Exercise 3: Probability of Default and Corporate Analysis José Manuel Mansilla Fernández

Economics of Financial Intermediation Corso di Laurea in Economics and Finance (CLEF)

10th May 2017

Outline

- 1. Altman's Z-score
- 2. Probability of default
- 3. Risk analysis
- 4. Corporate analysis

- Altman's Z-score appears frequently in practitioners publications, and it is used as an instrument to estimate the distance to default of a firm.
- The Z-score is a linear equation composed of five ratios and legitimately controls may of the risks discussed in the corporate finance literature.
- This exercises are aimed at allowing the student to compute Z-scores for firms.

• For any firm, the Z-score is defined as follows: $Z_i = 1.2X_1 + 1.4X_2 + 3.3X_3 + 0.6X_4 + 1.0X_6$

where

- X_1 : working capital / total assets
- X_2 : retained earnings / total assets
- X_3 : EBITDA / total liabilities
- X_4 : (stock price × outstanding shares) / total liabilities
- *X*₅: sales / total assets

1. Using a modified discriminant function similar to Altman's, Burger Bank estimates the following coefficients for its portfolio of loans:

$$Z = 1.4X_1 + 1.09X_2 + 1.5X_3$$

where

- X_1 = debt to asset ratio
- $X_2 = net income$
- X_3 = dividend payout ratio

- a) What is the Z-score if the debt to asset ratio is 40 percent, net income is 12 percent, and the dividend payout ratio is 60 percent?
- b) Using Z = 1.682 as the cut-off rate, what should be the debt to asset ratio of the firm in order for the bank to approve the loan?

 a) What is the Z-score if the debt to asset ratio is 40 percent, net income is 12 percent, and the dividend payout ratio is 60 percent?

Z = 1.4(0.40) + 1.09(0.12) + 1.50(0.60)

= 0.56 + 0.1308 + 0.90 = 1.59

b) Using Z = 1.682 as the cut-off rate, what should be the debt to asset ratio of the firm in order for the bank to approve the loan?

$$Z = 1.4X_1 + 1.09X_2 + 1.5X_3$$

1.682 = 1.4X_1 + 1.09(0.12) + 1.5(0.60)
1.682 = 1.031 + 1.4X_1
(1.682 - 1.031) ÷ 1.4 = X₁ = 0.465

2. Suppose that the financial ratios of a potential borrowing firm took the following values:

$$X_1 = 0.30$$

 $X_2 = 0$
 $X_3 = -0.30$
 $X_4 = 0.15$
 $X_5 = 2.1$

Altman's discriminant function takes the form:

$$Z = 1.2 X_1 + 1.4 X_2 + 3.3 X_3 + 0.6 X_4 + 1.0 X_5$$

a) Calculate the Z-score.

b) Suppose $X_3 = 0.2$ instead of -0.30. According to Altman's credit scoring model, the firm would fall under which default risk classification?

a) Calculate the Z-score.

Z = 1.2(0.30) + 1.4(0.00) + 3.3(-0.30) + 0.6(0.15) + 1.0(2.1)Z = 0.36 + 0.00 - 0.99 + 0.09 + 2.1 = 1.56

b) Suppose $X_3 = 0.2$ instead of -0.30. According to Altman's credit scoring model, the firm would fall under which default risk classification?

Z = 1.2(0.30) + 1.4(0.00) + 3.3(0.20) + 0.6(0.15) + 1.0(2.1)Z = 0.36 + 0.00 + 0.66 + 0.09 + 2.1 = 3.21

• A low default risk.

Probability of default

3. The following represents two yield curves:

Maturity	Pure Discount	B-rated Corporate Bond Yields
	Treasury Yields	(Pure Discount Bonds)
1 year	3 percent	6 percent
2 year	6 percent	10 percent
20 year	12 percent	17 percent

- a) What is the implied probability of repayment on one-year B-rated debt?
- b) What interest rate is expected on a one-year B-rated corporate bond in one year? (Hint: Use the implied forward rate.)

Probability of default

a) What is the implied probability of repayment on one-year B-rated debt?

- $p(1 + k) = (1 + i) p = (1 + i) \div (1 + k)$
- where p = probability of full repayment
- k = interest rate on corporate debt
- i = interest rate on Treasury
- $p_1 = (1.03) \div (1.06) = 0.9717$
- probability of default: $(1 p_1) = 1 0.9717 = 0.0283$

Probability of default

b) What interest rate is expected on a one-year Brated corporate bond in one year? (Hint: Use the implied forward rate.)

$$(1 + ifR_1) = \frac{(1 + fR_2)^2}{(1 + fR_1)} = \frac{1.10^2}{1.06} = 1.1415$$

\$\approx 14.15\%

4.

Borrower Rating	Loan Amount	Expected Return	Standard Deviation
А	\$40 million	12 percent	1 percent
В	\$20 million	15 percent	2 percent
С	\$30 million	18 percent	3 percent

- a) What is the FI's expected return on its loan portfolio?
- b) What is the risk (standard deviation of returns) on the bank's loan portfolio if loan returns are uncorrelated $(\rho = 0)$?

a) What is the FI's expected return on its loan portfolio?

Rating	Loan	Loan Weight (Xi)	Expected	$LW \times E(R_i)$
	Amount		Return [E(R _i)]	
А	40	$40 \div 90 = 0.4444$	12	5.3333
В	20	$20 \div 90 = 0.2222$	15	3.3333
С	30	$30 \div 90 = 0.3333$	18	6.0000
Totals	90	Portfolio expected return 14.67		

b) What is the risk (standard deviation of returns) on the bank's loan portfolio if loan returns are uncorrelated $(\rho = 0)$?

$$\sigma_p^2 = X_A^2 \sigma_A^2 + X_B^2 \sigma_B^2 + X_C^2 \sigma_C^2$$

$$\sigma_p^2 = (0.4444)^2 (1) + (0.2222)^2 (4) + (0.3333)^2 (9)$$

$$\sigma_p^2 = (0.1975) + (0.1975) + (0.9998) = 1.3948$$

Therefore, standard deviation of portfolio is

$$\sigma_p = \sqrt{1.3948} = 1.181$$

5. What is Bank A and Bank B's standard deviation of its asset allocation proportions relative to the national banks average? Use the formula in the textbook.

	National Banks	Bank A	Bank B
Real Estate Loans	60 percent	30 percent	56 percent
Consumer Loans	20 percent	30 percent	28 percent
Commercial Loans	20 percent	10 percent	16 percent

Standard deviation:

$$\sigma_j = \sqrt{\frac{\sum_{i=1}^{N} (X_{ij} - X_j)^2}{N}}$$

Bank A:

 $\Sigma = (0.30 - 0.60)^2 + (0.30 - 0.20)^2 + (0.10 - 0.20)^2 = 0.09 + 0.01 + 0.01 = 0.11$

$$\Sigma \div N = 0.11 \div 3 = 0.036666$$

$$\sigma_{\rm A} = \sqrt{0.036666} = 0.1915$$

Bank B:

$$\begin{split} \Sigma &= (0.56 - 0.60)^2 + (0.28 - 0.20)^2 + (0.16 - 0.20)^2 = 0.0016 + 0.0064 \\ &+ 0.0016 = 0.0096 \\ \Sigma \div N &= 0.0096 \div 3 = 0.0032 \\ \sigma_B &= \sqrt{0.0032} = 0.0566 \end{split}$$

6. From the Treasury strip yield curve, the current required yields on one- and two-year Treasuries are $i_1 = 4.65$ percent and $i_2 = 5.50$ percent, respectively. Further, the current yield curve indicates that appropriate one-year discount bonds are yielding $k_1 = 8.5$ percent, and two-year bonds are yielding $k_2 = 10.25$ percent.

- a) Calculate the one-year forward rate on the Treasuries and the corporate bond.
- b) Using the current and forward one-year rates, calculate the marginal probability of repayment on the corporate bond in years 1 and 2, respectively.

a) Calculate the one-year forward rate on the Treasuries and the corporate bond.

The one-year forward rate, f_1 , on the Treasury is: $f_1 = (1.0550)^2 / 1.0465 = 1.06357 - 1$, or $f_1 = 6.357\%$

The one-year forward rate, c_1 , on the corporate bond is: $c_1 = (1.1025)^2 / 1.0850 = 1.12028 - 1$, or $c_1 = 12.028\%$

b) Using the current and forward one-year rates, calculate the marginal probability of repayment on the corporate bond in years 1 and 2, respectively.

The probability of repayment in year 1 is:

 $p_1 = (1.0465) / 1.085 = 0.9645$, or probability of default = 1 - 0.9645 = 5.35%

The marginal probability of repayment in year 2 is: $p_2 = (1.06357) / 1.12028 = 0.9494$, or probability of default = 1 - 0.9494 = 5.06%

Financial Intermediation

Corporate analysis

7. Consider the following company balance sheet and income statement.

Assets		Liabilities and Equity	
Cash	\$4,000	Accounts payable	
		\$30,000	
Accounts receivable	52,000	Notes payable	12,000
Inventory	<u>40,000</u>	Total current liabilities	
	42,000		
Total current assets	96,000	Long-term debt	
		36,000	
Fixed assets	<u>44,000</u>	Equity	
		<u>62,000</u>	
Total assets	\$140,000	Total liabilities and equity	
			\$140,00
		0	

	Income Statement
Sales (all on credit)	\$200,000
Cost of goods sold	130,000
Gross margin	70,000
Selling and administrative ex	penses 20,000
Depreciation	8,000
EBIT	42,000
Interest expense	4,800
Earning before tax	37,200
Taxes	<u>11,160</u>
Net income Financial Intermediation	\$26,040 José Manuel Mansilla Fernández

Corporate analysis

For this company, calculate the following:

- a. Current ratio.
- b. Number of days' sales in receivables.
- c. Sales to total assets.
- d. Number of days in inventory.
- e. Debt to assets ratio.
- f. Cash flow to debt ratio.
- g. Return on assets.
- h. Return on equity.

Corporate analysis

a. Current ratio: 96,000/42,000 = 2.2857

b. Number of days' sales in receivables: $52,000 \times 365/200,000 = 94.90$ days

c. Sales to total assets: 200,000/140,000 = 1.4286

d. Number of days in inventory.

40,000 x 365/130,000 = 112.31 days

e. Debt to assets ratio.

(42,000 + 36,000)/140,000 = .5571 = 55.71%

f. Cash flow to debt ratio.

(42,000 + 8,000)/(42,000 + 36,000) = .6410 = 64.10%

g. Return on assets.

26,040/140,000 = 0.1860 = 18.60%

h. Return on equity.

26,040/62,000 = 0.4200 = 42.00%

José Manuel Mansilla Fernández, PhD josemanuel.mansilla@unibo.it