated runs; 6528 total
executions. The work was distributed over 32 virtual machines,
split over two HP Z820 workstations with 20 cores and 256Gb
of memory each. Yet, the CPU computation roughly took 1
week, 8 months if a single virtual machine was being used.

This year we include 4 tools, 7 time budgets, 69 CUTs and
3 repeated runs for a total of 5796 executions, %89 executions
compared to past edition. However, we have introduced many
improvements to the infrastructure this year (e.g. mutation

Fig. 1. Overview of the competition methodology.

computation optimizations explained below) so we have used
a single HP Z820 workstation. Two virtual machines with
8 CPU cores and 128GB RAM memory each have been
provisioned to split the budgets executions. This time the
contest did finish computation in 4 complete days with no
human intervention between the contest start and the contest
end, which is characterized by the availability of metrics.
Then, we performed offline analyses consisting of aggregating
all the metrics into a single transcript file (5796 data points)
and the execution of R scripts. We made the results available
to all participants as soon as possible.

We next provide further details of the whole methodology.

A. JUnit tools preparation

Nothing new from the tool participants’ perspective com-
pared to previous edition. Sample test subjects from real
projects, not overlapping with the contest projects and CUTs,
are still available to prepare the JUnit tools: Chart-5, Math-9,
Lang-61, Time-6 and Closure-9. The benchmark protocol (run-
tool wrapper) keeps the same with no further modifications.
The participants were able to use these test subjects to test
the correct working of their tools. EVOSUITE and JTEXPERT
took part on this process, the former updated with a new tool
release while the latter decided the past edition version was
already prepared for this year. RANDOOP and T3 did not take
part of this process, so past edition versions and configuration
have been used.

B. Test generation

We have reduced to half the number of repeated executions
of the JUnit tools, which was required to account for the
randomness in the tools test generation process. We face this
reduction with statistical significance of the results.



For each time budget, all the tools were executed 3 repeated
times in parallel with 8 dedicated CPU cores and 128GB
RAM. As soon as a JUnit tool did finish the test generation
phase it continued into the metrics computation phase. The
time budgeting implementation stays equal as previous year: a
tool was allowed to run at most twice as long as the given time
budget and the infrastructure terminates a tool execution if the
budget frame is exceeded. Again, the scoring formula (check
below) applies a penalty, which is inversely proportional to
the excess ratio of the time budget.

Compared to past edition, in which each tool was executed
in a dedicated virtual machine with a single CPU core (no
multi-threading advantages in tools implementations), we have
removed the restriction to allow the tools perform realistically.
However, the tools had to compete for the available resources.

C. Flaky tests management

We executed each generated test 5 times for the detection
of flaky tests, which are tests that does not reliably pass
when executed multiple times on the same test subject. For
example, a test that asserts on the system time only passes
during generation and fails on every later execution. A JUnit
tool might generate flaky or uncompilable tests, even more
if a time budget threshold is reached and the infrastructure
needs to stop the running tool to preserve the equality of all
the contest tools.

While in last past edition flaky/uncompilable tests were
directly removed leveraging the DEFECTS4J infrastructure,
in this edition our benchmark infrastructure does not remove
such tests but ignores them during the metrics computation.
We opted for this choice to avoid issues when changing
the original tests. Therefore, failing JUnit test methods are
simply skipped when computing code coverage and mutation
coverage (i.e., ratio of mutants killed).

The scoring formula, as in previous edition, does account
for the sanity of tests. Tools are penalized if the generated
tests do not compile or are flaky.

D. Metrics computation

The metrics computation phase starts per time budget as
soon as a tool finishes generating tests, either because a time
budget threshold was reached or because the tool finished its
computations. Metrics analyses are performed per budget and
tool using 3 simultaneous threads as we were already aware
that the computation phase was more time consuming than the
test generation phase, from past experience on the previous
year competitions.

We are using JaCoCo and PITest similarly to second [4]
and third editions [3] for the metrics analyses. However, we
have introduced key optimizations this year. For PITest, we did
not use its running engine since it gave errors for test cases
with ad-hoc/non-standard JUnit runners (e.g. in the EVOSUITE
tool). Thus, we only use PITest engine for the generation of
mutants, but the execution is done using our own benchmark
execution engine. Additionally, to reduce the cost of muta-
tion analyses we combine JaCoCo coverage information with

PITest. The final result is that we only execute tests against
covered mutants, i.e. mutants that affect/infect lines covered
during the execution of the test (according to JaCoCo).

Additionally, we have introduced a strict mutation analysis
time window of 5 minutes per tool, budget and CUT. The
rationale behind this decision comes from the fact that, during
the checks of the benchmark infrastructure, there were some
cases in which evaluating each of the PITest generated mutants
for a CUT took excessive time. For guaranteeing that the
contest did finish in a fair time the mutation analysis skips the
remaining mutants after the 5 minutes window. To fit with the
comparability of tools results, the order by which the mutants
are evaluated is kept the same for all the tools in each budget
and CUT.

Next, we further detail in the computed metrics for each
tool, time budget and CUT (no real-fault detection metric in-
cluded as past edition, which restricts the benchmark subjects
to projects with real faults):

a) Code coverage: No modifications from past edition.
Again, for each test suite the benchmark infrastructure com-
putes two code coverage ratios, statement coverage and con-
dition coverage.

b) Mutation coverage: This year, mutants generation re-
lies on the PITest engine. Then, we compute mutation metrics
against these mutants using our own benchmark infrastructure,
which resolves issues that have been around in the previous
competitions related to evaluating tests not properly set up for
the PITest engine.

E. Scoring formula

Only minor adjustments are performed to the scoring for-
mula from past edition [1], which determines the ranking of
the JUnit tools considering their performance in the following
aspects:

a) Coverage score: Each tool is executed 3 times using
7 different time budgets. Given a tool T , a time budget B and
a class under test C, the next set of test effectiveness metrics
are gathered for each execution run r:

covScore〈T,B,C,r〉 :=wi · covi + wb · covb + wm · covm

It considers the achieved instruction coverage (covi), branch
coverage (covb), and mutation coverage (i.e., the ratio of killed
mutants covm). wi, wb and wm are the weights, for which we
keep the values wi = 1, wb = 2, and wm = 4.

Observe that test methods are ignored for uncompilable
and flaky tests so that implicitly reflects negatively into lower
coverages.

b) Time score: A tool is benchmarked for each target
subject for a limited time L equal to 2 × B. A penalty is
applied to the score if the tool exceeds the time budget:

tScore〈T,B,C,r〉 :=covScore〈T,B,C,r〉 ·min

(
1,

L

genT ime

)
where L is the time limit (twice the budget) and genT ime

(a value between 0 and 2 × L) is the total generation time



spent by the tool T for the execution r with the target subject
C. Observe that the coverage score can be reduced to half in
the worst case.

c) Test sanity score: The score for a tool T at a given
execution r with time budget B and a class under test C is
penalized by the number of uncompilable and flaky tests:

score〈T,B,C,r〉 :=tScore〈T,B,C,r〉 − penalty〈T,B,C,r〉

where:

penalty〈T,B,C,r〉 :=

{
2 if no compilable test classes
#uClasses
#Classes + #fTests

#Tests otherwise

where #uClasses and #Classes are the number of un-
compilable generated test classes and total generated test
classes respectively, and #fTests and #Tests are the num-
ber of flaky test cases and total test cases respectively.

d) Average scores: Given the non-determinism of the
four JUnit tools, we executed each tool 3 times. Thus, the
score for a given time budget B and class under test C is the
average of all the executions for the same tool T , budget B
and class under test C:

score〈T,B,C〉 :=avg
(
Score〈T,B,C,r〉

)
for all r executions

e) Final score: The final score for a tool T is the sum
of all scores for all classes under test and time budgets used
in the competition:

scoreT :=
∑
B,C

Score〈T,B,C〉

F. Statistical Analysis
For the statistical analysis, we carefully followed the guide-

lines by García et al. [13] for comparing different randomized
tools over a set of benchmark functions, which are selected 69
Java classes in our case. In particular, we apply the Friedman
test by comparing the four participant tools over 69 benchmark
subjects and seven different search budgets. Therefore, each
tool has (69 × 7) = 483 data points (or configurations), where
each data point is the average (mean) score achieved by the
tool under analysis over three different independent runs for
a given configuration. The four distributions obtained for the
four participant tools, are then compared using the Friedman
test [13] with significance level p-value=0.05. The Friedman
test is a non-parametric test for multiple-problem analysis and
it departs from the traditional tests for significance (e.g., the
Wilcoxon test) since it computes the ranking between algo-
rithms over multiple independent problems, i.e., benchmark
subjects in our case. A significant p-value indicates that the
null hypothesis has to be rejected (i.e., no participant tool
performs significantly different from others) in favor of the
alternative one (i.e., participant tools are significantly different
from each other). If the null hypothesis is rejected, we use
the post-hoc Conover’s test for pairwise multiple comparisons.
Such a test is used to detect pairs of tool participants that are
significantly different. Finally, p-values obtained with the post-
hoc test are adjusted with the Holm-Bonferroni procedure to
correct the statistical significance level (p-value=0.05) in case
of multiple comparisons.

G. Threats to Validity
This section discusses the main threats that could potentially

affect the validity of the competition.
a) Conclusion validity: To address the threats affecting

the reliability of treatment implementation, we have used the
same protocol for running and assessing the different tools
in the contest. In addition, we gave the same instructions to
all developers of the tool participating to the unit testing tool
competition. For what concern the reliability of measures, all
tools in the contest have been executed with the same time
budgets, where all timing information was measured using
Java native method System.currentTimeMillis(). To
assess the performance of the tools we used widely applied
quality indicators, which are line coverage, branch coverage
and ratio of killed mutants. For these performance indicators,
we relied on JaCoCo and PITest which have been extensively
used in the related literature.

Finally, to address the randomness nature of the tools in
the competition, we run the benchmark multiple times and
we draw our conclusions on the average performance scores
achieve over multiple independent run. Due to time and
resource restrictions we could only run each tool a maximum
of three times. However, for the statistical analysis we used
two non-parametric tests (i.e., the Friedman test and the post-
hoc Conover’s procedure) that are less sensible to a low
number of repetitions (tools re-executions) [13]. Indeed, the
sample size for the two tests is not represented by the number
of independent runs but it is given by the number of subjects
(69 Java classes) multiplied by the number of search budgets
(seven budgets in our case) [13].

b) Internal validity: To mitigate the threats to validity
related to the selection of the CUTs, we randomly selected
69 Java classes from eight well-known open-source projects.
To avoid the selection of trivial classes, we first filtered out
classes (see Section II) prior the random sampling of the
CUTs. Before running the contest, we have extensively tested
our own benchmark infrastructure using the CUTs from both
this and the last edition of the competition. To further improve
the confidence on the overall contest, the developers of the
participant tools could test their tools with the benchmark
infrastructure for five days before we ran the competition.

c) Construct validity: As done in past editions, the
comparison among testing tools has been performed using
a scoring formula that combines different quality indicators
into only one single scalar value. The weights in the scor-
ing formula were assigned in accordance with those quality
indicators that are more correlated to the fault detection
capability [14]. While the final goal of generated tests is
to reveal faults, is it impossible to know a priori all faults
in a given program. Consequently, we used commonly used
surrogate quality indicators such as code coverage ratio or
killed mutants. In accordance with the related literature, we
gave more importance (larger weight) to mutation coverage
than code coverage (both line and branch coverage) since
previous work [14] demonstrated a larger positive correlation
real fault detection capability and mutation coverage.



TABLE III
AVERAGE LINE, BRANCH AND MUTATION COVERAGE AT DIFFERENT

SEARCH BUDGETS

Tool Budget Line Cov. Branch Cov. Mutation Cov.
(in sec) Min Mean Max Min Mean Max Min Mean Max

EVOSUITE 10 0 0.35 0.98 0 0.27 0.90 0 0.15 0.74
JTEXPERT 10 0 0.31 0.97 0 0.26 0.93 0 0.19 0.80
RANDOOP 10 0 0.24 0.91 0 0.16 0.84 0 0.09 0.74
T3 10 0 0.22 0.86 0 0.15 0.88 0 0.09 0.64

EVOSUITE 30 0 0.44 0.98 0 0.36 0.93 0 0.20 0.74
JTEXPERT 30 0 0.36 0.98 0 0.31 0.95 0 0.23 0.84
RANDOOP 30 0 0.25 0.94 0 0.18 0.88 0 0.10 0.74
T3 30 0 0.32 0.96 0 0.26 0.92 0 0.08 0.77

EVOSUITE 60 0 0.58 0.99 0 0.51 0.98 0 0.36 0.97
JTEXPERT 60 0 0.38 0.99 0 0.33 0.95 0 0.25 0.92
RANDOOP 60 0 0.25 0.94 0 0.18 0.89 0 0.10 0.74
T3 60 0 0.32 0.96 0 0.26 0.92 0 0.08 0.70

EVOSUITE 120 0 0.67 1.00 0 0.61 0.97 0 0.46 0.97
JTEXPERT 120 0 0.40 0.97 0 0.35 0.96 0 0.26 0.89
RANDOOP 120 0 0.26 0.96 0 0.20 0.91 0 0.09 0.76
T3 120 0 0.32 0.96 0 0.26 0.92 0 0.08 0.55

EVOSUITE 240 0 0.70 1.00 0 0.65 1.00 0 0.50 0.97
JTEXPERT 240 0 0.42 1.00 0 0.37 0.96 0 0.26 0.88
RANDOOP 240 0 0.25 0.96 0 0.19 0.92 0 0.09 0.74
T3 240 0 0.32 0.96 0 0.26 0.92 0 0.08 0.68

EVOSUITE 300 0 0.67 1.00 0 0.62 1.00 0 0.47 0.96
JTEXPERT 300 0 0.40 1.00 0 0.35 0.96 0 0.26 0.87
RANDOOP 300 0 0.25 0.94 0 0.19 0.91 0 0.09 0.76
T3 300 0 0.32 0.96 0 0.26 0.92 0 0.09 0.64

EVOSUITE 480 0 0.72 1.00 0 0.66 1.00 0 0.51 1.00
JTEXPERT 480 0 0.40 1.00 0 0.35 0.96 0 0.26 0.92
RANDOOP 480 0 0.25 0.96 0 0.18 0.92 0 0.09 0.76
T3 480 0 0.34 0.96 0 0.27 0.92 0 0.09 0.57

V. RESULTS

Table III provides the descriptive statistics (min, max, and
mean value) for the coverage metrics (i.e., line, branch and
mutation coverage) achieved by the different tools over the
different time budgets. As we can notice, the minimum line
coverage (branch and mutation coverage as well) is zero for all
tools in the contest and for all search budgets. This indicates
that our benchmark contains CUTs for which none of the
participant tools was able to generate test cases even after eight
minutes of search. One of this CUT is the class CCSMatrix
extracted from the library La4j. Such a class implements the
Compressed Column Storage (CCS) format for sparse matrices
in Java. We notice that this class is particularly expensive from
a computation point of view when its constructors are called
with large (random) input values. Indeed, we observed that all
tools could perform only few iterations even within the largest
budget of eight minutes. We also obtained similar results for
the class CRSMatrix from the same library, which imple-
ments instead the Compressed Row Storage (CRS) format for
sparse matrices. This observation may provide useful hints for
the developers of the participant tools when generating tests
for classes implementing computational expensive routines.

Table IV shows the scores achieved by the different par-
ticipant for each time budget. Instead, Table V compares
the scores achieved by automated tools when set with the
largest time budget (i.e., 8 minutes) with the scores yielded
by tests written by the original developers of the Java projects
in our contests (DEVELOPER), as well as the optimal score
(OPTIMAL). Notice that for this comparison, we only consid-
ered the 63 subjects for which we found developers-written
tests. Moreover, for DEVELOPER no time budget applies (also

TABLE IV
SCORES FOR ALL TIME BUDGETS.

Tool Budget (in sec.) Score Std.dev

EVOSUITE 10 56.20 13.51
T3 10 55.84 18.90

JTEXPERT 10 61.86 12.54
RANDOOP 10 50.95 4.08

EVOSUITE 30 123.03 14.32
T3 30 77.36 11.66

JTEXPERT 30 106.72 14.39
RANDOOP 30 64.40 5.29

EVOSUITE 60 207.46 46.48
T3 60 77.72 14.64

JTEXPERT 60 125.52 16.65
RANDOOP 60 65.56 5.16

EVOSUITE 120 255.18 29.85
T3 120 77.64 11.38

JTEXPERT 120 136.47 10.11
RANDOOP 120 67.50 4.72

EVOSUITE 240 274.01 29.76
T3 240 78.64

JTEXPERT 240 141.83 15.98
RANDOOP 240 66.74 4.90

EVOSUITE 300 260.47 28.57
T3 300 77.87 11.85

JTEXPERT 300 137.77 14.64
RANDOOP 300 66.53 5.68

EVOSUITE 480 280.90 30.23
T3 480 81.20 14.01

JTEXPERT 480 138.37 17.71
RANDOOP 480 65.93 4.91

Fig. 2. Tools performance per budget.

for OPTIMAL) and the corresponding tests were executed only
once due to their deterministic nature.

Figure 2 shows how the tools perform, based on the
achieved scores, with gradual increase of the time budgets.
Finally, Table VI gives the overall scores for the four tools.
The differences among the achieved scores turn out to be
statistically significant according to the Friedman, which re-
turns a significant p-value < 10−16. For completeness, the
ranking produced by the Friedman tests is depicted in Table VI
together with the final scores. To better understand for which
pairs of tools the statistical significance holds, Table VII
reports the p-values obtained by the post-hoc Conover’s
procedure for the pairwise comparison. As we can notice,



TABLE V
COMPARISON WITH OPTIMAL (IDEAL) SCORE AND DEVELOPER-WRITTEN

TESTS CONSIDERING ONLY THE 63 SUBJECTS WITH AVAILABLE TESTS

Tool Budget (in sec.) Score Std.dev

EVOSUITE 480 250.81 28.71
T3 480 78.15 13.96

JTEXPERT 480 125.11 17.09
RANDOOP 480 60.78 4.75

DEVELOPER – 268.12 –
OPTIMAL – 441 –

TABLE VI
OVERALL SCORES FOR ALL TOOLS AND RANKINGS OBTAINED THROUGH

FRIEDMAN TEST

Tool Budget Score Std.dev Ranking

EVOSUITE * 1457 192.72 1.55
JTEXPERT * 849 102.03 2.71

T3 * 526 82.43 2.81
RANDOOP * 448 34.74 2.92

the statistical significance holds for all pairs of tools being
compared since the p-values are always <0.01. We observe
a marginal statistical significant difference only between T3
and RANDOOP for the subjects in our benchmark.
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APPENDIX

Tables VIII, IX, X, XI, XII, XIII and XIV in our online
appendix [15] provide the detailed results for each tool on
the seven time budgets (10, 30, 60, 120, 240, 300 and 480
seconds). All numbers are averaged across 3 runs for each
triple: CUT x tool x time-budget.
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