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ABSTRACT 

The purpose of this study was to compare the physical demands associated with three 

direct-current (DC) right angle power tool tightening strategies. Thirty-six participants 

(�̅� = 37.14 years ± 12.03) were assigned to one of two experimental groups: 1) Hard joint 

(30
o
,
 
n=18), and, 2) Soft joint (540

o
, n=18). Within each experimental group, participants 

performed 36 trials, consisting of 3 tightening strategies, 3 target torques and 4 joint 

locations, in random order. Data from 3Dlinear sensor handle, motion capture markers, 

and Borg ratings were analyzed. Repeated measures ANOVA with Tukey’s post hoc test 

were used to determine statistical significance (p<0.05). Participants operating the 

TurboTight® fastening strategy experienced the least forces at the hand-handle interface, 

least joint angle displacements (shoulder & elbow angular displacement) as well as 

reported the lowest ratings of discomfort and strength. 
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Chapter 1: INTRODUCTION 

1.1 BACKGROUND 

Automotive assembly operations using fasteners to secure parts are commonly associated 

with right angle power tool operation. According to Radwin, VanBergeijk and Armstrong 

(1989), Ford motor company estimated 75 percent of all power hand tools used in 

production involve nutrunners, also known as right angle power tools (RAPT). Recent 

data have shown that musculoskeletal injuries are commonly associated with power tool 

operation. In 2012, there were 40,760 hand tool-related injuries in US private industry 

according to the Bureau of Labor Statistics (2012). This number increased to 42,480 in 

2013 (Bureau of Labor Statistics, 2013). These numbers indicate the necessity of research 

involving hand tool safety.  

During automotive assembly, parts are commonly secured using right angle 

power tools to fasten bolts and nuts using high torques. Right angle power tools are 

designed with long handles which allow for a greater mechanical advantage when 

operating at high torques as opposed to pistol grip or inline power tools (Freivalds & 

Eklund, 1993). Power sources for right angle power tools in the past have mainly 

involved high pressure air (pneumatic). However, as technology advances, electrically 

(direct current) powered right angle tools are becoming the standard. Direct current (DC) 

power tools allow for increased specialization through modification of target torques, 

rundown profiles and joint type. 

In order to identify the risk factors associated with right angle power tool 

operation, one must understand the interaction between the power tool and operator. 
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While operating right angle power tools to secure two or more parts, forces develop as a 

result of the fastening of a joint. During fastening, forces are passed from fastener to the 

RAPT handle which is held by the operator. Forces experienced by the operator are 

believed to be equal to the force applied at the joint multiplied by the length of tool 

handle (Lindqvist, 1993). If the operator does not provide enough force to the tool 

handle, handle displacement occurs. Once force experienced at the handle exceeds the 

operator’s strength the chance of an upper extremity injury increases and can be further 

augmented with awkward postures and fatigue (Kim, 2012)  

Past research involving right angle power tools have predominantly viewed the 

effects of reaction torque, handle displacement, hand forces and subjective ratings 

associated with pneumatic power tool operation. Many of these studies have investigated 

the influence of torque reactions on a number of parameters including pre-set torque 

level, run down speed, stiffness of the joint, shut-off mechanism and operator posture 

(Lindqvist; 1993, Kihlberg, Kjellberg, Lindbeck, 1993, 1994, 1995). In addition, physical 

capabilities of operators using pneumatic right angle power tools have been established 

based on mathematical modelling, subjective ratings and handle displacement by various 

researchers (Lin, Radwin, Fronczak, & Richard, 2003a; Lin, Radwin, & Richard, 2003). 

Lin, Radwin, Richard and Fronczak (2003b) developed a static and dynamic model for 

predicting operator response to impulsive torque reaction forces produced by rotating 

spindle power handle tools based on stiffness, mass moment of inertia and damping 

elements corresponding to the mechanical characteristics of the operator. Right angle 

power tool research conducted by Kihlberg, Kjellberg and Lindbeck (1995) has resulted 

in the development of acceptability limits for pneumatic right angle power tools based on 
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subjective ratings and handle displacements of participants. Although the research has 

produced valuable information in regards to right angle pneumatic power tool use, a lack 

of research on electrically powered right angle tools is of growing concern.  

1.2 STATEMENT OF THE PURPOSE 

The purpose of the current study was to evaluate the physical demands associated with 

three direct-current (DC) right angle power tool tightening strategies at various fastener 

location-orientations, target torques and joint types. With a number of manufacturing 

companies making a switch from pneumatic to DC powered tools, comparison between 

the tightening strategies is warranted. Several researchers have studied pneumatic power 

tool usage, however very few have used electrically powered right angle power tools. 

Through the findings of this study, researchers will have a better understanding of the 

physical demands associated with different DC tightening strategies. Furthermore, the 

findings provide empirical evidence on which tightening strategy provides the least 

demand on operators, in hopes of limiting the risk of injury associated with DC right 

angle power tool usage. 

1.3 HYPOTHESES 

1) Elbow displacement (surrogate of handle) will show a statistically significant 

(p<0.05) interaction between fastening strategy and target torque measured from 

initiation of torque to 100 ms post peak torque. 

Handle displacement is caused by a build-up of reaction forces developed during joint 

fastening. Assuming an operators hand, forearm and arm consist of three linked rigid 

segments, we can predict that handle displacement will result in angular displacement of 
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the elbow joint.  Researchers have studied the effects of torque and tool shut-offs on 

reaction forces and handle displacement during pneumatic right angle power tool 

operation. Oh and Radwin (1997) used a single pneumatic power tool with fastening 

torques of 25, 40, 55 Nm and determined that the operator’s ability to control handle 

displacement decreased as torque reaction forces increased. Furthermore, Oh and Radwin 

(1994) found greater handle displacement occurred when operating right angle tools on 

vertical workstations compared to operation on horizontal work surfaces. Additionally, 

Oh and Radwin (1997) found operating right angle power tools near the body in a vertical 

orientation increased tool stability, while horizontal orientations produced the greatest 

stability at further distances from the body. This demonstrates the effects of different 

factors on handle displacement. While past research has predominantly involved 

pneumatic power tools, it is expected that the current study will show similar findings in 

DC right angle power tool operators.  

2) Shoulder joint angle displacement will show a statistically significant 

interaction between fastening strategy, target torque and posture as measured 

from initiation of torque to 100 ms following peak torque. 

Research investigating the influence of right angle power tool usage on operator posture 

has predominantly focused on biomechanical modelling. Lindqvist (1993) developed a 

mass-spring model for the hand-arm system in order to identify the effect of RAPT 

usage. Lin, Radwin and Richard (2003) modelled power tool operators as a single-

degree-of-freedom dynamic mechanical system in order to predict operator response to 

torque reaction force impulses. Human operators were modelled using mass, spring and 

damping elements to determine operator joint stiffness. In biomechanical models, the 
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interaction between the hand-arm system and power tool can be affected by the torque 

reactions resulting from right angle power tool use. Lin, McGorry, Dempsey and Chang 

(2006) determined greater tool displacement occurred when the tool was held 30 cm 

below elbow height and operated on a horizontal surface. As handle displacement occurs, 

the operator hand-arm system must be altered to accommodate the resulting 

displacement. Therefore, findings should show shoulder joint angle displacements 

(shoulder abduction/adduction, flexion/extension, rotation) show significant differences 

between tightening strategies, target torques and operator posture.   

3) Subjective ratings will be greater for DC TSS compared to DC TS and DC TT 

fastening strategies (p<0.05). 

Subjective ratings have been used to identify differences of handle displacement and 

reaction forces produced during right angle power tool operation (Kihlberg, Kjellberg, & 

Lindbeck, 1995). Results from Kihlberg, Kjellberg, & Lindbeck (1995) determined that 

any participant who identified with a subjective rating of 9 or higher on a CR-20 Borg 

scale would not accept to operate a tool which resulted in greater than 6cm of handle 

displacement and resulting reaction forces. In comparison, if the handle displacement and 

reaction forces experienced by the participant resulted in a rating of 2 or lower on the 

CR-20 scale, all participants accepted the task.  Furthermore, in order for 90% of all 

operators to accept a job using a right angle power tool, handle displacement of less than 

3 cm was required. Based on Kihlberg, Kjellberg and Lindbeck’s studies, participants 

will provide higher subjective ratings while operating at higher torques, and while 

experiencing increased handle displacement and handle forces.  
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4) Force impulse magnitudes occurring between initialization and target torque 

will be statistically lower (p < 0.05) when fastening the DC TT right angle power 

tool compared to DC TSS and DC TS fastening strategies. 

According to Freivalds and Eklund (1993), the impulse of reaction torque is a more 

appropriate measure than peak torque when viewing reaction forces. This is due to 

impulse accounting for peak torque as well as the duration of reaction torques during a 

tool rundown. Research has shown impulse is influenced by tool power levels, torque 

levels, tightening strategies and joint stiffness (Kihlberg, Kjellberg & Lindbeck 1993, 

1994, 1995; Ku, Radwin & Karsh, 2007; Lin & McGorry, 2009). If an underpowered tool 

is used to tighten a joint, an increase in time to peak torque will result, thus leading to an 

increased impulse (Freivalds & Eklund, 1993). The process by which a joint is fastened is 

known as the tightening strategy. Pneumatic power tool tightening strategies work as an 

on/off principle. Therefore, if the trigger is pulled, the spindle head will rotate until a 

joint is secured. Pulse tools operate by providing multiple bursts of power to tighten a 

joint. DC power tools work in a similar fashion to pulse tools where torque profiles allow 

for different levels of torque to be applied during a run down. Based on these principles, 

the DC TurboTight® strategy will provide statistically lower impulse reaction forces 

compared to DC single-stage and DC Two-Stage power tools. 



  

7 

Chapter 2: LITERATURE REVIEW 

2.1 TOOLS 

2.1.1 TOOL TYPES 

During automotive assembly, operators use power tools, either powered pneumatically 

(air) or electrically using Direct-Current (DC), to help secure various parts. Traditionally, 

pneumatic tools have been the most common power tools used.  However, as technology 

evolves, automotive manufacturers have gradually replaced pneumatic tools with DC 

based power tools. DC tools can be outfitted with transducers, allowing tool angle and 

torque recordings for greater control and feedback from each fastening. Furthermore, tool 

recordings can be used as feedback to reduce injury risk in addition to ensuring product 

quality.  

Tool manufacturers produce pneumatic and DC power tools in various shapes and 

sizes including pistol grip, inline and right angle configurations. Pistol grip (Figure 1) and 

inline (Figure 2) tools are best used on low torque run downs, while completing 

fastenings located on vertical and horizontal surfaces, respectively. Fastenings requiring 

high torques primarily involve right angle power tools, regardless of orientation. As 

shown in Figure 3, right angle power tools with long handles provide operators with a 

mechanical advantage. The mechanical advantage, created by the increased moment arm 

from hand to pivot point, allows the operator to exert less force to counteract the moment 

created during joint fastening (Radwin, Vanbergeijk, & Armstrong, 1989). Furthermore, 

Radwin, Chourasia, Howery, Fronczak, Yen, Subedi & Sesto (2014), state that the ideal 

method to determine tool selection should consider the performing task, workstation 
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design, tool characteristics and human operator capacity. This review will focus on right 

angle power tools only. 

2.1.2 PNEUMATIC POWER TOOLS 

Pneumatic power tools use air pressure to generate spindle head torque to utilize in the 

fastening of a joint. The pull of a trigger allows an influx of air, causing the gear 

mechanisms in the tool to move, resulting in rotation of the spindle head. The air pressure 

and gear settings determine the constant velocity maintained by the spindle head rotation. 

Pneumatic power tools maintain spindle head rotation until the flow of air ceases due to 

the release of a trigger. Consequently, the operator must resist all reaction forces created 

during joint fastening while the trigger is initiated (Kihlberg, Kjellberg, & Lindbeck, 

1993). If the operator does not release the trigger, extended exposure to the reaction 

forces may result in increased risk of injury. However, outfitting pneumatic tools with 

feedback mechanisms allows for pre-set shut-off to occur. 

 In order to limit forces experienced by operators using pneumatic power tools, 

Radwin, VanBergeijk and Armstrong (1989) identified two pneumatic shut-off 

mechanisms: stall and clutch. The first mechanism, stall shut-off, occurs following the 

rundown phase once a set torque resistance occurs. At the pre-set resistance, the tool 

stalls and the operator releases the throttle ensuring joint fastening is complete. Radwin, 

VanBergeuk & Armstrong (1989) found stall tools tended to have the longest torque 

reaction times, resulting in the operator experiencing the greatest reaction force. In 

comparison, Lin, Radwin, Fronczak, and Richard (2003b) found the maximum torque 

produced by a pneumatic power tool occurs once the motor stalls. 
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The second pneumatic power tool shut-off mechanism identified by Radwin, 

VanBergeuk and Armstrong (1989) is a mechanical clutch. Mechanical clutches involve 

disengaging tool air supply once a pre-set torque level is met (Schulze, Congleton, 

Koppa, & Huchingson, 1995). Lindqvist (1993) determined that the use of a mechanical 

clutch, which disengages at a pre-set low torque, followed by a slow increase and 

decrease of spindle head speed, leads to minimal torque reaction when using right angle 

power tools.  

2.1.3 DIRECT-CURRENT POWER TOOLS 

Direct-Current power tools operate in a similar fashion to pneumatic tools. However, 

once the operator engages the trigger of a DC tool, an electrical current powers a motor, 

leading to spindle head rotation. In addition, DC tools are equipped with transducers, 

allowing for the recording of fastener rotation angle and magnitude of output torque 

during joint securing phases (Potvin, Agnew, & Ver Woert, 2004). The use of transducers 

provides manufacturing engineers and ergonomists extensive feedback information 

pertaining to: tool usage, joint fastening, operator efficiency and other relevant 

information relating to individual workstations. 

 Unlike pneumatic power tools, tightening strategies for DC tools are completely 

programmable. Individual programs allow the control of the electrical motor speed at any 

given angle or time during a fastening run down. A run down is initiated when the 

operator engages the tool trigger, causing a brief spike on the torque output signal as the 

fastener is tightened, and is completed once the fastener and joint are firmly connected 

(Radwin et al., 1989). Snug fit is the commonly referred term for this firm connection.  

Following run down, the torque build-up phase begins. Direct-Current joint fastening 
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commonly involves Single-Stage or Two-Stage tightening strategies. A single-stage 

tightening strategy, as shown in  

Figure 4, begins with a free spinning spindle head until reaction torque begins to 

build. Once the resistance occurs, the spindle head increases to a top speed, and ends 

once the tool shut-off following the reaching of target torque. A Two-Stage tightening 

strategy, shown in Figure 5, is identified as a free spinning spindle head, followed by an 

increase to a high speed, pause for ~50 ms, then a final increase to a lower spindle head 

speed until the final target torque is reached.   

Atlas Copco’s Quickstep is a version of a Two-Stage tightening strategy. Quickstep 

profiles display a high torque following a spindle head’s initial resistance, followed by a 

second stage in which maintains a lower spindle head rotation speed until the final target 

is met (Atlas Copco, 2005). Unlike the Two-Stage tightening strategy, the Quickstep 

profile does not have a pause between stages one and two. A slight variation to Atlas 

Copco’s Quickstep is the DC-Ergo ramp. The DC-Ergo ramp is also a Two-Stage 

strategy in which a constant increase in torque occurs during the second stage. This 

torque can be automatically set based on an input value and joint hardness. An advantage 

of this strategy is the operator experiences similar reaction torques for both soft and hard 

joints.  

A tightening strategy known as TurboTight
®
 (Figure 6) has been developed that 

differs from both single-stage and Two-Stage tightening strategies. TurboTight® uses the 

input of final torque, fastening angle or target torque and torque rate to calculate the 

required energy to fasten a joint (Atlas Copco, 2013). TurboTight® implementation has 

shown to reduce reaction forces as well as reduce cycle times (Atlas Copco, 2013). 
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Figure 1: Atlas Copco pistol grip power tool (Atlas Copco, 2014b) 

 

 

Figure 2: Atlas Copco inline power tool (Atlas Copco, 2014a) 

 

 

Figure 3: Atlas Copco right angle power tool (Atlas Copco, 2014c) 
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 While most researchers identify the main risk of injury being the end of the torque 

build-up phase, others have also identified the return to zero torque as an issue. Atlas 

Copco’s Soft Stop function works to reduce the end “jerk” associated with right angle 

power tool operation. Soft Stop works by sensing the final target torque and providing a 

series of off/on steps to achieve tool shut-off. Shutting off the tool, and turning it back on 

for short periods of time, creates a gradual shut-off, which leads to reduced jerk. 

2.1.4 HAND PLACEMENT 

During right angle power tool use, hand displacement and reaction forces occur. The 

placement of an operator’s hand on the tool can influence the magnitude of hand reaction 

forces and handle displacement. It is common in the literature for the operator’s right 

hand to be placed on the tool handle and the left hand palm placed above the spindle 

head, (Figure 7), (Kihlberg, Kjellberg and Lindbeck studies, (1993, 1994 and 1995). 

Using this hand placement, the right hand controls the trigger and the power source. The 

left hand, placed above the spindle head, helps control the tool and prevents the spindle 

head from slipping off the joint. Radwin, Chourasia, Howery, Fronczak, Yen, Subedi and 

Sesto (2014) and Lindqvist (1993), instructed their participants to place a hand on the 

trigger and grasp the tool near the spindle head with the other hand, rather than placing it 

on top of the tool. Lin, McGorry, Chang, and Dempsey (2007); and Lin, McGorry, & 

Chang, (2007) used a single hand to operate a right angle power tool, which was placed 

on a simulated handle, offset from the tool. Single hand power tool use was acceptable 

due to the low torques (< 26 Nm) performed in the study. 
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Figure 4: Single-stage joint tightening strategy (Atlas Copco Industrial Technique AB, 2013) 



1
4
 

  

 

 

Figure 5: Two-Stage joint tightening strategy (Atlas Copco, 2005) 
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Figure 6: TurboTight(R) tightening strategy (Atlas Copco, 2013) 
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Figure 7: Right angle power tool hand placement (Kihlberg, Kjellberg & Lindbeck, 1994) 
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2.2 JOINTS 

2.2.1 JOINT TYPE 

In automotive assembly, a joint is identified as two or more parts secured together by a 

one or more fasteners. Classification of joints using the torque rate or the spindle head 

rotation required to secure the joint from snug fit to target torque are common (Lin et al., 

2006; Radwin et al., 1989). The two main classifications of joints are “hard” or “soft” in 

manufacturing and automotive assembly (Figure 8). The International Organization for 

Standardization (ISO) power tool standard ISO 5393 defines a hard joint as a torque 

increase from 10% to 100% of target torque within an angular displacement of 27° and, 

the transition angle from 5% to 10% should not exceed 10°. The ISO definition of a soft 

joint is a torque increase from 10% to 100% of total torque with an angular displacement 

of no less than 650° and an increase from 0 to 100% resulting in an angle of no less than 

720°. Times associated with hard and soft joints range from 0 to 0.5 seconds and up to 2 

seconds, respectively (Radwin et al., 1989) 

2.2.2 JOINT TIGHTENING STRATEGIES 

Right angle power tool joint tightening strategies, such as single-stage and Two-Stage 

tightening, consist of three phases: initial rundown, torque build-up, and shut-off.  

2.2.2.1 RUNDOWN 

The initial rundown phase begins when the trigger initiates spindle head rotation, leading 

to the rotation of a fastener. The spindle head rotates the fastener, at low speeds until it 

comes into contact with an opposing surface. A connection between the fastener and 

surface causes the fastener and joint to fit snuggly, leading to the torque build-up phase. 
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During the rundown phase, tool torque build-up is near zero and limited handle 

movement occurs (Radwin et al., 1989).  

2.2.2.2 TORQUE BUILD-UP 

As the two surfaces come into contact and reach snug fit, the torque build-up phase 

begins. During build-up, a continuous rotation of the fastener causes the two materials to 

connect, producing friction and an increase in resistance, initiating the mating of the 

materials. As resistance builds, the operator must provide a force to the tool handle, 

believed to be equal to the rotational force (torque) divided by the length of hand to 

spindle head, to ensure joint fastening (Lindqvist, 1993).  If the operator does not provide 

adequate force to the handle, the tool will spin freely around the joint. Therefore, by 

stabilizing the handle, the operator can direct the forces from the power tool into the 

joint, leading to joint fastening. The build-up time, known as the time between rundown 

and joint secure, typically ranges between 0 to 0.5s and 0 to 2s for hard and soft joints, 

respectively, while operating pneumatic power tools (Radwin et al., 1989). 

While looking at the influence of target torque and build-up time during right 

angle power tool operation, Oh and Radwin (1998) found increased build-up times lead 

to longer physical exertions in addition to greater torque impulses. Increased build-up 

times allow operators the opportunity to make anticipatory postural adjustments to 

maintain postural control, preventing the tool from jerking and limiting postural 

disturbance. Massion, Alexandrov, and Frolov (2004), identified three mechanisms for 

achieving postural control including: joint stiffness, postural reactions and anticipatory 

postural adjustments.  
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Figure 8: Spindle head angle versus torque level for both hard and soft joints (International Standards Organization, 1994). 
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Joint stiffness of the shoulder, elbow and wrist, are used to prevent the body from 

deviating from a predetermined position. Joint stiffness allows power tool users to 

maintain an identified body position in order to counteract the reaction force developed 

during power tool usage. If the operator experiences a deviation during tool usage, he/she 

may use feedback to reduce the amount of postural disturbance and maintain balance 

during or following the action.  A postural reaction occurs when an individual uses 

feedback to maintain a specified posture.  

Massion (1992) defines anticipatory postural adjustments as an alteration that 

occurs prior to the onset of a disturbance to an individual’s posture or equilibrium, and 

results from an internal voluntary command ( E.g., an operator who changes body 

position to stabilize his/her posture prior to operating a power tool with high torque 

settings). If the postural adjustment is due to an external input, for example power tool 

displacement, the adjustment is no longer in anticipation of the event and can be 

identified as a postural reaction (Massion, Alexandrov, & Frolov, 2004).  

Industry and manufacturer specifications determine the amount of tool torque 

required to secure a joint between two or more materials. In the automotive industry, 

certain securing tasks mandate high torque fastenings to ensure user safety and 

manufacturer reliability. These require operators to exert large forces into the handle in 

order to counteract the high torque; ensuring limited handle displacement and proper 

fastening occurs. In order to prevent handle displacement, operators must use their arms, 

legs and full body weight in certain instances, which may contribute to an increased risk 

of developing injuries. Implementation of torque reaction bars may reduce the physical 

demand associated with high torques. Torque reaction bars are solid support structures 
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mounted on power tools, which allow for the dispersion of reaction forces created during 

fastener tightening. A torque reaction bar, (Figure 9), can be outfitted to power tools in 

workstations that require high torques; limiting operator stress during extreme torque 

tasks. Forsman, Cyrén, Möller, Kadefors and Mathiassen (2002) found that tasks with 

torques greater than 100 Nm often use torque reaction bars in order to limit reaction 

forces experienced by operators. However, a more conservative 55 Nm peak spindle head 

torque limit, based on research completed by Oh and Radwin (1998), has become an 

industry standard. Although the use of torque reaction bars helps to reduce high tool 

reaction forces, it also adds weight to the tool and may require customization. The tool 

type, workplace orientation, and the performed task all influence the customization of 

reaction bars. For example, if the task requires an operator to perform a fastening in a 

crowded engine compartment, the reaction bar must be small enough to fit into a tight 

space, yet still reduce reaction forces applied to the operator. 

2.2.2.3 SHUT-OFF PHASE 

Once the joint fastening is complete, tool shut-off occurs. DC right angle power tools use 

pre-set torques to activate an immediate shut-off mechanism, in an attempt to reduce tool 

jerk and operator force. The power sources of pneumatic RAPTs work while the trigger is 

pulled; trigger must be released in order to shut the tool off. However, if outfitted with 

shut-off mechanisms, pneumatic power tools can terminate at pre-set torque levels similar 

to DC tools. Research shows that prolonged shut-off mechanisms result in tool operators 

experiencing greater torque reactions than immediate shut-offs (Kihlberg, Kjellberg & 

Lindbeck, 1993). Additionally, force demand increases and extended exposure to torque 

reactions resulted in greater risk of injury over time (Radwin et al., 1989). Kihlberg, 
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Kjellberg and Lindbeck (1993) studied pneumatic right angle torque reactions using three 

shut-off mechanisms (Fast, Slow, and Delayed) and found the lowest torque reaction 

forces occurred when using fast shut-off mechanisms. In addition, fast shut-offs resulted 

in the smallest handle displacement and wrist motions when compared to slow shut-offs. 

Furthermore, Kihlberg, Lindbeck and Kjellberg (1994) conducted a similar study using 

the same shut-off mechanisms, three separate tool torques and nine power tools. They 

found that the largest reaction torque and handle displacement resulted from the delayed 

shut-off mechanism. The only tools to experience increased reaction forces as tool torque 

increased had delayed shut-offs. However, with the phasing out of pneumatic power tools 

and the implementation of DC tools increasing, tool shut-offs are becoming similar for all 

tools.  

 

Figure 9: Example of a reaction bar placed near the spindle head of a right 

angle power tool (Ingersoll Rand, 2008) 

2.3 WORKSTATION DESIGN 

2.3.1 FASTENER LOCATION 

Each individual fastening creates its own specific challenge simply by the location of the 

joint relative to the operator. Fastener location, often identified by the vertical distance 
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from the ground and the horizontal distance from the midline of the operator, can 

influence muscle activity, subjective ratings and tool displacement (Oh & Radwin, 1994; 

Lin et al., 2006; Oh & Radwin, 1997). Oh and Radwin (1994) reviewed workstation 

configurations and their effect on tool dynamics. Results showed that the greatest hand 

displacement using a right angle power tool occurred on surfaces higher than 90 cm 

above the ground, on both vertical and horizontal work surfaces. Furthermore, vertical 

workstations resulted in greater hand displacement when compared to horizontal work 

surfaces. Oh and Radwin (1997) used two power tool orientations (horizontal, vertical) 

and two tool distances (10 cm, 35 cm) to evaluate the effects of tool dynamics and 

workstation design on handle kinematics. They found that operators using a vertical tool 

orientation on workstations close to the body provided the greatest tool stability. The 

increased tool stability in the near work orientations could be attributed to the mechanical 

advantage of the hand-arm system in this posture (Lin et al., 2003). Oh and Radwin 

(1997) also determined that operators working on horizontal workstations experienced 

greater hand stability while operating at distances further from the body. Therefore, if the 

rotational force developed by the fastening of two separate joints is equal, the operator 

with the greatest moment arm (horizontal distance from the body) would require the least 

amount of force to maintain handle stability.  

2.3.2 POSTURES 

Operator response to power tool reaction forces during joint fastening can be influenced 

by a multitude of factors including tool shape, torque settings, work location and work 

orientation (Lin et al., 2006). As discussed earlier, individuals choose power tool shape 

based on the fastening type as well as the target torque required to secure the fastener. 
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High torques are commonly addressed by using right angle power tools, while pistol grip 

and inline power tools are associated with low torque fastenings. Work location and 

orientation may also influence the posture by identifying the tool with greatest 

mechanical advantage. Ulin, Snook, Armstrong and Herrin (1992) conducted a study 

using three power tool shapes (pistol grip, inline and right angle) to secure screws into 

perforated sheet metal in various workplace orientations.  They determined that tasks 

performed on vertical surfaces received the lowest subjective ratings while using pistol 

grip power tools. When working on a horizontal surface, inline tools or right angle power 

tools resulted in the lowest ratings. As this study will be using right angle tools only, 

pistol grip and inline tools will be identified for example purposes only. 

2.4 FORCES 

2.4.1 HAND/HANDLE FORCES 

During fastening, right angle power tools develop reaction forces as materials join 

together. Reaction forces occur during the torque build-up phase and must be met and/or 

exceeded by the operator in order to limit handle displacement. If handle displacement 

occurs, the joint may not properly fasten, leading to product safety issues. As shown in 

Figure 10, typical placement of an operator’s hand is above the spindle head.  This hand 

above the spindle head allows the operator to apply a feed force to maintain connection 

between tool and fastener. During tool operation, an upwards reaction force is produced 

into the hand as the feed force is directed downward at the joint.  Near the distal end of 

the tool, a trigger hand provides stabilization while also controlling the power source 

driving the tool. The hand-arm system provides stabilization of the operator and can 

minimize the handle displacement caused by torque reactions during build-up and shut-
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off phases. Build-up and shut-off torque reaction forces produced during securing tasks 

have been shown to depend on the tool weight, length of tool, and center of gravity 

(Radwin et al., 1989). Lin, McGorry, Dempsey and Chang (2006) determined operator 

strength, tool settings and handle length can influence the force response during power 

tool usage.  

 As previously discussed, forces provided by the operator must meet or exceed the 

reaction forces produced at the handle, or handle displacement will occur. The creation of 

handle displacement through spindle head torque reaction forces is dependent on the 

angular displacement caused by spindle head rotation and tool length. Therefore, 

increasing angular displacement caused by spindle head rotation, results in greater handle 

displacement.  Increases in tool length have shown to produce greater torque and greater 

handle displacements, regardless of joint location (Lin et al., 2006). 

 

Figure 10: Forces occurring during right angle power tool operation (Lin et 

al., 2003a) 

In the workplace, each task must meet required specifications in order to ensure 

product reliability and safety. Therefore, if a task requires a right angle power tool with a 

high torque, the operator will not be able to decrease the reaction forces that he/she will 
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need to apply, which may lead to a dangerous work environment. Lin, McGorry, 

Dempsey and Chang (2006) found limiting torque reactions can lead to less displacement 

and a decrease in risk of injury. Radwin, Vanbergeijk and Armstrong (1989) identified 

four ways to limit torque reaction forces applied to operators during power tool usage. 

The first technique is to use a torque reaction bar, similar to the one shown in Figure 9. 

The second technique is the installation of torque absorbing suspension balancers. 

Suspension balancers hang from a support structure above the work and remove the 

weight of the tool from the operator while fastening occurs. Thirdly, tool-mounted nut 

holding devices allow operators to use both hands to control handle displacement. Lastly, 

installation of tool support and reaction arms allows for better positioning accuracy and 

less movement. Implementing these devices can help lower reaction forces and decrease 

the risk of injury during high torque tasks.  

2.5 Handle Displacement 

2.5.1 DISPLACEMENT-VELOCITY-ACCELERATION  

The build-up of tension during joint fastening can cause handle displacement. This may 

lead to an increased risk of injury, operator fatigue, as well as inadequate target torques. 

Failure to meet the target torque creates unsecured fastenings which can result in possible 

quality control issues. Handle displacement is defined as the net change of handle 

position during the tool torque build-up phase. The amount of displacement can be 

determined using the displacement angle, and tool length; often-measured in millimeters 

(mm) or centimeters (cm) (Kihlberg et al., 1995; Lin & McGorry, 2009; Lin, McGorry, 

Chang, & Dempsey, 2007).  The amount of handle displacement associated with power 

tool use can be affected by numerous factors including tool shape, joint hardness and 
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torque speed (Ku, Radwin, & Karsh, 2007). Sesto, Radwin and Richard (2005) found 

when all other factors are equal, power hand tool reaction forces and tool displacement 

are greater for right angle power tools with high peak torques and soft joints, than for low 

torque and hard joints.  

Kihlberg, Kjellberg and Lindbeck (1993, 1994 & 1995) conducted a series of 

studies to determine hand-arm displacement (handle) and participant discomfort during 

right angle power tool usage. In 1993, reaction forces, hand-arm displacement, muscle 

activity and subjective discomfort ratings were examined during threaded fastening using 

three angled power tools and three shut-off mechanisms (fast, slow, delayed). Participants 

completed five consecutive joint securing tasks with all four power tools, resulting in a 

total of 20 fastenings. The fast shut-off mechanism was shown to result in the lowest 

subjective ratings, lowest reaction forces and least handle displacement. In comparison, 

the delayed shut-off mechanism resulted in the greatest reaction forces and highest 

subjective discomfort ratings.  

In 1994, Kihlberg, Kjellberg and Lindbeck incorporated nine angled power tools, 

using three torques (25, 50, 75 Nm) and the same three shut-off mechanisms. The fast 

shut-off mechanism produced the least handle displacement, lowest reaction forces and 

subjective ratings. Furthermore, results show a positive correlation between subjective 

discomfort ratings and handle displacement.  

Lastly, Kihlberg, Kjellberg and Lindbeck (1995) used their previous findings to 

develop pneumatic right angle power tool torque acceptability limits. The participants 

included 38 truck assembly workers, who were required to use three right angle power 

tools to complete two joint securing repetitions.  During rest periods, the participants 
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provided subjective discomfort ratings. During these times, participants answered if they 

would accept a full day’s work operating a tool that provided a reaction force similar to 

the one they just experienced. The findings resulted in the development of acceptability 

limits based on the subjective ratings and handle displacement. The acceptance based on 

handle displacement in cm can be viewed in Figure 11. A tool displacement of 6 cm 

resulted in 50% of the operators accepting a full workday. Furthermore, 75% accepted a 

handle displacement of 4 cm and 90% accepted a displacement of 3 cm.  Based on 

subjective discomfort ratings, 100% of individuals indicated they would work with a 

rated discomfort of “2” on a 20-point CR scale, and 0% would work with discomfort 

ratings of “9” or higher. 

 

Figure 11: Percentage of operator acceptance compared to displacement (left) 

and discomfort ratings (right) (Kihlberg et al., 1994) 

Handle dynamics during tool operation allow for researchers to identify the 

effects of handle displacement. Determining handle stability through the use of handle 

dynamics, handle velocity and acceleration during tool use has resulted in an 

understanding of operator-tool kinematics. Oh and Radwin (1997) measured handle 

kinematics (peak handle displacement and peak handle velocity) to quantify the relative 
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stability of tool handles during joint fastening.  Positive velocity occurred if the forces 

provided from tool torque over powered the operator, causing the handle to rotate away 

from the operator. If the operator provided sufficient strength to overcome the tool 

torque, the handle moved closer to the operator’s body; movement which was identified 

as a negative peak velocity.  The findings show that as torque reaction forces increased, 

peak handle displacement and peak handle velocity increased. Therefore, as torque 

reactions increased, the ability of the operator to control handle displacement decreased. 

In addition, peak handle velocity decreased with increased joint hardness due to 

augmented build-up time associated with hard as opposed to soft joints.  

When measuring handle displacement in laboratory settings, researchers have 

used numerous techniques. The simplest and most cost-effective way to measure handle 

displacement is with a single axis goniometer (Kihlberg et al., 1993; Kihlberg, Lindbeck, 

& Kjellberg, 1994). Kihlberg, Lindbeck and Kjellberg (1994) compared a goniometer to 

a more sophisticated measurement system (SELSPOT 3D motion measurement system) 

and found that a goniometer provided similar results. They concluded that the use of a 

goniometer during field studies where motion capture use is not available would yield 

similar results. Also, researchers have implemented accelerometers to measure handle 

displacement. Lindqvist (1993) fixed an accelerometer to a right angle power tool, and 

determined handle displacement by integrating the acceleration twice. Lin, Radwin and 

Richard (2001) developed a single-degree-of-freedom model comprised of mass, moment 

of inertia, linear rotational springs and viscous dampers, as parameters to predict handle 

displacement during power tool usage. The model had a tendency to underestimate actual 

handle displacement as measured by an OptoTrak 3020 3D motion analysis system.  
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2.6 MOTION CAPTURE 

Human motion capturing is associated with the analysis of human movement using 

cameras and computers. Motion capturing allows for the collection of the kinematics of 

body segments such as the head, arm and forearm, hands, torso, thigh and shank, and feet 

in an effort to understand human movement behaviors. Collected motion data allows for 

the improvement of performance, better understanding behaviors of diseased populations 

or reducing injuries. Moeslund and Granum (2001) identified three specific areas of 

application for human motion capturing; surveillance, control, and analysis. As described 

by Moeslund and Granum (2001), surveillance relates to the monitoring of certain areas 

or scenes, control is defined as using motion capture as a skeleton or model for another 

software, and analysis is concerned with clinical studies and diagnostics of motion. The 

majority of human motion capturing research involves motion analysis, as the goal is to 

understand human behavior under various circumstances.  

Furniss (1999) identified several types of motion capture including mechanical 

video, magnetic, optical, and inertial. Mechanical motion capture is a technique that uses 

exoskeleton devices attached to an individual’s body. Sensors placed on the exoskeleton 

above joint centers to determine rotations of each segment during movement. Magnetic 

capturing consists of magnetic receivers placed in an array on a participant’s body which 

track location with respect to a static magnetic transmitter (Furniss, 1999). While 

magnetic motion capture produces absolute orientation and positions, a number of 

interference objects can cause magnetic distortion. 

Optical motion capture devices are the most common type used in the field of 

research due to high sampling rates and limited participant restraint during data collection 
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(Sharma, Agarwal, Sharma, & Dhuria, 2013). Participants wear reflective markers, 

placed on anatomical landmarks, which reflect (passive) or emit (active) light. Multiple 

cameras are aimed at a pre-identified area (arena), in which a human, object and/or 

workstation is identified through use of identifiable markers. The cameras identify each 

marker’s trajectory through the use of computer software. The researcher can then use the 

software to post process the marker data through identification and filtering. Figure 12 

identifies the four motion capture techniques previously discussed. Two types of optical 

marker systems are most common; active and passive. SELSPOT, OPTOTRACK and 

COSTEL software utilizes active markers in order to capture and analyze motion. Active 

motion capturing involves the use of light emitting markers, typically light emitting 

diodes (LEDs), which emit a signal to a camera. The camera then sends information to a 

computer where the marker’s coordinates can be analyzed (Figueroa, Leite, & Barros, 

2003). In contrast, passive systems determine marker coordinates using reflective balls. 

Passive cameras are outfitted with infrared lights which emit light towards an arena 

(collection area) which is reflected by the markers and picked back up by the cameras. 

The use of markers during motion tracking can be affected by placement, occlusion, 

clothing, and skin. Each of the previously mentioned effects can result in decreased 

reliability of kinematic measurements during optical motion analysis. 

 Originally developed as a biomechanical analysis tool, motion capture has 

become an important source of motion data for military, cinema, gaming, medical and 

educational purposes (Sharma et al, 2013).  Motion capture usage in the military is 

typically involved in identifying issues with dimensions of fighter pilot cock pits, head 

movements during flight, and vehicle dimensions (Furniss, 1999). Motion capture is 
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commonly used during the production of video games and movies, such as Lord of the 

Rings, The Polar Express and Planet of the Apes (Lyttelton, 2014). The medical field 

uses motion capture to identify issues with activities of daily living, specifically human 

gait (Aminian & Najafi, 2004). Lastly, motion capture will be used in this study for 

educational purposes related to industrial and manufacturing work.  

Motion capture has been used to determine head and torso movement during 

visual tasks in the workplace (Kim, Reed, & Martin, 2010). Chaffin and Faraway (2000) 

incorporated motion capture using the Human Motion Simulation Lab (HUMOSIM) to 

identify the effects of stature, age and gender on reach motion postures. Markers were 

placed on the wrist, elbow, shoulder and trunk in order to track motion during reaching 

tasks. Following up on the study by Kim, Reed and Martin (2010), Reed, Parkinson, and 

Klinkenberger (2003) assessed the validity of kinematically generated reach envelopes.  

Research specific to power tool usage has examined operator whole-body posture 

as well as hand-arm and tool displacement. Kihlberg, Kjellberg and Lindbeck (1995) 

used a SELSPOT motion analysis system to determine hand-arm motion during 

pneumatic power tool use. Markers were placed on anatomical landmarks on the wrist, 

elbow and shoulder to determine motion during pneumatic tool securing. From this work, 

Kihlberg, Kjellberg and Lindbeck (1995) used motion capture technology to determine 

acceptability limits based on handle displacement. Furthermore, Lin, Radwin and Richard 

(2003b) compared their single-degree-of-freedom mechanical model, which attempts to 

predict power tool handle kinematics, to the OptoTrack motion analysis system. The 

OptoTrack system recorded the tool motion in three dimensions (X, Y, Z), and was found 

to positively correlate with the single-degree-of-freedom model (R = 0.98).  
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Figure 12: A) Inertial motion capture suit (Cloete & Scheffer, 2008), (B) 

Magnetic sensors (Roetenberg, 2006), (C) Optical motion capture suit (Kurihara, 

Hoshino, Yamane, & Nakamura, 2002), and (D) Mechanical motion capture suit 

(META Motion, 2014) 

2.7 SUBJECTIVE RATINGS 

In an attempt to understand how an individual subjectively perceives a stimulus, Borg 

(1982) developed a Category-Ratio Scale. The scale allows an individual to assign a 

number (ratio-scaling) to the given stimuli that is presented to them. The number chosen 

identifies the individuals subjective perceived perception associated with the given 

stimuli (Borg, 1990). Ratio-scaling methods use mathematical calculations to perform 

and compare physical and physiological measurements. However, there is no direct 

“level” of inter-individual comparisons. For example, a participant may rate a 10 kg mass 
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as a “5” and a 20 kg mass as a “10”. Another participant may provide ratings of “2” and 

“4”, respectively, with the same mass. However, each participant may not perceive the 

weights heavier or lighter than their counterparts (Borg, 1982). When evaluating effort or 

exertion levels, Borg developed a positive linearity scale that increases in value with 

exercise intensity and heart rate (HR). In 1990, Borg found ratings of perceived exertion 

(RPE) to be one of the most informative single indicators of degree of physical strain and 

can be supported in conjunction with physiological measurements (Borg & Borg, 2001). 

As research has evolved, a slight variation to the RPE scale has been developed- 

the category ratio (CR) scale. CR scales improve RPE scales through use of verbal 

anchors.  Predefined sets of verbal anchors are associated with values on the ratio scale, 

allowing the individuals to associate applied effort to a set value (Borg, 1982). For 

example, an individual raising his or her own arm with no resistance would express 

nothing at all on Borg’s CR-10 scale (Figure 13).  When the same individual raises his or 

her arm with a 40 kg mass in their hand,  a verbal anchor ”Extremely Strong” could be 

identified. A strong exertion would equate to a value of 10. However, certain 

circumstances may result in a person’s perception of greater intensity due to pre-existing 

aches and pains, resulting in the ‘absolute’ maximum being higher than a value of 10; 

thus avoiding a ceiling effect (Borg & Borg, 2002). Therefore, development of category 

scales allows for direct inter-individual comparisons because the individual responds to a 

stimulus based on specified cues rather than a number (Borg, 1982).  
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Figure 13: Borg’s Category-Ratio 10-point scale (Borg & Borg 2002) 

2.8 RATINGS OF PERCEIVED EXERTION USING POWER TOOLS 

Researchers have used subjective ratings of perceived exertion when studying power 

tools in order to determine acceptable handle displacement caused by torque reactions 

(Kihlberg et al., 1995; Freivalds & Eklund, 1993; Lin & McGorry, 2009), ground 

reaction forces (Kihlberg et al., 1994), as well as determining acceptable limits for power 

tool usage (Kihlberg et al., 1995; Oh & Radwin, 1998). Kihlberg, Kjellberg, Lindbeck 

(1993, 1994 and 1995) conducted a series of studies determining the influence of joint 

type and acceptability of right angled power tools. The initial study (1993) consisted of 

three different power tools: two slow reacting air shut-offs, and a third with a quick 

reacting mechanical clutch. The participant’s subjective ratings while using power tools 

were shown to have a mean positive correlation of 0.87 with tool handle displacement. 

Furthermore, Lindqvist (1993) stated that in order to limit discomfort, the control 

techniques used when tightening a fastener must change. Kihlberg, Lindbeck and 
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Kjellberg (1993) studied subjective ratings for three-shut-off mechanisms of right angle 

power tools with equal spindle torque speeds. The lowest ratings were identified with the 

fast shut-off mechanism, which also resulted in the least tool handle displacement. The 

delayed shut-off mechanism resulted in the greatest handle displacement and greatest 

subjective operator ratings. Kihlberg, Kjellberg and Lindbeck (1995) created pneumatic 

power tool acceptability limits based on subjective ratings. All participants indicated that 

they would accept jobs rated a “2” on a CR-20 scale, and no participant would accept a 

task that rated “9” or above on the same CR-20. Ninety percent of participants accepted a 

maximum handle displacement of 3 cm, and handle displacements of 4 and 6 cm were 

accepted by 50% of participants, respectively.   
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Chapter 3: METHODS 

3.1 PARTICIPANTS 

Thirty-six healthy participants (N=18 M, N=18 F) between the ages of 22-64 years 

(Table 1), who had no right angle power tool experience and no injuries to the arms or 

trunk which limited them from participating in work or activities of daily living, were 

recruited from the general population. Each participant filled out a Nordic 

musculoskeletal disorder questionnaire (Wiehagen & Turin, 2004), in order to determine 

musculosketal injuries that may result in participant exclusion (APPENDIX D).  

Participants were also asked if they are allergic to any adhesives or tape.  The participants 

were randomly assigned to one of two experimental groups: 1) Hard joint (N=9 f, N=9 

m) and 2) Soft joint (N=9 f, N=9 m).  

Table 1: Complete participant age, height and weight data. 

Age Group Age (years) Height (cm) Mass (kg) 

18-29 Average 25.42 173.2 72.1 

Max 29 185.5 90.5 

Min 22 160.0 55.3 

STD 2.19 8.3 10.0 

30-45 Average 33.33 170.9 81.8 

Max 42 189.0 114.5 

Min 30 156.0 64.2 

STD 3.34 11.5 15.6 

45+ Average 52.67 175.0 88.7 

Max 64 198.0 125.4 

Min 48 157.5 61.7 

STD 3.96 13.3 17.6 

Total Average 37.14 173.0 80.8 

Max 64 198.0 125.4 

Min 22 156.0 55.3 

STD 12.03 11.2 16.2 
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3.2 INSTRUMENTATION AND DATA ACQUISITION 

 The kinematics of the trunk, head, upper and lower extremities were captured using a 

passive marker system (Motion Analysis Corporation, Santa Rosa, California) and 

sampled at a rate of 60 Hz. The placement of the fifty-two passive markers is outlined in 

APPENDIX E. Additionally, handle forces were collected using a simulated handle 

outfitted with a 3D linear sensor which collected forces in the up/down (Fx), push/pull 

(Fy) and in/out (Fz) directions (Figure 15). The handle forces were collected at a rate of 

2100Hz, digitally converted and then low-passed Butterworth filtered (2
nd

 order with 

cutoff = 15 Hz). Two right angle power tools were used to complete joint fastenings 

(Atlas Copco, 2014). Additionally, joint simulators for hard (30
0
) and soft (540

0
) 

fastening were instrumented to a custom made device allowing for adjustment of location 

and orientation. Lastly, a 10-point Borg scale (Figure 14) was implemented in order to 

collect participant’s perceived exertion and discomfort (Borg, 1990; Borg, 1982).  

 

Figure 14: Modified Borg 10-point scale used to determine participant 

exertion levels (Borg, 1982) 
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 Figure 15: Instrumented handle 3D linear sensor directions 



   

40 

 

3.3 EXPERIMENTAL PROCEDURE AND PROTOCOL 

Upon entering the lab, each participant’s age, height, mass and handedness were 

collected. Participants then performed a familiarization period, in which they were given 

a script (APPENDIX A) describing the study and participant involvement, as well as a 

fifteen-minute period in which they were allowed to perform any of the tightening 

conditions they would perform during data collection. Participants were then outfitted 

with the fifty-two passive motion capture markers (APPENDIX E). Once the participant 

was fully outfitted with the marker set, a T-Pose trial, consisting of the participant 

standing feet shoulder width apart with arms raised to the side, was collected in order to 

create a template for the individual. In addition to the T-Pose trial, a range of motion trial 

was collected. The range of motion trial consisted of: elbow flexion/extension, shoulder 

flexion/extension and abduction/adduction, trunk rotation and flexion/extension, trunk 

lateral bend, neck flexion/extension/rotation and squats. 

Following the ROM trial, participants commenced the fastening protocol. The 

fastening protocol consisted of a five minute bout of joint fastening condition with a three 

minute rest break between each condition where a subjective rating was provided. A 

single set of right angle power tool fastening conditions consisted of 5 individual right 

angle power tool fastening secures within a 60 second period, as defined by Potvin, 

Agnew, and Ver Woert (2004). Each participant completed thirty-six total conditions 

consisting of a combination of the variables shown in Figure 16 (4 postures X 3 target 

torques X 3 tightening strategies) on their randomly selected joint hardness. Participants 

completed eighteen conditions on the first day and eighteen conditions on their second 

day. A minimum of forty-eight hours was provided between each collection day.  
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Figure 16: Independent variable matrix 

Joint location-orientations (Figure 17) were chosen in order to produce real-world 

postures in the lab setting. Vertical distance (V) were measured from the ground up, 

horizontal distances (H) were measured from the middle of the ankle and lateral distance 

(L) were measured from the midpoint of the ankles with left being negative and right 

being positive. The joint location-orientations were located using the following 

measurements and direction: 1) H:60 cm, V:117 cm, L:10 cm and downward shot 

direction, 2) H:38cm, V:75cm, L:52 cm and downward shot direction, 3) H:29 cm, V:153 

cm, L:36 cm and towards shot direction, 4) H:53 cm, V:103 cm, L:35 cm and downward 

shot direction.  
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Figure 17: Locations of the four joint location-orientations Location 1: 

Chestdown, Location 2: Thighdown, Location 3: Hightowards, Location 4: 

Waistdown
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  3.4 DATA ANALYSIS 

Handle force data were collected using a 3D linear sensor at a sampling rate of 2100 Hz. 

The handle force data were filtered using LabView software. The force impulse was 

determined through the multiplication of the force experienced at a given time, and then 

summed for a total impulse measurement. Following the examination of the data post 

collection, analog data were missing for 3 of the participants on day 1 (18 conditions). 

The expectation maximization technique was used to manage the missing data through 

the missing value analysis function in SPSS (Schafer & Olsen, 1998)  

Motion Capture data were collected at a sampling rate of 60 Hz using Motion 

Analysis Motion Capture system (Motion Analysis Corporation, Santa Rosa, California). 

Markers on the right arm were used to determine the relative angle of shoulder and 

elbow, where the arm was identified by the acromion process, bicep, lateral elbow and 

distal end of humerus markers, and forearm identified by the lateral elbow, distal end of 

humerus, forearm, radial and ulnar markers. Shoulder angular displacement was 

calculated using a joint coordinate system and the Software for Interactive 

Musculoskeletal Modelling (SIMM) (Musculographics Inc., Santa Rosa, California). The 

cardan sequence of rotations per Cole, Nigg, Ronsky and Yeadon (1993) was used 

identified as: X (medio-lateral), Y (anterior/posterior), Z (up/down). All joint angles were 

identified at torque initiation and 100 ms post target torque in order to determine angular 

displacement. Subjective ratings of perceived exertion and discomfort were collected 

following each 5 minute trial using a Borg CR-10 scale (Borg, 1982).  
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3.5 STATISTICAL ANALYSIS 

A 3 way 3x3x4 analysis of variance (ANOVA) with repeated measures was 

performed, for hard and soft joints ,in order to determine the influence of each of the 3 

independent variables: target torque (30 Nm, 55 Nm, 75 Nm), tightening strategy (TT, 

TS, TSS), and posture (hightowards, chestdown, waistdown, thighdown). The 

significance level for each ANOVA was set at p<0.05. Significant main and interaction 

effects were compared using Tukey’s HSD post hoc test. Greenhouse-Geiser test of 

sphericity (p<0.05) and partial eta
2 

was used for effect size within each interaction. The 

dependent variables in the study were handle force impulse (Figure 18), shoulder 

displacement, elbow displacement and subjective ratings of perceived exertion and 

discomfort.  

Chapter 4: RESULTS 

4.1 HANDLE DATA 

The handle data consisted of forces in 3 linear directions, Fx (Down = -, Up = +-), Fy 

(Push = - , Pull = +), Fz (In = --, Out = +). Which were measured and impulse calculated 

from torque initiation to tool shut-off. From this point forward, the term, force, is 

referring to force impulse as collected during this study. 

4.1.1 IMPULSE 

4.1.1.1 Up/Down (Fx) 

A 3-way interaction of Posture x TT x Strategy (F =4.53, p=0.002.) was found for the 

handle force impulse in the up/down direction (Fx) (Figure 19). Post hoc testing showed 

fastening in the chestdown posture, 30 Nm target torque using TT produced 63.6% less 
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force in Fx than TS and, 74% less force than TSS and TS produced 29.5% less force than 

TSS. 

 Additionally, fastening a 55 Nm target torque using TT produced 50.6% less force 

than TS. Lastly, fastening a 75 Nm target torque using TT produced 54.8% less force 

than TS, 39.5% less force than TSS and, TS produced 25.3% less force than TSS.  

Operating in the high towards posture, with a 30 Nm target torque using TT 

produced 91.7% less force in Fx than TS and, 96% less than TSS. Fastening 55 Nm target 

torque using TT produced 82.9% less force than TS and, 86.3% less force than TSS. 

Finally, using TT with 75 Nm target torque produced 82.3% less force than TS and, 

76.9% less than TSS.  

When in the thighdown posture fastening 30 Nm target torque using TT produced 

70.9% less force in Fx than TS and 83.2% less force than TSS. While TS produced 

42.4% less force than TSS. Fastening 55 Nm target torque using TT produced 63.4% less 

force in Fx than TS and, 68.7% less force than TSS. Fastening 75 Nm target torque 

fastening in thighdown posture using TT produced 69% less force than TS and, 67% less 

than TSS. 

Operators performing in the waistdown posture, fastening 30 Nm target torque 

using TT produced 64.5% less force in Fx than TS and, 77.1% less force than TSS.  

While fastening 55 Nm target torque using TT produced 64.4% less force than TS and, 

66.3% less force than TSS. Lastly, fastening 75 Nm target torque using TT produced 

62.8% less force than TS and, 64.2% less force than TSS. 
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Figure 18: TSS tightening strategy identification of torque initiation, peak torque, tool shut-off and impulse. 
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  A 3-way interaction of TT x Strategy x Hardness (F = 15, p=0.001.) was found 

for the handle force impulse in the up/down (Fx) direction (Figure 20). Post hoc testing 

showed participants fastening on a hard joint with 30 Nm using TT produced 73.3% less 

force in Fx than TS and, 71.2% less force than TSS. While fastening 55 Nm using TT 

resulted in 62.8% less force production than TS and, 62.9% less force than TSS. Finally, 

when fastening a 75 Nm joint with TT, participants used 75.4% less force in Fx than 

when using TS and, 74.3% less force in Fx using TSS when fastening a hard joint. 

Participants fastening a soft joint while fastening 30 Nm using TT produced 59.1% less 

force in Fx than TS and, 79.3% less force than TSS. Additionally, TS produced 49.4% 

less force in Fx than TSS.  

Participants fastening 55 Nm using TT produced 56.2% less force than TS and, 

58.3% less force than TSS. Finally, participants fastening 75 Nm using TT produced 

53.5% less force than TS and, 52.3% less force than TSS when fastening on a soft joint. 

A 3-way interaction of Posture x Strategy x Hardness (F=31.2, p=0.0001) was 

found for the handle force impulse in Fx (Figure 21). Post hoc testing showed 

participants fastening a hard joint in the chestdown posture using TT produced 67.4% 

less force in Fx than TS when fastening. Participants fastening in the thighdown posture 

using TT produced 78.7% less force than TS and, 77.3% less force than TSS. Lastly, 

fastening on a hard joint in the waistdown posture using TT produced 73.4% less force 

than TS and, 73.1% less force in Fx than TSS. Operators fastening a soft joint in the 

chestdown posture using TT produced 50.2% less force in Fx than TS and, 51.5% less 

force than TSS. In the hightowards posture, operators using TT produced 12.1% less 

force than TS and, 82% less force than TSS. Fastening in the thighdown posture using TT 
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produced 63.3% less force than TS and, 72% less force than TSS. While, TS produced 

23.6% less force in Fx than TSS. Lastly, fastening in the waistdown posture using TT 

produced 60% less force in Fx than TS, 68.3% less force than TSS and, TS produced 

20.6% less force than TSS on a soft joint. 

4.1.1.2 Push/Pull (Fy) 

A 3-way interaction of TT x Strategy x Hardness (F=56.3, p=0.001.) was found 

for the handle force impulse in the push/pull (Fy) direction (Figure 22). Post hoc testing 

showed participants fastening 30 Nm using TT produced 94.5% less force than TS and, 

94.6% less force than TSS in Fy when fastening on a hard joint. 

Additionally, fastening a 55 Nm target torque using TT produced 87.4% less force 

than TS and, 87.1% less force than TSS when fastening on a hard joint. Furthermore, 

fastening a 75 Nm target torque using TT produced 92.3% less force than TS and, 91.9% 

less force than TSS when fastening on a hard joint. Participants fastening a 30 Nm soft 

joint using TT produced 78% less force than TS, 89.8% less force than TSS and, TS 

produced 53.6% less force in Fy than TSS.  While fastening a 55 Nm soft joint 

participants using TT produced 74.5% less force than TS, 77.1% less force than TSS and, 

TS produced 10% less force in Fy than TSS. Lastly, fastening a 75 Nm soft joint, 

participants using TT produced 67.1% less force than TS and, 39.3% less force in Fy than 

TSS. 



   

 

 

4
9
 

 

Figure 19: Average force impulse (Fx) while operating TS, TSS and TT comparing target torque, and posture. Showing 

significant reduction in force impulse while operating TT..  
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Figure 20: Average force impulse Fx,  comparing the three tightening strategies between three increasing target torques as 

well as hard and soft joints. Significant reduction is found when operating hard joints as well as soft joints.
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Figure 21: Average force impulse Fx, comparing the three tightening strategies between posture and joint hardness. Soft 

and hard joints showed a reduction in force impulse while using TT compared to TS and TSS.
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Figure 22: Average Force Fy, comparing tightening strategy at the three target torques withiing hard and soft joint 

operation. TT resulted in the least handle force impulse at each target torque  regardless of joint hardness. 
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4.1.1.3 IN/OUT Fz 

Post hoc testing resulted in no significant interactions for Fz. 

4.2 JOINT ANGLES 

Participant right shoulder (adduction = + abduction = -, flexion = +, extension = -, 

internal rotation = +, external rotation = -) and elbow (flexion = +, extension = -) angular 

displacement were captured and displacement measured between torque initiation and 

100 ms post target torque. 

4.2.1 ARM ADDUCTION 

 A 4-way interaction of Hardness x Posture x Strategy x TargetTorque (F= 2.671, p= 

0.033) was found for arm adduction (Figure 23). Post hoc testing showed participants 

fastening on a hard joint in the chestdown posture fastening 30 Nm target torque using 

TT resulted in 91.7% less displacement than TS and, 85.9% less displacement than TSS. 

Fastening a 55 Nm target torque using TT resulted in 97.8% less displacement than TS 

and, 96.3% less than TSS. 

When in the thighdown posture, participants fastening a 30 Nm target torque on a 

hard joint using TT resulted in 94.8% less displacement than TS and, 95.9% less than 

TSS. Additionally, fastening 55 Nm target torque using TT resulted in 81.6% less 

displacement than TS and, 81.7% less than TSS.  

Participants in the waistdown posture, fastening a hard joint and 30 Nm target 

torque using TT resulted in 97.6% less displacement than TS and 97.1% less than TSS. 

When fastening a 55 Nm target torque using TT resulted in 85.7% less displacement than 

TS and, 83.3% less than TSS.  
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Participants fastening a soft joint in the chestdown posture fastening a 30 Nm 

target torque using TSS resulted in 22% less displacement compared to TS and 25.2% 

less than TT. In addition, using TS resulted in 4% less displacement than TT. Fastening a 

55 Nm target torque using TS resulted in 3% less displacement compared to TT and, TSS 

resulted in 34% less displacement than TT. Target torque of 75 Nm using TSS resulted in 

11.1% less displacement than TS and, 26.3% less than TT. While using TS, results 

showed 17% less displacement than TT in the chestdown posture. 

While in the hightoward posture on a hard joint fastening 55 Nm target torque 

using TSS resulted in 5% less displacement than TS and, 43.8% less than TT and TS 

resulted in 41.1% less than TT. Lastly, fastening a 75 Nm target torque using TT resulted 

in 23.8% less displacement than TSS. 

 Participants in the thighdown posture fastening 30 Nm target torque using TS 

resulted in 12.4% less displacement than TT. Additionally, fastening the RAPT with TSS 

resulted in 29.2% less displacement than TT.  Fastening a 55 Nm target torque using TSS 

resulted in 15.5% less displacement than TS and, 1.5% less displacement than TT. 

Furthermore, using TT resulted in 14.3% less displacement than TS. Lastly, Fastening a 

75 Nm target torque using TS resulted in 9.4% less displacement than TSS and, 26.3% 

less displacement than TT and, TSS resulted in 18.6% less displacement than TT. 

Fastening on a soft joint in the waistdown posture with 30 Nm target torque using 

TSS resulted in 53.9% less displacement than TS and, 66.1% less displacement than TT. 

Additionally, TS resulted in 26.4% less displacement than TT. Fastening a 55 Nm target 

torque using TSS resulted in 14.1% less displacement than TS and, 30.7% less 

displacement than TT, TS resulted in 19.3% less displacement than TT. Lastly, 75 Nm 
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target torque using TSS resulted in 4% less displacement than TS and, 15% less 

displacement than TT and, TS resulted in 11.1% less displacement than TT. 

4.2.2 ARM FLEXION 

A 3-way interaction of Hardness x TargetTorque x Strategy (F=3.595, p=0.022) was 

found for arm flexion (Figure 24). Post hoc testing showed participants fastening on a 

hard joint with 30 Nm target torque using TT resulted in 88.2% less displacement than 

TS and, 87.8% less displacement than TSS. Participants fastening 30 Nm target torque on 

a soft joint using TSS resulted in 31.3% less displacement than TS and, 52.1% less 

displacement than TT and TS resulted in 30.3% less displacement than TT. 

Participants fastening 55 Nm target torque on a hard joint resulted in 75.5% less 

displacement than TS and, 77.5% less displacement than TS.  

Participants fastening on a hard joint using 75 Nm target torque resulted in 78.2% less 

displacement than TS and 79.6% less displacement than TSS.  

A 3-way interaction of Hardness x Posture x TargetTorque (F=3.066, p=0.045) was 

found for arm flexion (Figure 25). Post hoc testing showed participants fastening on a 

hard joint in the chestdown posture using 30N target torque resulted in 60.4% less 

displacement than 75 Nm target torque. While fastening on a soft joint in the chestdown 

posture using 30 Nm target torque resulted in 68.9% less displacement than 75 Nm target 

torque; 55 Nm target torque resulted in 98% less displacement than 75 Nm target torque.  
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Figure 23: Average shoulder adduction angular displacement measured between torque initiation and 100 ms post target 

torque. TT results in the least displacement while operating on hard joints.  
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Figure 24: Average arm flexion angular displacement measured between torque initiation and 100 ms post target torque, 

comparing tightening strategies and target torques while fastening on hard and soft joints. 
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Participants in the hightoward posture fastening on a hard joint using 55 Nm target 

torque resulted in 62.1% less displacement than 75 Nm target torque. Additionally, 

fastening on a soft joint in the hightoward posture using 30 Nm target torque resulted in 

70.1% less displacement than 55 Nm target torque and, 85.6% less displacement than 75 

Nm target torque; 55 Nm target torque resulted in 51.9% less displacement than 75 Nm 

target torque.  

Participants, fastening on a hard joint in the thighdown posture using 30 Nm target 

torque resulted in 24.4% less displacement than 55 Nm target torque and, 48.3% less 

displacement than 75 Nm target torque; 55 Nm target torque resulted in 31.6% less 

displacement than 75 Nm target torque. In the thighdown posture fastening on a soft joint 

using 30 Nm target torque resulted in 20.9% less displacement than 55 Nm target torque 

and, 58.5% less displacement than 75 Nm target torque; 55 Nm target torque resulted in 

31.1% less displacement than 75 Nm target torque on a soft joint. 

Lastly, fastening in the waistdown posture on a hard joint using 30 Nm target torque 

resulted in 43.7% less displacement than 75 Nm target torque and, 55 Nm target torque 

resulted in 35.4% less displacement than 75 Nm target torque. Fastening on a soft joint in 

the waistdown posture using 30 Nm target torque resulted in 20.9% less displacement 

than 55 Nm target torque and, 64.2% less displacement than 75 Nm target torque; 55 Nm 

target torque resulted in 54.7% less displacement than 75 Nm target torque.
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Figure 25: Average arm flexion angular displacement measured between torque initiation and 100 ms post target torque, 

comparing postures and tightening strategies while operating on hard and soft joints. Regardless of posture, greater 

displacement was found with increasing target torque. -
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4.2.3 ARM ROTATION 

A 3-way interaction of Hardness x Posture x Strategy (F=3.323, p=0.026) was found for 

arm rotation (Figure 26). Post hoc testing showed fastening on a hard joint in the 

chestdown posture using TT resulted in 74.6% less displacement than TS and, 73.5% less 

than TSS. Fastening the TT strategy on a hard joint in the thighdown posture, angular 

displacement was 80.3% less than TS and 84.5% less than TSS. Fastening on a hard joint 

in the waistdown posture using TT was 75.1% less than TS and 76.6% less than TSS; TS 

was 5.9 % less than TSS. Lastly, fastening on a soft joint in the chestdown posture using 

TT was 21.4% less than TSS.  

A 3-way interaction of Posture x TargetTorque x Hardness (F=2.906, p=0.029) 

was found for arm rotation (Figure 27). Post hoc testing showed fastening on a hard joint 

in the chestdown posture using 75 Nm target torque resulted in 69.8% less angular 

displacement compared to 30 Nm and, 69.8% less than 55 Nm. Fastening in the 

HighTowards using 75 Nm 223.5% less than 55 Nm. Thighdown posture fastening 75 

Nm resulted in 165.6% less displacement than 30 Nm and, 114.9% less than 55 Nm. 

Lastly, fastening on a hard joint in the waist down posture showed 75 Nm resulted in 

112.4% less than 30 Nm and 65.6% less than 55 Nm; 55 Nm resulted in 22% less than 30 

Nm.   

While fastening on a soft joint in the chestdown posture, 30 Nm target torque resulted in 

162.3% less than 55 Nm, 54.7% less than 75 Nm and  fastening in the Hightoward 

posture using 75 Nm resulted in 290% greater displacement than 30 Nm and 233.5% less 

than 55 Nm. Fastening 75 Nm in the thighdown posture resulted in 290% greater 
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displacement than 30 Nm and 233.5% less than 55 Nm. Lastly, fastening 75 Nm in the 

waistdown posture was 179.5% greater than 55 Nm and, 37.5% greater than 30 Nm in 

addition to 55 Nm being 50.8% greater than 30 Nm. 

A 3-way interaction of TargetTorque x Strategy x Hardness (F=6.626, p=0.001) was 

found for arm rotation (Figure 3Figure 28). Post hoc testing showed participants 

fastening on a hard joint using 30 Nm target torque with the TT strategy resulted in 80% 

less displacement compared to TS and, 83.2% less than TSS. Participants fastening 55 

Nm target torque using TT resulted in 75.7% less angular displacement than TS and, 

72.1% less than TSS. Lastly, participants fastening 75 Nm target torque using TT resulted 

in 85.8% less than TS and, 86.8% less than TSS on a hard joint.  

Participants fastening a 55 Nm target torque on a soft joint using TT resulted in 

31.9% less than TS and, 32.6% less than TSS. Lastly, participants fastening 75 Nm target 

torque using TT resulted in 19.1% less displacement than TS.  

4.2.4 ELBOW FLEXION 

A 3-way interaction of Hardness x Posture x TargetTorque (F=3.406, p=0.012) was 

found for elbow flexion (Figure 29). Post hoc testing showed participants fastening on a 

hard joint in the chestdown posture using 30 Nm target torque resulted in 37.5% less 

displacement than 55 Nm target torque, 37.9% less displacement than 75 Nm and, 55 Nm 

target torque resulted in 61.2% less displacement than 75 Nm target torque.  Participants 

fastening a soft joint in the chestdown posture using 30 Nm target torque resulted in 

42.2% less displacement than 55 Nm target torque, 81% less displacement than 75 Nm 

target torque and, 55 Nm target torque resulted in 67.2% less displacement than 75 Nm 

target torque 
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Figure 26: Average arm rotation angular displacment measured from torque inititation to 100ms post target torque, 

comparing tightening strategy and posture within hard and soft joint operation. Significantly less displacement was found 

while operating TT on all postures except hightowards. TSS showed the greatest advantage in hightowards posture..
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Figure 27: Average arm rotation angular displacment measured from torque inititation to 100ms post target torque, 

comparing target torque within each posture operating on hard and soft joints. Angular displacement was shown to increase 

with greater target torque regardless of operator posture.
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Figure 28: Average arm rotation angular displacment measured from torque inititation to 100ms post target torque, 

comparing tightening strategy during operation on hard and soft joints using increasing target torques. TT strategy was 

shown to have significantly less displacement compared to TS and TSS on hard joints. 
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Participants in the hightoward posture fastening on a hard joint using 30 Nm 

target torque resulted in 55.6% less displacement than 75 Nm target torque and, 55 Nm 

target torque resulted in 49.3% less displacement than 75 Nm target torque. 

Participants fastening a soft joint in the hightoward posture using 30 Nm target 

torque resulted in 56.4% less displacement than 55 Nm target torque, 81.2% less 

displacement than 75 Nm target torque and, 55 Nm target torque resulted in 57% less 

displacement than 75 Nm target torque.  

Participants in the thighdown posture fastening a hard joint using 30 Nm target 

torque resulted in 33.3% less displacement than 55 Nm target torque, 63.2% less 

displacement than 75 Nm target torque and, 55 Nm target torque resulted in 44.8% less 

displacement than 75 Nm target torque. Participants fastening a soft joint in the 

thighdown posture using 30 Nm target torque resulted in 68.2% less displacement than 55 

Nm target torque, 83.7% less displacement than 75 Nm target torque and, 55 Nm target 

torque resulted in 48.8% less displacement than 75 Nm target torque. 

Lastly, participants fastening a hard joint in the waistdown posture using 30 Nm 

target torque resulted in 54.8% less displacement than 75 Nm target torque and, 55 Nm 

target torque resulted in 44.6% less displacement than 75 Nm target torque. Participants 

in the waistdown posture fastening a soft joint using 30 Nm target torque resulted in 

49.2% less displacement than 55 Nm target torque, 78.3% less displacement than 75 Nm 

target, and 55 Nm target torque resulted in 57.3% less displacement than 75 Nm target 

torque. 
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Figure 29: Average elbow flexion angular displacment measured from torque inititation to 100ms post target torque, 

comparing target torque and posture within hard and soft joint operation. Increasing torque was found to lead to increased angular 

displacement regardless of posture and joint hardness.
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A 3-way interaction of Hardness x Posture x Strategy (F=2.824, p=0.032.) was found 

for elbow flexion (Figure 30). Post hoc testing showed participants fastening on a hard 

joint TT resulted in 15% less displacement than TS and, 73.4% less displacement than 

TSS. When fastening on a soft joint in the chestdown posture using TT resulted in 42.1% 

greater than TS and, 46.6% greater than TSS.  

Operation in the high toward posture on a hard joint using TT resulted in 79% less 

displacement than TS and, 80.8% less displacement than TSS. Operation in the 

hightowards posture using soft joint did not result in any significance.  

Participants fastening on a hard joint in the thighdown posture using TT resulted in 

83% less displacement than TS, 87.4% less displacement than TSS and, TS resulted in 

26.4% less displacement than TSS. Operation in the thighdown posture using soft joint 

did not result in any significance. 

Lastly, operation on a hard joint in the waist down posture using TT resulted in 

74.7% less displacement than TS and, 81.2% less displacement than TSS while TS 

resulted in 25.7% less displacement than TSS on a hard joint. Whereas, fastening on a 

soft joint in the waistdown posture using TT resulted in 30.8% greater displacement than 

TS and, 27.5% greater displacement than TSS. 

 A 3-way interaction of Hardness x TargetTorque x Strategy (F= 35.44, p=0.007) was 

found for elbow flexion (Figure 31). Post hoc testing showed participants fastening on a 

hard joint with 30 Nm target torque using TS resulted in 26.7% less displacement than 

TSS. Additionally, TT resulted in 68.3% less displacement than TS and, 76.7% less 

displacement than TSS. Participants fastening a 55 Nm target torque using TT resulted in 
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72% less displacement than TS and, 77.9% less displacement than TSS. Lastly, fastening 

on a hard joint with 75 Nm target torque using TS resulted in 14.6% less displacement 

than TSS and, TT resulted in 80.2% less displacement than TS and 83% less 

displacement than TSS. 

Participants fastening on a soft joint with 30 Nm target torque using TT resulted in 

65% greater than TS and, 75% greater than TSS. No additional significance was found 

4.3 BORG RATINGS 

A 3-way interaction of TT x Strategy x Hardness (F=2.8, p=0.043) for the Borg ratings 

was found (Figure 32). Post hoc testing showed participants fastening 30 Nm hard joint 

using TT rated effort 33.3% less than TS and, 40% less than TSS. When fastening on a 

55 Nm hard joint, post hoc testing showed that ratings for TT were 21.7% less than TS 

and, 17.4% less than TSS. For the 75 Nm hard joint, post hoc testing showed participants 

fastening the RAPT with TT rated their effort 60% less than TS and, 56% less than TSS. 

Finally, post hoc testing showed participants fastening 55 Nm soft joint using TSS rated 

efforts 13.5% less than TS, and fastening 75 Nm soft joint using TT rated 20% less than 

TS.  

A 2-way interaction (F=2.4, p=0.049) was also found for Posture x Strategy 

(Figure 33). Post hoc testing showed fastening in the chestdown posture, subjective 

ratings for TT produced 16% less than the TS and, 16% less than TSS. In addition, post 

hocs revealed that while in the hightowards posture using the TT strategy produced 36% 

less than in the same posture with TS, and 28% less than when in this posture using TSS. 

Also, ratings while operating in the thighdown posture using the TT strategy produced 
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4.8% less than TS, and 30.4% less than TSS. Lastly, ratings while performing the TT in 

the waistdown posture fastening produced 18.2% less when in the same posture with TS 

and, 18.2% less than when in the same posture using TS
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Figure 30: Average elbow flexion angular displacment measured from torque inititation to 100ms post target torque, 

comparing tightening strategy and posture within hard and soft joint operation. Operating on hard joints resulted in significantly 

less displacement while operating TT. Soft joints showed limited differences regardless of posture.
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Figure 31: Average elbow flexion angular displacment measured from torque inititation to 100ms post target torque, 

comparing tightening strategy and target torque within hard and soft joint operation. Hard joint operation resulted in significanctly 

less displacment while operating TT strategy compared to TS and TSS. 
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Figure 32: Subjective ratings for all participants comparing tightening strategies and target torque on hard and soft joints. 

TT resulted in the lowest ratings regardless of target torque on hard and soft joints
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Figure 33: Average subjective ratings comparing tightening strategies within each of the four postures. TT resulted in 

lower discomfort ratings compared to TS and TSS regardless of posture. 
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Chapter 5: DISCUSSION 

The results of this study have shown that forces experienced by the operator can be 

reduced by limiting torque build-up times as well as speeding up tool shut-offs, which in 

turn result in less arm displacement, all of which can provide a reduction in injury risk for 

power tool operation.  Furthermore, through various testing it is apparent that the TT 

fastening strategy provided the least handle force impulse, joint angle displacement, and 

subjective ratings for participants. This follows the direction of previous research 

conducted by Kihlberg, Kjellberg and Lindbeck (1995) in which power tools, albeit 

pneumatically powered, with shorter build-up times and faster shut-off mechanisms, lead 

to the least hand-arm joint angle displacement, reaction forces and subjective ratings. 

5.1 HANDLE FORCE IMPULSES 

Handle forces in this study were measured through the use of an instrumented handle 

which included a 3D linear sensor. With the design of an offset handle, operators were 

able to grasp and maintain the RAPT in a similar fashion to what is experienced in 

manufacturing. The sensor, located inside of the handle, allowed for a direct recording of 

the forces experienced by the operator at the hand-handle interface. Although the handle 

attachment used in this study is a novel design, the use of instrumented handles is not. 

Lin and McGorry (2009) instrumented a handle with a strain gauge to determine tool 

torque impulse ratio using tool torque impulse and reaction hand moment impulse. 

Findings showed greater impulse ratios lead to greater discomfort. In comparison, studies 

by Lin, McGorry, Dempsey, Chang in 2006 and 2007 used an instrumented handle to 

determine grip forces associated with both pistol grip and RAPT operation. Although grip 

forces were not measured with the handle design method, Lin et al. (2006) found grip 
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strength was affected by joint hardness for pistol grip tools, but RAPTs were not affected. 

The researchers believed the participants in the study were familiar with tool use which 

led to limited variability with respect to grip strength. 

Impulse forces rather than peak forces were reported in this study in order to 

account for the cumulative effect of force throughout the duration of each fastening; 

allowing for a greater understanding of the effect of the entire rundown within each 

tightening strategy. Freivalds (1993) expressed a similar belief in the use of force impulse 

to evaluate power tool ergonomics as opposed to peak force. The handle force data 

showed that the TT strategy resulted in the lowest handle force impulse regardless of 

target torque and posture. Each of the three fastening strategies varied in time to 

completion which helps to explain the time portion associated with impulse as TT was 

the quickest strategy (Hard: 0.36s, Soft: 0.57s) followed by TS (Hard: 0.55s, Soft: 0.98s) 

and TSS (Hard: 0.64s, Soft: 1.21s). However, the overall forces experienced at the handle 

were also reduced, which is shown when simply examining the peak force (not the scope 

of this thesis), when using TT (up/down (Fx): 19.8 N, push/pull (Fy):77.9 N, in/out (Fz):-

3.1 N) compared to TS (up/down (Fx): 31.8 N, push/pull (Fy):99.7 N, in/out (Fz):-7.9 N) 

and TSS (up/down (Fx): 31.1 N, push/pull (Fy):102.3 N, in/out (Fz):-6.3 N).  

 The TT strategy uses a high spindle head rotation (~500 rpm) at the beginning of 

fastening and reduced speeds once target torque is achieved. The controller algorithm 

uses initial torque, final angle, target torque, and torque rate to ensure appropriate energy 

is supplied to the joint; and that target torque is achieved as fast as possible. The theory 

behind TT is to use the inertial properties of the tool (both radius of gyration and mass) to 

counteract the momentum that is created by the spinning of the spindle head of the tool.  
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The reduction of RPMs at the end of joint fastening also ensured shut-off occurred more 

rapidly than the TS and TSS fastening strategies used in this study.  The tightening 

strategy developed by Atlas Copco proved to reduce handle force impulse, with a 

significant reduction in handle forces especially on hard joints.  

5.2 JOINT ANGLES 

The methodology used in this study aimed to gain a deeper understanding of how the 

arm-hand-handle interface reacts to various handle forces. In order to understand the risk 

of injury during power tool operations, shoulder displacement was identified during 

various fastening protocols. Differences between the three fastening strategies used in 

this study were able to show reduced torque build-up time and shut-off times (TT) 

resulted in a reduction of shoulder adduction, flexion and rotation angular displacement. 

The TT strategy had the shortest torque build-up times, fastest shutoff speed and lowest 

force impulse of the three strategies. The reduced forces and build-up times, and quicker 

shut-off speed increased the ability of the operator to resist handle displacement in the 

push/pull (Fy) direction; and limit joint angle displacement.  Results determined the TT 

strategy resulted in less displacement than both TS and TSS on hard joints regardless of 

posture. However, the same benefit of lower displacement was not found when TT was 

used to fasten soft joints. This result can be attributed to TT limitations with joints greater 

than 270
o 
due to increased fastening time resulting increased forces experienced by the 

operator (Atlas Copco, 2013). Atlas Copco has admitted that TT was never designed for 

soft joints, but maintaining their belief that reducing fastening time results in a decrease 

of forces through the amount of energy being transferred to the operator, it is 

hypothesized that the same benefits for soft joints could be made if the speed is increased 
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above 500 rpm. The findings of the current study are similar to those from Kihlberg, 

Kjellberg and Lindbeck (1993, 1994) where pneumatic power tools requiring longer time 

to shut-off were found to result in greater forward shoulder motions compared to 

immediate shut-off mechanisms. Kihlberg, Kjellberg and Lindbeck (1994) also found 

arm motion was greater when strategies involved delayed shut-off mechanisms, which 

maintained target torque for a longer period of time, compared to slow shut-off 

mechanisms with increasing torque. However, the increased torque did not cause 

increased forces and motions for fast shut-off tools which were believed to be caused by 

the inertial properties of tools used in the study. The TT strategy is designed with a 

specific algorithm which controls the tool’s motor, calculated from the rotor inertia and 

rotor speed, in order to ensure the energy being produced is equal to the torque 

experienced at the joint (Atlas Copco, 2005). This results in decreased torque build-up 

times and quicker tool shut-offs, which have been shown to improve operator joint angle 

displacement and handle stability. Handle stability during RAPT fastening can be used to 

identify the risk associated with a specific tightening by investigating the biomechanical 

risk developed when the forces experienced at the hand-handle interface exceed the 

capability of the operator. When the handle forces experienced by the operator increase, 

the likelihood of tool displacement occurs, which in turn leads to an increased risk of 

joint angle displacement and, ultimately eccentric muscle contraction. Eccentric muscle 

contractions have been linked to delayed onset muscle soreness and muscle tissue 

damage (Sommerich, Gumpina, Roll, Le, Chandler, 2009). Therefore, any tightening 

strategy should aim to minimize the forces that cause forced arm movements by reducing 

torque build-up time, handle forces, by using the shortest tool shut-off possible. The 
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results of this study show that the TT strategy was the most acceptable biomechanical and 

ergonomically safe strategy when operating on hard joints. The three strategies used in 

this study resulted in functionally similar responses on soft joints. However, TT provide 

the shortest build-up times and fastest shut-off, therefore would be recommended for hard 

and soft joints alike.  

5.3 HANDLE DISPLACEMENT 

In addition to handle forces and subjective ratings, Lin, McGorry, Chang and Dempsey 

(2007) found that handle displacement following the securing of a fastener can be 

influenced by several factors including working height, working distance and user 

experience. Past researchers (Lin et al., 2001, 2003, 2006’ Lindqvist, 1993) have 

modelled the hand arm system as a passive mechanical system made up of stiffness, 

moment of inertia and damping elements to predict handle displacement. Handle 

displacements occur when the forces experienced at the hand-handle interface exceed the 

force capability of the human operator. Once handle displacement occurs the hand is 

displaced, which results in a chain reaction up the hand-arm system leading to angular 

changes to the wrist, elbow and shoulder joints. Additionally, handle forces which lead to 

handle displacement can produce static stress and strain to operator’s limbs which in turn 

can lead to dynamic stress and strain which all lead to increased risk of developing 

injuries and disorders related to power tool usage (Dong, Wu & Welcome 2005). Angular 

displacement of the elbow is directly related to hand-handle displacement as the hand 

arm system is mechanically connected.  

This study found posture to have significant interactions with target torque, 

fastening strategy and joint hardness for shoulder joint displacement as well as elbow 
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displacement. TT strategy provided the lowest angular elbow displacement regardless of 

target torque and posture; no differences were noted when operating on soft joints 

between the three tightening strategies. 

5.4 SUBJECTIVE RATINGS 

The 10-point Borg scale used in this study was modified from Kihlberg, Kjellberg and 

Lindbeck’s (1993) study where operators discomfort ratings using delayed shut-off tools 

compared to quicker shut-off tools. Following each 5 minute, trial, (25 fastenings) 

participants were asked to rate their effort and discomfort level in order to gain an 

understanding of how inexperienced tool operators assessed each posture, target torque 

and strategy from a subjective standpoint. Participant ratings were shown to be 

significantly less for operations using TT compared to TSS and TS fastening strategies on 

75 Nm hard joints only. Hard joints using 30 Nm and 55 Nm target torques, as well as, 

soft joints were not shown to have any significant differences. Additionally, participants’ 

effort and discomfort ratings were shown to increase on average as target torque 

increased; while posture did not have an effect on subjective ratings. One explanation for 

the increase in discomfort during increased target torque is the resulting force 

experienced at the handle. As target torque increases, so does the effort required to 

maintain handle stability during tightening. Therefore, operators are required to exert a 

greater force on the handle, which leads to increased perceived discomfort. A 

compounding effect can be viewed when we identify the time required for each 

tightening strategy. The results from this study identify TT as the quickest tightening 

strategy, and the strategy that resulted in the least force experienced at the handle. Thus, 
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it would be expected that the reduced time and reduced forces would result in the lowest 

operator discomfort and effort ratings.  

In addition to discomfort and strength ratings, Borg scales have been used to 

determine task acceptability. Kihlberg, Kjellberg and Lindbeck (1995) used subjective 

ratings of discomfort, in addition to a question of operator acceptance, to identify 

acceptability limits with pneumatic RAPTs. Oh and Radwin (1998), found subjective 

ratings did not differ significantly between horizontal and vertical workstations on 

perceived exertion or task acceptance. Although task acceptance was not measured in this 

study, results showed higher discomfort ratings for the posture associated with vertical 

orientation compared to the horizontal workstations. 

Findings from this study provide evidence that subjective ratings should not be 

used as a singular method of identifying acceptable RAPT fastening. Although ratings 

provided by the novice participants were shown to have statistical significance, limited 

clinical significance was found. Handle forces and joint angle displacement provide 

greater indication when attempting to understand the human interaction during RAPT 

fastening. Therefore, handle force and joint angular displacement should be implemented 

in future research rather than subjective ratings.  

 

5.5 HYPOTHESES REVISTED 

1) Elbow displacement (surrogate of handle) will show a statistically significant 

(p<0.05) interaction between fastening strategy and target torque measured from 

initiation of torque to 100 ms post peak torque. 
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Through the examination of the hand-arm system of operators as a single entity it can be 

hypothesized that greater handle displacement leads to greater flexion/extension angular 

displacement of the elbow. Based on this, a significant interaction was found between 

joint hardness, target torque and fastening strategy. Hard joints resulted in the least 

angular displacement when using the TT strategy. While fastening on a soft joint, TT was 

found to result in significantly larger displacement only when securing a 30 Nm joint.  

These results support the findings from Kihlberg, Kjellberg, Lindbeck’s (1994) in which 

fast shut-off mechanisms were found to produce the least handle displacement. The TSS 

fastening strategy used in this study included the longest shut-off mechanisms and was 

found to be significantly higher than TT, which contained the quickest build-up time and 

shut-off speed for hard joint operation.   

2) Shoulder joint angle displacement will show a statistically significant 

interaction between Fastening strategy, target torque and posture as measured 

from initiation of torque to 100 ms following peak torque. 

The results from this study show significant shoulder angular adduction displacement 

interactions between posture, target torque and strategy. Although shoulder flexion and 

shoulder rotation did not show significance between the three variables, significant 

interactions were found between posture and strategy, posture and target torque, as well 

as, target torque and strategy.  

Kihlberg, Kjellberg and Lindbeck (1993, 1994) found a positive relationship 

between shoulder displacement and tool shut-off speed. The positive correlations were 

also found between the operation motions, ground reaction forces and subjective ratings. 
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However, the main difference between our study and Kihlberg, Kjellberg and Lindbeck’s 

series of studies is the investigation of the operator’s arm angular displacement. During 

Kihlberg et al. (1993), study the arm was shown to move as a pendulum with a spatially 

fixed point about the shoulder. The results of this study indicate that it is important to 

evaluate the shoulder and elbow separately as opposed to a single pendulum to 

understand the full kinematic impact of RAPT fastening.  

3)Subjective ratings will be greater for DC TSS compared to DC TS and DC TT 

fastening strategies (p<0.05). 

Results from this study show the TSS tightening strategy was statistically greater than TT 

but not TS. In fact, fastening on a hard joint using 55 Nm found TSS rating statistically 

lower than TT and TS. A study by Kihlberg, Lindbeck and Kjellberg (1993) used equal 

spindle torque speeds to determine the speed of tool shut-off has an effect on perceived 

exertion. Furthermore, findings are in agreement with this study as delayed shut-off tools 

resulted in high subjective ratings compared to quick shut-off tools. Furthermore, tool 

run-down control techniques and torque profiles can be used to limit discomfort on top of 

shut-off times (Lindqvist, 1993).  

4) Force impulse magnitudes occurring between initialization and target torque 

will be statistically lower (p < 0.05) when fastening the DC TT right angle power 

tool compared to DC TSS and DC TS fastening strategies. 

The results showed the TT tightening strategy provide a reduced force impulse compared 

to TS and TSS strategies. The TT strategy was found to have the shortest torque build-up 

times as well as forces impulse which resulted in significantly less pull (Fy) force 
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impulse compared to TS and TSS. In addition to the push/pull (Fy) force, The TT 

strategy resulted in the least up/down (Fx) force impulse regardless of fastening 

orientation, posture and target torque.  

Chapter 6: CONCLUSION 

In conclusion, regardless of operator posture or target torque, findings from this study 

showed significantly less handle force impulse, shoulder and elbow joint displacement, 

and subjective ratings when using the TurboTight® strategy compared to Two-Stage and 

Two-Stage Soft Stop strategies. The differences found can be explained by the tightening 

strategies themselves.  The TurboTight® incorporated the shortest fastening time (0.47s) 

by implementing a high initial speed followed by a decreasing RPM as target torque 

increased. This control algorithm was designed to use the inertial effects of the tool to 

reduce the forces transferred to the operator, in an attempt to reduce the risk of injury. 

The overall reduction in handle forces, even when target torque increased, led to a 

reduction in joint angles and handle displacement; all of which help to reduce the risk of 

injury during RAPT operation. In addition to the force and joint angle displacement, 

subjective ratings showed operators preferred the TurboTight® strategy during the testing 

protocol. 

6.1 LIMITATIONS AND ASSUMPTIONS 

In this study some limitations and assumptions were made regarding the participants, 

tightening strategies, joint simulators, and subjective ratings, all which deserve some 

discussion. Participants included in the study were identified as non-experienced, healthy 

individuals from the general population. Six males and six females from three age groups 
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were chosen to represent the working population. Prior to data collection, participants 

were asked a series of questions in order to prevent experienced or injured individuals 

from participating. It is assumed questions were answered truthfully and the population 

chosen to participate was a true representation of the general population. Inexperienced 

operators were chosen to participate in this study in order to determine the kinematic 

effects of novice operators, who have no familiarity, nor developed physiological 

advantages to power tool operation. Inexperienced tool operators more commonly 

experience unexpected events and are more likely to be injured (Reynolds, 2009).  

Secondly, the joint simulators used in this study consisted of bolt and washer 

fittings with hard (30
0
) and soft (540

0
) joint properties. Following each fastening, the 

investigator loosened the bolt in anticipation of the following fastening. Loosening 

distance was not monitored and may have influenced results due to increased rundown 

phases. Additionally, the joints were lubricated prior to each data collection to ensure 

joint stability.  Lubrication was applied by the investigator with a paint brush and could 

have resulted in differences between subjects. 

Thirdly, the three tightening strategies used in this study were programed by the 

researching team. When contacting Atlas Copco, the trained expert stated each controller 

and strategy implemented in the manufacturing world is tuned to fit the specific task at 

hand. Therefore, strategies used in this study were specific to the lab environment 

without professionally trained individuals.  

Lastly, the CR-10 Borg scale shown to participants following each trial was 

chosen based on its simple nature and ability to guide participants to quick ratings. 



    

 

85 

 

Kihlberg, Kjellberg, & Lindbeck (1993, 1994) used the same CR-10 scale which was 

believed to be reliable. It was also assumed that participants were truthful and honest 

when providing ratings. However, some participants expressed discomfort during trials 

with reduced operator effort, resulting in confusion when choosing a single rating. 

Separate ratings for effort and discomfort would have potentially provided more insight 

into operator ratings regarding the three tightening strategies used. 

6.2 IMPLICATIONS FOR INDUSTRY 

The tooling, joint types, postures and strategies incorporated in this study were chosen to 

replicate real world manufacturing jobs in a lab environment. Therefore, the results and 

findings from this study are considered representative to RAPT operation in the world of 

manufacturing. When possible, DC tools should be implemented into all 

workstations/operations in order to provide greater control of fastening strategies. Greater 

control tightening strategies allow manufacturing companies the ability to reduce the risk 

of injury through limiting the duration and, level of forces experienced by the operator at 

the hand-handle interface. Past research has shown, when choosing a tightening strategy, 

the following should be considered; limiting the time required to achieve target torque, 

reducing the time required for tool shut-off once target torque is achieved and limiting 

low speeds during fastening (Kihlberg, Kjellberg, & Lindbeck 1995).  Based on this 

direction, the TurboTight® strategy was proven to be the most ergonomically friendly 

strategy used in this study. 
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6.3 FUTURE RESEARCH DIRECTIONS 

Future studies should expand upon the TurboTight® strategy findings from this study to 

ensure not only ergonomic requirements are met, but also durability and quality 

associated with the specific application.  Additionally, other tool suppliers with similar 

tightening strategies should be investigated to identify the most ergonomically acceptable 

tightening strategy and, provide a non-biased study. Future RAPT studies should also be 

wary of how participants report subjective ratings if collected. Researchers should report 

effort and discomfort using separate subjective reports rather than incorporate both into a 

single rating. Results from this study were not clinically relevant, which were believed to 

be a result of participants providing a single rating based on discomfort and effort. Lastly, 

future research should investigate a wide range of joint hardness to ensure the most 

appropriate tightening strategy for a greater range of joint angle rotations.  
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APPENDIX A 

SCRIPT 

The Direct-Current (DC) RAPT setup for this study includes a right angle power 

tool (RAPT), power tool controller and simulated handle. The controller, connected to 

RAPT via a power cord, provides the parameters associated with joint fastening and 

collects information regarding the tool tightening. In addition to the controller and RAPT, 

a simulated handle is placed onto the RAPT in order to collect forces experienced at the 

handle.  

For this study, you will be completing a series of DC RAPT fastenings.  A DC 

RAPT is powered by electricity and is initiated with the pull of the trigger. Once a preset 

torque (rotational force) or angle is met, the tool will automatically shut-off. 

  In order to operate the tool, two hands will be placed on the RAPT as shown in 

picture below. The left hand will be placed on the spindle head while the right hand will 

be controlling the trigger.   An instrumented handle will be attached to the tool, allowing 

for you to control the power source of the tool.  

For data collection, your feet will be placed in a specified location on the ground 

and you will complete a series of joint fastenings per condition. Each condition will 

consist of 5 continuous minutes of joint fastenings. With one fastening completed every 

12 seconds. Following the 5 minutes, you will receive two minutes of rest as well as 

provide a subjective rating of your perceived effort. 

For the next 15 minutes you may practice with any variation of fastening setups 

you may experience during this study.  
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APPENDIX B 

CONSENT FORMS 

To whom it may concern,  

 The following individual participated in a study investigating the physical 

demands associated with direct-current right angle power tool operation. The participant 

completed a series of joint fastenings at various distances from the body using direct-

current right angle power tools. The study aims to parameterize and quantify ergonomic 

factors (end-reaction torque and handle displacement) associated with right angle power 

tool usage in order to reduce work related musculoskeletal disorders and improve worker 

safety. 

 

Name: ______________________________________________ SIN: 

______________ 

Address: __________________________________________________________ 

__________________________________________________________ 

__________________________________________________________ 

Day 1: 

On the _____ day of the ______ month in the year of 2015 I participant complete a total 

of _____ hours.  

Day 2: 

On the _____ day of the ______ month in the year of 2015 I participated in a total of 

______ hours.  

Total 

In total, the participant completed a total of ______ hours and will be compensated with 

$15.00 per hour for a total amount of $____.___. 
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 CONSENT TO PARTICIPATE IN RESEARCH 
 

Title of Study: Ergonomic Evaluation for Right Angle Power Tools: Physical Demands Comparison of Three Direct-

Current Tightening Strategies. 

You are asked to participate in a research study conducted by Dr. Joel Cort , from the Department of Human 

Kinetics at the University of Windsor 

If you have any questions or concerns about the research, please feel to contact Dr. Joel Cort at (519) 253-3000 ext. 

4980 (joel.cort@uwindsor.ca), Christian Steingraber (steingr@uwindsor.ca) or Danielle DeVries 

(devriesd@uwindsor.ca) at 519-253-3000 ext. 4277. 

PURPOSE OF THE STUDY 

The United States Council for Automotive Research (USCAR) has determined repetitive strain and sustained handling 

of tools at various heights can lead to an increased risk of acute and chronic work related injuries in automotive 

manufacturing. The purpose of this study is to parameterize and quantify ergonomic factors (end-reaction torque and 

handle displacement) associated with right angle power tool usage in order to reduce work related musculoskeletal 

disorders and improve worker safety.  

PROCEDURES 

Subjects will be recruited from 3 age groups (18-29, 30-45, 45+ years) with 6 males and 6 females from all groups for a 

total of 36 participants. Subjects will then be randomly assigned within their age group to one of two joint types (Hard 

or Soft).  

Procedures 

 Information such as age, height, weight and hand dominance will first be collected.  You will be given a 

period of 15 minutes to familiarize yourself with all tools, locations, and joint orientations. Following 

familiarization, the investigator will attach 16 electrodes (these measure the electrical activity of the 

muscles) and 52 motion-capture markers (these will help track your movements) to your skin and clothes. 

 Protocol 

o Maximal exertions- participants will perform maximum exertions for forward flexion, shoulder 

elevation, forearm extension and wrist flexion to capture the muscle activity of the 16 muscles in 

the chest, back, shoulders and arms being studied.   

Each of these contractions will last 2-3 seconds—you will be given a 60 second rest between 

contractions 

o Positioning: You will be placed in a predefined foot position and hold the right angle power tool 

with the right hand on the trigger and left hand on the identified stabilizing handle. You will place 

the tool spindle head on the joint simulator to perform the task.  

o Testing Days: You will complete 18 conditions per day, on 2 separate days, resulting in a total of 

36 conditions. Each condition will consist of a randomized power tool tightening strategy, target 

torque and fastener location-orientation. You will complete 5 sets per condition, with a single set 

consisting of 5 joint tightening’s in a 60 second period, resulting in a total of 5 minutes  of 

continuous work per condition. You will receive a rest period of 2 minutes between each 

condition and will be asked to provide ratings of perceived exertion/effort based on a 10-point 

Borg scale.  

 Rest Days 

o A minimum of 3 days rest will be provided between testing day 1 and testing day 2. 

POTENTIAL RISKS AND DISCOMFORTS 

Minimal risks are anticipated – the tasks that will be simulated are exactly as they are done within the working 

environment. The following are possible consequences associated with this experiment: 

Muscle fatigue/soreness – as with any physical activity, there is a risk of the development of muscular fatigue or 

soreness.  The exposure to the postures required to replicate the workplace tasks and the added weight from the right 

angle power-tool may cause transient muscle soreness/discomfort. Any muscle soreness or discomfort that may occur 

will ordinarily subside within a few days after testing.  

Muscle and joint injury – with any exertions there is always a risk of muscle or joint injury. However, these exertions 

do not differ from those performed in the workplace. 

mailto:joel.cort@uwindsor.ca
mailto:steingr@uwindsor.ca
mailto:devriesd@uwindsor.ca
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Skin irritation – the electrodes used to record muscle activation, as well as the tabs used to affix the reflective markers 

associated with the motion capture system, are adhered directly to the skin. As such, there is risk of skin irritation. The 

irritation is similar to that which may develop from the use of commercially available bandages and will disappear 

within 2-3 days after testing. 

 

POTENTIAL BENEFITS TO PARTICIPANTS AND/OR TO SOCIETY 

Participants will be exposed to occupational biomechanics research practices which can benefit their awareness of 

personal ergonomics in activities of daily living.  Furthermore, participants will experience the collection procedures of 

both electromyography and kinematics (Motion Analysis System) which may be useful in future academics and/or 

careers.  

 

COMPENSATION FOR PARTICIPATION 

Participants will be compensated with an hourly fee of $15.00 per hour as well as receiving a University of Windsor, 

Faculty of Human Kinetics research t-shirt for your participation in this study.  

CONFIDENTIALITY 

Any information that is obtained in connection with this study and that can be identified to you will remain confidential 

and will be disclosed only with your permission. However, due to the nature of the study, you will not be able to 

remain anonymous to the investigators, but all electronic or hard copy data and personal information will be treated as 

confidential and a coding system will be employed to ensure confidentiality to others. Only the involved investigators 

will be familiar with the coding system. 

All digital data will be stored on a password protected computer.  All paper documentation will be secured in a locked 

filing cabinet, which will be placed in the locked office in the University of Windsor Human Kinetics building. Upon 

completion of the study, the digital data will be transferred to a hard disk, and the paper documents will be securely 

locked within the office of Dr. Joel Cort. One year past the completion of the study, the paper documents containing 

personal data will be shredded and disposed. 

 

PARTICIPATION AND WITHDRAWAL 

You are being invited to volunteer in this study. If you choose to volunteer, you are free to withdraw from the study 

without any consequence at any time either before or during the testing sessions. If you choose to withdraw, all of your 

digital data will be permanently deleted from the computers and all paperwork will be shredded.   

 

FEEDBACK OF THE RESULTS OF THIS STUDY TO THE PARTICIPANTS 

Research findings will be posted online on the University of Windsor Research Ethics Board website 

(www.uwindsor.ca/reb) upon the completion on this study. You will be contacted via email to be informed when this is 

available. This website is accessible to the public. Results are expected to be posted during the Fall of 2015.  

SUBSEQUENT USE OF DATA 

These data may be used in subsequent studies, in publications and in presentations.  

 

RIGHTS OF RESEARCH PARTICIPANTS 

If you have questions regarding your rights as a research participant, contact:  Research Ethics Coordinator, University 

of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-253-3000, ext. 3948; e-mail:  ethics@uwindsor.ca 

SIGNATURE OF RESEARCH PARTICIPANT/LEGAL REPRESENTATIVE 

I understand the information provided for the study Ergonomic Evaluation for Right Angle Power Tools: Physical 

Demands Comparison of Three Direct-Current Tightening Strategies as described herein.  My questions have been 

answered to my satisfaction, and I agree to participate in this study.  I have been given a copy of this form. 

______________________________________ 

Name of Participant 

______________________________________   ___________________ 

Signature of Participant       Date 

SIGNATURE OF INVESTIGATOR 

These are the terms under which I will conduct research. 

 

_____________________________________   ____________________ 

Signature of Investigator      Date 

_____________________________________   ____________________ 

Signature of Investigator      Date 

http://www.uwindsor.ca/reb
mailto:ethics@uwindsor.ca
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APPENDIX C 

RAPT PHYSICAL DEMANDS DATA COLLECTION SHEETS 

MoCap 

Participant ID:           

 Date: 

Experimental Group: HARD     or      SOFT     Collection Day:  

1    or    2 

 Subject Name: ________________________________________________ Age: ________ 

 Subject Height: _____________  Subject Weight: ___________ Subject 

Handedness:      L    or     R 

Calibration: Tools, Joints, MoCap 

Consent Form & Questionnaire 

15 min. Familiarization 

MVC (6 exercises) 

Bias Trial 

Markers & T-Pose & ROM 

Trial # Posture TS TT Condition Comments 

1 1 TS 55 5 
 

2 2 
TS w/ 

SS 
30 16 

3 1 TT 70 3 

4 1 
TS w/ 

SS 
55 8 

5 1 TT 30 1 

6 2 
TS w/ 

SS 
70 18 

7 4 TS 30 31 

8 4 
TS w/ 

SS 
70 36 

9 1 TT 55 2 

10 2 
TS w/ 

SS 
55 17 

 

11 3 TT 70 21 

12 2 TS 30 13 

13 4 TS 70 33 

14 2 TS 55 14 

15 1 
TS w/ 

SS 
70 9 

16 3 
TS w/ 

SS 
55 26 

17 1 
TS w/ 

SS 
30 7 

18 3 TS 30 22 

Scrap Trials: 
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RAPT Physical Demands Data Collection Sheets 

 MoCap 

Participant ID:         Date: 

Experimental Group: HARD     or      SOFT     Collection Day:  

1    or    2 

 Subject Name: ________________________________________________ Age: ________ 

 Subject Height: _____________  Subject Weight: ___________ Subject 

Handedness:      L    or     R 

Calibration: Tools, Joints, MoCap 

Consent Form & Questionnaire 

15 min. Familiarization 

MVC (6 exercises) 

Bias Trial 

Markers & T-Pose & ROM 

Trial # Posture TS TT Condition Comments 

1 4 TS 55 32 
 

2 1 TS 30 4 

3 3 
TS w/ 

SS 
30 25 

4 3 TS 70 24 

5 3 TT 30 19 

6 3 TS 55 23 

7 1 TS 70 6 

8 4 TT 30 28 

9 4 TT 70 30 

10 2 TS 70 15 
 

11 4 
TS w/ 

SS 
55 35 

12 4 
TS w/ 

SS 
30 34 

13 4 TT 55 29 

14 2 TT 70 12 

15 2 TT 55 11 

16 2 TT 30 10 

17 3 
TS w/ 

SS 
70 27 

18 3 TT 55 20 

Scrap Trials 
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APPENDIX D 

Questionnaire used for identification of preexisting musculoskeletal disorders. 

 

Modified Nordic MSD Questionnaire used to determine musculoskeletal injury (Wiehage & Turin, 2004) 
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APPENDIX E 

PLACEMENT AND LOCATION OF MOTION CAPTURE MARKERS 
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Marker 

Placements Location 

1 Top center of head 

2 Mid-back of head 

3 Middle of forehead 

4 Left side of head, above ear 

5 Right-back corner of head 

6 Top of shoulder, midway between neck and acromion process 

7 Top of shoulder, midway between neck and acromion process 

8 Back of neck, above T1 

9 Middle of sternum 

10 Upper-left side of back on scapular (approx. T5 

11 Right-mid back (Approx. L1) 

12 Midway along long axis of humerus, top of bicep,  lateral offset  

13 Lateral side of elbow joint over the joint center 

14 Distal end of the humerus behind the elbow 

15 Midway along long axis of forearm on flat posterior surface 

16 Lateral side of wrist over the radial styloid process 

17 Medial side of wrist over the ulnar styloid process 

18 Posterior side of hand, distal end of the 1st metacarpal 

19 Posterior side of hand, middle of the 3rd metacarpal 

20 Posterior side of hand, distal end of the 5th metacarpal 

21 Midway along long axis of humerus, top of bicep, lateral offset 

22 Lateral side of elbow joint over the joint center 

23 Distal end of the humerus behind the elbow 

24 Midway along long axis of forearm on flat posterior surface 

25 Lateral side of wrist over the radial styloid process 

26 Medial side of wrist over the ulnar styloid process 

27 Posterior side of hand, distal end of the 1st metacarpal 

28 Posterior side of hand, middle of the 3rd metacarpal 

29 Posterior side of hand, distal end of the 5th metacarpal 

30 On right ASIS 

31 On left ASIS 

32 On right PSIS 

33 On left PSIS 

34 Mid-back, top of sacrum 

35 Right, lateral side of pelvis near greater trochanter 

36 Left, lateral side of pelvis near greater trochanter 

37 Antero-lateral of thigh 1/3 along length of femur 

38 Postero-lateral of area thigh 1/3 along length of femur 
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39 Lateral side of knee, approximately over the joint center 

40 Anterior side of lower leg, midway along its length 

41 On the lateral malleolus of the right fibula 

42 On the posterior side of the heel 

43 On the head of the 3rd metatarsal 

44 Lateral side of 5th metatarsal, midway along its length 

45 Antero-lateral of area thigh 1/3 along length of femur 

46 Postero-lateral of area thigh 1/3 along length of femur 

47 Lateral side of knee, approximately over the joint center 

48 Antero side of lower leg, midway along its length 

49 On the lateral malleolus of the left fibula 

50 On the posterior side of the heel 

51 On the head of the 3rd metatarsal 

52 Lateral side of 5th metatarsal, midway along its length 
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