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Abstract—Content caching is an efficient technique to reduce delivery strategy, the placement phase is designed in ¢doder
delivery latency and system congestion during peak-traffitimes  maximize the local caching gain. This gain is proportiomal t
by bringing data closer to end users. Existing works on cachig 4 ts of the files available in the local storage, which iates

usually assume symmetric networks with identical user regasts . - ..
distribution, which might be in contrast to practical scenarios to the cache memory. Joint content caching and transmission

where the number of users is usually arbitrary. In this paper we design has recently been studied in heterogeneous [6]nf¥] a
investigate a cache-assisted heterogeneous network in whiedge device-to-device networks [[8].[9]. In_[[9], the authors dtu

nodes or base stations (BSs) are capable of storing conteratd in  two caching policies which allow the storage of files at aithe
their local cache. We consider general practical scenarioghere small base stations or user terminals. Taking into account

each edge node is serving an arbitrary number of users. First . . L
we derive an optimal storage allocation over the BSs to miniize the wireless fading channel, a joint content replacemedt an

the shared backhaul throughput for a uncoded caching policy delivering scheme is proposed to re_duce th? system energy
Second, a novel coded caching strategy is proposed to furthe consumption. The authors inl[7] jointly optimize caching,

reduce the shared backhaul's load. Finally, the effectiveess of routing and channel assignment via two sub-problems called
our proposed caching strategy is demonstrated via numerida  ociricted master and pricing. Cache-assisted multicestb
results. . forming design and power allocation are investigated[in [6]
Index terms— Content caching, rate-memory trade—offto reduce transmitted power and fronthaul bandwidth. These
heterogeneous networks. caching methods store files independently and are known as
uncoded caching. The caching gain can be further improved
via multicasting a fixed combination of files during the deliv
With the proliferation of mobile devices and rich-contengry phase, which is known asded caching [3]. By carefully
applications, future wireless networks will have to addreglacing the files in the caches and designing the coded dhta, a
stringent requirements of delivering content at high speeders can decode their desired content via a multicastnstrea
and low latency. Various network architectures have be&ate-memory tradeoff is derived in][3] to achieve a global
proposed in order to boost the network throughput and redusaching gain on top of the local caching gain. This gain is
transmission latency such as cloud radio access netwoitgersely proportional to the total cache memory. A similar
and heterogeneous networks (HetNets) [1]. Despite peatfentiate-memory tradeoff is investigated in device-to-deyiz2D)
high rate in the new architectures, traffic congestion mighttworks[[10] and secrecy constraint[[11]. In][12], the aush
occur during peak-traffic times. One approach to reduce pestidy the tradeoff between the cache memory at edge nodes
traffic is to bring content closer to end users via distriduteand the transmission latency measured in normalized dglive
storage through out the network, which is referred to cdntetime. The rate-memory tradeoff of multi-layer coded caghin
placement or cachind [[2]. Caching usually consists of tweetworks is studied i [13][14].
phases: placement and delivery. The former is executedgluri The above-mentioned papers consider symmetric networks
off-peak periods when the network resources are redundamith identical user demands and cache capabilities, which
In this phase, popular content is duplicated and stored rimght be in contrast to realistic scenarios, e.g., HetNiets,
the distributed caches in the network. The delivery phasghich the number of user requests can be arbitrary. It istwort
usually occurs during peak-traffic hours when the actuaisiseto highlight that the base stations (BSs) in HetNets (marco-
requests are revealed. If the requested content is awilatvicro-, pico-) have various capabilities to serve the usétls
in the user’s local storage, it can be served locally withounon-uniform distribution. For example, a BS serving an effic
being sent via the network. In this manner, caching allowsuilding tends to have heavier traffic load than the one in a
significant throughput reduction during peak-traffic tinsesl residential area. From the system perspective, it is demgnd
thus reducing network congestian [3]. to plan more network resources (backhaul capacity, storage
Most research works investigate the caching problem waemory) to an area with higher statistic user demands. In
exploiting historic user requested data to optimize eithénis paper, we investigate cache-assisted HetNets inipahct
placement or delivery phases [2]] [4]] [5]. For a fixed contescenarios, in which each BS can serve an arbitrary number of

I. INTRODUCTION
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ence is negligible. At every time instance, each user ragues
a file from a library with the size of’ files. Each file has
equal length ofB bits. Denote byK the number of BSs and
by nr € NT the number of users served by BS Denote
Nk = {n1,...,nk} as the users profile. The total number of
usersis equal t&V = Zszl ng. Without loss of generality, we
assume that,; < n; for i < j. In order to leverage the shared
link's load, each BS is equipped with a storage memory. Let
M;, be the storage size of B& For convenience, the storage
memory is normalized by the file lengfB. The total storage
memory in all BSs isMy, = Zszl M.

Our objective is to minimize the aggregated request rate on
the shared backhaul link by optimally allocating the sterag
memory to the BSs. Let; denote the request rate on the
shared backhaul from B%. The optimization problem is
formally stated as follows:

K
Fig. 1: Cache-assisted wireless networks with heterogeneo 3}nimbzi Zrk (1)
user requests and cache capabilities. R
K
st. Y M= Ms, (1a)
user requests. Our goal is to optimally allocate the storage k=1
memory across the BSs and design a caching strategy to 0 < My, < min{Msy, F'}, Vk, (1b)

minimize the shared backhaul’s traffic. Our contributions a

where condition[(Tla) satisfies the total memory constraidt a
as follows:

(I0) assures efficient use of the cache.

« Firstly, we derive the required backhaul rate that each BSProposition 1: Consider thek-th BS equipped with a cache
needs to serve its users for a given storage memory. q gjze 17, servingn,, users. The BS uses the uncoded caching

« Secondly, based on the derived rate, the storage allocatifyteqy to cache the files. The backhaul rate that B&uires

is optimized to minimize the aggregated throughput o serve its users, a& is large, is calculated as follows:
the shared backhaul link under an uncoded caching M
k

approach. The optimal solution shows that it is more e = np(l — ==). 2)
beneficial to allocate larger cache memory for BSs which F
are serving more users. Our method is fundamentally Proof: See AppendiXA. ]

different from [15] because of following reasons. First, By using Propositiofn]1, the aggregated backhaul load from
we investigate rate-memory tradeoff performance, whilgl| BSs is equal to

[15] considers failure probability. Second, we consider X K

general wireless network architectures. On the other hand, N 1 M 3

[15] focuses on multiple-input single-output system. Zrk F ;nk b )

« Thirdly, we propose a novel coded caching strategy and . . . .
the corresponding storage allocation to further reduce ghgen the problemi{1) is equivalent to the following problem:

k=1

shared backhaul’s traffic load. Numerical results demon- K
strate a significant gain of the proposed caching strategy. {n}\i{niml%{ze} N — Z N, My, 4)
The rest of this paper is organised as follows. Sedfibn II e k=1
presents the proposed storage allocation with uncodednzach s.t. (Id) and (D).

policy. SectiorLll presents the proposed coded caching: S¢jinimizing the objective in[[4) is equivalent to maximizing
tion[IV] shows numerical results. Finally, Sectioh V conadsd Zszl niM,. Since Zszl niMy is an increasing function
the paper. with respect to{ M } X |, it is straightforward to show that it
achieves the maximum value at the corner point. By exprgssin
My, = tF+M' with M’ < F andt € N, problem[1) achieves
We consider a cache-assisted HetNet in which a data cenff@ maximum value at

Il. STORAGE ALLOCATION WITH UNCODED CACHING

serves users via distributed BSs, as depicted in Figure &. Th .
) . 0, fh<K-—t—1
BSs connect to the data centre via a error-free, bandwidth- , o
limited shared link. Each BS ber of : My={ M, ifk=K-t . (5)
imited shared link. Eac serves a number of users via r K —tt1<k<K

)

wireless channels simultaneously. It is assumed that edac
cells operate in orthogonal frequencies, thus inter-oédirfer- Substituting[(b) into[(]3) we obtain the minimum backhaul’s



load given as A) Placement phase: Following My in @), all BSsk >

Kt K —t+ 2 has a storage size df and therefore can store
ROPt _ Z ng — N th _tF (6) all the files in their cache. The placement phase for BS
Brna P F with 1 < k < K —t + 1 is executed as following. Each file

is divided into N; 2 25"y, subfiles of equal size as:
r={Wrri}withl <k<K-t+1,1<i<mnyg Then
ach BSk storesn; F' subfiles in its cache’;, as following:

The optimal storage allocatiohl(5) suggests to fill as lar
storage memory as the library size for the BSs with more
user requests. This provides important guidelines for agkw
resources planning and optimizing in HetNets. Ze = Wi kis Wakiy. .., Wrri | Vi€ {1,...,n5}}.

Without storage allocation, every BS is allocated with

memory of equal size%. By using Propositior]1, the The total volume of the subfiles cached in BIs equal to

! . . . Fny x ~ = M), which satisfies the memory constraint.
backhaul load in this case is calculated as follows:
B) DeIrvery phase: Each user requests a file by sending a
R K 1 My 7 request to the data centre. We note that all user requestS in B
rnd = kz: " KF 7 k > K —t+2 can be served directly from their cache without
=1

any cost for the shared backhaul. Therefore, it is suffidient
The rate different betweef(7) arld (1) is computed as  consider the B with 1 < k < K — ¢ + 1.

Let dy; € {1,2,...,F} denote a request index from user
Ryna — R, = an <1 - —> j to BS k. Define vectorsVy; £ {Wa,, pq | k <p < K —
t+11<q<np}andUkJ_{Wd kj|l~c<p§K—
My —tF 2 t+1,1 < q < n,}, both consist ole i ng subfiles.
+ NK—t—Ff%  ~ Z Nk Note that the cachg), already hasy, subfiles{Wy, , ri}i%;
k=1

of the requested filéV;, ;. Therefore, BSk needs to request
Ms; K nk(N: — ny) other subfiles from the data centre.
<1 - ﬁ) Z (nk —nk—t).  (8) In order to serve the requedt;, the data centre broadcasts
k=K—t+1 Uy; @ Vy; to the BSs, wheres indicates element-wise XOR
It is observed that the right hand side 0f (8) is alwayd) operation. This process is repeated uiti= K — t. Since
becauseis.;>k—++1 > nix—¢ This confirms the effectivenessthere aren;C user requests in B&, the data centre needs to

of the proposed storage allocation. The equality(in (8) i;lold;endzk 1 Mk Zlikt:ll n; combinations of subfiles over the
whenn; =ng=---=ng or K =1. shared backhaul. Taking into account the fact that eachlsubfi
is of Iength%, the aggregated backhaul throughput is given
I11. PROPOSEDCODED-CACHING STRATEGY as
K—t+1
. . . Zk 1 Mk Z] k+1 T
In this section, we propose a coded-caching strategy to Reoded = jrgu
further reduce the aggregated traffic on the shared backhaul k=1 Tk
It is assumed thadlls, = tF bitd] with ¢ € {0,1,2,...,K} . Now we will show that all users can receive the requested

This assumption is in line with practical scenarlos becahee file from the above delivery strategy. After the fn@k o N
storage memory usually takes a discrete value as a powettrahsmissions, all BSs receivéd;; = U;; @ Vy;. Note that
2. Let My = {M;}i, denote a storage allocation schem®y; = {Wy,, 11},V2 < k < K,1 < j < ny, is already in

with the cacheZ,, the BS1 can recover filelV,,, by performing
K’l’ifl Cfl<k<K—t+1 Uy @Y.u. Meanwhile, consider userat BS k with £ > 2

M, = k=1 Tk ) . (9) andl < j < ny. Because the cachg, hasWy,, 1; and Yy

; ifK—t+2<k<K contains Wi, , 11 ® Wa,, 1;, the BSk can recoverVy,, 11

It is straightforward to verify that\x in (@) satisfies the by performrnngu ki © Way;11 @ Way, k5. Consequently,

storage constraint at every BS and the total memory constragfter the first"s_, n, transmissions, BS recovers fileiV,,,
Theorem 1: Consider a cache-assisted HetNet withBSs and all BSsk > 2 recover the first subfile for all their

and the user profild/x = {ny,...,nx}, €.g., BSk is serving desired files. This process is repeated until the transomgss

ni users. The aggregated backhaul load untiex is given Uk —1)nx_, ® V(x-1)n,_, after which all BSs recover their

as requested files. The detailed placement and delivery phases
K—t+1 are given in Tabl€l| for BS& with 1 < k¥ < K — ¢+ 1. Note
Reoqea(Mp) = =221 ; %71 k1 (10) that BSsk > K —t+1 has a storage memory df, thus can
b1 Mk serve its users locally without causing any backhaul traflic

The example below will provide details on how the pro-
osed caching strategy works.
Example 1. Consider F = 4,K = 3, user profile

1This is the total storage memory in the network. The locaheaat each N3 = {131_72}1 and storage allocaqom/t?» = {1,1,2}.
BS is usually less thai. For simplicity, let us denote the files ad, B, C, and

Proof: We first consider placement and delivery phases
as follows: P



TABLE |: CODED-CACHING ASSISTED
15

:
\$8 B Benchmark

Inputs: K, F, Ms = (F = = = Frooses Unendedcenng
Placement phase g S
for f=1t0 F gmi AN
Divide Wf:{Wf_’kj}, VlSkSK,ISjSTLk 3 \\\
end g N
for k=1to K —t+1 g AN
Z={Wih, VIS F<F1<j<m §5
end g AN
Delivery phase 8 AN
for k=110 K —t \‘\\ ,
for j=1tong \‘~~;”;_
Vi = {dej7pq}, V2<p<K,1<qg<ny, % 10 20 30 _ 40 50
Uklj _ {deq7k_j}, V 2 S p S K, 1 S q S np’ Average cache memory (files)
broadcasiUy; & Vi; to the BSs, Fig. 2: Shared backhaul traffic as a function of average cache
end size My, /K. The networks settingkl’ = 5 BSs, F' = 50 files,
end and Ny = {1,2,3,4,5}.

D. Each file is divided into four subfiles as follows: 15 ‘ ‘ ‘
A = {A11, A2, A31, A3}, B = {Bi1, Bo1, B31, B },C = e incoded sashing
{011,021,031,032}, D = {Dll,D21,D31,D32}. The sub- Proposed, Coded caching
files are stored at three caches as:

Zy = {A11,B11,C11, D1 }

Zy = {A21,Ba1,Ca1, Doy }

Z3 = {Asz1, B31,C31, D31, Asa, B3z, C32, D32}

10

Aggregated normalized backhaul load

In the delivery phase, the users send a req{ésB, C, D} to 5t \

the data centre. First, the data centre constructs ve®tors= T~

{Agl,Agl,A32},U11 = {BH,CH,DH}. Then, it broadcasts §‘"‘~_~

U1 & Vi1 = {A21 @ Bi1,A431 ® C11,A32 ® Dll} to the T ‘~~§;”; ’
BSs. Since the cach#&; containsB;,C11 and Dy1, BS 1 % 1 % 0 %0 p
can subtractdsy, Aszq, Ao from U1 @ Vi1, The BS2 can Average cache memory (files)

recoverB;; becaused,; is already in the cachg&,. Similarly,
BS 3 can subtractC;; and Dq; since As; and Az, are in
its cache. In the next step, the data centre constiMgis=
{B31, B32}, Uy = {021, Dgl} and then send¥®/5; & Vo =
{Bs3; ® Ca1, B3y ® Doy} to the BSs. Upon receiveds; @

Ca1, B3z ® Do, BS 2 subtracts forBs;, Bz sinceCa1, D21 ackhaul’s loadf—, which is always less than or equal to

are in the cache,. At the same time, BS can recoveCs1 o v baibs rat ! ;n Bl since k& > 1
and Ds; becauseZ; containsBs; and Bss. 2 -

Corollary 1: Under the user profileVx = {ny = k}5_,, IV. NUMERICAL RESULTS AND DISCUSSIONS
My = F, the aggregated shared backhaul's load is given as |, thjs section, we demonstrate the effectiveness of the pro
(K -1)(3K +2) posed caching strategy via numerical results. For refesene

Fig. 3: Shared backhaul traffic as a function of average cache
size My /K. The networks settingkl’ = 5 BSs, F' = 50 files,
andNx = {1,1,1,1,11}.

Reoted(Mi) = 12 : (1) also present the benchmark, which employs uncoded caching
Proof: See AppendiXB m Policy and allocates equal storage mem&%1 to all BSs.
Corollary 2: The backhaul’s load of the proposed cachingh€ Packhaul load of the benchmark scheme is giveflin (7).
strategy for the i.i.d user request = n,Vk is given as or ease of demonstration, we usenchmark and proposed
to indicate the benchmark and proposed caching strategies i
Reoded(Mi) = n(K —t) ) (12) the figure, respectively. Note that the coded cachind ing3] i
K—t+2 not applicable in context of HetNets because it is desigoed f
The result of Corollary12 is obtained directly from Theidentical user requests.
orem[1 by substitutingn, = n,Vk. In the special case Figure[2 shows the aggregated backhaul's load of the pro-

n = 1 and My, = F bits, the proposed scheme achieves th@sed caching schemes and the reference scheme for various



can send directly parts of the file which is already. The sefil
..... enchmark ‘ ‘ ‘ ‘ which are not in the cache will be requested from the data
40f{ = = = Proposed, Uncoded caching o centre via the shared backhaul link. L&, d, ..., dx, ), d; €
Proposed, Coded caching {1,...,F}, be the requested file indexes. Since the users’

requests are independent, the requested files can be dither t
same or different.

For any integer numben,1 < m < F, there arel"™ ways
to choosemn elements out of the set of siZe, which can be
further expressed as

30

20

Aggregated normalized backhaul load

m
10f F = Z a;nClFa
1=1
b= where ¢/ £ 55 and o is a constant. In the above
3 . . : .
Number of base stations equationa"C{" is the number of choices of elements out of

) ] F which containg different elements. By using the inductive
Fig. 4. Backhaul throughput as a function of number of basgathod. we can obtain:

stationsK. The library sizeL. = 100 and the average cache ,
size is equal t8Z. The users profileVy = {ny =k} . an = b ) if 1 =1o0rm
! ma;" " +a, ifl<l<m
) S ] For a choice comprising dfdifferent values, the BS needs to
cache sizes. The data centre with library i6f = 30 files yequesi(1 — A,/ F) subfiles from the data centre. Therefore,

distribute content taV. = 15 users viaK = 5 BSs. It is he average backhaul rate requested byiBiS calculated as
shown that the proposed caching schemes significantly eeduc

i i 1 & M,
the backhaul traffic. In particular, at an average cache alize Zla?kClF (1 B _k)

20 files, the proposed coded caching scheme redtg#sthe - Frw — F
backhaul load compared with the benchmark scheme, while ne o . .
the proposed scheme with the uncoded caching degrades the _ Z lay (1 _ %) H P-4 v (13)

backhaul load by33%. When the average cache size is equal B Fru—l F F

to 0 or F, the three schemes achieve the same backhaul Iq?gs observed that the library size is usually very large and

because the caches are either empty or full. : ; F—l+i ;
Figure[3 present results for a highly asymmetric user profﬁlé€ is small compared with”, thus === ~ 1,¥1 < i <

Nk = {1,1,1,1,11}. In this case, the proposed scheme?"

=1 =1

save95% and67% of backhaul load with coded and uncoded lg™* { 0, if I <ny (14)
caching strategies, respectively. Figlite 4 presents theedh Fre=t = | ny, if l=mny
backhaul load for different number of BSs. It is shown thatrom [13) and[{14) we obtain:
the proposed coded caching schemes achieve more gain as the
number of BSs increases. e Mg (1 - %) . (15)
V. CONCLUSIONS
APPENDIXB

We investigated cache-assisted heterogeneous netwdadtks wi
arbitrary number of user requests. We derived an optimal sto
age allocation under the uncoded caching policy to minimize g.om Theoreni]l we obtain the aggregated backhaul load
the aggregated backhaul load. Furthermore, we propose¢h gnis case computed as
novel coded caching scheme and the corresponding storage K1 K .
allocation to further reduce the shared backhaul traffic: Nu R — k=1 kY jmpi1d
merical results demonstrated the effectiveness of ourqaeg o ZkK_l Lk '
caching strategies. B

PrROOF OFCOROLLARY [I

(16)

The numerator df 16 is further expressed as follows:
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APPENDIXA
PROOF OFPROPOSITIONT] -

By using the uncoded caching method, BStoresM},/F' )
of every file in its cache. When a user requests a file, the BS = g K = 1K +2). 17)

— Nl



Note thaty | k = K (K +1)/2. Substituting[[ZI7) into[{16), [s]
we obtain [(1I).
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