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Abstract.  

Multiple sizes of Sea bream were collected from Kingston Harbour, Jamaica, to assess steady state 1 

bioaccumulation of polychlorinated biphenyls (PCBs) in a tropical fish. Sea beam fork lengths 2 

ranged from 7.3-21.5 cm (n=36 fish) and tissue lipids decreased with body length. Larger fish had 3 

lower δ13C isotopes compared to smaller fish, suggesting a change in diet. Linear regressions 4 

showed no differences in lipid equivalent sum PCB concentrations with size. However, differences 5 

in individual congener bioaccumulation trajectories occurred. Less hydrophobic PCBs decreased 6 

with increasing body length, intermediate PCBs showed no trend, whereas highly hydrophobic 7 

(above log KOW of 6.5) PCBs increased. The different congener patterns were interpreted to be a 8 

result of decreases in overall diet PCB concentrations with increased fish length coupled with 9 

differences in PCB toxicokinetics as a function of hydrophobicity yielding dilution, pseudo-steady 10 

state and non-steady state bioaccumulation patterns. 11 

Keywords. Kingston Harbour, stable isotopes, biomagnification, toxicokinetics, POPs 12 

INTRODUCTION 13 

Bioaccumulation and food web biomagnification of persistent organic pollutants (POPs) such as 14 

polychlorinated biphenyls (PCBs) is well established (Oliver and Niimi, 1988; Connolly and 15 

Pedersen, 1988; Rassmussen et al., 1990). Hydrophobic POPs compounds distribute primarily to 16 

lipids, and to a lesser extent hydrophobic non-lipid organic matter (Debruyn and Gobas, 2007), 17 

while their elimination is inversely related to chemical hydrophobicity and animal lipid pool size 18 

(Bruggeman et al., 1984; Hawker and Connell, 1985). Despite strong mechanistic understanding 19 

of toxicokinetics processes (Gobas et al., 1988) and prevalence of POPs bioaccumulation models 20 

(Arnot and Gobas, 2004), most aquatic food web models operate under the assumption that steady 21 

state is achieved between fish and their environment and diet. Yet, the majority of field studies 22 

examining POPs bioaccumulation in the field have emphasized sampling entire food webs (Borgå 23 

et al., 2012) and there are few studies that sampled different size and age classes of the same 24 

population of fish necessary to test the steady state assumption (Olsson et al., 2000; Paterson et 25 

al., 2006 a,b; Burtnyk et al., 2009; Paterson et al., 2016).  26 

Steady-state is defined as the condition of constant chemical concentrations with time which is 27 

achieved when uptake and elimination kinetics become balanced under constant water and dietary 28 

POPs concentrations, constant growth and lack of change in tissue composition such as % lipids. 29 

Paterson et al. (2007) demonstrated that time to steady state in temperate fish is also dependent on 30 

seasonal temperature cycles; such that for yellow perch (Perca flavascens), steady state 31 



requirements exceed the life of the species. Tropical fish, however, do not experience large 32 

changes in water temperature and their metabolic rates remain closer to their thermal optima. A 33 

lack of winter metabolic minimum means that chemical toxicokinetics remain more consistent, 34 

and annually elevated, compared to what is experienced by temperate fish. Thus, tropical fish are 35 

more likely to achieve steady state. Most studies testing steady state POPs bioaccumulation 36 

focused on temperate fish. This study examines steady state in the tropical Atlantic Sea Bream 37 

(Archosargus rhomboidalis) to determine if steady state dynamics predominant in a tropical fish.  38 

Materials and Methods.  39 

Atlantic sea bream were collected from the Kingston Harbour, Jamaica in 2010-2012 between June 40 

to September (Figure 1). The harbour has a total surface area of 51km2 and extends 16.5 km east-41 

west and 6.5km north-south. It receives industrial and residential waste via a number of gullies, 42 

rivers and outlets. These gullies and other outlets are a major source of solid waste, heavy metals, 43 

chemical contaminants and sewage (Goodbody, 2003). Temperature and salinity ranges from 44 

26.66-27.110C and 33.51-34.96 ppt, respectively (Buddo, 2012). 45 

 46 

 47 

 48 

 49 
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 54 

Samples were collected during the day using trawl nets. The nets were dragged for 30 minutes. All 55 

“Brim” species were retained while bycatch were released. Sea bream were stored in a cooler over 56 

ice for transport to the laboratory. Species identification was later verified using the Fish Base 57 

online database and the Jamaica National Marine Fisheries Atlas. At the laboratory, each fish was 58 

given a unique identification number and fork length (cm) and weight (g) was recorded. Ten grams 59 

of dorsal muscle was removed stored frozen for stable isotope analyses. The remaining carcass 60 

was homogenized in stainless steel blenders and about 20 g was stored frozen until PCB analysis.  61 

Chemical analyses was carried out according to modifications of Burtnyk et al. (2009). 62 

Approximately 1g of homogenate was ground with 10g of sodium sulfate and spiked with PCB 34 63 

as a surrogate standard. The mixture was cold column extracted for 1 hr with 50:50 hexane: 64 

dichloromethane followed by evaporation to 10 mL. Neutral lipid was determined gravimetrically 65 

by removing 1 mL of sample extract and drying for 1 hour at 110 0C. The remaining extract was 66 

concentrated to 2 mL. Sample clean-up was done using florisil columns. After adding the sample 67 

to the column, it was eluted with 50 ml of hexane followed by 50 ml of 15% dichloromethane: 68 

hexane. The cleaned up sample was concentrated and analyzed using an Agilent 6890, Series Plus 69 

Fig. 1 Study area in the Kingston Harbour, Jamaica. Rectangle indicates boundary of the sampling 

area.   



Gas Chromatograph equipped with Agilent-7683 Series autosampler and a 63 Ni-µECD. The 70 

method analyzed for 34 PCB congeners using a certified PCB standard (Quebec PCB Congener 71 

Mix, Accustandard, New Haven, CT, USA). Samples were extracted in batches of 6, with each 72 

batch containing a blank and a reference tissue (homogenized goat liver fortified with Aroclor 73 

1254). Detection limits for individual PCBs averaged 0.056±0.004 ng/g wet weight and ranged 74 

from 0.02 – 0.12 ng/g wet wt. Mean recovery of the surrogate standard was 94%.  75 

PCB congeners detected at a frequency of less than 30% (IUPAC #'s 17/18, 33, 74, 70/76, 87, 76 

105/132, 158, 156/171, 191, 195/208, 205, 204 and 209) were excluded from data analyses.  For 77 

the remaining congeners, non-detected values were substituted with a value equal to 1/3 the 78 

congener detection limit. Sum PCBs refers to the sum of frequently detected PCBs (IUPAC # 79 

31/28, 49, 52, 44, 95, 101, 99, 110, 151/82, 149, 118, 153, 138, 187, 183, 128, 177, 180, 170/190, 80 

199 and 194) with non-detected values substituted with 1/3 the detection limit. PCB concentrations 81 

were expressed in units of either ng/g wet weight or ng/g lipid equivalent weight.  Lipid equivalent 82 

PCB concentrations are calculated according to: 83 

   𝐶𝑙𝑒𝑞 =
𝐶𝑤𝑤

(𝑥𝑙𝑖𝑝𝑖𝑑+0.05·𝑥𝑙𝑑𝑤)
                        (1) 84 

Where Cleq and Cww are the lipid equivalent and wet weight concentration (ng/g), Xlipid and Xldw is 85 

the fraction by weight of lipids and lean dry weight and 0.05 is a constant relating the partition 86 

capacity of lean dry weight relative to lipids (DeBruyn and Gobas, 2007).  87 

Skin-on dorsal muscle (1 g) was dried at 60 0C for 48 hr and ground to a powder for stable isotopes. 88 

Between 400 to 600 µg of powder was lipid extracted by chloroform/methanol and added to a 3 89 

mm x 5.5 mm tin capsule. The samples were analyzed on a Costech Elemental Combustion System 90 

coupled to a Delta V Advantage Isotope Ratio Mass Spectrometer. The stable isotope results (‰) 91 

were calculated relative to a reference standard as per equation 2:  92 

  𝜕15𝑁 (𝑜𝑟 𝜕13𝐶) = ( 
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) · 1000             (2) 93 

Where R is the ratio of heavy to light isotope (15N/14N or 13C/12C) in the sample relative to the 94 

reference. The reference standards were atmospheric nitrogen for nitrogen and Pee Dee Belemnite 95 

carbonate for carbon. Ten percent of samples and standards were run in duplicate to assess 96 

precision. 97 

Data were analyzed using Statistica 64 statistical software package. Normality and homogeneity 98 

of variance was tested by normal probability plot and Levene's test. Linear regressions and analysis 99 

of variance (ANOVA) were used to compare lipid, stable isotopes or PCBs as a function of fork 100 

length or between fish grouped into size categories. Post-Hoc tests (Tukey's HSD) were used to 101 

compare individual size classes. A probability of p < 0.05 was considered statistically significant. 102 

Measures of central tendency are reported as means ± standard error (SE). 103 

Results 104 

Thirty six sea bream were collected with a body weight range of 8.0-240.5g and fork lengths of 105 

7.3-21.5cm. Although otoliths were collected, the age could not be ascertained with confidence as 106 

is common for tropical fish.  As such, the samples were also classified into four size categories as 107 

a proxy for age classes and to enable categorical detection of non-linear patterns.   108 



 109 

The mean±SE (range) lipid content of fish was 2.4 ± 0.3% (0.3 to 6.3%). Lipids demonstrated a 110 

significant (F1,34=5.2; p<0.01; Regression R2 = 0.29) decreasing trend with body length. Post hoc 111 

comparisons across size categories indicated lipid differences were significant between size classes 112 

1 and 4 (p<0.01; Tukey's HSD; Table 1). For stable isotopes, δ13C significantly declined with body 113 

size (F1, 34 = 4.78; p<0.05; Regression R2 = 0.10) whereas δ15N was not significantly (F1,34=0.38; 114 

p>0.5) related to length. Post hoc comparisons indicated fish had significantly (p<0.01; Tukey's 115 

HSD; Table 1) lower carbon isotopes for size classes 3 and 4 relative size classes 1 and 2. 116 

 117 

Mean±SE sum PCBs in fish were 4.48±0.51 ng/g wet weight and ranged from 0.5 – 12.8 ng/g wet 118 

weight. Wet weight sum PCBs exhibited a significant (F1,34 = 5.0; p<0.05; Regression R2 = 0.13) 119 

declining trend with fork length. Post hoc comparisons of wet weight sum PCBs by size category 120 

were similar to %lipids, with differences evident between size classes 1 and 4 (Table 1). When 121 

sum PCBs were converted to lipid equivalent concentrations, there was no longer a significant 122 

relationship with body length (F1,34=1.15; p>0.3; Regression R2 <0.01). 123 

Table. 1 Summary of fork length, lipids, stable isotopes and sum PCBs in sea bream. 124 

 

Size 

Class 

Size  

(cm) 

N Lipid  

(%)  

δ13C  

(‰) 

δ15N 

 (‰) 

Sum 

PCBs 

wet wt. 

(ng/g) 

Sum 

PCBs 

 lipid 

equivalent 

(ng/g) 

1 8.3 ±  0.2 9 3.6±0.2a -14.5±0.1a 13.4±0.2a 6.5±1.0a 129±15a 

2 11.6 ± 0.5 14 2.4±0.5a,b -14.7±0.3a 14.3±0.2a 4.2±0.7a,b 120±18a 

3 17.4 ± 0.4 5  2.1±0.7a,b -16.5±0.4b 13.6±0.3a 5.6±1.5a,b 186±24a 

4 20.4 ± 0.3 8 0.9±0.1b -17.5±0.5b 12.9±0.5a 1.4±0.4b 104±17a 

Data reported as means ± standard error. Superscripts are significantly different from one another 125 

(p<0.05; Tukey's HSD).  126 

Linear regressions were then performed on lipid equivalent PCBs as a function of body length for 127 

individual congeners. Eleven of the 21 congeners exhibited no significant (regression slopes =0; 128 

p>0.05; ANOVA) relationship with body length. Ten of the congeners (PCBs 52, 95, 101, 153, 129 

138, 187, 177, 180, 199 and 194) had concentrations that were significantly (regression slopes ≠ 130 

0; p<0.05; ANOVA) related to fork length. However, the direction of the slope varied between 131 

congeners. PCBs 52 and 95 had significantly (regression slopes <0; p<0.01; ANOVA) negative 132 

relationships with length whereas PCBs 101, 153, 138, 187, 177, 180, 199 and 194 had 133 

significantly (regression slopes >0; p values ranging from <0.001 – p<0.05; ANOVA) positive 134 

relationships with length. Figure 2 presents bioaccumulation plots for selected congeners (PCBs 135 

52, 110, and 187) across size categories.  PCB 52 is representative of a dilution profile with size, 136 

PCB 110 reflects apparent steady state (no change) while PCB 187 demonstrates non-steady state 137 

net bioaccumulation. Figure 3 provides a plot of the lengthwise bioaccumulation slopes (ng/g lipid 138 

equivalent/cm fish) for individual congeners as a function of log KOW. Based on Figure 3, there is 139 

a transition in the bioaccumulation slope from negative for low KOW congeners (log KOW < 6.25) 140 

to neutral followed by positive slopes for chemicals with log KOW values exceeding 6.75. 141 

 142 



 143 

 144 

 145 

Discussion 146 

Data on length related changes in tissue lipid and stable isotopes (carbon) provide supporting 147 

evidence to indicate altered body condition and feeding ecology of fish over the size range of 148 

animals collected. The larger sizes classes of sea bream had lower tissue lipids and lower δ13C 149 

compared to fish from size classes 1 and 2. The change in δ13C suggests larger fish were more 150 

dependent on a pelagic diet while the smaller size classes incorporated either nearshore or benthic 151 

signals (Paterson et al., 2007b). However, such changes were not associated with a shift in trophic 152 

position given the low variation in δ15N. Stomach contents of fish (data not shown) indicated that 153 

mollusks (benthic invertebrates) were more frequently consumed by fish > 20 cm which supports 154 

a diet shift but not in the expected direction based on changes in δ13C. Other studies report a diet 155 

shift by sea bream from zooplankton to more omnivorous diets that includes algae and vascular 156 

plants as fish age (Randall et al., 2004). Indeed, the largest size class of fish from the present study 157 

did have the lowest δ15N, although non-significantly so. Vascular plants and algae are expected to 158 

have both lower energy density and lower PCBs compared to zooplankton, benthic invertebrates 159 

and fish. The low energy density of later aged diets is consistent with the observed decrease in 160 

tissue lipids of larger fish. Although diets were not collected separately for measurement of PCB 161 

concentrations or isotopes, the patterns in stable isotopes and tissue lipids imply a diet change 162 

occurred and the change is likely to have affected the average dietary exposure to PCBs by fish. 163 

With respect to steady state, there was no change in lipid equivalent sum PCBs across fish length 164 

which is consistent with a steady state interpretation.  However, analysis of individual congener 165 

Fig 2. Mean ± SE concentration (ng/g lipid equivalent) of PCBs in fish across size classes for 

selected congeners, PCBs 52 (■), 110 (●) and 187 (▲).  Size classes defined in Table 1. 
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 167 

 168 

behavior showed differences between contaminants that conformed to a hydrophobicity pattern. 169 

Less hydrophobic PCBs exhibited declining trends in concentrations with fish size suggestive of a 170 

non-steady state dilution profile. Contaminants of intermediate hydrophobicity presented the 171 

predicted steady state profile while the most hydrophobic congeners increased in lipid equivalent 172 

concentrations with size indicative of non-steady state net positive bioaccumulation.  173 

These mixed bioaccumulation patterns can be explained as a result of both shifts in diet 174 

concentration to lower PCB contaminated diets coupled with a transition from steady state to non-175 

steady state bioaccumulation as a function of chemical hydrophobicity. Thus, if prey PCB 176 

concentrations decreased for the larger fish, such changes would be readily tracked by the least 177 

hydrophobic chemicals which are most rapidly eliminated from fish (Paterson et al., 2006a, 2007). 178 

This non-steady state dilution trend actually represents steady state (or an approach to steady state) 179 

between the fish and its diet which are interpreted to have declined with time. PCBs of intermediate 180 

hydrophobicity exhibit constant concentrations with fish size and are expected to exhibit 181 

intermediate elimination rates from fish. For these congeners, the decline in diet concentrations 182 

are only partially compensated by elimination yielding a pseudo-steady state (i.e. apparent non-183 

changing) bioaccumulation pattern even though fish may have become out of steady state with 184 

respect to their most current diet for the oldest individuals. For the most hydrophobic congeners, 185 

elimination is very slow to negligible and fish have not achieved their full bioaccumulation 186 

potential with respect to their early age diet nor with the new diet of older individuals following 187 

the diet shift. These congeners continue to accumulate with fish size/age even though prey 188 

contamination may have decreased. 189 

Fig 3. Bioaccumulation slopes (ng/g lipid equivalent/cm fish) of PCBs in sea bream.  Solid 

symbols have slopes significantly (p<0.05; ANOVA) different than zero. Open symbols indicate 

congeners where the slope was not significantly different than zero.  Dashed line provides the zero 

slope reference. Log KOW values from Hansen et al. (1999). 



The above interpretation assumes that the inferred decrease in PCB concentrations in diet 190 

(supported by the lower KOW dilution profiles) occurs similarly for all congeners. It is further 191 

assumed that the decrease in diet concentration did not drop to a value of zero PCB content. 192 

Finally, it is assumed that fish length provides a valid measure of fish age, although it is recognized 193 

that differences in growth between individuals could confound age categories presumed on the 194 

basis of fish size categories. In the latter case, biodilution, resulting from an increase in growth 195 

rate for larger fish size classes, can be ruled out as a mechanistic interpretation of the overall 196 

bioaccumulation pattern because changes in growth rate would influence all PCBs to the same 197 

degree and is not compatible with the different bioaccumulation trajectories observed between 198 

congeners.  199 

Most food web PCB bioaccumulation models assume steady state kinetics operate (Arnot and 200 

Gobas, 2004). This has been challenged, particularly for highly hydrophobic PCBs, in several 201 

populations of temperate fish (Olsson et al., 2000; Paterson et al., 2007; Burtnyk et al., 2009; 202 

Paterson et al., 2016). It was initially hypothesized that tropical fish are more likely to achieve 203 

steady state compared to temperate fish owing to a lack of seasonal temperature cycles experienced 204 

by tropical fish which in turn moderates their chemical toxicokinetics. Indeed, steady state (or 205 

pseudo-steady state) was observed over a larger range of chemical hydrophobicity's in the present 206 

study than reported for temperate fish (Burtnyk et al., 2009). However, the above observations 207 

were partly confounded by a diet shift which was interpreted to result in decreased prey 208 

contamination for the largest size classes. Despite this, the present research suggests that non-209 

steady state, net bioaccumulation conditions operate for the most hydrophobic PCB congeners in 210 

tropical fish as has been described for temperate fish. 211 
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