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Abstract—This work studies the performance of a cooperative
network which consists of two channel-coded sources, multiple
relays, and one destination. Due to the spectral efficiency con-
straint, we assume that a single time slot is dedicated to relaying.
Conventional network-coded based cooperation (NCC) selects the
best relay which uses network coding to serve the two sources
simultaneously. It is shown that NCC, however, only achieves
diversity of order two regardless of the number of available
relays and the channel code. In this paper, we propose a novel
partial relaying based cooperation (PARC) scheme to improve the
system diversity in the finite signal-to-noise ratio (SNR) regime.
Firstly, closed-form expressions for the system bit error rate
(BER) and diversity order of PARC are derived as a function
of the operating SNR value and the minimum distance of the
channel code. Secondly, we analytically show that the proposed
PARC achieves full diversity order in the finite SNR regime,
given that an appropriate channel code is used. Finally, numerical
results verify our analysis and demonstrate a large SNR gain of
PARC over NCC in the SNR region of interest.

Index terms— Cooperative diversity, relay selection, partial
relaying, channel coding.

I. INTRODUCTION

Cooperation among nodes is an effective technique to
widen the coverage and improve the performance of wireless
networks in both terms of signal-to-noise ratio (SNR) and
diversity gains [1]. Such improvement, however, usually comes
at the price of an additional orthogonal channel, resulting
in a reduced spectral efficiency, which can be significant in
multiple-relay networks. In order to reduce this loss, oppor-
tunistic relay selection (RS) has been proposed to select the
best relay for cooperation [2]. It has been shown that RS
achieves full diversity order for single-source multiple-relay
networks and outperforms other relaying schemes in terms of
SNR gain and effective capacity [3].

Recently, there has been much interest on combining RS
together with network coding to further improve the spectral
efficiency. It is shown via outage probability analysis that
the use of RS in a two-way relay channel (TWRC) could
achieve full diversity order and a significant SNR gain [4]–
[6]. While research on RS in TWRC is readily available in
the literature, research on RS in unidirectional relay networks
is still limited. This problem is first considered in [7], which
analyzes diversity multiplexing tradeoff (DMT) and shows that
full diversity order is achieved. However, [7] relies on an
unrealistic assumption that unintended packets are available
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at all destinations. A generalized DMT analysis is presented
in [8]. Likewise, [8] relies on an optimistic assumption that
the selected channels are mutually independent, which is
infeasible because these channels belong to an ordered SNR
sequence, and thus are highly correlated [5]. By removing
such unrealistic assumption, it is shown in our previous work
that NCC fails to achieve full underlying diversity gain [11]
regardless of how many available relays are. It is worthy noting
that the above-mentioned works study the system diversity via
the upper-bound limit of the BER or outage probability (OP)
in the absence of channel coding, which might be in contrast
to practical scenarios where nodes are usually protected by
some forward error correction codes.

In this paper, we investigate the performance of coopera-
tive networks under practical scenarios, i.e., the transmitted
signals are protected by convolutional codes (CC). Due to the
constraint on spectral efficiency and processing delay, it is
assumed that only one time slot is dedicated to cooperation.
The best RS is employed to effectively exploit the spatial
diversity [2]. At the destination, the cooperative maximal ratio
combining (C-MRC) detector [9] is used prior to channel
decoding to mitigate error propagation. We would highlight
that C-MRC is a suboptimal detector but provides full diversity
gain and close performance to the maximum likelihood (ML)
receiver [10].

The contributions of this paper are as follows:
• Firstly, we propose a partial relaying based cooperation

in Section II to select the two best relays for cooperation,
each helping one source independently. The proposed
PARC is different from NCC, where the best relay is
chosen based on the equivalent network-coded channel.
Compared to [13], [14], our proposed scheme has two
main differences: i) we analyse the system via BER,
whereas these papers study the system OP, which is
fundamentally different from our setting (we can obtain
the actual BER for arbitrary SNR value); and ii) we
investigate RS to improve the spectral efficiency, while
these papers consider single-relay networks.

• Secondly, insightful theoretical analysis is provided for
PARC in the finite-SNR regime in Section III. In partic-
ular, closed-form expressions for the BER and instan-
taneous diversity order1 are derived, which reveal the

1Instantaneous diversity order is measured as the slope of the BER curve
in log-log scale, which allows to study the system behavior at arbitrary SNR
value. This definition coincides with the conventional diversity definition in
the high SNR regime [15]
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dependency of the instantaneous diversity order on the
operating SNR value and the minimum distance of the
channel code.

• Finally, numerical results in Section IV demonstrate the
effectiveness of our proposed scheme. It is shown via both
analytical and simulation results that PARC can achieve
full diversity order in the low and medium SNR regime
when a suitable CC is used. This result is important since
the practical systems usually operate in the finite SNR
regime.

II. PARTIAL RELAYING BASED COOPERATION (PARC)

The system under consideration consists of two sources de-
noted by S1 and S2, Nr relays denoted by Ri with 1 ≤ i ≤ Nr,
and one destination denoted by D. Such a scenario can find
applications in uplinks cellular mobile systems in which two
mobile users send data to the base station and some friendly,
idle users who can act as the relays. All nodes are equipped
with a half-duplex single antenna. We assume orthogonal
block Rayleigh fading channels and perfect time synchroniza-
tion. As a result, one cooperation period is divided into two
phases: broadcast and relaying. In the first phase, two sources
consecutively broadcast data to the relays and destination. In
the second phase, the selected relay forwards signal to the
destination. Demodulate-and-forward relaying protocol [16] is
used to minimize the relay’s computational complexity. Due
to the spectral efficiency constraint and processing time limit,
we assume that a single time slot is dedicated to the relaying
phase.

Conventional NCC selects the best relay based on the equiv-
alent channel of network-coded symbols, which, unfortunately,
only achieves diversity order of two regardless how many
available relays are [11]. In this work, we propose PARC
which selects two best relays for the cooperation, each helping
one source. Since two relays are active in the relaying phase,
each relay only occupies half of relaying time slot, as shown
in Fig. 1b. Consequently, the selected relay can only forward
half of the estimated codeword to the destination. Although
forwarding half of the estimated codeword, we will show that a
good instantaneous diversity gain is achievable when a suitable
channel code is employed.

A. Relay Selection in PARC

The selection process is executed at the beginning of
each block in a distributed manner [2] based on the max-
min criterion that maximizes the worst end-to-end SNR and
reduces computational complexity [4]. It is observed that the
end-to-end performance of relayed symbols is determined by
the weaker between source-relay and relay-destination connec-
tions. We thus model a two-hop source-relay-destination link
by an equivalent single-hop channel, which is highly accurate
for DMF relaying protocol [2]. Let γXY = PXY |hXY |2/σ2

with X ∈ {Si,Rj}, Y ∈ {Rj , D} denote the instantaneous
channel gain of the link X → Y, where hXY is the channel
coefficient between X and Y, PXY is the received power
including the path loss, and σ2 is the noise power. Then
the two-hop Si → Rj → D channel is well modeled by

Fig. 1: Time allocation for the proposed PARC (a) compared
with NCC (b).

γij = min
{
γSiRj

, γRjD

}
, 1 ≤ j ≤ Nr. Since both γSiRj

and
γRjD are exponential random variables with mean γSiRj

and
γRjD, respectively, it is straightforward to show that γij is also

an exponential random variable with mean γij =
γSiRj

γRjD

γSiRj
+γRjD

.
The best relay for source Si, i = 1, 2, denoted by R?

i , is
selected to achieve the largest equivalent channel as follows:

R?
i = arg max

Rj

γij , 1 ≤ j ≤ Nr.

The equivalent channel of the selected relay, γR?
i
, is given by:

γR?
i

= max{γi1, . . . , γiNr}.

By using the Max function [19], the PDF of γR?
i

is given in
a shortened form as follows:

fγR?
i

(γ)=

Nr∑
j=1

(
(−1)j−1

Nr∑
n1=1,...,nj=1
n1 6=···6=nj

1

γR?
i ,j

exp
(
− γ

γR?
i ,j

))
,

where 1
γR?

i
,j

=
nj∑

k=n1

(
1

γSiRk

+ 1
γRkD

)
.

The moment-generating function (MGF) of γR?
i

is given by:

ΨγR?
i
(s) =

Nr∑
j=1

(
(−1)j−1

Nr∑
n1=1,...,nj=1
n1 6=···6=nj

1

1 + γR?
i ,j
s

)
. (1)

We would highlight that the relay selection process in PARC is
performed for each source separately, which is different from
NCC.

B. Demodulate-and-Forward Relaying

Once the RS is completed, the sources begin sending data
to the destination with help of the selected relays. Denote
ci and xi as an information codeword and the corresponding
modulated signal transmitted by source Si. At the end of the
broadcast phase, the received signals at the destination and
selected relays are given as{

ySiR?
i

=
√
PSiR?

i
hSiR?

i
xi + nSiR?

i
, i = 1, 2,

ySiD =
√
PSiDhSiDxi + nSiD, i = 1, 2.

(2)

The selected relay estimates the source coded symbols and
forwards them to the destination. In particular, the selected



relay R?
i , i = 1, 2, uses half of the relaying time slot to forward

half of the codeword ci to the destination. More specifically,
R?
i first estimates L = N/2 (without loss of generality,

assuming N is even) coded symbols to form a punctured
estimation ĉR?

i
= {ĉR?

i ,l
}l∈Θi

, where Θi = {k1, k2, . . . , kL}
is the set of the symbol indexes which are helped by R?

i . The
index set Θi is determined randomly2. The coded symbols at
the relay are estimated by the ML detector as follows:

ĉR?
i ,l

= arg min
ci,kl
∈{0,1}

{|ySiR?
i ,kl
−
√
PSiR?

i
hSiR?

i
xi,kl |2},

∀kl ∈ Θi, where xi,kl being the corresponding modulated
symbol of ci,kl . Next, R?

i modulates ĉR?
i

into the modulated
signal x̂R?

i
and then forwards it along with Θi to the destina-

tion. The cost for conveying Θi is negligible since it can send,
e.g., the seed of the random interleaver, to the destination.

C. Decoding at the Destination

The received signal at the destination from the selected relay
is given as

yR?
iD

=
√
PR?

iD
hR?

iD
x̂R?

i
+ nR?

iD
, i = 1, 2, (3)

where hR?
iD

is the channel coefficient from R?
i → D, and

nR?
iD

is a noise vector whose components are Gaussian
random variable with zero mean and variance σ2.

After receiving two signals from the source and the selected
relay, the destination starts the decoding process with two
consecutive steps: demodulating and decoding. We assume that
the CSI of all channels, i.e., Si → D, Si → R?

i , and R?
i → D

channels, are available at the destination. The CSIs can be
obtained via pilot training. The destination first applies the
C-MRC detector [9] to demodulate the coded bits for source
Si, i = 1, 2, as ĉi,k = arg minci,k∈{0,1}M(xi,k), 1 ≤ k ≤ N,
where M(xi,k) = |ySiD,k −

√
PSiDhSiDxi,k|2 if k /∈ Θi;

otherwise

M(xi,k) =
∣∣∣ySiD,k −

√
PSiDhSiDxi,k

∣∣∣2 (4)

+ λR?
i

∣∣∣yR?
iD,k

−
√
PR?

iD
hR?

iD
x̂R?

i ,k

∣∣∣2 .
In (4), λR?

i
is the parameter of the C-MRC detector which

is computed as λR?
i
,

min(γSiR
?
i
,γR?

i
D)

γR?
i
D

. The C-MRC detector
then computes log-likelihood ratio values of the coded bits
and sends them to the channel decoder. Finally, the channel
decoder applies the BCJR algorithm [18] to decode the trans-
mitted data.

Remark 1: In our protocol, the selected relay always for-
wards the estimated symbols to the destination. Fortunately,
possible decoding errors in ĉR?

i ,l
, hence error propagation, is

effectively mitigated by C-MRC via λR?
i
. For example, if the

source-relay channel is too noisy, i.e., γSiR?
i

is too small, it
is highly probable that R?

i decodes with errors. In this case,
however, λR?

i
is small and the contribution of the relayed

signal is negligible.

2Other selection of Θi, e.g., optimal index set, can be employed, but are
beyond the scope of this paper.

III. PERFORMANCE ANALYSIS FOR PARTIAL RELAYING
BASED COOPERATION

In this section, we analyze the BER and diversity order of
PARC by using the equivalent channel model. Since PARC is
symmetric, the analysis for two sources is similar. For ease
of presentation, we drop the source subscript in this section.
After two phases, the destination receives two signals from the
source S and the selected relay R?. The combined signal at
the C-MRC detector’s output can be classified into two groups:
the first group consists of symbols which are helped by the
selected relay, and the second group includes the rest of the
symbols which are not relayed. In other words, the received
signal at the destination can be seen as an output of a block
fading channel with 2 blocks: one block consisting of the first
N/2 symbols which only see channel γSD, and the other one
contains the other N/2 symbols which see both channel γSD
and γR? .

A. Bit Error Rate Analysis

Let PEP(d) be the unconditioned pair-wise error proba-
bility (UPEP), which is the probability that the destination
correctly decodes a codeword with Hamming weight d (num-
ber of non-zero coded bits in c at the source) when the all-
zero codeword was transmitted. The BER of PARC is upper-
bounded as follows [20]:

BER ≤
N∑
d=f

w(d)PEP(d), (5)

where f is the minimum distance of the channel code and
w(d) are the input weights (number of non-zero information
bits) which are computed directly from the structure of the
code. The PEP(d) is the expectation over the channel fading
coefficients of the conditioned pair-wise error probability
(CPEP), PEP(d), as PEP(d) = E{PEP(d)}. Obviously,
PEP(d) depends on the channel fading coefficients and the
weight pattern Dd = {d1, d2}, d1 + d2 = d, which specifies
how the d non-zero coded bits are distributed within the two
blocks (γSD and γSD + γR? ). Because d non-zero coded bits
uniformly locate in the two blocks, the CPEP can be further
analyzed as follows:

PEP(d) =
∑
Dd

PEP(d|Dd)p(Dd), (6)

where p(Dd) is the probability of pattern Dd, which is
computed by combinatoric computation as

p(Dd) =
CN/2d1

× CN/2d2

CNd
, (7)

where Cnk = n!
(n−k)!×k! .

Substituting (6) into PEP(d) we obtain:

PEP(d) =
∑
Dd

E {PEP(d|Dd)}︸ ︷︷ ︸
PEP(d|Dd)

p(Dd). (8)

Given the pattern Dd = {d1, d2}, there are d1 non-zero coded
bits carried by block γSD and d2 non-zero coded bits carried



by block γSD + γR? . As a result, the CPEP PEPPA(d|Dd) is
calculated, using similar techniques in [21], as follows:

PEP(d|Dd) = Q
(√

2γΣ

)
, (9)

where γΣ = d1γSD + d2(γSD + γR?) = dγSD + d2γR? .
Taking into account the independence between γSD and

γR? , we have ΨγΣ
(s) = ΨγSD

(ds)×ΨγR? (d2s).
Theorem 1: Given the weight pattern Dd = {d1, d2}, d =

d1 + d2, the UPEP PEP (d|Dd) of PARC is calculated as

PEP (d|Dd)=



1
2

(
1−

√
dγSD

1+dγSD

)
, if d2 = 0

Nr∑
j=1

(
(−1)j−1

Nr∑
n1=1,...,nj=1
n1 6=···6=nj

I1

(
dγSD, d2γR?

i ,j

))
, if d2 > 0

where I1 (a, b) , 1
2

(
1− a

a−b

√
a
a+1 −

b
b−a

√
b
b+1

)
and γR?

i ,j

is given in Section II-A.
Proof: See Appendix A.

Substituting PEP (d|Dd) in Theorem 1 into (8) and (5), we
obtain the upper bound for the BER. Note that even though
d in (5) can be as large as the codeword’s length, i.e., N , the
BER usually depends on a few first values in fading channels.
To give insightful understanding of PARC, we analyze the
system diversity order.

B. Diversity Analysis for PEP(d|Dd)

We first analyze the diversity order of the UPEP
PEP(d|Dd) for a given weight pattern Dd, which determines
how the selected relay contributes to the overall system
performance.

Theorem 2: Given the weight pattern Dd = {d1, d2} with
d = d1 + d2, the UPEP PEP (d|Dd) in PARC has an
exponential equivalent given as follows:

PEP (d|Dd) ∝
{
γ−1, if d2 = 0

γ−(Nr+1), if d2 > 0
,

where ∝ denotes the proportional relation.
Proof: See Appendix B.

Theorem 2 states that PEP(d|Dd) can have either diversity
order one or diversity order of Nr+1 depending on the weight
pattern Dd.

C. Diversity Analysis of PARC

This subsection analyzes the diversity order of the proposed
PARC scheme. It is observed from (5) that the diversity order
of PARC is determined by PEP(d) because the input weight
w(d) of the channel code is constant. From (8) we conclude
that PEP(d) is a combination of one factor with diversity
of order one (corresponding to the pattern D1 = (d, 0)) and
one factor with diversity of order Nr + 1. The contribution of
the factor with diversity order one is computed from (7) as
follows:

p(D1) =
CN/2d

CNd
=

d−1∏
k=0

N − 2k

2N − 2k
.

In practices, the codeword length N is usually much larger
than d, then p(D1) can be well-approximated as

p(D1) '
(

1

2

)d
≤
(

1

2

)f
. (10)

From (10), (5), and Theorem 2, we have

BER(γ) = K2−fγ−1 + γ−Nr−1, (11)

where K is the normalized constant that depends on the
channel code and network topology.

The classical definition of diversity order is defined as the
negative exponent of the average BER as a function of SNR in
log-log scale [15], which visually represents the slope of the
BER curve at the high SNR regime. In this paper, since we
are interested in the system behavior in the finite-SNR regime,
we define the diversity order at an arbitrary (average) SNR γ
as the slope of BER curve in the log-log scale [17]:

ζ(γ) , − lim
∆→0

log(BER(γ + ∆))− log(BER(γ))

log(γ + ∆)− log(γ)

= −γ ∂ log(BER(γ))

∂γ

∣∣∣∣
γ=γ

, (12)

which obviously matches the classical definition of diversity
when the SNR tends to infinity. Because the diversity order
depends on the SNR, we refer to ζ(γ) as instantaneous
diversity order. The key idea behind the definition is that it
allows the system behavior to be studied at any SNR value.

Substituting (11) into (12), we obtain the instantaneous
diversity order of PARC as follows:

ζ(γ) = 1 +
Nr

1 +K2−fγNr
. (13)

An important observation from (13) is that the instantaneous
diversity order of PARC depends on the operating SNR and
the channel code, which provides a criterion design to achieve
desirable diversity order in the finite-SNR regime. By choosing
a proper channel code whose minimum distance f , such as

Fig. 2: Validation of the analysis for both PARC. Nr = 2,
code 1: [133 165 171], code 2: [5 7 5].



(a) Nr = 2 (b) Nr = 4

Fig. 3: Performance comparison between PARC and NCC when the CC [133 165 171] with the minimum distance f = 15
and the rate 1/3 is used.

K2−fγNr
∗ � 1, then the PARC achieves full diversity order

of Nr + 1 in the SNR region [0, γ∗]. This result is crucial
because the operating SNR regime is usually finite in practice.

IV. NUMERICAL RESULTS

This section presents simulation results to confirm the
effectiveness of the proposed PARC. All channels are subject
to quasi-static block Rayleigh fading plus AWGN. Since we
focus on the diversity order, and the modulation order does
not change the system diversity order, BPSK modulation and
binary network coding are carried out in simulations. Each data
packet consists of 1024 bits. We consider symmetric network,
i.e., γSiRj

= γSR, γRjD = γRD, γSiD = γSD,∀i, j. The
relays are located in the middle between the sources and the
destination. The pathloss exponent is equal to 3.5. As the
result, the average SNR in source-relay channels and relay-
destination channels are 10.5 dB better than source-destination
channels. Note that our analysis holds for arbitrary locations of
the relays. The channel code is selected in order to optimize
both the minimum distance and distance spectrum in block
Rayleigh fading channels [22]. Three reference schemes are
presented for comparison. Reference 1 uses relay selection
based on the network coding cooperation NCC [11]. Reference
2 is based on fractional repetition coding cooperation [13],
[14]. The reference 3 scheme employs fractional repetition
coding together with network coding. Note that in the refer-
ences 2 and 3, all relays are active and share the relaying phase
without relay selection.

Figure 2 compares the bounds derived in Theorem 1 with
the simulations. The first 6 output weights are used to compute
the bounds. It is shown that the derived bounds are consistent
with simulation results for different channel codes, which
demonstrates the accuracy of our analysis.

Figure 3 compares the performance of PARC with the
references. CC [133 165 171] with code rate 1/3 and minimum
distance f = 15 is used. The total number of relays Nr = 2
and Nr = 4 are plotted. The observed performance region is

until BER ≥ 10−6, which satisfies most practical applications.
It is shown in the figure that the proposed PARC achieves an
instantaneous diversity order of 3 and 5 (full diversity order) in
the observed SNR range for Nr = 2 and Nr = 4, respectively.
Such result can be explained from Theorem 1 that the impact
of diversity-one factor equals p(D1) = (1/2)f ' 3.10−5,
which is negligible. Therefore, full diversity order is achiev-
able for PARC in the observed SNR region, as shown in (13).
A huge SNR gain is therefore achieved by PARC. In particular,
PARC outperforms all other schemes about 5 dB for Nr = 2
and 11 dB for Nr = 4 at BER = 10−4.

V. CONCLUSIONS AND DISCUSSIONS

We proposed a novel cooperative scheme for a two-source
multiple-relay network that combines the best relay selection
and partial relaying cooperation to effectively exploit the
spatial diversity. We showed by both analytical and simulation
results that our proposed scheme can gain full diversity order
in the finite-SNR regime when a suitable channel code is used.

The proposed scheme can easily be extended to general
multi-source multi-relay networks. In this case, the selected
relays might forward a number of symbols which is less
than half of the codeword length. A promising application of
PARC is to design a cooperation scheme to support multiple
sources with different error correction capacities to achieve
a given target BER. This problem can be solved by carefully
designing how many symbols of each source should be relayed
depending on the corresponding channel code’s strength.

APPENDIX A
PROOF OF THEOREM 1

Because the relayed symbols are randomly distributed on
the codeword, the weight d2 on the relayed block can have
any integer value within [0, d]. Denote D1 = {d, 0} as the
weight pattern in which all d weights are not relayed. Then the
weight pattern in general has one of two forms, D1 = {d, 0}



and Dd 6= D1. Using the MGF method, the UPEP can be
computed as follows:

PEP(d|Dd) =
1

π

∫ π/2

0

ΨγΣ

(
1

sin2 θ

)
dθ.

• Case 1: Dd = D1. In this case, all d weights are located
in the source-destination block, resulting in γΣ = dγSD
and ΨγΣ

(s) = ΨγSD
(ds). In this case we have

PEP(d|D1) =
1

π

∫ π/2

0

sin2 θ

sin2 θ + dγSD
dθ

=
1

2

(
1−

√
dγSD

1 + dγSD

)
. (C.1)

• Case 2: Dd 6= D1. There is always d2 weights are
relayed, resulting in ΨγΣ(s) = ΨγSD

(ds)×ΨγR? (d2s).
From (1) we have

PEP (d|Dd) =

Nr∑
j=1

(
(−1)j−1

Nr∑
n1=1,...,nj=1
n1 6=···6=nj

(C.2)

1

π

π/2∫
0

sin4 θ(
sin2 θ + dγSD

) (
sin2 θ + d2γR?,j

)dθ)

=

Nr∑
j=1

(
(−1)j−1

Nr∑
n1=1,...,nj=1
n1 6=···6=nj

I1

(
dγSD, d2γR?

i ,j

))
,

where I1 (a, b) is defined in Theorem 1, and γ̄R?,j is
defined in (1).

APPENDIX B
PROOF OF THEOREM 2

Let γ denote the referenced SNR, and γSD = GSDγ, γR? =
GRγ, where GSD and GR are constants depending on the
network topology. We employ the upper bound of UPEP to
derive diversity order for PEP(d|Dd) as [19]

τ ≥ − lim
γ→∞

(
log ΨγΣ(1/2)

log γ

)
. (D.1)

We consider two cases.
• Case 1: Dd = D1 = {d, 0}. There is no symbol helped

by the relay and thus ΨγΣ
(1/2) = ΨγSD

(d/2). The
diversity order in this case is given as

τ ≥ − lim
γ→∞

log ΨγSD
(d/2)

log γ

≥ − lim
γ→∞

(
(1 + dGSDγ/2)

−1

log γ

)
= 1, (D.2)

which states that the UPEP has diversity order of one
when d2 = 0. We may write PEP (d|D1) ∝ γ−1.

• Case 2: Dd 6= D1, then ΨγΣ (1/2) = ΨγSD
(d/2) ×

ΨγR? (d2/2). Consequently, the diversity order is given
as

τ ≥ − lim
γ→∞

log ΨγSD
(d/2)

log γ
− lim
γ→∞

log ΨγR? (d2/2)

log γ︸ ︷︷ ︸
τSel

= 1 + τSel, (D.3)

where τSel is the diversity order of the best relay signal
(without the direct link). It is shown in [2] that the
best relay selection achieves full diversity order of Nr.
Therefore, we can write PEP (d|Dd 6= D1) ∝ γ−(Nr+1).

Combining the two cases we complete the proof of Theorem 2.
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