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Abstract—Content caching is an efficient technique to reduce
delivery latency and system congestion during peak-traffictimes
by bringing data closer to end users. Existing works on caching
usually assume symmetric networks with identical user requests
distribution, which might be in contrast to practical scenarios
where the number of users is usually arbitrary. In this paper, we
investigate a cache-assisted heterogeneous network in which edge
nodes or base stations (BSs) are capable of storing content data in
their local cache. We consider general practical scenarioswhere
each edge node is serving an arbitrary number of users. First,
we derive an optimal storage allocation over the BSs to minimize
the shared backhaul throughput for a uncoded caching policy.
Second, a novel coded caching strategy is proposed to further
reduce the shared backhaul’s load. Finally, the effectiveness of
our proposed caching strategy is demonstrated via numerical
results.

Index terms— Content caching, rate-memory trade-off,
heterogeneous networks.

I. I NTRODUCTION

With the proliferation of mobile devices and rich-content
applications, future wireless networks will have to address
stringent requirements of delivering content at high speed
and low latency. Various network architectures have been
proposed in order to boost the network throughput and reduce
transmission latency such as cloud radio access networks
and heterogeneous networks (HetNets) [1]. Despite potential
high rate in the new architectures, traffic congestion might
occur during peak-traffic times. One approach to reduce peak
traffic is to bring content closer to end users via distributed
storage through out the network, which is referred to content
placement or caching [2]. Caching usually consists of two
phases: placement and delivery. The former is executed during
off-peak periods when the network resources are redundant.
In this phase, popular content is duplicated and stored in
the distributed caches in the network. The delivery phase
usually occurs during peak-traffic hours when the actual users’
requests are revealed. If the requested content is available
in the user’s local storage, it can be served locally without
being sent via the network. In this manner, caching allows
significant throughput reduction during peak-traffic timesand
thus reducing network congestion [3].

Most research works investigate the caching problem via
exploiting historic user requested data to optimize either
placement or delivery phases [2], [4], [5]. For a fixed content

delivery strategy, the placement phase is designed in orderto
maximize the local caching gain. This gain is proportional to
parts of the files available in the local storage, which is related
to the cache memory. Joint content caching and transmission
design has recently been studied in heterogeneous [6], [7] and
device-to-device networks [8], [9]. In [9], the authors study
two caching policies which allow the storage of files at either
small base stations or user terminals. Taking into account
the wireless fading channel, a joint content replacement and
delivering scheme is proposed to reduce the system energy
consumption. The authors in [7] jointly optimize caching,
routing and channel assignment via two sub-problems called
restricted master and pricing. Cache-assisted multicast beam-
forming design and power allocation are investigated in [6]
to reduce transmitted power and fronthaul bandwidth. These
caching methods store files independently and are known as
uncoded caching. The caching gain can be further improved
via multicasting a fixed combination of files during the deliv-
ery phase, which is known ascoded caching [3]. By carefully
placing the files in the caches and designing the coded data, all
users can decode their desired content via a multicast stream.
Rate-memory tradeoff is derived in [3] to achieve a global
caching gain on top of the local caching gain. This gain is
inversely proportional to the total cache memory. A similar
rate-memory tradeoff is investigated in device-to-device(D2D)
networks [10] and secrecy constraint [11]. In [12], the authors
study the tradeoff between the cache memory at edge nodes
and the transmission latency measured in normalized delivery
time. The rate-memory tradeoff of multi-layer coded caching
networks is studied in [13], [14].

The above-mentioned papers consider symmetric networks
with identical user demands and cache capabilities, which
might be in contrast to realistic scenarios, e.g., HetNets,in
which the number of user requests can be arbitrary. It is worthy
to highlight that the base stations (BSs) in HetNets (marco-,
micro-, pico-) have various capabilities to serve the userswith
non-uniform distribution. For example, a BS serving an office
building tends to have heavier traffic load than the one in a
residential area. From the system perspective, it is demanding
to plan more network resources (backhaul capacity, storage
memory) to an area with higher statistic user demands. In
this paper, we investigate cache-assisted HetNets in practical
scenarios, in which each BS can serve an arbitrary number of
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Fig. 1: Cache-assisted wireless networks with heterogeneous
user requests and cache capabilities.

user requests. Our goal is to optimally allocate the storage
memory across the BSs and design a caching strategy to
minimize the shared backhaul’s traffic. Our contributions are
as follows:

• Firstly, we derive the required backhaul rate that each BS
needs to serve its users for a given storage memory.

• Secondly, based on the derived rate, the storage allocation
is optimized to minimize the aggregated throughput on
the shared backhaul link under an uncoded caching
approach. The optimal solution shows that it is more
beneficial to allocate larger cache memory for BSs which
are serving more users. Our method is fundamentally
different from [15] because of following reasons. First,
we investigate rate-memory tradeoff performance, while
[15] considers failure probability. Second, we consider
general wireless network architectures. On the other hand,
[15] focuses on multiple-input single-output system.

• Thirdly, we propose a novel coded caching strategy and
the corresponding storage allocation to further reduce the
shared backhaul’s traffic load. Numerical results demon-
strate a significant gain of the proposed caching strategy.

The rest of this paper is organised as follows. Section II
presents the proposed storage allocation with uncoded caching
policy. Section III presents the proposed coded caching. Sec-
tion IV shows numerical results. Finally, Section V concludes
the paper.

II. STORAGE ALLOCATION WITH UNCODED CACHING

We consider a cache-assisted HetNet in which a data centre
serves users via distributed BSs, as depicted in Figure 1. The
BSs connect to the data centre via a error-free, bandwidth-
limited shared link. Each BS serves a number of users via
wireless channels simultaneously. It is assumed that adjacent
cells operate in orthogonal frequencies, thus inter-cell interfer-

ence is negligible. At every time instance, each user requests
a file from a library with the size ofF files. Each file has
equal length ofB bits. Denote byK the number of BSs and
by nk ∈ N

+ the number of users served by BSk. Denote
NK = {n1, ..., nK} as the users profile. The total number of
users is equal toN =

∑K

k=1 nk. Without loss of generality, we
assume thatni ≤ nj for i < j. In order to leverage the shared
link’s load, each BS is equipped with a storage memory. Let
Mk be the storage size of BSk. For convenience, the storage
memory is normalized by the file lengthB. The total storage
memory in all BSs isMΣ =

∑K

k=1 Mk.
Our objective is to minimize the aggregated request rate on

the shared backhaul link by optimally allocating the storage
memory to the BSs. Letrk denote the request rate on the
shared backhaul from BSk. The optimization problem is
formally stated as follows:

minimize
{M1,...,MK}

K
∑

k=1

rk (1)

s.t.

K
∑

k=1

Mk = MΣ, (1a)

0 ≤ Mk ≤ min{MΣ, F}, ∀k, (1b)

where condition (1a) satisfies the total memory constraint and
(1b) assures efficient use of the cache.

Proposition 1: Consider thek-th BS equipped with a cache
of sizeMk servingnk users. The BS uses the uncoded caching
strategy to cache the files. The backhaul rate that BSk requires
to serve its users, asF is large, is calculated as follows:

rk = nk(1−
Mk

F
). (2)

Proof: See Appendix A.
By using Proposition 1, the aggregated backhaul load from

all BSs is equal to

K
∑

k=1

rk = N −
1

F

K
∑

k=1

nkMk. (3)

Then the problem (1) is equivalent to the following problem:

minimize
{M1,...,MK}

N −
K
∑

k=1

nkMk (4)

s.t. (1a) and (1b).

Minimizing the objective in (4) is equivalent to maximizing
∑K

k=1 nkMk. Since
∑K

k=1 nkMk is an increasing function
with respect to{Mk}Kk=1, it is straightforward to show that it
achieves the maximum value at the corner point. By expressing
MΣ = tF+M ′ with M ′ < F andt ∈ N, problem (1) achieves
the maximum value at

Mk =







0, if k ≤ K − t− 1
M ′, if k = K − t
F, if K − t+ 1 ≤ k ≤ K

. (5)

Substituting (5) into (3) we obtain the minimum backhaul’s



load given as

R
opt

rnd =

K−t
∑

k=1

nk − nK−t

MΣ − tF

F
. (6)

The optimal storage allocation (5) suggests to fill as large
storage memory as the library size for the BSs with more
user requests. This provides important guidelines for network
resources planning and optimizing in HetNets.

Without storage allocation, every BS is allocated with a
memory of equal sizeMΣ

K
. By using Proposition 1, the

backhaul load in this case is calculated as follows:

Rrnd =

K
∑

k=1

nk

(

1−
MΣ

KF

)

. (7)

The rate different between (7) and (1) is computed as

Rrnd −Ropt

rnd =
K
∑

k=1

nk

(

1−
MΣ

KF

)

+ nK−t

MΣ − tF

F
−

K−t
∑

k=1

nk

=

(

1−
MΣ

KF

) K
∑

k=K−t+1

(nk − nK−t). (8)

It is observed that the right hand side of (8) is always≥ 0
becausenk:k≥K−t+1 ≥ nK−t. This confirms the effectiveness
of the proposed storage allocation. The equality in (8) holds
whenn1 = n2 = · · · = nK or K = 1.

III. PROPOSEDCODED-CACHING STRATEGY

In this section, we propose a coded-caching strategy to
further reduce the aggregated traffic on the shared backhaul.
It is assumed thatMΣ = tF bits1 with t ∈ {0, 1, 2, . . . ,K} .
This assumption is in line with practical scenarios becausethe
storage memory usually takes a discrete value as a power of
2. Let MK = {Mk}Kk=1 denote a storage allocation scheme
with

Mk =

{

nkF∑K−t+1

k=1
nk

, if 1 ≤ k ≤ K − t+ 1

F, if K − t+ 2 ≤ k ≤ K
. (9)

It is straightforward to verify thatMK in (9) satisfies the
storage constraint at every BS and the total memory constraint.

Theorem 1: Consider a cache-assisted HetNet withK BSs
and the user profileNK = {n1, ..., nK}, e.g., BSk is serving
nk users. The aggregated backhaul load underMK is given
as

Rcoded(MK) =

∑K−t

k=1 nk

∑K−t+1
j=k+1 nj

∑K−t+1
k=1 nk

. (10)

Proof: We first consider placement and delivery phases
as follows:

1This is the total storage memory in the network. The local cache at each
BS is usually less thanF .

A) Placement phase: Following MK in (9), all BSsk ≥
K − t + 2 has a storage size ofF and therefore can store
all the files in their cache. The placement phase for BSk
with 1 ≤ k ≤ K − t + 1 is executed as following. Each file
is divided intoNt ,

∑K−t+1
k=1 nk subfiles of equal size as:

Wf = {Wf,ki} with 1 ≤ k ≤ K − t + 1, 1 ≤ i ≤ nk. Then
each BSk storesnkF subfiles in its cacheZk as following:

Zk = {W1,ki,W2,ki, . . . ,WF,ki | ∀i ∈ {1, . . . , nk}}.

The total volume of the subfiles cached in BSk is equal to
Fnk ×

1
N

= Mk which satisfies the memory constraint.
B) Delivery phase: Each user requests a file by sending a

request to the data centre. We note that all user requests in BS
k ≥ K− t+2 can be served directly from their cache without
any cost for the shared backhaul. Therefore, it is sufficientto
consider the BSk with 1 ≤ k ≤ K − t+ 1.

Let dkj ∈ {1, 2, . . . , F} denote a request index from user
j to BS k. Define vectorsVkj , {Wdkj ,pq | k < p ≤ K −
t + 1, 1 ≤ q ≤ np} andUkj , {Wdpq,kj | k < p ≤ K −

t + 1, 1 ≤ q ≤ np}, both consist of
∑K−t+1

i=k+1 ni subfiles.
Note that the cacheZk already hasnk subfiles{Wdkj ,ki}

nk

i=1

of the requested fileWdkj
. Therefore, BSk needs to request

nk(Nt − nk) other subfiles from the data centre.
In order to serve the requestdkj , the data centre broadcasts

Ukj ⊕Vkj to the BSs, where⊕ indicates element-wise XOR
operation. This process is repeated untilk = K − t. Since
there arenk user requests in BSk, the data centre needs to
send

∑K−t

k=1 nk

∑K−t+1
j=k+1 nj combinations of subfiles over the

shared backhaul. Taking into account the fact that each subfile
is of length 1

Nt
, the aggregated backhaul throughput is given

as

Rcoded =

∑K−t

k=1 nk

∑K−t+1
j=k+1 nj

∑K−t+1
k=1 nk

.

Now we will show that all users can receive the requested
file from the above delivery strategy. After the first

∑K

k=2 nk

transmissions, all BSs receivedY11 = U11 ⊕V11. Note that
U11 = {Wdkj,11}, ∀2 ≤ k ≤ K, 1 ≤ j ≤ nk, is already in
the cacheZ1, the BS1 can recover fileWd11

by performing
U11 ⊕Y11. Meanwhile, consider userj at BSk with k ≥ 2
and1 ≤ j ≤ nk. Because the cacheZk hasWd11,kj andY11

containsWdkj ,11 ⊕ Wd11,kj , the BS k can recoverWdkj ,11

by performingWd11,kj ⊕ Wdkj ,11 ⊕ Wd11,kj . Consequently,
after the first

∑K

k=2 nk transmissions, BS1 recovers fileWd11

and all BSsk ≥ 2 recover the first subfile for all their
desired files. This process is repeated until the transmission of
U(K−1)nK−1

⊕V(K−1)nK−1
after which all BSs recover their

requested files. The detailed placement and delivery phases
are given in Table I for BSsk with 1 ≤ k ≤ K − t+1. Note
that BSsk > K − t+1 has a storage memory ofF , thus can
serve its users locally without causing any backhaul traffic.

The example below will provide details on how the pro-
posed caching strategy works.

Example 1: Consider F = 4,K = 3, user profile
N3 = {1, 1, 2}, and storage allocationM3 = {1, 1, 2}.
For simplicity, let us denote the files asA,B, C, and



TABLE I: CODED-CACHING ASSISTED

Inputs: K,F,MΣ = tF
Placement phase
for f = 1 to F

Divide Wf = {Wf,kj}, ∀ 1 ≤ k ≤ K, 1 ≤ j ≤ nk

end

for k = 1 to K − t+ 1
Zk = {Wf,kj}, ∀ 1 ≤ f ≤ F, 1 ≤ j ≤ nk

end

Delivery phase
for k = 1 to K − t
for j = 1 to nk

Vkj = {Wdkj ,pq}, ∀ 2 ≤ p ≤ K, 1 ≤ q ≤ np,
Ukj = {Wdpq,kj}, ∀ 2 ≤ p ≤ K, 1 ≤ q ≤ np,
broadcastUkj ⊕Vkj to the BSs,

end

end

D. Each file is divided into four subfiles as follows:
A = {A11, A21, A31, A32}, B = {B11, B21, B31, B32}, C =
{C11, C21, C31, C32}, D = {D11, D21, D31, D32}. The sub-
files are stored at three caches as:

Z1 = {A11, B11, C11, D11}

Z2 = {A21, B21, C21, D21}

Z3 = {A31, B31, C31, D31, A32, B32, C32, D32}

In the delivery phase, the users send a request{A,B,C,D} to
the data centre. First, the data centre constructs vectorsV11 =
{A21, A31, A32},U11 = {B11, C11, D11}. Then, it broadcasts
U11 ⊕ V11 = {A21 ⊕ B11, A31 ⊕ C11, A32 ⊕ D11} to the
BSs. Since the cacheZ1 containsB11, C11 and D11, BS 1
can subtractA21, A31, A32 from U11 ⊕ V11. The BS2 can
recoverB11 becauseA21 is already in the cacheZ2. Similarly,
BS 3 can subtractC11 and D11 sinceA31 and A32 are in
its cache. In the next step, the data centre constructsV21 =
{B31, B32},U21 = {C21, D21} and then sendsU21 ⊕V21 =
{B31 ⊕ C21, B32 ⊕ D21} to the BSs. Upon receivedB31 ⊕
C21, B32 ⊕D21, BS 2 subtracts forB31, B32 sinceC21, D21

are in the cacheZ2. At the same time, BS3 can recoverC21

andD21 becauseZ3 containsB31 andB32.
Corollary 1: Under the user profileNK = {nk = k}Kk=1,

MΣ = F , the aggregated shared backhaul’s load is given as

Rcoded(MK) =
(K − 1)(3K + 2)

12
. (11)

Proof: See Appendix B
Corollary 2: The backhaul’s load of the proposed caching

strategy for the i.i.d user requestnk = n, ∀k is given as

Rcoded(MK) =
n(K − t)

K − t+ 2
. (12)

The result of Corollary 2 is obtained directly from The-
orem 1 by substitutingnk = n, ∀k. In the special case
n = 1 andMΣ = F bits, the proposed scheme achieves the
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Fig. 2: Shared backhaul traffic as a function of average cache
sizeMΣ/K. The networks setting:K = 5 BSs,F = 50 files,
andNK = {1, 2, 3, 4, 5}.
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Fig. 3: Shared backhaul traffic as a function of average cache
sizeMΣ/K. The networks setting:K = 5 BSs,F = 50 files,
andNK = {1, 1, 1, 1, 11}.

backhaul’s loadK−1
K+1 , which is always less than or equal to

backhaul’s rateK−1
2 in [3] sinceK ≥ 1.

IV. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the effectiveness of the pro-
posed caching strategy via numerical results. For reference, we
also present the benchmark, which employs uncoded caching
policy and allocates equal storage memoryMΣ

K
to all BSs.

The backhaul load of the benchmark scheme is given in (7).
For ease of demonstration, we usebenchmark and proposed
to indicate the benchmark and proposed caching strategies in
the figure, respectively. Note that the coded caching in [3] is
not applicable in context of HetNets because it is designed for
identical user requests.

Figure 2 shows the aggregated backhaul’s load of the pro-
posed caching schemes and the reference scheme for various
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Fig. 4: Backhaul throughput as a function of number of base
stationsK. The library sizeL = 100 and the average cache
size is equal to2F

K
. The users profileNK = {nk = k}Kk=1.

cache sizes. The data centre with library ofF = 30 files
distribute content toN = 15 users viaK = 5 BSs. It is
shown that the proposed caching schemes significantly reduce
the backhaul traffic. In particular, at an average cache sizeof
20 files, the proposed coded caching scheme reduces75% the
backhaul load compared with the benchmark scheme, while
the proposed scheme with the uncoded caching degrades the
backhaul load by33%. When the average cache size is equal
to 0 or F , the three schemes achieve the same backhaul load
because the caches are either empty or full.

Figure 3 present results for a highly asymmetric user profile
NK = {1, 1, 1, 1, 11}. In this case, the proposed schemes
save95% and67% of backhaul load with coded and uncoded
caching strategies, respectively. Figure 4 presents the shared
backhaul load for different number of BSs. It is shown that
the proposed coded caching schemes achieve more gain as the
number of BSs increases.

V. CONCLUSIONS

We investigated cache-assisted heterogeneous networks with
arbitrary number of user requests. We derived an optimal stor-
age allocation under the uncoded caching policy to minimize
the aggregated backhaul load. Furthermore, we proposed a
novel coded caching scheme and the corresponding storage
allocation to further reduce the shared backhaul traffic. Nu-
merical results demonstrated the effectiveness of our proposed
caching strategies.
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APPENDIX A
PROOF OFPROPOSITION1

By using the uncoded caching method, BSk storesMk/F
of every file in its cache. When a user requests a file, the BS

can send directly parts of the file which is already. The subfiles
which are not in the cache will be requested from the data
centre via the shared backhaul link. Let(d1, d2, ..., dnk

), dj ∈
{1, ..., F}, be the requested file indexes. Since the users’
requests are independent, the requested files can be either the
same or different.

For any integer numberm, 1 ≤ m ≤ F , there areFm ways
to choosem elements out of the set of sizeF , which can be
further expressed as

Fm =

m
∑

l=1

aml CF
l ,

where CF
l , F !

(F−l)! and aml is a constant. In the above
equation,aml CF

l is the number of choices ofm elements out of
F which containsl different elements. By using the inductive
method, we can obtain:

aml =

{

1, if l = 1 or m
mam−1

l + am−1
l−1 , if 1 < l < m

For a choice comprising ofl different values, the BS needs to
requestl(1−Mk/F ) subfiles from the data centre. Therefore,
the average backhaul rate requested by BSk is calculated as

rk =
1

Fnk

nk
∑

l=1

lank

l CF
l

(

1−
Mk

F

)

=

nk
∑

l=1

lank

l

Fnk−l

(

1−
Mk

F

) l
∏

i=1

F − l + i

F
. (13)

It is observed that the library sizeF is usually very large and
nk is small compared withF , thus F−l+i

F
≃ 1, ∀1 ≤ i ≤ l

and

lank

l

Fnk−l
≃

{

0, if l < nk

nk, if l = nk
. (14)

From (13) and (14) we obtain:

rk ≃ nk

(

1−
Mk

F

)

. (15)

APPENDIX B
PROOF OFCOROLLARY 1

From Theorem 1 we obtain the aggregated backhaul load
in this case computed as

R =

∑K−1
k=1 k

∑K

j=k+1 j
∑K

k=1 k
. (16)

The numerator of 16 is further expressed as follows:

K−1
∑

k=1

k

K
∑

j=k+1

j =
1

2





(

K
∑

k=1

k

)2

−

(

K
∑

k=1

k2

)





=
1

2

[

(

K(K + 1)

2

)2

−
K(K + 1)(2K + 1)

6

]

=
1

24
K(K2 − 1)(3K + 2). (17)



Note that
∑K

k=1 k = K(K+1)/2. Substituting (17) into (16),
we obtain (11).
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