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Abstract

Controlling the dynamics of open quantum systems; i.e. quantum systems that

decohere because of interactions with the environment, is an active area of research

with many applications in quantum optics and quantum computation. My thesis

expands the scope of this inquiry by seeking to control open systems in proximity to an

additional system. The latter could be a classical system such as metal nanoparticles,

or a quantum system such as a cluster of similar atoms. By modelling the interactions

between the systems, we are able to expand the accessible state space of the quantum

system in question.

For a single, three-level quantum system, I examine isolated systems that have

only normal spontaneous emission. I then show that intensity-intensity correlation

spectra, which depend directly on the density matrix of the system, can be used

detect whether transitions share a common energy level. This detection is possible

due to the presence of quantum interference effects between two transitions if they are

connected. This effect allows one to asses energy level structure diagrams in complex

atoms/molecules.

By placing an open quantum system near a nanoparticle dimer, I show that the

spontaneous emission rate of the system can be changed “on demand” by changing

the polarization of an incident, driving field. In a three-level, Λ system, this allows

a qubit to both retain high qubit fidelity when it is operating, and to be rapidly

initialized to a pure state once it is rendered unusable by decoherence. This type

of behaviour is not possible in a single open quantum system; therefore adding a

classical system nearby extends the overall control space of the quantum system.

An open quantum system near identical neighbours in a dense ensemble is

another example of how the accessible state space can be expanded. I show that a
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dense ensemble of atoms rapidly becomes disordered with states that are not directly

excited by an incident field becoming significantly populated. This effect motivates

the need for using multi-directional basis sets in theoretical analysis of dense quantum

systems. My results demonstrate the shortcomings of short-pulse techniques used in

many recent studies.

Based on my numerical studies, I hypothesize that the dense ensemble can

be modelled by an effective single quantum system that has a decoherence rate that

changes over time. My effective single particle model provides a way in which com-

putational time can be reduced, and also a model in which the underlying physical

processes involved in the system’s evolution are much easier to understand. I then use

this model to provide an elegant theoretical explanation for an unusual experimen-

tal result called “transverse optical magnetism”. My effective single particle model’s

predictions match very well with experimental data.
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direction (a, b, c - ŷ) and a non-principle direction (d, e, f - x̂) in a 10

nm nanosphere of atoms at times (a/d) 10 fs, (b/e) 100 fs and (c/f) 250

fs. Populations are evaluated using a 1 nm grid and are illuminated

with a constant field intensity of E=1.5 × 109 V/m. The system has

degenerate energy level spacings in the x, y and z direction of 1 eV

and a number density of 4 × 1027 atoms per cubic metre. The beam
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for a 10 nm radius nanosphere of atoms with lower energy off-resonant

excitation. Populations are evaluated using a 1 nm grid and are illumi-

nated with a constant field intensity of E=1.5× 109 V/m. The system

has degenerate energy level spacings in the x, y and z direction of 1 eV

and a number density of 5× 1027 atoms per cubic metre. . . . . . . 63

4.7 Spatially averaged excited state populations in the x̂, ŷ and ẑ directions
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Chapter 1

Introduction

Controlling the dynamics of quantum systems (quantum control [1, 2, 3]) is essential

for various applications such as coherently populating specific atomic or molecular

eigenstates [4], causing atomic gases to become selectively transparent to specific

wavelengths of light [5] and performing computational logic operations on groups of

atoms [6, 7]. In all of these applications, the quantum system has a negligible or

constant interaction with its environment. The overall effects of these external in-

teractions can be modelled by one or more constant decoherence rates (γ) [8]. In

theoretical calculations, the assumption that the environmental interaction is negli-

gible or constant greatly simplifies the complexity of a system and how to control its

behaviour. In this work, I explore the effects of time-dependent decoherence rates,

with these we can extend the overall quantum control space, and find novel ways to

exploit decoherence-dependent processes.

As the behaviour of any quantum system is often considered to be entirely de-

pendent on its instantaneous state (the Markovian assumption [9]), the quantum

dynamics of the system, including environmental interactions, must depend on the

eigenstates of the Hamiltonian, and their superposition. Therefore, the dynamics of

the quantum system must be investigated in the time-domain since the state of the
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system and that of the environment change over time [10, 11, 12]. This is particularly

important when the interaction with the environment is time-dependent. The time-

dependent environmental interaction increases the overall number of possible process

“knobs” that we can use for quantum control.

Coherent control of quantum systems is typically applied through the use of pre-

cise, pulsed-laser excitations which can drive specific transitions, and change the state

of the system from one superposition of eigenstates to another [13, 14]. By properly

timing and shaping these laser excitations, the system can ideally be driven to almost

any state desired [15, 16].

There are, however, many factors that can affect how atoms respond to external

stimuli, which complicates this external form of control. This is true in both aggre-

gate and individual systems; these systems can have multiple quantum transitions

connected by shared levels, and these transitions do not respond independently of

one another [17, 18, 19]. In these types of systems, purely quantum effects arise due

to the interference between different transitions. This requires us to apply control

techniques to a system as a whole, as opposed to viewing the system as a series of

independent transitions [20].

1.1 Dissertation Overview

The control of a quantum system is a vast area of research in the field of quantum

control [12, 21]. In this dissertation, I present the results from a series of theoretical

investigations on the control of several classes of quantum systems, wherein quan-

tum systems undergo laser-excitation in the presence of decoherence and dissipation.

These investigations have been organized into four main sections based on increasing

complexity in the type of environmental interaction influencing the evolution of the

quantum systems.
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• Firstly, I look at the control of a single open quantum system with negligible

or constant environmental interactions.

• Secondly, I look an open quantum system that interacts with a nearby classical

system. The quantum system’s environment is spatially non-uniform; however,

the environment does not have an explicit time-dependence.

• Thirdly, I examine a quantum system interacting with a number of identical

quantum systems. The environment of a single one in the ensemble is fully

quantum mechanical in nature. In this case, the decoherence rates of a single

system could be time-dependent.

• Lastly, I propose a model for evaluating the behaviour of a dense ensemble of

quantum systems using single-particle techniques. This model is significantly

faster to implement computationally than the multi-particle model, and pro-

vides a greater understanding of the underlying physics involved. I then use

this model to provide a simple explanation for an unusual experimental effect.

1.1.1 Control of a Single, Open Quantum System

In Chapter 2, I investigate an open quantum system exposed to an incident elec-

tromagnetic field. In these systems, quantum interference effects occur between con-

nected transitions and complicated the evolution of the system’s state. These interfer-

ence effects have been both theoretically predicted and measured [22, 23, 24, 25, 26];

however, they have largely been used with the “two-photon resonance” condition to

show effects such as correlated and anti-correlated spectra in pairs of transitions.

By extending past this resonance condition and by modelling the system’s state

evolution in time, I show that small changes in the detuning of pairs of quantum

transitions can be used to easily determine the connectivity of these transitions in

the overall quantum system. I predict that by experimentally measuring the two-time
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intensity-intensity correlation function [27] as a function of the detuning of a single

quantum transition, one can detect the presence of connected transitions. This serves

as a simple, direct way of confirming energy level diagrams in complex systems. In

addition, this method could also be used to track real-time changes in state energy-

levels due to ambient interactions.

1.1.2 Control of an Open Quantum System Interacting with

a Nearby Classical System

In Chapter 3, I investigate how the asymmetric enhancement of the decoherence

rate of a quantum system can be used to increase the usable “uptime” of quantum

information systems by reducing the required “cooling” time in which the system

is allowed to spontaneously decay back down to the ground state. This rapid state

initialization is another of the main requirements for the practical implementation of

quantum computers [28]; however it is largely neglected due to the greater difficulty

in obtaining qubits with long lifetimes. As such, my improvement scheme presents a

significant advance over typical qubit enhancement schemes [29, 30, 31, 32, 33] which

all attempt to reduce the overall decoherence of the system.

Practically, this asymmetric decoherence enhancement is obtained when the quan-

tum system (such as an atom or molecule) is placed next to a metal nanoparticle

dimer. This dimer is a nano-scale plasmonic system that is capable of greatly en-

hancing local fields and spontaneous decay rates [34, 35]. Metal nanoparticle dimers

are highly ‘tunable’ in the sense that the wavelengths of light that they enhance can

be changed by changing the size and spacing between the particles in the dimer [36].

For this system, the dimer structure creates a directionally-asymmetric, decoherence

rate enhancement for a proximate radiating dipole. This asymmetry makes it possi-

ble to change the decoherence rate of the system by changing the polarization of the

driving electromagnetic fields. This allows field-polarization to become a control pa-
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rameter. Using this effect, I have proposed a novel way of changing the spontaneous

emission of a system “on demand”. The field-polarization can also affect the purity

of the quantum system, which is a useful metric that serves as an indicator of qubit

quality [30].

For this investigation, I have left the choice of quantum system general to allow

for experimental freedom. These solid state quantum systems could take the form of

semiconducting quantum dots [37, 38, 39], or Josephson junctions [40, 41]. Although

we have used a nanoparticle, the nearby classical system could be also be a cavity [42,

43, 44, 45] or photonic crystal [46] as along as the system is capable of asymmetrically

enhancing a quantum system’s spontaneous emission rate.

1.1.3 Evolution of Dense Quantum Ensembles

In Chapter 4, I examine the control of systems in which the behaviour of a quantum

system depends on its environment, which can also be a quantum system. Developing

techniques for evaluating the quantum response of nanoscale systems has become an

important, recent area of investigation as quantum-based optical effects allow for the

design of systems with unique properties [47, 48, 49].

Recent large-scale simulations for low-intensity systems have shown that inter-

atomic interactions can induce transparency [48], shift resonance absorptions un-

usually in cold dense gases [50, 51], modify spontaneous emission rates [52] and

decoherence rates [53] and overall scattering processes [54, 55]. However, as these

simulations all occur at low-intensity, they largely neglect the overall evolution of the

systems quantum state and may not be able to accurately capture spontaneous emis-

sion based effects or inelastic scattering [47]. In addition a number of these studies

use approximations, such as short pulse-methods [55, 49] and quantum basis sets that

only excites along a single field polarization direction [48, 49], which I show, are not

universally applicable for systems that are strongly driven and/or have high amounts
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of decoherence.

As such, I investigated the quantum optical response of nanoscale quantum sys-

tems to more intense incident fields, longer timescales and with a multi-directional

state basis. The study of this type of system requires the implementation of a new

methodology in which quantum evolution and electromagnetic field propagation are

solved concurrently. This type of investigation allows for the direct testing of com-

putational assumptions that are typically used in the literature.

This work was also motivated by the potential application of dense quantum

systems to enhancing the response of solar cells to solar radiation. This would take

advantage of a strong, coherent Lorentz-Lorenz shift [56] to increase the absorption

of incident infra-red radiation around quantum nanostructures. The interactions

with nanostructures would change the energy of these infra-red photons to above

the bandgap of silicon and allow them to produce photoelectrons. A preliminary

calculation was promising; however the effect decoheres rapidly (≈200 fs) and becomes

unusable for solar cell applications. This strong decoherence rate in dense collections

of quantum systems motivated my more in-depth theoretical study of how dense

collections of quantum systems behave under a control field.

Firstly, my analysis shows that the use of restricted, uni-directional basis sets [48]

can lead to incorrect models of the behaviour of dense atomic systems under external

fields. These models do not take into account the “leakage” of state population into

states not directly excited by the control field. My analysis uses three-directional basis

sets, which allows this leakage to be observed. I have used this analysis to provide a

method for determining the rate of this leakage effect by observing an order-disorder

transition. Without higher-directional basis sets, the leakage effect is intrinsically

neglected, and the accuracy of the theoretical model is reduced. This requirement

for high-directional basis sets is similar to how Ising models in statistical mechanics

have phase transitions that scale quite differently in higher dimensions [57, 58].
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Secondly, my analysis indicates that the “short-pulse” method (using a fs pulse

to approximate continuous scattering amplitudes) used in classical electrodynamics

calculations [59, 47] of scattering does not translate to applications involving dense

collections of quantum emitters. Since these dense systems appear to develop a very

strong decoherence rate, the “short-pulse” method greatly overestimates the effects

of coherent scattering this these systems.

1.1.4 Effective Single Particle Model of the Evolution of a

Dense Quantum Ensemble

In Chapter 5, I use my investigations into the dynamics of a dense collection of quan-

tum emitters to suggest that a single quantum system model with modified decoher-

ence terms could be used to approximate the behaviour of the dense ensemble. In

this model, the decoherence rates are dynamic (i.e. they change over time) since they

depend on the ensemble state of the quantum system itself (as opposed to depending

on only the environment). This simplified model allows the computational time of

simulations to be greatly reduced, and it allows the underlying physical processes to

be more clearly understood. This is useful as it allows for the rapid prediction of

quantum-based optical effects in strongly-driven, dense systems which can allow for

the design of systems with unique optical properties.

In addition, this model provides a theoretical explanation for an unusual exper-

imental result called “transverse optical magnetism” [60, 61, 62]. In these experi-

ments, a strong ultrafast pulse is scattered off a liquid (such as H2O, CCl4), and the

transverse scattered light is observed to have rotated polarization. The theoretical

explanation provided by the experimentalists [60, 61, 62] is controversial, and there

is debate as to the origin of this effect [63, 64, 65, 66, 67]. My analysis, incorporating

state leakage and molecular interactions, provides a simple and elegant model that

reproduces the features of the experiment. This analysis also explains why this effect
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is only seen in pulsed excitations with high intensities [60].

1.1.5 Appendices

In order to increase the clarity and readability of this thesis, the majority of de-

tails of standard techniques and technical implementations have been moved to the

Appendices.
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Chapter 2

Control of an Individual, Open

Quantum System

At the simplest level, individual quantum systems can be studied based on their inter-

action with incident, external fields. This is done by assessing how the applied fields

appear in the system’s Hamiltonian and by accounting for any inherent decoherence

present in the system. In order to do this, I will be operating under the assumption

that the incident fields perturb the quantum system.

2.1 Spectroscopic Detection of Couplings Between

State Transitions

Spectroscopic methods are frequently used to experimentally determine energy level

spacings and detect changes in them. However, simple spectroscopic measurements

typically monitor the behaviour of transitions individually, and therefore cannot pro-

vide a complete picture of the energy level structure of the system in question. How-

ever, it is possible to use more complex spectroscopic methods to provide a more

complete picture of the system’s quantum structure by searching for quantum inter-
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ference in Rabi frequencies between pairs of transitions. As these effects only appear

if a pair of transitions share a common energy level, these effects can be used to detect

coupled transitions. This allows for the direct construction of energy level diagrams

without requiring any previous information about the quantum system’s inherent

properties and therefore could be useful in analyzing complex atoms/molecules. It

also serves as a simple, direct way of confirming energy level diagrams in complex

systems.

In Ref. [68], Huang et al. have shown that in zero-detuned (resonantly excited)

systems, correlation spectra reflect fundamental quantum characteristics such as the

amount of spontaneous decay. Other calculations and experiments [22, 23, 24, 25,

26] have used the “two-photon resonance” condition, where the detunings of both

transitions are equal, to show effects such as correlated and anti-correlated spectra.

In this chapter, I calculate the two-time intensity-intensity correlation spectrum from

a driven three-level quantum system in the Λ configuration as a function of changes in

the detuning of both transitions. I show that quantum interference effects and energy

level changes in a three-level fluorescent atom/molecule can be directly detected by

monitoring the two-time intensity-intensity correlation spectrum of the molecule when

driven by an electromagnetic field since this correlation is directly reflective of state

populations [68].

The theoretical model is described in Section 2.2. In Section 2.3, I analytically

show that for a three-level system where the two detunings are not equal, and if

the decay rate is small relative to the Rabi frequency, the two-time intensity-intensity

correlation spectrum shows a three-peaked structure. I also provide a general method

and specific examples of how this can be predicted both numerically and analytically.

Changes in the detunings cause significant and quantifiable changes to the loca-

tion of the spectral peaks and this only appears when the transitions share a common

level and interfere. This suggests a spectroscopic protocol for detecting the connec-
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tivity of energy level transitions in complex atoms. This method shares similarities

with Raman scattering in that it examines light emission from molecular transitions

that may not be directly excited by photons of the same wavelength. However, un-

like Raman scattering, this correlation spectrum measures only the time-dependent

intensity of photons being emitted from a particular transition.

In Sections 2.4 and 2.5, I use numerical calculations to show that for experimental

conditions in typical quantum optics studies [69], where one transition is on resonance

and the other detuning is swept through the resonance, the expected three-peaked

structure will be degraded by significant decoherence to the point at which only one

peak is visible. In Section 2.6, I use this effect to provide experimental limitations

that would need to be considered in order to develop this protocol into a practical

sensor.

2.2 Theoretical Model

I model the atom/molecule as a three-level quantum system with bare energy eigen-

states |0〉, |1〉 and |2〉 as shown in Figure 2.1. This quantum system is driven by

electromagnetic waves that excite each transition; they have angular frequency ωL

with amplitudes that vary in time as E(t) = Eicos(ωit). I assume that these fields

are polarized entirely along the direction of the system’s transition dipole. I also

assume that the |0〉 → |2〉 transition is forbidden.

The Hamiltonian of the three-level quantum system, driven by an electromagnetic

wave with the field-matter interaction of the system treated in the electric-dipole

approximation, is described by H = Ha + Σiµi ·E(t), where Ha is the Hamiltonian of

a three-level system, µi is the transition dipole moment of the transition with ground

state |i〉 and E(t) is electric field of the wave interacting with the system. By applying

the rotating wave approximation (RWA, see Appendix [A]), the matrix form of the
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Figure 2.1: Schematic of the model three-level Λ system. The two transitions of the Λ
are driven by the fields with Rabi frequencies Ω0 and Ω2 respectively.. The detuning
of the incident field from each of the transitions (∆0 and ∆1) are not equal in general.

12



Hamiltonian can be written in the interaction picture as:

HRWA =


−~40

~Ω0

2
0

~Ω0

2
0 ~Ω2

2

0 ~Ω2

2
−~41

 , (2.1)

where 4i represents the detuning between the incident field and the state transition

frequencies. The Rabi frequency, Ωi = µiEi, depends on the amplitude of the incident

electric field component parallel (Ei) to the dipole moment of the transition (µi).

In order to study the time-dependent response of the system to both the environ-

ment and the incident electromagnetic wave, a density matrix representation of the

system’s state is used. This density matrix ρij(i, j = 0, 1, 2) evolves in time according

to the Lindblad-von Neumann equation which takes the form:

ρ̇ = − i
~

[HRWA, ρ]− L(ρ). (2.2)

In this evolution equation, the Lindblad superoperator, L(ρ), models the decoherence

in the system. This term is linear in the state density operator and is of the form:

L(ρ) =
∑
d=0,2

γd
2

(σ†dσdρ+ ρσ†dσd − 2σdρσ
†
d). (2.3)

In this equation, σd are the Lindblad operators, and I assume that the only de-

coherence mechanism present is spontaneous emission. γd represents the decay or

spontaneous emission rate from the excited state to the ground states and therefore

σ†0 = |0〉 〈1| and σ†2 = |2〉 〈1|. Spontaneous emission between |0〉 and |2〉 is not allowed

by selection rules.

In the case of general spontaneous emission between levels (|i〉 → |j〉),

σd = σij = |j〉 〈i| . (2.4)
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Using this operator, one can evaluate all the terms in the Lindblad superoperator:

σ†ijσijρ = |i〉 〈i|

[∑
a

∑
b

ρab |a〉 〈b|

]
=
∑
a

∑
b

ρab |i〉 〈b| δia, (2.5)

ρσ†ijσij =

[∑
a

∑
b

ρab |a〉 〈b|

]
|i〉 〈i| =

∑
a

∑
b

ρab |a〉 〈i| δib, (2.6)

σijρσ
†
ij = |j〉 〈i|

[∑
a

∑
b

ρab |a〉 〈b|

]
|i〉 〈j| =

∑
a

∑
b

ρabδibδia |j〉 〈j| . (2.7)

Combining all these terms, one can write down a general expression for matrix

element Lmn for N total energy levels,

L̂mn =
N∑
j

(
γmj
2

+
γnj
2

)ρmn − 2δmn

N∑
i

γin
2
ρii. (2.8)

To determine the fluorescence spectrum, I introduce a two-time correlation func-

tion that evaluates the correlation between the intensity being emitted from a transi-

tion with lower level |i〉 at time t, with the intensity being emitted from a transition

with lower level |j〉 at time t+τ . Using the quantum regression theorem [68], this cor-

relation function is expressed in terms of the steady-state populations. A normalized,

ensemble-averaged, correlation function is defined [68] as:

Gij(τ) =
〈: Ii(t)Ij(t+ τ) :〉
〈|i〉 〈i|〉 〈|j〉 〈j|〉

, (2.9)

where 〈::〉 denotes time ordering. For the fluorescent transition |1〉 → |2〉 correlated

to itself, this function takes the form [68]:

G22(τ) =
〈: I2(t)I2(t+ τ) :〉
〈|1〉 〈1|〉 〈|1〉 〈1|〉

=
P2→1(τ)

P1

, (2.10)

where P2→1(τ) represents the matrix element ρ11(τ) with initial condition ρ22(τ =

0) = 1 and P1 is the steady state population in |1〉. Basically, this assumes that at
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time t, the system has just emitted a photon from the |1〉 → |2〉 transition, resulting

in ρ22(τ = 0) = 1, and the likelihood of the system to emit another photon in the

same transition (P2→1(τ) = ρ11(τ)) is tracked. From this correlation function, the

correlation spectrum G22(ω) can be determined via a Fourier transform. The results

of these spectra are then scaled to the Rabi frequency [see Appendix B].

2.3 Effect of Detuning on the Correlation Spec-

trum

When evaluating the time evolution of multi-level quantum systems, the state of the

system oscillates with multiple frequencies due to the fact that coupled transitions

interfere with one another. Therefore, in order to predict these couplings, one needs

to look at the entire matrix interaction. These specific oscillations will only show up

if two transitions are coupled by a common energy level.

If the system is in a nearly pure state, these oscillation frequencies can be predicted

by looking at the eigenvalues (λj) and normalized eigenstates |φj〉 (dressed states) of

the RWA Hamiltonian. This is due to the fact that if the decoherence is low (γd → 0)

and the state is pure, the density matrix with the wavefunction in the eigenbasis can

be expressed as:

ρ = |Ψ〉 〈Ψ| =
∑
j,k

cjc
∗
kexp(−i(λj − λk)t/~) |φj(0)〉 〈φk(0)| . (2.11)

If the RWA Hamiltonian is constant in time, the only possible time-dependent

frequencies that can be seen are those that arise from the nonzero differences in the

eigenvalues (λi) of the RWA Hamiltonian:

ωij =
∑
j,k

(λj − λk)
~

. (2.12)
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While these are the only frequencies that are possible, it is also possible to not

observe these oscillation frequencies if the eigenvector element of |φj〉 or |φk〉 is zero.

For example if:

|φj〉 =


0

1√
2

1√
2

 , (2.13)

then no Rabi oscillation for frequencies involving λj will ever be seen in matrix ele-

ments ρ0i or ρi0 due to |φj〉 〈φk| having zero amplitude for that density matrix element.

The correlation spectrum of a three-level Λ system that has both transitions on

resonance with an incident electromagnetic field will have a single peak observed at

ω4=0 =
√

Ω2
0 + Ω2

2 [68]. This effect is understood by the presence of the zero-energy

“dark state” that does not couple to the excited fluorescing level. Thus, the only

frequency observed in the correlation spectrum is that of the transition between the

other two dressed states of the Hamiltonian. For the same reason, when a three-level

Λ system is driven with both transitions at the same detuning (the so-called “two-

photon resonance condition”), only a single peak will be observed in the correlation

spectrum.

When the two detunings are not equal to each other (∆0 6= ∆1), there is no

dark state in the dressed state picture. Therefore I expect to see three peaks in the

correlation spectrum as shown by the numerical calculations in Fig. 2.2. Detuning

∆0 is kept equal to Ω, while ∆1 is swept from zero to 2Ω. The three-peaked structure

of the correlation spectra changes to a single-peaked structure at the two-photon

resonance condition ∆0 = ∆1 in which there is a zero eigenvector element.

For a three-level system with negligible decay, the oscillating frequencies of the cor-

relation peaks can be evaluated analytically by finding the eigenvalues of the dressed

RWA Hamiltonian:
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Figure 2.2: Intensity-intensity correlation spectra for varying values of detuning 41

with Ω0 = Ω2 = Ω. The detuning40 is kept fixed at a value of 1.0 Ω. The spontaneous
decay rate from the excited state is low with γ/Ω = 0.01.

λ3 + (40 +41)λ2 − (4041 +
Ω2

0

4
+

Ω2
2

4
)λ− 1

4
(40Ω2

2 +41Ω2
0) = 0. (2.14)

The differences between the eigenvalues of the dressed Hamiltonian determines the

location of the peaks in the correlation spectrum. Since the equation is cubic, there

are three eigenstates. Transitions between all three pairs of eigenstates are allowed,

hence it is possible to observe three peaks if there exists a non-equal detuning of both

transitions. In the case of equal detuning, the presence of a dark state (eigenvector

with a zero element) prevents the three-peaks from being observed, and only one peak

is observed.

The deterministic location of the peaks in the correlation spectra as a function of

the two detunings suggests a practical application. If the peak frequencies in the two-

time intensity-intensity correlation spectrum are measured, those peak frequencies

can be used to infer whether transitions are connected and extract the values of both

detunings if one knows the strengths of the Rabi frequencies of each transition.

To illustrate this practical application, I look at a simplified case that assumes
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Figure 2.3: Intensity-intensity correlation spectra of a fluorescent transition in a Λ
system for various values of 41 for 40 = 0. Both transitions are driven by the same
Rabi frequency Ω. The rate of spontaneous decay is low with γ << Ω.

that Ω0 = Ω2 = Ω and 40 = 0, but ∆1 can change away from 0. If one of the

detunings (say ∆0) is on resonance, and the other detuning (∆1) is not, I expect to

see the three peaks in the correlation spectrum shown by numerical calculations in

Fig. 2.3. To estimate the positions of the spectral peaks, Eq. 2.14 is simplified to:

λ3 + (41)λ2 − (
Ω2

2
)λ− Ω2

4
(41) = 0 (2.15)

and the differences in the dressed state eigenenergies are calculated.

If41 = 0, then λ1 = − Ω√
2
, λ2 = 0 and λ3 = Ω√

2
and the corresponding eigenvectors

are |φ1〉 = (1,−
√

2, 1), |φ2〉 = (−1, 0, 1) and |φ3〉 = (1,−
√

2, 1). Therefore the

allowed possible real frequencies are ω12 = |λ1 − λ2| = Ω√
2
, ω23 = |λ2 − λ3| = Ω√

2
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and ω13 = |λ1 − λ3| =
√

2Ω. However in G22(τ), which depends on density matrix

element ρ11, ω12 and ω23 will not show up in the spectrum because |φ2〉 contains a

zero component for |1〉. This yields a single peak in Fig. 2.3.

If 41 = 1, then λ1 ≈ −1.2406Ω, λ2 ≈ 0.5850Ω and λ3 ≈ −0.3444Ω and the

corresponding eigenvectors are |φ1〉 ≈ (0.1939,−0.4811, 1), |φ2〉 ≈ (2.7092, 3.1700, 1)

and |φ3〉 ≈ (−1.9032, 1.3111, 1). Therefore the allowed possible real frequencies are

ω12 = |λ1− λ2| = 1.8256Ω, ω23 = |λ2− λ3| = 0.9294Ω and ω13 = |λ1− λ3| = 0.8962Ω.

As none of the eignevectors contains zero elements, all three interference peaks will

be observed. This yields the triple peak structure in Fig. 2.3.

If the time dependance of G22 is measured in an experimental system, and the

frequencies in the signals extracted, the detuning 41 can then be calculated in units

of the Rabi frequency Ω.

2.4 Effect of Spontaneous Emission on the Corre-

lation Spectrum

The above discussion and analytic results are based on the assumption that sponta-

neous decay processes are small in magnitude relative to the driven Rabi oscillations,

and do not contribute significantly to the observed spectra. However, for most real

systems, spontaneous decay is present and may impact the spectra that can be ob-

served. Previous work on resonantly-driven 3-level ladder systems [68] has shown

that the presence of significantly strong decay can modify the observed spectra by

the inclusion of additional peaks. Therefore I investigate how spontaneous decay can

affect the observed intensity spectra in our non-resonantly driven, 3-level Λ system.

For the example system in which Ω01 = Ω12 = Ω and 40 = 0, assuming that

both transitions experience the same level of spontaneous decay γ, I find that the

inclusion of spontaneous decay does not add new correlation frequencies as it does in
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Figure 2.4: Intensity-intensity correlation spectra for increasing amounts of sponta-
neous decay γ with fixed detuning 41 = Ω

2
, and 40 = 0. As the rate of spontaneous

decay increases, the peaks broaden and become less distinguishable.

the three-level ladder system [68]. In fact, under low amounts of spontaneous decay,

the transitions observed are the same as those analytically predicted from Eq.2.14.

However, when the decay becomes significantly strong, I observe a broadening in the

correlation peaks which may obscure or merge some peaks that are closely spaced. In

addition, the high rate of spontaneous decay can also obscure correlation peaks that

are at low frequencies due to the system quickly reaching a steady state.

These effects can be seen in the plots below in Fig. 2.4 in which the intensity-

correlation spectra are plotted for varying amounts of spontaneous decay. In all

cases, the presence of significant decay serves to broaden the peaks observed. For the

case of fairly high decay (γ/Ω = 0.10), the inclusion of this decay broadens the peaks

to a point at which only two of the three peaks are visible.

2.5 Effect of Dephasing on the Correlation Spec-

trum

In order to further examine the effect of realistic experimental conditions on the

spectra, I can also examine how finite-line width or dephasing can affect the measured
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Figure 2.5: Intensity-intensity correlation spectra for increasing amounts of dephasing
δd = δ0 = δ2 with fixed detuning 41 = Ω

2
, and 40 = 0 as well as fixed spontaneous

decay (γ = 0.01Ω) . As the rate of spontaneous decay increases, the peaks broaden
and become less distinguishable.

two-time correlation spectra. In order to examine this, dephasing elements are added

to the Lindblad matrix of the form:

Ld =


0 δ0ρ01 (δ0 + δ2)ρ02

δ0ρ10 0 δ2ρ12

(δ0 + δ2)ρ20 δ2ρ21 0

 , (2.16)

where δi is the dephasing of the transition with ground state |i〉. If I take a look

at the case in which the two dephasings are equal, I observe that the main effect of

dephasing is similar to that of high spontaneous decay. By including dephasing in

my calculations, the peaks in the spectra are broadened.

2.6 Potential Application of this Method

Since Equations 2.12 and 2.14 are directly dependent on the detuning of the various

energy levels and requires the transitions to be optically connected, this indicates

that the intensity correlation spectrum can be used to determine the overall energy
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level structure of a complex atom directly. If a pair of transitions is driven, quantum

interference effects will only be present if the two levels share a common state. This

effect is useful as it is an interaction that can be observed experimentally with no

need to understand the underlying properties of the states in question.

As the overall process is time-dependent, it could also form the basis for an in-

teraction detection method. If the two-time intensity-intensity correlation spectrum

were to be continuously monitored for a target transition in a three-level system, any

changes that occur in the spectrum could be used to determine if any of the energy

levels have changed in real time. This would indicate that an interaction has taken

place, although there are many alternate ways of doing this [70, 71]. The position

of the peak frequencies can then be used to extract the detuning/level shift informa-

tion from the map of the expected peak frequencies in the correlation spectra due to

differing amounts of detuning in both levels.

The practical application scheme is limited by the peak broadening/obscuring

effect caused by significant spontaneous decay. In order for this method to yield

useful quantitative results, the decoherence in the system must remain fairly small

and should be driven by an electromagnetic field that is strong relative to the amount

of decay. However, by driving this system with a strong electromagnetic field, the

frequencies at which correlations are observed in the intensity-intensity spectra also

increase. These higher frequencies are much more difficult to measure and could pose a

problem experimentally. For example, if a system has a spontaneous decay time on the

order of nanoseconds, in order to track these intensity correlations, it would require

an experimental apparatus that can accurately measure time-dependent intensities at

picosecond time intervals. Therefore, one might look at quantum systems driven by

microwaves with upper-level decay rates of the order of a few microseconds to develop

the practical application.
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2.7 Summary

In this section, I have examined the control of a single open quantum system. For this

system, the state of the atom/molecule evolves directly according to the Lindblad-

Von Neumann master equation. Although an exact analytic solution for the quantum

states is not available, one can analytically predict both the steady-state of these dense

systems as well as the oscillating frequencies of the states.

By examining the frequencies in the second-order correlation spectra of three-

level systems, I show that the quantum interference effects between transitions could

be used to infer the energy level structure by testing whether or not transitions

are directly connected. Such a technique may be useful as it requires no previous

knowledge of the system and could be used as an ad hoc method of creating energy

level diagrams in complicated molecules.
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Chapter 3

Quantum Behaviour with a

Classical Environment

3.1 Motivation - Improving Qubit Preparation/Cooling

Times

The practical implementation of quantum computers [28] places two specific require-

ments on the lifetime of a quantum bit or a qubit, namely, long relevant decoherence

times, and rapid state initialization times. A great deal of recent research has been de-

voted to proposing solutions that minimize the overall spontaneous emission rate and

preserve system purity[29, 30, 31, 32, 33]. These decoherence-minimization processes

lead to longer effective qubit operational lifetimes, but decoherence will ultimately

render the qubit unusable due to loss of state purity. The simplest way to restore

system purity is to wait for the system to cool to a pure state, usually the ground

state.

Therefore for practical, reusable qubits, it is useful to design systems in which

the time to cool to the ground state is minimized [28]. This time is typically quite

long since the quantum state’s lifetime is selected to be very large with respect to the
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timescales of the control processes; i.e., the spontaneous emission rate is selected to

be quite low. Thus, the desires for long operational times and short cooling times of a

qubit place contradictory demands on the spontaneous emission rate of the quantum

excited state. There is a need for protocols wherein the spontaneous emission rate

of a quantum system can be selectively decreased so that long state lifetimes can

be maintained during operation, and upon demand, selectively increased so that the

cooling time can be drastically shortened in duration when qubit purity needs to be

restored.

Recent experiments have increased the spontaneous emission rate of a quantum

excited state by coupling the system to a nearby resonant structure such as a cavity

[42, 43, 44, 45, 72], photonic crystal [46] or nanoparticle [72] based on the Purcell

effect [73]. However, these studies have not been able to toggle a system between a

configuration where the spontaneous emission rate is low (for qubit operation) and

high (for qubit initialization).

Therefore I wanted to see if an environment could be designed that allows for

both high qubit fidelity and rapid state preparation. This necessitates including an

environment to dynamically modify the decoherence rates of the system in question.

In order to do this, I investigated whether or not a classical environment would be

capable of this effect in conjunction with a qubit. In this approach, only the quantum

state behaviour of the qubit in question is evaluated with the Lindblad-von Neumann

equation; the environment lacks a quantum state and only modifies parameters such

as decoherence rates in the evolution of the qubit state. For this type of pure state

preparation enhancement, a three-level qubit is required due to limitations inherent

in two-level systems (see Appendix C.2).
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3.1.1 Description of a Classical Environment

In what I call a classical environment, local structures that modify electromagnetic

fields are present, but they interact with electromagnetic fields either as classical

dipoles or by having a bulk index of refraction. In this type of environment, one

can also assume that the environmental elements have no state memory, and do not

display any quantum properties (such as electromagnetically induced transparency,

spontaneous emission or quantum interference between levels).

I also assume that the state of the quantum system does not significantly affect

local field intensities. This allows for the separation of the overall control calculations

into two separate parts: a classical field propagation calculation, and a quantum

evolution calculation.

The electromagnetic field calculations involve determining how fields propagate

through the environment, and how strongly the dipole transitions present in the

quantum system couple to this environment. These couplings allow us to modify our

control fields and decoherence rates with constant enhancement factors [34]. As these

control parameters are modified by the external environment, the input parameters

of the quantum control calculation are also modified. In addition, the specific type

of environment I choose to examine (noble metal nanoparticles) acts as a resonator

with respect to the quantum system. The specific properties of this resonator depend

on its size, shape and composition.

3.1.2 Effect of a Noble-Metal Nanoparticle on a Quantum

System

One of the most effective environments for modifying quantum behaviour are nanoplas-

monic environments [74]. The simplest of these environments consist of array of

noble-metal nanoparticles placed onto a surface [75, 76]. As these nanoparticles are
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sub-wavelength in size, the atomic electrons located inside them are able to collec-

tively oscillate in phase with one another. This collective oscillation, referred to as

a localized surface plasmon oscillation, leads to greatly enhanced local electric field

intensities and strong decay modes being created around the nanoparticles at specific

resonance frequencies [77]. Localized surface plasmon resonance (LSPR) is a common

detection technique that uses this effect to evaluate adsorption of various objects onto

nanoscale surfaces by looking for changes in this resonance [78, 79].

When a noble metal nanoparticle is illuminated by a broadband electromagnetic

field, the evanescent field around the metal surface is intensified at the localized

surface plasmon wavelength [80]. When a dipole emitter is placed near noble-metal

nanoparticle, the rate of dipole emission is enhanced due to the Purcell effect [73,

34, 35]. Thus when a noble-metal nanoparticle is placed near a resonantly-driven

quantum system, one expects the control field and the spontaneous emission rate to

be enhanced.

Of these two principal types of enhancement, the enhancement to the decoherence

rate is much more important in quantum control than the enhancement of the fields.

This is due to the fact that field intensities are external to the quantum system itself;

field enhancement can always be accounted for by adjusting the incident intensity.

However, the decoherence rate enhancement is usually intrinsic to the system itself

and is much harder to adjust.

One important thing to emphasize is that most standard methodologies assume

that the quantum system acts as a classical dipole emitter with a known driving

field intensity and frequency. This method is known to work fairly well for most

systems and is largely consistent with experiment [21]. However, it requires making

the assumption that the quantum state itself does not affect the coupling between

the system and the environment. I will show how the nanoplasmonic modification

of the spontaneous emission rate enables the rapid preparation of qubits without
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compromising qubit fidelity.

3.2 Theoretical Methodology

3.2.1 Electromagnetic Field Propagation

The propagation of fields through these environmental structures are evaluated by

solving Maxwell’s equations numerically. Although various techniques exist for solv-

ing this problem on the nanoscale, such as the discrete-dipole approximations (DDA)

[81], Mie theory [82] and diffraction optics, [83], in the time-domain one directly solves

Maxwell’s equations. As this solution involves calculating a propagation in time as

well as space, this involves concurrently solving the Maxwell-Faraday equation and

Ampere’s law in differential form,

∇× E = −µ∂H

∂t
, (3.1)

and

∇×H = ε
∂E

∂t
+ σE + J. (3.2)

In this work, a robust commercial solver (Lumerical [84]) has been used to calculate

the field evolution; this particular software operates using a finite-difference time

domain (FDTD) method. This method uses finite differences to evaluate spatial

derivatives.

Since this technique involves numerically modelling the time-evolution of electro-

magnetic fields in a coarse-grained solution space, it can be easily adapted to fit any

source or material inclusions. This simulation benefits from the ability to model ar-

bitrary structures using real-space coordinates but suffers from a strong dependence

on the size of the coarse-graining when compared to a basis function method such as
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Green’s theorem [85, 86, 87] or Mie theory [82].

After the fields have been propagated through the environmental geometry, the

electric fields are recorded at various real-space coordinates.

3.2.2 Electromagnetic Field Enhancement Around a Silver

Nanoparticle

The LSPR effect can be seen in Figure 3.1. Around noble-metal nanoparticles, there is

an enhanced field intensity due to the strong interaction between the incident field and

electrons in the metal particles. For these spherical metal nanoparticles, the strongest

field enhancement is along the polarization direction of the driving field and exists in

a dipole pattern. This enhancement is qualitatively similar to the increased electric

field enhancement that can be determined analytically by determining the electric

field distribution around a perfectly conducting nanosphere using a method of images

and a constant input field [88]. This similarity is due to both the high conductivity of

the noble-metals as well as the fact that, at the nanoscale, the entire metal nanosphere

experiences roughly the same electric field (i.e., the dipole approximation is valid).

However, unlike the perfectly conducting sphere, a real metal nanosphere has a

finite conductance, and is comprised of many oscillating bound electrons with nat-

ural oscillating frequencies [56]. This gives the area surrounding the nanoparticle a

spatially dependent enhancement profile (with material properties determined by a

Drude model [89]) that is tunable by modifying the size and material of the nanosphere

[78]. The tunability of electric field enhancement can be seen in Figure 3.2 for Ag

nanoparticles of varying radii at a distance of 10 nm from the nanoparticle’s surface.

These nanoplasmonic arrays can be further tuned in what frequencies they enhance

by changing the arrangement of the nanoparticles [76]. This is due to the fact that not

only does each nanoparticle produce its own field enhancement, these enhancement

modes are able to interfere with one another if the nanoparticles are close enough
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Figure 3.1: An xy plot of electric field intensities (|E| at 475 nm) for a ŷ polarizaed
wave travelling in the ẑ direction around a 20 nm Ag nanoparticle.

together. Tuning such an arrangement could be as simple as placing pairs of particles

differing distances apart [75]. Depending on the particle’s properties and the pair’s

inter-particle spacing, this arrangement could have an even greater effect on the field

enhancement around the nanoparticle array than a single particle [36].

The relatively high degree of tunability of these nanoplasmonic systems allows

them to be easily adopted to enhance most quantum systems that have transitions

in the optical range. This enhancement is also well-documented due to the use of

nanoplamsonics in enhancing solar cell efficiencies [90] and in surface binding detectors

[75].

3.2.3 Decay Rate Enhancement Around a Ag Nanoparticle

Initially, spontaneous emission rates for a single quantum transition are calculated

using Fermi’s Golden Rule. These rates are used to describe state evolution in the

Lindblad-von Neumann equation when the individual quantum system in question is

coupled to a photon state [21]. It is proportional to the third power of the transition

frequency and is of the form,
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γd,free =
ω3

0|µ|2

3πε0~c3
=
ω3

0| 〈g|µ̂|e〉 |2

3πε0~c3
, (3.3)

where ωo is the frequency of the transition and µ is transition dipole moment. This

equation assumes that the driving fields are on resonance with the transition, the

fields and decay rates are constant at all times and that the system is decoupled from

its environment.

However, when dealing with a system that can couple to external modes, it is

possible to modify this decay by assuming that the transitions in the system behave

as radiating electric dipoles. In this case, an approximate modified decay rate can be

calculated by comparing the power that is emitted from the system in its environment,

as compared to that same system in free space [34, 21]. Thus, the new decay rate can

be determined by [21],

Md =
γd

γd,free
=

Power

Powerfree
. (3.4)

In a classical environment, it is assumed that the transitions behave like classical

dipoles at all times. In this case, the transition can be modelled as an oscillating

electric dipole source, of frequency ω, and placed into the environment. The coupling

of this source to nearby environmental objects is then calculated to find the power

emitted by the transition [34, 35]. In the FDTD solver, this can be done by defining

a 3D surface enclosing just the dipole, and by calculating the Poynting vector along

the surface:

S(r, ω) =
1

µ0

E(r, ω)×B(r, ω). (3.5)

The power emission leaving through this surface (with a defined area vector A)

is calculated as,
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Power =

‹
A

S(r, ω) · dA. (3.6)

This power emission is then compared to the power emission of a classical dipole to

determine the decay enhancement factor, as a function of frequency, using Equation

3.4. This effect of a proximate noble-metal nanoparticle was used to examine the

possibility of surface-enhanced state purification with two-level systems and details

of that investigation (and its inherent limitations) are included in Appendix C.

The fact that the decay enhancement is dependent on the dot product (µ · E)

indicates that the polarization of the transition dipole of a driven state can be used

to selectively enhance its decoherence rate. This effect should allow for polarization

control of decoherence if the system is placed next to an asymmetric environment. I

will therefore use this to propose a system in which rapid state preparation can be

achieved in conjunction with high qubit fidelity.

3.3 Control of a Quantum System between two Sil-

ver Nanoparticles

I now propose a scheme to enhance the spontaneous emission rate of a quantum state

“on demand”, so that quantum states can be rapidly initialized (so-called “rapid re-

set”) without shortening their operational lifetimes. In this scheme, a quantum system

(such as a quantum dot) is placed in between a pair of noble-metal nanoparticles, and

controlled by a linearly polarized electromagnetic wave that propagates perpendic-

ularly to the interparticle axis. The local surface plasmon resonance phenomenon

and the accompanying enhancement of the local field around noble-metal nano struc-

tures is well-known[80, 75, 76]. It is also well-known that the spontaneous emission

rate of a quantum emitter in the middle of two Ag nanoparticles is enhanced and is
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strongly frequency dependent, thus applied to surface-enhanced fluorescence [91, 35].

It is less well-known that the modification of the spontaneous emission rate due

to the weak coupling to the surface plasmon modes exhibits a strong dependence

on the polarization of the incident light [21, 92]. In the scheme I describe below,

changing the polarization direction of the electromagnetic wave from perpendicular-

to-the-interparticle-axis to parallel-to-the-interparticle-axis changes the spontaneous

emission rate of a quantum emitter at a particular wavelength from very low to very

high. This effect can be used to develop a protocol wherein one of the arms of a

three-level Λ system (3LLS) can be used as a qubit that has a long coherence life-

time during the operational mode, and quickly reset to a pure state when the qubit

becomes unusable due to decoherence.

In my calculations, a radiating dipole (modelling a quantum dipole transition in

a qubit) is placed equidistantly between two spherical Ag nanoparticles, of radius

r and surface-to-surface separation d as shown in the inset in Fig. 3.3a). The res-

onance spectra of these NPs can be tuned by changing their size and composition

[93], allowing for a wide variety of quantum systems to be used as a qubit platform.

I assume that the dipole is oriented by the polarization of an electromagnetic wave

that illuminates the nanoparticles. I examine two cases — firstly when the dipole is

oriented perpendicular to the interparticle axis (ẑ), and secondly when the dipole is

oriented parallel to the interparticle axis (x̂).

Fig. 3.3 shows the modification of (a) the local electromagnetic field and (b) of

the spontaneous emission rate of a quantum emitter placed in between two silver

nanoparticles when the electromagnetic wave illuminating the system is x̂-polarized

parallel to the interparticle axis (red, dashed line), and ẑ-polarized perpendicular to

the interparticle axis (blue, solid line). The radius of the nanoparticles is chosen

to be 20nm and the inter-particle surface-to-surface spacing as 12nm so that the

localized surface plasmon resonance frequency, calculated to be 370 nm, matches the
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transition frequency of the qubit. This frequency is similar to transition frequencies

found in ultraviolet quantum dots such as ZnO [94] and due to the tunability of

both the nanoparticle resonance and the qubit energy level spacing, such a frequency

choice serves as a good model to illustrate how polarization control can speed up

qubit initialization. I also assume that these systems have no inherent preferred

quantization axis.

The local electromagnetic field vector components (Ex, Ey, Ez) at the location of

the quantum emitter (halfway in between the nanoparticles on the interparticle axis)

due to the driving fields are calculated numerically by solving Maxwell’s equations

for different incident field polarizations. A commercial-grade simulator based on

the finite-difference time domain method was used to preform the calculations [84].

The optical response of the material is determined by fitting the Drude model using

experimental constants [89]. The magnitude of the incident electric field is assumed

to be E0 in both polarizations. I define a “field enhancement factor” ME,i = |Ei|/E0,

distinct from the intensity magnification factors usually reported in studies of surface-

enhanced processes. Figure 3.3(a) shows the field enhancement factors in the ẑ (blue,

solid line) and x̂ (red, dashed line) components of the field when the incident light is

polarized in the same (ẑ or x̂) direction. These two curves show that the presence of

the nanoparticles greatly enhances the field strength in the direction of polarization

of the incident light. Thus, the driven qubit is driven much harder (or the Rabi

frequency increases) due to the presence of the proximate nanoparticles.

The rate of spontaneous emission of the quantum emitter changes when placed

in between the two AgNPs. This change in the rate of spontaneous emission is cal-

culated by modelling the quantum emitter as a point oscillating dipole source. I

compare the power emitted by the point dipole source with (PNP ), and without the

nanoparticles (PNoNP ) [34] by solving Maxwell’s equations numerically [84]. The de-

cay enhancement factor Md is calculated as a ratio of PNP to PNoNP immediately
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Figure 3.3: (a) Field enhancements (ME,i = |Ei|/E0) and (b) decay rate modification
(Md = γ/γ0) of the quantum emitter placed halfway in between two silver NPs with
r = 20 nm and d = 12nm surface-to-surface separation for two different incident
polarizations. The blue, solid (red, dashed) curves corresponds to when the incident
field is perpendicular (parallel) to the interparticle axis. The two solid vertical lines
in (b) correspond to the maximum decay rate enhancement for the x̂ orientation ( 370
nm) and the largest relative ratio of decay rate enhancement, x̂/ẑ (≈420 nm).
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around the dipole source. This decay enhancement factor is also the ratio of the

spontaneous emission rate of the dipole emitter with the nanoparticles γ to the vac-

uum spontaneous emission rate γ0 [21]. The decay enhancement factor as a function

of wavelength is evaluated for two different orientations of the dipole; one in which

the dipole is perpendicular to the interparticle axis (ẑ) and the other in which it is

parallel to the interparticle axis (x̂), and presented in Fig.3.3(b). I see that at wave-

lengths near the qubit resonance, the rate of spontaneous emission of the quantum

emitter can be increased by switching from z to x polarization.

Thus the polarization of the driving field both modifies the Rabi frequency and

the spontaneous decay rate of the qubit transition parallel to it. Based on the above

analysis, the wavelength of the incident electromagnetic wave is chosen so that the

ratio of parallel decay rate (γx) to the perpendicular decay rate (γz) is maximized

(≈ 420 nm).

For a practical qubit implementation, I offer the following protocol:

Step 1: Consider a three-level quantum system in the ‘lambda’-configuration (3LLS),

with both ground states |g〉 and |c〉 being somewhat close in energy though not

degenerate. The lifetime of the excited state |e〉 is long enough for the quantum

system to be a good candidate for quantum information processing. This system can

then be placed in between two silver nanoparticles. The two ground states, |g〉 and

|c〉, are chosen as the qubit, and gate operations are carried out by a near-resonant

electromagnetic wave polarized in the ẑ-direction — perpendicular to the interparticle

axis. This allows the rate of spontaneous emission from the excited states, γge,z and

γce,z, to remain fairly low. Without loss of generality, one can assume that the ground

states are angular momentum j = 0 states, and the excited state is a j = 1 state,

thus the applied linearly polarized field transitively connects the |g, j = 0,m = 0〉

state with the |e, j = 1,m = 0〉 state.

Step 2: When the qubit becomes unusable due to decoherence, and the state needs
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to be initialized, the polarization of the incident electromagnetic wave is rotated by

45◦ to excite both along the ẑ and x̂ directions. Polarization selection rules create a

five-level system transitively connected as shown in Fig. 3.4. The z-polarized compo-

nents continue to connect the |g, j = 0,m = 0〉 and |c, j = 0,m = 0〉 states with the

|e, j = 1,m = 0〉 state, and the spontaneous emission stays low (blue, solid lines). The

x-polarized components connect the |g, j = 0,m = 0〉 state and |c, j = 0,m = 0〉 with

the |e, j = 1,m = ±1〉 states, and the spontaneous emission from the latter states are

high (red, dashed lines).

If the detunings of both transitions are kept equal ∆ge = ∆ce, a Morris-Shore [95, 96]

transformation shows that these transition dipole couplings put the 3LLS into a dark

state [97, 98], i.e., a superposition of the two ground states of the five-level system,

which is a pure state. Thus, regardless of the initial quantum state of the system, the

state can be rapidly reset into a pure state, i.e. the dark state.

Step 3: The rest of the qubit initialization can be completed by rotating the po-

larizations of the two electromagnetic waves perpendicular to the interparticle axis.

In this configuration, the spontaneous emission from the excited state |e〉 is low, and

population can be transferred coherently to the qubit ground state |g〉.

The speed of state initialization is determined by the time that it takes the system

to reach a steady state (the dark state) in Step 2. Although there are six different

decay rates (one for each transition in Fig.3.4), the overall time taken to reach the

dark state depends mostly on the fastest spontaneous decay constant, especially if

that decay time is much faster than the others. This means that if, due to the

presence of a plasmonic nanostructure, only one decay rate is enhanced greatly, the

entire preparation time will be reduced. In order to demonstrate this numerically, I

use the Hamiltonian (assuming that the upper levels are degenerate) in the rotating
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Figure 3.4: Polarization control scheme for rapid qubit initialization. Two applied
fields near resonant with the |g〉 - |e〉 and |c〉 - |e〉 transitions are linearly polarized in
the x−z plane. The z components of the field excite the blue (solid) transitions, while
the x components of the field excite the red (dashed) transitions. For preparation, the
Rabi frequencies of all transitions are high with respect to spontaneous decay rates.
The spontaneous emission rates of the operational (blue, solid) transitions, γge,z and
γce,z, stay low, whereas those of the preparation transitions (red, dashed), γge,x, and
γce,x, are greatly enhanced. The detunings are chosen to coherently trap the system
in a dark state.

39



wave approximation:

HRWA =



−~4ge
~Ωge,z

2

~Ωge,x
2

~Ωge,x
2

0

~Ω∗ge,z
2

0 0 0 ~Ωce,z
2

~Ω∗ge,x
2

0 0 0 ~Ωce,x
2

~Ω∗ge,x
2

0 0 0 ~Ωce,x
2

0
~Ω∗ce,z

2

~Ω∗ce,x
2

~Ω∗ce,x
2

−~4ce


; (3.7)

If the detunings of the applied fields from the two transitions are equal to each

other (4ge = 4ce), the population will be coherently trapped in the dark state. I

assume that ratio of the Rabi frequencies of the driven transitions are equal to each

other, i.e., Ωe,x
Ωe,z

= Ωc,x
Ωc,z

. The rapidity with which the system reaches a ground state is

determined by the relative magnitudes of the Rabi frequencies versus the decay rates

of the transitions. If the Rabi frequencies are much greater then the decay rates, the

system will rapidly reach the dark state.

As an example, I look at a 3LLS that, under the influence of decoherence in Step

1, has evolved into a completely mixed state (ρgg = ρ(e,0)(e,0) = ρcc = 1
3
). The time

needed to reach the dark state (with calculated Purity = Tr(ρ2) > 0.999999) as a

function of increasing spontaneous emission rate can be seen in Fig. 3.5 for varying

driving field strengths. As the spontaneous emission rate of a transition increases, the

time to reach the dark state decreases linearly. This happens until the time that the

spontaneous emission rate is comparable to the Rabi frequency, and further increase

in the spontaneous emission rate increases the time to reach the dark state. I see

that the time needed for the system to reach the pure dark state decreases linearly

with respect to the higher decay rate enhancement, even if that enhancement affects

only a single transition and the system is initially in a state that is unaffected by that

increased decay rate. However, once the highest decay rate becomes greater than the

driving Rabi frequency, this time reduction is lost as the fields are unable to drive
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Figure 3.5: The time required to reach a final, pure state is plotted with respect
to the ratio of spontaneous decay rates (γge,x/γge,z = γce,x/γce,z) for various driving
field strengths. The effective five level system is initially driven from an operational,
completely mixed state (ρgg = ρ(e,0)(e,0) = ρcc = 1

3
). The calculation parameters

are Ωce,x = Ωge,x = Ωce,z = Ωge,z, γge,x = γce,x = γe,x and γge,z = γce,z = γe,z .
The preparation time is normalized to the time taken for an equivalent three-level λ
system to reach a steady state.

significant population into these high decay states faster. This also indicates that

this state initialization effect will only show up when the red (dashed) transitions are

strongly driven. This allows for the preservation of low decoherence rates when the

fields are only z-polarized.

For the practical implementation of this protocol, some additional considerations

may need to be accounted for. Firstly, in these calculations, I have assumed that

the quantum emitter is a point dipole with no preferred quantization axis. This is

not true in general for systems such as quantum dots; however, the protocol will

succeed as long as the spontaneous emission rate of the system is asymmetric, i.e.

significantly different for two orthogonal polarizations of the incident field. Secondly,

I assumed that the incident field is a plane wave, whereas in experiments, the field is

likely to be a strongly focussed beam for qubit addressing. The latter introduces an

41



additional polarization (in the y-direction); however, as the effects of the y-polarized

components are similar to those of the z-polarized components due to the symmetry

of the system, this will not substantially alter the ability to selectively enhance the

preparation rate.

3.4 Summary

In this chapter, I have examined the behaviour of a single quantum system interacting

with a classical environment. For this system, the state of the atom/molecule evolves

according to the Lindblad-Von Neumann equation. However, the intensity and deco-

herence experienced by the system is modified due to the environment. The effect of

the environment is calculated separately from the state of the quantum system using

standard techniques and tools from computational electrodynamics.

By examining the effect that a nanoplasmonic environment has on a nearby quan-

tum system, I showed how this interaction can change the spontaneous emission and

decoherence rates of the system. I also examined this effect in more detail by looking

at the directional dependence of this decay enhancement. I showed that even for a

simple dimer of Ag nanoparticles, the decay enhancement is highly asymmetric.

I then showed that this asymmetry can be used to selectively enhance the sponta-

neous emission rate of a nearby quantum system. This increase allows for rapid state

preparation without greatly compromising useful state lifetimes. The above results

have been published in Phys. Rev. A [99].
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Chapter 4

Quantum Behaviour in Dense

Ensembles

This study was motivated by a desire to enhance silicon solar cell efficiencies. In these

solar cells, electricity is only produced by photons with λ < 1100nm due to the band

gap in silicon; however, the spectrum of sunlight includes much higher wavelengths

that are wasted [100]. If one were to design a hybrid quantum-nanoplasmonic system

that allowed for significant amounts of infrared photons to be blueshifted, one could

recoup some of this under-utilized energy.

The Lorentz-Lorenz model [56], detailed in Appendix D, of an atomic electron

driven by an incident electromagnetic field predicts that the induced polarization has

a frequency that is blueshifted. It can be expected that the induced electric field

will also be at a blueshifted frequency compared to the incident field. For example,

a neodynium-like emitter, for which the ground to excited state transition energy

is ≈ 1 eV, when placed onto silicon that has a bandgap of just above 1 eV, could

theoretically blueshift wavelengths and increase the silicon’s absorption.

I speculate that a dense arrangement of these types of emitters on the silicon would

be able to amplify this blueshifting effect. Therefore I consider a dense ensemble of
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Nd atoms and try to extract the macroscopic/collective effects from the microscopic

dynamics.

In dense quantum ensembles, there are strong inter-particle interactions that both

scatter, emit and absorb incoming electromagnetic radiation. This causes the ensem-

ble to effectively serve as its own environment. Unlike in the classical environment,

the states of the individual quantum systems significantly affect local field intensities.

This requires that both the field propagation and the density matrix evolutions be

done concurrently.

In order to study this effect, one would need to solve both Maxwell’s equations

and the Liouville-Von Neumann equation concurrently. This is due to the fact that

there is both a quantum evolution of states occurring in the system, and this evo-

lution of states in turn changes the electromagnetic field propagation. This study is

conducted by modelling the evolution of a dense quantum ensemble that serves as a

“nanoparticle” and comparing the classical effects to the macroscopic behaviour of

the quantum ensemble.

In typical scattering and field enhancement simulations [47, 49, 84, 34], broadband

pulse methodologies are used to determine scattering off of nanostructures. In these

methodologies, a broadband short pulse illuminates the system and the scattered field

is tracked and Fourier-transformed to yield an appropriate intensity spectrum. It is

then assumed that this spectrum can be used to determined the overall scattering of

incident waves as a function of frequency. This further assumes that the scattered

field is always of the same frequency of the incident field. I will show that these

assumptions are inadequate for studying a driven, dense quantum ensemble.
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4.1 Theory and Implementation

I model a dense ensemble of quantum emitters and drive it with a linearly polarized

external field. Though the driving field is polarized in one direction, spontaneous

emission from each quantum system excites transitions in nearby quantum systems

in other directions. Each of the quantum emitters contributes to a “mean field”

that mediates the interactions between various quantum emitters. This mean field

in the ensemble is a spatially varying, 3D vector. Therefore, the dynamics of an

individual quantum system involves a ground state and three excited states, one for

each Cartesian direction of the atomic dipole interacting with the mean field.

4.1.1 Evolution of the Electromagnetic Field and the Quan-

tum State

In this study, Maxwell’s equations are solved numerically in time for a coarse-grained

grid using a pseudo-spectral time domain method (PSTD) [101, 102] detailed in Ap-

pendix E. The choice of using a PSTD method over the FDTD method is largely due

to the fact that the PSTD method is computationally faster and more stable than

the FDTD method [101, 102]. It also has the added benefit of using a single lattice

grid as opposed to the staggered grid required of the FDTD method [103].

While the field propagation is similar to that in Chapter 3, the implementation of

the quantum evolution changes significantly. This is due to the fact that:

• the direction of each atomic transition dipoles becomes relevant, requiring basis

states for all three directional orientations, and

• the states no longer interact with fields with single frequencies due to the cre-

ation of local, time-dependent fields from nearby quantum elements.

Both these effects are accounted for by modifying the choice of density matrix
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basis, and by not including the rotating wave approximation.

4.1.2 Generalized Directional State Basis

In the quantum control of a two-level atom by an incident monochromatic field, one

typically views the atom as having states |g〉 and |e〉. One then treats the transition

as an interaction of the field with the dipole oscillator; the strength of the transition

coupling is proportional to the potential energy interaction between the atomic dipole

and the electric field vector (µ · E(r)). For a single atom interacting with a single

field, the quantization axis is assumed to be along the direction of polarization and

only two atomic levels are coupled by the field .

This assumption is not universally applicable. When radiating dipole are in prox-

imity to either noble-metal nanoparticles, or to other dipoles that they can interact

with, µ · E(r) is no longer equal to µE(r). This requires one to take into account all

components of the dipole moment operator.

Typically, one works in the angular momentum basis and uses the Wigner-Eckert

theorem to find the transition matrix elements for coupling between various quantum

states. For transitions between states with large angular moments, this becomes a

large problem.

A simpler way to approach this problem is to introduce a “directional” state basis.

These “directional” states are those accessed by transitions that are driven by a single

field polarization [104]. In this type of structure, the transitions are analogous to those

from an l = 0 ground state to an l = 1 excited state. For these states,

|g〉 = |l = 0,m = 0〉 , (4.1)

|ez〉 = |l = 1,m = 0〉 , (4.2)

|ex〉 =
1√
2

[|l = 1,m = −1〉+ |l = 1,m = +1〉], (4.3)
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|ey〉 =
i√
2

[|l = 1,m = −1〉 − |l = 1,m = +1〉] (4.4)

The Hamiltonian in this directional basis is:

H =



0 ~Ωex,g ~Ωey ,g ~Ωez ,g

~Ω∗ex,g E 0 0

~Ω∗ey ,g 0 E 0

~Ω∗ez ,g 0 0 E


. (4.5)

with degenerate energy levels, E, and with the dipole-field interaction taking the form

Ωeη ,g = µeη ,gEη where η = (x, y, z).

To summarize, in the case of a two-level system with a well-defined ground state

|g〉 and excited state |e〉, if the control field defines the quantization axis, the atomic

state can be represented with a density matrix based on a singular ground state, |g〉,

and a single excited state, |e〉. In the case of the control field not being parallel to

the quantization axis, the density matrix requires three excited states ( |ex〉, |ey〉,

|ez〉), one for each transition direction. This change in state-structure is depicted in

Figure 4.1. This results in an effective four-level system which can display quantum

interference.

4.1.3 Mean-field Environmental Interaction

A microscopic representation of a large number of open quantum systems interacting

with one another would be too computationally intensive to be feasible. Since the

Linbdlad-Von Neumann equation involves matrix multiplication, this computation

becomes onerous for large number of quantum systems in the ensemble; even the

most modern, optimal methods scale more slowly than M2 [105], where M is the

total number of states (for N systems, M = 4N for the atomic structure in Fig. 4.1).

Therefore I describe the interaction between the members of the ensemble using
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Figure 4.1: a) When the polarization of an electromagnetic field sets the quantization
axis of an atom, the effective quantum system is a two-level system with the direction
of the transition dipole oriented along that polarization direction. b) When the
polarization of an incident control field is different from the quantization axis, the
effective quantum system is a four-level system with a dipole transition oriented along
each field component.

a mean-field method. In this method, spatially separated quantum systems do not

directly interact with one another through the Hamiltonian or Lindblad operators.

Instead each quantum system interacts with and contributes to a local, mean field and

sees the behaviour of other systems through this mean field. This method of using a

mean-field interaction shows up in numerous areas in computational physics, such as

in polymer self-consistent field theory [106] and other computational electrodynamics

[107]. For clarity, the “mean” in the mean field refers to a mean of the interactions

between molecules and not a spatial mean of the fields themselves.

This mean field is a sum of the external incident field that excites the system

and a local field created by the driven and spontaneously emitting quantum elements

(quantum emitters) in the ensemble:

E(r, t) = Einc(r, t) + Elocal(r, t). (4.6)

This simplification allows the overall quantum state space to remain relatively
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small. For a system consisting of N four-level systems, the total directional state

space (M = 4N) is reduced to 4N quantum states and 3N local quantum interactions.

This greatly simplifies the overall problem and allows us to evaluate the problem by

evolving the density matrices locally with an efficient parallel implementation (see

Appendix E.1.3). With the ensemble state basis reduced to a more manageable size,

one now needs to determine how the quantum elements can create the local fields.

4.1.4 Electromagnetic Field Generation From Quantum El-

ements

In classical simulations, the response of microscopic elements to the local field are

analytically defined since the elements are classical objects. In order to determine the

response of quantum elements to the local field, one needs to know the current state

they are in. This state is then related a physical observable, the local dipole moment,

using a dipole moment operator. The directional components of this operator can be

found by [47]),

µ̂η = − ∂Ĥ
∂Eη

, (4.7)

where η = (x, y, z). The instantaneous, local, expectation value of this operator is,

〈µ̂η(r)〉 = Tr(ρ(r)µ̂η), (4.8)

where ρ(r) is the instantaneous density matrix of an individual emitter.

This procedure can be modified to find the components of local, instantaneous

free current that enters into Maxwell’s equations (see Appendix E.1),

Jη(r) = 〈 ∂
∂t
µ̂η(r)〉 = Tr(ρ̇(r)µ̂η). (4.9)
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In this formalism, I assume that the dipole moment operator of the system is

constant (µ̂ for each transition is constant) and I evaluate ˙ρ(r) using the Lindblad-

Von Neumann equation for the density matrix at each spatial location.

This dependence of the local free current on the density matrix is what differenti-

ates this quantum system from the classical system. This methodology allows us to

investigate more complex phenomena and allows us to examine where assumptions

in standard computational methods break down.

4.1.5 Summary of Evolution Methodology

The evolution of the electromagnetic fields and the state of the quantum ensemble is

carried out using the following procedure [47]. The simulation space is broken into

a 3D computational grid, with each cell having associated with it an electric and

magnetic field.

• The source cells (plane wave source) fields are updated analytically.

• Maxwell’s equations are updated using a PSTD method for the H field.

• If there is a quantum emitter present in a cell, the density matrix of that cell

is evolved using the Lindblad equation and the electric fields at the previous

time-step.

• The free current in each cell is determined for cells containing a quantum emit-

ter.

• The free current is used to modify the local E field using Maxwell’s equations.

• The process is repeated and items of interest are recorded..

This order of operations avoids self-interactions in a single lattice cell [47].
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4.2 Spectrum of the Electric Field Outside a Driven

Nanosphere

With this methodology in place, I simulate the response of a dense quantum ensemble

to incident continuous-wave, monochromatic light in order to examine whether or not

the frequency of the evanescent field around the ensemble can be blueshifted.

I investigate a collection of dense quantum emitters, arranged in the from of a

10 nm nanosphere. I illuminated the nanosphere with a monochromatic, plane wave

polarized in the ŷ direction and track the field amplitude a short-distance (3 nm)

outside the nanosphere for 200 fs (0 fs to 200 fs). By Fourier-transforming this

field amplitude into a spectrum, I can see that the electromagnetic field around the

nanosphere is no longer purely monochromatic (Fig 4.2(a)) even if the input is. There

is a blueshifted component that appears.

While this investigation appears on the surface to be successful, I found that in

reality, it is not. This is due to the fact that, although frequency-shifted photons

are present, they die out over time. If I continue the evolution and take a Fourier

transform of the field for the window from 100-300 fs, the spectrum transforms to

that depicted in Figure 4.2(b). The blueshifted peak has disappeared.

This loss of shifted frequencies at long times indicate that a collection of general

quantum emitters is not suitable for enhancing solar cells. The time dependence

of these effects also seem to suggest that certain computational techniques that are

used, such as the short-pulse method [47], may not be valid for all types of scattering

calculations when examining quantum systems. This is due to the fact that the short-

pulse method assumes that the field-matter interaction of a short (< 1 fs) pulse can

be used to approximate the continuous field-matter interaction of quantum elements.

Clearly, the short-pulse excitation method is not adequate to reproduce all the physics

of this process.
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(a) 0-200 fs

(b) 100-300 fs

Figure 4.2: Electric field spectra for different time windows outside a 10 nm radius
nanosphere of atoms with on-resonant excitation located at a spatial position y=3 nm
outside the nansophere. Surface plasmons are created by illumation with a monochro-
matic field of f=2.41× 1014 Hz and E = 1.5× 109 V/m. The system has degenerate
energy level spacings in the x, y and z direction of 1 eV and a number density of
4 × 1027 atoms per cubic metre. (a) Frequency components that appear in the time
window 0 - 200fs after the start of excitation. (b) Frequency components that ap-
pear in the time window 100 - 300fs after the start of excitation. Notice that the
blue-shifted frequency components die out.
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The process in which the blue shifted frequency components disappear may prove

useful from a quantum control perspective. By taking these same calculations and

examining the free currents and state evolution of the quantum elements as an ensem-

ble, I find that the reason that these shifted surface plasmons died out is due to the

fact that the system as a whole undergoes strong disordering due to the inter-atomic

interactions present in the system. These interactions, which are neglected in many

theoretical investigations [61, 48, 47], can create “directional state leakage” and can

explain certain experiments, as we will see in Chapter 5.

4.3 Disorder and Directional State Leakage in Dense

Quantum Ensembles

By examining the spatial distribution of free current density components (Jη(r))

of the previous calculation as a function of time, depicted in Fig 4.3, it becomes

immediately apparent that the free currents become disordered as time goes on. This

disorder appears to have an effect that is very similar to mixing and order-to-disorder

phase transitions in condensed matter systems. Significant entropy in the free currents

is introduced and over time, this entropy prevents the individual quantum emitters

from oscillating collectively. The time-scale of this entropic onset is also much faster

than what one would expect the normal spontaneous emission rates of the individual

emitters (1/γ0).

Initially, the ensemble starts off responding to the incident field in what is effec-

tively an ordered phase; all the individual systems respond to the field by oscillating

in a uniform manner. This phase is characterized by a near-uniform free current in

the principle polarization direction that is anti-aligned with the incident field polar-

ization. The spatial distribution of the free currents in directions perpendicular to

the incident field polarization are characterized by weak, quadrupolar patterns. As
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all the individual systems are oscillating coherently, there is a strong overall optical

response that leads to the shifted spectral peaks depicted in Figure 4.2.

However, due to the build-up of electric field components perpendicular to the

incident polarization, the system is quickly pushed into a disordered phase. The

overall ordered pattern is lost when the system transitions into this phase; small

instantaneous domains are formed that do not move in phase with one another. These

two phases correspond to the two time windows; one that has a blueshifted frequency

and one that does not.

Another interesting thing to note is that, regardless of the level of order, the free

currents in the principle polarization direction are all anti-aligned with the polariza-

tion incident field (in Figure 4.3 they are all positive). This creates a non-zero sum

in the total polarization that allows the system, even when disordered, to respond to

the incident field with a net dipole. This behaviour shows that in the steady-state

limit, this type of system can act like a classical material with an internal net dipole

moment. This is the expected macroscopic behaviour of a classical dielectric material.

This directional state leakage and the onset of the disordered phase creates three

effective regimes (order, transition and disordered) for the scattering behaviour of

these systems. This can lead to very different scattering behaviour between pulsed

excitations and continuous wave excitation situations. Fig 4.4 illustrates this regime

change qualitatively.

Furthermore, we can look at the spatially-averaged ensemble density matrix (ρ̄ =

1
V

´
d3rρ(r) = 1

N

∑N
n ρn) to get a deeper understanding about the root causes and

effects of this process. By looking at the ensemble-averaged state populations for

varying number densities and detunings, I see that not only does the system quickly

become disordered, but also non-directly-driven states (|ex〉 and |ez〉) gain and retain

state population. This directly shows that strong inter-atomic interactions (medi-

ated through a mean field) with intense fields lead to a mixing of states. As all of
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ŷ

an
d
x̂

d
ir

ec
ti

on
fr

ee
cu

rr
en

ts
(i

n
A
/m

2
)

sh
ow

in
g

th
e

or
d
er

ed
an

d
d
is

or
d
er

ed
p
h
as

es
in

b
ot

h
th

e
in

ci
d
en

t
fi
el

d
p

ol
ar

iz
at

io
n

d
ir

ec
ti

on
(a

,
b
,

c
-
ŷ
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Figure 4.4: Schematic of different regimes in the evolution of a dense quantum en-
semble excited principally along the ŷ direction. (a) In the short time regimes, the
ensemble behaves in a similar fashion to a single quantum element - all individual
components are in phase and display a uniform oscillation. (b) Entropy is introduced
to the system, transitioning it from a uniform ordered phase to a disordered phase
with multi-directional excited states. (c) This system is in a disordered phase and
has all directional states excited to some degree. In this phase it operates in a similar
fashion to a classical discrete dipole system as the coherent oscillations are suppressed
by directional state leakage.
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the ensemble state populations rapidly reach a steady-state, the ensemble-averaged

coherences reduce to zero (as they represent the rate of change of the excited state

populations) for all frequency components except for a small net coherence oscillating

in the incident field polarization direction with the incident field frequency.

4.3.1 Effect of Increasing Ensemble Density

Figure 4.5 shows the ensemble-averaged excited state populations as a function of

increasing number density. I see that increasing the overall density of atoms in the

ensemble increases the rate at which disorder is added to the system. This is not un-

expected as increasing the number density of quantum emitters increases the amount

of inter-atomic interactions.

4.3.2 Effect of Changing the Incident Field Frequency

Figures 4.6, and 4.7 show that changing the incident frequency also does not affect

this phenomenon much. It is interesting to note that changing the detuning does not

symmetrically affect the amount of state population that reaches the excited state.

This asymmetry is most likely related to the shift in local field frequencies predicted

by the Lorentz-Lorenz shift.

4.3.3 Consequences of the Onset of the Disordered State

Regardless, this disorder-onset and state leakage effect demonstrates the insufficiency

of uni-directional state-bases when dealing with dense quantum systems. Treating

these systems as confined to excite along certain directions, such as in [48] and [47],

can lead to overestimates in their long-term coherent behaviours at high densities.

If the inter-atomic interactions are strong enough (the rate of inter-atomic inter-

actions significantly exceeds the spontaneous decay rates), state population will be

57



(a
)
P
x
=
|e

y
〉〈
e y
|

F
ig

u
re

4.
5:

S
p
at

ia
ll
y

av
er

ag
ed

ex
ci

te
d

st
at

e
p

op
u
la

ti
on

s
in

th
e
x̂

,
ŷ
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ẑ

d
ir

ec
ti

on
s

fo
r

a
10

n
m

ra
d
iu

s
n
an

os
p
h
er

e
of

at
om

s
w

it
h

lo
w

er
en

er
gy

off
-r

es
on

an
t

ex
ci

ta
ti

on
.

P
op

u
la

ti
on

s
ar

e
ev

al
u
at

ed
u
si

n
g

a
1

n
m

gr
id

an
d

ar
e

il
lu

m
in

at
ed

w
it

h
a

co
n
st

an
t

fi
el

d
in

te
n
si

ty
of

E
=

1.
5
×

10
9

V
/m

.
T

h
e

sy
st

em
h
as

d
eg

en
er

at
e

en
er

gy
le

ve
l

sp
ac

in
gs

in
th

e
x
,

y
an

d
z

d
ir

ec
ti

on
of

1
eV

an
d

a
n
u
m

b
er

d
en

si
ty

of
5
×

10
2
7

at
om

s
p

er
cu

b
ic

m
et

re
.

61



(b
)
P
x
=
|e

x
〉〈
e x
|

F
ig

u
re

4.
6:

S
p
at

ia
ll
y

av
er

ag
ed

ex
ci

te
d

st
at

e
p

op
u
la

ti
on

s
in

th
e
x̂

,
ŷ
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constantly built up in non-principal directional states. This eventually leads to a

significant amount of state population being retained in all direction states regardless

of incident field intensities.

This retention has the effect of creating a strong “effective ensemble disorder-onset

rate” in a similar fashion to that of spontaneous decay in a single quantum system.

When examining the excited state population that lies along the incident polarization

axis, it appears to quickly reach a steady-state. Once this happens, the incident field

no longer significantly excites net changes in the average state populations and the

system behaves like a classical dipole. This disorder is purely an ensemble effect; the

local purity of individual coarse grains remains close to unity on this time-scale as

the individual spontaneous emission rate is low (2.95× 106 Hz).

For most cases, the final steady, disordered state that the ensemble reaches is close

to the maximally entropic state. This disordered state has an approximate ensemble

density matrix,



ρ̄gg ρ̄gx ρ̄gy ρ̄gz

ρ̄xg ρ̄xx ρ̄xy ρ̄xz

ρ̄yg ρ̄yx ρ̄yy ρ̄yz

ρ̄zg ρ̄zx ρ̄zy ρ̄zz


≈



1
4

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4


, (4.10)

which has a very low overall purity (≈ 1
4
).

4.3.4 Quantifying Disorder and Directional State Leakage in

Dense Quantum Systems

Upon cursory inspection, this state leakage and disorder appears to affect the ensemble

in a similar fashion to typical spontaneous decay and decoherence in single quantum

systems. This is not surprising because both single-system decay/decoherence and

disorder/state leakage prevent us from determining the exact state of the overall
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system in question.

Just as the spontaneous emission rate of an individual quantum system tells us

how long the system can remain viable as a qubit, the effective disorder-onset rate of

the system tells us how long true quantum behaviour stays relevant in the ensemble.

Such a measure can provide us with a lot of insight of how these systems behave and

their suitability for quantum information and optical processes. This rate may be an

effective way to quickly identify suitable candidate materials for nanoscale, solid-state

qubits. This disorder-onset rate also allows us to assess unusual properties that can

arise in bulk materials when they interact with high intensity, pulsed fields.

For the simplest interpretation, I approximated this effective disorder-onset (loss

of ability to control the quantum state) by monitoring ρyy, the ensemble-averaged

excited state density in the incident field polarization direction as a function of time.

I then compared this population oscillation to the expected functional form of a

single driven two-level quantum system and extracted the effective damping rate as a

fitting parameter. While this method does not explicitly explain any of the specific,

underlying physical processes involved, it provides a reasonably accurate measure of

the approximate total disorder-onset rate.

Under continuous excitation, a single two-level system with spontaneous emission

should just show a damped Rabi oscillation, if the high frequency, incident field

frequency terms are ignored as they are in the rotating-wave approximation. This

gives the driven excited state population the form:

ρee = a exp(−γenst) cos(Ωt) + b, (4.11)

where a and b are dimensionless constants, γens is the damping rate of the driven

excited state (ŷ) and Ω is the Rabi frequency that is proportional to the electric field

amplitude.

For a system consisting of an ensemble of quantum systems driven by a ŷ polarized
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Table 4.1: Disorder-Onset Rate Coefficients

Density (m−3) γens (Hz) g (Hz)

1× 1027 6.243× 1011 8.983× 1011

2.5× 1027 1.455× 1013 6.173× 1012

4× 1027 3.555× 1013 1.845× 1013

5× 1027 5.072× 1013 2.637× 1013

7.5× 1027 5.305× 1013 9.193× 1012

1× 1028 5.194× 1013 1.475× 1012

field, the excited state density is fit better by the function,

ρey,ey = a exp(−γenst) cos(Ωt) + b+ c exp(−gt). (4.12)

For this function, the extra term (c exp(−gt)) has been included to account for

the loss of population from the excited state |ey〉 due to the non-zero steady-state

population that is built up in the ẑ and x̂ directional states. That is, g represents

the rate at which state population “leaks” from the |ey〉 state to |ex〉 and |ez〉 excited

states. At very high number density, the damping rate γens becomes so large that the

|ey〉 state cannot be significantly populated, so the “leakage” starts to disappear. A

table summarizing the disorder-onset and state leakage fitted frequencies can be found

in Table 4.1 and the full fits for all constants with errors can be found in Appendix

F.

By fitting these parameters, I first noticed that in dense ensembles, the onset of

disorder in denser systems is largely dominated by γens. Therefore I chose to focus

on the behaviour of γens as a function of number density (Na). This relationship

is plotted below in Figure 4.8 for a dense ensemble driven with high intensity fields

(Ω >> γ0). From this figure it is fairly clear that a strongly driven, dense ensemble

experiences a fast (compared to normal spontaneous emission γ0 = 2.95 × 106 Hz)

onset of disorder as the density of atoms approaches solid density (1×1028m−3). This

indicates that any quantum control schemes that deal with dense collections of atoms

69



Figure 4.8: Effective ensemble decay rates (γens) for a 10 nm radius nanosphere of
atoms with varying number density (Na). Populations are evaluated using a 1 nm
grid and are illuminated with a constant field intensity of E=1.5 × 109 V/m. The
system has degenerate energy level spacings in the x, y and z direction of 1 eV. The
base decay rate for the individual quantum systems is 2.6× 106s−1

should not use short pulse methods and/or reduced basis sets that ignore directional

states unless they are driven by extremely rapid pulses or have a low number density.

The overall shape of these dependencies is nonlinear and although it increases at

low densities, the disorder-onset rate slows down at high intensities and converges

to a saturation value. This behaviour appears to be best described by a saturation

curve, similar to that in Fermi statistics. This takes the form of the logistic function

[108] with:

γens =
L

1 + exp(−k(x− a))
(4.13)

where L is the saturation point, k is a rate constant, x is the number density and a is

the inflection point. This saturation curve is typically used in evolutionary systems in

which there is a competition between different processes. In this particular ensemble

system, there is a competition in which the incident field frequency is trying to force
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Table 4.2: Saturation Curve Parameters for Varying Intensity

Intensity (V/m) L (Hz) a (m−3) k (m3)

1.5× 109 5.316× 1013 3.337× 1027 1.353× 10−27

7.5× 108 3.055× 1013 1.762× 1027 2.286× 10−27

the ensemble to oscillate coherently and the disordering (i.e. the mean field mediated

inter-atomic interactions) is trying to prevent this coherent oscillation.

An example of this fit can be seen below in Figure 4.9 for the same system as in

Figure 4.8 but driven at a reduced intensity. By comparing it to the situation in Fig.

4.8, one conclusion that can be easily drawn from such a fit is that, as the intensity of

the incident light is reduced, the saturation point (L) of the disorder-onset rate also

decreases. This is due to the fact that at lower intensities, the quantum dipoles do not

have as strong of an inter-atomic interaction since they are unable to populate their

excited states as well as they could at higher intensities. Therefore the disordered

state is reached at lower number densities.

A table of these fitting parameters for both intensities can be found in Table 4.2

and the full fits for all constants with errors can be found in Appendix F.

This dependence of the overall disorder-onset rate on the incident driving inten-

sity indicates that for strongly-driven, dense quantum systems, the disorder-onset

rate is dependent on the density matrix and therefore is time-dependent. For dense

collections of systems, it is necessary to determine a new system model with ensemble

decoherence rates that are determined by using the state of the system itself.

4.4 Summary

In this chapter, I have examined the behaviour of a dense ensemble of quantum

emitters interacting with each other. The state of each quantum emitter evolves

according to the Lindblad-Von Neumann equation. However, the evolution of the

ensemble reflects not only the driving field but also the individual interactions between
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Figure 4.9: Effective ensemble decay rates (γens) for a 10 nm radius nanosphere of
atoms with varying number density (Na). Populations are evaluated using a 1 nm
grid and are illuminated with a constant field intensity of E=7.5 × 108 V/m. The
system has degenerate energy level spacings in the x, y and z direction of 1 eV. The
base decay rate for the individual quantum systems is 2.6 × 106s−1 and a logistic
function is fit to the data.
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constituent elements. In this simulation, the quantum elements serve as each others’

environment.

To study this system, I have implemented a coarse-grained, mean field method

in which the Lindblad-Von Neumann equation is used in conjuction with a numeri-

cal solution to Maxwell’s equations. In addition to combining these two well-known

methodologies together, I have also modified the typical calculation for decay enhance-

ment to work in a time-domain picture as opposed to a frequency-domain picture. In

order to correctly model the excitation of the quantum elements in 3D due to sponta-

neous emission from nearby neighbours, I have implemented a multi-directional basis

for the quantum state of each emitter.

When evaluating a simple collection of quantum systems undergoing continuous

excitation, I noticed that there was an additional type of disorder introduced into

the ensemble averaged states. This ensemble disorder-onset rate reflects the effect

of interactions between atoms and, as such, was relatively rapid for dense, strongly-

interacting systems.

The presence of this disorder is immediately significant as it set an effective time

limit for quantum optical effects. It also serves as a limit for theoretical techniques

such as the short-pulse method and simplified basis sets; assuming these techniques

are valid over a large time-scale may lead to overestimates of coherent effects. I have

quantified this time limit as an empirical “effective disorder-onset rate” for strongly

driven systems as a function of number density (which directly correlates to the

interaction strength between quantum emitters).
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Chapter 5

Modelling Dense Ensemble

Dynamics with Single Particle

Techniques

The appearance of an effective overall disorder-onset rate in dense quantum ensembles

complicates understanding their behaviour. Although I have provided an estimate of

the severity of this disorder on dense ensemble dynamics, the overall empirical fitting

parameters in the previous chapter do not provide a clear enough picture of the

underlying physical processes involved. Therefore, I felt it would be beneficial to see

if I could find a model that described the dense ensemble behaviour with a modified

single-particle evolution scheme. If such a method were to exist, it would greatly

reduce the computational time involved in investigating these systems and it would

also provide further understanding to what underlying processes cause this evolution.

Understanding these processes would then allow one to predict how these systems

will behave without needing a full, complicated numerical solution.

Examining the dynamics of a driven, nanoscale ensemble of quantum systems,

one notable observation is that the evolution of the ensemble state population in the
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incident field polarization direction is qualitatively similar to that of a driven two-

level system with two competing decoherence mechanisms; spontaneous emission and

a loss of population from the excited state parallel to the incident field polarization.

Therefore I explored the possibility of modelling the behaviour of a dense ensemble

with a modified, single, four-level quantum system calculation.

5.1 Dense Ensemble Quantum Control with Single

Particle Dynamic Decoherence

As one views the ensemble as a single particle with directional states, the Hamiltonian

is straightforward to evaluate. The ensemble-averaged excited state population in the

incident field polarization direction (ŷ) initially has a Rabi-like oscillation and for the

first peak (where there is low decoherence) this frequency is nearly identical to that

of a single particle system driven at the same intensity.

The Hamiltonian of this four-level system with a ground state |g〉 and three di-

rectional excited states, |ex〉, |ey〉 and |ez〉, excited by a plane wave after making the

rotating wave approximation is:

H =



0 ~Ωx
2

~Ωy
2

~Ωz
2

~Ω∗x
2
−4 0 0

~Ω∗y
2

0 −4 0

~Ω∗z
2

0 0 −4


. (5.1)

For this Hamiltonian, the only electric field terms included is the external incident

field (Ey) and a perpendicular internally scattered that is much smaller than the

incident field. For the perpendicular scattered field, I assume it arises from the field

of a dipole with Ex,z ≈ Ey
µ
er
sin(θ)θ̂ [109]. In this case r = 3

√
3
√

8
4Naπ

is the separation

between diagonal nearest neighbours, θ = π/4 is the angle between them, e is the
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charge of an electron and µ is the transition dipole moment; for dense systems, this

scattering magnitude is about 1-2 orders of magnitude less than the incident field.

In the ensemble, an individual quantum system can spontaneously emit radiation

from the |ex〉, |ey〉 and |ez〉 excited basis states. This emitted radiation can then

excite either the |g〉 → |ex〉,|g〉 → |ex〉,or |g〉 → |ez〉 transitions in nearby atoms. This

process is similar to the Forster-Resonance Energy Transfer (FRET) process com-

monly seen in biophysics systems [21]. To model this process, decoherence couplings

are added that look like optically forbidden transitions as shown in Figure 5.1.

Although these transitions look similar to spontaneous emission, they do not rep-

resent the net emission of a photon. Instead they represent the emission of a photon

and the reabsorption of that photon by another transition in an adjacent atom. This

makes them behave more like dephasings (δij), as they do not emit energy from the

system. A diagram of all the decoherence processes in the two-level directional state

basis is provided below in Figure 5.1.

The magnitude of these decoherence rates depend on the excitation transfer be-

tween atoms, therefore, they are determined by the following process [21]. For spon-

taneous emission from an excited to ground state, one can define the enhancement

factor,

Md =
γd

γd,free
=

Power

Powerfree
=
Re(j∗d · Elocal)

Re(j∗d · Ed)
= 1 +

Re(j∗d · Eext)

Re(j∗d · Ed)
, (5.2)

where jd is the free current of the transition, Ed is the field driving the system, Elocal

is the local field at the location of the system and Eext is the field coming from

scattering by external sources. It is important to note that Elocal = Eext + Ed and

that, in the limit of a single isolated system, the decay rate will remain unchanged

from the vacuum value since Eext = 0.

If the system contains many strongly interacting quantum elements, the decay

rate enhancement in various directions will be a complicated function of time and
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Figure 5.1: When significant dipole-dipole interactions are present in an ensemble
system, it becomes possible for spontaneous emission from one excited state to ex-
cite state population from the ground state to another excited state. This allows for
“spontaneous-emission” to occur between optically forbidden transitions using emis-
sion followed by absorption (δ’s in green). This results in a modified Lindblad decay
scheme when examining ensemble populations. δxx, δyy and δzz reflect “parallel” tran-
sitions, whereas δxy, δyz, and δzx reflect “perpendicular” transitions. These dephasing
rates do not affect the total state population, it only reduces the overall coherence of
the ensemble state.
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therefore cannot be easily evaluated with a single, constant, enhancement. If the

transitions are viewed to acts as dipoles; however, Equation 5.2 can be simplified to,

γ

γfree
=

Power

Powerfree
= 1 +

6πε0
|µ0|2

1

k3
Im(µ0

∗ · Eext),

= 1− 6πε0
|µ0|2

c3

ω4
Re(j∗ · Eext).

(5.3)

In a similar fashion, the decoherence rates associated with energy transfer between

atomic transitions (δij) can also be calculated. At different spatial locations these

decoherences can be quantified by,

δi→j
γ0

=
Pi→j
P0

, (5.4)

where δi→j is the rate of energy transfer from transition i in one atom to transition

j in a neighbouring atom, γ0 is the spontaneous emission rate (2.95 × 106 Hz for 1

eV) of an individual quantum emitter, Pi→j is the power received by the “acceptor”

transition (j) from the field created by the “donor” transition (i), and P0 is the power

radiated by the acceptor atom in free space, calculated by the Larmor formula. Pi→j

is computed by,

Pi→j =
1

2
Re(j∗j(rj) · Ei(ri)), (5.5)

where j∗j(rj) is the free current of the acceptor and Ei(ri) is the field created by the

donor.

In the limit in which there exists multiple quantum transitions in a single lattice

cell, the rate of energy transfer that occurs inside sites could be analytically approx-

imated using Equation 5.5 and the fact that the near-field contribution of a dipole is

dependant on its polarization[56]:

Ei =
1

3ε0
Naµi. (5.6)
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With these two equations in mind, if there are two, non-optically connected, de-

generate transitions (i and j) then,

δi→j
γ0

=
Pi→j
P0

=
Na

2P0

Re(j∗j ·
1

3ε0
µi)

= Na
6πε0
|µi|2

c3

ω4
i

Re(j∗j ·
1

3ε0
µi)

= Na
2π

|µi|2
c3

ω4
i

Re(j∗j · µi)

(5.7)

The electric fields of the donor transitions are calculated as if they are dipoles

with classical radiated fields [110],

Ei(r) =
1

4πε0

(
3(ui · r̂)r̂ − ui

r3

)
. (5.8)

Assuming that the atoms are spherically distributed two radii apart (1/r3 =

1
8

4π
3
Na, for nearest neighbours) and with number density Na this simplifies to,

Ei(r) =
Na

24ε0
(3|ui|(ûi · r̂)r̂ − ûi) . (5.9)

Combining these equations and normalizing to the power emission of a dipole this

yields,

δi→j
γ0

=
Naπc

3

4ω3
(3(ûi · r̂i)(ûj · r̂i)− ûj · ûi) (

√
ρiiρgg

√
ρjjρgg), (5.10)

where
√
ρiiρgg

√
ρjjρgg serves as an estimate of the fraction of atoms in the ensemble

that experience the |i〉 → |j〉 energy transfer. This term is necessary in determining

the strength of jj and Ei as they both depend on the how many systems in the

ensemble currently experience these dipole moments. This term,
√
ρiiρgg

√
ρjjρgg,

gives the decoherence rate the intensity-dependence seen in the previous chapter since

the density matrix elements depend directly on the driving intensity.

For the “parallel” transitions (for example δxx), I use Equation 5.10 and normalize
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to the power of a radiating dipole of the transition frequency ω,

δi→j
γ0

=
Naπc

3

2ω3
(
√
ρiiρgg

√
ρjjρgg). (5.11)

For the transitions that are “perpendicular” (for example δxy), I need to use

the nearest diagonal neighbour, instead of the nearest neighbour, as this diagonal

neighbour is the closest lattice site in which a dipole can produce radiated fields in a

perpendicular direction to its dipole moment. This involves dividing Equation 5.10 by

1√
8

since r′ =
√

2r and therefore θ = π/4. The dephasing rate of these perpendicular

transitions is calculated as,

γi→j
γ0

=
3Naπc

3

16
√

2ω3
(
√
ρiiρgg

√
ρjjρgg). (5.12)

Placing these decoherence parameters into a single particle evolution calculation

yields excited state populations depicted in Figures 5.2 and 5.3. The single particle

state calculation is overlaid with the ensemble-averaged calculation described in the

previous chapter. When I compare the results of the single particle approximation to

the full ensemble calculation, I see that there is relatively good agreement between the

two methods. The two methods are not identical to within floating point error; how-

ever they are close enough to suggest that this single particle, modified-decoherence

scheme captures a significant amount of the underlying physical processes involved.

The success of the effective single particle model shows that a FRET-like deco-

herence process takes place in a dense, driven ensemble. The full calculation required

≈ 16 cpu days of runtime; in comparison the single particle calculation required ≈ 2

cpu minutes of runtime. The strength of applying this effective model is demonstrated

in the next Section.

One major limitation of this single particle model is that it assumes that the

Hamiltonian can be determined by an constant incident field/dipole interaction and
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Figure 5.2: Spatially averaged excited state populations for a 10 nm radius nanosphere
of atoms. Populations are evaluated using a 1 nm grid and are illuminated with a
constant field intensity of E=1.5× 109 V/m. The system has degenerate energy level
spacings in the x, y and z direction of 1 eV and a number density of 4× 1027 atoms
per cubic metre. A single particle calculation in the RWA approximation is overlaid
to compare the two models.
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Figure 5.3: Spatially averaged excited state populations for a 10 nm radius nanosphere
of atoms. Populations are evaluated using a 1 nm grid and are illuminated with a
constant field intensity of E = 1.5 × 109 V/m. The system has degenerate energy
level spacings in the x, y and z direction of 1 eV and a number density of 2.5× 1027

atoms per cubic metre. A single particle calculation in the RWA approximation is
overlaid to compare the two models.
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therefore does not include coherent, scattering of a field emitted by one emitter from

another emitter. In reality, this Hamiltonian should also depend on the instantaneous

state and overall geometry of the ensemble. Another limitation of this model it

that it assumes that only the single, nearest neighbour interactions are relevant to

the couplings; in truth, farther couplings and interference effects between atoms are

required to increase the model’s accuracy. In future work, one could improve this

model by adopting a more robust coupling geometry to account for scattered driving

fields and further neighbours.

5.2 Pulsed Excitations in Dense Quantum Systems

and Magnetic-Dipole Scattering

My effective single atom model that incorporates “leakage” to directional states and

strong FRET-like decoherence also successfully models experiments involving ultra-

fast pulsed-excitations in dense quantum systems.

In one such scattering experiment [60, 61], high-intensity, short-duration, elec-

tromagnetic pulses are scattered off water and carbon tetrachloride. The observed

pattern of the scattered light lead the authors to propose a theory, based on single

particle, classical electromagnetic scattering, that there was magnetic dipole radiation

generated. They called this phenomenon “transverse optical magnetism”.

This explanation has been challenged in the literature [63, 64, 65, 66, 67, 62]

since strong magnetic interactions can be assumed to be negligible in classical elec-

tromagnetic scattering. Additionally, the fact that this effect is observed in a variety

of liquids, including the highly symmetric CCl4 (that lacks an electric dipole and

quadrupole moment) leads one to look for alternative explanations for the observa-

tions.

I propose that these experiments are examples of dense quantum ensembles driven
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by short pulses. Applying my effective single particle model to this problem, bother

the effects of the driving field as well as the spontaneously emitted fields are modelled.

In a similar fashion to the experiment in [61], a dense system (Na = 1E27m−3) is

excited with a ŷ-polarized short pulse (20 fs width) propagating along the ẑ direction.

The pulse to be intense enough to excite the system into a the ŷ excited state and

allow it to decay. Initially the full ensemble calculation is performed for 300 fs.

The evolution of the ensemble-averaged excited state populations for the full cal-

culation can be seen below in Figure 5.4. Initially the system is excited by the pulse

and reaches a nearly pure |ey〉 state (ρyy = 1). After the pulse leaves the ensem-

ble, the dynamics are driven by only the decoherent processes. After the pulse ends,

spontaneous emission in the |ey〉 state will populate some amount of both x̂ and ẑ

excited states due to the decoherent coupling between excited states (δ’s).

These excitations are an effect that will not be seen in single particle cases as

it arises purely due to atom-atom energy transfer (it disappears as Na → 0). My

calculation does not involve magnetic dipole free currents since the density matrices

in the directional-state representation are excited by only electric fields.

Continuing the full calculation beyond 300 fs would take a prohibitively expensive

amount of computational time as the rate of change in excited state densities is lower

than in previous analyses. However, if I treat the ensemble as a single particle using

my model, I can estimate the behaviour of the ensemble over this longer time-scale

much more efficiently. If I examine my system after the pulse, it is a purely dissipative

system (with only the Lindblad term, L when in the rotating wave approximation).

Therefore, I can write down the single particle evolution equations with just the

dissipative FRET terms from my previous analysis. The operators take the form,

σ†i,j = |j〉 〈i| , i 6= 0. (5.13)

Placing this into the Lindblad superoperator,
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(a) Py = |ey〉 〈ey|

(b) Px = |ex〉 〈ex|

(c) Pz = |ez〉 〈ez|

Figure 5.4: Full Ensemble Calculation: Spatially averaged excited state populations
for a 10 nm radius nanosphere of an atoms with various number densities. Populations
are evaluated using a 1 nm grid and are illuminated with a 20 fs width Gaussian pulse.
The system has degenerate energy level spacings of 1 eV and a number density of
1× 1027 atoms per cubic metre.
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L(ρ) =
∑
i,j

γi,j
2

(σ†i,jσi,jρ+ ρσ†i,jσi,j − 2σi,jρσ
†
i,j), (5.14)

yields, for the state populations,

˙ρxx = −(γxg + δxy + δxz)ρxx + δyxρyy + δzxρzz, (5.15)

˙ρyy = −(γyg + δyx + δyz)ρyy + δxyρxx + δzyρzz, (5.16)

˙ρzz = −(γzg + δzy + δzz)ρzz + δyzρyy + δxzρxx. (5.17)

If I take these evolution equations and make the further assumption that the decay

coupling between the “optically-forbidden” states is symmetric (δij = δji),

˙ρxx = −γxgρxx + δxy(ρyy − ρxx) + δxz(ρzz − ρxx), (5.18)

˙ρyy = −γygρyy + δxy(ρxx − ρyy) + δyz(ρzz − ρyy), (5.19)

˙ρzz = −γzgρzz + δyz(ρyy − ρzz) + δxz(ρxx − ρzz). (5.20)

Note that the coupling between excited states largely depends on which state

currently has more state population. Using this single model, I can evaluate the long

term dissipation in an ensemble of atoms.

5.2.1 Case: Decoherence Rates are Independent of State

Populations

Now the simplest assumption that one can make is that these coupled decay rates are

constant in time. Making this assumption, and examining the system after the pulse

when it is largely in a |ey〉 excited state (ρyy = 1), we are left with,
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˙ρxx = δxy, (5.21)

˙ρyy = −(γyg + δxy + δyz), (5.22)

˙ρzz = δyz. (5.23)

By finding the average rate of change of excited state population in Figure 5.4 over

the duration of the full ensemble calculation, I estimate the strength of the overall

decay couplings. These estimates are input into the full update equations, Eq. 5.18-

5.20, to predict the evolution of the ensemble state over a much larger time-scale.

This results in the evolution of state populations depicted in Fig. 5.5. The overall

behaviour of this system is very simple; initially the system starts in the ŷ excited

state and decays. As ρyy is much larger than ρxx or ρzz, ρxx and ρzz quickly build

up state population by absorbing energy from the spontaneous decay from state |ey〉.

Eventually ρxx and ρzz reach a steady state.

5.2.2 Case: Decoherence Rates are Modified by Excited State

Populations

In addition, instead of constant couplings, I could implement the time-dependent

coupling coefficients (that scale with elements of the density matrix) discussed in

Section 5.1 (Eq. 5.11 and 5.12). This evolution is displayed in Figure 5.6 and is

relatively similar to the constant coupling case.

One interesting thing about these simple models is that if we take the evolution

shown in Fig 5.5 and find the time-averaged amount of excited state population in

the ρxx, ρyy and ρzz states, we find that 〈ρxx〉 ≈ 1
2
〈ρyy〉 and 〈ρzz〉 ≈ 1

2
〈ρyy〉. These

average excited state ratios should reflect the average amount of time-integrated free

current that each excited state will emit as it decays. For a single excited state (|eη〉)
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Figure 5.5: Excited state populations for a Lindblad dissipation evolution scheme
with decay coupling parameters found by examining state evolution in Fig 5.4. The
system evolves from an almost pure excited state and spontaneous emission from
this state is able to excite other transitions. For this case coupling parameters are
assumed to be constant.
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Figure 5.6: Excited state populations for a Lindblad dissipation evolution scheme
with decay coupling parameters found by examining state evolution in Fig 5.4. The
system evolves from an almost pure excited state and spontaneous emission from this
state is able to excite other transitions. For this case, coupling parameters follow the
dependence on the density matrix outlined in Section 5.1.
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decaying to a ground state (|g〉), the amplitude of the time-integrated free current

can be approximated by

〈Jig〉 ∝
ˆ
|ρii|dt. (5.24)

In the experimental paper [61], the ratio of instantaneous free currents in per-

pendicular directions required to observe “transverse optical magnetism” is 0.5 (Jz =

1
2
Jy). In my computational work, I find almost the same ratio for the time averaged

free currents in Fig. 5.5. For this particular figure,

Jz
Jy

=≈
´
|ρzz|dt´
|ρyy|dt

= 0.55, (5.25)

which is a ratio of time-averaged free currents that is very similar to that predicted

by ‘magnetic dipole’ scattering (0.5). The key difference between my model and the

one presented in [61] is that in my model, there is no magnetic interaction present.

All quantum elements interact with each other solely due to electric fields and the

ratio of free currents which causes this scattering effect are due to the dipole-dipole

coupling between quantum emitters in a dense ensemble.

5.3 Summary

In this chapter, I have provided a method in which the disorder created in the evo-

lution of an ensemble of quantum emitters can be modelled as a single particle deco-

herence. I have used this to model the state evolution of a dense quantum ensemble

using an effective single-particle density matrix. This method works by allowing for

FRET-like coupling between multiple quantum emitters in the ensemble. While not

as accurate as the full simulation, this method provides a pretty close approximation

in significantly less computational time than a full simulation.
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Lastly, I briefly show that this overall decoherence can be used to explain the so-

called “transverse optical magnetism” phenomenon. In this analysis, I demonstrate

that this unusual scattering effect is simply a consequence of inter-particle interactions

in a dense quantum ensemble.
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Chapter 6

Conclusion

Throughout this thesis, I have examined how the light-matter interaction of open

quantum systems can be used to control and assess how these systems behave. These

control processes are essential for both understanding of, and searching for appli-

cations for these systems. Open quantum systems exhibit novel behaviours that

classical systems do not, and this opens up the development of novel materials and

new techniques.

By studying the control of single, open quantum systems, I have shown that

second-order intensity-intensity correlations allow for the direct observation of analytically-

predictable, quantum interference phenomena. While more difficult to observe than

traditional spectra (as it is a time-dependent effect) it provides us with more spe-

cific information than absorption or emission spectra. Since quantum interference

effects occur only in systems in which transitions share commons levels, we could use

these effects to assess the connectivity of complex quantum systems as well as time-

dependent changes in energy levels. These processes could easily serve as the basis of

new sensor methods and would allow us to construct energy level diagrams without

needing any prior knowledge of the structure of the quantum systems examined. Both

of these effects are at their most useful when dealing with atoms or molecules with
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complicated energy-level diagrams.

In addition to quantum systems differing greatly in behaviour from their classical

analogues, they are also strongly affected by environmental interactions. These envi-

ronmental interactions are often simplified due to the fact that they are theoretically

more difficult to handle. However, the addition of a nearby system (such as a classical

metal nanoparticle dimer, or a quantum mechanical cluster of similar atoms) allows

the control space of the open quantum system to be expanded with pre-designed en-

vironmental interactions serving as additional axes of control. Most noticeably, these

environments can affect terms in the Lindblad superoperator in the master equation,

which is useful when dealing with systems whose fidelity is purity limited. This is

especially useful for modifying properties which are otherwise difficult or impossible

to change by control fields.

Specifically, we have shown that by using the Purcell effect in asymmetric nanoplas-

monic systems, we can modify and control the overall spontaneous emission rate of

a qubit excited state by changing the polarization of the incident control fields. This

effect is significant for two reasons. Firstly it represents modifying a process (loss

of purity) that cannot normally be affected by control fields. Secondly it allows for

the rapid state initialization without reducing the effective lifetime of the qubit. As

state initialization and qubit lifetime rely on the same parameter (the spontaneous

emission rate), it is very difficult to have both a rapid preparation time and a long

operational lifetime. By constructing an appropriate environment relative to our

control scheme, we show that these differing goals can be realized concurrently with

polarization control.

Evaluating the dynamics of more than a handful of quantum systems is both

analytically and computationally intensive. However due to the recent availability of

large-scale, fast computation resources, we can begin to examine the overall quantum

behaviour of large collections of systems. In these systems, we evaluate quantum
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behaviour without the need for restricted basis sets or enforced symmetries to simplify

the calculations. It is through these general calculations that one comes to a number

of conclusions about the behaviour of statistically large, self-interacting quantum

ensembles. I noticed that, over the course of less than a picosecond, dense collections

of quantum systems undergo an order-disorder phase transition. When examining

the ensemble averaged state populations of the system, the transition acts similar

to decoherence due to spontaneous emission. This transition occurs even when the

ensemble dimensions are small enough that almost all atoms/molecules experience the

same incident field. The decoherence prevented me from initially using this behaviour

to design quantum mechanical enhancement for solar cell surfaces. However, this

effective decoherence rate is physically significant in its own right as it sets the lifetime

for true quantum optical effects. It also explains why classical techniques , such as the

discrete dipole approximation, are applicable in most solid-state optics applications

— the quantum ensemble rapidly becomes disordered and quantum effects are washed

out.

In addition to having a physical consequence, the effective rate of this disorder-

induced decoherence also affects theoretical calculation techniques that are commonly

applied to ensemble systems in quantum optics. Firstly, the order-disorder transition

restricts the applicability of uni-directional basis sets in which the quantum system

is assumed to only have a single excited state along the incident field polarization

direction. By neglecting the excited states that are perpendicular to the incident

polarization direction, simulations and calculations may be artificially neglecting this

decoherence and overestimating quantum effects on optical properties. Secondly, the

time-dependence of this order-disorder transition also indicates that the short-pulse

excitation method, a common-used technique in classical optics, may be limited since

the short-pulses typically used do not last long enough to capture the interactions

between quantum emitters. This could also lead to overestimates of quantum contri-
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butions to the optical properties of advanced materials.

I have also discussed how this decoherence in an ensemble can be approximated

by an effective single particle model. My analysis indicates that the inclusion of

multiple, energy-neutral, FRET-like decoherence terms enables the single particle

model to match results of the large-scale numerical model. This analysis also indicates

that the overall decoherence behaves similarly to the FRET process. I used the

results of this analysis to provide an elegant explanation for the so called “magnetic-

dipole scattering” with ultrafast-sources in dense liquids. My model also explains the

intensity and pulse duration dependence of the experiment which is not explained by

classical theory.

6.1 Summary of Original Contributions

I expect four peer-reviewed publications that will summarize my research results.

• A manuscript based on results of Chapter 2 entitled “Detection of molecular en-

ergy level connectivity using intensity-intensity correlation spectra” is complete,

and will be submitted for publication shortly.

• A manuscript based on results of Chapter 3 entitled “Polarization control of

spontaneous emission for rapid quantum state initialization” is currently under

review in Phys. Rev. A.

• A manuscript containing the single particle approximation to the dense ensem-

ble is under preparation (Chapters 4 and 5).

• A manuscript containing the explanation for “transverse optical magnetism” is

under preparation (Chapter 5).

I developed the following theoretical models and numerical methodology in the

course of my investigations.
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• A computational program was written to numerically model the Lindblad-Von

Neumann equations. This program is capable of handling large quantum sys-

tems of arbitrary dimension; elements such as the Hamiltonian and Lindblad

matrices are generated dynamically. New quantum system transitions can be

entered by simply specifying which transitions/processes are allowed. The time

evolution is executed using a 4th order Runge-Kutta method.

• For the study of an open quantum system interacting with a gold nanoparticle

dimer, I refined the methodology developed by a previous graduate student,

and extended the analysis to open quantum systems with more than two energy

levels. The Lindblad-Von Neumann master equation was solved as described

above, and Maxwell’s equations were solved by a commercial implementation

of the finite-difference time-domain method [84].

• For the study of dense quantum ensembles, a new methodology was developed

in order to solve the coupled Maxwell-Lindblad equations. This methodology

extended the unidirectional basis states on individuals in the ensembles to three

dimensions. A mean field methodology was adapted specifically for this prob-

lem, taking care to avoid self-interacting terms. A computational program was

written to numerically model the coupled Maxwell-Lindblad equations. This

program is capable of handling a variety of field sources and several models

of quantum systems. A parallel implementation of the code was developed for

execution on SHARCNet. Each calculation took 10-16 CPU days to run on

SHARCNet.

• An effective single particle model was proposed to describe the results of the

numerical calculation described above. This model included a multi-directional

basis set, and adapted the FRET process in biophysics to use dephasing terms

to model energy transfer between the quantum systems in the ensemble. An
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original hypothesis in this model is that the dephasing rates depend on the

excited state populations, and therefore on time. The idea of time-dependent

dephasing rates is a novel addition to the thesis.

• Not included in this thesis is the development of a steady-state model of atomic

population trapped in a magneto-optical trap. In current models, there is an

inconsistency [111, 112] between experiments and theory. My new model re-

solves this inconsistency. More experiments need to be done before this work

can be published.

6.2 Future Directions

For open quantum systems interacting with a classical system, we have already shown

that polarization and asymmetric responses can be used to selectively modify the

spontaneous emission rate. However, we have limited ourselves to a simple nanopar-

ticle dimer and a general qubit. In reality, any system could be able to utilize this

effect to allow for rapid state preparation. Choosing a specific qubit and finding the

most optimal environment for that qubit would represent the next direction for inves-

tigation. Most noticeably, a nanoplasmonic environment does not represent the only

environment that can lead to this decay enhancement. A similar process involving an

asymmetric cavity and cavity QED [113, 114, 115] could also be used to implement

this process and it may apply to more systems, including those that utilize trapped

ions and Rydberg molecules.

For the results on dense quantum ensembles, one important direction this work can

take is in evaluating and modifying time-dependent dephasing rates. In most analyses,

this emission modification is assumed to be constant and always-on. However, from

a Markovian standpoint, that cannot be true as individual systems are only affected

by the instantaneous field and quantum state. This indicates that the decay rate
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enhancement should be time-dependent and the constant enhancement approximation

is probably only valid in systems undergoing continuous excitation.

One particular direction this might take is in refining the model of how interactions

between quantum systems can be quantified through these dynamic dephasing rates.

While I have shown that this dephasing appears to occur through Forster resonance

energy transfer and I have provided a “back-of-the-envelope” estimation of how strong

these processes are, the model is far from robust. Refining this model with more

accurate ways of determining the strength of the time-dependent couplings would

allow for true ensemble control.

A second effect that might be also worth investigating further would be if more

complex quantum elements (such as Λ systems) would be able to use quantum inter-

ference effects to minimize this large decoherence we see in the numerical simulations.

If so, it would pave the way for large-scale quantum optics/quantum control.
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Appendix A

Rotating-Wave Approximation

Hamiltonian

In a time-dependent density matrix of a quantum system excited by an external

field, the oscillations associated with the frequency of the incident field dominate

the dynamics of the quantum system. In order to see the slower dynamics, such as

Rabi oscillations and quantum interference, it is beneficial to examine the system in

a frame that rotates with the incident field frequency.

The general procedure for utilizing this approximation for an N-level quantum

system is to first determine a unitary NxN rotation matrix (U0) that will rotate the

system into this frame. One can then determine the rotated Hamiltonian by making

the unitary transformation:

H ′ = U−1
0 HU0 − i~U−1

0 U̇0. (A.1)

In certain cases, one can set all rapidly oscillating terms to zero and assume that

all transitions are near resonance. This is known as the rotating wave approximation

[12] and has the effect of slowing the time dependence of the Hamiltonian.
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A.1 RWA for Optically-Linked Chains of States

Using an Intuitive Representation

In determining the proper RWA equation to use for a system, the main challenge is

always in determining U0. For the two level and three-level atoms, this choice is well

known [12] but for multi-level systems, it can become quite challenging due to having

various non-degenerate energy levels. Here, I provide a prescription to determine

the unitary matrix U0 that is best suited to generate the RWA Hamiltonian. If we

examine the rotation matrices used for the two and three level systems, we will notice

that the transformation consists of two terms, each that has a specific effect on the

system when applied. These terms are:

• exp(−iEj~ t): This term introduces a reference energy level for the system and

helps to introduce detunings.

• exp(±iωi,jt): This term rotates out the fast rotation of the system due to the

transition frequency ωi,j

Now if one visualizes the system as a graph, with each edge representing a tran-

sition, and nodes, representing the energy levels, the system in the non-RWA picture

consists of a collection of these edges and nodes oscillating with various frequencies.

The goal of the RWA is to first get this system into a picture in which the frequencies

of all oscillations are minimized. This requires that the oscillations be split into high

and low frequency terms. In this view, the high frequency terms are ignored and the

system is left in a slowly varying state.

Now in order to do this, one first sets a reference node, using one of the energy

levels (Er), by introducing a unitary matrix of the form,

Uref = exp(−iEr
~
t)I, (A.2)
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where I is the identity matrix. Now, with level |r〉 serving as a fixed reference point,

one then introduces a number of rotational corrections (Rn), that minimize for the

relative oscillations of the next connected energy levels in either direction (|r − 1〉 and

|r + 1〉). Subsequent connections later on in the chain have their connection corrected

by introducing additional relative rotations. Mathematically, for all possible n the

rotations take the form,

Rn
jj = exp(iωr−n,r−n−1t)T (j < r − n) + exp(iωr+n,r+n+1t)T (j > r + n), (A.3)

where T (x) = 1 if the x is true and T (x) = 0 if x is false or there are no more

states present. Lastly U0 is constructed by applying these transformations in order

(U0 = (
∏

nR
n)Urot). This overall process is pictorially represented in Figure A.1 for

a five-level chain.

A.1.1 Two-level System

For a two-level system interacting with a continuous-wave field, the Hamiltonian can

be written as

H =

 E1
~Ω
2

(exp(iwt) + exp(−iwt))
~Ω
2

(exp(iwt) + exp(−iwt)) E2

 . (A.4)

One can then rotate this matrix using

U0 =

exp(−iE1

~ t) 0

0 exp(iwt) exp(−iE1

~ t)

 , (A.5)

and set all high frequency terms to zero. This leaves us with the RWA Hamiltonian,
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Figure A.1: Pictorial representation of the process of determining the unitary trans-
formation matrix in a 5 level chain. (A) Each transition connects two levels and all
edges oscillate at some fast frequency (this oscillation is represented by a circle). A
reference level (|3〉) is chosen and Uref is applied. (b) With |3〉 serving as a reference
level (indicated by diagonal lines under the energy level), the nearest left (|3〉 → |2〉)
and right (|3〉 → |4〉) transitions are selected for minimization using rotation R0.
(c) The previous rotation, R0 which affects all nodes to the left (blue arrow) and
to the right (green arrow) removes the oscillation in |3〉 → |2〉 and |3〉 → |4〉. The
next nearest left (|2〉 → |1〉) and right (|4〉 → |5〉) transitions are then selected for
minimization using rotation R1. (d) Applying R1 (orange/red arrows) minimizes all
rotations and the process is complete.
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H ′RWA =

 0 ~Ω
2

~Ω
2
−~4

 , (A.6)

where 4 is the detuning between the incident field frequency and the transition

frequency.

A.1.2 Three-level System

For a three-level system, such as a ladder, Λ, or V, with a shared middle level and

with each transition excited by a near-resonance field, the Hamiltonian can be written

as,

H =


E0

~Ω01
2

(exp(iwpt) + exp(−iwpt)) 0

~Ω10
2

(exp(iwpt) + exp(−iwpt)) E1
~Ω12

2
(exp(iwst) + exp(−iwst))

0
~Ω21

2
(exp(iwst) + exp(−iwst)) E2

 . (A.7)

One can then rotate this matrix using the middle state as a reference level,

U0 =


exp(−iE1

~ t) exp(iwpt) 0 0

0 exp(−iE1

~ t) 0

0 0 exp(−iE1

~ t) exp(iwst)

 . (A.8)

Making the RWA leaves us with,

H ′RWA =


−~40

~Ω01

2
0

~Ω10

2
0 ~Ω12

2

0 ~Ω21

2
−~41

 . (A.9)

where4i is the detuning between the ith incident field frequency and the ith transition

frequency.
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A.1.3 Degenerate Five-level W System

For a five-level system with three degenerate excited levels, two ground levels, and

with each transition excited by a near-resonant field, the Hamiltonian can be written

as,

H =



0
~Ωg(e,0)

2
(eiwpt + cc)

~Ωg(e,1)
2

(eiwpt + cc)
~Ωg(e,−1)

2
(eiwpt + cc) 0

~Ω∗
g(e,0)
2

(eiwpt + cc) Ee 0 0
~Ωc(e,0)

2
(eiwst + cc)

~Ω∗
g(e,1)
2

(eiwpt + cc) 0 Ee 0
~Ωc(e,1)

2
(eiwst + cc)

~Ω∗
g(e,−1)

2
(eiwpt + cc) 0 0 Ee

~Ωc(e,−1)
2

(eiwst + cc)

0
~Ω∗

c(e,0)
2

(eiwst + cc)
~Ω∗

c(e,1)
2

(eiwst + cc)
~Ω∗

c(e,−1)
2

(eiwst + cc) Ec


.

(A.10)

One can then rotate this matrix using the degenerate excited states as the reference

level,

U0 =



exp(−iEe~ t) exp(iwpt) 0 0 0 0

0 exp(−iEe~ t) 0 0 0

0 0 exp(−iEe~ t) 0 0

0 0 0 exp(−iEe~ t) 0

0 0 0 0 exp(−iEe~ t) exp(iwst)


.

(A.11)

Making the RWA leaves us with,

H ′RWA =



−~4g
~Ωg(e,0)

2

~Ωg(e,1)
2

~Ωg(e,−1)

2
0

~Ω∗
g(e,0)

2
0 0 0

~Ωc(e,0)
2

~Ω∗
g(e,1)

2
0 0 0

~Ωc(e,1)
2

~Ω∗
g(e,−1)

2
0 0 0

~Ωc(e,−1)

2

0
~Ω∗

c(e,0)

2

~Ω∗
c(e,1)

2

~Ω∗
c(e,−1)

2
−~4c


, (A.12)

where 4i is the detuning between the ith incident field frequency and the degenerate

transition frequencies ith lower levels.
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Appendix B

Scaling Parameters

For most single-atom quantum control systems in the RWA, it is possible to reduce the

number of free parameters by scaling the evolution of the system. In most calculations,

this scaling is done with respect to a chosen Rabi frequency strength. Under this

scaling, the Lindblad-Von Neumann master equation,

∂ρ

∂t
= − i

~
[HRWA, ρ]− L(ρ), (B.1)

becomes,

∂ρ

∂(Ωt)
= − i

~
[HRWA/Ω, ρ]− L(ρ)/Ω, (B.2)

∂ρ

∂t′
= − i

~
[H ′RWA, ρ]− L′(ρ). (B.3)

In general, this allows us to report other system parameters using the chosen Rabi

frequency as a unit as,
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γ = γ′Ω, (B.4)

4 = 4′Ω,

Ωi = Ω′iΩ,

t = t′
1

Ω
,

ωi = ω′iΩ.

The rates reported in Chapter 2 and 3 are all scaled in this manner.

B.1 Number Density

One new scaling parameter introduced into the study of dense ensembles is the number

density (Na) which is simply defined as the number of quantum emitters (atoms) per

unit volume. In order to give a empirical feel for how dense various systems are,

various number densities of a few materials are provided below [116]:

Object Density ( g
m3 ) Molecular Weight ( g

mol
) Number Density (m−3)

N2 gas (≈Air) 1.25× 103 28.014 2.69× 1025

H2O (liquid) 9.97× 105 18.015 3.33× 1028

Au (Metal) 1.93× 107 196.967 5.90× 1028

ZnO powder

(Quantum Dot

material)

5.6× 106 81.408 4.14× 1028
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Appendix C

Steady State Solutions to the

Master Equation

One useful property of the master equation is that, due to its Hermitian nature, it

consists of N2 unique equations and N2 unknowns if (ρ̇ = 0) and therefore the steady-

state solution is always solvable. This means that for any given system, as long as

one knows the relevant decay rates, detunings and driving frequencies, one can always

predict what the final steady-state populations should be.

For the all cases except the two-level system, the actual solution of the equations

was handled through the Maple 11 [117] software package due to the fact that each

N level system requires the solution of N2 equations.

For the two-level system, the steady-state conditions have been solved explicitly

simply to demonstrate the overall method, the final solution is identical to that ob-

tained by Maple 11 (see C.1).
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C.1 Steady State Conditions of a Two-Level Sys-

tem

In order to find the steady-state condition, one simply needs to find the condition at

which ρ̇ = 0. This involves solving only two update equations (with ~ = 1),

˙ρgg = 0 =
Ω

2
(2Im(ρge)) + γ(1− ρgg), (C.1)

˙ρge = 0 = i
Ω

2
(2ρgg − 1) + ρge(−i4−

γ

2
), (C.2)

as ρge = ρ†eg and ρee = 1− ρgg. By setting ρgg = a and ρge = b + ic and splitting the

previous equations into real and imaginary components one is left with,

Ωc+ γ(1− a) = 0, (C.3)

Ω

2
(2a− 1)− b4−cγ

2
= 0, (C.4)

c4−bγ
2

= 0. (C.5)

Solving these equations yields,

a = 1−
Ω2

4

42 + γ2

4
+ Ω2

2

, (C.6)

b =
1
2
4 Ω

42 + γ2

4
+ Ω2

2

, (C.7)

c =
1
4
Ωγ

42 + γ2

4
+ Ω2

2

. (C.8)
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Therefore,

ρgg = a = 1−
Ω2

4

42 + γ2

4
+ Ω2

2

, (C.9)

ρge = b+ ic =
1
2
4 Ω + i1

4
Ωγ

42 + γ2

4
+ Ω2

2

. (C.10)

The final steady state of a two-level system is therefore independent of the initial

state.

C.2 Preparation Limitations of Two-level Quan-

tum Systems

A two-level quantum system with states |g〉 and |e〉 is the simplest model of a qubit.

This quantum system is driven by a electromagnetic wave that is incident on the

entire system. The Hamiltonian of this driven two-level quantum system has the

field-matter interaction of the system treated in the electric-dipole approximation

described by Ĥ = Ĥa + µ · E(t), where Ha is the Hamiltonian of a two-level system,

µ is the transition dipole moment of the system and E(t) is electric field of the

wave interacting with the system. This electric field magnitude varies in time as

E(t) = ELcos(ωLt) where ωL is the frequency of the incident wave.

Making the rotating wave approximation (RWA), the matrix form of the Hamil-

tonian can be written as,

HRWA =

 0 ~Ωge
2

~Ω∗ge
2
−~4

 , (C.11)

where 4 represents the detuning between the frequency of the incident field and

frequency of the state transition. The Rabi frequency, Ωge = µgeEL
~ , depends on the
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amplitude of the local electric field (EL).

In order to study the time-dependent response of an qubit to both the environment

and the incident electromagnetic wave, I use a density matrix representation of the

qubit’s state. For our two-level system this density matrix is of the form,

ρ =

ρgg ρge

ρeg ρee

 . (C.12)

This density matrix evolves in time under the Liouville-Von Neumann equation which

takes the form,

ρ̇ = − i
~

[HRWA, ρ]− L(ρ). (C.13)

In this evolution equation, the Lindblad term, L, models the decoherence in the

system. This term is linear in the state density operator and is of the form,

L̂ =
∑
d

γd
2

(σ†dσdρ+ ρσ†dσd − 2σdρσ
†
d), d = 0, 1. (C.14)

In this equation, σd are the Lindblad operators and I assume that the only decoherence

mechanism present is spontaneous emission. Therefore γd represents the decay rate

from the excited states to the ground state and I take σ†d = |g〉 〈e|. I quantify the

purity of a state as Purity = Tr(ρ2) [118]. Under this description, states with a

higher purity are closer to being pure states.

If one wants to prepare a qubit in a stable initial state without having any knowl-

edge of its initial state, we must use a continuous applied field and set the qubit to a

steady state. As the Lindblad equation describes the evolution of the state densities

over time, one solves it under the condition that ρ̇ = 0 and find the steady state

populations of the system,

ρgg = 1−
Ω2

4

42 + γ2

4
+ Ω2

2

; , (C.15)
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ρge =
1
2
4 Ω + i1

4
Ωγ

42 + γ2

4
+ Ω2

2

; . (C.16)

These equations indicate which final state the system will end up in, regardless of

initial conditions, as long as a continuous field is applied (even if that field is zero).

In order to illustrate this, I have evolved a qubit to the same final state for a variety

of initial mixed states. Figures C.1 and C.2 show this system evolving, under an

arbritary chosen detuning and spontaneous decay rate, to a desired final ground state

population ρgg = 0.75. Each state is initialized with no coherence, ρge = 0 and evolves

to the same final state in the same amount of time.

As the purity of the quantum system is dependent on only the coherence and

ground state population, the final purity of any quantum state subjected to an ex-

ternal field will only depend on the steady-state that will be reached. In fact the

steady-state purity of the two-level qubit can be shown, using Equations C.15 and

C.16, to be entirely dependant on the choice of a desired, steady-state, ground state

population, (ρgg = ρd), with

Purity = 4ρd − 2ρ2
d − 1. (C.17)

This dependence of the purity on the final steady-state indicates that a continuous

electromagnetic wave can be used to reset a quantum state to a fixed purity. This

differs from pulsed excitation schemes in that the initial purity can be changed and

the initial state does not need to be known. It also avoids the need to allow the

system to decay completely to the ground state.

Under this relationship it is not possible to reach a completely pure steady-state

that is not in the ground state configuration using only spontaneous decay and a two-

level system. This limitation restricts this method of preparation to those in which

high levels of purity are not required. It also indicates that for a purely two-level

quantum system, including a nanoparticle simply serves to enhance the rate at which
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Figure C.1: Ground state populations and coherences of the qubit with γ = 2.81 ×
1010s−1 and 4 = 1.37×1014s−1 is evolved from a variety of initial conditions to reach
the desired state populations ρgg = 0.75 and ρee = 0.25

112



Figure C.2: Purity of the qubit, with γ = 2.81×1010s−1 and4 = 1.37×1014s−1, when
it is evolved from a variety of initial conditions to reach the desired state populations
ρgg = 0.75 and ρee = 0.25
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the two-level quantum system reaches a steady-state; it does not improve the purity

of that state in any way. The specifics for this calculations are shown in [C.2.1].

C.2.1 Purity of a Two-level System in a Steady-State

In order to find the purity relationship for the two level system, one needs to evaluate

the magnitude of the matrix elements as

Purity = tr(ρ2) = 1− 2ρgg + 2ρ2
gg + 2|ρge|2. (C.18)

From the previous steady state solutions one can define the quantities required to

find the purity,

ρgg = 1−
Ω2

4

42 + γ2

4
+ Ω2

2

=
42 + γ2

4
+ Ω2

4

42 + γ2

4
+ Ω2

2

, (C.19)

ρge =
1
2
4 Ω + i1

4
Ωγ

42 + γ2

4
+ Ω2

2

, (C.20)

|ρge|2 =
Ω2

4

42 + γ2

4

(42 + γ2

4
+ Ω2

2
)2
. (C.21)

One can express ρgg in terms of itself and |ρge|2 as

ρgg =
42 + γ2

4
+ Ω2

4

42 + γ2

4
+ Ω2

2

·
42 + γ2

4
+ Ω2

4

42 + γ2

4
+ Ω2

2

, (C.22)

ρgg =
(42 + γ2

4
+ Ω2

4
)(42 + γ2

4
+ Ω2

2
)

(42 + γ2

4
+ Ω2

2
)2

, (C.23)

ρgg =
(42 + γ2

4
+ Ω2

4
)2 + 1

4
Ω2(42 + γ2

4
) + Ω4

16

(42 + γ2

4
+ Ω2

2
)2

, (C.24)

ρgg = ρ2
gg + |ρge|2 + (1− ρgg)2. (C.25)
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Therefore,

|ρge|2 = 3ρgg − 2ρ2
gg − 1, (C.26)

and the purity for any steady-state two-level system can be expressed in terms of ρgg

with,

Purity = 4ρgg − 2ρ2
gg − 1. (C.27)

C.3 Preparing Pure States in a Three-level Lambda

System with Decay Enhancement

In a three-level lambda system it is possible to set up a doubly-driven system in which

both transitions experience the same detuning (4ge = 4ce). This purification occurs

due to the presence of a dark state similar to what is used for electromagnetically

induced transparency. With this condition one can solve the Lindblad equation for

the steady state condition (ρ̇ = 0). This yields steady state densities,

ρgg =
Ω2
ce

Ω2
ge + Ω2

ce

, (C.28)

ρcc =
Ω2
ge

Ω2
ge + Ω2

ce

, (C.29)

ρgc =
ΩgeΩce

Ω2
ge + Ω2

ce

, (C.30)

ρce = ρge = ρee = 0, (C.31)

leaving,

ρ =


Ω2
ce

Ω2
ge+Ω2

ce
0 ΩgeΩce

Ω2
ge+Ω2

ce

0 0 0

ΩgeΩce
Ω2
ge+Ω2

ce
0

Ω2
ge

Ω2
ge+Ω2

ce

 , (C.32)
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which is a completely pure state (Purity = 1) which can be reached regardless of

the initial qubit state. This allows a completely pure state can be reached under

excitation.

For a three-level system, the time taken to reach this pure state is no longer

proportional to a single decay rate but to two different decay rates. In other words,

in order to increase the purification time of the system, one is not required to increase

both decay rates. This can be seen in Figure C.3 in which the time required to

reach a steady state, normalized to the case in which one decay rate is negligible

when compared to the other, is plotted versus various ratios of decay rates. This

significance of this effect is in the fact that the overall convergence time is not equal

to the product of the two decay rates; even if one is negligible, if the other decay rate

is large enough, one can still purify on a short timescale. This means that in the case

of a highly enhanced decay rate, the overall time required to reach a completely pure

state will depend mostly on the highest decay rate.

This overall effect is significant in that it is a purely quantum effect as opposed

to a classical one. If one were to look at the classical picture of a dipole oriented

in an arbitrary direction, one would be able to decompose it into two perpendicular

dipoles. Each of these dipoles would have its own relaxation rate and thus the overall

relaxation rate of the system would be proportional to the slowest rate. For a quantum

system however, it is not always possible to decouple the two different transitions,

therefore the relaxation rate of one transition can affect the other even if the two

effective dipoles are perpendicular.
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Figure C.3: The time required to reach a steady state in a three-level lambda system,
normalized to the case in which one decay rate is negligable when compared to the
other, is plotted versus various ratios of decay rates.

117



Appendix D

Lorentz-Lorenz Shift

D.1 Classical Evaluation

This derivation is largely from [H.A. Lorentz, The Theory of Electrons, 1952], sections

110-140 and Note 54.

The main idea behind the LL shift is that in an atom there are electrons. If one

views the nuclei of the atoms to be stationary, all interactions between the atoms and

an electric field is due to the movement of the electron. This means that there is a

classical differential equation in 3D that describes the movement of that electron in

terms of the fields (given that the electron and proton form a dipole). For a field in

the z direction,

m
∂2x

∂t2
= e(Ex + aPx)− fx− g

∂x

∂t
+
eHextz

c

∂y

∂t
,

m
∂2y

∂t2
= e(Ey + aPy)− fy − g

∂y

∂t
− eHextz

c

∂x

∂t
,

m
∂2z

∂t2
= e(Ez + aPz)− fz − g

∂y

∂t
.

(D.1)
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In this equation m and e are the mass/charge of the electron, f is the term that

describe the natural oscillation of the dipole, g represents a damping force and Hextz

is the external magnetic field.

These equations can be converted to those that only depend on the polarization

P by assuming that the position of the electron determines the polarization. It is

also assumed that the electron is in an area in which there are N other electrons.

Introducing the following scaled variables,

m′ =
m

Ne2
,

f ′ =
f

Ne2
,

g′ =
g

Ne2
,

(D.2)

this takes the form,

m′
∂2Px
∂t2

= Ex + aPx − f ′Px − g′
∂Px
∂t

+
Hextz

cNe

∂Py
∂t

,

m′
∂2Py
∂t2

= Ey + aPy − f ′Py − g′
∂Py
∂t
− Hextz

cNe

∂Px
∂t

,

m′
∂2Pz
∂t2

= Ez + aPz − f ′Pz − g′
∂Py
∂t

.

(D.3)

Now in the work by Lorentz, it is assumed that,

P → exp(iωt), (D.4)
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which leads to equations,

Ex = (α + iβ)Px − iγPy,

Ey = (α + iβ)Py + iγPx,

Ez = (α + iβ)Pz,

(D.5)

where,

α = f ′ − a−m′ω2,

β = g′ω,

γ =
Hextz

cNe
.

(D.6)

Now if one assumes that Hextz → 0 and β → 0, one can show from Maxwell’s

equations of motion for an EM wave that,

n2 = 1 +
1

α
, (D.7)

where n is the index of refraction. Therefore the main contribution of the Lorentz-

Lorenz shift comes from the dependence of the new frequency of oscillation α on the

number of electrons N.
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Appendix E

Pseudo-Spectral Time Domain

E.1 Evolution of the Fields

In order to evolution the fields, I implement a Pseudo-Spectral Time-Domain method

(PSTD)[101, 102]. This method basically uses a Fourier transform to evaluate the

spatial derivatives in Maxwell’s Equations and then updates the fields discretely in

time. The analysis and symbol conventions are taken from Section 1.4 and 3.7 of [119].

In Maxwell’s equations, a non-physical “magnetic conductivity” (σM) is introduced

to allow no reflection and strong absorption at the boundaries. Thus the equations

that are solved are,

∇× E = −µ∂H

∂t
− σMH (E.1)

and

∇×H = ε
∂E

∂t
+ σE + J, (E.2)

where H and E are the magnetic and electric fields respectively, σ and σM are the

electrical conductivity and “magnetic conductivity” and J is the free current density.
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In my calculations, these conductivities (σ, σM) are only used at the boundaries to

attenuate fields without reflections and therefore are set to zero everywhere else.

The first thing I do is note the symmetry of the two equations (E.1 and E.2). I

rewrite them in the form,

∇×G = a
∂F

∂t
− σaF + Ja, (E.3)

where (G,F, a, σa,Ja) = (E,H,−µ, σM , 0) or (H,E, ε,−σ, J). This allows for the

reuse of numerical subroutines to update both electric and magnetic fields. Rear-

ranging the above into an update equation for a F,

∂F

∂t
=

1

a
[∇×G + σaF− Ja] . (E.4)

Note that all vectors (F, G and Ja) are in Cartesian components to get scalar

equations for each directional component. This yields

∂Fx
∂t

=
1

a

[
dGz

dy
− dGy

dz
+ σaFx − Jax

]
, (E.5)

∂Fy
∂t

=
1

a

[
dGx

dz
− dGz

dx
+ σaFy − Jay

]
, (E.6)

and

∂Fz
∂t

=
1

a

[
dGy

dx
− dGx

dy
+ σaFz − Jaz

]
. (E.7)

Now in order to update these equations, I need to evaluate the spatial derivatives,

which is the main computational cost. For this calculation, I use a complex, 3D Fast-

Fourier Transform (FFT) method. I implement the open-source FFTW package [120]

as it is numerically stable, parallelized and officially supported by the SHARCNET

[121] system. In this package, the three field components (Gη, where η = x, y, z) are
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transformed into the wavenumber domain, yielding

Gη(x, y, z)→ Gη(n, l,m) =
∑
n,l,m

An,l,mexp(ik
(n)
x x)exp(ik(l)

y y)exp(ik(m)
z z). (E.8)

In this domain, the spatial derivatives can be evaluated by

dGη(n, l,m)

dη′
=
∑
n,l,m

ik
(s)
η′ An,l,mexp(ik

(n)
x x)exp(ik(l)

x y)exp(ik(m)
z z). (E.9)

where (η′, s) = (x, n), (y, l) or (z,m). In order to obtain the spatial derivative of Gη,

I use an Inverse FFT on the derivative to return to real space:

dGη(n, l,m)

dη′
→ dGη(x, y, z)

dη′
. (E.10)

Therefore in order to evaluate all the derivatives needed, I require 3 FFTs (one

for each real space component) and 6 inverse FFTs (one for each derivative).

Once the derivatives are calculated, I simply update the fields by

Fη(t+4t) = Fη(t) +
4t
a

[
dGz

dy
− dGy

dz
+ σaFx − Jax

]
. (E.11)

However, this leads to issues near the spatial boundaries of the simulation. Given

that the FFT provides a spatially periodic boundary condition (its functional form is

exp(ik
(s)
η η), which is naturally periodic), in order to terminate the simulation in the

propagation direction, an attenuating perfectly-matched layer (PML) [122] is needed.

If this boundary is not placed in, one is left with a wraparound error in which fields

leaving the simulation in the propagation direction will loop around at the boundary

and re-enter the simulation.

The PML chosen for this simulation is the uniaxial PML, which introduces direction-

dependent conductivities (ση). ση is a parameter which controls the attentuation of
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fields travelling in the η̂ direction at different locations [119, 123]. The PML matches

a strongly attenuating layer to the edges of the simulation so that the reflection coef-

ficient of the interface between that boundary layer and the simulation space is zero.

This lack of reflection is enforced through the matching condition

ση
ε

=
σMη
µ

(E.12)

and by using a “coordinate stretching” tensor inside the PML [119, 123]. First I

introduce field stretching variables in each direction η,

Sη = 1 +
ση
iωε

, (E.13)

for the electric field and,

SMη = 1 +
σMη
iωµ

, (E.14)

for the magnetic field. With these, the field components are transformed as,

E ′η = SηEη, (E.15)

and

H ′η = SMη Hη. (E.16)

The matching condition, Sη=S
M
η , ensures that there is no reflection of either field.

By setting ση and σMη to a non-zero value, attenuation is introduced to fields travelling

in the η direction.

If one examines Maxwell’s equations in the PML, one can write it with these

stretched fields as [123],

iωε
←→
T E′ = ∇×H′, (E.17)
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and

iωµ
←→
T H′ = −∇× E′. (E.18)

Here
←→
T is a tensor defined as,

←→
T =


SySz
Sx

0 0

0 SxSz
Sy

0

0 0 SxSy
Sz

 . (E.19)

One then introduces a new set of variable to help deal with the tensor. For the

electric and magnetic fields I introduce “stretched fields”, D and B, with,

Dx = ε
Sz
Sx
Ex,

Dy = ε
Sx
Sy
Ex,

Dz = ε
Sy
Sz
Ex,

Bx = ε
Sz
Sx
Hx,

By = ε
Sx
Sy
Hy,

Bz = ε
Sy
Sz
Hz.

(E.20)

I then place these stretched fields into the left hand side of Equations E.17 and

E.18. I the replace the remaining Sη term with its definition in E.13 (keeping in mind

that Sη = SMη ) and replace iω with d
dt

. For the x̂ components of E.20,

dDx

dt
+
σy
ε
Dx =

dHz

dy
− dHy

dz
.
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Similarly,

dDy

dt
+
σz
ε
Dy =

dHx

dz
− dHz

dx
,

dDz

dt
+
σx
ε
Dz =

dHy

dx
− dHx

dy
,

dBx

dt
+
σy
ε
Bx = −(

dEz
dy
− dEy

dz
),

dBy

dt
+
σz
ε
By = −(

dEx
dz
− dEz

dx
),

dBz

dt
+
σx
ε
Bz = −(

dEy
dx
− dEx

dy
)

(E.21)

and:

ε
dEx
dt

+ σzEx =
dDx

dt
+
σx
ε
Dx,

ε
dEy
dt

+ σxEy =
dDy

dt
+
σy
ε
Dy,

ε
dEz
dt

+ σyEz =
dDz

dt
+
σz
ε
Dz,

µ
dHx

dt
+ σzHx =

dBx

dt
+
σx
ε
Bx,

µ
dHy

dt
+ σxHy =

dBy

dt
+
σy
ε
By,

µ
dHz

dt
+ σyHz =

dBz

dt
+
σz
ε
Bz.

(E.22)

With these equations, one can implement an update equation for both fields

(stretched and regular) with the update equations ((G,F, a, ση, L) = (E,H,−µ, ση, D)

or (H,E, ε, ση, B)):
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Lx(t+4t) =
2ε− σy 4 t

2ε+ σy 4 t
Lx(t) +

a

|a|
2ε4 t

2ε+ σy 4 t
(
dGz

dy
− dGy

dz
),

Ly(t+4t) =
2ε− σz 4 t

2ε+ σz 4 t
Ly(t) +

a

|a|
2ε4 t

2ε+ σz 4 t
(
dGx

dz
− dGz

dx
),

Lz(t+4t) =
2ε− σx4 t

2ε+ σx4 t
Lz(t) +

a

|a|
2ε4 t

2ε+ σx4 t
(
dGy

dx
− dGx

dy
).

(E.23)

Fx(t+4t) =
2ε− σz 4 t

2ε+ σz 4 t
Fx(t) +

1

|a|
(
2ε+ σx4 t

2ε+ σz 4 t
Lx(t+4t)− 2ε− σx4 t

2ε+ σz 4 t
Lx(t)),

Fy(t+4t) =
2ε− σx4 t

2ε+ σx4 t
Fy(t) +

1

|a|
(
2ε+ σy 4 t

2ε+ σx4 t
Ly(t+4t)− 2ε− σy 4 t

2ε+ σx4 t
Ly(t)),

Fz(t+4t) =
2ε− σy 4 t

2ε+ σy 4 t
Fz(t) +

1

|a|
(
2ε+ σz 4 t

2ε+ σy 4 t
Lz(t+4t)− 2ε− σz 4 t

2ε+ σy 4 t
Lz(t)).

(E.24)

Note that the |a| terms exist to account for the sign difference between E and H

fields in Maxwell’s equations.

With these update equations, as long as no free currents exist near the boundaries,

all that needs to be done to ensure attenuation in a region (in the η direction) without

reflection is to set ση >> 0. The addition of stretched fields do increase the memory

requirements of the system, but do not significantly increase computational time as

the bulk of the time is required to perform Fourier transforms.

If I examine places in which the PML is not present (σ = 0) these equations

reduce to:

Lx(t+4t) = Lx(t) +
a

|a|
4 t(

dGz

dy
− dGy

dz
),

Ly(t+4t) = Ly(t) +
a

|a|
4 t(

dGx

dz
− dGz

dx
),

Lz(t+4t) = Lz(t) +
a

|a|
4 t(

dGy

dx
− dGx

dy
).

(E.25)
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and

Fx(t+4t) = Fx(t) +
1

|a|
(Lx(t+4t)− Lx(t)),

Fy(t+4t) = Fy(t) +
1

|a|
(Ly(t+4t)− Ly(t)),

Fz(t+4t) = Fz(t) +
1

|a|
(Lz(t+4t)− Lz(t)).

(E.26)

When combined, we are left with

Fx(t+4t) = Fx(t) +
4t
a

(
dGy

dx
− dGx

dy
),

Fy(t+4t) = Fy(t) +
4t
a

(
dGx

dz
− dGz

dx
),

Fz(t+4t) = Fz(t) +
4t
a

(
dGy

dx
− dGx

dy
),

(E.27)

which is the same as the general update equation when J=0 in the local region. In

order to account for the contribution of the free current (J) to the total electric field,

a local contribution is calculated,

EJ
η = −Jη 4 t

ε
, (E.28)

and then added to the new fields,

E(t+4t) = Efields(t+4t) + EJ . (E.29)

In order to find the free current [47], one needs to find the rate of change of the

polarization (P) as,

J =
dP

dt
. (E.30)
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To do this, one calculates the polarization in each direction,

Pη = Na〈µη〉 = NaTr(ρµ̂η), (E.31)

where ρ is the density matrix of the local atoms, µ is the dipole moment operator

(µ̂η = − dĤ
dEη

) and Na is the number density of the atoms. Putting these together with

the reasonable assumptions that ∂µ̂η
∂t

= ∂Na
∂t

= 0 we get,

Jη = NaTr(ρ̇µ̂η), (E.32)

where,

ρ̇ = − i
~

[HRWA, ρ]− L(ρ). (E.33)

E.1.1 PSTD Stability

The PSTD method’s stability in this form has been evaluated previously [101, 102]

and for this method the stability criterion is (for a 3D case),

c4 t

4x
<

2√
3π
, (E.34)

where4x and4t are the coarse-grain lattice size and finite time step size respectively.

Therefore for a typical case in which nm resolution is needed,

4t < 2√
3π

4x
c

= 3.677× 10−18s, (E.35)

is the lowest time step that can be used in order for the method to be stable. To be

on the safe side, I usually aim for a step size of 1×10−19 to 1×10−18s for this level of
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resolution. Spatially, one is limited to two lattice cells per wavelength [101]; however

this is not a relevant limitation given the size of systems I wish to examine and the

resolution required. One improvement that may be considered is the introduction of

higher order update equations to reduce the required time step size for the fields.

E.1.2 Introduction of the Source

In order to introduce EM fields into the system, a source is needed. This is a collection

of lattice cells that generate fields. For this system, the source is designed to generate

a continuous wave in the ẑ direction polarized in the y direction. This is implemented

by adding field amplitudes in a number of chosen cells,

E ′y(r, t) = Ey(r, t) + dt
∂

∂t
(E0(r, t)cos(ωt+ φ(r))) ,

H ′x(r, t) = Hx(r, t) + dt
∂

∂t

(
E0(r, t)

c
cos(ωt+ φ(r))

)
,

(E.36)

where φ(r) is a positional phase shift chosen to ensure all spatial source cells are in

phase regardless of position. In a PSTD method, implementing a single point source

is not ideal as the Fast-Fourier Transform (FFT) of a Dirac-delta function (or any

sharp discontinuity) is not numerically stable [101, 102] (it skews the high frequency

terms in the FFT). This noise, if high enough, can cause excitation in lattice cell sites

that precedes the incoming field.

One way to mitigate this noise is to spread the source over multiple cells [101, 102].

This reduces the sharp discontinuity in the electric field and reduces the exaggeration

of the higher frequency modes in the numerical FFT. The more cells that are used to

generate fields, the lower the numerical noise will be; however, care must be taken to

ensure that these generating cells are far enough away from the distribution to not

greatly impact the fields around an object of interest. In fact, only 4-6 cells need to
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be used to reduce this noise to minimal (about 1-2 percent) levels [102].

For this particular work, I have opted to use a normalized Gaussian smoothing

function over a width of N=5 lattice cells. For a z-propagating plane wave in this

case,

E0(ri, t) = E0,incident

(
exp(
−(ki − k3)2

2(1)2
)

)
/

5∑
i

(
exp(
−(ki − k3)2

2(1)2
)

)
, (E.37)

where ki is the lattice cell number and k3 is the source cell. Although this leads to

the very first wavefront (from kz−kz0 = 2) reaching the system at a earlier time than

if I were to use a single source at i = 3, this time difference (≈ 0.5nm
c

= 5× 10−18s) is

negligible when compared to the smallest quantum time-scale in almost all systems

(1/ω0 ≈ 2× 10−15s).

E.1.3 Parallel Implementation

Due to the large computational requirement of running a relatively large simulation, it

is essential that this overall calculation be done in parallel. The two main calculations

that need to be performed are the update (time evolution) of the density matrix and

the update (time evolution) of the fields. Both of these calculations are relatively

easy to implement in parallel.

The main challenge in paralleling the overall calculation is in updating the fields.

This is due to the fact that the gradient needs to be calculated across all spatial

locations which may be present on different cores. Luckily this is handled by the use

of the FFTW [120] MPI package which takes care of the parallel optimized Fourier

transform for a 3D lattice. This is also one of the main benefits of using a Fourier

transform to update the fields (as opposed to a basis function) as this calculation is

simple to process across different cores.
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Figure E.1: Parallel scheme for performing the PSTD calculation; coarse-grain lattice
cells are arranged and split amongst cores according to the x-position. At each lattice-
cell centre, electric fields and density matrices are tracked in real-time and updated.

The updates to the density matrix can be done explicitly in parallel as none of

the local state densities depend on one another, this allows them to be done locally.

In these calculations, the local density matrices are calculated on the same cores that

store the local electric field data. While they could be distributed evenly between

cores (in the case of non-uniform distributions of atoms), the amount of time needed

to transfer field data from the core in which it is stored to another core would most

likely exceed the small amount of time needed to process additional local density

matrices unless the system was greatly non-uniform. An overall schematic for the

parallel scheme can be seen below in Figure E.1.

When performing most calculations involving dense collections of quantum sys-

tems (results of Chapter 4), 10-16 CPU days were required for each individual sim-

ulation. Computing resources were provided by SHARCNET [121].
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Appendix F

Ensemble fitting parameters

Included in this section are the specific fitting parameters to the ensemble averaged

statistical fits used to extract the effective coherence rates. The fitting function is of

the form:

ρey,ey = a exp(−γenst) cos(Ωt) + b+ c exp(−gt), (F.1)

and γens is extracted to give a measure of the effective decoherence rates. The fol-

lowing are the fitting parameters for various ensemble number densities Na.

Na = 1× 1027m−3

γens = 6.2434× 1011 ± 1.219× 109 Hz

Ω = 2.061× 1014± 6.231× 108Hz

c = 0.455385± 0.01248

a = −0.502126± 9.996× 105

g = 8.98337× 1011 ± 3.032× 1011 Hz

b = 0.0422173± 0.01241

Na = 2.5× 1027m−3

γens = 1.45468× 1013 ± 1.355× 1010 Hz
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Ω = 2.02565× 1014 ± 9.594× 109Hz

c = 0.308686± 0.0004984

a = −0.639961± 0.0004188

g = 6.17348× 1012 ± 2.723× 1010 Hz

b = 0.217666± 0.000607

Na = 4× 1027m−3

γens = 3.55518× 1013 ± 1.355× 1010 Hz

Ω = 1.85383× 1014 ± 2.419× 1010Hz

c = 0.304753± 0.0002499

a = −0.6727± 0.0004625

g = 1.84484× 1013 ± 3.006× 1010 Hz

b = 0.282172± 8.938× 10−05

Na = 5× 1027m−3

γens = 5.07228× 1013 ± 5.511× 1010 Hz

Ω = 1.66319× 1014 ± 3.675× 1010 Hz

c = 0.266439± 6.258× 10−05

a = −0.683112± 0.0005458

g = 2.63727× 1013 ± 3.933× 1010 Hz

b = 0.337431± 0.0003251

Na = 7.5× 1027m−3

γens = 5.30576× 1013 ± 1.897× 1011 Hz

Ω = 2.8366× 1014 ± 1.369× 1011 Hz

c = 0.302916± 0.0001589

a = −0.161232± 0.0004006
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g = 9.19251× 1012 ± 2.445× 1010 Hz

b = −0.18188± 0.0001505

Na = 1× 1028m−3

γens = 5.1942× 1013 ± 2.099× 1011 Hz

Ω = 4.41401× 1014 ± 1.507× 1011 Hz

c = 0.683556± 0.002756

a = −0.0769707± 0.0002182

g = 1.47507× 1012 ± 7.964× 109 Hz

b = −0.632966± 0.002712

Saturation Fit

This overall behaviour of these fitting parameters appears to be best described

by a saturation curve, similar to that in Fermi statistics. This takes the form of the

logistic function [108] with:

γens =
L

1 + exp(−k(Na − a))
. (F.2)

E = 1.5× 109V/m

L = 5.31639× 1013 ± 1.479× 1012 Hz

k = 1.3532× 10−27 ± 1.639× 10−28 m3

a = 3.33738× 1027 ± 1.189× 1026 m−3

E = 7.5× 108V/m

L = 3.05586× 1013 ± 2.594× 1011 Hz

k = 2.28608× 10−27 ± 1.229× 10−28 m3

a = 1.76173× 1027 ± 4.229× 1025 m−3
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