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Abstract. One key for successful and fluent human-robot-collaboration in disassembly 

processes is equipping the robot system with higher autonomy and intelligence. In this paper, 

we present an informed software agent that controls the robot behavior to form an intelligent 

robot assistant for disassembly purposes. While the disassembly process first depends on the 

product structure, we inform the agent using a generic approach through product models. The 

product model is then transformed to a directed graph and used to build, share and define a 

coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a 

connection and the distribution of the work” as a search problem. The created detailed plan 

consists of a sequence of actions that are used to call, parametrize and execute robot programs 

for the fulfillment of the assistance. The aim of this research is to equip robot systems with 

knowledge and skills to allow them to be autonomous in the performance of their assistance to 

finally improve the ergonomics of disassembly workstations. 

1. Introduction 

Disassembling is involved in many processes, for example remanufacturing, corrective maintenance, 

proper disposal and manufacturing. However, fully automated disassembly lines are, compared to 

product assembly lines, rare. One reason is that disassembling at the end of a product lifetime is much 

harder to automatize than assembling. In disassembly we have to cope with fouling, wear, damaged or 

only absent parts. Furthermore, we have to deal with product manipulations, such as individual 

extensions or improvised fixes, which are not obviously visible. It is the unpredictable condition of a 

product that prohibits further automation. Even if better sensor technology could identify inappropriate 

product conditions, it would be impossible, or highly expensive, to treat all possibilities in a fully 

automated manner. Other challenges are the small lot sizes or individualized products (lot size 1). 

Today’s fully automated processes are not flexible enough for the treatment of different products or 

variants. In corrective maintenance, it is a normal case to have an unsteady, unpredictable flow of 

different products.  Dismantling processes in corrective maintenance may also have different target 

stages, depending on what part has to be replaced. Furthermore, there is, especially in central waste 

recycling plants, a lack of information about the product structure. For example, types of materials in 

the product. These are reasons why disassembly workplaces stayed unautomated, thus resulting in a 

bad situation for the workforce, who remain exposed to health problems due to heavy workload. In 
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addition, the economic fitness of disassembly processes is highly reduced by the substantial amount of 

manual labor in the destructive disassembly process. Consequently, important concepts for 

environmental protection, such as remanufacturing, cannot spread wider into industry. 

A solution for this problem would be intelligent robot-based assistants, which would be a compromise 

between automation and manual labor with great advantages in the disassembly domain. One 

advantage is that only humans have the cognitive abilities to identify and handle the aforementioned 

unexpected situations. Thus, humans are able to ensure the overall success of the process by 

contributing their awareness to adapting the process to a situation [1]. The robot instead can provide 

assistance with power and endurance over the complete disassembly process and thereby improve the 

ergonomics of the workplace. Therefore, multi-skilled robots may take over automatable tasks, such as 

unscrewing, or support the execution of tasks, e.g., handling of heavy parts. Especially over the 10 last 

years, with the development of lightweight and force-sensitive robots, new robot skills have extended 

the robots’ fields of application. Those new skills provide realizable “assistance opportunities” in 

disassembly procedures, and some of them could be integrated into one robotic system. However, 

once integrated, the problem arises of controlling the multi-skilled robot and its behavior to assist the 

user in a situation- and goal-oriented manner. Even providing the system with needed precise positions 

information is big issue [2]. Manually programming the whole process would not be meaningful [3], 

especially if we consider many different products. Only intelligent systems with higher autonomy 

could support and interact fluently with humans in such a dynamic environment [4, 5]. Therefore, the 

system needs to identify the disassembly process and the work contend by itself. Then, the robot must 

know how to assist the user in a certain task; it also needs necessary information and skills to perform 

this task. To meet these challenges, we take the approach of an informed software agent, the 

architecture of which we present and explain in Section 2. In Section 3, we explain the kind of 

information that is provided to the agent and in section 4 we clarify how we decompose the complex 

disassembly problem into individual subproblems. Coarse disassembly planning is used to identify the 

task sequence that strips down the assembly. In Section 5, we present our approach to assigning the 

work content of each task to the participants through a planning search in the possible situation space. 

Explained in Section 6 is how we execute the determined detailed plan by invoking and parametrizing 

robot programs to finally control the robot assistance behavior. 

2. The Agent-Based Robot Control Architecture 

Today’s industrial robot controllers are not suitable for human -robot interaction in complex 

environments such as disassembly workstations [1]. In such environments, the objective and the 

boundary condition change from task to task and require some planning, higher skills, and knowledge 

to succeed efficiently. Our approach to empower industrial robots to this application field is to overlay 

the robot controller with an intelligent agent-based control system, which does high-level planning, 

defines and controls the robot behavior, e.g., the type of assistance, and guarantees the necessary 

information to the underlying robot controller. The developed software agent, which we present in this 

section, consists of different software modules (see figure 1). In the agent’s “Knowledge Base” 

module, we store a symbolic representation of the product structure, which we call the product model. 

The model contains information about the parts and how the parts are connected with each other in the 

assembly. Therefore, we model different classes of parts and connections. We also model the actions 

that the actors (the user and the robot) provide to the overall system, to act in the environment or on 

the product structure. We explain all the stored information in further detail at the time of its use, 

following the systems information flow and processing. In the “Coarse Planning” module we create, 

depending on the disassembly objective and the product model, a coarse plan that consists of a 

sequence of disassembly steps. Each disassembly step consists of one or more tasks. A task defines an 

independent subproblem, which is the removal of a specified connection and the referenced parts. 

Moreover, we use the coarse planning to assign the means of production, such as tools, robot effectors, 

and carriage cases, to a task. This is done through the “Stock Manager” module. Depending on the 

connection type, different assistance behaviors of the robot are available and selectable in a task by the 



 

 

 

 

 

 

user. Furthermore, the user can rearrange the task order and manipulate parts’ condition states, for 

example, to mark a damaged part, over the human-machine-interface (HMI) module to adapt the 

process to the circumstances and his/her will. The coarse plan is then processed task by task by the 

“Detail Planning” module, in which we first create a discrete state space representation of the current 

and the target situations. A search through the possible state space, which considers the actions 

provided by the user and the robot, leads to a set of possible action sequences from which the fittest 

sequence is selected for execution. The selected action sequence is then performed, monitored and 

synchronized by the “Control” module through advising the user over the “HMI” module or invoking 

and parameterizing programs on the underlying robot controller. 

 

 

 

 

Figure 1. The agent’s 

architecture and the information 

flow between the different 

software modules. 

 

 

 

Currently under construction is the “Perception” module. In the first place, it is foreseen to track the 

human hands to synchronize the process without action-executed confirmation-button pressing.  We 

use the “Perception” module also to recognize and interpret gestures and voice commands to alter the 

robot behavior in the execution phase. The “Learn” module is considered in the agent architecture to 

adapt the assistance behavior to an individual user. A possible purpose of machine learning is to 

predict the user’s desire for an assistance behavior by comparing the current situation with similar 

situations from recorded older interactions. Also, the agent could improve the coarse planning, 

particularly the ordering of parallel executable tasks, by learning from manually adapted plans. 

Furthermore, recording and analyzing such disassembly processes could produce valuable data and 

lead to deeper insights into the disassembly process. Next, we explain the system in more detail, 

starting in the knowledge base and considering the product model. 

3. The Product Model 

A technical product is an assembly of parts that are linked together through connections. The step-by-

step removal of these connections is the process of disassembling. The sequence of removing the 

connections is not arbitrary but partially defined through the product structure. Finding this 

disassembly sequence is known as disassembly planning, which is the topic of Section 4. So to 

generate the disassembly sequence later, we first have to present the structure in an appropriate and 

machine readable manner. Disassembly planning is an ongoing research field which also gains 

interest, through the assembly-by-disassembly approach, from the well-studied area of assembly 

planning. The majority of reviewed publications in this area use undirected and directed graphs as well 

as hypergraphs to represent the product structure [6–10]. Other approaches are based on petri nets 

[11], description logic and object-oriented models [12], and more recent approaches are based on 

ontologies [13–16]. Most works focus on sequence generation and thus lack in providing metadata for 

the human-robot interaction. For our usage, we have decided to develop an easy-to-use, light but 

comprehensive model to represent the product structure. After careful consideration, we have chosen 

the object-orientated approach based on its advantages of information encapsulation, easy 



 

 

 

 

 

 

implementation, and extension. In addition, we can create other structures from the object-orientated 

model. We now explain the two fundamental classes of which our product model is composed. 

3.1. Part Classes 

In contrast to the most works which are based on [7], we do not tie functional parts to connections; 

instead, we clearly separate parts and connections into our fundamental classes. To distinguish 

between different classes of parts that have different needs of information in the sense of disassembly, 

we use a flat taxonomy-like hierarchy of classes (see figure 2). Each class inherited from the super 

class carries common and more specialized information in its attributes. A common attribute, for 

example, is the position and orientation of a part in reference to the main coordinate system of the 

assembly. More specialized information could be the thread length or the driver style of a screw class 

instance. An overview of the attributes we use in the super class is listed in the table of figure 2. 

Whenever a component indicates some special needs of information in the disassembly process, we 

can create a new class or extend a similar one. Chiefly, this is necessary for fasteners or connection 

techniques, but it could also be used to model fluids or gases. While the removal processes of a joint 

can have parameters that depend on the attributes of a part, we uncouple this information from the 

process. For example, the thread length and the thread pitch of a screw define the number of twists 

until the screw is loose. In this sense, it is a great advantage to use variable process parameters and to 

uncouple part-dependent facts from processes. Furthermore, we implemented state descriptions and 

qualifiers for each part class to represent each class’s possible and current condition. This could be 

used to mark a part that it is damaged or missing. Beyond representing several parts, it is essential to 

model subassemblies. Mostly, it is not advisable to strip down a subassembly in another assembly. 

Typically, it is better to fractionalize subassemblies after their removal from the main assembly. So 

treating a subassembly as a special part class is beneficial in the manner that subassemblies gets 

completely removed from the main assembly and then further dismantled. 

 

 

 

Figure 2. The inheritance 

hierarchy of part classes 

with details of common and 

individual attributes. 

 

Also considered is information for the further treatment of the parts. In a remanufacturing process, we 

could be interested in adding information to the parts about a test and a rework process a part has to 

pass to get back into production. For appropriate recycling, the material is an important attribute. This 

approach to equip the robot with the necessary information looks plausible, but it also means a 

substantial amount of knowledge engineering. Some of this information is already stored in today’s 

CAD systems in a form of standard part libraries and could be used as a source of information for the 

product data model. Some information needs to be consolidated and made available in a clearly 

structured manner that is readable for humans and machines.  

3.2. Connection Classes  

Similarly to the part classes, we build hierarchies with connection classes (see figure 3). Some 

common attributes are also illustrated in the table of figure 3. A connection defines what kind of 

liaison is between two or among more parts and could be of any type. From a face-to-face contact, a 

weld joint or a magnetic attraction, any kind of liaison can be designed and implemented. The real 

power of the different connection classes is that they describe a formal process. If we can describe a 



 

 

 

 

 

 

certain state and objects in such a process, then we have a situation. Knowing the situation gives the 

assistant the ability to link commands dynamically with context information. In Section 5, we describe 

a formal process definition that makes use of a state representation and a set of actions, which could be 

performed by the acting agents (e.g., the user and the robot). We use this formal process description in 

detailed planning (Section 5) to find the best sequence of actions to remove the bound. As we see 

more clearly in Section 4.1, we can represent the product structure in a symbolical (machine-readable) 

manner by describing the parts and connections of an assembly. 

  

 

 

Figure 3. Inheritance hierarchy of the connection class. 

The ordering implied the disassembly priority of each class 

from low to high. Also illustrated are the common 

attributes of the super class. 

 

For the efficient manual design of these connections, we integrated functions into the NX 10 CAD 

system, which also generates the instances of the part classes during the connection creation. In future 

work, the product model will be automatically created by the product configurator. The format used to 

store the part and connection instances for a product model will be based on the XML format and be 

transferred via RFID directly from the assembly or via web services to the software agent. 

4. Coarse Disassembly Planning 

Coarse disassembly planning reduces the amount of process definition done by the user to a significant 

level. While the disassembly task can vary among corrective maintenance, remanufacturing and 

recycling, we have to be able to create substructures of the complete disassembly for the exchange of 

wear and tear parts and target-oriented plans for the removal of valuable components. We also have to 

generate plans for the full dismantling of the product for recycling purposes. To achieve this, the 

disassembly task is communicated to the agent through the product model and the part to be removed. 

In this form, we are able to determine a plan for the removal of valuable or broken parts and, through 

selecting the root component of the assembly, the complete disassembly of a product. In the reviewed 

works [6–16] on assembly or disassembly planning, the main focus was on finding a sequence in 

which the parts could be added or removed to create a complete assembly or disassembly. It was not 

considered, to build substructures of assemblies, or to do further task and process planning. The used 

techniques vary depending on how the product structure was modeled. Most techniques used on 

graphs are mathematical and based on the adjacency matrix [6-9]. The inference is used by ontologies 

and description logic approaches [13–16], and rule-based systems use forward or backward chaining. 

Also found in the reviewed papers are applications of fuzzy logic and genetic algorithms [11]. We 

have decided to use the simple but powerful approach of topological sorting and do further task and 

process planning. We build the coarse plan in five steps. The first step is to create the product graph 

from the product model. In the second step, we create the minimal graph with the selected part as 

“root”. Then we create a sequence of disassembly steps and tasks through topological sorting in the 

third step.  In the fourth step, we assign the means of production to each task. In the last step, the user 

has to define the type of assistance we want in a certain task. Each step is shortly discussed as follows: 

4.1. Creating the Product Graph 

We represented the product structure internally through a directed graph G(V, E), which consists of a 

set of vertices V and edges E. A vertex v represents a part instance, and an edge e(vi, vj) represents a 

link between two parts with the direction from the head vi to the tail-vertex vj. 



 

 

 

 

 

 

A connection instance may have several edges depending on the connection type to better depict the 

interactions between parts. The graph is automatically created by the parts and connections described 

in the product model. For a better understanding of this topic, we will explain the graph creation and 

the part and connection models from the previous topic. For further explanation, kindly compare the 

sectional view of an electrical drive (in figure 4) and its product graph (in figure 5).  

 

Figure 4. A cross-sectional view of an electrical. Figure 5. A product graph of the electrical 

drive with numbered parts. drive of figure 4. The numbers on the edges 

are the IDs of connection instances. 

We now explain three different connection types, two part types, and how we represent them in the 

graph. First, we consider the bolted joint of the four hex-head screws (Number 1.1–1.4 in figure 5) 

that link together the cover plate (2), the sealing (3) and the drive body (15). The four screws are all 

instances of the “screw” part class. The sealing, the cover plate, and the drive body are instances of 

the “component” part class. 

The bolted joint is symbolically described by only one instance from the “screw” connection class 

because the screws are identical, and they link the same parts. In the screw connection instance, we 

define the screws as head- vertices and the other components as tail-vertices.  

This connection is represented in the graph with sixteen edges, from each screw to any of the other 

three connected parts. The next connection we have to specify is the cover plate, which is lying on the 

sealing. We represent it by an instance of the “stacked” connection class. This connection is 

represented by one edge from the cover plate to the sealing. An instance of the “covered” connection 

is used to describe the situation that one part avoids access to another part without any physical 

interaction. This case applies to the cover plate and the cylinder head screw (5). The covered instance 

is also illustrated on the graph by one edge from the cover plate to the screw. 

4.2. Disassembly Planning 

The part to be disassembled defines the start node of a breadth-first algorithm, which adds all parent 

nodes and corresponding edges to a new subgraph. Through topological sorting of the subgraph, we 

then create the disassembly sequence. In each step of the sequence, we identify part nodes that have no 

ingoing edges and could be removed. Through the outgoing edges of each part node, we get related 
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connection instances. Then, a new task is created with the connection and part instances thereby taking 

care that parts that belong to the same connection instance are grouped together in the same task (in 

the current disassembly step). Moreover, if a part is attached to more than one connection, then we sort 

the connections by their disassembly priority in the task. The disassembly priority describes which 

connection of a set of liaisons has to threaten first. For example, if part A lies on part B and between A 

and B is a glue, then it is better to warm up the parts until the glue loses its strength and then remove 

part A. Because multiple parts and connections could be removed independently in a disassembly step, 

we can have multiple parallel executable tasks. If all removable parts are handled in one disassembly 

step, we delete the nodes and edges and create a new step. This process repeats until the subgraph has 

no more nodes. 

4.3. Assigning the Means of Production 

Especially in remanufacturing processes, we have to separate unequal, and usable from unusable, parts 

for their further treatment. To do so, we have to store the parts in different transport boxes and keep 

track of which part is in which box. Assigning the right box to a part, and vice versa, is one duty of the 

local “stock manager” module. The stock manager uses the width, height and length attributes of a part 

to find a suitable box in the local stock. The box is then assigned to the task and part. If the box is not 

available in the local stock, then the stock manager produces an order. While we model all process-

involved objects in our environment, we have a class that represents boxes. A box object has 

attributes, such as its storage dimensions or their position and orientation in reference to the robot 

work frame, and qualifiers to represent their current state, e.g., if there is a box available, or it is 

ordered. Furthermore, the local stock manager determines the needed human and robot tools by 

accessing the attributes of a part with respect to the connection type. For example, a screw instance 

has three different tools: the tool for human use, such as a screwdriver, a robot tool for manipulating 

the part, usually a gripper, and a robot screw tool to loosen the joint. Like the box object, each tool is 

represented by an instance of a tool or robot tool class and has attributes, such as their positions, and 

state qualifiers. Furthermore, we assign the actors, e.g., the user and the robot, to the tasks to have all 

process relevant entities together. 

4.4. Plan Manipulation and Assistance Definition 

The sequence generated through the agent is a partially ordered plan. So there are different possible 

processes and the created one does not have to match a user’s expectation. Furthermore, there could be 

other reasons that the user wants to rearrange or manipulate the found order. To rearrange the process, 

the user can move tasks back and forth in the disassembly sequence and manipulate the process in 

other methods by modifying the state qualifiers of the parts and objects to adapt the process to the 

current product state. More input is needed regarding the fact that the user has to define how he 

expects to be supported. Therefore, the user has to choose for each connection one type of assistance 

from a set of recommended assistance behaviors. At the moment, this is done by right clicking on the 

link with the computer mouse, which is a very unnatural method to communicate and flow-break. 

Using multimodal communication, through gestures and voice commands, to define or change the 

form of assistance would be a great advantage and is currently under investigation. To reduce the 

amount of assignment in this kind, future work will have to investigate if machine learning or case-

based reasoning is able to predict a user’s wish for assistance with tolerable accuracy.  

To summarize the steps to this point, we have used a decomposition strategy [17] to split the complex 

disassembly problem into smaller, independent subproblems. The subproblem we consider is the 

removal of a certain type of connection, which is a process that we can generally describe formally 

and solve efficiently because of its smaller size. Furthermore, we can think of the coarse planning in a 

manner that it determines work that has to be done, without assigning it to the user or robot. The 

detailed planning in the next step solves the subproblem and assigns the work to the actors. 

 



 

 

 

 

 

 

5. The Detailed Disassembly Planning 

In the ideal case, the manual removal of a connection takes place through a fixed sequence of actions. 

In disassembly workstations, we regularly find cases in which the sequence has to be adapted, 

probably with other actions, to produce the wanted output. Collaborative work also means that actions 

might be executed by one or another agent, in a dynamic manner that produces many variants of the 

process. The actors can also provide assistance to each other, for example, the user can change a robot 

effector so that there are even more possibilities. With this combinatory problem in mind, we have 

decided that the process should not be explicitly defined through the use of fixed finite state machines 

or petri nets. Instead, we use a search approach to find a suitable sequence of actions to solve our 

subproblem. To represent our issue as a search problem, we have first to decide on a vocabulary of 

conditions, objects, and actions. Then, we have to encode actions from our domain and define a 

problem instance by defining the initial and the target conditions. We now explain how we generate 

the initial state and target state, represent the actions and what algorithms we used to search for a 

solution by using an easy example task. We consider the loosening of a “stacked” connection, in 

which part A is simply lying on part B. 

5.1. The Task State Description 

The state we want to represent depends on the connection type and the involved objects, such as 

part(s), tool(s), boxes and the acting agents. Since we have already collected all these objects in a task 

description, we can create the initial state by merging all objects’ state descriptions. Some objects’ 

state values are predefined, for example, the PartState, PartPos, and ConnectionState (see Table 1), 

but could be manipulated by the user. The value of the BoxState and BoxPos are defined by the stock 

manager, depending on whether, if the box is ordered, it is full or ready to use. The robot states are 

defined by sending queries to the robot controller. The users HandPos state will be tracked, and the 

HandState value is estimated by the perception module. These state values represent literals, which 

formally represent the condition of the task at the beginning, the end, and in between through a state 

vector. In a state, we also save the parent’s ID, the costs and the action type that created the state. For 

the initial state, these attributes are zero. The end condition of the task state is partially defined, 

through the default values of the ConnectionState and PartPos (see Table I). It is the users’ choice to 

add other state dimensions and values to the end condition to define it more precisely. 

Table 1. Observed objects in the task. Each object can have several dimensions and state values. The 

underlined values indicate predefined states of the initial task state. The literals in cursive are default 

values for the target state of the task. 

Object type  State dimension State values 

Stacked Connection  Connection-State isStacked, isDetached, isRemoved 

Human 
HandState isEmpty, isNotEmpty 

HandPos atUnknownPos, atPartPos, atBoxMagazinPos, atRobotGuidePos 

Robot 
RobotState isUnknown, isIdle, isRunning, isGuided 

RobotPos atUnknownPos, atHomePos, atPartPos, atBoxMagazinPos, atRobotToolMagazinPos,  

RobotTool  
RobotToolState isUnknown, isOpen, isClosed 

RobotToolPos atUnknownPos, atRobotFlange, atRobotToolMagazinPos 

Part              
PartState isOK, isNOK, 

PartPos atUnkownPos, atPartPos, atGripper, atHand, atBox  

Box  
BoxState isAvailable, isOrdered, isFull 

BoxPos atUnknownPos, atBoxMagazinPos 

5.2. Describing actions 

Methods to describe or analyze manual and robot-automated tasks are well known, for example, 

Method-Time-Measurement (MTM) and Robot-Time-And-Motion (RTM). For the new type of 

collaborative work, there is quite a lack of methods. An adapted Method-Time-Measurement as 

process logic for cognitive automated assembly was mentioned in [18], which did not mention a 

human-robot interaction. Other studies such as [19] only link the basic Methods-Time-Measurement 



 

 

 

 

 

 

(MTM-1) system to equivalent robot actions without any collaborative actions. We have decided to 

describe actions only with the motion and end-effector elements of RTM, thus treating the human as a 

robot, and added a new element: collaborative actions. The removal of a stacked connection is 

described by the actions listed in Table II. Each action has a precondition and transmission vector, 

which describes when the action is executable and how it affects the state. Each action defines which 

program on the robot controller is called when the action gets executed. The attribute list of an action 

is used to parametrize the robot program with the needed parameters. For example, the actions 

GotoPartPos and GotoBoxMagazinPos in Table 2 have the position of the part and box in the actions 

parameter list. Both actions call the same robot program, which only moves from its current position 

to the “send” part or box position. Furthermore, actions have a cost value that is dynamically assigned 

with respect to the user’s choice of assistance. If an action is part of the assistance the user wants, it 

gets a lower cost assigned. In this example, we have mentioned three different robot behaviors. The 

Manual behavior defines only human actions and, therefore, manual work. Automatic means that the 

robot works autonomously. The Collaborative form describes that the user guides the robot to the 

unknown part position, and the robot can then grasp the part and put it in the transport box. We use 

this approach to provide to the users a set of known and predictable robot behaviors that stay adaptive 

to allow necessary modifications. 

5.3. Searching for solutions 

Although the problem of removing part A, which is lying on part B, does not look very complicated, 

we have to be aware of the combinative size of the problem. In a naive breadth-first search approach, 

with a branching factor of 8 and the minimal process depth of 4, we have 8
4
 (4,096) different paths to 

compute. A method of improving the algorithm is the use of an extended state list that stops us from 

extending paths on nodes we have already extended. Furthermore, we have implemented a policy that 

forbids the algorithm to use two motion elements in a row. This already gives us (for the problem 

mentioned) a good computational state space. To find the best path of actions, we have used a branch 

and bound search with extended list and the policy (see figure 7). If the initial state could be a starting 

point of all assistance behaviors, we would get without dynamic weighting only one form of 

assistance. With dynamic weighting, we get the user selected form of assistance. This approach of 

assigning the work content to the agents might seem overloaded on the problem we mentioned, but it  

 

Table 2. All actions that could take place in the process of removing the stacked connection. The 

different assistance opportunities and the corresponding weighting of the action are indicated by L for 

low and H for high action costs. 

Actor Type Action Manual Automatic Collaborative 

Human 

Motion Element 

GotoPartPos L H H 

GotoBoxMagazinPos L H H 

GotoRobotGuidePos H H L 

End-effector Element 
GrabPart L H H 

ReleasePart L H H 

Collaborative Element GuideRobotToPartPos H H L 

Robot 

Motion Element 

GotoHomePos H H H 

GotoPartPos H L H 

GotoBoxMagazinPos H L L 

End-effector Element 

OpenGripper H H H 

CloseGripper H H H 

GrabPart H L L 

ReleasePart H L L 

Collaborative Element GetGuidedToPartPos H H L 

 

uses a generic approach that we can use for all other disassembly subproblems, such as screwing and 

so on. Also, our technique gives the assistance system a highly adaptable behavior. If the user leaves 

the workplace, his/her actions are not usable, and the only behavior is the Automatic one. If the part 



 

 

 

 

 

 

position is unknown in the Automatic mode, the next found assistance form is the Collaborative 

behavior (see figure 8).  In the case that the search algorithm might not find a suitable sequence of 

actions (solution), it can explain its reasoning process through the symbolic structure of the situation 

state space. Also, a great advantage of the search approach is that when we build these detail plans, 

task after task, we do not have to worry about plan merging, because at each task we create a new plan 

on the actual situation. 

 

Figure 7. A state space created by the search algorithm. From the initial state (blue diamond) and with 

the Automatic assistance behavior, a solution state (red diamond) was found, and the robot actions on 

the green path could be executed. 

 

Figure 8. This state space was created by the search algorithm also with the Automatic assistance 

selected, but through the fact that the part position is unknown, the solution consists of the actions of 

the Collaborative assistance behavior.  

6. Execution of the Detailed Plans 

The “Control” module of the agent is responsible for the execution of the robot programs, for the 

guidance of the user and for the synchronization of both. The robot programs are invoked and started 

through a TCP/IP socket connection from the Robot Controller. Then, the robot program starts and 

connects as a client to our agent to receive the actions parameters list items. At the moment, the 

disassembly is processed task by task and action after action. The synchronization of the user and 

robot actions rely on the user’s pressing of the confirmation button. To improve the synchronization, 

we want to track the human hand movements to estimate if an action was carried out. This lets us keep 

track of the user progress. For example, if we observe that the user moves his hand to the part position 

and then to the box position, we can assume that he has removed the part. This would be a very 

efficient way to synchronize the users’ and robots’ actions. Another important goal is to enable the 

parallel execution of tasks. The reduced robot motion in collaborative workplaces and the step-by-step 



 

 

 

 

 

 

workflow wastes much time, and the user gets bored waiting for his/her turn. So this is a very crucial 

skill for the assistant. Another ambition is to enable the user to give commands through a gesture or 

voice in full operation. This could be used to give simple commands, such as “stop,” “open gripper” or 

“close gripper,” or to change the assistance behavior completely and force detailed replanning. 

7. Conclusion 

In this paper, we have represented an approach of a robot-based disassembly assistant controlled by an 

informed software agent. We have discussed the need for a common workflow for a fluent, safe and 

purposeful assistance in collaborative disassembly. We have further described our approach to inform 

the agent with product models and our developed two-stage process of workflow planning. Therefore, 

we have explained the first planning step, which is based on the product graph, topological sorting, 

and task planning algorithms. We have also illustrated the second task-based planning step, which has 

focused on the refining of the workflow depending on the situation and the user-chosen assistance 

through a branch and bound search algorithm. In Section 6, we have discussed executing the robot 

assistant behavior. Finally, we can summarize that the information and methods we have provided to 

the robot assistance system enable higher autonomy to perform valuable assistance. 
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