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Abstract 

High utilization of cargo volume is an essential factor in the 

success of modern enterprises in the market. Although 

mathematical models have been presented for container loading 

problems in the literature, there is still a lack of studies that 

consider practical constraints. In this paper, a Mixed Integer 

Linear Programming is developed for the problem of packing a 

subset of rectangular boxes inside a container such that the total 

value of the packed boxes is maximized while some realistic 

constraints, such as vertical stability, are considered. The 

packing is orthogonal, and the boxes can be freely rotated into 

any of the six orientations. Moreover, a sequence triple-based 

solution methodology is proposed, simulated annealing is used 

as modeling technique, and the situation where some boxes are 

preplaced in the container is investigated. These preplaced 

boxes represent potential obstacles. Numerical experiments are 

conducted for containers with and without obstacles.  The 

results show that the simulated annealing approach is 

successful and can handle large number of packing instances. 

Keywords: knapsack, packing sequence, rotation, obstacles, 

simulated annealing 

 

INTRODUCTION 

Logistics has recently played an important role in the success 

of modern enterprises. Packing boxes inside a container is an 

essential material handling activity in manufacturing and 

transportation industries. It is also a key function for operating 

supply chain efficiently. The efficient use of transportation 

devices, like containers and palettes, leads to significant cost 

saving. Moreover, high utilization of transportation devices 

reduces the traffic of goods and protects natural resources. 

Therefore, optimal loading of a container decreases the 

shipping cost and increases the stability of the load. Container 

loading problem has practical values, and it can be applied to 

various fields. Loading cars, trucks, trains, or ships can be also 

considered as a container loading or a three-dimensional 

packing problem. Furthermore, cargo volume is an important 

factor used by motor vehicle companies to market their 

products as sub-compact, compact, midsize, or full size. If 

inaccurate, the cargo volume found may downgrade the vehicle 

from its real size.  For example, a mid-size may be downgraded 

to a compact, which results in a potential loss of the market 

when compared to other competitor's vehicles (Hifi, 2002; 

Bortfeldt et al., 2003; and Wang et al., 2008). 

The basic form of the container loading problem is packing the 

best subset of rectangular boxes (called cargo) into a large 

object (called container) to maximize the total value of the 

loaded boxes. The boxes should not be overlapped and should 

lie entirely in the container. According to the topology 

introduced by Wascher et al. (2007), the containers can be 

either homogeneous or heterogeneous. If the boxes placed in 

the given container are identical, it is called homogeneous; 

however, if various types of boxes are loaded, the container is 

considered as heterogeneous. Besides the non-overlapping 

constraints, some other practical constraints should be 

considered in the real-world container loading problem, such as 

cargo vertical stability, preplaced boxes, and box rotation 

(Junqueira et al., 2012; Bortfeldt et al., 2012). However, not 

many papers have considered these practical constraints in their 

proposed models. 

The problem addressed in this research and as per the topology 

presented by Dyckhoff (1990), belongs to 3/B/O/F (3: three-

dimensional, B/O: one object/bin and items selection, F: few 

items of different types), while Wascher et al. (2007) classify it 

as the three-dimensional single orthogonal knapsack problem. 

The given problem considers the packing of rectangular items 

into a container to maximize the total value of the packed items 

by minimizing the amount of lost space. The value of boxes is 

assumed to be equal to their volume. The rotation of the boxes 

is considered as well. The multidimensional knapsack Problem 

(MKP) is a NP-hard optimization problem that can be shown 

by reduction from the one-dimensional packing problem 

(Egeblad and Pisinger, 2009). Although technological 

knowledge has been enhanced, solving real knapsack problems 

is still a challenge. Due to NP-hardness of the packing problem, 

only heuristic methods, and a few exact algorithms have been 

presented.  

In this paper, a mixed integer linear model and a simulated 

annealing algorithm are developed to address a more 

comprehensive knapsack problem where practical 

considerations, such as vertical stability and preplaced 

(obstacles) constraints, are tackled. These practical constraints 

and box rotation contribute significantly to a study of a more 

mailto:mostaghh@uwindsor.ca
mailto:bryan@bryanstamour.com
mailto:kader@uwindsor.ca


International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 7 (2017) pp. 1290-1304 

© Research India Publications.  http://www.ripublication.com 

1291 

realistic 3D knapsack problem as proposed in this research 

work. The aim of this proposed research is to provide managers 

and decision-makers with an adequate modeling tool that helps 

make shipping goods more efficient and eco-friendly as fewer 

trips can be made if higher container utilization is achieved.  

Also, auto-makers can market the class size of their vehicles 

more accurately. 

 

LITERATURE REVIEW 

The focus of most of the container loading or three-dimensional 

cutting and packing problems is on the rectangular bins. Fekete 

and Schepers (2004) propose a new method for obtaining lower 

bound classes for higher-dimensional packing problem. The 

major objective of this paper is to define good criteria for 

removing a candidate set of boxes. Dual feasible function is a 

way to build conservative scales. The computational results are 

mainly limited to the two-dimensional packing problem. Hifi 

(2004) proposes a dynamic algorithm and an exact depth-first 

search to solve the three-dimensional cutting problem. 

Orientation and guillotine constraints are considered. Optimal 

solutions are obtained for a significant number of instances, but 

not all of them. Althaus et al. (2007) consider the trunk packing 

problem where the box dimensions are as per the SAE J1100 

standard. They propose two discretized methods. First, the 

space to be packed is discretized. Then, an approximation 

approach is considered using linear inequalities. The space 

discretization causes insufficient representation of the boxes. 

Additionally, the runtime of the enumerative algorithms is 

exponential. 

Although considerable advancement has been made in the 

development of exact algorithms, heuristic algorithms still play 

an important role in solving three-dimensional knapsack 

problems. Only heuristic methods can provide reasonable 

solutions within an acceptable running time for instances of 

real-world sized problems. Pisinger (2002) develops a wall-

building based heuristic. Both homogenous and heterogeneous 

instances are considered. Moreover, several ranking rules are 

studied to select the best layers’ depths. Bortfeldt et al. (2003) 

propose a parallel tabu search approach for a single container 

loading problem and give little consideration to heterogeneous 

instances. Wang et al. (2008) also present a heuristic method 

for a heterogeneous container loading problem and developed 

a dynamic space decomposition approach based on the tertiary 

tree structure. Egeblad and Pisinger (2009) propose a simulated 

annealing based methodology for the two and three-

dimensional knapsack problems, and a three-dimensional 

knapsack model is presented. The authors present an iterative 

heuristic approach for the knapsack problem that is based on 

the sequence triple representation. Also, Yamazaki et al. (2000) 

apply a variety of packing sequences including sequence-triple 

in their 3-D packing solution approach. To control the heuristic 

method, simulated annealing is used. However, rotation of 

boxes and preplaced boxes (obstacles) are not considered in the 

three-dimensional model and experiments. Wu et al. (2010) 

consider the three-dimensional bin packing problem with 

variable bin heights. A mixed integer programming model is 

proposed, and they also present the case when more than one 

type of bin is used. A genetic algorithm-based heuristic is 

proposed for packing a batch of objects. Goncalves et al. (2012) 

propose a multi-population biased random-key genetic 

algorithm for the single container loading problem. Maximal-

space representation is used to manage the container free space. 

The authors consider stability and orientation constraints; 

however, they do not develop a mathematical model for the 

given problem.  Peng et al. (2009) present a hybrid simulated 

annealing algorithm for three-dimensional container loading 

problem. Firstly, a heuristic algorithm is used for encoding 

feasible packing solutions, and then the simulated annealing 

algorithm is applied to search in the encoding neighborhood. 

Hongtao et al. (2012) address a three-dimensional single 

container loading problem by using a multi-stage search based 

simulated annealing algorithm.   Wei et al. (2012) use a 

reference length approach to address the three-dimensional 

strip packing problem.  In another paper, Wei et al. (2015) 

address the problem of multiple container loading cost 

minimization problem by using a new approach that combines 

column generation technique with a goal driven search.   

Other research works related to design automation focus on 

three-dimensional placement of circuit elements by exploring 

the layout of the integrated circuits (Obenaus and Szymansky, 

2003), and Cheng et al. (2005) address floor planning for 3-D 

VLSI Design.  While this technique is less known to container 

loading practices, it carries some similarities and it is more 

efficient in terms of search time than other methods such as 

partitioning placement.   

Models that provide information on optimal objective function 

value and bounds help to assess the solution quality of heuristic 

algorithms. Although modeling three-dimensional knapsack 

problems considers practical constraints, it is still at its 

beginnings. Junqueira et al. (2012) present mixed integer linear 

programming models for the container loading problem. 

Vertical and horizontal stability of the cargo, as well as cargo 

load bearing strength, are considered in the proposed model. 

However, the models are only able to handle moderate sized 

problems. Table 1 compares some relevant papers and models, 

and shows their similarities and differences.   

Per the literature, not all papers consider box rotation since it 

increases the search space significantly. Bin stability 

constraints have likewise been just considered in a few papers. 

To the best of our knowledge, preplaced boxes (obstacles) have 

not been studied in three-dimensional knapsack problems, 

although it is so essential for such problems since it is often 

required to place certain boxes in certain positions. These 

constraints can also be used in the case of having a non-

rectangular container. Therefore, it is important to study more 

practical constraints in the knapsack problem. This proposed 

research work aims to contribute to the literature so that a 3D 

knapsack problem can be tackled where box rotation is 

considered to help finding more practical packing 

configurations. Furthermore, preplaced boxes (bin with some 

obstacles) and vertical stability constraints are considered and 

addressed. This is useful, especially when considering trunk 

loading for auto size classification as indicated earlier in the 

Introduction section. 
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Table 1: Models Parameters Comparison 
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Able to 

solve 

Large 

Problems 

Junqueira 

et al. 

(2012) 

 √  √   

Goncalves 

et al. 

(2012) 

√ √   √ √ 

Wu et al. 

(2010) 
√   √ √ √ 

Egeblad & 

Pisinger 

(2009) 

Just 2D   √ √ √ 

Wang et al. 

(2008) 
√    √ √ 

Bortfeldt et 

al. (2003) 
√ √   √ √ 

Pisinger 

(2002) 
√    √ √ 

Proposed 

Research 
√ √ √ √ √ √ 

 

PROBLEM DEFINITION 

In this study, the three-dimensional knapsack problem is 

considered where there is one bin with fixed size and a set of 

boxes, and each box has an associated size. The aim is to find 

an efficient solution methodology to pack rectangular boxes in 

a single bin so that the total value of the packed boxes is 

maximized, or equivalently the empty spaces left are 

minimized. The boxes are assumed to be strongly 

heterogeneous, which means that there is relatively many 

different types of boxes and a small number of boxes for each 

box type (Wascher et al., 2007). Moreover, the packing is 

considered feasible if each box lies entirely in the bin and the 

packed boxes do not overlap. The edges of all boxes must be 

parallel to the edges of the bin (orthogonal packing). The boxes 

are assumed to be of rectangular shape; however, the bin can 

be considered either of rectangular or nonrectangular shape. In 

the case of having preplaced boxes (obstacles), the bin is 

assumed to be non-rectangular.  

Some practical considerations that play an important role in 

modeling more realistic knapsack problems, such as box 

rotation and bin stability, are presented. The algorithm assumes 

that the boxes can be freely rotated in six different orientations. 

However, it is possible to relax this constraint and fix a box in 

a specific orientation. The boxes need not to be packed in 

layers, and the bottom of each box must be supported by the 

top of other boxes or the bin floor. In addition, some boxes 

whose left-bottom-behind (LBB) corner should be placed in a 

specific position are considered as preplaced boxes or 

obstacles. The value of each box is equal to its volume. It is 

assumed that the dimensions of all boxes and the bin are 

integers; thus, the placement is to be done in integer steps. Let 

C be a rectangular bin with width W, height H and depth D. 

The origin of the Cartesian coordinate system is located at the 

LBB corner of the container, wi, hi, and di are respectively, the 

width, height and depth of box type i. and (xi, yi, zi) represent 

the coordinates of the LBB corner of the box. 

A mixed integer programming formulation is presented for the 

given problem. Some real-world knapsack problem constraints 

are considered in the model, and to the best of our knowledge, 

they have not been addressed previously. These constraints are 

vertical stability and preplaced boxes (obstacles). Since the 

three-dimensional knapsack problem is NP-hard, it is difficult 

to solve. Additionally, the flexibility of the orientation of boxes 

increases the search space significantly so that the difficulty of 

finding the optimal solution is increased as well. Some exact 

algorithms and heuristic methods are proposed in the published 

literature. As exact algorithms require more time to find a 

solution, heuristic approaches are more popular and can be 

effective alternatives to finding an optimal or near optimal 

solution. The proposed three-dimensional solution 

methodology is based on sequence triple representation, which 

is defined below under Placement Algorithm. Simulated 

annealing is used as the meta-heuristic method. As the number 

of box types (or box dimensions and variety) is finite, the use 

of simulated annealing is favoured by its efficiency in 

neighborhood search. 

 

MATHEMATICAL FORMULATION 

A mixed-integer programming model of the 3D-knapsack 

problem is formulated in this section. The mathematical model 

is based on work done by Egeblad and Pisinger (2009) and Wu 

et al. (2010). Some modifications are made to their models and 

include new constraints addressing vertical stability and 

obstacles, which were not considered in any previously 

published works. Constraints (1) – (4) are adapted from 

Egeblad and Pisinger (2009); however, the authors did not 

consider box orientation in their model. The binary position 

variables, which show the orientation of the boxes, are 

integrated in constraints (5) – (17).  This makes the model more 

comprehensive.  They are described below in this section.   

The following are the main assumptions considered for the mix 

integer linear model: 

1. The boxes are strongly heterogeneous, 

2. The boxes must be located orthogonally, 

3. The boxes can freely rotate, 

4. The box and bin dimensions are assumed to be non-

negative integer, 

5. The value of a box is equal to its volume, and 
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6. The X, Y, and Z axes of the bin are shown in the following 

figure. 

Y

X

Z

 

Figure 1: The X, Y, and Z axes of the bin 

Notation 

The model notation for the parameters and variables are as 

follows: 

 Parameters: 

(wi, hi, di): width, height, and depth of box i 

(W, H, D): width, height, and depth of the bin 

(r, s, k): Left-Bottom Behind (LBB) coordinates of the 

preplaced boxes (obstacles) 

(a, b, c, d): binary orientation parameters of the preplaced boxes 

Pi: value of box i 

M: large number 

Pb: set of preplaced boxes 

 Variables: 

(xi,yi,zi): Left-Bottom Behind (LBB) coordinates of box i 

Xwi: 1 if width of box i is parallel to the container’s X 

0 otherwise 

Zwi: 1 if width of box i is parallel to the container’s Z 

0 otherwise 

Yhi: 1 if height of box i is parallel to the container’s Y 

0 otherwise 

Zdi: 1 if depth of box i is parallel to the container’s Z 

0 Otherwise 

rij, lij: 1 if box i is to the right (rij) or to left (lij) of box j 

0 otherwise 

oij, uij:  1 if box i is over (oij) or under (uij) box j 

 0 otherwise 

bij, fij:  1 if box i is behind (bij) or in front (fij) of box j 

  0 otherwise 

si: 1 if box i is packed 

0 otherwise 

𝑦𝑖𝑗
𝑎 : 1 if 𝑥𝑗 ≥ 𝑥𝑖 (x coordinate of the LBB corner of box j is greater than or equal to x coordinate of the LBB corner of 

                                 box i) 

0 otherwise 

𝑥𝑖𝑗
𝑎 :  1 if 𝑥𝑗 < 𝑥𝑖

′  (x coordinate of the LBB corner of box j is less than x coordinate of the Right-Bottom-Behind (RBB)  

               corner of box i) 

0 otherwise 
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𝑦𝑖𝑗
𝑏 :  1 if 𝑧𝑗 ≥ 𝑧𝑖   (z coordinate of the LBB corner of box j is greater than or equal to z coordinate of the LBB corner of  

                             box i) 

0 otherwise  

𝑥𝑖𝑗
𝑏 :  1 if 𝑧𝑗 < 𝑧𝑖

′  (z coordinate of the Left-Bottom-Front (LBB) corner of box j is less than z coordinate of the Left- 

              Bottom-Front (LBF) corner of box i) 

0 otherwise 

𝑦𝑖𝑗
𝑐 :  1 if 𝑥𝑗

′ > 𝑥𝑖  (x coordinate of Right-Bottom-Behind (RBB) corner of box j is greater than x coordinate of the LBB  

               corner of box i) 

0 otherwise 

𝑥𝑖𝑗
𝑐 :  1 if 𝑥𝑗

′ ≤ 𝑥𝑖
′ (x coordinate of RBB corner of box j is less than or equal to x coordinate of the RBB corner of box  i) 

0 otherwise 

𝑦𝑖𝑗
𝑑 :  1 if 𝑧𝑗

′ > 𝑧𝑖 (z coordinate of the LBB corner of box j is greater than z coordinate of the LBF corner of box i) 

0 otherwise 

𝑥𝑖𝑗
𝑑 :  1 if 𝑧𝑗

′ ≤ 𝑧𝑖
′ (z coordinate of the LBF corner of box j is less than or equal to z coordinate of the LBF corner of box i) 

0 otherwise 

𝑧𝑖𝑗
𝑎 :  1 if 𝑥𝑖 ≤ 𝑥𝑗 < 𝑥𝑖

′ (both 𝑥𝑖𝑗
𝑎  and 𝑦𝑖𝑗

𝑎 are equal to one) 

0 otherwise 

𝑧𝑖𝑗
𝑏 :  1 if 𝑧𝑖 ≤ 𝑧𝑗 < 𝑧𝑖

′ (both 𝑥𝑖𝑗
𝑏  and 𝑦𝑖𝑗

𝑏 are equal to one) 

0 otherwise 

𝑧𝑖𝑗
𝑐 :  1 if 𝑥𝑖 < 𝑥𝑗

′ ≤ 𝑥𝑖
′ (both 𝑥𝑖𝑗

𝑐  and 𝑦𝑖𝑗
𝑐 are equal to one) 

0 otherwise 

𝑧𝑖𝑗
𝑑 :  1 if 𝑧𝑖 < 𝑧𝑗

′ ≤ 𝑧𝑖
′ (both 𝑥𝑖𝑗

𝑑  and 𝑦𝑖𝑗
𝑑 are equal to one) 

0 otherwise 

𝐶𝑠1𝑖𝑗:  1 if 𝑥𝑖 ≤ 𝑥𝑗 < 𝑥𝑖
′ and 𝑧𝑖 ≤ 𝑧𝑗 < 𝑧𝑖

′  (both 𝑧𝑖𝑗
𝑎  and 𝑧𝑖𝑗

𝑏 are equal to one) 

0 otherwise 

𝐶𝑠2𝑖𝑗:  1 if 𝑥𝑖 ≤ 𝑥𝑗 < 𝑥𝑖
′ and 𝑧𝑖 < 𝑧𝑗

′ ≤ 𝑧𝑖
′  (both 𝑧𝑖𝑗

𝑎  and 𝑧𝑖𝑗
𝑑 are equal to one) 

0 otherwise 

𝐶𝑠3𝑖𝑗:  1 if 𝑥𝑖 < 𝑥𝑗
′ ≤ 𝑥𝑖

′ and 𝑧𝑖 ≤ 𝑧𝑗 < 𝑧𝑖
′  (both 𝑧𝑖𝑗

𝑐  and 𝑧𝑖𝑗
𝑏 are equal to one) 

0 otherwise 

𝐶𝑠4𝑖𝑗:  1 if 𝑥𝑖 < 𝑥𝑗
′ ≤ 𝑥𝑖

′ and 𝑧𝑖 < 𝑧𝑗
′ ≤ 𝑧𝑖

′  (both 𝑧𝑖𝑗
𝑐  and 𝑧𝑖𝑗

𝑑 are equal to one) 

0 otherwise 
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𝑥𝑖
′ = 𝑥𝑖 + 𝑤𝑖𝑋𝑤𝑖 + ℎ𝑖(𝑍𝑤𝑖 − 𝑌ℎ𝑖 + 𝑍𝑑𝑖) + 𝑑𝑖(1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖 + 𝑌ℎ𝑖 − 𝑍𝑑𝑖) 

𝑧𝑖
′ = 𝑧𝑖 + 𝑑𝑖𝑍𝑑𝑖 + ℎ𝑖(1 − 𝑍𝑤𝑖 − 𝑍𝑑𝑖) + 𝑤𝑖𝑍𝑤𝑖  

Objective Function: 

The objective function is to maximize the value of the packed boxes:𝑀𝑎𝑥 ∑ 𝑃𝑖𝑠𝑖
𝑛
𝑖=1  

Subject to: 

𝑟𝑖𝑗 + 𝑙𝑗𝑖 + 𝑏𝑖𝑗 + 𝑓𝑗𝑖 + 𝑜𝑖𝑗 + 𝑢𝑗𝑖 = 𝑠𝑖 + 𝑠𝑗 − 1    ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                          (1) 

𝑥𝑖 + 𝑤𝑖𝑋𝑤𝑖 + ℎ𝑖(𝑍𝑤𝑖 − 𝑌ℎ𝑖 + 𝑍𝑑𝑖) + 𝑑𝑖(1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖 + 𝑌ℎ𝑖 − 𝑍𝑑𝑖) ≤ 𝑥𝑗 + 𝑀(1 − 𝑙𝑖𝑗)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗       (2𝑎) 

𝑥𝑗 + 𝑤𝑗𝑋𝑤𝑗 + ℎ𝑗(𝑍𝑤𝑗 − 𝑌ℎ𝑗 + 𝑍𝑑𝑗) + 𝑑𝑗(1 − 𝑋𝑤𝑗 − 𝑍𝑤𝑗 + 𝑌ℎ𝑗 − 𝑍𝑑𝑗) ≤ 𝑥𝑖 + 𝑀(1 − 𝑟𝑖𝑗)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗     (2𝑏) 

𝑧𝑖 + 𝑑𝑖𝑍𝑑𝑖 + ℎ𝑖(1 − 𝑍𝑤𝑖 − 𝑍𝑑𝑖) + 𝑤𝑖𝑍𝑤𝑖 ≤ 𝑧𝑗 + 𝑀(1 − 𝑏𝑖𝑗)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                           (2𝑐) 

𝑧𝑗 + 𝑑𝑗𝑍𝑑𝑗 + ℎ𝑗(1 − 𝑍𝑤𝑗 − 𝑍𝑑𝑗) + 𝑤𝑗𝑍𝑤𝑗 ≤ 𝑧𝑖 + 𝑀(1 − 𝑓𝑖𝑗)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                            (2𝑑) 

𝑦𝑖 + ℎ𝑖𝑌ℎ𝑖 + 𝑤𝑖(1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖) + 𝑑𝑖(𝑋𝑤𝑖 + 𝑍𝑤𝑖 − 𝑌ℎ𝑖) ≤ 𝑦𝑗 + 𝑀(1 − 𝑢𝑖𝑗)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                           (2𝑒) 

𝑦𝑗 + ℎ𝑗𝑌ℎ𝑗 + 𝑤𝑗(1 − 𝑋𝑤𝑗 − 𝑍𝑤𝑗) + 𝑑𝑗(𝑋𝑤𝑗 + 𝑍𝑤𝑗 − 𝑌ℎ𝑗) ≤ 𝑦𝑖 + 𝑀(1 − 𝑜𝑖𝑗)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                            (2𝑓) 

𝑥𝑖 + 𝑤𝑖𝑋𝑤𝑖 + ℎ𝑖(𝑍𝑤𝑖 − 𝑌ℎ𝑖 + 𝑍𝑑𝑖) + 𝑑𝑖(1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖 + 𝑌ℎ𝑖 − 𝑍𝑑𝑖) ≤ 𝑊                                                      (3𝑎) 

𝑦𝑗 + ℎ𝑖𝑌ℎ𝑖 + 𝑤𝑖(1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖) + 𝑑𝑖(𝑋𝑤𝑖 + 𝑍𝑤𝑖 − 𝑌ℎ𝑖) ≤ 𝐻                                                                              (3𝑏) 

𝑧𝑖 + 𝑑𝑖𝑍𝑑𝑖 + ℎ𝑖(1 − 𝑍𝑤𝑖 − 𝑍𝑑𝑖) + 𝑤𝑖𝑍𝑤𝑖 ≤ 𝐷                                                                                                           (3𝑐) 

𝑋𝑤𝑖 + 𝑍𝑤𝑖 ≤ 1                                                                                                                                                                     (4𝑎) 

𝑍𝑤𝑖 + 𝑍𝑑𝑖 ≤ 1                                                                                                                                                                      (4𝑏) 

0 ≤ 𝑍𝑤𝑖 − 𝑌ℎ𝑖 + 𝑍𝑑𝑖 ≤ 1                                                                                                                                                  (4𝑐) 

0 ≤ 1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖 + 𝑌ℎ𝑖 − 𝑍𝑑𝑖 ≤ 1                                                                                                                             (4𝑑) 

0 ≤ 𝑋𝑤𝑖 + 𝑍𝑤𝑖 − 𝑌ℎ𝑖 ≤ 1                                                                                                                                                 (4𝑒) 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = (𝑟, 𝑠, 𝑘)                                                                                                                                                           (5) 

(𝑋𝑤𝑖 , 𝑍𝑤𝑖 , 𝑍𝑑𝑖 , 𝑌ℎ𝑖) = (𝑎, 𝑏, 𝑐, 𝑑)       ∀𝑖 ∈ 𝑃𝑏                                                                                                            (6) 

𝑥𝑗 − 𝑥𝑖 ≤ 𝑀. 𝑦𝑖𝑗
𝑎 𝑥𝑗 − 𝑥𝑖 ≥ 𝑀(𝑦𝑖𝑗

𝑎 − 1)                 ∀𝑖, 𝑗,   𝑖 ≠ 𝑗                                                                                         (7𝑎) 

𝑥𝑖
′ − 𝑥𝑗 ≤ 𝑀. 𝑥𝑖𝑗

𝑎 𝑥𝑖
′ − 𝑥𝑗 ≥ 𝑀(𝑥𝑖𝑗

𝑎 − 1) + 0.5       ∀𝑖, 𝑗,     𝑖 ≠ 𝑗                                                                                     (7𝑏) 

𝑦𝑖𝑗
𝑎 + 𝑥𝑖𝑗

𝑎 − 1

2
≤ 𝑧𝑖𝑗

𝑎 ≤
𝑦𝑖𝑗

𝑎 + 𝑥𝑖𝑗
𝑎

2
   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                                   (7𝑐) 

𝑧𝑗 − 𝑧𝑖 ≤ 𝑀. 𝑦𝑖𝑗
𝑏 𝑧𝑗 − 𝑧𝑖 ≥ 𝑀(𝑦𝑖𝑗

𝑏 − 1)   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                        (8𝑎) 

𝑧𝑖
′ − 𝑧𝑗 ≤ 𝑀. 𝑥𝑖𝑗

𝑏 𝑧𝑖
′ − 𝑧𝑗 ≥ 𝑀(𝑥𝑖𝑗

𝑏 − 1) + 0.5   ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                            (8𝑏) 

𝑦𝑖𝑗
𝑏 + 𝑥𝑖𝑗

𝑏 − 1

2
≤ 𝑧𝑖𝑗

𝑏 ≤
𝑦𝑖𝑗

𝑏 + 𝑥𝑖𝑗
𝑏

2
     ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                                 (8𝑐) 

𝑥𝑗
′ − 𝑥𝑖 ≤ 𝑀. 𝑦𝑖𝑗

𝑐 𝑥𝑗
′ − 𝑥𝑖 ≥ 𝑀(𝑦𝑖𝑗

𝑐 − 1) + 0.5            ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                   (9𝑎) 

𝑥𝑖
′ − 𝑥𝑗

′ ≤ 𝑀. 𝑥𝑖𝑗
𝑎 𝑥𝑖

′ − 𝑥𝑗
′ ≥ 𝑀(𝑥𝑖𝑗

𝑐 − 1)           ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                              (9𝑏) 

𝑦𝑖𝑗
𝑐 + 𝑥𝑖𝑗

𝑐 − 1

2
≤ 𝑧𝑖𝑗

𝑐 ≤
𝑦𝑖𝑗

𝑐 + 𝑥𝑖𝑗
𝑐

2
        ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                               (9𝑐) 

𝑧𝑗
′ − 𝑧𝑖 ≤ 𝑀. 𝑦𝑖𝑗

𝑑 𝑧𝑗
′ − 𝑧𝑖 ≥ 𝑀(𝑦𝑖𝑗

𝑑 − 1) + 0.5               ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                   (10𝑎) 

𝑧𝑖
′ − 𝑧𝑗

′ ≤ 𝑀. 𝑥𝑖𝑗
𝑑 𝑧𝑖

′ − 𝑧𝑗
′ ≥ 𝑀(𝑥𝑖𝑗

𝑑 − 1)          ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                   (10𝑏) 

𝑦𝑖𝑗
𝑑 + 𝑥𝑖𝑗

𝑑 − 1

2
≤ 𝑧𝑖𝑗

𝑑 ≤
𝑦𝑖𝑗

𝑑 + 𝑥𝑖𝑗
𝑑

2
                 ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                       (10𝑐) 
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𝑧𝑖𝑗
𝑎 + 𝑧𝑖𝑗

𝑏 − 1

2
≤ 𝐶𝑠1𝑖𝑗 ≤

𝑧𝑖𝑗
𝑎 + 𝑧𝑖𝑗

𝑏

2
               ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                     (11) 

𝑧𝑖𝑗
𝑎 + 𝑧𝑖𝑗

𝑑 − 1

2
≤ 𝐶𝑠2𝑖𝑗 ≤

𝑧𝑖𝑗
𝑎 + 𝑧𝑖𝑗

𝑑

2
             ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                      (12) 

𝑧𝑖𝑗
𝑐 + 𝑧𝑖𝑗

𝑏 − 1

2
≤ 𝐶𝑠3𝑖𝑗 ≤

𝑧𝑖𝑗
𝑐 + 𝑧𝑖𝑗

𝑏

2
              ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                   (13) 

𝑧𝑖𝑗
𝑐 + 𝑧𝑖𝑗

𝑐 − 1

2
≤ 𝐶𝑠4𝑖𝑗 ≤

𝑧𝑖𝑗
𝑐 + 𝑧𝑖𝑗

𝑑

2
             ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                                     (14) 

𝐶𝑠1𝑖𝑗 + 𝐶𝑠2𝑖𝑗 + 𝐶𝑠3𝑖𝑗 + 𝐶𝑠4𝑖𝑗 = 𝑢𝑖𝑗 + 𝑜𝑖𝑗             ∀𝑖, 𝑗, 𝑖 ≠ 𝑗                                                                                       (15) 

𝑥𝑖
′ = 𝑥𝑖 + 𝑤𝑖𝑋𝑤𝑖 + ℎ𝑖(𝑍𝑤𝑖 − 𝑌ℎ𝑖 + 𝑍𝑑𝑖) + 𝑑𝑖(1 − 𝑋𝑤𝑖 − 𝑍𝑤𝑖 + 𝑌ℎ𝑖 − 𝑍𝑑𝑖)                                                     (16) 

𝑧𝑖
′ = 𝑧𝑖 + 𝑑𝑖𝑍𝑑𝑖 + ℎ𝑖(1 − 𝑍𝑤𝑖 − 𝑍𝑑𝑖) + 𝑤𝑖𝑍𝑤𝑖                                                                                                             (17) 

𝑟𝑖𝑗 , 𝑙𝑖𝑗 , 𝑜𝑖𝑗 , 𝑢𝑖𝑗 , 𝑏𝑖𝑗 , 𝑓𝑖𝑗 ∈ {0,1}                                                                                                                                             (18) 

𝑋𝑤𝑖 , 𝑍𝑤𝑖 , 𝑍𝑑𝑖 , 𝑌ℎ𝑖 ∈ {0,1}                                                                                                                                                  (19) 

𝑥𝑖𝑗
𝑎 , 𝑥𝑖𝑗

𝑏 , 𝑥𝑖𝑗
𝑐 , 𝑥𝑖𝑗

𝑑 , 𝑦𝑖𝑗
𝑎 , 𝑦𝑖𝑗

𝑏 , 𝑦𝑖𝑗
𝑐 , 𝑦𝑖𝑗

𝑑 , 𝑧𝑖𝑗
𝑎 , 𝑧𝑖𝑗

𝑏 , 𝑧𝑖𝑗
𝑐 , 𝑧𝑖𝑗

𝑑 ∈ {0,1}                                                                                                  (20) 

𝑠𝑖 , 𝐶𝑠1𝑖𝑗 , 𝐶𝑠2𝑖𝑗 , 𝐶𝑠3𝑖𝑗 , 𝐶𝑠4𝑖𝑗 ∈ {0,1}                                                                                                                                     (21) 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ≥ 0                                                                                                                                                                       (22) 

Constraint (1) ensures that if box i and box j are packed, they 

must be placed left (l), right (r), under (u), over (o), behind (b) 

or in-front (f) of each other. Constraints (2) guarantee that any 

two i and j boxes do not overlap, while considering the box 

rotation. The binary position variables (Xwi, Zwi, Yhi, Zdi) are 

used to allow box rotations. Constraint set (3) ensures that all 

boxes are placed within the bin’s dimensions. Constraint set (4) 

is used to ensure that the binary variables that show the position 

of the boxes are controlled to represent practical positions. 

Constraint (5) and (6) are used to fix the coordinates and 

orientations of the preplaced boxes, where Pb is a set of 

preplaced boxes. Constraints (7) – (10) ensure vertical stability. 

These constraints compare the four corners of each newly 

packed box with the points that cover the top of other packed 

boxes. If one of the corners has the same x and z coordinates as 

one of the mapped points, it means that the new box is located 

under or above that box. Constraint set (7) is used to define the 

binary variable 𝑧𝑖𝑗
𝑎 , and it includes three parts. Constraint (7a) 

ensures that if 𝑥𝑗 ≥ 𝑥𝑖, then 𝑦𝑖𝑗
𝑎  is equal to one; otherwise it is 

equal to zero. Constraint (7b) makes sure that if 𝑥𝑗 < 𝑥𝑖, then 

𝑥𝑖𝑗
𝑎  is one; otherwise it is equal to zero. Constraint (7c) 

guarantees that when 𝑦𝑖𝑗
𝑎  and 𝑥𝑖𝑗

𝑎  are both equal to one, then 𝑧𝑖𝑗
𝑎  

is equal to one. Similarly, constraint sets (8), (9), and (10) are 

used to define the binary variables 𝑧𝑖𝑗
𝑏 , 𝑧𝑖𝑗

𝑐 , and 𝑧𝑖𝑗
𝑑 . Constraints 

(11) – (14) show whether the x and z coordinates of the corner 

of the new box are equal to x and z coordinates of the mapped 

points on the top of the packed boxes. Constraint (15) ensures 

that if these coordinates are the same, then the new box should 

be located on top of or under the packed box. Constraints (16) 

and (17) define 𝑥𝑖
′ and 𝑧𝑖

′. Finally, constraints (18) – (21) 

represent the binary variables while constraint (22) represents 

the integer variables. 

The given mathematical model was coded in GAMS/Cplex, 

and the computational tests were run on an Intel® Core™ i5 

CPU @ 2.67GHz processor with 4.0 GB RAM. The model at 

first was run for an instance with 5 boxes; it reached the optimal 

solution in 53 seconds. Then the instance with 6 boxes is 

considered, and the solution time is equal to 6 minutes and 14 

seconds. However, the solution time for the instance with 7 

boxes increased significantly to 4 hours and 4 minutes. The 

optimal results for instance with 8 boxes was obtained after 21 

hours and 39 minutes. The model was not able to reach optimal 

solution for instance with 9 boxes even after 3 days; thus, the 

algorithm was terminated before reaching the solution. 

According to the results, optimal solutions were only possible 

in a reasonable time for small size instances (up to 8 boxes).  

While this research problem is well-known as NP hard, the 

mathematical model as presented above has helped define and 

outline this problem in more details.  However, as addressed in 

the following section, the heuristic algorithm is required to get 

solutions for larger instances in a reasonable time. 

 

SOLUTION METHODOLOGY – HEURISTIC 

APPROACH 

Three sequences are considered for the boxes to pack. These 

sequences show the relative box locations. They are known as 

sequence triple. Sequence triple is one of the most successful 

representations in the literature and defines the packing order. 

This section will first discuss placement approach in the 

subsection. Then, simulated annealing is discussed, which 

controls the local neighbourhood search. Finally, orthogonal 

rotation, preplaced boxes (obstacles), four-corner packing, and 

box insertion order are explained later in this section.  

 

Placement Algorithm 

Three sequences A, B, and C represent the fully robot packable 

packing, where A, B, and C are permutations of the numbers 1 

... n, and n is the total number of boxes to be placed in the bin. 
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These sequences denote the relative placement of each of the 

two i and j boxes with respect to each other. Each sequence is 

defined as follows: 

· A-chain: If box i appears before box j in the A-chain, then box 

i is located to the left of, on top of, or in front of box j. 

· B-chain: if box i appears before box j in the B-chain, then box 

i is located behind, to the left of, or below, box j. 

· C-chain: If box i appears before box j in the C-chain, then box 

i is located to the right, under, or in front of box j. 

Based on the three given sequences, it is possible to determine 

whether box i is located on the left side of, below, or behind 

box j. It is observed that box i always appears before box j in 

B-chain for all three given placements. Thus, the order of 

placement of the boxes in the bin can be based on the B-chain. 

The first box is placed at the origin, and the succeeding boxes 

are placed according to their relative position to boxes that are 

already packed. The coordinates of each new box are calculated 

based on the following formulae: 

𝑥𝑖 = 𝑚𝑎𝑥 (0, 𝑚𝑎𝑥𝑗∈𝑃𝑥
(𝑥𝑗 + 𝑤𝑗)) 

𝑦𝑖 = 𝑚𝑎𝑥 (0, 𝑚𝑎𝑥𝑗∈𝑃𝑦
(𝑦𝑗 + ℎ𝑗)) 

𝑧𝑖 = 𝑚𝑎𝑥 (0, 𝑚𝑎𝑥𝑗∈𝑃𝑧
(𝑧𝑗 + 𝑑𝑗)) 

where Px, Py, and Pz are the subsets of packed boxes located on 

the left, below, and behind the new box. 

 

To consider vertical stability and reduce the gap between the 

boxes, some modifications have been applied to calculate the 

y-coordinate of each packed box. These modifications are 

explained below. 

 

 Vertical Stability 

As it is assumed that the (x, y, z) coordinates of the boxes and 

their dimensions are integer, it is possible to map a set of points 

that a certain box covers. Let (xi, yi, zi) be the Left-Bottom 

Behind (LBB) coordinates of each box to be packed. The 

algorithm considers four corners of the given box. If the x and 

z coordinates of one of these corners are equal to the 

coordinates of one of the points at the top of any packed box, 

then the height of that box is returned. The y-coordinate of the 

new box would then be equal to the maximum of those values. 

The proposed novel approach, which is illustrated below, 

ensures that the vertical stability is satisfied. 

1. Consider (xi, yi, zi) 

∀𝑗 ∈ 𝑃𝑦: compute x’
j and z’

j 

Where 𝑥𝑗 ≤ 𝑥𝑗
′ ≤ 𝑥𝑗 + 𝑤𝑗 − 1 and 𝑧𝑗 ≤ 𝑧𝑗

′ ≤ 𝑧𝑗 + 𝑑𝑗 − 1 

If (xi = x’j and zi= z’j) then  

return yj+ hj 

else go to 2 

2. Consider (xi + wi, yi, zi) 

∀𝑗 ∈ 𝑃𝑦: compute x’
j and z’

j 

Where 𝑥𝑗 + 1 ≤ 𝑥𝑗
′ ≤ 𝑥𝑗 + 𝑤𝑗 and 𝑧𝑗 ≤ 𝑧𝑗

′ ≤ 𝑧𝑗 + 𝑑𝑗 − 1 

If (xi+ wi = x’j and zi= z’j) then  

return yj+ hj 

else go to 3 

3. Consider (xi, yi, zi + di) 

∀𝑗 ∈ 𝑃𝑦: compute x’
j and z’

j 

Where 𝑥𝑗 ≤ 𝑥𝑗
′ ≤ 𝑥𝑗 + 𝑤𝑗 − 1 and 𝑧𝑗 + 1 ≤ 𝑧𝑗

′ ≤ 𝑧𝑗 + 𝑑𝑗 

If (xi = x’j and zi+ di = z’j) 

return yj+ hj 

else go to 4 

4. Consider (xi + wi, yi, zi + di) 

∀𝑗 ∈ 𝑃𝑦: compute x’
j and z’

j 

Where 𝑥𝑗 + 1 ≤ 𝑥𝑗
′ ≤ 𝑥𝑗 + 𝑤𝑗 and 𝑧𝑗 + 1 ≤ 𝑧𝑗

′ ≤ 𝑧𝑗 + 𝑤𝑗 

If (xi+ wi= x’j and zi+dj = z’j) then  

return yj+ hj 

else return 0 

return 𝑦𝑖 = 𝑚𝑎𝑥(0, (𝑦𝑗 + ℎ𝑗)) 

The algorithm pushes each packed box downward where 

possible such that its bottom can be supported by the floor of 

the bin or by the top of other packed boxes. 

 

Simulated annealing 

Although it is relatively not difficult to develop a simulated 

annealing heuristic approach, choosing a good neighborhood 

and cooling procedure, which itself depends on several 

different parameters, is usually necessary for the algorithm to 

work efficiently. The cooling procedure is different for various 

types of problems, and even between instances of the same 

problem. Therefore, it is difficult to find out a good cooling 

procedure. In the proposed simulated annealing algorithm, the 

temperature is reduced when a new solution is accepted, 

according to the following function: 

𝑡 → 𝑡 (1 + 𝛽𝑡)⁄  

where 𝛽 is the cooling parameter. Besides the cooling down 

procedure, the process is allowed to heat up again whenever it 

appears to be getting trapped. The heating up function is: 

𝑡 → 𝑡 (1 − 𝛼𝑡)⁄  

where 𝛼 is the heating parameter. The temperature is reduced 

when the solution is accepted and increased when the solution 

is rejected. Parameter 𝛼 must be smaller than 𝛽 as the number 

of acceptances is small when compared to the number of 

rejections (Dowsland, 1993). 
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The neighbourhood of each solution is defined as one of these 

five permutations: either exchange two boxes from one of the 

sequences; exchange two boxes in sequences A and B; 

exchange two boxes in sequences A and C; exchange two boxes 

in sequences C and B; or exchange two boxes in all sequences.  

The solutions are compared based on the bin utilization. The 

formula used for calculating the utilization percentage is as 

follows: 

𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓𝑝𝑎𝑐𝑘𝑒𝑑 𝑏𝑜𝑥𝑒𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑖𝑛
× 100 

 

It should be noted that the volume (or internal volume) of the 

bin is a reference to an ideal solution that may not be attained 

due to the discrete nature of the boxes being loaded.  However, 

this volume is used in the relation above to check how far the 

solution obtained by the simulated annealing algorithm is from 

the ideal solution. 

 

Orthogonal Rotation 

An extension we add to the typical A, B, C-chain representation 

of the packing is to allow for the boxes to be rotated 

orthogonally with respect to the bin. Width, height, and depth 

of all boxes are respectively parallel to x, y, and z axis, and wi, 

hi, and di represents the width, height, and depth of box i, 

respectively. It is possible to obtain better packing if the boxes 

are rotated in different directions. Boxes are allowed to be 

rotated in one of the following orientations: 

WHD: Standard orientation. 

WDH: Swap the height and the depth. 

HWD: Swap the width and the height. 

HDW: Swap the width and the height, and then swap the height 

with the depth. 

DHW: Swap the depth with the width. 

DWH: Swap the depth with the width, and then swap the depth 

with the height. 

The given rotation is applied to the simulated annealing by 

adding an additional transformation to the neighbourhood 

generating routine. The orientation of the boxes is generated 

randomly at first. Thus, an additional vector R, which shows 

the orientation of the boxes, is stored. The sequence triple is 

stored as well. 

 

Obstacles 

If Pb is the set of rectangular obstacles (or preplaced boxes) 

with known coordinates (x, y, z) and known dimensions (w, h, 

d), then the obstacles are fixed into the bin at the beginning of 

the algorithm. The packing is created from the sequence triple 

(A, B, C) and those boxes that overlap with any obstacles in the 

set are removed. The bin free volume is calculated as follows: 

Bin free volume = volume of bin – total volume of obstacles 

 

Four-corner packing 

Four packing schemes, one for each corner, are created. First, 

the coordinates of the boxes are calculated in relation to the 

current origin. Then, their real (x, y, z) coordinates are 

calculated in relation to the real origin of the bin which is its 

LBB corner. The processing technique is as follows: 

W := bin width 

H := bin height 

D := bin depth 

w := box width 

h := box height    

d := box depth 

if (loading from front) then  

  // No change needed: this is the default loading method. 

Return <x,y,z> 

else if (loading from rear) then 

return <W – x – w, y, D – z – d> 

else if (loading from left side) then 

return <W – z – w, y, x> 

else if (loading from right side) then 

return <z, y, D – x – w> 

end 

 

Order of box insertion 

The order the boxes are inserted into the container is based on 

sequence B and can either be created randomly, or based on the 

volume of the boxes, which means that the boxes with larger 

volumes are packed first (in a first fit decreasing order). 

 

NUMERICAL EXPERIMENTS 

The proposed methodology is implemented in C++, and the 

code is tested using two different sets of boxes. The dimensions 

of the first set of boxes are taken from the SAE J1100 Standard, 

which includes 7 different types of boxes (after excluding the 

golf bag). The dimensions of these boxes are illustrated in 

Table 2a. Twelve instances are created by using the first set of 

boxes. These instances contain 36 and 70 boxes. The maximum 

allowed number of boxes for both types of instances is also 

shown in Table 2a.  

The second set of boxes is generated randomly based on 

uniform distribution and includes 10 types of boxes. Two 

instances are created by using this set, which includes 50 boxes. 

The width, height, and depth of these boxes are selected from 

the intervals [100, 250], [50, 250], [100, 300] respectively. The 
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dimensions of the boxes and their maximum allowed number 

are shown in Table 2b. In cases where preplaced boxes are not 

considered, the dimensions of the bin for instances containing 

36 boxes are equal to 800×700×1000 (mm).  However, for 

instances with 70 boxes, they are equal to 1100×900×1400 

(mm), and in the case of having instances with 50 boxes, the 

dimensions are equal to 600×500×700 (mm). When obstacles 

are present, the bin dimensions are equal to 1350×540×890 

(mm) in instances with 36 boxes, and they are equivalent to 

1100×900×1400 (mm) in other instances. The profits of the 

boxes are set to be equal to their volume. 

 

Table 2a: Information on the First Set of Boxes 

Box Type Width 

(mm) 

Height 

(mm) 

Depth 

(mm) 

Max. no. of boxes in 

instances 

with a total of 36 boxes 

Max. no. of boxes in 

instances 

with a total of 70 boxes 

1 229 483 610 4 7 

2 165 330 457 4 7 

3 229 406 660 2 5 

4 216 457 533 2 5 

5 203 229 381 2 5 

6 178 356 533 2 6 

7 152 114 325 20 35 

 

 

Table 2b: Information on the Second Set of Boxes (Dimensions generated randomly) 

Box Type Width 

(mm) 

Height 

(mm) 

Depth 

(mm) 

Max. no. of boxes 

1 138 182 285 6 

2 126 240 135 5 

3 108 222 165 4 

4 140 80 246 5 

5 105 234 272 3 

6 153 237 159 6 

7 216 229 272 6 

8 188 124 236 5 

9 137 100 167 4 

10 103 104 222 6 

 

The names of the instances are Knp-n-o-c-v, where 𝑛 ∈
{36,70,50} is the number of boxes to be packed; o is the order 

of boxes in B-chain that can be based on the boxes volume (v), 

i.e. in first fit decreasing order, or randomly created (R); c 

shows whether (or not) the obstacles are considered and can be 

set as (obs) or (wo) respectively; and v represents the volume 

of the bin. 

The number and dimensions of the obstacles (preplaced boxes) 

differ in various instances. Eight obstacles are defined for cases 

with 36 and 70 boxes. The dimensions of the obstacles and their 

coordinates are described in Table 3. For the instances where 

there are 70 boxes, four obstacles are defined in case of ceiling 

obstacles, and two obstacles are defined for middle ones. The 

dimensions and coordinates of these obstacles are illustrated in 

Table 4. 
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Table 3: Obstacles Dimensions and Coordinates for Instances with 36 and 70 Boxes 

Obstacle dimensions 

(w, h, d) (mm) 

Obstacle coordinates 

Instance of 36 boxes 

Obstacle coordinates 

Instance of 70 boxes 

(180, 220, 250) (1170, 0, 160) (920, 0, 160) 

(320, 220,160) (0, 0, 0) (0, 0, 0) 

(320, 220,160) (1030, 0, 0) (780, 0, 0) 

(125, 220,160} (0, 0, 160) (0, 0, 160) 

(200, 320, 320) (0, 220, 0) (0, 580, 0) 

(200, 320, 320) (1150, 220, 0) (900, 580, 0) 

(160, 208, 240) (0, 332, 320) (0, 692, 320) 

(160, 208, 240) (1190, 332, 320) (940, 692, 320) 

 

Table 4: Information on Ceiling and Middle Obstacles 

Ceiling Obstacles Middle Obstacles 

Dimensions (mm) Coordinates Dimensions (mm) Coordinates 

(200, 320, 320) (0, 580, 0) (500, 220, 160) (300, 300, 0) 

(200, 320, 320) (900, 580, 0) (500, 220, 160) (300, 300, 1240) 

(160, 208, 240) (0, 692, 320)   

(160, 208, 240) (940, 692, 320)   

 

Parameter Setting 

Choosing a suitable cooling procedure and parameters is 

essential for the algorithm to work efficiently. After testing 

different cooling procedures, the one proposed by Dowsland 

(1993) works the best. The given cooling process has been 

explained earlier (see Simulated Annealing). The cooling 

parameter 𝛽 is selected to be 0.2, and 𝛼 is equal to 0.002. 

Values for initial temperature are selected from {0.5, 0.4, 0.3, 

0.2}.  Based on the results, t0=0.2 is the most suitable 

temperature. 

Results and Sensitivity Analysis 

Ten runs were conducted for each case. The worst, average, and 

best solutions are shown in Table 5. The values in the table 

illustrate the utilization percentage of the bin. In addition, the 

column “time” represents the run time for each case in minutes. 

 

Table 5: Worst, Best, and Average Utilization 

Case Time 

(min) 

Best 

(%) 

Average 

(%) 

Worst 

(%) 

Knp-36-v-wo-560 10 88.49 86.19 83.92 

20 87.72 85.29 80.45 

30 88.08 86.23 83.43 

120 88.07 85.83 84.81 

Knp-36-R-wo-560 10 83.51 80.83 77.31 

20 88.43 85.00 78.26 

30 86.51 83.65 80.19 

120 87.93 87.05 84.81 

Knp-36-v-obs-649 10 76.42 74.54 70.76 

20 80.60 78.5 75.63 

30 81.06 79.55 77.64 

120 79.10 77.33 75.13 

Knp-36-R-obs-649 10 82.23 79.15 77.14 

20 82.80 80.03 77.50 

30 80.77 79.22 77.58 

120 80.79 78.88 77.21 

Knp-70-v-wo-1386 20 86.34 84.33 82.02 

30 85.99 84.24 82.17 

60 86.29 84.56 82.68 

120 86.44 84.96 82.71 
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Table 5: (Continued) Worst, Best, and Average Utilization 

Case Time 

(min) 

Best 

(%) 

Average 

(%) 

Worst 

(%) 

Knp-70-R-wo-1386 20 84.13 80.92 77.27 

30 84.80 83.39 82.49 

60 84.61 81.89 81.64 

120 85.59 83.59 79.57 

Knp-70-v-obs-1386 30 79.74 77.24 75.73 

60 82.09 79.14 75.53 

120 80.12 78.93 76.84 

Knp-70-R-obs-1386 30 78.12 75.59 75.06 

60 80.24 78.01 76.50 

120 83.66 79.67 78.34 

Knp-70-v-obs1-1386 30 85.97 84.37 82.88 

60 85.05 83.30 82.06 

120 82.70 81.74 80.18 

Knp-70-R-obs1-1386 30 82.31 80.68 78.39 

60 82.66 79.75 77.26 

120 83.09 80.09 78.65 

Knp-70-v-obs2-1386 30 79.29 77.66 76.66 

60 78.97 78.46 77.74 

120 79.86 77.80 76.15 

Knp-70-R-obs2-1386 30 79.74 77.89 76.00 

60 78.96 77.35 76.45 

120 82.50 78.75 76.15 

Knp-503-v-wo-210 20 85.49 84.02 82.95 

30 88.58 86.45 84.39 

60 86.56 85.36 83.97 

120 89.68 87.58 85.91 

180 88.31 87.02 85.93 

Knp-503-R-wo-210 20 86.79 84.70 82.87 

30 86.41 84.89 83.56 

60 88.07 85.53 84.20 

120 89.72 87.42 85.83 

180 88.06 86.55 85.56 

 

For 36-box instances (Knp-36-o-c-v), the minimum running 

time was set to 10 minutes. Although the heuristic approach 

often reached the best solution in less than 10 minutes, the 

running time was increased to see whether the algorithm can 

jump out of the local optimal and find a better solution. Thus, 

the instances were run for 20, 30, and 120 minutes as well. 

Based on the results, increasing time does not significantly 

affect the solutions.  It can be concluded that 10 minutes is 

sufficient for the heuristic approach to find the final solution. 

For scenarios that contain 70 boxes and where preplaced boxes 

are neglected, the algorithm was run for at least 20 minutes. 

                                                           

1Ceiling obstacles         
2Middle obstacles 
3Second set of boxes 

The running time was increased to 30, 60, and 120 minutes. The 

results indicate that 20 minutes is sufficient to reach a good 

solution in these scenarios. However, when considering 

obstacles, the algorithm was tested for at least 30 minutes. This 

is because dealing with the obstacles increases the solution 

time. The running time was increased to 60 and 120 minutes. 

The results show that increasing the running time to 60 minutes 

allows the algorithm to reach better solutions; however, 

increasing the running time to 120 minutes does not improve 

the utilization significantly. Therefore, 60 minutes can be a 

sufficient running time to reach the final solution. In these 

cases, according to the results, when including ceiling 
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obstacles, the reasonable run time is equal to 30 minutes since 

handling the ceiling obstacles is easier than floor obstacles. 

When middle obstacles are present, the bin utilization is less 

than the one in other instances. These kinds of instances were 

run for 30, 60, and 120 minutes. Based on the obtained 

utilizations shown in Table 5, 30 minutes can be considered as 

a reasonable run time. In the case of Knp-70-R-obs (middle)-
1386, the algorithm jumps out of the local minimum after 120 

minutes and can obtain a better solution (higher bin utilization). 

Nevertheless, only the best utilization is improved, and the 

average and worst results do not change significantly. 

Moreover, the instances in which 50 boxes should be packed 

were run for 20, 30, 60, 120, and 180 minutes; 30 minutes is 

observed to be enough if it is required to obtain a satisfying 

solution in a short time. However, it seems that the algorithm 

can jump out of the local optimal and find a better solution after 

120 minutes. In addition, one of the instances was run for 48 

hours to find out if the algorithm can jump out the local optimal 

after a long time. Based on the result, the gained utilization does 

not change significantly. Thus, the results in Table 5 can be 

considered as a reference to make a conclusion. As illustrated 

in Table 5, the best utilization is obtained in most instances 

when the order of the boxes in B-chain is based on their 

volume, where the boxes are fit in decreasing order. Figure 2 

illustrates the best results for some of the instances tested. 

 

 

 

 

Knp-36-v-wo-560  Knp-36-R-obs-649 

 

 

 
Knp-70-v-wo-1386  Knp-70-v-obs-1386 

  

 

 

 

Knp-70-v-obs(ceiling)-1386  Knp-70-v-obs(middle)-1386 

  Figure 2: Best results for some instances 
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Knp-50-v-wo-210  Knp-50-R-wo-210 

 Figure 2: (Continued): Best results for some instances 
 

For the instances that include obstacles, preplaced boxes are shown in black. As shown in Figure 2, the vertical stability is satisfied 

for all instances and there is no longer a box placed in the air. The bottoms of all packed boxes are placed either on the bin floor, or 

on the top of other packed boxes. 

 

Algorithm Verification 

To verify the proposed methodology, the Knp-36-R-obs-649 
scenario is run without considering vertical stability constraint; 

the best, worst and average results obtained in this case are 

respectively equal to 77.38%, 75.19%, and 76.2%, which are 

less than the utilizations obtained by considering the vertical 

stability constraint (82.23%, 77.14%, and 79.15%). As shown 

in the Figure 3, some of the boxes are placed in the air. 

 

 

Figure 3: Result without Vertical Stability 

 

CONCLUSIONS 

A three-dimensional knapsack problem for container loading 

has been presented and discussed. The packing is considered 

orthogonal; boxes are rectangular and can be freely rotated. A 

mixed integer linear programming model has been proposed for 

the problem, and it has considered some practical constraints, 

such as box rotation, vertical stability, and preplaced boxes. 

The mathematical model, while limited due to the NP hardness 

of the problem, provided detailed information, and explained 

all the features considered in this bin packing scheme. To solve 

large instances in a reasonable time, a heuristic algorithm has 

been proposed based on the simulated annealing technique. The 

methodology is based on the sequence triple representation. 

Various experiments have been conducted with different sets 

of boxes. The order of box insertion in the bin can be random 

or based on the box volume in a decreasing order. The solutions 

have been compared based on bin utilization. Sensitivity 

analysis has been conducted based on the running time to 

determine whether the algorithm can jump out of the local 

optimal by increasing time to reach a better solution. 

The results illustrate that the proposed algorithm performs as 

intended. Good quality results can be obtained for large 

instances in a reasonable time. The algorithm can handle 

various instances and get satisfactory utilizations. According to 

the final results, better solutions can be obtained if the order of 

inserting boxes in the bin is based on the volume of the boxes 

that is in decreasing order. Moreover, the results show that the 

proposed approach is compatible with preplaced boxes or 

obstacles, and vertical stability issue is satisfied as well. In 

addition, the methodology can be used to deal with irregular 

bins where the bin is not rectangular by considering the 

irregular sections of the bin as preplaced boxes. The proposed 

approach can be considered to find a high utilization of the 

container, which decreases the transportation cost and goods 

traffic while increasing the stability of the load.  This has 

managerial implications and helps decision-makers to be more 

cost-efficient. 

For future research, boxes with non-integer dimensions can be 

considered. This adds more flexibility to the solution approach.  

In addition, non-rectangular and irregular shape boxes can be 

considered in the future. 
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