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Abstract 

The use of digestate in agriculture is an efficient way to recycle materials and to 

decrease the use of mineral fertilizers. The agronomic characteristics of the digestates 

can promote plant growth and soil properties after digestate fertilization but also 

harmful effects can arise due to digestate quality, e.g. pH, organic matter and heavy 

metal content. The objective of this study was to evaluate the differences and 

similarities in agronomic characteristics and the value of five urban waste digestates 

from different biogas plants treating either food waste, organic fraction of organic solid 

waste or a mixture of waste-activated sludge and vegetable waste. The digestate 

agronomic characteristics were studied with chemical analyses and the availability of 

nutrients was also assessed with growth experiments and soil mineralization tests. All 

studied urban digestates produced 5–30% higher ryegrass yields compared to a control 

mineral fertilizer with a similar inorganic nitrogen concentration, while the feedstock 

source affected the agronomic value. Food waste and organic fraction of municipal solid 
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waste digestates were characterized by high agronomic value due to the availability of 

nutrients and low heavy metal load. Waste-activated sludge as part of the feedstock 

mixture, however, increased the heavy metal content and reduced nitrogen availability 

to the plant, thus reducing the fertilizer value of the digestate. 
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1. Introduction 

Anaerobic digestion is a widely used technique for the treatment of various 

organic waste materials to produce energy in the form of biogas and nutrient-rich 

residue, digestate. In Europe the total digestate production in 2010 was 56 Mtonnes per 

year of which 80–97% was used in agriculture (Saveyn & Eder, 2014). The use of 

digestate in agriculture has been acknowledged as an efficient way to mitigate 

greenhouse gas emissions through material recycling, avoidance of mineral fertilizers 

and improvement of soil properties as reported in several life cycle analyses (Bernstad 

& la Cour Jansen, 2011, Boldrin et al., 2011, Evangelisti et al., 2014). However, proper 

digestate management, processing and spreading techniques are needed to avoid 

potential acidification and eutrophication impacts due to increased nutrient leaching 

(Abdullahi et al., 2008, Alburquerque et al., 2012a, Bernstad & la Cour Jansen, 2011, 

Boldrin et al., 2011, Haraldsen et al., 2011) which is dependent on the local soil quality 

and meteorological conditions as well as digestate characteristics (Evangelisti et al., 

2014).  

The digestate agronomic characteristics, including organic matter content and 

quality and plant-available nutrients as well as possibly harmful properties, e.g. heavy 

metals and pathogens, define the effect on soils and plants (Abubaker et al., 2012, Nkoa, 

2014, Teglia et al., 2011), i.e. the agronomic value of the digestate. Anaerobic digestion 

typically converts most of the feedstock’s organic material into biogas while the 

nutrients of the feedstock are conserved in the digestate (Odlare et al., 2011) in more 

inorganic and soluble forms (Tambone et al. 2010). The soluble ammonium nitrogen 

increases the short-term effect of nitrogen in soils enhancing plant growth shortly after 

fertilization (Abubaker et al., 2012, Gutser et al., 2005). The organic matter in the 
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digestate increases the soil carbon balance (Odlare et al., 2008, 2011) that leads to 

enhanced microbial processes (Abubaker et al., 2012, Odlare et al., 2008) and 

enzymatic activity (Galvez et al., 2012), which further increases the long-term nutrient 

release in soils (Abubaker et al., 2012, Odlare et al., 2008). In addition, digestate has 

also been reported to increase germination and plant root growth (Maunuksela et al., 

2012) and soil quality by increasing water balance and soil structure (Abubaker et al., 

2012). As a result, the application of the same amount of plant-available nutrients in 

digestates compared to mineral fertilizers has been found to produce similar and even 

increased crop yields compared to mineral fertilizers (Abubaker et al., 2012, Haraldsen 

et al., 2011, Svensson et al., 2004, Walsh et al., 2012). The amount of digestate applied 

to land in the EU is defined according to the national legislation which outlines the 

limits for nitrogen and phosphorus use per hectare. For example, in Finland the limits in 

cereal and grass fertilization are 170 kg/ha for organic nitrogen, 130–250 kg/ha for 

soluble nitrogen and 4–52 kg/ha for phosphorus depending on the plant type, yield, 

geographical location, soil type and phosphorus content of the soil (Government Decree 

No 1250/2014 on the restriction of certain discharges from agriculture or horticulture, 

MAVI, 2014).  

Excess application of digestate can lead to harmful effects on plants and soils due 

to, e.g., the quantity and quality of organic matter or the impurities, including heavy 

metals, organic contaminants or pathogens (Alburquerque et al., 2012b, Govasmark et 

al., 2011). High organic matter content, depending on its composition, can lead to 

excess microbial activity and immobilization of nitrogen (Alburquerque et al., 2012a, 

Gutser et al., 2005) as well as phytotoxicity (Abdullahi et al., 2008). Feedstocks of 

urban biogas plants, e.g. sewage sludge and biowastes, may contain heavy metals 
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(Kupper et al., 2014, Odlare et al., 2008), which are concentrated in the digestate due to 

the mass reduction during anaerobic digestion (Govasmark et al., 2011), and possibly 

accumulated in the soils or in the food chain after digestate use (Otabbong et al., 1997, 

Zhu et al., 2014). Altogether, the characterization of the digestate organic matter, 

nutrient and heavy metal contents and their effects on plants and soils, i.e. the 

agronomic characteristics, are essential in order to plan digestate management and to 

control the positive and negative environmental effects of digestate fertilization.  

The recent research on the use of digestates in agriculture has focused largely on 

digestates from agricultural feedstocks such as manure, plant biomass and a mixture of 

agro-industrial products and manure (e.g. Alburquerque et al., 2012a, 2012b, Fouda et 

al., 2013, Galvez et al. 2012, Grigatti et al., 2011, Gunnarsson et al., 2010). 

Furthermore, some studies have reported the effect of digestates originating from urban 

feedstocks, e.g. of different food and household wastes and sewage sludge, on the crop 

growth and nitrogen uptake (Abubaker et al., 2012, Haraldsen et al., 2011, Odlare et al., 

2011, Rigby & Smith, 2014, Svensson et al., 2004) and on soil quality (Abubaker et al., 

2012, Odlare et al., 2008, 2011, Rigby & Smith, 2013). As the focus of these studies is 

mainly on the growth response of crops, the digestate heavy metal and organic matter 

content are thoroughly reported only in a limited amount of studies with urban waste 

digestates (Abubaker et al., 2012, Tambone et al., 2010). Additionally, to the authors’ 

knowledge there are only a few digestate fertilization/quality studies, which take the 

feedstock composition and origin into consideration when evaluating the fertilizer value 

(Tambone et al. 2009, 2010) and where the digestion process parameters are considered 

(Alburquerque et al. 2012b, Tambone et al. 2009). The digestate characteristics are  

known to be affected by the characteristics of the feedstock (Abubaker et al., 2012, 
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Tambone et al., 2010) as well as the anaerobic digestion process; the reactor type and 

process parameters (Zirkler et al., 2014). In addition, the feedstock composition can also 

vary depending on, e.g., waste collection regulations (Saveyn & Eder, 2014) and 

pretreatment prior to anaerobic digestion, which may significantly affect the digestate 

composition (Tampio et al., 2014). However, urban feedstocks, especially food waste 

and household waste, have been found to have rather uniform characteristics despite 

temporal or geographical differences (Davidsson et al., 2007, Valorgas, 2011).  

The objective of this study was to evaluate the differences and similarities in the 

agronomic characteristics of different urban waste digestates and to evaluate the 

agronomic value of these digestates. The agronomic characteristics were studied by (I) 

analyzing the digestate quality, including pH, organic and heavy metal content of 

digestates, and reflecting on the results within the context of the European digestate 

quality criteria and (II) analyzing the fertilizer value with chemical analyses of 

nutrients, soil nitrogen mineralization test and short-term ryegrass growth experiments. 

The aim was also to compare the effect of feedstock composition and digestion 

processes on the digestate agronomic characteristics by taking into consideration the 

pretreatment of the feedstock. Studied materials originated from anaerobic digesters 

from different European countries treating food waste (FW), organic fraction of organic 

solid waste (OFMSW) and a mixture of waste-activated sludge and vegetable waste 

(VWAS).  

2. Materials and methods  

2.1. Origin of materials 
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This study evaluated the agronomic characteristics of five digestates of which 

three originated from digesters fed with a source-segregated domestic food waste (FW), 

one from a digester fed with an organic fraction of municipal solid waste (OFMSW) 

and one from a digester fed with a mixture of waste-activated sludge and vegetable 

waste (mixture referred as VWAS, Figure 1, Table 1). The respective feedstocks were 

characterized as well except VWAS, which was not available.   

Two food wastes and digestates originated from laboratory stirred tank reactors. 

Reactors were fed with FW collected from Ludlow, UK, where the FWs were either 

macerated with a S52/010 Waste Disposer (IMC Limited, UK) (feedstock and digestate 

referred as FW1) or autoclaved with a double-auger autoclave (160 °C and 6.2 bars, 

AeroThermal Group Ltd, UK) and macerated (FW2). Both Ludlow feedstocks were 

frozen (-20 °C) and sent to Natural Resources Institute Finland, to produce the FW1 and 

FW2 digestates, which were combined samples from two parallel reactors (a more 

detailed description of both digestates is provided  in Tampio et al., 2014). Digestates 

were stored frozen (-20 °C), and were thawed before analysis. The third FW feedstock 

and digestate (FW3) were obtained from a sub-commercial-scale anaerobic digester 

from Greenfinch, UK. OFMSW feedstock and digestate originated from an anaerobic 

digestion plant in Lisbon, Portugal, treating source-segregated OFMSW from the 

Lisbon area. The VWAS mixture, which consisted of vegetable waste and waste-

activated sludge, was from a pilot digester treating wastes from Treviso, Italy (Table 1). 

The feedstocks and digestates from the UK, Portugal and Italy (excluding FW1 

and FW2) were sent in frozen form to a laboratory at Natural Resources Institute 

Finland, where the samples were thawed and stored approximately one week at 4 °C. 

Prior to analyses feedstock samples were macerated with a Retch Grindomix GM300 
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knife mill (Retch Gmbh, Germany). From OFMSW feedstock the non-biodegradable 

material (plastic cups, plastic bags, etc.) was manually removed before analyses of the 

water soluble nutrients and carbon.  

2.2. Nitrogen mineralization 

Nitrogen mineralization tests were run to study the effect of digestate applications 

on soil inorganic nitrogen concentrations. The 48-day mineralization was tested in 

triplicate at 20 °C according to ISO 14238 (ISO, 2012) with digestates and control soil, 

where no fertilizer was added.  Incubation soil (7% clay, 6% silt and 87% sand; soil 

organic C 1.8% and pHw 5.1) was collected from the 0–15 cm top layer of a cultivated 

agricultural soil in Jokioinen, Finland. The aim was to add digestate to have 20 mg total 

Kjeldahl nitrogen (TKN) /100 g soil, and thus based on pre-samples 2.2–8.6 g fresh 

matter (FM) of different digestates were added resulting in 17–31 mg TKN/100 g soil 

based on analyzed samples. Soil from individual pots was sampled after 0, 4, 20 and 48 

days following the start of incubation and was then frozen (-20 °C). After incubation all 

soil samples were thawed and 100 g moist soil was extracted with 250 ml 2 M KCl and 

analyzed for ammonium nitrogen (NH4-N) and nitrate (NO3-N). Soil inorganic N 

concentrations were compared against the incubated control soil.  

2.3. Growth experiments  

The plant availability of the nitrogen in digestates was studied via a pot 

experiment using the same soil as in the mineralization test. The growth of Italian 

ryegrass (cv. Fabio) was studied in triplicate treatments with each of the digestate and 

control applications. The aimed digestate addition was 1500 mg TKN/5 L sandy soil, 

the amount of which was calculated according to the digestate pre-samples (data not 
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shown). However, the actual applied nitrogen addition varied from 1280 to 2390 mg/pot 

within digestates when calculated using the nitrogen concentrations of digestates used in 

the establishment of the pot experiment. Control treatments were mineral fertilizer 

(NH4NO3) applications of 0 to 2000 mg N into the pot at 500 mg N intervals. Sufficient 

levels of P (500 mg P/pot), K (1500 mg K/pot) and other nutrients (Mg, S, B, Cu, Mn, 

Mo and Zn) were applied to each pot to maintain N as the only responsive nutrient. 

Eleven grams of limestone was mixed into the soil of each pot to control pH and add 

Ca. A half gram of ryegrass seeds were evenly placed on the surface of the experimental 

soil in each pot. Ryegrass was grown under a glass roof outdoors at ambient air 

temperature for the first 110 days and for days 110–160 in a greenhouse (14 hours light 

in 16°C and 10 hours dark in 14°C). The grass was harvested at 30, 60 and 160 days 

after the start of the experiment. When harvested, ryegrass was cut leaving 2 cm-high 

stubble, fresh weight was measured and samples were dried at 60 °C after which dry 

weight (DW) was determined. Samples were milled before analyzing the TKN 

concentrations. 

2.4. Chemical analyses  

Total and volatile solids (TS and VS) were determined according to SFS 3008 

(Finnish Standard Association, 1990). pH was determined using a VWR pH100 pH-

analyzer (VWR International). For analysis of soluble chemical oxygen demand 

(SCOD) feedstock samples were diluted to 1:10 with distilled water, and agitated for 1 

hour. Diluted feedstock and digestate samples were centrifuged (2493 × g, 15 min) after 

which the supernatant was further centrifuged (16168 × g, 10 min) and stored in a 

freezer, then thawed before analysis according to SFS 5504 (Finnish Standard 

Association, 2002a). Total COD was measured by the open reflux, titrimetric method 
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used by the University of Southampton (modified slightly from the Vienna standard 

method). VFAs (volatile fatty acids: acetic, propionic, iso-butyric, n-butyric, iso-valeric, 

valeric and caproic acids) were analyzed using a HP 6890 gas chromatograph as 

described in Tampio et al. (2014). TKN was analyzed by a standard method (AOAC, 

1990) using a Foss Kjeltec 2400 Analyzer Unit (Foss Tecator AB, Sweden), with Cu as 

a catalyst and NH4-N determined according to McCullough (1967). After N 

mineralization experiments NH4-N and NO3-N from 2 M KCl extracts were analyzed 

with a Lachat autoanalyzer (Quikchem 8000, Zellweger Analytics, Inc., Milwaukee, 

WI, USA). Total-C was analyzed using Duma’s method according to the manufacturer’s 

instructions with a Leco CN-2000 Elemental Analyzer (Leco Corp., USA). 

Soluble nutrients (Ntot, Ptot, Ktot) were analyzed from 1:5 water extractions 

according to SFS-EN 13652 (Finnish Standard Association, 2002b). Samples were 

shaken for 1 h and filtered through a cellulose filter (pore size ~ 8 µm). The 

concentrations of NH4-N, NO3-N and phosphate phosphorus (PO4-P) were analyzed 

with a Lachat autoanalyzer. Soluble total N in water extractions was measured with a 

Lachat autoanalyzer after oxidation of organic N into NO3-N in an autoclave with 

peroxodisulfate. Soluble total P and K from water extracts were measured with 

inductively coupled plasma emission spectrometry (Perkin Elmer Optima 8300, USA).  

The measurement of phosphorus availability was based on modified Hedley 

fractionation (Sharpley & Moyer, 2000, Ylivainio et al., 2008), where the fertilizer 

product was extracted sequentially with water, 0.5 M NaHCO3, 0.1 M NaOH and 1 M 

HCl at a ratio of 1:60. First inorganic P was determined from the extract and then total P 

concentration was measured after digestion with peroxidase in an autoclave as described 
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in Ylivainio et al. (2008). Organic P concentration was calculated as the difference 

between total and inorganic P. 

Samples for heavy metal (Pb, Ni, Cd, As, Cu, Zn and Cr) analyses were first dried 

in 60 °C and then digested in aqua regia according to SFS ISO 11466 (Finnish Standard 

Association 2007). Approximately 1.0 g of sample was boiled in 9.35 ml of aqua regia 

for 2 hours, transferred into a 100 ml volumetric flask and filtered. After digestion Cu, 

Cr, Zn and Ni were determined with inductively coupled plasma emission spectrometry 

(Thermo Jarrell Ash IRIS Advantage, Thermo Scientific, USA), and As, Cd, Pb, with 

graphite furnace atomic absorption spectrometry using a Varian AA280Z (Varian Inc., 

USA). Hg was measured based on cold vapor atomic absorption spectrometry using 

Varian M-6000A Mercury Analyzer (Varian Inc., USA).  

2.5. Calculations 

The organic N (Norg) in the digestates was calculated from the difference between 

TKN and the sum of mineral nitrogen (NH4-N + NO3-N). The dissolved organic 

nitrogen (DON) was calculated as the difference between 1/5 water extractable Ntot and 

the sum of NH4-N and NO3-N. 

The apparent nitrogen utilization efficiency (NUE) of plants was calculated 

according to the following equation (Gunnarsson et al., 2010): 

NUE (%) = (Nuptake – Ncontrol) / Nadded x 100 

where Nuptake refers to the N uptake per pot (mgN/pot) with each studied digestate, 

Ncontrol to the N uptake per pot of the unfertilized control (mgN/pot) and Nadded to the 

amount of added N per pot as tot-N (mgN/pot). The NUE was calculated for both NH4-

N and TKN. 
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3. Results and discussion 

3.1. Digestate quality 

3.1.1. Digestate pH, solids and organic matter 

The pH, solids and organic material concentrations of the digestates and 

feedstocks were assessed to evaluate the effect of digestate on soil quality and plant 

growth (Table 2). All digestates were neutral or slightly alkaline (pH 6.7–8.4), which is 

typical for food and green waste digestates (reviewed by Teglia et al., 2011). The 

neutral pH supports the use of digestates in agriculture, while the use of alkaline 

digestates could increase, e.g., NH4-N volatilization from soil during spreading 

depending on the temperature (Nkoa, 2014) and the acidic digestates can decrease soil 

pH and enhance the heavy metal mobilization in soils (Otabbong et al,. 1997). 

Subsequently, the effect of digestate pH on soil is dependent on soil characteristics 

(Alvarenga et al., 2015, Makádi et al., 2012), thus, in a 4-year fertilization study the soil 

initial pH of 5.4–5.7 was not affected after application of household- and restaurant 

waste-based urban digestate (Odlare et al., 2008). 

The FW and OFMSW feedstocks had rather similar TS (230-290 g/kg) and VS 

(210–260 g/kg), but these characteristics were not reflected in the digestates (Table 2). 

The FW digestates (FW1 and FW2) had solid (TS) and organic matter (VS) 

concentrations over 50–80 g/kgFM, which were higher than in the FW3-, OFMSW- and 

VWAS-based digestates (10–30 g/kgFM), where the lower TS concentrations were 

most likely related to internal water additions/recirculation in the biogas plants from 

which the digestates (FW3, OFMSW, VWAS) originated. The high TS and VS in FW1 

and FW2 digestates could also be partly explained by the lower degradation during 
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anaerobic digestion (VS degradation 70–78% in FW1 and FW2, over 90% in FW3 and 

OFMSW), probably due to the lower hydraulic retention time and higher organic 

loading rate (47–58 days, 4 kgVS/m
3
d) in reactors fed with FW1 and FW2 than with 

FW3 (26 days, 3.3 kgVS/m
3
d) and OFMSW (24 days, 2.4 kgVS/m

3
d) feedstocks. 

Overall, the results support the fact that the digestate TS concentration is dependent on 

the reactor configuration (e.g. wet/dry process) and process parameters (loading rate, 

retention time) (Teglia et al., 2011) despite the uniform characteristics of the feedstocks. 

It is also likely that the actual organic composition of the digestate feedstocks was 

different, which was not reflected in the TS and VS concentrations.  

The studied digestates were considered suitable for agricultural use as the VS 

concentrations fulfilled the minimum level for organic matter content introduced in the 

European proposal for digestate quality (15 %TS, Saveyn & Eder, 2014). Digestates 

also had similar concentration of solids (20–80 gTS/FM) and organic matter (12–64 

gVS/FM, Table 2) as has been studied with various digestates in field- and laboratory- 

scale fertilization experiments, where the plant growth or soil response were considered 

good (TS 17–120 g/kg, VS 9–66 g/kg)  (Abubaker et al., 2012, Alburquerque et al., 

2012a, 2012b, Fouda et al., 2013, Rigby & Smith, 2013). As digestate fertilization adds 

organic matter to soil, the microbiological activity, mineralization and subsequently the 

availability of nutrients are increased (Galvez et al., 2005, Gutser et al., 2005, Odlare et 

al., 2008, 2011). Thus, excessive amounts of organic matter can lead to imbalanced 

microbial function and nitrogen immobilization (Alburquerque et al., 2012a, Gutser et 

al., 2005) and to phytotoxicity due to organic acids (Abdullahi et al., 2008) i.e. affect 

digestate stability (defined as the amount of easily degradable organic matter).  
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The FW3, OFMSW and VWAS digestates were considered stable due to the 

lower carbon concentration compared to FW1 and FW2 which had 50–80% higher 

COD, VS and Ctot concentrations (Table 2). All three FW digestates were characterized 

with higher SCOD concentrations (11–19 g/kg) compared to OFMSW and VWAS 

digestates (7–8.5 g/kg). The VFAs accounted for 28 and 45% of SCOD in FW1 and 

FW3, 52% in VWAS and the low share of 8% in FW2 and 5% in OFMSW digestates, 

suggesting that the share was not feedstock dependent. In terms of VFA concentration, 

only FW2 and OFMSW were considered stable, as the VFAtot was under the limit of 

1500 mg/l, which is proposed for digestate fertilizer use within the end-of-waste criteria 

(Saveyn & Eder, 2014). The limit value for digestate VFAs in agricultural use in the UK 

(0.43 gCOD/gVS, BSI, 2010) was, however, not exceeded with any of the studied 

digestates. Although a high concentration of fatty acids can contribute to the phytotoxic 

effects (Abdullahi et al., 2008), the VFAs are also reported to act as a carbon source for 

soil micro-organisms and to degrade fast after application to soils (Kirchmann & 

Lundvall, 1993). The non-VFA-SCOD found in digestates was most likely related to, 

e.g., undegraded carbohydrates and also for other acids such as humic acids (Scaglia et 

al., 2015, Zheng et al., 2014), which have been recently proposed to act as bio-

stimulants enhancing plant growth (Scaglia et al., 2015). Additionally, humic acids are 

related to the stability of digestates (Zheng et al., 2014) along with the other stable 

molecules, lignin and long-chain proteins (Tambone et al., 2009). 

3.1.2. Heavy metal content 

Digestate heavy metal contents (mg/kgTS) were studied from dried samples and 

compared with the EU legislative limits for digestate application (Table 3). VWAS 

digestate had the highest content of heavy metals and was the only one to exceed the 
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limits within European legislation concerning Hg, Cu and Zn. VWAS digestate most 

likely reflected the heavy metal content of the feedstock mixture, especially the waste-

activated sludge, as the vegetable waste usually contains heavy metals in similar 

contents as FW feedstocks (Table 3). Compared to VWAS, FW and OFMSW digestates 

had a lower content of heavy metals reflecting the content in the feedstocks. Heavy 

metal contents between FW and OFMSW digestates were fairly similar in Hg (0.1–0.3 

mg/kgTS) and Cr (8–13 mg/kgTS), while OFMSW had a slightly increased content of 

Pb, Cd, As, Cu, Zn, and low content of Ni (7 mg/kgTS in OFMSW, 16–42 mg/kgTS on 

FW digestates). Considering the feedstocks, the content of Pb was over tenfold in the 

autoclaved FW2 feedstock compared to the FW1 feedstock and 1.53 times higher with 

Cu, Zn and Cr, apparently due to residues from the autoclaving apparatus during the 

pre-treatment of the food waste, thus, the increases in Cu and Zn were not reflected in 

FW2 digestate.   

The heavy metal contents (mg/kgTS) increased and concentrated from feedstocks 

to digestates due to the reduction of solids content during digestion. Overall, the 

contents of heavy metals in the digestates were similar to those reported with different 

sewage sludge and organic waste digestates (Table 3). However, due to the feedstock 

characteristics VWAS digestate showed increased heavy metal content exceeding the 

legislative limit and thereby preventing its use in agriculture as such, as the heavy 

metals can cause effects in soils and plants. For example, Cu and Zn are reported to 

bind with organic compounds and immobilize in soils (Otabbong et al., 1997, Zhu et al. 

2014), and the fertilization with sewage sludge has been reported to increase the 

accumulation of Cd, Zn, Pb and Cu in plants (Otabbong et al. 1997), the effects of 
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which are dependent on the chemical properties, such as solubility of metals, and by soil 

characteristics, such as pH.  

The actual amount of heavy metals ending up in the soils depends on the amounts 

of digestate used. For example, with digestate fertilization at a rate of 170 

kgTKN/ha/year the mass of the studied digestates varies from 20 to 80 tons per hectare 

depending on the TS and nitrogen content. Subsequently, the volume of heavy metals 

applied to the soil is dependent on the applied digestate amounts. The calculated heavy 

metal volumes per hectare (g/ha/year, Table 3) showed increased heavy metal loads 

with VWAS digestate, which, due to low TKN content and TS, requires large 

application volumes to meet the fertilization goal (170 kgTKN/ha). With FW and 

OFMSW digestates the heavy metal loads were remarkably lower, and FW digestates 

showed the least environmental contamination of the studied urban digestates. 

3.2. Fertilizer value 

3.2.1. Digestate nutrient concentrations 

The concentration of nutrients and the solubility of phosphorus were analyzed to 

evaluate the fertilizer value of the digestates. Overall, FW and OFMSW digestates had 

higher concentrations of nitrogen and potassium and lower phosphorus concentrations 

and C/N ratio when compared to the VWAS digestate. FW and OFMSW digestates 

(except FW2 digestate) had total, mineral and soluble nitrogen concentrations over 3 

g/kgFM due to the high initial total nitrogen concentrations in FW and OFMSW 

feedstocks (around 6–8 g/kgFM, Table 2). In FW1 digestate the NH4-N/TKN ratio was 

low (50%) compared to FW3 and OFMSW (71–82%) digestates and was caused by the 

decreased organic matter degradation, as was observed during the material 
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characterization. FW and OFMSW digestates had the C/N ratios (1.5–3.3) and 

concentrations of total nitrogen (4.5–8.7 g/kgFM) and potassium (2–3 g/kgFM) typical 

for these types of digestates and similar to a mixture of 80% OFMSW +20% pig slurry 

(Gutser et al., 2005, Tambone et al., 2010). However, phosphorus concentrations in FW 

and OFMSW digestates were low (0.1–0.3 g/kgFM) compared to 0.8–1.1 g/kgFM in the 

OFMSW + pig slurry digestate in Tambone et al. (2010). The pretreated FW2 digestate 

showed remarkably low NH4-N and soluble total nitrogen concentration (<3 g/kgFM) 

and NH4-N/TKN ratio (20%) caused by the autoclaving treatment which has been 

shown to decrease protein degradation during anaerobic digestion (Tampio et al., 2014).  

VWAS digestate had low TKN and NH4-N (around 2 g/kgFM, Table 2) due to the 

low nitrogen concentration in the feedstock mixture, as both vegetable waste and waste-

activated sludge have low total nitrogen concentrations (1.5 gTKN/kgFM in Shen et al., 

2013 and 1.7 gTKN/kgFM in Cavinato et al., 2013, respectively). The TKN, C/N ratio 

(around 6) and low potassium concentrations (0.6 g/kgFM) in VWAS digestate were 

comparable with municipal (Tambone et al., 2011) and industrial wastewater treatment 

sludge digestates (Alburquerque et al., 2012a). VWAS digestate had the soluble 

phosphorous content of 0.35 g/kgFM, where the phosphate phosphorus (PO4-P) 

accounted for 100% of the Ptot in 1/5 water extractions indicating good plant availability 

of P (Teglia et al., 2011) and was most likely due to the high P content of the waste-

activated sludge, as reported by Odlare et al. (2008) and Zirkler et al. (2014).  

FW and OFMSW digestates were considered to have the highest fertilizer value 

compared to VWAS digestate as the nitrogen availability in the soil after spreading is 

dependent on the plant available NH4-N concentration and the NH4-N/TKN ratio 

(Fouda et al., 2013, Teglia et al., 2011). The high fertilizer value was also supported by 
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the ratio between C and organic N (C/Norg), which was 8, indicating high N release in 

soils (Gutser et al., 2005). The VWAS digestate had a C/Norg ratio of 29 suggesting a 

lower N release.  

The availability of phosphorus for plant growth is dependent on the solubility 

which was analyzed with Hedley fractionation, where 50–70% of the P in FW and 

VWAS digestates was considered as plant available (water and NaHCO3 extractable, 

Figure 2). OFMSW digestate showed a lower P solubility of 30% indicating a 

difference in the digestate composition compared to FW digestates, which was however 

not detected in any other characterization analysis. The P fractionation of OFMSW and 

waste water sludge-based digestates were also studied by García-Albacete et al. (2012), 

where the NaHCO3 extractable Olsen-P was similar (0.1–0.4%) as in studied digestates 

(0.04–0.2%). Because not all of the total P in digestates is considered to be plant 

available, the solubility of P should be measured to avoid the overestimation of P 

availability from the digestates. For example, previous life cycle analyses have 

overestimated the P substitution by assuming that 100% of mineral fertilizer P is able to 

be substituted with digestates (Boldrin et al., 2011, Bernstad & la Cour Jansen 2011). 

Thus, in some studies the more accurate P substitution rate of 50% is applied 

(Evangelisti et al., 2014).  

As the FW and OFMSW were characterized as being rich in N and poor in P, and 

the VWAS digestate had a relatively low concentration of both nutrients, reduced 

fertilizer value and the need for additional mineral fertilizer supplements can be 

expected due to uneven and potentially deficient N and P ratios (Svensson et al., 2004). 

The low NH4-N in VWAS and FW2 digestates also supported their use as soil 

amendments rather than as source of nutrients (Teglia et al., 2011).  
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3.2.2. Nitrogen mineralization in soil 

The transformation of digestate organic nitrogen into mineral forms in soil was 

studied via mineralization experiments (Table 4, Figure 3) with different digestate 

nitrogen application rates from 171 to 318 mgTKN/kg soil. Application of dissolved 

organic N (DON) of 1:5 water extractions was 27–64 mg/kg and this proportion of 

organic N can be considered most easily mineralized. In the beginning of the 

mineralization experiment the soil NO3-N concentration was low and the predominant 

form of soil inorganic nitrogen was NH4-N from the digestates. Nitrification of NH4-N 

to NO3-N happened at a fast rate in all digestate applications after a 4-day 

adaptation/immobilization period. After 48 days the mineralization of organic N was of 

the same magnitude (around 30 mgN/kg) as all other digestates except the FW3 

digestate (2 mgN/kg, Table 4, Figure 3).  

Considering the low N mineralization with the FW3 digestate, the digestate 

responded to its readily mineralized N concentration, while the organic N application 

was 25–60% lower than with other digestates. Other studied digestates had lower initial 

NH4-N concentrations and 15–30% of their organic N mineralized during the 

incubation. FW3 digestate did not show notable differences in ryegrass growth 

experiments, indicating that the increase of mineralized N in soil was not vital for plant 

growth (Gunnarsson et al., 2010), when the initial NH4-N concentration was high. In 

addition, the low mineralization can be attributed to the availability of organic nitrogen 

(Abubaker et al., 2015, Rigby & Smith, 2013), which was low due to the variation in the 

digestate application volumes. 

The net N mineralization started soon after a short adaptation/immobilization 

period due to the easily degradable material, and no further nitrogen immobilization was 
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detected which is reported to lead to a good growth response (Gutser et al., 2005). The 

low initial NH4-N in FW2 digestate was due to the feedstock pretreatment where the 

nitrogen-containing molecules have been previously reported to transform into 

recalcitrant and hardly degradable Maillard compounds (Tampio et al., 2014), and 

therefore, low mineralization and growth responses were anticipated. However, the N 

mineralization with FW2 digestate was on the same level as in the other studied 

digestates indicating that the soil microbes were still, to some extent, able to transform 

the rather recalcitrant nitrogen. With VWAS digestate the observed high C/Norg ratio 

and the low NUE during the growth experiment indicated low N release and availability 

which were reflected by 50% decreased mineralization of Norg compared to the other 

studied digestates in the mineralization test. This difference was connected with the 

composition of the waste-activated sludge feedstock which led to a low nitrogen 

concentration in the VWAS digestate.  

3.2.3. Ryegrass growth and nitrogen uptake 

The plant growth and nitrogen uptake in pot experiments were studied with Italian 

ryegrass (cv. Fabio) in order to compare the nitrogen fertilizer value of the digestates 

(Table 5, Figure 4). Depending on the applied nitrogen amount, digestate applications 

produced ryegrass yields of 38–60 gDW/pot, which were 5–30% higher than the control 

with similar inorganic N concentration. FW1 and FW2 digestates had 20- 30% higher 

yields compared to the control and high NH4-N utilization efficiencies (NUENH4-N) 

>90% were observed because soluble nitrogen was fully used for plant growth. 

However, with FW3, OFMSW and VWAS digestates the increase in the ryegrass yield 

was more moderate (5–10%) compared to the control, and NUEs were between 74 and 

82% indicating that the soluble N was not fully available for plant growth. During the 



 

 

21 

 

growth experiment 30–50% of the TKN was utilized by the ryegrass from all studied 

digestates.  

The improved ryegrass growth response was compared to the mineral fertilizer 

control, which indicated that the nutrient composition, especially nitrogen availability, 

was sufficient for plant growth in the studied digestates. The ammonium nitrogen level 

of the digestate applications was comparable to ammonium nitrate level of the controls, 

and part of DON was also mineralized and increased ryegrass growth. The result is 

supported by previous studies, where the FW- and OFMSW-based digestates have been 

reported to increase the crop biomass yield compared to digestates originating from 

other feedstocks (Abubaker et al., 2012, Haraldsen et al., 2011, Svensson et al., 2004) 

and increased or similar yields as mineral fertilizers (Haraldsen et al., 2011, Walsh et 

al., 2012). In comparison, in a long-term (4 years) field-scale fertilization study, 

digestates produced 88% of the yield of mineral fertilizers (Odlare et al., 2011), and 

equal yields to mineral fertilizers were achieved when digestates were supplemented 

with mineral fertilizers (Odlare et al. 2008).  

During the growth experiment the NUENH4-N, calculated from the applied NH4-N, 

showed high values (>75%, Table 5) for all digestates indicating that the ryegrass was 

able to use the mineral N of the digestates, as previously reported (NUE 90–95%, 

Gunnarsson et al., 2010, Grigatti et al., 2011). The NUETKN values, calculated according 

to the applied TKN, were between 40–50% with FW- and OFMSW-based digestates 

(except FW2) and around 33% with VWAS and FW2 digestates. Considerably higher 

NUETKN values (44–85%) have been previously reported with pig slurry (Grigatti et al., 

2011) and a mixture of pig slurry and agro-industrial wastes (Gunnarsson et al., 2010, 

Alburquerque et al., 2012a), while the average NUETKN for mineral fertilizers was 
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around 60% (Gutser et al. 2005), as also shown in the present study. The relatively low 

NUEs found in this study (33%) with FW2 and VWAS digestates indicated that the 

TKN still consisted of recalcitrant N, which was not plant available and fully 

mineralizable (Gunnarsson et al., 2010). These results were supported by previous 

findings with FW2 feedstock, where the feedstock pretreatment transformed nitrogen 

into a recalcitrant form, reflected in the low NH4-N concentration and reduced soil 

mineralization capacity. However, with VWAS the characteristics of waste-activated 

sludge most likely affected the digestate TKN composition, its uptake efficiency and 

high C/Norg ratio lowering N release. Thus, VWAS digestate produced similar growth 

response as FW and OFMSW digestates, and no effect of the uneven N and P 

concentrations between digestates (see chapter 3.2.1) were observed on ryegrass growth 

in the short-term experiment. 

4. Conclusions  

Overall, the studied urban digestates originating from FW, OFMSW and VWAS 

had potentially favorable agronomic characteristics and produced 5–30% higher 

ryegrass yields compared to the control mineral fertilizer with a similar inorganic 

nitrogen concentration, while the feedstock source played a major role in material 

characterization. FW and OFMSW digestates (except FW2) reflected their feedstock 

composition and showed rather similar nutrient concentrations, soil N mineralization, 

ryegrass growth and heavy metal content and were, as follows, characterized with high 

agronomic value. The VWAS digestate showed decreased nitrogen availability due to 

lower nitrogen concentration of the feedstock which led to decreased fertilizer value. In 

addition, VWAS digestate increased the risk for soil contamination due to high content 

of heavy metals, which also exceeded the limits within European legislation and thus, 
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prevents its use in agriculture as such. However, the temperature and pressure 

pretreatment of the FW2 feedstock reduced the digestate nitrogen availability and 

promoted its use as a soil amendment rather than a fertilizer. 
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Table 1. Origin and background information of the studied feedstocks and digestates. 

FW=Food waste, OFMSW=organic fraction of municipal solid waste, VWAS= mixture 

of vegetable waste and waste-activated sludge, HRT=hydraulic retention time, 

OLR=organic loading rate. 

Feedstock/Digestate Scale  Temperature Phase HRT (d) OLR 

FW1 Laboratory Mesophilic 1 58 4.0
b 

FW2
a Laboratory Mesophilic 1 47 4.0

b 

FW3 Sub-commercial Mesophilic 1 26 3.3
b 

OFMSW Full scale Thermophilic 2 24 3.7
c 

VWAS Pilot Thermophilic 1 16 3.8
c 

a
Feedstock pretreated with autoclave (160 °C, 6.2 bar) 

b
kgVS/m

3
day 

c
kgCOD/m

3
day 
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Table 2. Feedstock and digestate characteristics.  

Material Feedstocks  Digestates 

Sample FW1 FW2 FW3 OFMSW  FW1 FW2 FW3 OFMSW VWAS 

pH, solids and organic matter 

pH 5.5 5.4 5.0 4.7  8.0 7.6 8.3 8.3 7.6 

TS (g/kgFM) 247.0 226.4 255.1 287  68.1 78.8 19.9 32.2 34.2 

VS (g/kgFM) 229.9 209 232.8 264.3  50.2 63.7 12.3 18.9 23.9 

VS/TS (%) 93.1 92.3 91.3 92.1  73.6 80.9 61.7 58.7 69.9 

SCOD (g/kgFM) 114.6 104.2 132.9 69.9  15.4 18.5 11.2 7.3 8.4 

COD (g/kgFM) 364.4 361.2 444 412.5  77.1 100.3 21.8 30.6 26.7 

SCOD/COD (%) 31.4 28.8 29.9 17.0  20.0 18.4 51.4 23.9 31.5 

VFAtot (g/kgFM) 3.1 2.2 4.9 5.5  3.3 1.1 4.1 0.3 3.4 

VFAtot 

(gCOD/kgFM) 
3.5 2.3 5.4 5.9 

 
4.3 1.5 5.0 0.4 4.4 

Nutrients 

Ctot (g/kgFM) N/A N/A N/A N/A  26.9 25.9 6.8 10.3 13.5 

C/N N/A N/A N/A N/A  3.1 3.3 1.5 2.3 6.1 

TKN (g/kgFM) 7.8 7.3 8.2 5.7  8.7 7.8 4.7 4.5 2.2 

NH4-N (g/kgFM) 0.5 0.4 0.6 0.3  4.5 1.7 3.9 3.2 1.7 

NH4-N/TKN (%) 6.7 5.0 7.2 5.4  52.0 21.3 82.1 71.1 78.6 

1:5 water soluble nutrients  

Ntot (g/kgFM) N/A N/A N/A N/A  6.0 3.0 4.4 4.0 2.2 

NH4-N (g/kgFM) N/A N/A N/A N/A  4.4 1.9 3.3 2.8 1.6 

NO3-N (g/kgFM) N/A N/A N/A N/A  0.013 0.011 0.011 0.007 0.003 

PO4-P (g/kgFM) N/A N/A N/A N/A  0.27 0.14 0.06 0.13 0.35 

Ptot (g/kgFM) N/A N/A N/A N/A  0.33 0.19 0.11 0.15 0.35 

Ktot (g/kgFM) N/A N/A N/A N/A  3.2 2.5 1.9 1.9 0.6 

N/A, not available 
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Table 3. Heavy metals in the studied digestates and their feedstocks, regulatory 

framework concerning heavy metal limits in European countries, literature data and 

heavy metal load after digestate application.  

Heavy metals Pb Ni Hg Cd As Cu Cr Zn 

Feedstocks (mg/kgTS) 

FW1 0.2 0.6 0.06 0.06 0.5 4.9 1.1 28.2 

FW2 2.2 0.5 0.08 0.05 0.5 8.4 3.3 37.8 

FW3 0.7 1 0.08 0.06 0.4 5.7 1.8 29.4 

OFMSW 0.5 0.8 0.05 0.02 0.2 9.6 1.3 93.3 

Digestates  (mg/kgTS) 

FW1 2.1 17.8 0.1 0.2 0.7 25.6 9.8 116 

FW2 5.6 16.6 0.2 0.1 0.4 22.4 11.9 94.6 

FW3 5.6 42.4 0.1 0.3 1 21.7 7.5 175 

OFMSW 11.7 6.7 0.3 1.5 3.3 58.7 13 401 

VWAS 98 22.3 1.8 1.1 2.6 626.5 32.9 1006 

Regulatory limit values for digestate use  (mg/kgTS) 

Uk
a
 200 50 1 1.5  -  200 100 400 

Finland
b
 100 100 1 1.5 25 600 300 1500 

EU proposal
c
 120 50 1 1.5  -  200 100 600 

Feedstock in the literature  (mg/kgTS) 

Vegetable waste
d
 <1–22 <1–10 N/A <0.5–1 N/A <1–18 1–7 3–97 

Sewage sludge
e
 40–144 N/A N/A 6–32 N/A 700–1570 N/A 321–487 

Digestate in the literature  (mg/kgTS) 

Sewage sludge
f
 4–30 13–37 N/A 0.3–1.7 N/A 50–1000 N/A 200–1300 

Biowaste, green 

waste, industrial 

waste
g
 

5–282 5–41 N/A 0–0.46 N/A 21–161 7.4–54 60–340 

Household waste
h
 4.1–6.1 5.5–7.9 0.05–0.13 0.4–0.6 N/A 44–67 6.7–15.4 227–381 

Heavy metal load after digestate spreading (g/ha/year)
i
 

FW1 2.8 23.8 0.2 0.3 0.9 34.3 155.1 13.1 

FW2 9.6 28.6 0.3 0.2 0.8 38.4 162.5 20.4 

FW3 4.1 30.6 0.1 0.2 0.7 15.6 126.2 5.4 

OFMSW 14.2 8.2 0.4 1.8 4.0 71.6 488.9 15.8 

VWAS 259.1 58.8 4.8 2.9 6.8 1655.7 2658.6 86.9 
a
BSI, 2010, 

b
Decree of the Ministry of Agriculture and Forestry No 24/11 on Fertiliser Products, 

c
Saveyn & 

Eder, 2014, 
d
Bożym et al., 2015, 

e
Otabbong et al., 1997, 

f
Zirkler et al., 2014, 

g
Kupper et al., 2014, 

h
Govasmark et al., 2011, 

i
Digestate spreading calculated according to TKN rate of 170kgTKN/ha 

N/A, not available 
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Table 4. Applied nitrogen and mineralization of nitrogen after 48 days incubation. 

Digestate FW1 FW2 FW3 OFMSW VWAS 
Application (g/100g) 
FM  2.2 2.6 4.8 5.1 8.6 
Applied (mg/kg) 
TKN 205 171 235 244 318 
Norg 108 121 77 102 181 
DON 36 27 53 64 54 
NH4-N 97 50 158 142 137 
NO3-N 0 0 1 0 0 
Mineralization from applied organic N 
mg/kg 36 34 2 29 26 
% of DON 100 125 3 45 47 
% of Norg 33 28 2 28 14 
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Table 5. Ryegrass yields and N uptake during pot experiments with the studied 

digestates and control. Ryegrass yield after 3
rd

 harvest and nitrogen uptake and nitrogen 

uptake efficiency (NUE) after 2
nd

 harvest. NUEs calculated with NH4-N and TKN.  

 
Applied (mg/pot) Yield N uptake NUENH4-N NUETKN 

Treatment TKN Nsoluble NH4-N (gDM/pot) (mgN/pot) (%) (%) 
Controls 

       
N0 0 0 - 18.9 ± 0.6 243.9 ± 9.3 - 
N500 500 500 - 31.8 ± 2.8 582.9± 16.9 68 
N1000 1000 1000 - 50.8 ± 4.6 858.1 ± 31.5 61 
N1500 1500 1500 - 63.1 ± 4.2 1138.1 ± 33.3 60 
N2000 2000 2000 - 77.6 ± 5.2 1440.2 ± 63.6 60 
Digestates 

       
FW1 1540.8 997.6 727.1 50.5 ± 1.3 895.0 ± 3.5 90 42 
FW2 1284.3 580.8 376.2 38.4 ± 3.1 663.8 ± 14.7 112 33 
FW3 1763.6 1584.7 1188.4 58.3 ± 5.6 1123.9 ± 67.1 74 50 
OFMSW 1832.6 1546.9 1069.7 59.1 ± 4.3 1116. ± 42.2 82 48 
VWAS 2390.0 1441.1 1032.9 56.8 ± 2.9 1014.8 ± 13.8 75 32 
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Figure Captions 

 

Figure 1. The analyzed agronomic characteristics of the studied digestates and 

feedstocks.  

 

Figure 2. Solubility of phosphorus determined with Hedley fractionation.  

 

Figure 3. Nitrogen mineralization during 48-day incubation tests. Digestates FW1 (a), 

FW2 (b), FW3 (c), OFMSW (d), VWAS (e).    

 

Figure 4. Ryegrass yield and nitrogen uptake of digestates compared to control 

treatments. The dotted line represents the control treatments and error bars the standard 

deviation within control samples.  
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Fig. 1. 
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Fig. 2. 
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Fig. 3.  

 

  

-20

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

m
g

/k
g

Days

a

-20

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40
Days

b

-20

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40
Days

c

-20

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

Days

NH4-N

NO3-N

NH4-N + NO3-N

e

-20

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40

m
g

/k
g

Days

d



 

 

42 

 

Fig. 4. 
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