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Abstract—In the present paper, we investigate the design and
optimization for fronhaul links in cloud radio access networks
(C-RAN). Existing C-RAN designs rely on the instantaneous
network-wide channel state information (CSI), which might
impose a significant overhead due to the potential large-scale
of C-RAN. To overcome this limitation, we optimize C-RAN
based on the average performance metrics which only require
the second-order statistics of the fading channels. Firstly, a tight
upper bound of the block error rate (BLER) over Rayleigh fading
channels is derived in closed-form expression, through which
some insights on C-RAN are drawn: i) full diversity order, which
is equal to the number of RRHs, is achievable with respect to
the signal to compression plus noise ratio; and ii) the BLER is
limited below by either compression or Gaussian noises. Secondly,
based on the derived bound, a compression optimization is
proposed to minimize the fronthaul transmission rate while
satisfying some predefined BLER constraints. The premise of the
proposed optimization originates from practical scenarios where
most applications tolerate a non-zero BLER. Finally, a fronthaul
rate allocation scheme is proposed to minimize the system BLER.
It is proved that the proposed allocation scheme, which imposes
uniform compression noise across the RRHs, approaches the
optimal allocation as the total fronthauls’ bandwidth increases.

I. INTRODUCTION

Future mobile networks are facing with the exponential data
growth due to the proliferation of diverse mobile equipments
and data-hungry applications. Among promising technology
candidates for future mobile networks, cloud radio access
network (C-RAN) has received much attention [1]. In C-RAN,
one centralized processor or baseband unit (BBU) communi-
cates with users via distributed remote radio heads (RRHs).
The RRHs are connected to the BBU via high capacity, low
latency fronthaul links and have minimal functioning since
most baseband processing tasks are centralized at the BBU. C-
RAN enables adaptive load balancing via virtual base station
pool [2] and effective network-wide inter-cell interference
management thanks to multi-cell processing [3]. However,
since the baseband processing is executed at the BBU, it
requires enormous transmission rate on the fronthaul links
to transfer in-phase/quadrature-phase (I/Q) samples, which
represent the physical signal obtained through the sampling of
the complex baseband signals. Reducing this rate is extremely
important in the implementation of C-RAN since the fronthaul
links’ capacity is limited.

Numerous research efforts have recently investigated the
compression of C-RAN, from both information-theoretic per-

spective [5–8], which designs and optimizes the quantization
noise to maximize the achievable sum rate, and practical sys-
tem point of view [11], [12], which minimizes redundancy of
control information in common public radio interface package.
It is shown, in general, that the joint design of the precoding
and quantization noise matrix can significantly improve the
system sum rate over separate designs [5]. Additional perfor-
mance gain can be achieved by optimizing the test channel
[9] or performing hybrid compression and message-sharing
strategy [6]. From the practical system perspective, efficient
compression can be performed in both time- and frequency-
domains (sub-carrier compression) [1]. Lossless compression
is proposed to achieve a good statistical multiplexing gain with
a negligible signal distortion [11], [12]. In this compression
strategy, only data of active users are transferred on the
fronthauls and a maximum amount of control informations
are locally generated. We note that these papers understand
C-RAN based on the instantaneous channel state information
(CSI) of the whole network, which might impose a significant
overhead and delay due to the potential large-scale of C-RAN.

In order to overcome the aforementioned limitation, we de-
sign and optimize C-RAN with only the second-order statistics
of the fading channels, thus significantly reduce the signal
overhead. Firstly, the system block error rate (BLER) over
Rayleigh fading channels is analysed via union bound analysis.
In particular, a tight upper bound of BLER is computed in
closed-form expression, through which direct inspirations for
insights of C-RAN are drawn: i) full diversity order of N
(number of RRHs) is achievable with respect to the signal
to compression plus noise ratio; and ii) the BLER is limited
below by either compression or Gaussian noises. Secondly,
given the BLER formula at hands, we propose an adaptive
compression optimization to minimize the fronthaul transmis-
sion rate with an acceptable signal distortion such that the
BBU can support a maximum number of RRHs. Our objective
comes from practical demands where most applications can
tolerate a non-zero BLER. Our design criterion differs from
that in [9], which aims to fully occupy the fronthaul link
capacity. Compared with the optimizations in [9], [13] which
are based on the instantaneous CSIs, the proposed method only
requires the second-order statistics of the fading channels, thus
significantly reducing the signal overhead and computation
time. Such reductions become more important in C-RAN
systems, which are designed to support a large number of
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nodes. Thirdly, we propose a fronthaul rate allocation scheme
to minimize the system BLER. Finally, the accuracy of our
analysis and the effectiveness of the adaptive compression
are verified via numerical results, which also show that a
compression ratio of 330% can be achieved.

The rest of the paper is organized as follows. Section II de-
scribes in detail the system model and the receiver’s structure.
Section III analyses the BLER under Rayleigh fading channels.
Section IV proposes a compression optimization to minimize
the fronthauls’ transmission rate. Section V proposes a rate
allocation over the RRHs. Numerical results are discussed in
Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider a C-RAN system consisting of M users de-
noted by U1, ...,UM , N RRHs denoted by R1, ...,RN , and one
BBU (see [13, Fig. 1]). The users communicate with the RRHs
via wireless medium, while the RRHs connect to the BBU
by high-speed, low-latency optical fibres, which are known as
fronthaul links [1]. In C-RAN, the RRHs can be seen as ”soft”
relaying nodes because all baseband processing functions are
immigrated to the BBU. The users and RRHs are equipped
with a single antenna. In practical systems, a multiple-antenna
RRH can be seen as a band of single-antenna RRHs which are
subject to a sum rate constraint. Due to the limited capacity on
the fronthaul links, I/Q signals need to be compressed before
being sent to the processing center. The BBU decompresses
the received signals from the RRHs and then performs further
baseband processing.

We assume that all nodes are synchronous and all wireless
channels are subject to block Rayleigh fading. The BBU
is assumed to know the network-wide CSIs. Denote cm as
a modulated symbol emitted by user Um. The modulated
symbol cm, 1 ≤ m ≤ M , belongs to the source code-
book S = {s1, ..., s|S|} which has average unit power, e.g.,
Es∈S |s|2 = 1, where |.| denotes the cardinality of a set.
The symbols transmitted by the sources are aggregated into
a codeword c = [c1, . . . , cM ]T , where (.)T represents the
vector/matrix transpose. The received signal at Rn is given
by

yn =

M∑
m=1

hnm
√
Pnmcm + zn = hnΛnc + zn, (1)

where Λn = diag([
√
Pn1, . . . ,

√
PnM ]), Pnm is the average

received energy at Rn from Um, including the path loss, hnm
is the channel fading coefficient between Um and Rn, which
is a complex Gaussian random variable with mean zero and
unit variance, hn = [hn1, . . . , hnM ] is the channel vector from
all users to Rn, and zn is independent identically distributed
(i.i.d.) Gaussian noise with zero mean and variance σ2.

A. Uniform compression scheme

Upon receiving analogue signals from the users, the RRHs
quantize and compress them into digital bits and then forward
these bits to the BBU. In this work, we consider uniform

quantization as the compression method because of its low-
complexity and practical implementation [13]. This compres-
sion method can be realized by flexibly tuning the analogue-
to-digital converter (ADC) resolution. Therefore, a target com-
pression ratio can be achieved by changing the resolution of
the ADC. In the case where the resolution of the ADC is fixed
due to some hardware constraints, this compression method
can be performed by truncating some least important bits in
the ADC’s output. The compression is executed on the real and
imaginary parts separately [1]. The received signal at the n-th
RRH is first normalized as ȳn = yn/ηn = R(ȳn) + iI(ȳn),
where R(x) and I(x) denote the real and imaginary parts
of x, respectively, ηn is a scaling factor that restricts R(ȳn)
and I(ȳn) within [−1, 1] with high probability. The value of
ηn can be calculated for a given codebook S and network
topology. In this work, we employ the common three-sigma
method in literature ηn = 3

√
‖Λn‖2 +σ2, which is assumed

to be known at the n-th RRH because its overhead is negligible
compared with data.

In the next step, the normalized signal ȳn is quantized into
ỹn by a Qn-bit uniform quantizer. The compressed signal can
be calculated from the normalized signal as

R(ỹn) = ηn
bR(ȳn)× 2Qne

2Qn
, I(ỹn) = ηn

bI(ȳn)× 2Qne
2Qn

,

where b.e stands for the rounding operation.
The quantization error at Rn is given as qn = yn−ỹn. When

the absolute value of yn is large compared to quantization step,
R(qn) and I(qn) can be well modelled as uniform random
variables with the support [−δn, δn], where δn = ηn2−Qn−1.
We observe via intensive simulations that with the three-sigma
rule, such assumption is still feasible even with a small number
of quantization bits. After compression, ỹn is converted into a
bit sequence which is later sent to the BBU via error-free by
capacity-limited fronthaul links.

B. Decoding at the BBU

Because the fronthaul links are error-free, the BBU receives
ỹn from the n-th RRH. The BBU employs a joint decompress-
ing and detecting (JDD) algorithm, which exploits the structure
of the quantizer and the codebook to perform decompression
and detection for the source codeword simultaneously. Given
the compressed signals and the CSI, the BBU optimally esti-
mates the source codeword by using the maximum a posteriori
(MAP) receiver as follows [13]:

ĉ = arg max
c

Pr{c}
N∏
n=1

Pr{ỹn|c}. (2)

In (2), Pr{ỹn|c} is the probability that the quantizer outputs
ỹn from the channel observation yn = hnΛnc+zn. It is worth
to mention that for real signal, the linear quantizer outputs y
if the distance between the input and y is less than or equal to
the quantization error. For the complex signal yn, the quantizer
outputs ỹn if both |R(yn)−R(ỹn)| and |I(yn)− I(ỹn)| are
less than the quantization error. Because the quantization is
performed independently for the real and the imaginary parts,
we have Pr{ỹn|c} = Pr{R(yn) ∈ Ω1} × Pr{I(yn) ∈ Ω2},
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where Ω1 = [R(ỹn) − δn,R(ỹn) + δn] and Ω2 = [I(ỹn) −
δn, I(ỹn) + δn].

To derive the above probability, we remind that for the
given codeword and fading channels, R(yn) and I(yn) are
Gaussian random variables with the same variance σ2/2 and
means R(hnΛnc) and I(hnΛnc), respectively. By following
similar techniques in [13] and applying the first-order Tay-
lor’s approximation on the erfc(.) function, Pr{ỹn|c} can be
computed as

Pr{ỹn|c} '
δn√
2πσ

exp

(
−|ỹn − hnΛnc|2

2σ2

)
. (3)

Substituting (3) into (2) we obtain a decoding rule for code-
word ĉ.

III. PERFORMANCE ANALYSIS OVER RAYLEIGH FADING
CHANNELS

This section analyses the BLER of C-RAN uplinks in
Rayleigh fading channels. The BLER is defined as the prob-
ability of receiving codeword ĉ when a codeword c 6= ĉ was
transmitted. Note that a block error event occurs when at least
one out of M symbols {cm}Mm=1 is decoded with error. Since
the exact BLER is difficult to investigate, we instead resort
to the union bound on the BLER and consider the average
pairwise error probability (APEP) as follows:

BLER ≤ APEP =
1

|S|M
∑

c∈SM

∑
c̃∈SM ,c̃6=c

PEPc→c̃, (4)

where PEPc→c̃ = E{PEPc→c̃} denotes the expectation over
the channel fading coefficients of PEPc→c̃, which depends on
the fading channels and is computed as [13, Eq.(9)]:

PEPc→c̃ = Pr{Z > ψ} =
1

2
× (5)

erfc

( ∑N
n=1 |hnΛn(c̃− c)|2√

4σ2
N∑
n=1
|hnΛn(c̃−c)|2+ 8

3

N∑
n=1

δ2n|hnΛn(c̃−c)|2

)
.

Before deriving PEPc→c̃, we observe that
{
hnΛn(c̃ −

c)
}N
n=1

are i.i.d. random variables with CN (0, ‖Λn(c̃−c)‖2)

distribution, where ‖ .‖ denotes the l2-norm. Define Gc,c̃
n tn ,

|hnΛn(c̃−c)|2, where Gc,c̃
n ,‖ Λn(c̃−c) ‖2. Thus,

{
tn
}N
n=1

are i.i.d. exponential random variables each with distribution
e−t, 0 < t <∞. We express the term inside (5) as∑N

n=1G
c,c̃
n tn√∑N

n=1

(
4σ2+ 8

3δ
2
n

)
Gc,c̃
n tn

=

∑N
n=1G

c,c̃
n tn√∑N

n=1 βnG
c,c̃
n tn

,

where βn , 4σ2 + 8
3δ

2
n.

By changing variable tn to vn = βnG
c,c̃
n tn, the average

PEP over the fading channels is evaluated as follows:

PEPc→c̃ =
1

2
∏N
n=1 βnG

c,c̃
n

∞∫
0

...

∞∫
0

erfc

 ∑N
n=1

vn
βn√∑N

n=1 vn


× exp

(
−

N∑
n=1

vn

βnG
c,c̃
n

)
dv1 . . . dvN . (6)

The exact computation of (6) is challenging, especially over
the set {vn}Nn=1 for arbitrary {βn}Nn=1. Therefore, we inves-
tigate an upper bound of (6) instead.

Denoting βmax = maxn∈{1,...,N} βn, we have

N∑
n=1

vn
βn
≥

√√√√ N∑
n=1

vn
βn

√∑N
n=1 vn
βmax

. (7)

Applying (7) to (6) while noting that erfc(x) is a decreasing
function, we obtain

PEPc→c̃ ≤
1

2
∏N
n=1 βnG

c,c̃
n

∞∫
0

...

∞∫
0

erfc

 1√
βmax

√√√√ N∑
n=1

vn
βn


=

1

12
∏N
n=1

(
Gc,c̃

n

βmax
+ 1
) +

1

4
∏N
n=1

(
4Gc,c̃

n

3βmax
+ 1
) . (8)

where (8) results from the tight approximation of erfc(.)

function erfc(x) ' 1
6e
−x2

+ 1
2e
− 4x2

3 [14].
Substituting (8) into (4), we obtain the upper bound of

the BLER under Rayleigh fading channels. It is observed
that C-RAN achieves full diversity of order N with respect
to the signal to compression plus Gaussian noise ratio. The
accuracy of the bounds obviously depends on how diverse the
set {βn}Nn=1 is.

IV. MINIMIZATION OF THE FRONTHAUL TRANSMISSION
RATE

In practical systems, different applications might require
various quality of service (QoS) depending on specific indi-
vidual. For example, a voice message usually requires a lower
QoS compared to a video call. From the provider’s perspec-
tive, it is always beneficial to minimize network resources
as long as the required QoS is guaranteed. This motivates
us to propose an adaptive compression scheme to minimize
the fronthaul transmission rate (maximize the compression
efficiency) under a certain target BLER so that a front-haul
link can support a maximal number of RRHs. Such scheme is
desirable for systems which support large front-haul feedback
and/or require stringent BLER QoS. Note that the proposed
adaptive compression is based on the average BLER, and
thus relying only on the statistics but the instantaneous fading
channels. Since the actual transmission rate at the n-th RRH
is equal to the sampling resolution at that RRH, we refer Qn
to the transmission rate for convenience.

For a given QoS constraint ζ, we want to minimize the total
fronthauls’ transmission rate. The corresponding optimization
is formulated as follows:

minimize
{Qn : Qn ≥ 1}Nn=1

N∑
n=1

Qn (9)

s.t.
1

|S|M
∑∑
c̃ 6=c∈SM

PEPc→c̃ ≤ ζ.

In the following, we propose an optimization of problem (9)
based on the upper bound of the APEP in (8). By changing
variable to βn = 4σ2 + 2

3η
2
n2−2Qn , the optimization problem
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in this case is stated as follows:

maximize
{βn}Nn=1

N∑
n=1

log
(
βn − 4σ2

)
(10)

s.t.
1

|S|M
L∑
l=1

 1

12
∏N
n=1

(
Gl

n

βmax
+ 1
)

+
1

4
∏N
n=1

(
4Gl

n

3βmax
+ 1
)
 ≤ ζ,

0 < βn − 4σ2 ≤ η2n
6
, ∀n.

By introducing an auxiliary variable A, the above problem
is written equivalently as follows:

maximize
{βn}Nn=1, A > 0

N∑
n=1

log
(
βn − 4σ2

)
(11)

s.t.
1

|S|M
L∑
l=1

log

(
1

12
∏N
n=1 (GlnA+ 1)

+
1

4
∏N
n=1

(
4
3G

l
nA+ 1

)) ≤ ζ,
βn ≤

1

A
, ∀n,

0 < βn − 4σ2 ≤ η2n
6
, ∀n.

It is observed that given A, the problem (11) is convex
and thus efficiently solvable. We therefore resort to bisec-
tion to solve (11) [15]. The steps are given in Table I.
The integer quantization bit Qintegern can be obtained from
βn simply by choosing the smallest following integer of
Qexactn = 1

2 log2( 2
3η

2
n) − 1

2 log2(βn − 4σ2), i.e., dQaxactn e.
In general, there is no bound for the optimality loss of such
approximation. However, as the constraint threshold BLER
tends to 0, the loss also tends to 0. The reasoning is that
each Qn becomes large in such case, which leads to a small
dQaxact

n e−Qaxact
n

Qaxact
n

.

A. Optimality of identical quantization noise scheme

In this subsection, we will prove that a sampling scheme
which leads to identical quantization noise, i.e., δ1 = δ2 =
· · · = δN , is the optimal solution of the problem (9), as
the BLER threshold ζ goes to zero. The formal statement of
this result is given in the following proposition. The proof is
omitted due to the space constraint.

Proposition 1: As the QoS threshold ζ → 0, the solution of
problem (11) based on the upper bound of the APEP satisfies
the identical compression noise.

Proposition 1 is not strong enough to state that the optimal
solution of (9) approaches that of identical compression noise
as the BLER threshold decreases, since(11) provides an upper
bound for the original problem (9). Nevertheless, Proposition
1 provides a justification for implementing the sampling that
imposes identical compression noise, especially under delay-

TABLE I: ALGORITHM TO SOLVE (11)

1. Initialize AH , AL, and the accuracy ε.
2. AM = (AH +AL)/2.
3. Given A = AM , if (11) is feasible, then AL := AM .

Otherwise AH := AM .
4. Repeat step 2 and 3 until |AH −AL| ≤ ε.

constrained system where sophisticated adaptive sampling
might not be welcomed.

V. MINIMIZATION OF THE BLER

In this section, we aim at minimizing the BLER for a given
total fronthaul bandwidth of Qsum bits. Particularly, we will
allocate sampling resolution Qn to the n-th RRH to achieve
the smallest BLER. The optimization problem is formulated
as follows:

minimize
{Qn : Qn ≥ 1}Nn=1

BLER (12)

s.t.

N∑
n=1

Qn ≤ Qsum,

where BLER is given in (4).
In order to guarantee the effective of the optimization in

(12), the BLER is calculated based on the upper bound of
the PEP given in (8). By changing variable to βn = 4σ2 +
2
3η

2
n2−2Qn , the resulting optimization problem is given as

minimize
{βn}Nn=1

L∑
l=1

 1

12

N∏
n=1

1
Gl

n

βmax
+ 1

+
1

4

N∏
n=1

1
4Gl

n

3βmax
+1


(13)

s.t.

N∑
n=1

log2(βn − 4σ2) ≥
N∑
n=1

log2

(
2

3
η2n

)
− 2Qsum,

0 < βn ≤
1

6
η2n, ∀n.

By introducing an arbitrary variable A, the problem (13) is
equivalent to the following problem:

minimize
{βn:βn>0}Nn=1

A>0

L∑
l=1

(
1

12

N∏
n=1

1

GlnA+ 1
+

1

4

N∏
n=1

1
4
3G

l
nA+1

)
(14)

s.t. βn ≤
1

A
, ∀n (15a)

N∑
n=1

log2(βn − 4σ2) ≥
N∑
n=1

log2

(
2

3
η2n

)
− 2Qsum,

(15b)

βn ≤ 4σ2 +
1

6
η2n, ∀n. (15c)

We observe that problem (14) is a convex optimization prob-
lem on {βn} for a given A. Therefore (14) can efficiently be
solved by standard methods, i.e., bisection [15]. The steps to
solve (14) are given in Table II.
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TABLE II: ALGORITHM TO SOLVE (14)

1. Initialize AH , AL, and the accuracy ε.
2. AM = (AH +AL)/2.
3. Given A = AM , if (14) is feasible, then AL := AM .

Otherwise AH := AM .
4. Repeat step 2 and 3 until |AH −AL| ≤ ε.

In general, it is difficult to obtain the exact formula for
solution of 12. Under certain circumstances, the closed-form
expression of the solution of 12 can be derived as following
proposition. The proof is omitted due to the space constraint.

Proposition 2: If there exist {qn : qn ≥ 1}Nn=1 such as
η12−q1 = η22−q2 = · · · = ηN2−qN and

∑N
n=1 qn = Qsum,

then the solution of problem (14) satisfies the identical quan-
tization noise and is given as

β?n = 2
1
N

(∑N
n=1 log2(

2
3η

2
n)−2Qsum

)
+ 4σ2, ∀n.

Consequently, the optimal rate allocation {Q?n}Nn=1 is given
as

Q?n =
1

2
log2

(
2

3
η2n

)
+

1

N
Qsum −

1

2N

N∑
n=1

log2

(
2

3
η2n

)
.

Corollary 1: For symmetric C-RAN systems, i.e., η1 =
η2 = · · · = ηN , which employ the quantization and the
receiver as in Section II, the uniform sampling {Qn =
Qsum/N}Nn=1 achieves the minimum BLER.

Proof: The proof is obtained straightforward from Propo-
sition 2 by using η1 = η2 = · · · = ηN .

VI. NUMERICAL RESULTS

The preliminary simulation is evaluated for a C-RAN sys-
tem under block Rayleigh fading channel, i.e., hmn’s are
independent identically distributed (i.i.d.) random variables,
each is distributed as CN (0, 1). Unless otherwise stated,
M = 3, N = 3 C-RAN is considered and QPSK modulation
with the codebook S = {−1−1i,−1+1i, 1−1i, 1+1i}/

√
2 is

used. The BBU is assumed to know the CSI of all the wireless
channels.

Fig. 1a and 1b present the BLER performance of C-RAN in
symmetric network topology, i.e., η1 = η2 = · · · = ηN . The
sampling rate is equally allocated, i.e., Q1 = Q2 = Q3 = 6
bits. As the result, the quantization noise at every RRH is
identical. Fig. 1a compares the bounds with simulation results
for N = 3 RRHs and three different modulations, i.e., BPSK,
QPSK and 16-QAM. For all cases, the derived bounds closely
match the simulation results. It is observed that the bound
is closer to the simulation for BPSK than 16-QAM because
in the later the signal constellation is more diverse. Fig. 1b
presents the theoretical and simulation results for different
number of RRHs with QPSK modulation. Similar conclusion
is observed: the derived bounds closely match the simulations.
The same conclusion is also true for Fig. 1c, which shows the
simulation results and the corresponding bound under non-
identical quantization noise scenario.

Fig. 2 presents the performance of the proposed adaptive
compressions versus SNR. For a given BLER target, we want
to maximize the compression efficiency, or equivalently to
minimize the actual fronthaul transmission rate. For reference,
the scheme without QoS constraint which fully occupies the
fronthaul bandwidth is also plotted. In addition, to provide full
details about the proposed optimization, a curve corresponding
to exact optimum solutions of (11) is drawn (without integer
condition of Qn). This curve is mark as ”- exact” in the
figure. A curve corresponding to integer {Qn} are marked
as ”- integer”. The threshold ζ is equal to 10−2. Note that
the optimization is carried out for each operating SNR only
once. The BLER performance is shown in Fig. 2a and the
actual fronthaul rate is presented in Fig. 2b. Under the small
SNR regime, the optimization does not satisfy the target QoS
because the channel is too poor. Even using all 10 bits for
quantization does not satisfy the target QoS. Therefore, the op-
timization is inactive for these SNRs. As a result, all schemes
consume full fronthaul bandwidth, as shown in Fig. 2b. Under
the high SNR regime, the optimization is activated (from 10
dB in the figure). As expected, the optimization scheme meets
the target QoS while significantly improves the compression
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Fig. 1: Performance of the C-RAN in Rayleigh fading channels for various settings. Markers show simulation results; solid
curves without markers correspond to the upper bounds. M = N = 3; (a) and (b): symmetric parameters with Q1 = Q2 =
Q3 = 6 bits; (c): asymmetric parameters with {Q1, Q2, Q3} = {5, 6, 7}.
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Fig. 2: Performance of the optimization with QoS constraint
proposed in Section IV. QPSK modulation. The target BLER
ζ is equal to 10−2. The total fronthaul bandwidth Qsum = 30
bits, M = N = 3.

efficiency. Because the full-bandwidth scheme always uses 10
bits for quantization, its fronthaul rate is 10 bits per sample for
all SNRs. On the other hand, a compression efficiency of 330%
is observed, which only requires 3 bits per sample to achieve
a BLER less than 10−2. Note that the integer constraint on
{Qn}Nn=1 results in lower BLER than the exact value of Qn
because Qintegern = dQexactn e is the smallest integer that is
larger than or equal to Qexactn . The sharp step in BLER curves
of integer Qn results from the d.e operation.

Fig. 3a shows the BLER of the proposed rate allocation
scheme described in Section V and a reference uniform rate
allocation, e.g., Q1 = Q2 = Q3, for asymmetric network with
scaling factors {η1, η2, η3} = {3, 6, 9}. The total fronthauls’
bandwidth is Qsum = 15 bits. As expected, the optimum rate
allocation achieves smaller BLER than the reference scheme.
Under the small SNR regime, both uniform and optimal rate
allocations get similar performance because at this SNR the
thermal noise is dominant. As the SNR increases, the perfor-
mance gain provided by the optimal rate allocation is larger.
This is because in the high SNR regime, the quantization noise
has more impacts on the system performance.

Fig. 3b shows the BLER performance of the optimal rate
allocation versus different fronthaul’s bandwidth. Uniform rate
allocation is also plotted. The operating SNR is equal to 15
dB. It is observed that the optimal scheme is more effective
for small fronthaul’s bandwidth. As the fronthaul’s bandwidth
increases, the gap between two schemes degrades and two
curves eventually coincide. Such observation can be explained
by Theorem 2, which proves the optimality of uniform rate
allocation scheme at large total fronthaul’s bandwidth.

VII. CONCLUSIONS

We have studied the performance of cloud radio access
networks in Rayleigh fading channels. Analytical results have
been derived for the system block error rate by using pair-
wise error analysis. It has been shown that the system BLER
is limited below by either Gaussian or compression noise, but
it achieves full diversity order with respect to the signal to
Gaussian plus compression noise ratio. Based on the analysed
bounds, a optimization has been proposed to improve the
compression efficiency while satisfying the predefined QoS
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Fig. 3: Performance of the optimal rate allocation. QPSK
modulation, M = N = 3. Left: performance versus SNR,
Qsum = 15 bits. Right: performance versus average per-RRH
bandwidth, SNR = 15 dB.

constraint. The proposed optimization problem comes from
practical scenarios where most applications tolerate a target
QoS, e.g., a non-zero BLER. Furthermore, the optimal rate
allocation scheme has been proposed for the given the total
fronthauls’ bandwidth to minimize the BLER.
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