
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2017

Efficient Computation of Miller's Algorithm in Pairing-Based Efficient Computation of Miller's Algorithm in Pairing-Based

Cryptography Cryptography

Shun Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Shun, "Efficient Computation of Miller's Algorithm in Pairing-Based Cryptography" (2017). Electronic
Theses and Dissertations. 6024.
https://scholar.uwindsor.ca/etd/6024

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/84725651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6024?utm_source=scholar.uwindsor.ca%2Fetd%2F6024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Computation of Miller’s Algorithm in

Pairing-Based Cryptography

by

Shun Wang

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2017

c© 2017, Shun Wang

Efficient Computation of Miller’s Algorithm in Pairing-Based

Cryptography

by

Shun Wang

APPROVED BY:

J. Lu

School of Computer Science

M. Mirhassani

Department of Electrical and Computer Engineering

H. Wu, Advisor

Department of Electrical and Computer Engineering

May 18, 2017

AUTHOR’S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii

ABSTRACT

Pairing-based cryptography (PBC) provides novel security services, such as identity-

based encryption, attribute-based encryption and anonymous authentication. The

Miller’s Algorithm is considered one of the most important algorithms in PBC and

carries the most computation in PBC.

In this thesis, two modified Miller’s algorithms are proposed. The first proposed

algorithm introduces a right-to-left version algorithm compared to the fact that the

original Miller’s algorithm works only in the fashion of left-to-right. Furthermore,

this new algorithm introduces parallelable computation within each loop and thus

it can achieve a much higher speed. The second proposal has the advantage over

the original Miller’s algorithm not only in parallelable computation but also in resis-

tance to certain side channel attacks based on the new feature of the equilibrium of

computational complexities.

An elaborate comparison among the existing works and the proposed works is

demonstrated. It is expected that the first proposed algorithm can replace the original

Miller’s if a right-to-left input style is required and/or high speed is of importance.

The second proposed algorithm should be chosen over the original Miller’s if side

channel attack is a concern.

iv

DEDICATION

To my adorable wife, my loving parents, and my respectful parents in-law:

Wife: Xi Chen

Father: Zhongyan Wang

Mother: Yaping Yu

Father in-law: Baofeng Chen

Mother in-law: Yan Li

v

ACKNOWLEDGMENTS

I would like to express my faithful gratitude to everyone who helped me. First of all,

I appreciate my wife’s deep love and full support, as well as the encouragement and

financial support from my parents and my parents in-law. Without them, I could not

overcome all difficulties and accomplish my study.

Furthermore, I am quite grateful to my supervisor Dr. Huapeng Wu, the Professor

of Electrical and Computer Engineering at University of Windsor. He has instructed

me throughout my research and this thesis. As one of best teachers I have ever had,

Dr. Wu impressed upon me that a brilliant teacher edifies students in matters far

beyond those in books and academy. His extensive knowledge and logical thinking

are invaluable; without his elaborate and constructive comments on my research, this

thesis could be impossible.

I thank my friends, Siyu Zhang, Ruiqing Dong, Bingxin Liu, Chen Chen and Yue

Huang. They gave me their help and time during the adversity of my study.

Ultimately, I hope to show my appreciation to the faculties of Electrical and

Computer Engineering at University of Windsor since their efforts during my study

for the master degree. Furthermore, I pretty appreciate the financial support from

the University of Windsor and my supervisor Dr. Huapeng Wu.

Shun Wang

vi

TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ALGORITHMS xii

LIST OF ACRONYMS xiii

1 INTRODUCTION 1

1.1 Pairing-based Cryptography and Its Applications 1

1.2 Research Contribution . 3

1.3 The Scope and Organization of the Thesis 3

2 MATHEMATICAL PRELIMINARIES 5

2.1 Modular Operations . 5

2.1.1 Modular Operations (Integer) 5

2.1.2 Modular Operations (Polynomial) 6

2.2 Groups . 7

2.2.1 Definition . 7

2.2.2 Types of Groups . 7

vii

2.2.3 The Important Concepts of Groups 8

2.3 Finite Fields . 9

2.3.1 Definition . 9

2.3.2 The Arithmetic of Finite Field 10

2.3.3 The Order of a Finite Field Element 11

2.4 Elliptic Curve over a Finite Field . 12

2.4.1 Definition . 12

2.4.2 Elliptic Curve Points Operation 13

2.4.3 Elliptic Curve Points Arithmetic 15

2.4.4 The Structure for Points on Elliptic Curve 16

2.4.5 Basics on Analytic Geometry 17

3 DIVISORS AND BILINEAR MAP 20

3.1 Divisors . 20

3.1.1 Definition . 20

3.1.2 The Degree and Support of D 20

3.1.3 The Divisor of a Function f on E 21

3.1.4 Equivalence of Divisors . 24

3.2 Bilinear Map . 25

3.2.1 Definition . 25

3.2.2 Properties . 25

3.2.3 Solve the Decision Diffie-Hellman (DDH) Problem with the

Properties . 26

3.2.4 Implementation Methods of e(P,Q) 26

4 AN OVERVIEW OF MILLER’S ALGORITHM AND RELATED

WORKS 27

4.1 Weil Pairing . 27

viii

4.2 Miller’s Algorithm . 28

5 PROPOSED WORKS 37

5.1 The Correction of Miller’s Algorithm Using Signed Digit Number . . 37

5.2 New Right-to-left Miller’s Algorithm 42

5.3 Modified Miller’s Algorithm with Enhanced Security 48

6 COMPLEXITY ANALYSIS AND COMPARISON 52

6.1 Computational Complexity Analysis 52

6.1.1 Complexity Analysis of Points Operation over Elliptic Curve . 52

6.1.2 Complexity Analysis of Straight Lines 53

6.1.3 Complexity Analysis of `
ν
(DQ) 54

6.1.4 Complexity Analysis of the Existing Works and the Proposed

Works . 54

6.2 Computational Complexity Comparison 57

6.3 Space-time Diagrams of the Existing Works and the Proposed Works 59

6.3.1 Space-time Diagram of the Existing Works 59

6.3.2 Space-time Diagram of the Proposed Works 60

6.4 Performance Comparison . 62

7 CONCLUSIONS 65

7.1 Research Contributions and Applications 65

7.2 Possible Future Works . 66

REFERENCES 67

VITA AUCTORIS 72

ix

LIST OF TABLES

2.1 Euclidean Method to Solve Inverse 5

2.2 A List of Irreducible Polynomials over Z2 = {0, 1} 10

6.1 Complexity Analysis of Miller’s Algorithm 55

6.2 Complexity Analysis of Miller’s Algorithm Using Signed Digit Number 56

6.3 Complexity Analysis of New Right-to-left Miller’s Algorithm 56

6.4 Complexity Analysis of Modified Miller’s Algorithm with Enhanced

Security . 57

6.5 Complexity Analysis when ri = 0 . 58

6.6 Complexity Analysis when ri = 1 . 58

6.7 Comparison: the Number of Loops 59

6.8 Computational Complexity Comparison 59

6.9 Comparison: Proposed Works vs. Existing Works 63

x

LIST OF FIGURES

2.1 y2 = x3 − 3x+ 2 over R. [1] . 13

2.2 y2 = x3 over R. [1] . 13

2.3 y2 = x3 + x+ 1 over R. [1] . 13

2.4 y2 = x3 − x over R. [1] . 13

2.5 Elliptic Curve Points Addition. 14

2.6 Elliptic Curve Points Doubling. 15

3.1 The function (`P,Q) . 22

3.2 The function (`P,P) . 23

3.3 The function (νP+Q) . 23

4.1 A Function: (`[m]P,P/ν[m+1]P) . 29

4.2 Jump from fm,P to f2m,P [1] . 31

6.1 Space-time Diagram of the Existing Works 60

6.2 Space-time Diagram of the Proposed Works 61

xi

LIST OF ALGORITHMS

4.1 Miller’s Algorithm [2] . 32

5.1 Miller’s Algorithm Using Signed Digit Number [3] 38

5.2 New Right-to-left Miller’s Algorithm 44

5.3 Modified Miller’s Algorithm with Enhanced Security 49

xii

LIST OF ACRONYMS

#E number of points on E

Fq finite field with prime number q elements

Fqk full extension field

G a group of the bilinear map

D a divisor

Deg(D) the degree of a divisor D

e bilinear map

E(Fq) elliptic curve over a finite field with prime number q elements

E(Fqk) elliptic curve over a full extension field

r the largest prime order of a group in E(Fq)

supp(D) the support of D

CPPA Conditional Privacy-preserving Authentication

DSRC Dedicated Short Range Communication

ECC Elliptic Curve Cryptosystem

PBC Pairing-based Cryptography

xiii

1 INTRODUCTION

1.1 Pairing-based Cryptography and Its Applications

The Internet becomes increasingly important in our modern society. The Internet

technology has also progressed at a constant step to provide new and better services to

meet the demands from its users. Pairing-based cryptography (PBC) is an emerging

research area in the field of cryptography [4], which provides several new cryptographic

services over the Internet complement to conventional symmetrical and public key

cryptosystems. Some features and important facts about PBC include:

• PBC can provide several special security services, i.e., identity-based encryp-

tion, attribute-based encryption and anonymous authentication, which are not

readily available from the conventional symmetrical and public key cryptosys-

tems.

• PBC studies mathematical bilinear function that can map a very complex com-

putational problem to a relatively simple one without compromising its security

strength.

• Pairing-based cryptography technology has been recently standardized in 2013

in P1363.3 “IEEE Standard for Identity-Based Cryptographic Techniques using

Pairings” [5].

Pairing-based cryptography can provide many unique or more efficient cryptogra-

phy and security services for the Internet, compared to conventional cryptographic

technology [6]. Its important applications are introduced as follows,

• Identity-based encryption [7]: in public key encryption system, the public key

of any user is based on his own identity. PBC is able to construct new ID-

based cryptographic primitives [8] to complement the conventional public key

cryptosystems.

1

• Key exchange: PBC can make a tripartite key exchange be done in one round

[9].

• Short signatures: Boneh-Lynn-Shacham (BLS) signature schemes [10] of PBC

only use a half of the length of other signature schemes [5].

• Anonymous authentication: the research work [11] has shown that pairing-

based cryptography can be applied to vehicular standard Dedicated Short Range

Communication (DSRC) [12]:

– DSRC is a communication service to distribute a message from a vehicle

to all other vehicles or infrastructures to overcome the problem of the high

mobility environment [13] [14].

– The goals of DSRC are increasing road capacity [15], avoiding accidents,

providing web or entertainment services. [16]

∗ The Conditional Privacy-preserving Authentication (CPPA) technique

[17] is one kind feasible scheme for DSRC, and it’s defined by the fol-

lowing algorithms: system setup, key generation, anonymous authen-

tication, and conditional tracking. These algorithms all use pairing-

based cryptography.

Bilinear map plays a central role in pairing-based cryptography. The popular im-

plementations of bilinear map are Weil pairing [18] and Tate pairing [19]. Miller’s

Algorithm [20], which is used to compute the Weil pairing and Tate pairing, is prob-

ably the most important and most computation-intensive algorithm in pairing-based

cryptography. This thesis proposes novel research works on improvement to Miller’s

Algorithm with computational efficiency and enhanced security.

2

1.2 Research Contribution

This thesis work concentrates on computational efficiency and security strength of

pairing-based cryptography. Since Miller’s Algorithm [20] is considered as the core

algorithm in pairing-based cryptography and most computational intensive, our pro-

posed work is aiming to improvement to Miller’s Algorithm [21] in terms of its com-

putational efficiency and resistance to side channel attacks. The proposed work can

be summarized as follows.

The original Miller’s Algorithm works in a manner of left to right. In this thesis

a right to left (R2L) version for Miller’s Algorithm is proposed. Moreover, the new

R2L algorithm has the feature of parallelism while the original version does not have.

When the algorithm is implemented in parallel architecture, it can be expected that

the proposed algorithm is much faster than the original Miller’s.

The second proposed work is a modified Miller’s Algorithm with enhanced security.

Compared to Miller’s Algorithm, the proposed algorithm not only makes parallel

computation possible but also has the nice property of resistance to certain side

channel attacks, i.e., simple power analysis.

The idea of using signed-digit binary number representation in Miller’s Algorithm

was first discussed in [3]. As an addition to the proposed works, an error in the

algorithm presented in [3] is found and corrected in this thesis.

1.3 The Scope and Organization of the Thesis

The organization of the rest of this thesis is as follows. In Chapter 2, mathematical

fundamentals which contain the modular operations, groups, finite fields and elliptic

curves over a finite field are introduced. In Chapter 3, the divisors and bilinear

map are explained, which provides important theoretical and algorithmic basis for

comprehending pairing-based cryptography. In Chapter 4 of the thesis, Weil pairing

and Miller’s Algorithm are summarized. Subsequent works on Miller’s Algorithm

3

are also reviewed and explained. The New Right-to-left Miller’s Algorithm and the

Modified Miller’s Algorithm with Enhanced Security are proposed in Chapter 5. In

Chapter 6, the complexities of the existing works and the proposed works are analyzed

and compared. It has been shown that the proposed algorithms have clear advantages

to the original Miller’s or its version using signed-digit binary number, in terms of

parallel-able computation and resistance to certain side channel attacks. Finally, the

conclusion and possible future work are discussed in Chapter 7.

4

2 MATHEMATICAL PRELIMINARIES

Finite field and elliptic curve are the cornerstones of pairing-based cryptography. In

this chapter, we introduce fundamental concepts, such like groups, finite fields and

their arithmetic, as well as elliptic curve defined over a finite field, and elliptic curve

point operations.

2.1 Modular Operations

2.1.1 Modular Operations (Integer)

1. x mod n means “the remainder of n dividing x” [22]. In other words, if x =

an+ b, and a, b ∈ integer as well as 0 ≤ b ≤ n− 1, then x mod n = b.

2. Inverse: If ax = 1 mod n, then a is the inverse of x mod n [22]. There are two

popular methods to solve a:

• Method 1: Try every value for a < n until xa mod n = 1.

• Method 2: Euclidean method, which is usually used to solve the inverse of

big integers, so it is recommended to use Method 1 to solve the inverse of

small integers. No matter what usage Euclidean method is, Table 2.1 just

demonstrates how Euclidean method works with the 5a mod 7 = 1.

Table 2.1: Euclidean Method to Solve Inverse

Step i b a d k Equality

0 1 0 7 1× 7 + 0× 5 = 7

1 0 1 5 1 0× 7 + 1× 5 = 5

2 1 -1 2 2 1× 7 + (−1)× 5 = 2

3 -2 3 1 (−2)× 7 + 3× 5 = 1

The followings are the explanation of Table 2.1.

5

– b0 = 1, a0 = 0, b1 = 0, and a1 = 1 are fixed, as well as k0 is null;

– d0 = 7, d1 = 5 are given, then k1 is the quotient of d1 dividing d0;

– b2 = b0 − b1k1;

– a2 = a0 − a1k1;

– d2 = d0 − d1k1, d2 is also the remainder of d1 dividing d0;

– k2 is the quotient of d2 dividing d1;

– Similarly, b3 = b1 − b2k2, a3 = a1 − a2k2, d3 = d1 − d2k2, k3 is the

quotient of d3 dividing d2;

...

bi = bi−2− bi−1ki−1, ai = ai−2−ai−1ki−1, di = di−2− di−1ki−1, ki is the

quotient of di dividing di−1.

– Until di = 1 is gotten, stopping calculating and the value of ai is the

final answer. Additionally, ki is unnecessary to be computed.

– In this instance, d3 = 1, so a3 = 3 is the answer.

2.1.2 Modular Operations (Polynomial)

1. Definition: f(x) mod P (x) means “the remainder of (f(x)÷ P (x))” [22].

• It can be denoted f(x) = a(x)P (x)+b(x), where the degree of b(x) is lower

than that of P (x), then f(x) mod P (x) = b(x).

• Polynomial division: (f(x)÷ P (x)) to reap the remainder.

2. For example: x8 + 1 mod x3 + x2 + 1 = 6x2 − 3x + 5, and the quotient is

x5 − x4 + x3 − 2x2 + 3x− 4

6

2.2 Groups

2.2.1 Definition

A group is a set G together with a binary operation ∗ on G such that:

1. Binary operator ∗ is associative, i.e., for any a, b, c ∈ G,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. There exists an identity (or unity) element e ∈ G, i.e., for all a ∈ G,

a ∗ e = e ∗ a = a.

3. For each a ∈ G, there an inverse element a−1 ∈ G, such that

a ∗ a−1 = a−1 ∗ a = e.

2.2.2 Types of Groups

1. The operation ∗ can be like ordinary multiplication or addition:

• Multiplicative group (and the unity is e = 1, if ∗ is multiplication.)

– Usually denoted by G×.

• Additive group (and the identity is e = 0, if ∗ is addition.)

– Usually denoted by G+.

2. Infinite groups and finite groups

• Infinite group: there are infinite many elements in a group.

• Finite group: there are finite many elements in a group.

7

2.2.3 The Important Concepts of Groups

The computation details of the following concepts will be exemplified in “2.3 Back-

ground Knowledge of Finite Field” . Hence, here just shows the outcomes.

1. A group G is called cyclic group if there exists a group element g such that any

other element in G can be written as gj for a certain integer j > 1.

• In this case, the group element g is called a generator of G, or a primitive

element in G.

• Example: G× = {1, 2, 3, 4} under mod-5 multiplication is a cyclic group

with a primitive element 2. Because all the other group elements can be

written as a power of 2: G× = {1, 2, 3, 4} = {24, 21, 23, 22}.

2. The order of group element a is defined as the minimal positive integer i such

that ai = the unity (or ai = 1 since the unity is 1 in this case). It is written

ord(a) = i. Clearly, a primitive element has the maximal order.

• In groupG× = {1, 2, 3, 4} under mod-5 multiplication, ord(1) = 1; ord(2) =

4; ord(3) = 4; ord(4) = 2.

• G× = {1, 2, 3, ..., p−1} under mod-p multiplication is a cyclic group, where

p is a prime.

– A primitive element in G× has the maximal order of p− 1.

– Any other possible order of an element in this group has to be a factor

of p− 1.

– For k being a factor of p − 1, there always exists an element in the

group that has order of k.

8

2.3 Finite Fields

2.3.1 Definition

Finite field (or Galois field) is a set that has finitely many elements, and the result,

which is operated by addition and multiplication of any two elements, is still closed

in the same set [22].

Note that the “closed” means the result, which is computed by any two elements,

still belongs to the same set, namely, the same finite field.

In other words to explain the definition, it is a set of finite many elements where

addition and multiplication are defined [23].

• The finite field is an additive group under the addition operation.

• All the nonzero elements in a finite field form a multiplicative group under

multiplication operation.

There are several popular families in finite fields, (F is used to denote “Finite

Field”), such as Fq, F2k , F3k , and Fqk [24]. Whereas, in this thesis, it just concerns

and discusses the Fq and Fqk [25].

1. Finite field Fq, where q is a prime number:

• The set is written as: Fq = {0, 1, 2, 3, ..., q − 1}.

• The operations: mod q addition, or mod q multiplication.

2. Finite field Fqk, where q is a prime number, and k is an integer > 1:

• The set is written as: Fqk = {polynomials of degree up to k− 1 with coef-

ficients belonging to Fq = {0, 1, 2, 3, ..., q− 1}, with irreducible polynomial

f(x).}

• The operations: mod q polynomial addition; mod f(x) and mod q poly-

nomial multiplication.

9

2.3.2 The Arithmetic of Finite Field

It is an easy understanding way that demonstrates the arithmetic of finite field with

some examples of specific numbers operations.

1. Finite field F5, and F5 = {0, 1, 2, 3, 4}:

• Mod q addition: a + b = (a + b) mod q. eg: (3 + 4) mod 5 = 2; (2 +

2) mod 5 = 4.

• Mod q multiplication: a × b = (a × b) mod q. eg: (3 × 3) mod 5 = 4;

(2× 4) mod 5 = 3.

2. Finite field F22 , and F22 = {0, 1, x, x + 1} with irreducible polynomial f(x) =

x2 + x+ 1:

• Irreducible polynomials:

– Irreducible polynomial is similar to prime number for integers, an ir-

reducible polynomial of degree n does not have a factor polynomial of

degree between 1 and n− 1.

– Table 2.2 is a list of irreducible polynomials over Z2 = {0, 1}.

Table 2.2: A List of Irreducible Polynomials over Z2 = {0, 1}

n irreducible polynomial f(x), (only one listed for each n)

2 x2 + x+ 1

3 x3 + x+ 1

4 x4 + x+ 1

5 x5 + x2 + 1

6 x6 + x+ 1

7 x7 + x+ 1

8 x8 + x4 + x3 + x+ 1

10

• Addition: a+ b = (a+ b) mod 2. For example,

– (x+ (x+ 1)) mod 2 = (2x+ 1) mod 2 = 1

– (1 + (x+ 1)) mod 2 = (x+ 2) mod 2 = x

• Multiplication: a× b = (a× b) mod f(x) mod 2. For example,

– (x× (x+ 1)) mod f(x) mod 2 = (x2 +x) mod (x2 +x+ 1) mod 2 = 1

– ((x + 1) × (x + 1)) mod f(x) mod 2 = (x2 + 2x + 1) mod (x2 + x +

1) mod 2 = x

3. Another representation F22 , and F22 = {0x+0, 0x+1, x+0, x+1} = {00, 01, 10, 11}:

the operations of addition and multiplication are similar to the previous repre-

sentation.

2.3.3 The Order of a Finite Field Element

1. For any a 6= 0 and a ∈ Fq, the minimal positive integer j for aj = 1 is called

the order of a, denoted by ord(a).

2. ai with i = 1, 2, ..., j−1 will be calculated. Till ai = 1, then i is called the order

of a.

• Example: Find the order of all the nonzero elements in F7. Solution:

ord(1) = 1, ord(2) = 3, ord(3) = 6, ord(4) = 3, ord(5) = 6, ord(6) = 2.

3. The maximal order of an element in Fq is q − 1, and there always exists an

element in Fq such that its order is q − 1.

11

2.4 Elliptic Curve over a Finite Field

2.4.1 Definition

1. General Weierstrass equation for elliptic curves [1]:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, ..., a6 ∈ F, this equation is usually used in F2k or F3k .

2. An elliptic curve E over a finite field is defined by

E : y2 = x3 + ax+ b where a, b ∈ F (2)

• Basically, Equation (2) is called the short Weierstrass equation for elliptic

curves, in Fq , Fqk and q 6= 2 or 3.

• The thesis will always work on large prime fields, where the short Weier-

strass equation can cover all possible elliptic curves; thus, it will always be

used.

• The thesis only concentrates on an elliptic curve over finite fields. A finite

field has only finite many elements and a “curve defined over it should

have only finite many points.

3. What does an elliptic curve look like?

Usually, if elliptic curves are defined over finite field, they look like discrete

points sets; hence, the graphs with elliptic curves are demonstrated over R so

that they look like more smoothly.

Fig. 2.1, Fig. 2.2, Fig. 2.3 and Fig. 2.4 illustrate several different elliptic curves:

12

Fig. 2.1: y2 = x3− 3x+ 2
over R. [1]

Fig. 2.2: y2 = x3 over R.
[1]

Fig. 2.3: y2 = x3 + x + 1
over R. [1] Fig. 2.4: y2 = x3− x over

R. [1]

2.4.2 Elliptic Curve Points Operation

A point P (x0, y0) on elliptic curve E means : its coordinates x0 and y0 are elements

in the field, and the coordinates x0 and y0 satisfy Equation (2) [26].

1. Elliptic curve points addition:

Let P,Q and R be three points on an elliptic curve. Points addition P +Q = R

can be defined in Fig. 2.5

13

Fig. 2.5: Elliptic Curve Points Addition.

Description: connect P and Q, then extend straight line `P,Q, it will intersect

elliptic curve on another point which is called point −R, and then mirror point

−R based on x-axis, point R = P +Q is obtained.

2. Elliptic curve points doubling:

Let P,Q be two points on an elliptic curve. Points doubling P + P = 2P = Q

can be defined in Fig. 2.6

14

Fig. 2.6: Elliptic Curve Points Doubling.

Description: point P is the tangent point of straight line `P,P and elliptic curve,

then extend `P,P , it will intersect elliptic curve on another point which is called

point−Q, and then mirror point−Q based on x-axis, pointQ = 2P is obtained.

2.4.3 Elliptic Curve Points Arithmetic

1. Let P1(x1, y1) and P2(x2, y2) be two points on the curve E : y2 = x3 + ax+ b,

where a, b ∈ F [27].

• Assume P3(x3, y3) = P1(x1, y1) + P2(x2, y2) 6= O, then

 x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where λ = y2−y1
x2−x1

, if P1 6= P2; and λ =
3x21+a

2y1
, if P1 = P2.

• For any elliptic curve, there exists the point at infinity O, defined by

P +O = P , or P + (−P) = P − P = O, for any point P ∈ E.

– If x1 = x2 and y1 6= y2 , then P1 = P2.

15

– If y1 = 0 , then 2P1 = O.

– If P1 = (x1, y1) ∈ E, then −P1 = (x1,−y1) ∈ E.

2. Scalar multiplication [28]:

• Let P be a point on curve E defined in equation (2)

• Scalar multiplication nP is defined as

nP = P + P + P + ...+ P︸ ︷︷ ︸
n times

where n is an integer; nP is also a point on the same curve E.

• The minimal positive integer a for aP = O is called the order of P .

• Scalar multiplication is extensively required in elliptic curve cryptosystems.

2.4.4 The Structure for Points on Elliptic Curve

Let E(Fq) denote the set of points on elliptic curve E defined over Fq.

1. Number of points on a curve E (the Hasse bound) [29]:

#E(Fq) = q + 1− t, |t| 6 2
√
q. (3)

Note that t is called the trace of Frobenius. It has been shown when q is prime,

then every value N ∈ [q + 1− 2
√
q, q + 1 + 2

√
q] can be found as a group order

#E(Fq) for some E.

2. E(Fq) can be extended to E(Fqk) : k is the embedding degree is actually a func-

tion k(q, r) of q and r, r is usually the largest order of E(Fq); thus, k is the

smallest positive integer such that r | (qk − 1) [30].

16

3. The Frobenius endomorphism π is defined as a map from E to E [31]

π : (x, y) 7→ (xq, yq) (4)

The Frobenius endomorphism maps any point in E(Fq) to a point in E(Fq), but

the set of points fixed by π is the group E(Fq). As a result, π only does non-

trivially on points in E(Fq)\E(Fq), and more general representation is written

as,

πi : (x, y) 7→ (xq
i

, yq
i

) (5)

acts non-trivially on points in E(Fq)\E(Fqi).

Note that, E(Fq) is a large set, which can be called E(Fqk) where k is the

embedding degree. Namely, E(Fq) ⊂ E(Fq2) ⊂ E(Fq3) ⊂, ..., ⊂ E(Fqk−1) ⊂

E(Fqk):

• E(Fq)\E(Fq) means the set E(Fq) only excludes E(Fq).

• Likewise, E(Fq)\E(Fqi) means the set E(Fq) just excludes E(Fqi), where

1 < i < k.

2.4.5 Basics on Analytic Geometry

Let elliptic curve E be given as

E : y2 = x3 + ax+ b

And also let P = (x1, y1) and Q = (x2, y2) be two points on E.

1. Let the chord line `P,Q joining P and Q be y = kx + d. Then k and d can be

17

solved as

k =
y2 − y1

x2 − x1

and

d = y1 − kx1 =
x2y1 − x1y2

x2 − x1

So it follows

`P,Q : y =
y2 − y1

x2 − x1

· x+
x2y1 − x1y2

x2 − x1

(6)

Since in Chapter 4, Chapter 5 and Chapter 6, the Miller’s Algorithm with the

straight lines will be calculated, which includes the parameters of coordinates

x and y; consequently, Equation (6) can be written as

`P,Q : y − y2 − y1

x2 − x1

· x− x2y1 − x1y2

x2 − x1

(7)

2. Let the tangent line `P,P to E at point P be given as y = k′x+ d′. Then k′ can

be solved as follows:

First find derivative of E at point P :

(y2)′x = (x3 + ax+ b)′x

2yy′x = 3x2 + a

It follows

k′ = y′x|P =
3x2 + a

2y

∣∣∣
(x,y)=(x1,y1)

=
3x2

1 + a

2y1

then

d′ = y1 − k′x1 = y1 −
3x2

1 + a

2y1

· x1 =
2y2

1 − 3x3
1 − ax1

2y1

=
−y2

1 + 2ax1 + 3b

2y1

Hence,

`P,P : y =
3x2

1 + a

2y1

· x+
−y2

1 + 2ax1 + 3b

2y1

(8)

18

Similarly, Equation (8) has the other representation,

`P,P : y − 3x2
1 + a

2y1

· x− −y
2
1 + 2ax1 + 3b

2y1

(9)

3. The vertical line νQ at point Q can be given as

νQ : x = x2 (10)

For the same reason, Equation (10) can be represented as

νQ : x− x2 (11)

The straight lines `P,Q, `P,P and νQ are represented by Equation (7), (9) and (11), re-

spectively; so that they are conveniently substituted in the algorithms of the following

chapters.

19

3 DIVISORS AND BILINEAR MAP

3.1 Divisors

Basically, divisors have wide definitions in algebraic geometry field, but this thesis

just concentrates on the parts which are used in the understanding of cryptographic

pairing computations [32].

3.1.1 Definition

A divisor D on curve E is a convenient way to denote a multi-set of points on E,

written as the formal sum [1]

D =
∑

P∈E(F̄q)

nP (P), where nP ∈ Z.

• The set of all divisors on E is denoted by DivFq
(E) and forms a group, where

addition of divisors is natural.

• The zero divisor: it is the divisor with all nP = 0, the zero divisor 0 ∈ DivFq
(E).

• If the field Fq is not specific, it can be omitted and simply written as Div(E)

to denote the group of divisors.

A divisor D on curve E denotes the multiplicities of points on E; in other words,

it can represent a kind of relationship of lines and elliptic curve; moreover, it is the

cornerstone of pairing-based algorithms.

3.1.2 The Degree and Support of D

1. The degree of a divisor D is Deg(D) =
∑

P∈E(Fq) nP ,

20

2. The support of D, denoted by the set

supp(D) = {P ∈ E(Fq) : nP 6= 0}.

For instance,

Let P,Q,R, S ∈ E(Fq). Let D1 = 3(P)− 4(Q), and D2 = 4(Q) + (R)− 2(S), so

the Deg(D1) = 3 − 4 = −1, and Deg(D2) = 4 + 1 − 2 = 3. The sum D1 + D2 =

3(P) + (R)− 2(S), and naturally Deg(D1 +D2) = Deg(D1) +Deg(D2) = 2.

The supports are supp(D1) = {P,Q}, supp(D2) = {Q,R, S}, and supp(D1+D2) =

{P,R, S}.

3.1.3 The Divisor of a Function f on E

1. The divisor of a function f on E is used to denote the intersection points (and

their multiplicities) of f and E.

• Let ordP (f) count the multiplicity of f at P , which is positive if f has a

zero at P , and negative if f has a pole at P . The divisor of a function f

is defined as

(f) =
∑

P∈E(Fq)

ordP (f)(P).

• Notice that in all cases, Deg((`)) = 0. In fact, this is true for any function

f on E.

2. The relationship of a function f and a divisor D:

A divisor D =
∑

P nP (P) is a divisor of a function if and only if

∑
P

nP = 0 and
∑
P

[nP]P = O on E.

For example,

21

Let f be a line that intersects E at P and Q. Then divisor (f) = (`P,Q) =

(P) + (Q) + ([−1](P +Q))− 3(O), since

∑
P

nP = nP + nQ + n[−1](P+Q) + nO = 1 + 1 + 1− 3 = 0

∑
P

[nP]P = P +Q+ ([−1](P +Q)) = O (Elliptic Curve Points Operation)

3. There are three scenarios that straight line f intersects curve E.

(a) In Fig. 3.1, the chord line `P,Q intersects E in P, Q and [−1](P + Q), all

with multiplicity 1, and `P,Q also intersects E with multiplicity −3 at O,

namely, `P,Q has a pole of order 3 at O. Thus, `P,Q has divisor

(`P,Q) = (P) + (Q) + ([−1](P +Q))− 3(O). (12)

Fig. 3.1: The function (`P,Q)

(b) In Fig. 3.2, the tangent line `P,P intersects E with multiplicity 2 at P , with

multiplicity 1 at [−2]P , and again with multiplicity −3 at O, so in this

22

case

(`P,P) = 2(P) + ([−2]P)− 3(O). (13)

Fig. 3.2: The function (`P,P)

(c) In Fig. 3.3, the vertical line νP+Q intersects E in (P +Q) and [−1](P +Q)

with multiplicity 1.

(νP+Q) = ((P +Q)) + ([−1](P +Q))− 2(O). (14)

Fig. 3.3: The function (νP+Q)

23

4. Properties of divisors of the functions:

(a) (fg) = (f) + (g)

(b) (f/g) = (f)− (g)

(c) (f) = 0 if and only if f is constant.

(d) If (f) = (g), then (f/g) = 0, so f is a constant multiple of g.

3.1.4 Equivalence of Divisors

The divisors D1 and D2 can be called equivalent, written as D1 ∼ D2, D1 = D2 + (f)

for some function f . The notion of equivalence allows us to reduce divisors of any

size D into much smaller divisors.

For instance,

• Let R = P+Q on E, so the line ` joining P and Q have divisor (`) = (P)+(Q)+

(−R)−3(O), whilst the vertical line ν = x−xR has divisor (ν) = (−R)+(R)−

2(O). In addition, the quotient `/ν has divisor (`
ν
) = (P) + (Q)− (R)− (O).

Thus, the equation R = P+Q on E is the same as the divisor equality (R)−(O)

= (P)− (O) + (Q)− (O)− (`
ν
). It reduces (P) + (Q)− 2(O) to (R)− (O)

• Similarly, in order to obtain ([2]Q)−(Q) = (Q)−(O), there exists a (f) = 2(Q)−

([2]Q)− (O). This equivalence will be used in following chapters’ algorithms to

substitute DQ = (Q)− (O) with DQ = ([2]Q)− (Q), so that it is convenient to

compute DQ using [2]Q and Q, rather than Q and O.

24

3.2 Bilinear Map

3.2.1 Definition

In pairing-based cryptography, bilinear map [33] plays a central role, it maps elements

of two cryptographic groups to a third group, in many literatures, it is written as

e : G1 ×G2 → GT

Usually, bilinear map defines the groups G1 in E(Fq), G2 in E(Fqk)/E(Fq), as well as

the target group GT in the multiplicative group F∗
qk

, so it can be called G1 and G2

are additive, whilst GT is multiplicative [34].

If points P and Q are the elements of G1 and G2, respectively. Then bilinear map

can be rewritten as

e(P,Q) : G1 ×G2 → GT

where P ∈ G1 = E(Fq), Q ∈ G2 = E(Fqk)/E(Fq), and e(P,Q) ∈ GT = F∗
qk

.

3.2.2 Properties

In many literatures, the properties of bilinear map are mentioned as,

• For P, P ′ ∈ G1 and Q, Q′ ∈ G2,

e(P + P ′, Q) = e(P,Q) · e(P ′, Q),

e(P,Q+Q′) = e(P,Q) · e(P,Q′).

• For scalars a, b ∈ Z,

e(P, 0) = e(0, Q) = 1,

e(−P,Q) = e(P,Q)−1 = e(P,−Q),

25

e([a]P,Q) = e(P,Q)a = e(P, [a]Q),

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab = e([b]P, [a]Q).

3.2.3 Solve the Decision Diffie-Hellman (DDH) Problem with the Prop-

erties

Bilinear map was initially found as an useful tool in cryptanalysis [35]; for instance,

it can solve the Decision Diffie-Hellman (DDH) Problem [36] [37]. In other words,

bilinear map can reduce the discrete logarithm problem on elliptic curves or hyper-

elliptic curves [18].

The Decision Diffie-Hellman (DDH) problem is: Given P, [a]P, b[P], and Q, deter-

mine whether Q = [ab]P or not [37].

Pairings make the DDH problem “easy”:

1) Compute e(P,Q) = A,

2) Compute e([a]P, [b]P) = B,

3) Q = [ab]P if and only if A = B.

Because e([a]P, [b]P) = e(P, P)ab = e(P, [ab]P), if e(P, [ab]P) = e(P,Q), then Q =

[ab]P .

3.2.4 Implementation Methods of e(P,Q)

There are two popular methods to implement e(P,Q):

• Weil pairing wr(P,Q)

• Tate pairing tr(P,Q) [38]

In this thesis, it concentrates on Weil pairing wr(P,Q) to implement bilinear map.

Additionally, Miller’s algorithm is the core algorithm to compute wr(P,Q).

Consequently, in next chapter, it will move to Weil pairing and Miller’s algorithm.

26

4 AN OVERVIEW OF MILLER’S ALGORITHM

AND RELATED WORKS

4.1 Weil Pairing

The Weil pairing (over finite fields):

Let P,Q ∈ E(Fqk)[r] and let DP and DQ be degree zero divisors with disjoint supports

such that DP ∼ (P)− (O) and DQ ∼ (Q)− (O). There exist functions f and g such

that (f) = rDP and (g) = rDQ.

wr is a map:

wr : E(Fqk)[r]× E(Fqk)[r] 7→ Fqk [r],

defined as:

wr(P,Q) =
f(DQ)

g(DP)
(15)

• Note that r is the largest prime factor of #E(Fq).

• For a point P ∈ E(Fqk)[r], the function f = fr,P with divisor r(P)− r(O) plays

the major role in the Weil pairing definition.

• Likewise, for a point Q ∈ E(Fqk)[r], the function g = gr,Q has the divisor

r(Q)− r(O).

• According to Equation (15), wr(P,Q) equals to f(DQ) divides g(DP). More-

over, f(DQ) and g(DP) can be calculated with Miller’s Algorithm, respectively.

Consequently, this chapter just performs how calculates f(DQ) using Miller’s

Algorithm; on the other hand, under the Miller’s Algorithm, g(DP) can use the

similar method to compute.

27

4.2 Miller’s Algorithm

In this section, it is necessary to recall the knowledge of divisors and the function f .

Some important equations will be deducted:

• For any m ∈ Z and P ∈ E, it follows that there exists a function fm,P with

divisor

(fm,P) = m(P)− ([m]P)− (m− 1)(O), (16)

– where it is noted that for m = 0, it can take f0,P = 1 with (f0,P) the zero

divisor.

(f0,P) = 0(P)− ([0]P)− (0− 1)(O) = 0,

– where it is noted that for m = 1, it can take f1,P = 1 with (f1,P) the zero

divisor.

(f1,P) = 1(P)− ([1]P)− (1− 1)(O) = 0,

– Note: (f0,P) = (f1,P) = zero divisor, according to “Properties of divisors

of functions: (f) = 0 if and only if f is constant”, so it is convenient to

take f0,P = f1,P = 1 for setting the initial value.

• From fm,P to fm+1,P :

– When P ∈ E[r], means r is the order of P , then following (16), fr,P has

divisor

(fr,P) = r(P)− r(O). (17)

Furthermore,

(fm+1,P) = (m+ 1)(P)− ([m+ 1]P)− (m)(O), (18)

28

Observe that, Equation (18) subtracts Equation (16), then acquire

(fm+1,P)− (fm,P) = (P) + ([m]P)− ([m+ 1]P)− (O). (19)

– In Fig. 4.1, according to the functions of chord line and vertical line, it is

obtained

(`[m]P,P) = (P) + ([m]P) + (−[m+ 1]P)− 3(O),

(ν[m+1]P) = (−[m+ 1]P) + ([m+ 1]P)− 2(O),

Thus,

(`[m]P,P/ν[m+1]P) = (`[m]P,P)− (ν[m+1]P) = (P) + ([m]P)− ([m+ 1]P)− (O)

(20)

where `[m]P,P and ν[m+1]P are the chord and vertical lines used in the chord-

and-tangent addition of the point [m]P and P .

Fig. 4.1: A Function: (`[m]P,P/ν[m+1]P)

29

From (19) and (20) it can be seen that (fm+1,P) − (fm,P) is exactly the

divisor of the function `[m]P,P/ν[m+1]P , which means fm+1,P can be built

from fm,P via

fm+1,P = fm,P ×
`[m]P,P

ν[m+1]P

(21)

• From fm,P to f2m,P :

– In addition, according to Properties “ (fg) = (f) + (g) ”:

(f 2
m,P) = (fm,P × fm,P) = (fm,P) + (fm,P) = 2(fm,P),

Hence, following (16)

(f 2
m,P) = 2(fm,P) = 2m(P)− 2([m]P)− 2(m− 1)(O);

Moreover, also following (16)

(f2m,P) = 2m(P)− ([2m]P)− (2m− 1)(O),

Observe that,

(f2m,P)− (f 2
m,P) = 2([m]P)− ([2m]P)− (O).

– Now, the functions of chord line and vertical line can be rewritten as:

(`[m]P,[m]P) = ([m]P) + ([m]P) + (−[2m]P)− 3(O),

(ν[2m]P) = (−[2m]P) + ([2m]P)− 2(O),

30

Similarly, according to (20), it is obtained

(`[m]P,[m]P/ν[2m]P) = (`[m]P,[m]P)− (ν[2m]P) = 2([m]P)− ([2m]P)− (O),

Therefore,

(f2m,P)− (f 2
m,P) = 2([m]P)− ([2m]P)− (O) = (`[m]P,[m]P/ν[2m]P)

At last,

f2m,P = f 2
m,P ×

`[m]P,[m]P

ν[2m]P

(22)

– Based on (22), it can be straightly jumped from fm,P to f2m,P , in compar-

ison with the naive method of progressing one-by-one in Fig. 4.2:

Fig. 4.2: Jump from fm,P to f2m,P [1]

So far, for any m, either fm+1,P , or f2m,P can be obtained quickly, Miller

observed that, then gives rise to a double-and-add style algorithm.

1. This is the Miller’s Algorithm, then an example will be given to demonstrate

how it computes.

31

Algorithm 4.1 Miller’s Algorithm [2]

Input: P ∈ E(Fqk)[r], DQ ∼ (Q) − (O) with support disjoint from (fr,P), and r =
(rn−1...r1r0)2 with rn−1 = 1.

Output: fr,P (DQ)← f.

1: R← P, f ← 1.
2: for i = n− 2 down to 0 do
3: Compute the line function `R,R.
4: R← [2]R.
5: Compute the line function νR.
6: f ← f 2 × `R,R

νR
(DQ).

7: if ri = 1, then
8: Compute the line function `R,P .
9: R← R + P.
10: Compute the line function νR.
11: f ← f × `R,P

νR
(DQ).

12: end if
13: end for
14: return f .

• Steps 3-6 of Algorithm 4.1 can be called a doubling stage, which is

different from elliptic curve points’ doubling operation.

• Steps 7-12 of Algorithm 4.1 can be called an addition stage, which is

different from elliptic curve points’ addition operation.

• The algorithm calculates r from the most significant digit to the least

significant digit (where r is a binary number of length n), namely, the

sequence of computation is from left to right.

2. The details of the computation:

Input: P, DQ, r = 29 = (11101)2

Output: f29,P (DQ)← f

Compute:

(a) P ; f1,P = 1,

(b) r3 = 1:

32

i. `P,P

ii. 2P = 2× P

iii. ν2P

iv. f2,P = f 2
1,P ×

`P,P

ν2P
(DQ)

v. `2P,P

vi. 3P = 2P + P

vii. ν3P

viii. f3,P = f2,P × `2P,P

ν3P
(DQ)

(c) r2 = 1:

i. `3P,3P

ii. 6P = 2× 3P

iii. ν6P

iv. f6,P = f 2
3,P ×

`3P,3P

ν6P
(DQ)

v. `6P,P

vi. 7P = 6P + P

vii. ν7P

viii. f7,P = f6,P × `6P,P

ν7P
(DQ)

(d) r1 = 0:

i. `7P,7P

ii. 14P = 2× 7P

iii. ν14P

iv. f14,P = f 2
7,P ×

`7P,7P

ν14P
(DQ)

(e) r0 = 1:

i. `14P,14P

ii. 28P = 2× 14P

33

iii. ν28P

iv. f28,P = f 2
14,P ×

`14P,14P

ν28P
(DQ)

v. `28P,P

vi. 29P = 28P + P

vii. ν29P

viii. f29,P = f28,P × `28P,P

ν29P
(DQ)

(f) return f29,P

• Note:

– The steps v to viii of (e) need to be noticed, because r = 29 is the order

of point P , that means 29P = O. As a result, O = 29P = 28P + P ,

namely, 28P = −P .

– As a consequence, in step v of (e), it can be written `28P,P = `−P,P .

Based on the geometry, the chord line `−P,P is just the vertical line

νP . Fortunately, it just conveniently computes νP instead of `28P,P in

step v of (e).

– In step vi of (e), O = 29P = 28P + P ; thus, this step doesn’t need to

be computed.

– In projective plane, O is defined as O = (0 : 1 : 0), and

νO : y = 1,

in step vii of (e), ν29P = νO, so ν29P equals to constant 1.

– Finally, in step viii of (e),

f29,P = f28,P ×
`28P,P

ν29P

(DQ) = f28,P ×
νP
1

(DQ) = f28,P × νP (DQ)

34

In generalization, when computes the last loop of Miller’s Algorithm, it is

able to use

νP instead of `[r−1]P,P

and

constant 1 instead of ν[r]P

to simplify the last several steps.

Hence, the last step can be written as:

fr,P = fr−1,P ×
`[r−1]P,P

ν[r]P

(DQ) = fr−1,P ×
νP
1

(DQ) = fr−1,P × νP (DQ)

Additionally, O = rP doesn’t have to be computed.

3. Now, it is time to explain how to compute `
ν
(DQ):

(a) DQ ∼ (Q) − (O), based on the concept of “Equivalence of Divisors” in

the Subsection (3.1.4) at the Page 24, ([2]Q)− (Q) ∼ (Q)− (O), so equa-

tion DQ = ([2]Q)− (Q) can be obtained. Although using this equivalence

“DQ = ([2]Q)− (Q)”, it still follows the input restriction of Miller’s Algo-

rithm (P and DQ with support disjoint from (fr,P)).

(b) Functions ` and ν can be calculated respectively, according to the Subsec-

tion (2.4.5) at the Page 17.

(c) Under the divisor theory:

`

ν
(DQ) =

`(DQ)

ν(DQ)
=
`(([2]Q)− (Q))

ν(([2]Q)− (Q))

moreover,

`(([2]Q)− (Q)) =
`([2]Q)

`(Q)
; ν(([2]Q)− (Q)) =

ν([2]Q)

ν(Q)

35

Thus,

`

ν
(DQ) =

`([2]Q)

`(Q)
× ν(Q)

ν([2]Q)
=
`([2]Q)× ν(Q)

`(Q)× ν([2]Q)
(23)

(d) At last, correspondingly substituting the x-coordinates and y-coordinates

of point [2]Q and point Q into the functions ` and ν in Equation (23), the

result of `
ν
(DQ) can be gotten.

Therefore, these steps are the details of calculating `
ν
(DQ).

4. There is another existing work, Miller’s Algorithm Using Signed Digit Number

[3]. However, its one problem makes it cannot work, and the problem will be

corrected in next chapter.

36

5 PROPOSED WORKS

In this chapter, the correction of existing work “Miller’s Algorithm Using Signed Digit

Number” will be attested. Moreover, two new algorithms will be proposed: the New

Right-to-left Miller’s Algorithm and the Modified Miller’s Algorithm with Enhanced

Security. These two algorithms have different features and usages. In addition, their

examples and contributions will also be demonstrated.

5.1 The Correction of Miller’s Algorithm Using Signed Digit

Number

In every loop of Miller’s Algorithm, if ri = 0, then it just needs a doubling stage

(steps 3-6 of Algorithm 4.1); whilst, if ri = 1, then it needs a doubling stage plus

an addition stage (steps 7-12 of Algorithm 4.1), that means the total steps are steps

3-12 of Algorithm 4.1. Consequently, when ri = 1, the Algorithm needs around twice

computation steps in comparison with ri = 0 [39].

Hence, when the length of r = (rn−1...r1r0)2 is not changed, increasing the the

number of zero and decreasing the the number of nonzero, it is able to keep the number

of the doubling stages unchanged and lessen the number of the addition stages [40];

as a result, calculation will be more efficient [41].

For this motivation, Miller’s Algorithm Using Signed Digit Number substitutes

binary number system with signed digit number system, and the signed digit number

system can increase the number of zero and reduce the the number of nonzero, so it is

able to decrease the calculation steps relatively, such that it can make the computation

more efficient [42].

Nevertheless, the Algorithm 5.1 is wrong when ri = 1, it can be attested.

37

Algorithm 5.1 Miller’s Algorithm Using Signed Digit Number [3]

Input: P ∈ E(Fqk)[r], DQ ∼ (Q) − (O) with support disjoint from (fr,P), and r =
(rn−1...r1r0)2 with rn−1 = 1. Additionally, ri ∈ {1, 0, 1}.

Output: fr,P (DQ)← f.

1: R← P, f ← 1.
2: for i = n− 2 down to 0 do
3: Compute the line function `R,R.
4: R← [2]R.
5: Compute the line function νR.
6: f ← f 2 × `R,R

νR
(DQ).

7: if ri = 1, then
8: Compute the line function `R,P .
9: R← R + P.
10: Compute the line function νR.
11: f ← f × `R,P

νR
(DQ).

12: end if
13: if ri = 1, then
14: Compute the line function νR.
15: R← R− P.
16: Compute the line function `−R,P *
17: f ← f × νR

`−R,P
(DQ). *

18: end if
19: end for
20: return f .

* These two steps of this algorithm [3] are wrong when ri = 1, it will be corrected

when calculating the step of ri = 1.

Likewise, the algorithm calculates r from the most significant digit to the least

significant digit (where r is a binary number of length n), namely, the sequence of

computation is also from left to right.

1. Correct the Miller’s Algorithm Using Signed Digit Number

When ri = 1, namely, it needs to be calculated the function from fm+1,P to

fm,P :

Based on (21),

fm+1,P = fm,P ×
`[m]P,P

ν[m+1]P

38

Acquire that,

fm,P = fm+1,P ×
ν[m+1]P

`[m]P,P

(24)

Therefore, when ri = 1, the corrected steps 16 and 17 should be

16: Compute the line function `R,P .

17: f ← f × νR
`R,P

(DQ).

2. It will be exemplified the correction is accurate, but the two significant steps of

the original Miller’s Algorithm Using Signed Digit Number are wrong.

• This computation follows the correction:

Input: P, DQ, r = 29 = (100101)2

Output: f29,P (DQ)← f

Compute:

(a) P ; f1,P = 1,

(b) r4 = 0:

i. `P,P

ii. 2P = 2× P

iii. ν2P

iv. f2,P = f 2
1,P ×

`P,P

ν2P
(DQ)

(c) r3 = 0:

i. `2P,2P

ii. 4P = 2× 2P

iii. ν4P

iv. f4,P = f 2
2,P ×

`2P,2P

ν4P
(DQ)

39

(d) r2 = 1: these steps of (d) are different from the original Miller’s Al-

gorithm.

i. `4P,4P

ii. 8P = 2× 4P

iii. ν8P

iv. f8,P = f 2
4,P ×

`4P,4P

ν8P
(DQ)

v. ν8P

vi. 7P = 8P − P

vii. `7P,P

viii. f7,P = f8,P × ν8P
`7P,P

(DQ)

(e) r1 = 0:

i. `7P,7P

ii. 14P = 2× 7P

iii. ν14P

iv. f14,P = f 2
7,P ×

`7P,7P

ν14P
(DQ)

(f) r0 = 1:

i. `14P,14P

ii. 28P = 2× 14P

iii. ν28P

iv. f28,P = f 2
14,P ×

`14P,14P

ν28P
(DQ)

v. `28P,P

vi. 29P = 28P + P

vii. ν29P

viii. f29,P = f28,P × `28P,P

ν29P
(DQ)

(g) return f29,P

40

The last steps v to viii of (f) are also able to follow the Note in the Sub-

section (4.2) at the Page 34 to calculate.

Thus, following the correction can smoothly obtain the final result.

• If the computations follow the Miller’s Algorithm Using Signed Digit Num-

ber, then the steps in (d) of the correction will be:

(d) r2 = 1:

i. `4P,4P

ii. 8P = 2× 4P

iii. ν8P

iv. f8,P = f 2
4,P ×

`4P,4P

ν8P
(DQ)

v. ν8P

vi. 7P = 8P − P

vii. `−7P,P *

viii. f7,P = f8,P × ν8P
`−7P,P

(DQ) *

There are two important aspects that incur the inaccuracy of the Miller’s

Algorithm Using Signed Digit Number :

– r = 29 is the order of point P , that means O = 29P = 22P + 7P ,

namely, 22P = −7P . In this way, `−7P,P could be `22P,P in step vii.

On the other hand, when it calculates the point 7P , it cannot jump to

reckon the point 22P because both Elliptic Curve points operation and

Miller’s Algorithm are accumulative computations. What is more, if

calculating `−7P,P in step vii, then the step vi (7P = 8P−P) is useless.

Therefore, in this circumstance, reckoning `−7P,P is neither accurate

nor practical.

41

– According to Equation (24)

fm,P = fm+1,P ×
ν[m+1]P

`[m]P,P

f7,P should equal to

f8,P ×
ν8P

`7P,P

(DQ)

neither

f8,P ×
ν8P

`−7P,P

(DQ)

nor

f8,P ×
ν8P

`22P,P

(DQ)

f7,P cannot be gotten using the last two representations, so the com-

putation cannot proceed to go. In other words,

f7,P = f8,P ×
ν8P

`7P,P

(DQ)

f7,P 6= f8,P ×
ν8P

`−7P,P

(DQ)

f7,P 6= f8,P ×
ν8P

`22P,P

(DQ)

finally, `−7P,P should be `7P,P .

Conclusively, the correction of Miller’s Algorithm Using Signed Digit Number

is accurate and works.

5.2 New Right-to-left Miller’s Algorithm

New Right-to-left Miller’s Algorithm will use two core equations:

f2m,P = f 2
m,P ×

`[m]P,[m]P

ν[2m]P

(25)

42

and

fm+n,P = fm,P × fn,P ×
`[m]P,[n]P

ν[m+n]P

(26)

Equation (25) has been proved in the Subsection (4.2) from the Page 28 to the

Page 31. Observe that, Equation (26) just substitutes m in Equation (25) with n;

moreover, it will be attested in divisor level.

• From fm,P and fn,P to fm+n,P :

According to Equation (16),

(fm,P) = m(P)− ([m]P)− (m− 1)(O) (27)

substituting m with n and m+ n, then

(fn,P) = n(P)− ([n]P)− (n− 1)(O) (28)

(fm+n,P) = (m+ n)(P)− ([m+ n]P)− (m+ n− 1)(O) (29)

Moreover,

(`[m]P,[n]P) = ([m]P) + ([n]P) + (−[m+ n]P)− 3(O), (30)

(ν[m+n]P) = (−[m+ n]P) + ([m+ n]P)− 2(O), (31)

Therefore, in divisor level

Equation(29) = Equation(27) +Equation(28) +Equation(30)−Equation(31)

Namely,

fm+n,P = fm,P × fn,P ×
`[m]P,[n]P

ν[m+n]P

43

The New Right-to-left Miller’s Algorithm calculates r from the least significant

digit to the most significant digit (where r is a binary number of length n), in other

words, the computational sequence is from right to left, but the existing works are

on the contrary, so the proposal proposed a new option. On the other hand, it can

compute the fr,P (DQ) more efficiently, and it will be compared with the existing

works in Chapter 6.

Algorithm 5.2 New Right-to-left Miller’s Algorithm

Input: P ∈ E(Fqk)[r], DQ ∼ (Q) − (O) with support disjoint from (fr,P), and
r = (rn−1...r1r0)2, and ri ∈ {0, 1}.

Output: fr,P (DQ)← fα.

1: P1 ← O, fα ← f1,P = 1; P2 ← P, fβ ← f1,P = 1.
2: for i = 0 up to n− 1 do
3: if ri = 1, then
4: Compute the line functions `P1,P2 ; `P2,P2 .
5: P1 ← P1 + P2; P2 ← [2]P2.
6: Compute the line functions νP1 ; νP2 .

7: fα ← fα × fβ ×
`P1,P2

νP1
(DQ); fβ ← f 2

β ×
`P2,P2

νP2
(DQ).

8: else
9: Compute the line function `P2,P2 .
10: P2 ← [2]P2.
11: Compute the line function νP2 .

12: fβ ← f 2
β ×

`P2,P2

νP2
(DQ).

13: end if
14: end for
15: return fα.

1. There is a little trick to deal with the last loop:

ri ∈ {0, 1} means the first digit rn−1 must equal to 1; in addition, the final

return is fα rather than fβ. Therefore, when the Algorithm 5.2 computes the

last loop (rn−1 = 1), just doing the process to compute the value of fα is fine,

and it is unnecessary to do the process to compute the value of fβ.

In other words, let the loops be just from i = 0 up to n − 2 rather than from

i = 0 up to n − 1, and when computing the last digit (rn−1 = 1), it computes

44

the steps of computing the fα and removes the steps of computing the fβ:

when rn−1 = 1,

• Compute the line function `P1,P2 .

• P1 ← P1 + P2

• Compute the line function νP1 .

• fα ← fα × fβ ×
`P1,P2

νP1
(DQ).

Consequently, when it preforms the little trick, it is capable of saving the steps

of computing the fβ in the last loop.

2. An example of the New Right-to-left Miller’s Algorithm:

Input: P, DQ, r = 53 = (110101)2

Output: f53,P (DQ)← f

Compute:

(a) O, f1,P = 1; P, f1,P = 1.

(b) r0 = 1:

i. `O,P ; `P,P

ii. P = O + P ; 2P = 2× P

iii. νP ; ν2P

iv. f1,P = f1,P × f1,P × `O,P

νP
(DQ) = 1; f2,P = f 2

1,P ×
`P,P

ν2P
(DQ)

(c) r1 = 0:

i. `2P,2P

ii. 4P = 2× 2P

iii. ν4P

iv. f4,P = f 2
2,P ×

`2P,2P

ν4P
(DQ)

45

(d) r2 = 1:

i. `P,4P ; `4P,4P

ii. 5P = P + 4P ; 8P = 2× 4P

iii. ν5P ; ν8P

iv. f5,P = f1,P × f4,P × `P,4P

ν5P
(DQ); f8,P = f 2

4,P ×
`4P,4P

ν8P
(DQ)

(e) r3 = 0:

i. `8P,8P

ii. 16P = 2× 8P

iii. ν16P

iv. f16,P = f 2
8,P ×

`8P,8P

ν16P
(DQ)

(f) r4 = 1:

i. `5P,16P ; `16P,16P

ii. 21P = 5P + 16P ; 32P = 2× 16P

iii. ν21P ; ν32P

iv. f21,P = f5,P × f16,P × `5P,16P

ν21P
(DQ); f32,P = f 2

16,P ×
`16P,16P

ν32P
(DQ)

(g) r5 = 1:

i. `21P,32P ; `32P,32P

ii. 53P = 21P + 32P ; 64P = 2× 32P

iii. ν53P ; ν64P

iv. f53,P = f21,P × f32,P × `21P,32P

ν53P
(DQ); f64,P = f 2

32,P ×
`32P,32P

ν64P
(DQ)

(h) return f53,P

Notice:

• In step (b), according to the functions of chord line and vertical line,

(`O,P) = (P) + (O) + (−P)− 3(O)

46

(νP) = (P) + (−P)− 2(O)

obtain (
`O,P

νP
) = (`O,P − νP) = zero divisor, it can be f1,P = 1.

Generally, the equation can be an universal equation,

(
`O,[m]P

ν[m]P

) = (`O,[m]P − ν[m]P) = zero divisor, it can be 1.

because of

(`O,[m]P) = ([m]P) + (O) + ([−m]P)− 3(O)

(ν[m]P) = ([m]P) + ([−m]P)− 2(O)

Namely, when the computation needs to calculate `O,[m]P and ν[m]P , it

does not have to calculate them, and can obtain the result of
`O,[m]P

ν[m]P
= 1,

directly.

• In step (g), it can use the little trick which is mentioned at the Page 44, so

that it can save the computational steps of f64,P . Thus, the step (g) could

be:

(g) r5 = 1:

i. `21P,32P

ii. 53P = 21P + 32P

iii. ν53P

iv. f53,P = f21,P × f32,P × `21P,32P

ν53P
(DQ)

3. The contributions of the New Right-to-left Miller’s Algorithm:

(a) It calculates the r = (rn−1...r1r0)2 with a new sequence (from right to left).

47

• This is a new option for some particular designs.

• It can make cyber attackers confused: even if they obtain every digits

of r, they may not guess the sequence of r which is not the conventional

sequence (from left to right).

Thus, the new sequence (from right to left) may be securer.

(b) When ri = 1, there is a semicolon (;) to separate two computations in every

step, that means the separated computations are independent, and their

computations can start at the same time and not influence each other.

In other words, the separated computations by a semicolon are parallel

computation.

Hence, when ri = 1, the computational time is just the maximum of dou-

bling stage and addition stage. Nevertheless, the existing works are all se-

rial computation that the computational time is the sum of doubling stage

and addition stage. Therefore, the New Right-to-left Miller’s Algorithm

speeds up and is more efficient. There will be more detailed comparison

in next chapter.

5.3 Modified Miller’s Algorithm with Enhanced Security

The aim of the modified Miller’s Algorithm is against certain side channel attack

in pairing-based cryptography (PBC), so it has to assure the complexities of two

conditions (when ri = 1 and ri = 0) are the same, so that attackers cannot analyze

out which ri equals to 1 or 0. Thus, they are not able to obtain the final value of

r. In other words, the modified Miller’s Algorithm is secure in against certain side

channel attack, i.e., simple power analysis.

The followings are the modified algorithm and its instance; additionally, the anal-

yses of the complexities will be given in next chapter.

48

Algorithm 5.3 Modified Miller’s Algorithm with Enhanced Security

Input: P ∈ E(Fqk)[r], DQ ∼ (Q) − (O) with support disjoint from (fr,P), and
r = (rn−1...r1r0)2 with rn−1 = 1, and ri ∈ {0, 1}.

Output: fr,P (DQ)← fα.

1: P1 ← P, fα ← f1,P = 1; P2 ← [2]P, fβ ← f2,P =
`P,P

ν[2]P
(DQ).

2: for i = n− 2 down to 0 do
3: if ri = 1, then
4: Compute the line functions `P1,P2 ; `P2,P2 .
5: P1 ← P1 + P2; P2 ← [2]P2.
6: Compute the line functions νP1 ; νP2 .

7: fα ← fα × fβ ×
`P1,P2

νP1
(DQ); fβ ← f 2

β ×
`P2,P2

νP2
(DQ).

8: else
9: Compute the line functions `P1,P2 ; `P1,P1 .
10: P2 ← P1 + P2; P1 ← [2]P1.
11: Compute the line functions νP2 ; νP1 .

12: fβ ← fα × fβ ×
`P1,P2

νP2
(DQ); fα ← f 2

α ×
`P1,P1

νP1
(DQ).

13: end if
14: end for
15: return fα.

1. Algorithm 5.3 still use the following two core equations:

f2m,P = f 2
m,P ×

`[m]P,[m]P

ν[2m]P

and

fm+n,P = fm,P × fn,P ×
`[m]P,[n]P

ν[m+n]P

They were proved in previous sections, the first one has been proved in the

Subsection (4.2) from the Page 28 to the Page 31, and the second one has been

proved in the Subsection (5.2) from the Page 42 to the Page 44.

2. An example of the Modified Miller’s Algorithm with Enhanced Security:

Input: P, DQ, r = 53 = (110101)2

Output: f53,P (DQ)← f

Compute:

49

(a) P, f1,P = 1; 2P, f2,P =
`P,P

ν[2]P
(DQ).

(b) r4 = 1:

i. `P,2P ; `2P,2P

ii. 3P = P + 2P ; 4P = 2× 2P

iii. ν3P ; ν4P

iv. f3,P = f1,P × f2,P × `P,2P

ν3P
(DQ); f4,P = f 2

2,P ×
`2P,2P

ν4P
(DQ)

(c) r3 = 0:

i. `3P,4P ; `3P,3P

ii. 7P = 3P + 4P ; 6P = 2× 3P

iii. ν7P ; ν6P

iv. f7,P = f3,P × f4,P × `3P,4P

ν7P
(DQ); f6,P = f 2

3,P ×
`3P,3P

ν6P
(DQ)

(d) r2 = 1:

i. `7P,6P ; `7P,7P

ii. 13P = 7P + 6P ; 14P = 2× 7P

iii. ν13P ; ν14P

iv. f13,P = f7,P × f6,P × `7P,6P

ν13P
(DQ); f14,P = f 2

7,P ×
`7P,7P

ν14P
(DQ)

(e) r1 = 0:

i. `13P,14P ; `13P,13P

ii. 27P = 13P + 14P ; 26P = 2× 13P

iii. ν27P ; ν26P

iv. f27,P = f13,P × f14,P × `13P,14P

ν27P
(DQ); f26,P = f 2

13,P ×
`13P,13P

ν26P
(DQ)

(f) r0 = 1:

i. `27P,26P ; `27P,27P

ii. 53P = 27P + 26P ; 54P = 2× 27P

50

iii. ν53P ; ν54P

iv. f53,P = f27,P × f26,P × `27P,26P

ν53P
(DQ); f54,P = f 2

27,P ×
`27P,27P

ν54P
(DQ)

(g) return f53,P

3. The contributions of the Modified Miller’s Algorithm with Enhanced Security:

(a) As aforementioned, it is against certain side channel attack, i.e., simple

power analysis because the computational complexities of two different

conditions are equal; namely, no matter when ri = 1 or ri = 0, the compu-

tations are balance, so that the value of r cannot be analyzed out. Thus,

this proposed algorithm can be against certain side channel attack.

(b) The computational efficiency are not reduced in comparison with the ex-

isting works, even more efficient because of the parallel computation.

In every loop, there is a semicolon (;) to separate two computations in

every step, that means the separated computations are independent, and

their computations can start at the same time and not impact mutually.

In other words, the separated computations by a semicolon are parallel

computation.

Consequently, the computational time is just the maximum of doubling

stage and addition stage. However, the existing works are serial compu-

tation which the computational time is the sum of doubling stage and

addition stage. Therefore, the Modified Miller’s Algorithm with Enhanced

Security is not only more efficient than the existing works but also has the

nice property of resistance to certain side channel attacks.

51

6 COMPLEXITY ANALYSIS AND COMPARI-

SON

In this chapter, the comparison amongst the two existing works and the two pro-

posed works will be demonstrated. Additionally, it will analyze the complexities in

computational cost level. Namely,

• M : represents the computational cost of a multiplication;

• S: represents the computational cost of a squaring;

• I: represents the computational cost of an inversion.

The analyses ignore the computational cost of addition (A) because it is trivial in

comparison with any of M , S and I. What’s more, the computational cost I � 20M

over Fq and Fqk , and “the multiplication to inversion ratio is commonly reported to

be 80 : 1 or higher” [1].

6.1 Computational Complexity Analysis

6.1.1 Complexity Analysis of Points Operation over Elliptic Curve

In the Section (2.4.3) at the Page 15:

Let P1(x1, y1) and P2(x2, y2) be two points on the curve E : y2 = x3 + ax + b,

where a, b ∈ F.

* Assume P3(x3, y3) = P1(x1, y1) + P2(x2, y2) 6= O, then

 x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where λ = y2−y1
x2−x1

, if P1 6= P2; and λ =
3x21+a

2y1
, if P1 = P2.

52

Observably,

• Points doubling costs: 2M + 2S + I

• Points addition costs: 2M + S + I

6.1.2 Complexity Analysis of Straight Lines

In the Section (2.4.5) at the Page 17:

Let elliptic curve E be given as E : y2 = x3 + ax + b, and also let P = (x1, y1)

and Q = (x2, y2) be two points on E.

• Chord line,

`P,Q : y − y2 − y1

x2 − x1

· x− x2y1 − x1y2

x2 − x1

• Tangent line,

`P,P : y − 3x2
1 + a

2y1

· x− −y
2
1 + 2ax1 + 3b

2y1

• Vertical line,

νQ : x− x2

Note:

It just considers the costs which are caused by x1, y1 and x2, y2, excluding the

unknown coordinates x, y.

In the existing works and the proposed works, the steps of computing lines just

calculate out the line FUNCTIONS; namely, they obtain the representations of x, y,

and x, y do not need to be calculated. On the other hand, after it completes the steps

of computing lines, substituting the values of x, y into the line functions are other

steps, and at that time x just multiplies a constant. Therefore, the costs which are

caused by x, y are ignored.

According to the straight line equations,

53

• Chord line costs: 2M + 2I

• Tangent line costs: 2S + 2I

• Vertical line costs: null

6.1.3 Complexity Analysis of `
ν
(DQ)

In the point (3) of the Section (4.2) at the Page 35:

Based on

`

ν
(DQ) =

`([2]Q)

`(Q)
× ν(Q)

ν([2]Q)
=
`([2]Q)× ν(Q)

`(Q)× ν([2]Q)

It can be observed that both chord line and tangent line have the same cost: 2M + I.

6.1.4 Complexity Analysis of the Existing Works and the Proposed Works

In this subsection, it will analyze the complexity of each step when ri = 0, ri = 1,

and ri = 1, respectively. In addition, they are all based on each computable step of

every algorithm and the previous complexity analyses.

1. Miller’s Algorithm: Table 6.1 analyzes the computational costs of every step

when ri = 0 and when ri = 1.

54

Table 6.1: Complexity Analysis of Miller’s Algorithm

Step ri = 0 ri = 1

3: 2S + 2I 2S + 2I

4: 2M + 2S + I 2M + 2S + I

5: null null

6: 3M + S + I 3M + S + I

8: 2M + 2I

9: 2M + S + I

10: null

11: 3M + I

Total: 5M + 5S + 4I 12M + 6S + 8I

Therefore,

• when ri = 0, the totally computational cost is 5M + 5S + 4I;

• when ri = 1, the totally computational cost is 12M + 6S + 8I.

2. Miller’s Algorithm Using Signed Digit Number: Table 6.2 presents the

computational costs of every step and the total when ri = 0, ri = 1, and ri = 1,

respectively.

55

Table 6.2: Complexity Analysis of Miller’s Algorithm Using Signed Digit Number

Step ri = 0 ri = 1 ri = 1

3: 2S + 2I 2S + 2I 2S + 2I

4: 2M + 2S + I 2M + 2S + I 2M + 2S + I

5: null null null

6: 3M + S + I 3M + S + I 3M + S + I

8 (14): 2M + 2I null

9 (15): 2M + S + I 2M + S + I

10 (16): null 2M + 2I

11 (17): 3M + I 3M + I

Total: 5M + 5S + 4I 12M + 6S + 8I 12M + 6S + 8I

Thus,

• when ri = 0, the totally computational cost is 5M + 5S + 4I;

• when ri = 1, the totally computational cost is 12M + 6S + 8I;

• when ri = 1, the totally computational cost is 12M + 6S + 8I.

3. New Right-to-left Miller’s Algorithm: In Table 6.3, the computational

costs of every step and the total are presented when ri = 0 and when ri = 1, as

well as the parts of parallel computation.

Table 6.3: Complexity Analysis of New Right-to-left Miller’s Algorithm

Step ri = 0 Step ri = 1

9: 2S + 2I 4: 2M + 2I 2S + 2I

10: 2M + 2S + I 5: 2M + S + I 2M + 2S + I

11: null 6: null null

12: 3M + S + I 7: 4M + I 3M + S + I

Total: 5M + 5S + 4I Total: 8M + S + 4I 5M + 5S + 4I

56

Hence,

• when ri = 0, the totally computational cost is 5M + 5S + 4I;

• when ri = 1, the totally computational cost is (8M + S + 4I) + (5M +

5S + 4I) = 13M + 6S + 8I.

4. Modified Miller’s Algorithm with Enhanced Security: In Table 6.4, the

computational costs of every step and the total are analyzed when ri = 0 and

when ri = 1, as well as the parts of parallel computation.

Table 6.4: Complexity Analysis of Modified Miller’s Algorithm with Enhanced Secu-
rity

Step ri = 0 Step ri = 1

9: 2M + 2I 2S + 2I 4: 2M + 2I 2S + 2I

10: 2M + S + I 2M + 2S + I 5: 2M + S + I 2M + 2S + I

11: null null 6: null null

12: 4M + I 3M + S + I 7: 4M + I 3M + S + I

Total: 8M + S + 4I 5M + 5S + 4I Total: 8M + S + 4I 5M + 5S + 4I

Consequently,

• when ri = 0, the totally computational cost is (8M + S + 4I) + (5M +

5S + 4I) = 13M + 6S + 8I.

• Similarly, when ri = 1, the totally computational cost is 13M + 6S + 8I.

6.2 Computational Complexity Comparison

Here uses the following names to represent the existing works and the proposed works

for abbreviation.

• Original MA: Miller’s Algorithm [2],

57

• MA using SD: Miller’s Algorithm Using Signed Digit Number [3],

• New R2L MA: New Right-to-left Miller’s Algorithm,

• Modified MA: Modified Miller’s Algorithm with Enhanced Security

1. Complexity analysis for proposed and existing works when ri = 0 are analyzed

and compared in Table 6.5.

Table 6.5: Complexity Analysis when ri = 0

Algorithms Original MA MA using SD New R2L MA Modified MA

Total Cost 5M + 5S + 4I 5M + 5S + 4I 5M + 5S + 4I 13M + 6S + 8I

2. When ri = 1, because only Miller’s Algorithm Using Signed Digit Number has

the condition of ri = 1, and the complexity of ri = 1 equals to that of ri = 1,

so Table 6.6 just lists the computational complexities when ri = 1.

Table 6.6: Complexity Analysis when ri = 1

Algorithms Original MA MA using SD New R2L MA Modified MA

Total Cost 12M + 6S + 8I 12M + 6S + 8I 13M + 6S + 8I 13M + 6S + 8I

3. Let r be a binary number of length n.

• Normally, in an n-bit binary number: the number of 0 is n
2
, and the number

of 1 is also n
2
.

• Usually, if we convert an n-bit binary number to a signed digit number,

then the signed digit number will be (n + 1)-bit: and the number of 0 is

2(n+1)
3

, and the total number of 1 and 1 is (n+1)
3

[40].

Based on the four algorithms, the number of loops of every algorithm is listed

in Table 6.7:

58

Table 6.7: Comparison: the Number of Loops

Name Original MA MA using SD New R2L MA Modified MA

of Loop n− 1 n n n− 1

Hence, based on Table 6.5, Table 6.6 and Table 6.7, the computational com-

plexity comparison is obtained in Table 6.8:

Table 6.8: Computational Complexity Comparison

Name Total Cost

Original MA (8.5n− 8.5)M + (5.5n− 5.5)S + (6n− 6)I

MA using SD (7.3n)M + (5.3n)S + (5.3n)I

New R2L MA (9n)M + (5.5n)S + (6n)I

Modified MA (13n− 13)M + (6n− 6)S + (8n− 8)I

Therefore, Miller’s Algorithm Using Signed Digit Number [3] is the best in

computational complexity comparison.

6.3 Space-time Diagrams of the Existing Works and the Pro-

posed Works

6.3.1 Space-time Diagram of the Existing Works

When either one of the existing works completes one loop, it will need the doubling

stage (step 3 to step 6) plus the addition stage (step 8 to step 11); thus, the time per

loop is the sum of doubling stage time and addition stage time, and this situation

could be called serial computation. The details can be illustrated in Fig. 6.1:

59

Miller's Algorithm

 Miller's Algorithm Using Signed Digit Number

Time

Time

Loop

Starts

Loop

Ends
3 4

9 8 10 11

6 5

Doubling Stage
Addition Stage

Loop

Starts

Loop

Ends
3 4

9 8 10 11

6 5

Doubling Stage

Addition Stage

Space

Space

ri=1

ri=0

15 14 16 17

Addition Stage

ri=0

ri=1

ri= -1

Fig. 6.1: Space-time Diagram of the Existing Works

6.3.2 Space-time Diagram of the Proposed Works

On the other hand, when either one of the proposed works completes one loop, the

addition stage (step 4a to step 7a) and the doubling stage (step 4b to step 7b) can start

simultaneously and approximately finish at the same time. In other words, the two

stages are independent mutually, and cannot influence each other, and this situation

could be called parallel computation. The details can be illustrated in Fig. 6.2.

As a result, the computational time is the worse case of doubling stage time

and addition stage time. According to the complexity analyses, the addition stage

complexity 8M +S + 4I ≈ the doubling stage complexity 5M + 5S + 4I, that means

the computational time of the two stages are approximately equated, so the time per

60

loop can be either one of the doubling stage time and the addition stage time.

New Right-to-left Miller's Algorithm

 Modified Miller's Algorithm with Enhanced Security

Time

Time

Loop

Starts

Loop

Ends

4a 5a

5b 4b 6b 7b

7a 6a

Doubling Stage

Addition Stage

Loop

Starts

Loop

Ends

4a 5a

5b 4b 6b 7b

7a 6a

Doubling Stage

Addition Stage

Space

Space

9a 10a

10b 9b 11b 12b

12a 11a

Doubling Stage

Addition Stage

ri=1

ri=0

10 9 11 12

Doubling Stage

ri=1

ri=0

Fig. 6.2: Space-time Diagram of the Proposed Works

Note: Each of steps 4, 5, 6, 7, 9, 10, 11 and 12 can be split into two parallel

sub-steps:

For clearly showing the different parts of step 4 to step 12, the diagram uses the

4a to 12a to represent the addition stage, and the 4b to 12b to represent the doubling

stage.

In the proposed works, the semicolon (;) separates the “Series ‘a’ steps” and the

“Series ‘b’ steps” . For instance,

4: Compute the line functions (4a:) `P1,P2 ; (4b:) `P2,P2 in parallel.

61

5: (5a:) P1 ← P1 + P2; (5b:) P2 ← [2]P2 in parallel.

6: Compute the line functions (6a:) νP1 ; (6b:) νP2 in parallel.

7: (7a:) fα ← fα × fβ ×
`P1,P2

νP1
(DQ); (7b:) fβ ← f 2

β ×
`P2,P2

νP2
(DQ) in parallel.

6.4 Performance Comparison

A comparison of the proposed algorithms and the existing works is shown in Table

6.9. Note that TA and TD denote the time delay for addition stage and doubling

stage, respectively.

62

T
ab

le
6.

9:
C

om
p
ar

is
on

:
P

ro
p

os
ed

W
or

k
s

v
s.

E
x
is

ti
n
g

W
or

k
s

A
lg

or
it

h
m

s
T

ot
al

C
os

t
L

o
op

d
el

ay
L

at
en

cy
In

p
u
t

st
y
le

(r
)

S
C

A
re

si
st

an
ce

O
ri

gi
n
al

M
A

(8
.5
n
−

8.
5)
M

+
(5
.5
n
−

5.
5)
S

+
(6
n
−

6)
I

T
A

+
T
D

(n
−

1)
(T

A
+
T
D

)
L

ef
t-

to
-r

ig
h
t

N
o

M
A

u
si

n
g

S
D

(7
.3
n

)M
+

(5
.3
n

)S
+

(5
.3
n

)I
T
A

+
T
D

n
T
A

+
n
T
D

L
ef

t-
to

-r
ig

h
t

N
o

N
ew

R
2L

M
A

(9
n

)M
+

(5
.5
n

)S
+

(6
n

)I
T
A

n
T
A

R
ig

h
t-

to
-l

ef
t

N
o

M
o
d
ifi

ed
M

A
(1

3n
−

13
)M

+
(6
n
−

6)
S

+
(8
n
−

8)
I

T
A

(n
−

1)
T
A

L
ef

t-
to

-r
ig

h
t

Y
es

63

The comparison results shown in Table 6.9 can be explained as follows.

1. The proposed works contain parallelable computation steps, while the existing

works are serial computation. As a consequence, assumed parallel implementa-

tion for the proposed works, then it can realize high speed computation of Weil

pairing.

2. Where r is a binary number of length n, according to the security level, the

value of n is from 224 to 512.

3. The loop delay of the proposed works is less than that of the existing works.

4. The latency of the proposed works is less than that of the existing works.

5. The difference of the two proposed works:

• In the aspect of input style, New Right-to-left Miller’s Algorithm proposes

the Right-to-Left, which is a new option for design;

• Although the latency of New Right-to-left Miller’s Algorithm is more a

TA than that of Modified Miller’s Algorithm with Enhanced Security, the

(n− 1)TA is very big, so it can be deemed the latency of the two proposed

works are approximately equal;

• In New Right-to-left Miller’s Algorithm, only when ri = 1, it uses the

parallel computation; on the contrary, in Modified Miller’s Algorithm with

Enhanced Security, no matter when ri = 1 or ri = 0, they both use the

parallel computation, so that the fourth algorithm needs more space to

implement.

Conclusively, the proposed works are superior to the existing works; in addition,

comparing with the two proposed works, they have individual and irreplaceable ad-

vantage.

64

7 CONCLUSIONS

7.1 Research Contributions and Applications

After the first chapter on introduction, the thesis provides the mathematical prelimi-

naries of the pairing-based cryptography, including finite fields, elliptic curve, and the

important concepts of divisors and bilinear map, followed by an overview of existing

works on Miller’s Algorithm. Then the two modified versions of Miller’s Algorithm

are proposed. An elaborate comparison between the proposed works and existing

works in complexity and performance is also presented.

The research contributions presented in this thesis include the followings,

• Two new algorithms for computing bilinear map are presented. The first one is

the New Right-to-left Miller’s Algorithm and the second is called the Modified

Miller’s Algorithm with Enhanced Security.

• It is clear that the first proposed algorithm works when the input r is fed into

system in right-to-left fashion while the original Miller’s takes input only in

left-to-right style.

• Both the proposed algorithms possess parallelism within each loop and thus

make it possible for parallel and high speed computation, compared to the

original Miller’s. Elaborated analytical results show that the improvement in

speed could be close to 100 percent if parallel implementation is ensured.

• The second proposed algorithm has the property of resistance to certain side

channel attacks, i.e., simple power analysis, which makes it a better choice

for computing bilinear map when there exists potential threat of side channel

attacks.

65

7.2 Possible Future Works

Based on the research works proposed in this thesis, the following research directions

may be worthy of further investigation:

• Hardware implementation, i.e., FPGA implementation, of the proposed algo-

rithms for computing bilinear map, which can maximally take advantage of

parallelism in the algorithms and their computational efficiency.

• It is expected that the proposed algorithms can be easily extended for compu-

tation of Tate pairing.

66

REFERENCES

[1] C. Costello, “Pairings for beginners,” www.craigcostello.com.au/pairings/ Pair-

ingsForBeginners.pdf, 2012.

[2] V. S. Miller, “The weil pairing, and its efficient calculation,” Journal of Cryp-

tology, vol. 17, no. 4, pp. 235–261, 2004.

[3] X. Zhang and D. Lin, “Analysis of optimum pairing products at high security

levels,” in International Conference on Cryptology in India. Springer, 2012, pp.

412–430.

[4] A. Menezes, “An introduction to pairing-based cryptography,” Recent trends in

cryptography, vol. 477, pp. 47–65, 2009.

[5] “ ieee standard for identity-based cryptographic techniques using pairings,” IEEE

Std 1363.3-2013, pp. 1–151, Nov 2013.

[6] A. Joux, “A one round protocol for tripartite diffie–hellman,” Journal of cryp-

tology, vol. 17, no. 4, pp. 263–276, 2004.

[7] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,”

in Annual International Cryptology Conference. Springer, 2001, pp. 213–229.

[8] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing, scis

2000-c20, jan. 2000,” Okinawa, Japan.

[9] A. Joux, “A one round protocol for tripartite diffie–hellman,” in International

Algorithmic Number Theory Symposium. Springer, 2000, pp. 385–393.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,”

in International Conference on the Theory and Application of Cryptology and

Information Security. Springer, 2001, pp. 514–532.

67

[11] C. Zhang, X. Lin, R. Lu, P.-H. Ho, and X. Shen, “An efficient message authenti-

cation scheme for vehicular communications,” IEEE Transactions on Vehicular

Technology, vol. 57, no. 6, pp. 3357–3368, 2008.

[12] T. Schütze, “Automotive security: Cryptography for car2x communication,” in

Embedded World Conference, vol. 3, 2011.

[13] S. Lee, Y. Kim, K. Kim, and D.-H. Ryu, “An efficient tree-based group key agree-

ment using bilinear map,” in International Conference on Applied Cryptography

and Network Security. Springer, 2003, pp. 357–371.

[14] A. Kim, V. Kniss, G. Ritter, and S. M. Sloan, “An approach to communications

security for a communications data delivery system for v2v/v2i safety: Technical

description and identification of policy and institutional issues,” Tech. Rep.,

2011.

[15] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security credential

management system for v2v communications,” in Vehicular Networking Confer-

ence (VNC), 2013 IEEE. IEEE, 2013, pp. 1–8.

[16] K. Benson, H. Shacham, and B. Waters, “The k-bdh assumption family: Bilinear

map cryptography from progressively weaker assumptions,” in Cryptographers

Track at the RSA Conference. Springer, 2013, pp. 310–325.

[17] R. Lu, “Security and privacy preservation in vehicular social networks,” 2012.

[18] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based cryptography: A survey,”

Cryptology ePrint Archive, Report 2004/064, 2004.

[19] A. Kumano and Y. Nogami, “An improvement of tate paring with supersingular

curve,” in Information Science and Security (ICISS), 2015 2nd International

Conference on. IEEE, 2015, pp. 1–3.

68

[20] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the Theory

and Application of Cryptographic Techniques. Springer, 1985, pp. 417–426.

[21] V. Miller et al., “Short programs for functions on curves,” Unpublished

manuscript, vol. 97, pp. 101–102, 1986.

[22] H. Wu, “Lecture notes in Data Security,” September 2015.

[23] R. Murty and I. Shparlinski, “Group structure of elliptic curves over finite fields

and applications,” in Topics in Geometry, Coding Theory and Cryptography.

Springer, 2006, pp. 167–194.

[24] S. Gashkov, A. Frolov, and I. Sergeev, “Arithmetic in finite fields supporting

type-2 or type-3 optimal normal bases,” in Dependability Engineering and Com-

plex Systems. Springer, 2016, pp. 157–168.

[25] H. Niederreiter, H. Wang, and C. Xing, “Function fields over finite fields and

their applications to cryptography,” in Topics in Geometry, Coding Theory and

Cryptography. Springer, 2006, pp. 59–104.

[26] M. F. De Oliveira and M. A. A. Henriques, “A secure and efficient method

for scalar multiplication on supersingular elliptic curves over binary fields,” in

Information Security. Springer, 2015, pp. 407–416.

[27] Y.-T. Chang, Y.-H. Liu, and R.-J. Chen, “Selecting elliptic curves with minimal

estimation of pairing computation,” in The Second International Conference on

Information Security and Digital Forensics (ISDF2015), 2015, p. 21.

[28] G. Frey and T. Lange, Mathematical background of public key cryptography.

IEM, 2003.

[29] M. Scott and P. S. Barreto, “Generating more mnt elliptic curves,” Designs,

Codes and Cryptography, vol. 38, no. 2, pp. 209–217, 2006.

69

[30] J. M. Miret, D. Sadornil, and J. Tena, “Elliptic curves with j= 0, 1728 and low

embedding degree,” International Journal of Computer Mathematics, vol. 93,

no. 12, pp. 2042–2053, 2016.

[31] R. Schoof, “Elliptic curves over finite fields and the computation of square roots

mod q,” Mathematics of computation, vol. 44, no. 170, pp. 483–494, 1985.

[32] S. D. Galbraith, Mathematics of public key cryptography. Cambridge University

Press, 2012.

[33] T. Okamoto, “Cryptography based on bilinear maps,” in International Sym-

posium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes.

Springer, 2006, pp. 35–50.

[34] T. Yamakawa, S. Yamada, G. Hanaoka, and N. Kunihiro, “Self-bilinear map

on unknown order groups from indistinguishability obfuscation and its applica-

tions,” in International Cryptology Conference. Springer, 2014, pp. 90–107.

[35] N. El Mrabet, “What about vulnerability to a fault attack of the millers al-

gorithm during an identity based protocol?” in International Conference on

Information Security and Assurance. Springer, 2009, pp. 122–134.

[36] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE transactions

on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[37] A. Joux and K. Nguyen, “Separating decision diffie–hellman from computational

diffie–hellman in cryptographic groups,” Journal of cryptology, vol. 16, no. 4, pp.

239–247, 2003.

[38] P.-A. Fouque and C. Qian, “Fault attacks on efficient pairing implementations,”

in Proceedings of the 11th ACM on Asia Conference on Computer and Commu-

nications Security. ACM, 2016, pp. 641–650.

70

[39] I. F. Blake, V. K. Murty, and G. Xu, “Refinements of miller’s algorithm for

computing the weil/tate pairing,” Journal of Algorithms, vol. 58, no. 2, pp. 134–

149, 2006.

[40] H. Wu and M. A. Hasan, “Efficient exponentiation of a primitive root in gf (2/sup

m/),” IEEE Transactions on Computers, vol. 46, no. 2, pp. 162–172, 1997.

[41] D.-P. Le and C.-L. Liu, “Refinements of miller’s algorithm over weierstrass curves

revisited,” The Computer Journal, vol. 54, no. 10, pp. 1582–1591, 2011.

[42] F. Vercauteren, “Optimal pairings,” IEEE Transactions on Information Theory,

vol. 56, no. 1, pp. 455–461, 2010.

71

VITA AUCTORIS

NAME: Shun Wang

PLACE OF BIRTH: Shenyang, China

YEAR OF BIRTH: 1985

EDUCATION:

2004 - 2008 Harbin University of Science and Technology, Harbin,
Heilongjiang, China
Bachelor of Electrical and Electronic Engineering

2014 - 2017 University of Windsor, Windsor, Ontario, Canada
Master of Applied Science, Electrical and Computer En-
gineering

EMAIL: solomonshun@gmail.com

72

	Efficient Computation of Miller's Algorithm in Pairing-Based Cryptography
	Recommended Citation

	tmp.1497903847.pdf.l5Z2E

