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Abstract 

The aim of this study was to assess the effect of increasing feedstock treatment 

rate on the performance of full-scale anaerobic digestion using laboratory-scale reactors 

with digestate and feedstock from full-scale digesters. The studied  nitrogen-containing 

feedstocks were i) a mixture of industrial by-products and pig slurry, and ii) municipal 

sewage sludge, which digestion was studied at 41 and 52 °C , respectively. This study 

showed the successful reduction of hydraulic retention times from 25 and 20 days to 

around 15 days, which increased organic loading rates from 2 to 3.5 kg volatile solids 

(VS) /m
3
d and 4 to 6 kgVS/m

3
d. As a result, the optimum retention time in terms of 

methane production and VS removal was 10–15% lower than the initial in the full-scale 

digesters. Accumulation of acids during start-up of the co-digestion reactor was 
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suggested to be connected to the high ammonium nitrogen concentration and 

intermediate temperature of 41 °C. 
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1 Introduction 1 

Anaerobic digestion is an efficient technique for the treatment of organic wastes 2 

from different sectors, e.g. agriculture, industry and municipalities. Anaerobic digestion 3 

recovers renewable energy in the form of biogas, which can be used in combined heat 4 

and power plants, in vehicles and for grid injection; and it also allows recycling of 5 

nutrients through application of digestion residues in crop production. Both the 6 

Renewable Energy directive (2009/28/EC, European Parliament and the Council, 2009) 7 

and the Landfill directive (99/31/EC, European Council, 1999) have been strong drivers 8 

in promoting the use of anaerobic digestion for this application in recent years, and the 9 

EU Action Plant for the Circular Economy boosts the role of anaerobic digestion as a 10 

part of nutrient and material cycles (European Commission, 2015). 11 

Full-scale anaerobic digestion plants aim to optimize energy production and solids 12 

removal in order to increase the waste treatment rate and the economy of the plant 13 

through increased gate fees, thus without compromising the digester process stability. 14 

The process stability of an anaerobic digester is dependent on the balance between 15 

micro-organisms, which are known to be vulnerable to inhibition or changes in the 16 

process variables e.g. hydraulic retention times (HRT) and organic loading rate (OLR) 17 

(McLeod et al., 2015). The optimization of the waste treatment rate can be achieved 18 

through a decrease in the HRT and increase of the OLR, which, to a certain point, can 19 

increase the methane production during digestion (Nges and Liu, 2010). However, the 20 

increasing OLR can lead to a process imbalance, accumulation of acids and a decrease 21 

in biogas production if the retention times are not sufficient for microbial growth 22 

(Regueiro et al., 2015). Additionally, the formation of increased amounts of inhibitory 23 

compounds, e.g. ammonium nitrogen (NH4-N, Beale et al., 2016), can affect the process 24 
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stability (Rajagopal et al., 2013). Nitrogen-containing feedstocks (e.g. slurries/manures, 25 

sewage sludges, food wastes and certain industrial by-products) naturally contain a large 26 

amount of proteins, which is degraded and mineralized into NH4-N during digestion. 27 

Subsequently, NH4-N has been reported to be the major toxic compound in full-scale 28 

digesters utilizing high nitrogen containing feedstocks (Fotidis et al., 2014). 29 

Additionally, the temporal and seasonal variation of the feedstock composition (e.g. 30 

sewage sludges, industrial organic wastes) can be challenging (Lee et al., 2016; McLeod 31 

et al., 2015; Regueiro et al., 2015). Thus, to improve the digestion process and increase 32 

the treatment rate also with challenging feedstocks such as industrial and food wastes, 33 

manures and sewage sludge, the stability of the digesters and the quality of the digestate 34 

are not to be compromised (Nges and Liu, 2010). With laboratory-scale experiments, 35 

the effect of the optimization of the digesters at full scale can be studied, without 36 

jeopardizing the actual full-scale process and plant economics. However, to simulate the 37 

full-scale operation with the natural changes and variation within the feedstock 38 

composition, the feedstock composition should not be as controlled and homogenized as 39 

it is with most of the laboratory-scale digestion studies. 40 

The total nitrogen concentration in the protein-rich, high-nitrogen-containing 41 

feedstocks increasingly used in biogas plants varies, being around 3–9 gN/kg in animal 42 

manures (Moset et al., 2015b; Regueiro et al., 2015; Zhang et al., 2014), 7–8 gN/kg in 43 

food wastes (Banks et al., 2012; Haider et al., 2015; Tampio et al., 2014),  2–5 gN/kg 44 

(Leite et al., 2016; Lloret et al., 2013) and even 9 gN/kg (Zhang et al., 2014) in 45 

sewage/wastewater treatment sludges, while more specified biomasses, e.g. molasses 46 

residues, can contain nitrogen up to 15 gN/kg (Regueiro et al., 2015). Full-scale 47 

anaerobic digesters treating these nitrogen-containing feedstocks usually operate at 48 
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HRTs of around 18–30 days (OLRs 1–3 kgVS/m
3
d, Hao et al., 2016; Leite et al., 2016; 49 

Lloret et al., 2013; McLeod et al., 2015; Menardo et al., 2011; Sundberg et al., 2013) in 50 

mesophilic conditions and at HRTs of 16–20 days (OLRs 2–3 kgVS/m
3
d, Lee et al., 51 

2016; Lloret et al., 2013; Sundberg et al., 2013) in thermophilic conditions. High 52 

nitrogen concentration within the feedstock affects the HRTs and OLRs applied as it 53 

leads to the formation of inhibitory NH4-N during digestion. However, due to the 54 

relatively high HRTs currently applied in full-scale plants, there is a likely potential to 55 

improve the processes by increasing the treatment rate. 56 

In this study, the aim was to assess the feasibility of increasing the feedstock 57 

treatment rate (HRT, OLR) in full-scale anaerobic digesters treating waste materials 58 

with high nitrogen (5–9 g/kg) concentrations. The mesophilic and thermophilic 59 

laboratory digesters were first operated with similar HRTs (25 and 20 days) to the 60 

representative full-scale reactors after which the HRTs were gradually reduced to 14–15 61 

days. Digestates from the representative full-scale reactors were characterized in order 62 

to assess the conditions in the full-scale digester. The digestates were also used as 63 

inocula for the laboratory digesters, where the feedstocks originated from nitrogen-64 

containing feedstocks:  i) a mixture of industrial by-products and pig slurry, and ii) 65 

municipal sewage sludge. The process performance was assessed with batch and 66 

continuous digestion as well as chemical analyses so as to obtain the optimum reactor 67 

performance in terms of methane yield, volatile solids (VS) removal and process 68 

stability and in order to find the treatment rate when the process becomes unstable. 69 

2 Materials and methods  70 

2.1. Origin of materials 71 
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Two full-scale digesters were simulated, of which the first plant was co-digesting 72 

multiple feedstocks (referred to as co-digestion feedstock, CF) and the second digesting 73 

sewage sludge (SS) (Table 1). For this study, the feedstocks and digestate (used as an 74 

inoculum) were obtained from the two full-scale plants, which presented the actual 75 

operation of the full-scale digesters. Both digesters were showing a stable and steady 76 

performance before sampling. The digestates were collected from the reactor through a 77 

digestate outflow pipe. The feedstocks were collected after the 78 

hygienization/sterilization prior to digesters presenting the reactor feedstock used in the 79 

full-scale plants. During the 7 months of CSTR (continuously stirred tank reactor) 80 

studies, the CF feedstock was obtained in seven and SS feedstock in eight batches 81 

(Table 2). Sample batches were stored at 4 °C (up to 2-4 weeks) prior to analyses and 82 

feeding to reactors. The biochemical methane potential (BMP) assays were executed 83 

around 2 months prior to the CSTR experiments (Table 2). 84 

2.2 BMP assays 85 

BMP assays were performed at similar temperatures to those at which the 86 

representative full-scale digesters operated (40 ± 1 °C with C, 53 ± 1 °C with SS) using 87 

automated testing equipment (Bioprocess Control Ltd, Sweden). Assays were conducted 88 

in triplicate, each with an inoculum volume of 260 g. The substrate to inoculum ratio 89 

(S/I) was 1 in VS basis and distilled water was added to achieve a total liquid volume of 90 

400 ml. NaHCO3 (3 g/l) was used as a buffer. Carbon dioxide was absorbed by NaOH 91 

before the automated gas volume measurement, which was based on liquid 92 

displacement. The assays were mechanically mixed (84 rpm) for one minute per hour. 93 

Assays with inoculum alone presented the residual methane potential (RMP) of the 94 

digestate. The results are given as average values of the triplicate assays. 95 



 

 

7 

 

In assays with CF feedstock, methane production was low during the first 20 days 96 

of the assays. Subsequently, on day 24 two replicates were diluted to evaluate the 97 

potential inhibition/overloading of the batch assays. Dilution was done by mixing the 98 

content of two bottles (400 ml + 400 ml), after which 200 ml of this mixture was added 99 

in both bottles along with 200 ml of deionized water to achieve liquid volume of 400 ml 100 

in both bottles. 101 

2.3 Reactor experiment 102 

Two 11-litre stainless steel CSTRs (Metener Ltd, Finland) were operated at the 103 

temperature of the representative full-scale digesters, one at 41 °C (CF) and the second 104 

at 52 °C (SS). The reactors were fed manually five times a week (once or twice a day 105 

depending on daily feed volume) through an inlet tube which extended below the 106 

digestate surface, and which was also used for digestate sampling. Digestate overflowed 107 

from the reactors by gravity through a u-tube trap so as to prevent gas escape. Stirring 108 

(32 rpm) was semi-continuous with 5 seconds on and 60 seconds off (from day 33 109 

onwards 5 seconds on and 30 seconds off in SS). Biogas volume was measured by 110 

water displacement in a volume-calibrated cylindrical gas collector (Ritter TG05/5), 111 

after which the gas was collected in aluminum gas bags. 112 

The two laboratory CSTRs were inoculated with 11 liters of digestate from the 113 

full-scale digesters, CF and SS. Subsequently, the reactors were kept unfed for five 114 

days, after which feeding was started with feedstocks CF and SS (Table 3). The initial 115 

HRT with both reactors was higher than the original HRT in the full-scale reactors 116 

during days 5–14 for the acclimation of the processes. From day 15 onwards, the HRT 117 

corresponded with the full-scale digesters (Table 3). During days 92–211 the HRTs in 118 

the CF reactor were gradually reduced from 25 to 14 days, which increased the OLRs 119 
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from 2 to 3.5 kgVS/m
3
d. Simultaneously in the SS reactor, the HRTs were reduced from 120 

20 to 15 d during days 54–189 (OLRs from 4 to 6 kgVS/m
3
d). Reactors were initially 121 

fed once a day (five times a week) while with the increased feedstock amount (from 122 

days 160 and 61 onwards with CF and SS) the feeding was done twice a day 123 

(morning/evening). Due to the differences between the different feedstock batches in CF 124 

feedstock (Table 2), the HRT and OLR in CF and SS reactors do not correlate (Table 3). 125 

Samples from the reactors were taken every week for analysis of NH4-N, soluble 126 

chemical oxygen demand (sCOD) and volatile fatty acids (VFAs). Every two weeks, 127 

total and volatile solids (TS, VS) and total Kjeldahl nitrogen (TKN) were also analyzed 128 

in addition to NH4-N, SCOD and VFA. Digestate pH was measured five times a week. 129 

2.4 Chemical analyses  130 

pH was determined using a VWR pH100 pH-analyzer (VWR International). TS 131 

and VS were analyzed according to SFS 3008 (Finnish Standard Association, 1990). 132 

TKN was analyzed by a standard method (AOAC, 1990) using a Foss Kjeltec 2400 133 

Analyzer Unit (Foss Tecator AB, Sweden), with Cu as a catalyst and NH4-N determined 134 

according to (McCullough, 1967). For analysis of sCOD, samples were pre-treated as 135 

described in Tampio et al. (2014), and analyzed according to SFS 5504 (Finnish 136 

Standard Association, 2002). VFAs (volatile fatty acids: acetic, propionic, iso-butyric, 137 

n-butyric, iso-valeric, valeric and caproic acids) were analyzed using a HP 6890 gas 138 

chromatograph, as described in Tampio et al. (2014). Biogas composition (methane 139 

CH4, carbon dioxide CO2) was analyzed using a portable Combimass GA-m gas 140 

analyzer (Binder Engineering GmbH, Germany). 141 

2.5 Calculations 142 
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The reactors were fed for 5 days a week, but the OLR (kgVS/m
3
day) is expressed 143 

as the average daily weight of substrate fed to the reactor over a one-week period. HRT 144 

was calculated based on feedstock densities. Methane yields in BMP assays were 145 

converted to STP conditions (0 °C, 100 kPa) according to the ideal gas law. Methane 146 

yields in the BMP and RMP assays were calculated by dividing the cumulative methane 147 

production by the VS of the added feedstock/inoculum. With BMP assays, methane 148 

production of the inoculum (RMP) was subtracted so as to achieve BMP of the 149 

feedstock. The standard deviations for BMP and RMP samples were calculated from the 150 

variances of the inoculum and feedstock bottles, where the feedstock variance was 151 

achieved by subtracting the variance of the inoculum. 152 

3 Results and discussion 153 

3.1 Feedstock and digestate characteristics  154 

The characterization of the CF and SS feedstock showed variation in TS and other 155 

parameters, and in particular the composition of the CF feedstock varied due to the 156 

temporal and seasonal changes (Table 2, Lee et al., 2016; McLeod et al.; 2015; 157 

Regueiro et al., 2015). TS contents were 9–12% in both feedstocks, which is suitable for 158 

wet-type anaerobic digestion processes. The VS/TS ratio was low (50–56%) in the CF 159 

feedstock, which is most likely due to the characteristics of the industrial by-products in 160 

the feedstock mixture. In SS feedstock, the VS/TS ratio was higher, around 70%. Both 161 

feedstocks contained relatively high amounts of total nitrogen, 7–8 gN/kg in CF and 5–162 

6 gN/kg in SS, while also the initial NH4-N in feedstocks was high, around 4.3 gNH4-163 

N/kg, in CF feedstock (Table 2). The nitrogen content of the feedstock were due to the 164 

feedstock characteristics, where nitrogen concentrations of 3–9 gN/kg are generally 165 

reported for animal manures (Moset et al., 2015b; Regueiro et al., 2015; Zhang et al., 166 
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2014), 7–8 gN/kg for food wastes (Banks et al., 2012; Haider et al., 2015; Tampio et al., 167 

2014), 2–5 gN/kg for sewage sludge (Leite et al., 2016; Lloret et al., 2013) and up to 168 

14–16 gN/kg in enzyme industry by-products (unpublished result).  169 

The digestates from the full-scale digesters, which were used as inocula in both 170 

batch and continuous experiments, had TS content of  7–9%, of which the VS content 171 

was 30%TS in CF and 45%TS in SS digestate (Table 2). Nitrogen concentrations were 172 

high (around 8 gN/kg in CF, 5.6 gN/kg in SS) as was expected based on the 173 

characteristics of the feedstocks, and 70% of the total nitrogen was in ammonium form 174 

in CF digestate and around 50% in SS digestate. The differences between 175 

ammonification in the full-scale digesters are mainly due to the amount and availability 176 

of nitrogen-containing molecules, e.g. proteins within the feedstock, where SS 177 

feedstock had already gone through one microbial process during the wastewater 178 

treatment. The relatively high NH4-N concentrations, especially in CF digestate (5.5–179 

6.5 gNH4-N/kg), could potentially be inhibitive to the digester microbes (Rajagopal et 180 

al., 2013). Previously NH4-N concentrations of 2–5 gNH4-N/kg have been reported in 181 

full-scale plants mono- or co-digesting either manures, food wastes and different by-182 

products (Fotidis et al., 2014; Lee et al., 2016; Menardo et al., 2011; Moset et al., 183 

2015b; Sundberg et al., 2013). For SS digestates, lower NH4-N concentrations have 184 

been reported (0.5–1.5 gNH4-N/kg, Hao et al., 2016; Sundberg et al., 2013), which are 185 

also lower than what was obtained in the present SS digestate (3.0 gNH4-N /kg, Table 2) 186 

due to higher TS content of the feedstock (TS 12% in the present study, TS 4% in Hao 187 

et al., 2016). 188 

With both digestates studied, the RMP values were similar, around 0.05 m
3
/kgVS 189 

(Table 2), indicating efficient digestion within the full-scale plants. The values obtained 190 
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were within the range of RMP values reported in the literature for full-scale digesters 191 

treating manure and different by-products (0.003–0.03 m
3
/kgVS, Menardo et al., 2011; 192 

0.13–0.17 m
3
/kgVS, Moset et al., 2015b), where the RMP values are highly dependent 193 

on the reactor performance and operation, e.g. OLR (Menardo et al., 2011). 194 

3.2 BMP assays 195 

BMPs of around 0.20 m
3
/kgVS were achieved with CF and SS feedstocks during 196 

the 100- and 64-day assays, respectively (Figure 1). Overall, the BMP potentials with 197 

SS were on the same level, as has been previously reported with sewage sludge 198 

(dewatered/thickened sewage sludge 0.17–0.20 m
3
/kgVS in Abelleira-Pereira et al., 199 

2015; Zhang et al., 2014). However, with the CF sample, the achieved BMP was 40% 200 

lower compared to batch studies with for example pig manure alone (0.32–0.36 201 

m
3
/kgVS in Kafle and Chen, 2016; Zhang et al., 2014) and over 50% lower than BMPs 202 

from digestion of food wastes (0.40–0.50 m
3
/kgVS, Haider et al., 2015; Kawai et al., 203 

2014).  204 

With CF feedstock, the BMP assays showed low and delayed methane production 205 

during the first 20 days of the experiment and thus, the assay bottles were diluted in 206 

order to reduce the organic matter and nitrogen content within the assays. As a result, 207 

the diluted assays produced more than double the amount of methane (0.50 m
3
/kgVS) 208 

than the undiluted assays (0.20 m
3
/kgVS, Figure 1). The delayed methane production 209 

with the CF sample during the first 20 days of the experiment was observed with a long 210 

lag phase and low methane production, which were most likely due to the organic 211 

overloading of the assays, as the S/I ratio, in VS basis, was 1. Also, previous batch 212 

experiments with materials from the same full-scale digester had shown similar long 213 

lag-phase and delayed process start-up (unpublished results). However, the 214 
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representative full-scale digester from which the CF digestate and feedstock were 215 

obtained showed stable process performance and gas production. 216 

The overloading of the organic matter due to the too high S/I ratio induced the 217 

accumulation of VFAs, which caused acidification of the assays and reduced methane 218 

production, as the methane-converting micro-organisms were inhibited (Regueiro et al., 219 

2015). However, the acidification phenomenon within the CF assays was observed to be 220 

reversible (Kawai et al., 2014), as the non-diluted assay was able to recover and produce 221 

methane after day 40, although with lower quantities compared to the diluted assay. It is 222 

apparent that within the diluted assay bottles the organic matter and VFA content 223 

decreased and pH stabilized, which enabled the recovery of the micro-organisms and 224 

improved methane production. In the literature, batch experiments are suggested to be 225 

executed with S/I ratios lower than 1 (Haider et al., 2015; Kawai et al., 2014; Moset et 226 

al., 2015a), where the higher amount of inoculum adds more active micro-organisms, 227 

e.g. methanogens, to the digestion process (Haider et al., 2015), which reduces the lag 228 

phase and improves degradation (Boulanger et al., 2012). However, too low ratios are 229 

not necessarily effective, as the activity of methanogens is increased to a certain point, 230 

after which other parameters, e.g. hydrolysis, becomes the rate limiting step (Boulanger 231 

et al., 2012). Additionally, too high inoculum amounts possibly affect the uncertainty of 232 

the results as the methane production of the inoculum increases (Angelidaki and 233 

Sanders, 2004). Overall, the effect of the S/I ratio is dependent on the substrate and 234 

inoculum type (Moset et al., 2015a), which explains the present differences between the 235 

BMP assays with CF and SS feedstocks, where e.g. no lag phase was observed with SS 236 

feedstock (Figure 1). For example, with sewage sludges an increase of S/I ratio to 2 has 237 
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been reported to increase the cumulative methane production compared to S/I ratios of 1 238 

and 0.5 as the amount of biodegradable substrate is increased (Braguglia et al., 2006). 239 

3.3 Continuous experiments 240 

Stable operation with increasing OLRs and decreasing HRTs was possible in both 241 

laboratory reactors during the around 200 days of experiments. At the beginning of the 242 

experiments, between days 15 to 92 in CF reactor and 15 to 54 in SS reactor, laboratory 243 

digesters were operated with similar HRTs to the representative full-scale digesters 244 

from which the inocula and feedstocks were obtained. Overall, methane yields were on 245 

the same level throughout the study as well as other parameters, which were slightly 246 

affected by the changes within the feedstocks (Figures 1 and 2), which is normal for 247 

full-scale digesters due to the temporal and seasonal variation of the feedstock 248 

composition (Lee et al., 2016; McLeod et al., 2015; Regueiro et al., 2015). This was 249 

seen with e.g. fluctuating TKN and NH4-N concentrations in the CF reactor (Figure 2).  250 

Methane yields of around 0.50–0.60 m
3
/kgVS were achieved with the CF reactor, 251 

while SS reactor produced around 0.28–0.30 m
3
/kgVS of methane (Table 4). Similar, 252 

though slightly lower, results were also obtained from the BMP assays, where diluted 253 

CF assays produced methane 0.50 m
3
/kgVS and SS assays 0.20 m

3
/kgVS (Figure 1). 254 

The differences between methane yields between BMP assays and continuous 255 

experiment may be due to the high S/I ratio applied in BMP assays. The lowest HRTs 256 

studied (14 d in CF, 15 d in SS reactor) showed higher methane yields compared to the 257 

initial HRT from the representative full-scale digesters (HRTs 25 d in CF, 20 d in SS). 258 

With both reactors, the increasing OLR and reducing HRT increased the methane 259 

yields; where the optimum HRT was around 10–15% lower than the initial HRT. In 260 
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addition to the methane yields, the VS removal was also increased with the decreasing 261 

HRTs in both reactors; thus, the effect on VS removal was not linear (Table 4).  262 

Although the CF reactor showed relatively stable methane yields during the 263 

experiment, the VFA and sCOD analyses showed that the digestion process was not 264 

stable during the first stage of the experiment (HRT 25 d, Figure 2), which was 265 

anticipated based on the long lag phase observed during the BMP assays. Shortly after 266 

the start of the feeding of the reactor, the VFA and sCOD concentrations started to 267 

increase and the VFAs reached a concentration of 12 g/kg, of which 63% was propionic, 268 

22% acetic and around 10% iso-valeric acid. However, after the peak value, VFA 269 

concentrations started to decrease. Slight accumulations of VFAs (up to 5.8 g/kg) were 270 

detected after the HRT was reduced to 18 days in the SS reactor; thus, the acclimation 271 

of the microbial population to the increased loading was successful, and no further VFA 272 

peaks were discovered (Figure 3). During days 66–81 both reactors were fed with lower 273 

OLRs, which also affected the decrease and stabilization of the VFA concentrations to a 274 

level of <1.5 g/kg in CF and around 2.0 g/kg in SS reactor (Figures 2 and 3). The CF 275 

digestate obtained from the representative full-scale digester thus had a higher initial 276 

VFA concentration (2.9 g/kg) than the SS digestate (0.2 g/kg, Table 2), which indicated 277 

more stable process performance in the full-scale SS digester. Overall, also the 278 

laboratory SS reactor showed a more balanced VFA and sCOD performance throughout 279 

the experiment compared to CF (Figures 2 and 3).  280 

With the CF digester, the process stability was affected at the beginning of the 281 

CSTR experiments, as the VFA concentrations increased (Figure 2). The increasing 282 

VFAs are usually due to overloading of organic material into the reactors, as the 283 

methanogens are not able to degrade the formed VFAs (Regueiro et al., 2015), or due to 284 
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inhibition, which causes imbalances within microbial functions and increase of VFAs 285 

(Rajagopal et al., 2013). At the beginning of the experiments, the OLR was relatively 286 

low and HRT high, which reduces the risk for the VFA accumulation due to organic 287 

matter overloading. However, the NH4-N concentration within the CF reactor was high 288 

(4–5 g/kg) throughout the study, which was due to the high TKN concentration of the 289 

feedstock (7 g/kg) consisting mainly of industrial by-products and pig slurry. The NH4-290 

N induces the inhibition of the methane-forming micro-organisms in high 291 

concentrations, of which concentrations around 1.5–2.5 g/kg are proposed to be 292 

inhibitive for un-acclimated and around 3–6 g/kg for acclimated inocula (reviewed in 293 

Rajagopal et al., 2013). According to these literature values, the NH4-N concentration 294 

within CF reactor could potentially inhibit the digestion process. Thus, the inoculum 295 

used was already acclimated to high NH4-N concentrations, as the full-scale reactor was 296 

already successfully fed with the same feedstock and the same OLR. Within the 297 

representative full-scale digester, no inhibition or accumulation of VFAs was observed, 298 

while the removal of the digestate from the reactor and inoculation and start-up of the 299 

laboratory reactors showed imbalanced digestion. 300 

The reason for VFA accumulation in the CF digester could be related partly to the 301 

NH4-N as well as the temperature range applied (41 °C), which possibly affected the 302 

function of the micro-organisms. Ammonium nitrogen has an effect on microbial 303 

consortia (Fotidis et al., 2014; Lee et al., 2016), and it is known that the 304 

hydrogenotrophic methane formation route is active when ammonia is high, while 305 

acetoclastic methanogens are inhibited by NH4-N (Banks et al., 2012; Fotidis et al., 306 

2014). Additionally, the digester temperature (41 °C) was near to the mesophilic upper 307 

range, which is the most vulnerable temperature zone (from 45 to 50 °C, Kim and Lee, 308 
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2016), where the microbial consortia are more susceptible against changes in 309 

environmental conditions, e.g. temperature shocks (Gao et al., 2011). It is thus 310 

suggested that the high NH4-N concentration and temperature of 41 °C together reduced 311 

the microbial diversity already within the full-scale CF digester. As the inoculum was 312 

removed from the full-scale reactor and transported to the laboratory-scale reactors, the 313 

microbial consortia were affected due to a change in temperature and the microbial 314 

consortia were not able to quickly recover from the temperature shock, which caused 315 

the rapid VFA accumulation after the start of the CSTR experiments and possibly also 316 

affected the batch tests. The inoculum would probably have needed a longer 317 

acclimation/start-up period after introduced to the reactor and the mesophilic conditions, 318 

which was seen as the VFA concentrations stabilized around day 90 (Figure 2) 319 

indicating that the acidification was a reversible process (Kawai et al., 2014). A similar 320 

result was also obtained in a laboratory study with wastewater treatment sludge, where 321 

the temperature of 42 °C was observed to inhibit the start-up of the digestion process, 322 

and where the microbial community structure within the 42 °C reactor was also 323 

different compared to a control reactor operating at 37 °C (Beale et al., 2016). In the 324 

present study, the VFA accumulation did not correlate with the pH value (Figure 2), 325 

which was measured each day, supporting the reversible and temporary nature of the 326 

acidification phenomenon. Additionally, the high NH4-N concentration within the 327 

reactor acted as a buffer and stabilized pH (Prochazka et al., 2012).  328 

Another increase of VFAs in the CF reactor was observed during the lowest HRT 329 

(14 days) applied, where the increased organic matter and nitrogen loading most likely 330 

affected the methanogens and caused acidification. Unfortunately, the experiment was 331 

halted, and it is unclear what was the ultimate cause for the VFA imbalances. With the 332 
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SS reactor digesting sewage sludge, the NH4-N concentration was lower (around 3 g/kg) 333 

compared to CF reactor (4–5 g/kg). SS feedstock had also more stable composition 334 

compared to CF (see Table 2), where the temporal variation within the feedstock 335 

composition was more evident, and was observed with e.g. varying TKN concentrations 336 

during the CSTR experiment (Figure 2). Overall, the composition of sewage sludge is 337 

more cohesive throughout the year, compared to the co-feedstock in CF (industrial 338 

waste), where the feedstock composition is affected by the current availability of the 339 

organic waste materials (Regueiro et al., 2015).  340 

The present OLRs and HRTs achieved in CF and SS digesters were compared to 341 

literature values obtained from pilot and full-scale plants digesting similar feedstocks 342 

(mixtures of industrial/food wastes and manure, sewage sludge) (Table 5). The HRTs 343 

with industrial waste- and manure-based digestion plants are usually higher, around 25 344 

to 30 days, thus with similar OLRs as in the studied CF reactor (around 3 kgVS/m
3
d). 345 

However, the co-digestion with various feedstocks as well as varying mesophilic 346 

temperature ranges (from 35 to 41 °C) complicates the direct comparison of the reported 347 

literature values (Table 5). The thermophilic SS reactor with sewage sludge as 348 

feedstock, showed similar HRTs with full-scale applications (10–30 days) and VS 349 

removal (40–50%), thus higher OLR (4–6 kgVS/m
3
d compared to 1.5–3 kgVS/m

3
d 350 

within the full-scale digesters, Table 5). Overall, the HRT and OLR are dependent on 351 

feedstock characteristics, which affect the operational parameters in each digester. With 352 

lower HRTs and higher OLRs, the reactor volume can be reduced and the feedstock 353 

treatment rate increased, which increases the economy of the anaerobic digestion plants 354 

through increased gate fees without compromising the stability of the digestion process. 355 

In the present study, it was shown that the successful increase of the waste digestion 356 
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rate by around 10–15% is possible also with feedstocks containing high nitrogen 357 

concentrations. 358 

4 Conclusions  359 

The reduction of HRT from 20–25 to 14–15 days was possible in laboratory-scale 360 

reactors simulating full-scale anaerobic digesters. In terms of methane yield and VS 361 

removal, the optimum HRTs were around 17 and  22 days, representing a 10–15% 362 

increase in digester efficiency and gate fee income in full-scale applications. The 363 

increase of the treatment rate of high nitrogen-containing feedstocks (5–9 g/kg) was 364 

possible, enabling more efficient utilization of these types of waste materials, thus 365 

necessary acclimation time is needed to prevent VFA accumulation during digester 366 

start-up. 367 
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Figure captions 482 

Figure 1. The biochemical methane potentials (BMPs) of the studied feedstocks and the 483 

residual methane potentials (RMPs) of the digestates, a) CF, b) SS. The standard 484 

deviations are plotted in 5-day intervals, where n=3 for inocula and SS feedstock, n=2 485 

for diluted CF feedstock, and n=1 for the raw CF feedstock. Standard deviation for the 486 

diluted CF feedstock is not available from day 24 to 62 due to sample dilution. Note the 487 

different x- and y-axis between figures. 488 

 489 

Figure 2. The process parameters within the CF reactor operating at 41 °C during the 490 

gradually reduced hydraulic retention times (HRTs). a) Methane content, methane yield 491 

and organic loading rate (OLR), b) soluble chemical oxygen demand (sCOD), volatile 492 

fatty acids (VFAs) and pH, c) total Kjeldahl nitrogen (TKN) and ammonium nitrogen 493 

(NH4-N). 494 

 495 

Figure 3. The process parameters within the SS reactor operating at 52 °C during the 496 

gradually reduced hydraulic retention times (HRTs). a) Methane content, methane yield 497 

and organic loading rate (OLR), b) soluble chemical oxygen demand (sCOD), volatile 498 

fatty acids (VFAs) and pH, c) total Kjeldahl nitrogen (TKN) and ammonium nitrogen 499 

(NH4-N). 500 

  501 
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Table 1. The characteristics of the full-scale anaerobic digestion plants simulated in this 502 

study.  503 

Digester Co-digestion feedstock  Sewage sludge 

Abbreviation CF SS 

Feedstock By-products from enzyme 

production (60%), pig slurry (25%), 

food industry by-products (15%)
a
 

Dewatered municipal sewage sludge
b
 

Treatment capacity 

(t/y) 

100 000 75 000 

Temperature (°C) 41 52 

HRT (d) 25 20 

OLR (kgVS/m
3
d) 2.2–2.3 4 

a
Mixed and hygienized 60 min in 70 °C 

b
Diluted to TS 15% and sterilized (thermal hydrolysis <133 °C, <20 min, <3 bars) 

 504 

  505 
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Table 2. The characteristics of the digestate (used as an inoculum) and feedstocks used 506 

within the biochemical methane potential (BMP) assays and continuously stirred tank 507 

reactor (CSTR) experiments. All values presented on a fresh matter basis. 508 

Reactor 

feedstock Co-digestion feedstock (CF) Sewage sludge (SS) 

Sample Digestate Feedstock Digestate Feedstock 

Experiment  BMP  CSTR  BMP  CSTR
a
 BMP  CSTR BMP  CSTR

a
 

pH n.d. 8.3 n.d. 6.2 ± 0.2 n.d. 8.1 n.d. 6.1 ± 0.2 

TS (g/kg) 96.2 76.9 121.5 85.9 ± 13.8 77.0 91.1 121.3 118.0 ± 4.1 

VS (g/kg) 33.3 29.0 60.4 47.9 ± 7.8 43.4 46.9 88.8 83.3 ± 3.5 

VS/TS (%) 34.6 37.7 49.7 55.8 56.4 51.5 73.2 70.6 

TKN (g/kg) 8.8 7.6 8.4 7.0 ± 0.8 5.7 5.6 6.2 5.4 ± 0.2 

NH4-N (g/kg) 6.4 5.5 4.3 n.d. 3.0 3.0 1.1 n.d. 

sCOD (g/kg) n.d. 11.9 n.d. n.d. n.d. 10.9 n.d. n.d. 

VFAtot 

(g/kg)  n.d. 2.9  n.d.  n.d.  n.d. 0.2  n.d.  n.d. 

BMP, RMP 

(m
3

CH4/kgVS) 0.048  n.d. 0.202
b
  n.d. 0.047  n.d. 0.191  n.d. 

a
n=6–7 

        
b
after dilution of assays 0.510 m

3
CH4/tVS 

n.d., not determined 

509 
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Table 3. The operation of the laboratory reactors during the experiment with gradually 510 

increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT).  511 

Co-digestion feedstock (CF) Sewage sludge (SS) 

Days 
OLR 

(kgVS/m
3
d) 

HRT (d) Days 
OLR 

(kgVS/m
3
d) 

HRT (d) 

15–92 1.8–2.1 25 15–54 3.9–4.3 20 

93–111 1.5 22 55–125 4.4–4.7 18.3 

112–125 1.9 17.1 126–137 4.8 16.6 

126–158 2.5 22 138–158 5.0 15.9 

159–189 3.0 16.7 159–189 5.5 15.9 

190–211 3.5 14.4 190–212 6.0 14.7 

 512 

  513 
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Table 4. Methane yields, total and volatile solids (TS, VS) and VS removal during the 514 

study with decreasing hydraulic retention times (HRTs) and increasing organic loading 515 

rates (OLRs). The table presents average values and standard deviations from the 516 

representative HRTs. For days 0–4 the reactors were kept unfed, on days 5–14 the 517 

reactors were acclimated with HRT of 50 d (OLR 0.9 kgVS/m
3
d) in CF and HRT of 50 518 

d (OLR 0.9 kgVS/m
3
d) in SS.  519 

Co-digestion feedstock (CF) 

Days 

HRT (d), OLR 

(kgVS/m
3
d) 

CH4 yield 

(m
3
/kgVS) TS (g/kg) VS (g/kg) 

VS removal 

(%) 

15–92 25 (OLR 1.8–2.1) 0.474 ± 0.109 74.0 ± 16.5 32.1 ± 7.6 40.1 ± 12.4 

93–111 22 (OLR 1.5) 0.591 ± 0.027 53.6 ± 0 22.0 ± 0 33.7 ± 0 

112–125 17 (OLR 1.9) 0.586 ± 0.015 50.2 ± 0 22.2 ± 0 33.3 ± 0 

126–158 22 (OLR 2.5) 0.561 ± 0.008 60.5 ± 5.9 25.4 ± 1.5 53.8 ± 2.7 

159–189 17 (OLR 3.0) 0.479 ± 0.007 71.3 ± 3.7 29.3 ± 1.4 41.6 ± 2.8 

190–211 14 (OLR 3.5) 0.536 ± 0.010 72.5 ± 0 33.2 ± 0 34.3 ± 0 

Sewage sludge (SS) 

Days 

HRT (d), OLR 

(kgVS/m
3
d) 

CH4 yield 

(m
3
/kgVS) TS (g/kg) VS (g/kg) 

VS removal 

(%) 

15–54 20 (OLR 3.9–4.3) 0.280 ± 0.026 87.0 ± 2.6 47.0 ± 1.2 42.5 ± 4.7 

55–125 18 (OLR 4.4–4.7) 0.279 ± 0.089 83.8 ± 3.9 45.7 ± 2.0 45.1 ± 2.5 

126–137 17 (OLR 4.8) 0.297 ± 0.004 79.0 ± 0 44.3 ± 0 43.8 ± 0 

138–158 16 (OLR 5.0) 0.288 ± 0.007 75.4 ± 0 42.5 ± 0 46.0 ± 0 

159–189 16 (OLR 5.5) 0.279 ± 0.020 77.0 ± 3.7 44.4 ± 1.6 49.1 ± 1.8 

190–212 15 (OLR 6.0) 0.286 ± 0.006 91.8 ± 0 49.8 ± 0 42.8 ± 0 

n=2–11 for CH4 yield, n=1–5 for TS, VS and VS removal 

 520 

  521 
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Table 5. The operational parameters; temperature, hydraulic retention times (HRT), 522 

organic loading rate (OLR) and VS removal in full- and pilot-scale digesters digesting 523 

mixtures of industrial/food wastes and manure, and sewage sludge according to the 524 

literature. 525 

 

Temper-

ature (°C) 

OLR 

(kgVS/m
3
d) 

HRT (d) 

VS 

removal 

(%) 

Reference 

Animal manure (70%), 

energy crops (20%), food 

industry by-products (10%) 

41 2.25 105 - Menardo et al., 2011 

Pig slurry (87%), energy 

crops (17%) 
41 0.85 51 - Menardo et al., 2011 

OFMSW (59%), food 

industry waste (21%), pig 

manure (9%) 

37 3.2 –3.9 27–34  Sundberg et al., 2013 

Pig and cow manure (69%), 

OFMSW (30%) 
38 3.1 29 - Sundberg et al., 2013 

SHW (54%), pig and cow 

manure (33%), OFMSW 

(10%) 

37 3.1 25 - Sundberg et al., 2013 

Cattle slurry, cattle manure, 

maize silage 
38.5 - 25 - 

Alburquerque et al., 

2012 

SHW (54%), pig and cow 

manure (33%), OFMSW 

(10%) 

37 3.1 25  Sundberg et al., 2013 

Pig manure, SHW sludge, 

biodiesel wastewater 
37 - 21 - 

Alburquerque et al., 

2012 

Cow manure 35 3.1 20 28.2 Moset et al., 2015b 

Enzyme industry by-products 

(60%), pig slurry (25%), food 

industry by-products (15%) 

41 1.5–3.5 14–25 33–54 Present study 

Wastewater treatment sludge 

52.3–53.9 1.5–2.5 16–28 39.4–46.1 Lloret et al., 2013 

55 2.2 20 34 Leite et al., 2016 

58.5 - 
15.5–

17.5 
- Lee et al., 2016 

51–53 2.9 11 - Sundberg et al., 2013 

52 4–6 15–20 43–49 Present study 

Organic fraction of municipal solid waste (OFMSW), slaughterhouse waste (SHW) 

-, not available 

 526 

  527 
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Fig. 1. 528 
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Fig. 2. 531 
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Fig. 3. 534 
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