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Abstract 

This study compared four different digestate liquid treatment systems of a 

theoretical anaerobic digestion plant in order to facilitate the utilization of municipal 

food waste nutrients in agriculture. The mass, nutrient and energy balances of a 

theoretical plant digesting 60 kt/y of food waste were used to evaluate the feasibility of 

the treatments to concentrate nutrients into liquid fertilizer products. The studied 

technologies for digestate liquid treatment were ammonia stripping, ammonia stripping 

combined with reverse osmosis (RO), evaporation combined with RO, and stripping 

combined with both evaporation and RO. As a result, processing of digestate into 

concentrated fertilizer products consumed less than 10% of the produced energy from 

food wastes and was also sufficient for the heat-demanding digestate liquid treatments, 

evaporation and stripping. The digestate liquid treatment systems were considered as 

nitrogen and potassium concentration methods which were able to concentrate up to 
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67% of the feedstock nitrogen into transportable fertilizer products with low mass. Of 

the studied digestate systems evaporation combined with RO was evaluated as the most 

efficient nutrient recovery technology for the production of transportable fertilizer 

products due to the high concentration of nutrients and nutrient availability as well as 

low product mass and energy consumption. Overall, the selection of the treatment 

technology is dependent on the location of the anaerobic digestion plant relative to the 

agricultural land and the type of fertilizer products needed. 
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1. Introduction 

Anaerobic digestion (AD) of  food waste (FW) is increasingly used to produce 

renewable energy, in the form of heat and power or vehicle fuel, and nutrient-rich 

digestate for agriculture, to decrease the use of energy intensive mineral fertilizers 

(Laureni et al., 2013). However, the digestate has usually unbalanced nutrient ratios for 

plant growth (Camilleri-Rumbau et al., 2014). Large mass due to high water content 

increases the transportation need of the digestate, as the AD plants treating municipal 

FW are usually located far from agricultural lands (Babson et al., 2013). Digestate 

treatment by solid-liquid separation is an increasingly used treatment for the production 

of phosphorus containing solid digestate and liquid digestate containing water-soluble 

nitrogen and potassium. The solid-liquid separation of the digestate divides most of the 

mass into the liquid fraction decreasing its nutrient concentrations (Hjorth et al., 2010). 

Low nutrient concentrations and large mass complicate the use of the liquid digestate in 

agriculture and increase the transportation need (Chiumenti et al., 2013). To efficiently 

utilize the FW nutrients, the treatment of liquid digestate is needed to decrease its mass 

and increase nutrient concentrations.  

The digestate liquid can be treated to remove water and simultaneously 

concentrate nutrients. This lowers the environmental impact (i.e. global warming 

potential and acidification) and reduces transportation costs to areas with nutrient 

deficits compared with digestate use as such (Rehl and Müller, 2011). In addition to the 

decreased transportation costs, the additional economic benefits of the digestate liquid 

treatment are related to the profit gained from the selling of the fertilizers (Fuchs and 

Drosg, 2013, Rehl and Müller, 2011). With the combination of solid-liquid separation 

and digestate liquid treatment, fertilizer products with optimal composition can be 



 

 

4 

 

produced (Hjorth et al., 2010). Produced fertilizers can be designed to match the crop 

nutrient requirements and to achieve better control of the nutrient contents of the 

applied fertilizer to reduce the nutrient run-off and leaching. These products could be 

also used to supplement the raw digestate fertilization by replacing mineral fertilizers.  

Technologies for digestate liquid treatment such as ammonia stripping, 

evaporation, struvite precipitation, membrane separation, as well as various 

combinations of these, have been previously studied considering nutrient recovery and 

production of nutrient-rich products with, e.g., digestate liquids, manure and urine 

(Antonini et al., 2011, Bonmatí et al., 2003, Bonmatí and Flotats, 2003a, b, Chiumenti 

et al., 2013, Ek et al., 2006, Ledda et al., 2013). However, to ensure the usability and 

sustainability of different digestate liquid treatment techniques and to facilitate the 

agricultural utilization of the nutrients over longer transportation distances, the total 

digestate treatment chain and all produced mass flows should be taken into 

consideration as well as all the process inputs, e.g., chemicals and energy (Mehta et al., 

2015). As life cycle assessment and energy efficiency studies have mainly concentrated 

on the use of raw digestate or separated solid digestate (e.g. Bacenetti et al., 2013, 

Berglund and Börjesson, 2006, Evangelisti et al., 2014, Pöschl et al., 2010, Smyth et al., 

2009) only a few studies exist where the digestate liquid and its treatment has been 

taken into consideration (Rehl and Müller, 2011). In addition, these life cycle studies 

focus solely on environmental and ecological effects and do not evaluate the fertilizer 

products from the viewpoint of biogas plant efficiency or agriculture and plant nutrition. 

From these perspectives information about the mass, nutrient and energy balances of an 

AD plant with digestate liquid treatment is important, in addition to environmental 

aspects. 
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The aim of this study was to compare the potential of four digestate liquid 

treatment systems of a theoretical AD plant digesting municipal FW to produce 

fertilizer products with low water and concentrated nutrient contents. The studied 

treatment systems were different combinations of ammonia stripping, evaporation and 

membrane filtration, which have been applied in the full scale treatment of digestate or 

manure based liquids (see e.g. Boehler et al., 2015, Flotats et al., 2011, Fuchs and 

Drosg, 2013). For all four systems the mass, nutrient and energy balances were 

calculated and the nutrient recovery, mass reduction and energy efficiencies were 

compared based on typical literature values from laboratory, pilot and full scale studies. 

The performance of the treatment systems was also assessed in relation to the energy 

consumption of fertilizer product transportation to see the effect of digestate liquid 

treatment on the transportability of the products.  

 2. Materials and methods  

2.1. Overview of the theoretical AD plant 

This study investigated a theoretical mesophilic AD plant which was assumed to 

digest source-segregated municipal FW (60 kt/y, kilotonnes per year). Figure 1 presents 

the applied AD plant system boundaries which include pretreatment, a digester, 

digestate treatment and biogas upgrading. The FW was pretreated and hygienized (1 h at 

70 °C) and subsequently diluted to a total solids (TS) content of 15% with processed 

water or water from the local water supply. The digestate treatment was assumed to 

include the separation of the digestate into liquid and solid digestates using a centrifuge. 

The liquid digestate was assumed to be treated with one of the four digestate liquid 

treatment systems consisting of ammonia stripping, evaporation and membrane (reverse 

osmosis, RO) technologies (Figure 2). The formed biogas was assumed to be upgraded 
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in a combined heat and power unit (CHP) into heat and electricity to be used in the AD 

plant and the excess electricity was to be fed to the power grid.  

2.2. Pretreatment, hygienization, AD and gas upgrading  

2.2.1 Mass and nutrient balances 

The feed for AD was based on the characteristics of source-segregated FW: TS 

25%, volatile solids (VS) 23%, Ntot 7.5 kg/tFM (fresh matter), NH4-N 0.4 kg/tFM, Ptot 

0.9 kg/tFM, Ktot 2.8 kg/tFM (Tampio et al., 2014, 2015). The FW (60 kt/y) was 

assumed to be pretreated as in Banks et al., (2011) by shredding/maceration and then 

hygienized (1 h at 70 °C according to European Council, 2011, European Parliament 

and the Council, 2009). Pretreatment and hygienization were not considered to affect 

the FW mass and nutrient content as material was not removed during the pretreatment 

step. The dilution water was assumed to be added to the FW during the maceration step 

(40 kt/y water to achieve TS of 15%, mixture referred to as feedstock). The mass of the 

produced digestate was calculated by subtracting the mass of the biogas from the 

feedstock (60 kt of FW + 40 kt of dilution water). The calculation of the biogas mass 

was based on biogas composition (60% CH4, 40% CO2) and component densities (CH4 

0.72 kg/m
3
, CO2 1.96 kg/m

3
, see Supplementary material for calculations). In the 

digestate, the total nutrient concentrations (Ntot, Ptot, Ktot, kg/tFM) were assumed to 

be the same as in the feedstock, while the ammonium nitrogen in FW was assumed to 

increase from 0.4 kg/tFM to 4 kg/tFM after digestion (Tampio et al., 2014, 2015).  

2.2.2 Energy balance 

The energy balance included both heat and electricity consumption and 

production in the AD plant. The amount of thermal energy (th) needed for heating the 
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FW (60 kt) to 75 °C to maintain the required temperature during hygienization was 

calculated assuming the specific heat capacity of the feedstock to be the same as that of 

water (4.18 kJ/kgºC, see Supplementary material for calculations). The heat energy 

from the hygienization was assumed to be sufficient for the mesophilic (40 °C) digester 

(Berglund and Börjesson, 2006, Prapaspongsa et al., 2010) and thus, no additional 

heating was allocated for the heating of FW prior to the digester. However, the heating 

of the dilution water (40 kt/y) was calculated with the specific heat capacity of water 

using temperature difference from 15 to 40 °C. Heat losses from the hygienization and 

digester units were assumed to be in total 15% of the heat demand (digester heat loss 

15% in Smyth et al., 2009, 20% in Rapport et al., 2011) being dependent on the reactor 

design as well as the difference between the reactor and outdoor temperature. The 

electricity (el) consumption of 37.5 kWh/tFM feedstock for the hygienization and 

pretreatment unit (reviewed in Pöschl et al. 2010, see Supplementary material), and 18 

kWh/tFM for the digester was used (reviewed in Berglund and Börjesson, 2006, 

reviewed in Pöschl et al., 2010, see Supplementary material). 

The energy content (MWh/y) of the produced biogas was calculated by 

multiplying the biochemical methane potential of the FW (BMP, 450 m
3
CH4/tVS, 

Tampio et al. 2014) with the amount of feedstock VS fed to the reactor. The conversion 

factor of 1 m
3
(CH4)=10 kWh was used. For the conversion of the biogas into heat and 

electricity in the CHP unit, the energy conversion efficiencies of 38% for electricity and 

48% for heat were used (Bacenetti et al., 2013, Poeschl et al., 2012). Additionally, for 

the CHP-unit electricity the consumption of 5% of the energy produced in CHP was 

applied (Banks et al., 2011, Havukainen et al., 2014, Naegele et al., 2012, Pöschl et al., 

2010, see Supplementary material). However, the use of different desulfurization 
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methods for the biogas prior to CHP can increase the energy consumption, which was 

not taken into consideration in this study. E.g. in Karellas et al. (2010) the combined 

desulfurization with a spray scrubber and CHP was reported consuming 15% of the 

electricity produced in CHP in an AD plant treating pig manure, wheat straw and 

glycerol (45 kt/y). 

2.3 Digestate treatment 

The digestate was assumed to be separated with a decanter centrifuge producing 

liquid and solid fractions of which the liquid fraction was further treated to produce 

fertilizer products. The solid digestate was assumed to be used as such in agriculture, as 

it is the practice e.g. in the UK, Scandinavia and Switzerland, where the legislation does 

not require further treatment with e.g. composting (Saveyn and Eder 2014). Centrifuge 

separation efficiencies for mass, TS, VS and nutrients (Ntot, NH4-N, Ptot, Ktot) were 

adopted from the literature and the electricity consumption was assumed to be 3.5 

kWh/tFM digestate (Flotats et al., 2011, reviewed in Hjorth et al., 2010, Ledda et al., 

2013, Møller et al., 2000, 2002, Table 1, see Supplementary material). 

Polymer/flocculent additions used in separation were not included in the mass balance 

as the annual total amount of additions was considered negligible (for example 1.625 

g/gTSdigestate of both polymer and mineral conditioner, Alvarenga et al., 2015).  

It was assumed that all outputs from the different digestate liquid treatment 

systems were suitable for agricultural use and/or processed water suitable for 

discharging (Figure 2). Processed water was used as dilution water before the digester 

and the surplus water was assumed to be discharged. Additional treatments of processed 

water with, e.g., active carbon filters (Zarebska et al., 2015) were not taken into 
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consideration. With each treatment system, the consumption of chemicals (NaOH, 

H2SO4, m
3
/y) was included in the calculation of the output mass and characteristics. 

2.3.1. Reference system, S0 

In the reference system (referred as S0), the digestate liquid did not undergo any 

treatment after digestate separation (Figure 2). Thus, due to the lack of liquid treatment, 

the water for feedstock dilution came from the local water supply, i.e., outside the 

system boundaries. The digestate liquid was not used for dilution due to the high 

nitrogen content which could accumulate during digestion and inhibit the process. 

2.3.2 Stripping, S1  

Ammonia stripping combined with H2SO4 scrubbing (system referred to as S1) 

was studied to produce ammonium sulfate and stripping residue (Figure 2). During 

stripping, NH4-N is transformed to NH3 along with the temperature and a pH increase 

and further recovered with H2SO4 in the form of ammonium sulfate ((NH4)2SO4) during 

scrubbing. In the mass and nutrient balance calculations the nitrogen (NH4-N) recovery 

efficiency was assumed to be 95% based on laboratory, pilot and full scale studies 

(Basakcilardan-Kabakci et al., 2007, Bonmatí and Flotats, 2003a, Flotats et al., 2011, 

Guštin and Marinšek-Logar, 2011, Laureni et al., 2013, Liu et al., 2015, Table 1, see 

also Supplementary material). (NH4)2SO4 was assumed to be a chemically pure product 

with no TS, VS, Ptot or Ktot, while the Ntot was assumed to consist solely of the NH4-

N. The NH4-N mass balance was based on the assumption that the NH4-N concentration 

in the produced ammonium sulfate was 40 kg/tFM (Laureni et al., 2013). The energy 

consumption during stripping consisted of the heat energy for the temperature increase 

from the digester to the stripper (from 40 to 80 °C) which was calculated using the 
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specific heat capacity of water. Electricity consumption for stripping of 2 kWh/kgN 

recovered was used (reviewed in van Eekert et al., 2012, Table 1, see Supplementary 

material). The stripping was assumed to be executed in atmospheric pressure and thus, 

no energy consumption for the production of vacuum was allocated. NaOH (50%) 

consumption for the pH increase before stripping was assumed to be the same as the pH 

increase of urine (pH from 9 to 10, 20 L/m
3
, Antonini et al., 2011). NaOH consumption 

could be reduced with CO2 stripping before ammonia stripping (Boehler et al., 2015), 

which was, however, not taken into consideration in this study. The H2SO4 (93%) 

consumption during ammonia stripping was calculated using the molar ratios of H2SO4 

and (NH4)2SO4 and the nitrogen concentration of 40 kg/tFM in the ammonium sulfate, 

from which the consumption of 0.08 m
3
/t liquid digestate was used. 

2.3.3. Stripping and reverse osmosis, S2 

Ammonia stripping was combined with reverse osmosis treatment (system 

referred as S2) to produce ammonium sulfate, retentate and processed water (Figure 2). 

After stripping, the stripping residue was directed to the RO treatment producing 

processed water flow for discharge. For stripping treatment, the mass and nutrient 

separation/recovery efficiencies, chemical and energy consumptions calculations were 

based on the same values as in system S1 (Table 1). The mass and nutrient balances for 

the RO treatment were calculated based on the typical values from the literature (Table 

1) and the electricity use of 2.5 kWh/t stripping residue was applied (Carretier et al., 

2015, Chiumenti et al., 2010, Ek et al., 2006, Flotats et al., 2011, Ledda et al., 2013, 

Mondor et al., 2008, see Supplementary material). The regeneration and/or change of 

RO membranes were not taken into consideration. 

2.3.4. Evaporation and reverse osmosis, S3  
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Evaporation combined with RO (referred as S3) was studied to concentrate 

nutrients in the liquid digestate and a major part of the liquid into condensate which was 

further treated with RO to produce retentate. The retentate was in turn recycled back to 

separation, and processed water was directed to discharge (Figure 2). The pH of the 

digestate liquid was controlled with H2SO4 to prevent the volatilization of NH4
+
 during 

evaporation where the liquid was heated to 80 °C. The mass and nutrient balance 

calculations for the evaporation were based on typical literature values from laboratory, 

pilot and full scale studies (Bonmatí and Flotats, 2003b, Chiumenti et al., 2013, Ek et 

al., 2006, Flotats et al., 2011, Mauer et al., 2003, Table 1, see also Supplementary 

material). The TS and VS separation efficiencies in the concentrate were assumed to be 

100% and the NH4-N recovery rate the same as in Ntot (80%). The H2SO4 (93%) 

consumption of 0.005 m
3
/t digestate liquid for the pH decrease during evaporation was 

based on the pH decrease of urine and manure with strong H2SO4 (pH from 9 to 6 in Ek 

et al., 2006, pH from 7.2 to 5.5 in Sørensen and Eriksen, 2009). The consumption of 

other chemicals such as antifoaming additives was not included. The energy 

consumption of evaporation consisted of the heat energy needed to increase the 

digestate liquid temperature from 40 to 80 °C plus the electricity consumption of 5 

kWh/t liquid digestate based on typical literature values (Bonmatí and Flotats, 2003b, 

Chiumenti et al., 2013, Ek et al., 2006, Flotats et al., 2011, Mauer et al., 2003, Table 1, 

see also Supplementary material). No vacuum conditions for the evaporation were 

applied as the process temperature was high (80 °C). Mass and nutrient 

separation/recovery efficiencies, chemical and energy consumptions considering RO 

were the same as in S2. 

2.3.5. Stripping, evaporation and RO, S4 
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Combined stripping, evaporation and RO (S4) were studied to produce both 

ammonium sulfate and concentrate. After stripping, the stripping residue was 

evaporated to produce concentrate and condensate. The condensate was treated in RO 

after which the retentate was further recycled back to digestate separation and the 

processed water was discharged (Figure 2). The same mass and nutrient 

separation/recovery efficiencies, chemical and energy consumptions for stripping were 

used as in system S1, for evaporation as in system S3 and for RO as in system S2 (Table 

1). However, it was assumed that heat from the stripping (80 °C) was sufficient for the 

evaporation and thus, no heat energy was allocated for evaporation (Ervasti et al., 

2011).  

In systems S1-S4, no heat losses were calculated for stripping and evaporation, 

nor the energy consumption of the membrane changes for RO, due to the lack of 

reference data in the literature. As the operational temperatures were the same in 

stripping and evaporation (80 °C), the effect of heat losses in the total energy balances 

between systems S1-S3 was assumed to be relatively small. In the full scale stripping 

and evaporation plants the heat losses due to the convection and radiation through 

treatment apparatus, and through the evaporation of material, are reduced with the 

insulation and use of heat exchangers. 

2.4 Transportation 

The energy consumption during the transportation of the fertilizer products from 

the digestate liquid treatments was calculated using the energy consumption of a 

semitrailer truck in Finland, 0.17 kWh/t-km (full 25t load, EURO 5 truck type, VTT, 

2012). The transportation of liquid products from each digestate liquid treatment 

systems was studied from 0 to 250 km. 
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3. Results  

3.1 Mass and nutrient balance of AD and digestate treatment  

The mass and nutrient flows of digestate and digestate liquid treatments formed 

the mass and nutrient balance of the systems showing the concentration of nutrients into 

fertilizer products. The calculations were based on the mass flow of the feedstock (FW 

+ diluting water) and added chemicals as well as the characteristics of the digestate. The 

mass of the digestate accounted for 87% of the initial feedstock fed to the AD plant (60 

kt of FW + 40 kt of dilution water), while 13% of the feedstock was transformed into 

biogas during AD. The digestate separation produced liquid (79 kt/y) more than eight 

times the amount of solid digestate (9 kt/y) (Table 2, Table 3).  

The treatment of the digestate liquid with stripping (S1) concentrated 45% of the 

initial feedstock nitrogen into ammonium sulfate (40 kg/tFM) with the mass of 11 kt/y 

(Table 2, Table 3). The mass of the ammonium sulfate accounted for only 5% of the 

feedstock mass flow when the chemical additions were not considered (Table 3). The 

remaining stripping residue flow was 85 kt/y with low nitrogen concentration (1.5 

kgN/tFM) compared with the untreated digestate liquid (4.0 kgN/kgFM) but with 

comparable in the concentrations of both phosphorus (0.1 kgP/tFM in the stripping 

residue and digestate liquid) and potassium (1.9 kgK/tFM in the stripping residue, 1.8 

kgK/tFM in the digestate liquid). In total, the amount of outputs from the stripping 

system was 85 kt/y (ammonium sulfate + stripping residue, Table 2) which was 70% of 

the feedstock nitrogen, 10% of phosphorus, 85% of potassium and 79% the feedstock 

mass without chemical additions (Table 3). 
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In combined stripping + RO treatment (S2), stripping produced the same amount 

of ammonium sulfate as in a system with stripping only (S1, 11 kt/y), while the RO 

treatment of stripping residue produced retentate and processed water flows of 21 kt/y 

and 53 kt/y, respectively (Table 2). The retentate still contained nutrients (5.4 kgN/tFM, 

0.2 kgP/tFM, 6.9 kgK/tFM), and was assumed to be used as fertilizer in agriculture (as 

in Ledda et al., 2013), and not recycled within the digestate liquid treatment as in 

systems S3 and S4. Thus, in this system the mass of the fertilizer products (ammonium 

sulfate, retentate) was 32 kt/y (Table 2), and concentrated 70% of the feedstock 

nitrogen, 10% of phosphorus and 84% of potassium into 26% of the feedstock mass 

without chemical additions (Table 3). 

Evaporation treatment combined with RO (S3) produced only 16 kt/y of nutrient-

rich concentrate (17.9 kgN/tFM, 0.3 kgP/tFM, 9.0 kgK/tFM). Subsequently, RO 

treatment produced 18 kt/y of retentate and 45 kt/y of processed water from the 

condensate (Table 2). Without chemical additions the fertilizer product from system S3 

(concentrate) accounted for 63% of the feedstock nitrogen, 10% of phosphorus, 85% of 

potassium and 16% of the feedstock mass (Table 3).  

When stripping and evaporation were combined with RO (S4) two fertilizer 

product flows, ammonium sulfate and concentrate, were produced as well as retentate 

and processed water (11 kt/y, 15 kt/y, 16 kt/y, 42 kt/y, respectively, Table 2). In total, 

with fertilizer products, ammonium sulfate and concentrate, 67% of the nitrogen, 10% 

of phosphorus and 85% of potassium from the feedstock was recovered and 

concentrated into 20% of the mass flow of the feedstock, when the chemical additions 

were not considered (Table 3). The nitrogen recovery of 67% in S4 was 3% lower 

compared with system S1 with stripping, which was due to the produced retentate and 
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processed water flows in S4, which contained traces nitrogen but were not considered as 

fertilizer products. The nutrient concentrations in the concentrate from S4 were similar 

to the concentrate from S3 (0.3–0.4 kgP/tFM, 9–9.6 kgK/tFM), except for the nitrogen 

content, which was for the most part recovered with stripping (6.8 kgN/tFM in S4, 17.9 

kgN/tFM in S3, Table 2).  

The efficiency of the four liquid digestate treatment systems in concentrating 

nitrogen from the feedstock into fertilizer products was assessed with the ratio between 

the recovered nitrogen (% of the feedstock) and the recovered mass (% of the feedstock, 

from Table 3). The resulting efficiencies were 0.9 for systems S0 and S1 and 2.7, 4.0 

and 3.4 for systems S2, S3 and S4, respectively, where the increasing ratio demonstrates 

increasing the concentration of nitrogen into products with low mass. The most efficient 

system for the digestate liquid treatment was S3, combining both evaporation and RO to 

produce a fertilizer product with low mass and high nitrogen concentration.  

3.2 Energy balance  

The energy production in AD was based on the methane production of the FW, 

around 62 GWh per year, which was utilized in CHP for the production of electricity 

(24 GWhel/y), and heat (29 GWhth/y, Table 4). In total, AD consumed 9% of the 

produced total energy as electricity for pretreatment and hygienization of the feedstock 

(2250 MWhel/y), gas conversion in CHP (1180 MWhel/y) and digestion (1860 

MWhel/y). The heat consumption of the AD in total was 10% of the produced total 

energy including hygienization (4200 MWhth/y), digester (1200 MWhth/y) and heat 

losses (800 MWhth/y) (Table 4). 
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All the four studied digestate treatment systems (S1-S4) and the reference system 

(S0) included solid-liquid separation with a centrifuge, which used 300 MWh of 

electricity per year (0.5% of the produced energy, Table 4) as the material electricity 

consumption was calculated per produced digestate. The digestate stripping (S1, S2) 

had an electricity demand of 400 MWhel/y, while the addition of the RO treatment (S2) 

increased the electricity demand by 190 MWhel/y (total 590 MWhel/y in S2). 

Evaporation (S3) consumed a similar amount as stripping and the electricity 

consumption of RO was 160 MWhel/y (total 550 MWhel/y in S3). In the system 

combining stripping + evaporation + RO (S4), the electricity consumption in total was 

920 MWhel/y, which accounted 1.5% of the energy produced in AD. The heat demand 

in all four studied treatment systems (S1-S4) was similar, around 3700 MWh/y (6% of 

the produced energy in AD), as the heat consumption for both stripping and evaporation 

was similar, RO did not use any heat, and in the system combining stripping + 

evaporation + RO (S4) the heat demand was allocated only for stripping (Table 4).  

The total energy consumption of the digestate liquid treatment systems increased 

from systems S1 to S4 as the units in the treatment of digestate liquid increased being 

4100, 4300, 4200 and 4600 MWh/y in systems S1, S2, S3 and S4, respectively (Table 

4). The combined energy consumption of the digestate treatment systems and AD was 

15.9–16.4 GWh, which accounted for 26% of the total energy produced.  

The energy consumption of the digestate liquid treatment per recovered nitrogen 

in the concentrated fertilizer products (ammonium sulfate, concentrate) were the lowest 

(150 kWh/kgN) with the following systems: evaporation + RO (S3); stripping + 

evaporation + RO (S4) (Table 4). In systems with stripping (S1 and S2) the energy 

consumption was higher (200–210 kWh/kgN) due to the lower amount of nitrogen in 
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the produced ammonium sulfate compared with the products from systems S3 and S4. 

However, when only electricity consumption was taken into consideration, the 

evaporation + RO (S3) and stripping (S1) had lower electricity consumptions per 

recovered nitrogen (19–20 kWhel/kgN in S1 and S3, around 30 kWhel/kgN in S2 and S4, 

Table 4) as the electricity demand per year was low and nitrogen recovery efficiency 

higher compared with the systems stripping + RO (S2) and stripping + evaporation + 

RO (S4). 

3.3 Transportation of fertilizer products 

The energy consumption associated with the transportation of the fertilizer 

products in the digestate liquid treatment systems (S0-S4) was evaluated in relation to 

the increasing transportation distance (from 10 to 250 km, Figure 3). Of the studied 

products, the concentrate from the evaporation treatment (S3) used less than 700 

MWh/y during 250 km transportation, and was considered as the most energy efficient 

to transport longer distances. In contrast, the transportation the digestate liquid as such 

(S0) and stripping residue from S1 consumed the largest amount of energy (around 700 

MWh/y transportation distance 50 km, 3300–3600 MWh/y distance 250 km) (Figure 3, 

Table 2). 

4. Discussion  

4.1 Energy consumption of AD, digestate liquid treatment and transportation 

The present results, based on typical literature values from laboratory, pilot and 

full scale studies, show that the processing of digestate through solid-liquid separation 

and digestate liquid treatments into concentrated fertilizer products consumed less than 

10% of the produced energy in an AD plant treating 60 kt/y of FW. In total AD, solid-
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liquid separation and digestate liquid treatment accounted for 26% of the produced 

energy, of which around 19% was used in the AD and separation of the digestate into 

solid and liquid fractions. The lower energy consumption of only 8–17% of the total 

energy produced was previously reported for a theoretical AD plant treating FW (90 

kt/y) combined with ammonia stripping and hydrogen recovery, where the additional 

energy input from the assumed produced hydrogen most likely lowered the ratio 

between energy input and output (Babson et al., 2013). Compared with the present 

study, similar energy demand, 17% and 20% of the total energy production, was 

previously assumed in life cycle assessment studies for ADs combined with digestate 

solid-liquid separation treating 20–60 kt/y of an organic fraction of municipal solid 

waste and a mixture of municipal and agricultural substrates (Berglund and Börjesson, 

2006,  Pöschl et al., 2010, respectively). In the present study the differences in the total 

energy produced in AD and the lower ratio between energy demand and total energy 

production compared with a study by Berglund and Börjesson (2006) were due to the 

high energy content of the FW feedstock in the present study (450 m
3
CH4/tVS 

compared to around 300 m
3
CH4/tVS in Berglund and Börjesson, 2006). If similar 

digestate liquid treatment systems as those studied in this paper would be applied to an 

AD plant treating solely, e.g., manure, which produces less methane and has lower VS 

content (cow manure 148 m
3
CH4/tVS, VS 11%, Møller et al., 2004), the total energy 

production of the plant would be lower (9800 MWh/y) and digestate treatment (solids 

separation and liquid treatment) would require all of the feedstock’s energy and the 

energy balance would be negative (900 MWh/y needed in addition to the AD plant’s 

energy production). In this sense, the digestate liquid treatment systems are more 
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rational options when feedstock has a high methane potential and initial organic matter 

and nutrient concentrations, such as FW.  

Heat consumption of all the studied digestate liquid treatments accounted for 80– 

90% of the total energy demand, because with both stripping and evaporation increased 

process temperature (80 °C applied in this study) is needed to achieve efficient nutrient 

recovery (Mehta et al., 2015). As the electricity consumption between stripping and 

evaporation was similar (390–400 MWh/y), the total energy consumption was 4100 

kWh/y with both stripping and evaporation, while the RO treatment consumed only 

electricity (150–180 MWh/y) as no heat was required. Similarly, evaporation treatment 

was reported to consume over 50% more energy compared with the treatment with 

combined microfiltration, reverse osmosis and ion exchange when digestate originated 

from a mixture of manure and plant materials (AD with the electric power of 186 kWel, 

Rehl and Müller, 2011). Accordingly, due to the large heat demand of digestate liquid 

treatments with stripping and evaporation, the use of these treatments is rationalized by 

integration with AD, which enables the recovery of the plant’s excess heat (Bonmatí et 

al., 2003, Fuchs and Drosg, 2013, Hjorth et al., 2010, Mehta et al., 2015), especially in 

situations where the AD plant’s heat energy is not utilized in, e.g., district heating 

systems.  

The results showed that the nitrogen recovery from the digestate liquid treatments 

consumed 150–210 kWh/kgN, as the consumption was allocated to the recovered 

nitrogen in the concentrated fertilizer products. This is over 15 times more than the 

energy consumption of mineral nitrogen fertilizer production in Europe (35.2 GJ/tNH3 ~ 

9.8 kWh/kgNH3, Yara, 2015a). However, despite the higher energy consumption of the 

treatment of digestate liquids, the advantage with the use of liquid fertilizers from waste 
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materials is the promotion of nutrient recycling and mitigation of greenhouse gas 

emissions through anaerobic digestion compared to the manufacturing of mineral 

fertilizers (Evangelisti et al., 2014). The energy demand in all four digestate liquid 

treatments combining two to three treatment technologies was also higher compared to 

a pilot-scale stripping treatment with urine (18.8–28.2 kWh/kgN recovered, Antonini et 

al., 2011), where the lower treatment temperature (40 °C vs. 80 °C in the present study) 

decreased energy consumption. Lower energy consumption was also reviewed with ion 

exchange, membrane distillation and chemical precipitation technologies (0.04–0.63 

kWh/kgNH3, Zarebska et al., 2015), where the treatments did not require heat energy 

for nutrient recovery. The energy consumption of the studied digestate liquid treatment 

technologies could be, however, reduced by using lower process temperatures. For 

example successful ammonia stripping (N recovery >80%) has also been reported at 

temperatures from 35 to 50 °C (Antonini et al., 2011, Laureni et al., 2013, Liu et al., 

2015), while the use of lower temperatures (35–40 °C) with evaporation is possible with 

the increase of vacuum (pressure 5–7 bars, Bonmatí and Flotats, 2003b, Chiumenti et 

al., 2013). Additionally, the heat consumption of the treatment processes could be 

reduced by using heat exchangers to recycle the process heat, which was not taken into 

consideration in this study.  

As the energy consumption during transportation was affected by the mass of 

fertilizer products (from 16 to 87 kt/y), up to an 80% decrease in the energy 

consumption during transportation of the fertilizer products was possible using the 

studied digestate liquid treatment systems when compared to the transportation of the 

untreated digestate liquid. Energy savings of 80%, 67% and 59% during transportation 

were possible with the following treatment systems, respectively: evaporation combined 
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with RO (S3); combined stripping, evaporation and RO (S4); stripping combined with 

RO (S2). This was due to the lower transportable mass compared with the untreated 

digestate liquid in the reference system (S0). Decreased energy consumption of 

transportation supports the use of these digestate liquid treatments in AD plants treating 

FW, which are usually located far from agricultural lands (Babson et al., 2013) and 

where the reuse of the FW nutrients is challenging due to long transportation distances. 

Similar energy savings from transportation of municipal waste-based digestate have 

been reported after solid-liquid separation, where the energy consumption of 

transportation of solid digestate after separation decreased 50% (distance 5 km, Pöschl 

et al., 2010), thus the transportation of the liquid digestate was not discussed. The 

advantage with the digestate liquid treatment systems applying RO treatment is the 

reduction of the total mass of the transportable products compared with the untreated 

digestate liquid, as some mass exits the system as treated water and retentate. With 

stripping only (S1), where no RO was included in treatment of digestate liquid, the mass 

of ammonia sulfate was low, but with the stripping residue also aimed for use in 

agriculture, the total mass of products was high (87 kt/y), which is feasible to transport 

only by minimizing the distance between the AD plant and the fields to be fertilized. A 

high total mass of 87 kt/y with stripping (S1) was due to the addition of chemicals 

during stripping which also led to 10% higher energy consumption during transportation 

compared to the reference system (S0).  

4.2 Characteristics of fertilizer products  

The results, based on typical literature values, showed that liquid digestate 

treatment with evaporation, combined with RO (S3), produced the most concentrated 

nutrient product by concentrating the original FW mass of 60 kt/y into 16 kt/y. The high 
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nitrogen and potassium and low phosphorus concentrations within the concentrate (18 

kgN/tFM, 12 kgNH4-N/tFM, 0.3 kgP/tFM, 9 kgK/tFM) compared with the untreated 

digestate liquid (4 kgN/tFM, 2.7 kgNH4-N/tFM, 0.1 kgP/tFM, 1.8 kgK/tFM), were 

dependent on the mass and nutrient recovery and characteristics of the feedstock. 

Previously similar (18.7 kgN/tFM) and slightly higher (>20 kgN/tFM) nitrogen 

concentrations have been reported after acid evaporation with pig slurry digestate 

(Chiumenti et al., 2013, Bonmatí and Flotats, 2003b, respectively). Compared with the 

concentrate from evaporation, commercial mineral fertilizers in solid form have 

remarkably higher nutrient concentrations (e.g. 303 kgN/tFM, 114 kgP/tFM, 245 

kgK/tFM, Abubaker et al., 2012, 266 kgN/tFM, 13 kgP/tFM, 43 kgK/tFM, Yara, 

2015b), thus, the characteristics of N and K were in line with commercial liquid 

fertilizers intended for, e.g., vegetables fertilization (24 kgN/tFM, 55 kgP/tFM, 40 

kgK/tFM, Yara, 2015c). Hence, the concentrate from evaporation could potentially 

replace liquid mineral fertilizers, especially in cases where phosphorus fertilization is 

not needed.  

All four studied digestate liquid treatment systems produced fertilizer products 

containing either N (ammonium sulfate) or N, P and K (concentrate, retentate, stripping 

residue) in different proportions, which affect their use as fertilizers in agriculture and 

also affect the amount of fertilizers spread on agricultural lands. The proportion of 

mineral nitrogen in total N (NH4-N/Ntot) was 100% in the ammonium sulfate from 

stripping (S1, S2, S4) and 68% in the concentrate from evaporation (S3), indicating the 

high availability of N to plants and fast growth response after fertilization (Abubaker et 

al., 2012). In concentrate from combined stripping, evaporation and RO (S4), retentate 

from stripping and RO (S2) and stripping residue from stripping alone (S1) the NH4-
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N/Ntot was 10%, 9% and 7%, respectively, indicating slower N release in soils. When 

considering the NPK ratios, potassium was the dominant nutrient in all fertilizer 

products (except ammonium sulfate), as the NPK ratios (per FM) were around 

100:5:130 in the stripping residue from stripping (S1), the retentate from stripping 

combined with RO (S2) and the concentrate from combined stripping, evaporation and 

RO (S4). The concentrate from the system combining evaporation and RO (S3) showed 

the most balanced NPK ratio of 100:2:50, which was also somewhat similar to the NPK 

need of herbaceous plants, 100:14:68 (Knecht and Göransson, 2004), thus with 

remarkably lower P content. The low share of phosphorus was due to the digestate 

solid-liquid separation, which distributed only 10% of the P in FW into the liquid 

digestate, while the water-soluble N and K were the predominant nutrients. As follows, 

all the studied fertilizer products can be used in agriculture supplementing especially N 

or N and K fertilization in situations where the soil P content is already high.  

The low nutrient concentration within especially stripping residue (from stripping, 

S1, 1.5 kgN/tFM, 0.1 kgNH4-N/tFM, 0.1 kgP/tFM, 1.9 kgK/tFM) increases the fertilizer 

application amounts per hectare and discourages the use of the residue in agriculture. 

The amount of the stripping residue to be spread during fertilization (assumed N 

fertilization rate 170kgN/ha) was high, over 100 t/ha, due to the low nutrient 

concentrations, which could affect the soil properties due to soil wetting/water logging 

(Rigby and Smith, 2011). More practical volumes were achieved with fertilizer products 

from other treatment systems, as the amount of mass applied to soils was 4 t/ha for 

ammonium sulfate from stripping (S1, S2, S4), 9 t/ha for concentrate from evaporation 

and RO (S3) and around 25–30 t/ha for concentrate from stripping, evaporation and RO 

(S4) and retentate from stripping and RO (S2).  
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All in all, the most suitable digestate liquid treatment system for concentrated 

fertilizer products considering nutrients, energy and transportability was the concentrate 

from the system with evaporation and RO (S3), thus, the production of a different 

fertilizer product (e.g. ammonium sulfate) is possible with slightly larger energy input 

with a system combining stripping, evaporation and RO (S4) or stripping and RO (S2). 

However, along with the recovery of useful nutrients the evaporation and also RO 

treatment are able to concentrate some undesired components, such as heavy metals, 

into the concentrate, which could affect the fertilizer use of the products (Mehta et al., 

2015). Furthermore, the addition of chemicals to the digestate liquid during the 

treatment, and their effects on soil after fertilization, should be noticed. E.g. sulfuric 

acid additions during/after stripping (S1, S2, S4) and before evaporation (S3, S4), both 

lower the pH value and increase the salinity, which are likely to cause corrosion 

(Vaneeckhaute et al., 2013b). Like sulfur, also sodium acts as micronutrient in plant 

nutrition. However, in large doses sodium increases the soil salinity and affects the soil 

structure (reviewed in Kronzucker et al., 2013, Veneeckhaute et al., 2013a). The Na 

concentration in the stripping residue from system S1 was calculated to be around 6 

g/kgFM which is about double the amount of Na in manure and manure based digestate 

(Vaneeckhaute et al., 2013a,b). It is thus important to measure the pH and salinity of the 

produced liquid fertilizer products and monitor the effect of these products in soils after 

fertilization.  

5. Conclusions  

This theoretical study showed the feasibility of FW nutrient recovery through AD 

and digestate liquid treatment and the production of transportable fertilizer products 

with the energy produced in AD. Despite the use of heat-demanding treatments, such as 
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evaporation and stripping, the energy produced in AD was sufficient for digestate liquid 

treatment consuming fewer than 10% of the total energy produced in AD. The studied 

digestate liquid treatment systems were mostly considered as nitrogen concentration 

methods which are able to concentrate up to 67% of feedstock nitrogen into liquid 

fertilizer products with low mass. Of the studied digestate systems evaporation 

combined with RO was evaluated as the most efficient nutrient recovery technology for 

the production of transportable fertilizer products for agricultural application due to the 

highest concentration of nutrients, nutrient availability, the low mass of the product and 

low energy consumption of the treatment. Stripping was an efficient technology for the 

recovery of nitrogen, however, the high mass of the residue containing the remaining K 

and P should be further managed sustainably. Overall, the selection of the treatment 

technology is dependent on the location of the AD plant relative to agricultural lands 

and the type of fertilizer products needed (N fertilizer, NPK fertilizer).  
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Table 1. The separation efficiency of decanter centrifuge, nutrient recovery efficiencies 

of digestate liquid treatment technologies and energy consumption of each treatment. 

Values chosen based on literature (see also Supplementary material). 

Material Separation/recovery efficiency, % 
Energy 

consumption, 
  Mass TS VS Ntot NH4-N Ptot Ktot kWh/t to be treated 

Solid-liquid separation of digestate 
Liquid digestate 90

a 20
a 20

b 70
a 81

a 10
a 85

a 3.5
a 

Digestate liquid treatment 

        Stripping 

        Ammonium sulfate  -   -   -  - 95
c  -   -  2

d
 + heat

e 
Evaporation 

        Concentrate 20
f  -   -  90

f  -  100
f 100

f 5
f
 + heat

e 
Reverse osmosis 

        Rententate 28
g 100

g 100
g  -  95

g 95
g 99

g 2.5
g 

a
Flotats et al., 2011, reviewed in Hjorth et al., 2010, Ledda et al., 2013, Møller et al., 2000, 2002 

b
Separation efficiency for VS was assumed to be same as for TS 

c
Basakcilardan-Kabakci et al., 2007, Bonmatí and Flotats, 2003a, Flotats et al., 2011, Guštin and 

Marinšek-Logar, 2011, Laureni et al., 2013, Liu et al., 2015 
d
kWh/kgN recovered in ammonium sulfate, reviewed in van Eekert et al., 2012 

e
Calculated with the specific heat capacity of water 

f
Bonmatí and Flotats, 2003b, Chiumenti et al., 2013, Ek et al., 2006, Flotats et al., 2011, Mauer et al., 

2003 
g
Carretier et al., 2015, Chiumenti et al., 2010, Ek et al., 2006, Flotats et al., 2011, Ledda et al., 2013, 

Mondor et al., 2008
 

-, not applicable 
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Table 2. Mass and nutrient flows presented as tonnes per year (t/y), and concentrations 

(kg/tFM, in parentheses) in feedstock, digestate, separated solid and liquid digestate 

fractions and outputs of the digestate liquid treatment systems (S0-S4). Fresh matter 

(FM), reverse osmosis (RO). 

Material Mass TS VS Ntot NH4-N Ptot Ktot 

Reactor feedstock        

Food waste 60000 15000 13800 450 24 54 168 

  (250.0) (230.0) (7.5) (0.4) (0.9) (2.8) 

Dilution water (recycled water in 

S3-S4) 

40000   -   -  -  -  -  - 

Biogas, digestate and solid-liquid separation 

Biogas 12586 12586 12586  -  -  -  - 

Digestate 87414 2414 1214 450 264 54 168 

Liquid digestate, S0 no treatment 78673 483 243 315 214 5 143 

    (6.1) (3.1) (4.0) (2.7) (0.1) (1.8) 

Solid digestate, S0-S4 8741 1932 972 135 50 49 25 

    (221.0) (111.1) (15.4) (5.7) (5.6) (2.9) 

Digestate liquid treatment               

Stripping, S1               

Ammonium sulfate 11373
a
 0 0 203 203 0 0 

    (0) (0) (40) (40) (0) (0) 

Stripping residue 73594
b
 483 243 112 11 5 143 

    (6.4) (3.2) (1.5) (0.1) (0.1) (1.9) 

Stripping + RO, S2                

Ammonium sulfate 11373
a
 0 0 203 203 0 0 

    (0) (0) (40) (40) (0) (0) 

Stripping residue (to RO) 75168
b
 483 243 112 11 5 143 

    (6.4) (3.2) (1.5) (0.1) (0.1) (1.9) 

Retentate  20606 483 243 111 10 5 141 

    (23.4) (11.8) (5.4) (0.5) (0.2) (6.9) 

Processed water (recycled) 52988 0 0 1 1 0 1 

    (0) (0) (0.01) (0.01) (0.01) (0.03) 

Evaporation + RO, S3                

Concentrate 15820
c
 483 243 284 192 5 143 

    (30.5) (15.4) (17.9) (12.2) (0.3) (9.0) 

Condensate (to RO) 62938 0 0 32 21 0 0 

  (0) (0) (0.5) (0.3) (0) (0) 

Retentate (recycled) 17623 0 0 30 20 0 0 

    (0) (0) (1.7) (1.2) (0) (0) 

Processed water (recycled) 45316 0 0 1 1 0 0 

    (0) (0) (0.02) (0.02) (0) (0) 

Stripping + evaporation + RO, S4                

Ammonium sulfate 11373
a
 0 0 203 203 0 0 

    (0) (0) (40) (40) (0) (0) 

Stripping residue (to evaporation) 73594
b
 483 243 112 11 5 143 

    (6.4) (3.2) (1.5) (0.1) (0.1) (1.9) 

Concentrate 14798
d
 483 243 101 10 5 143 

    (32.6) (16.4) (6.8) (0.7) (0.4) (9.6) 

Condensate (to RO) 58875 0 0 11 1 0 0 

  (0) (0) (0.2) (0.02) (0) (0) 

Retentate (recycled) 16485 0 0 11 1 0 0 

    (0) (0) (0.7) (0.1) (0) (0) 

Processed water (recycled) 42390 0 0 0 0 0 0 

    (0) (0) (0.001) (0.001) (0) (0) 
a
H2SO4 addition of 6293 m

3
/y,  

 b
NaOH addition of 1573 m

3
/y, 

c
H2SO4 addition of 85 m

3
/y, 

d
H2SO480 m

3
/y 

-, not applicable        
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Table 3. The partition of feedstock mass and nutrients in the digestate, separated solid 

and liquid digestates and fertilizer products from the digestate liquid treatment systems 

(S0-S4). The partition is presented as % of the feedstock. The mass is calculated from 

the feedstock fed to the digester (60 kt food waste + 40 kt dilution water). The addition 

of chemicals is not taken into consideration in the mass partition. Reverse osmosis 

(RO).  

% of feedstock Mass Ntot NH4-N Ptot Ktot 

Digestate and solid-liquid separation 

Digestate 87 100 1100 100 100 

Liquid digestate, S0 79 70 891 10 85 

Solid digestate, S0-S4 9 30 209 90 15 

Stripping, S1 

Ammonium sulfate 5 45 846 0 0 

Stripping residue 74 25 45 10 85 

Fertilizer products in total 79 70 891 10 85 

Stripping + RO, S2 

Ammonium sulfate 5 45 846 0 0 

Retentate  21 25 42 10 84 

Fertilizer products in total 26 70 888 10 84 

Evaporation + RO, S3 

Concentrate 16 63 802 10 85 

Stripping + evaporation + RO, S4 

Ammonium sulfate 5 45 846 0 0 

Concentrate 15 22 40 10 85 

Fertilizer products in total 20 67 886 10 85 
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Table 4. Energy production of the studied anaerobic digestion (AD) plant and the 

energy consumption during AD (including pretreatment and hygienization, biogas 

upgrading and digester), digestate separation and digestate liquid treatment. Energy 

consumption of the digestate liquid treatment is calculated towards the recovered 

concentrated fertilizer fractions (ammonium sulfate, concentrate), where stripping 

residue from S1 and retentate from S2 were not included. Reverse osmosis (RO), 

combined heat and power (CHP), electricity (el), thermal (th). 

 Process 

Electricity 

(MWhel/y) 
Heat 

(MWhth/y) 
Total 

(MWh/y) 
Total 

(kWh/kgN) 
Electricity 

(kWhel/kgN) 

Energy production 

Primary energy production in AD - - 62100 - - 

Energy in CHP 23598 29187 52785 - - 

Energy consumption 

AD  5293 6142 11435 - - 

Solid-liquid separation 306 - 306 - - 

Energy consumption in digestate liquid treatment 

No treatment, S0 0 0 0 0 0 

Stripping, S1 406 3727 4133 203 20 

Stripping + RO, S2 590 3727 4317 213 29 

Evaporation + RO, S3 551 3658 4209 148 19 

Stripping + evaporation + RO, S4 922 3727 4649 153 30 

-, not applicable 
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Figure Captions 

 

Figure 1. System boundaries of the studied anaerobic digestion plant and digestate 

liquid treatment with material and energy flows. Grey boxes represent 

feedstock/product and white boxes represent studied unit operations. 

 

Figure 2. Digestate liquid treatment systems (S0-S4) and products evaluated in this 

study. White boxes represent treatments and grey boxed represent treatment inputs and 

outputs. 

 

Figure 3. Energy consumption of transportation (megawatt hours per year, MWh/y) of 

fertilizer products produced in each digestate liquid treatment system in relation to the 

transportation distance. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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1. Hygienization and digester 

1.1 Mass balances 

The volume of methane produced during anaerobic digestion per year (AD, m
3
/y) 

was calculated by multiplying the amount of volatile solids (VS) fed to the reactor (t/y) 

with the methane potential of the feedstock (m
3
/tVS). The mass of methane was 

calculated according to equation: 

m= V× ρ / 1000 

where the m is the mass of CH4 (tFM/y), V is the volume of CH4 (6.21 Mm
3
/y) and ρ is 

the density of CH4 (0.72 kg/m
3
). 

The volume of CO2 annually produced in the AD was calculated using the carbon 

dioxide content (40%), the assumed methane content (60%) and the volume of methane 

(6.21 Mm
3
/y). The mass of CO2 was calculated the same way as the mass of CH4 using 

the CO2 density of 1.96 kg/m
3
. Subsequently, the digestate mass was calculated by 

subtracting the biogas mass (CH4 + CO2, 12 586 t/y) from the feedstock mass. 

For the calculation of the mass balances of total solids (TS) and VS, it was 

assumed that the produced biogas was produced from TS and VS. Subsequently, the TS 

and VS contents of the produced digestate were calculated as the difference between 

feedstock TS or VS (t/y) and biogas mass (t/y). The nutrient content in digestate was 

assumed to be the same as in the feedstock except in the case of NH4-N, which 

concentration was assumed to increase from 0.4 g/kg fresh matter (FM) (feedstock) to 4 

g/kgFM (digestate) according to Tampio et al. (2014, 2015). 
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1.2 Energy balances 

In the hygienization unit the feedstock (60 kt of food waste) was heated to 75 °C. 

The amount of energy needed for feedstock mixture heating was calculated with the 

specific heat capacity of water according to the equation: 

∆E= c × m × ∆t 

where ∆E is the energy needed for heating the feedstock mixture, c  is the specific heat 

capacity of water (cwater = 4.18 kJ/kgºC), m is the mass of the mixture (kg) and ∆t is the 

change of the temperature (from 15 to 75 °C). For the digester, the amount of energy 

needed was allocated only for the dilution water (40 kt/y). This is because the heat from 

the hygienization unit was assumed to be sufficient for the heating of the FW feedstock 

(60 kt/y) (Berglund and Börjesson 2006, Prapaspongsa et al. 2010). The heating of 

water from 15 to 40 °C was calculated with the specific heat capacity of water as above. 

A similar method, based on the heat capacity of water for the calculation of the heat 

demand, was also used e.g. by Bacenetti et al. (2013), Rapport et al. (2011) and Smyth 

et al. (2009).  

For the biogas production the conversion factor 1 m
3
(CH4) = 10 kWh was used for 

the calculation of the energy content of the produced biogas.  

Heat loss from the hygienization and digester was assumed to be 15% of the heat 

demand according to Smyth et al. (2009). Also higher values for digester heat loss have 

been reported, e.g., 20% of the heat demand in Rapport et al. (2011). 

The electricity and heat consumption during feed pretreatment and hygienization 

as well as during digestion and gas upgrading in CHP-unit (combined heat and power) 

were calculated according to the literature values (Table S1). The CHP efficiency was 

also chosen according to the literature information (Table S1). 
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Table S1. Energy consumption of hygienization and pretreatment, anaerobic digestion 

and gas upgrading in CHP obtained from the literature and values chosen for the 

calculations. 

 Energy 

consumption Electricity Heat Reference 
Pretreatment + hygienization 

 
150 kWh/tTS 10% of heat in CHP reviewed in Pöschl et al. 2010 

 
37.5 kWh/t Calculated value Present study 

Digester 

 

3% biogas                       

(18.6 kWh/t
a
) 

9.6% biogas                

(55.8 kWh/t)
a reviewed in Pöschl et al. 2010 

 

7.5% of electricity in CHP 

(17.7 kWh/t)
a 

20% of heat in CHP         

(47.2 kWh/t)
a reviewed in Pöschl et al. 2010 

 
18 (15-22) kWh/t 31 (19-50) kWh/t 

reviewed in Berglund and 

Börjesson 2006 

 
5 kWh/t biomass 34 kWh/m

3
 raw material DEA 2005 

 
18 kWh/t Calculated value Present study 

CHP-unit 

 
4.5 % of electricity in CHP  -  Pöschl et al. 2010 

 
6.3% of electricity in CHP - Havukainen et al. 2014 

 8.5-8.7% of electricity in CHP - Naegele et al. 2012 

 4.2% of electricity in CHP - Banks et al. 2011 

 
5 % of electricity in CHP - Present study 

CHP efficiency 

 
40.9 % 44 % Bacenetti et al. 2013 

 
37 % 47.1 % Bacenetti et al. 2013 

 
35.7 % 51 % Bacenetti et al. 2013 

 
40 % 48 % Poeschl et al. 2012 

  38 % 47 % Present study 
a
Calculated with the results from the present study 

-, not available 
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2. Digestate separation 

The digestate solid-liquid separation efficiency and energy consumption of a decanter 

centrifuge were based on the literature values (Table S2). 

Table S2. Centrifuge separation efficiencies and energy consumption obtained from the 

literature and values chosen for the calculations. Separation efficiency presented as the 

percentage in the liquid fraction. Digestate (D), digestate liquid (DL), manure (M). 

Separation efficiency, % Energy Material Reference 

Mass TS VS N NH4-N P K 

Electricity 

(kWh/m
3
 

digestate)   
 - 31-46  -  69-76  -  9-48  -  3.1-5.6  D Møller et al. 2002 

91 36  -  72 89 10 99  -  DLpig Ledda et al. 2013 
76 17  -  48 81 4 77  -  DLcow Ledda et al. 2013 

22.5  -   -  87  -  19 33.5 1.8-2.2 Mpig 
Melse and Verdoes 

2005 
 -  38-67  -  71-87  -  34-40  -  4.3-6.3 Mpig Møller et al. 2002 
 -  35-45  -  51-73  -  18-22  -  4.3-7.3 Mcow Møller et al. 2002 

75-95 5-66  -  46-99 72-92 9-52  -   -  Mpig, cow 
reviewed in Hjorth et 

al. 2010 
 -   -   -   -   -   -   -  2-4  -  Flotats et al. 2011 
 -   -   -   -   -   -   -  3  -  Møller et al. 2000 
90 20 20 70 81 10 85 3.5  -  Present study 

-, not available 
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3. Stripping of digestate liquid 

The digestate liquid stripping efficiency and energy consumption were based on 

the literature values (Table S3). The heat demand of the stripping was calculated with 

the temperature change between digester (40 °C) and stripper (80 °C) using the heating 

capacity of water as in Chapter 1.2 of the Supplementary material. 

Table S3. Recovery efficiency, process parameters and energy consumption of stripping 

obtained from the literature and values chosen for the calculations. Recovery efficiency 

presented as percentage in ammonium sulfate. Digestate (D), manure (M), digestate 

liquid (DL), urine (U). 

Recovery 

efficiency (%) Process parameters Consumption Scale Material Reference 

N NH4-N pH 
Tempera-

ture (°C) 

Energy 

(kWh/kgN 

recovered) 
   - 97 - 35 - lab D Liu et al. 2015 

- >96 8.5-11.5 80 - lab D Bonmatí and Flotats 2003a 
- >80 9.5 40-50 - lab D, Mpig Laureni et al. 2013 

65-80 80-92.2 8.5-11 30-70 - pilot DL 
Guštin and Marinšek-Logar 

2011 
65-76 - 9-9.5 60 - full DL Morales et al. 2013 

94 - 10 40 18.8-28.2
a pilot U Antonini et al. 2011 

- 92 12 16 - lab U 
Basakcilardan-Kabakci et al. 

2007 
- 65-98.8 7.7-11.5 80 - lab Mpig Bonmatí and Flotats 2003a 

90 - 9.3 60 11-14 full - reviewed in Morales et al. 2013 
- - - - 7.3 (aeration) - - reviewed in Mauer et al. 2003 

- - - - 
0.8-23 

(electricity) - - 
reviewed in van Eekert et al. 

2012 
- 95 9-10 <100 - - - Flotats et al. 2011 
- 95 - 80 2 + heat

b - - Present study 
a
 kWh/kg NH4-N 

b
Calculated with the specific heat capacity of water 

   -, not available
    

 

4. Reverse osmosis treatment for stripping residue and condensate 

The recovery efficiency and energy consumption of the reverse osmosis (RO) 

treatment were based on the literature values (Table S4).  
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Table S4. Recovery efficiency, process parameters and energy consumption of reverse osmosis obtained from the literature and values 

chosen for the calculations. Recovery efficiency presented as percentage in retentate. Digestate (D), digestate liquid (DL), urine (U), 

sewage reject water (S), manure (M).  

Separation/recovery efficiency, % Process parameters Consumption Scale Material Reference 

Mass TS VS N NH4-N P K pH 

Tempera

-ture 

(°C) 

Pres-

sure 

(bar) 

Energy (kWh/m
3
 

stripping 

residue/condensate)     
  -   -   -   -   -   -   -   -   -  10-30 2.5-10 lab D Carretier et al. 2015 

28 86-100  -  99.7 99.6 72 99.5  -   -   -   -  full DL Ledda et al. 2013 

29 97-100  -  97 97 100 99  -   -   -   -  full DL Ledda et al. 2013 

28  -   -   -   -   -   -   -   -   -   -  full DL Chiumenti et al. 2010 

 -   -   -  95  -  90 99 6-9.2 10-45  -  
8 (electricity) 4 

(heat) lab U Ek et al. 2006 

 -   -   -  90  -  92 97 6-9.2 10-45  -  
5 (electricity) 0 

(heat) lab S Ek et al. 2006 

 -  92.3 98-100  -  66  -   -  8.8 22.5 55 
 

lab Mpig
a Mondor et al. 2008 

 -   -  99  -  99.5  -   -   -   -  10-100 1.5-10  -   -  Flotats et al. 2011 

28 100 100  -  95 95 99  -   -   -  2.5  -   -  Present study 
a
After electrodialysis treatment 

-, not available
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5. Evaporation treatment for digestate liquid and stripping residue 1 

The digestate liquid evaporation efficiency and energy consumption were based 2 

on the literature values (Table S5). The heat demand of evaporation was calculated as 3 

the temperature change between the digester (40 °C) and evaporator (80 °C) using the 4 

heating capacity of water as in Chapter 1.2 of the Supplementary material. In system 5 

stripping + evaporation + RO (S4) no heat was allocated for evaporation, thus it was 6 

assumed that heat from the stripping (80 °C) was sufficient for the evaporation as was 7 

presented in Ervasti et al. (2011). 8 

Table S5. Recovery efficiency, process parameters and energy consumption of 9 

evaporation obtained from the literature and values chosen for the calculations. 10 

Recovery efficiency presented as percentage in concentrate. Digestate (D), digestate 11 

urine (U), sewage reject water (S). 12 

Recovery efficiency, % Process parameters Consumption Scale Material Reference 

Mass N P K pH 

Temper

-ature 

(°C) 

Pres-

sure 

(bar) 

Energy (kWh/m
3
 

digestate liquid or 

stripping residue) 
   

- 80-84 84-96 90-99 5.9-6.5 40 6.7 - lab D 
Bonmatí and 

Flotats 2003b 

20.2 99.2 - - 3.5-5 35 5.3 - - D 
Chiumenti et 

al. 2013 

10 - - - - 78 0.2 
1.9

a 
(electricity)  
3

a
 (fuel) - U 

Mauer et al. 

2003 

- 95 100 99 4.5-5.5 >30 - 
30 (electricity) 0 

(heat) lab U Ek et al. 2006 

- 95 100 100 4.5-5.5 >30 - 
30 (electricity) 0 

(heat) lab S Ek et al. 2006 

15-20 98 - - <5.5 - - 
21 (electricity) 

107-353 (heat) - - 
Flotats et al. 

2011 
20 90 100 100 - 80 - 30 + heat

b - - Present study 
a
kWh/kgN 

         
b
Calculated with the specific heat capacity of water 

-, not available 

  13 
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