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ABSTRACT 

This dissertation focuses on designing and manipulating nonlinear chemical and 

electrochemical reactions, with the aim of discovering new behaviors as well as gaining 

insights into their underlying mechanisms. In Chapter 2 the nonlinear behavior of the 4-

aminophenol – bromate photoreaction was investigated from two directions. First, a 

second autocatalytic cycle was introduced through the incorporation of the metal catalyst 

cerium (IV). It was found that once the autocatalytic cycles were effectively balanced, 

complexity in the form of mixed mode oscillations was observed in a closed reactor. This 

dynamic behavior was successfully simulated using a modified model, which 

qualitatively reproduced the experimental results. It was also found that the precipitate 

which forms at the onset of the reaction of 4-aminophenol with bromate, N-bromo-1,4-

benzoquinone-4-imine, could form a new bromate-based photochemical oscillator.  

In Chapter 3, the autocatalytic oxidation of 2-methyl-1,4-hydroquinone by acidic 

bromate lead to the discovery of a new photochemical oscillator. The system was found 

to be very sensitive to the intensity of illumination supplied, and complexity in the form 

of sequential oscillations was discovered using either ferroin or cerium (IV) as catalysts. 

Interestingly, cerium (IV) had a much more profound effect on the dynamical behavior, 

substantially lengthening the oscillatory period as well as being capable of inducing 

mixed-mode oscillations. Chapter 4 reports findings on the photosensitive 4-nitrophenol - 

bromate reaction. Extreme photo-inhibition was found to occur when illumination was 

supplied to the system whether in a stirred reactor or when being studied in a spatially 

extended system. Reaction diffusion experiments showed that under certain conditions 

long lasting complexity in the form of propagation failures took place.  
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In Chapter 5, oscillations in both current density and potential were observed 

during the electro-oxidation of bromide ions. Interestingly, mechanistic findings suggest 

that the oscillations occurring during the oxidation of bromide ions on a platinum 

electrode belong to the type of oscillator referred to as Capacitance Mediated Positive 

Differential Resistance oscillator, and is the first solution based system to fit this class. In 

Chapter 6, the electro-oxidation of two sulfur compounds was seen to display nonlinear 

behavior. First, the oxidation of hydroxymethanesulfinate leads to oscillations in both 

current and potential on platinum or gold electrodes. The formation of an inhibiting layer 

was seen to have a substantial influence on the systems’ ability to support sustained 

oscillatory behavior. Electrochemical Impedance Spectroscopy showed that the oxidation 

of hydroxymethanesulfinate fits the class of an HN-NDR type oscillator. The oxidation of 

methionine only displayed nonlinear behavior on a gold surface, and only when operated 

under potentiostatic conditions. The oscillations were accompanied by gold dissolution 

and it was found that the electro-oxidation of methionine belongs to the N-NDR class.  

Two novel examples of utilizing nonlinear reactions towards application-based 

research is shown in Chapter 7. Here, the 4-nitrophenol – bromate oscillator is used to 

fabricate platinum nanoparticles, exploiting the dynamic bromide ion concentration to 

guide the growth of the noble metal nanocrystals. As an example of using an 

electrochemical nonlinear reaction, the gold dissolution occurring during the oxidation of 

methionine was found to lead to the fabrication of a Au nanoparticle modified electrode. 

This modified electrode was found to be capable of simultaneously detecting both 

hydroquinone and pyrocatechol in solutions containing both isomers, which is a 

significant improvement over regular Au electrodes. 
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CHAPTER 1 - INTRODUCTION 

1.1 Nonlinear Dynamics 

There exists a common driving force behind many of the intricate and beautiful 

patterns seen in nature [1-3]. This driving force also manifests itself in other diverse 

phenomena witnessed in a variety of scientific disciplines ranging from economic trends, 

interacting populations, and many biologically important events such as the firing of 

neurons to intracellular calcium concentrations [4-8]. Although seemingly unrelated, 

aspects of these phenomena are all interconnected through the theory of nonlinear 

dynamics, making research conducted in this field applicable to a wide range of topics.  

1.1.1 History 

Historically speaking, a simple path toward legitimacy was not obtained in 

nonlinear dynamics. An initial discovery of periodic changes in current density, or 

periodic bursts of effervescence, was observed in 1828 by Fechner while studying the 

electrochemical dissolution of nickel in a nitric acid solution [9]. A second important 

discovery came in 1921 when Bray was studying the decomposition of hydrogen 

peroxide in the presence of iodate ions [10]. Later, work with Liebhafsky solidified the 

discovery of what is now referred to as the Bray-Liebhafsky (BL) oscillator [11]. Even 

though this would end up being the first homogeneous chemical oscillator, at the time its 

discovery was met with substantial skepticism. The skepticism stemmed from its 

apparent noncompliance with the 2nd law of thermodynamics: that oscillations could not 

occur when the system is in an equilibrium state. It was therefore assumed that the 

oscillatory behavior was caused through the formation of bubbles or by the presence of 

small particles in the solution, making it heterogeneous [12].  
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A significant breakthrough came through the work done by Lotka (continued by Volterra) 

who formulated a model, which contained autocatalysis and feedback [13-15]. Although 

this model was not a chemically viable mechanism (oscillations were present under all 

conditions), it was found to model the periodic increase and decrease in population size 

observed in predator/prey dynamics.  

Then, work done in Russia by Boris Belousov, while studying an inorganic analog 

to the Krebs cycle, led to the accidental discovery of what would end up becoming the 

most widely studied chemical oscillator. Belousov, anticipating a monotonic color 

change, found that a reaction containing KBrO3, citric acid, cerium sulfate, and sulfuric 

acid would periodically change color, from clear to yellow, while stirred. Also, it was 

observed that an unstirred solution would exhibit waves of yellow travelling through the 

solution. Although Belousov submitted his results to scientific journals, his work was not 

accepted, which led him to stop his pursuit [12,16].  

Almost simultaneously with the work done by Belousov, Ilya Prigogine 

approached the idea of self-organization from a thermodynamics viewpoint. He showed 

that systems (chemical or biological) in far from equilibrium conditions could develop 

order out of chaos and self-organize. This work and other contributions to the 

understanding of nonequillibrium thermodynamics led to Prigogine being awarded the 

Nobel Prize [17,18].  

In 1961 Anatol Zhabotinsky began working on and refining the work begun by 

Belousov. Zhabotinsky found that citric acid could be exchanged with malonic acid, and 

that instead of cerium; ferroin could be used to catalyze the reaction. This refinement led 



Chapter 1 - Introduction 

3	

	

to a precipitate free system, which showed visually distinct transitions between red and 

blue (ferroin is red in a reduced state and blue in an oxidized state) [19-21]. A major 

breakthrough came in 1968 through the formulation of the Brusselator mechanism, the 

first chemically viable model demonstrating oscillatory behavior [22]. This model, 

proposed by Prigogine and Lefever, was significant as it improved on the Lotka�Volterra 

model because oscillations and wave behavior were only observable under finite 

conditions.  

It was the work conducted by Field, Körös and Noyes on the Belousov-

Zhabotinsky reaction, which led to an elucidation of the oscillatory mechanism. This 

mechanism, now referred to as the FKN mechanism, was a significant contribution to the 

field of nonlinear chemical kinetics because it approached the problem using the same 

principles used to gain insights into ordinary chemical reactions [23]. The original FKN 

mechanism consisted of over 20 reaction steps and chemical species; however, a reduced 

model (with only three variable concentrations) capable of exhibiting the same dynamic 

phenomena was proposed in 1974. This model was aptly named the Oregonator (after the 

school it was researched at) and made numerical simulations of the BZ reaction much 

more feasible [12, 24-26]. 

In 1973, a new chemical oscillator was discovered which was something of a 

combination of the two previously known oscillators and was named after its founders 

Briggs and Rauscher [27]. Briggs and Rauscher found that this system, when oscillatory, 

gave very intense color changes, which were ideal for classroom demonstrations.  
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The three chemical oscillators discovered up until the 1980’s were either found by 

chance, or designed based on combining previous systems. Chemists then set out to work 

on systematically designing a chemical oscillator based on the knowledge thus far 

obtained in the field. They devised a protocol which would be useful in designing new 

chemical oscillators based on (1) finding a reaction which produces a substance 

autocatalytically, (2) determine bistable regions in an open system, (3) add a new species 

which would implement negative feedback, (4) increase amount of feedback causing 

species to decrease the range of bistability, and (5) continue increasing feedback 

generating species until bistability vanishes and oscillations emerge [12]. This protocol 

was first successfully used in the design of the arsenite - iodate - chlorite oscillator in 

1981 [28,29]. Since this discovery, many new oscillating systems have been studied and 

modifications to previous oscillators have also been thoroughly researched [30-40]. An 

important class of modified oscillator is the Uncatalyzed Bromate Oscillator (UBO), 

where aromatic compounds were found to oscillate in BZ type systems without the 

presence of any metal ion catalysts [41-45].  

The field of nonlinear chemical dynamics continues to be a very active area of 

research with researchers attempting to design new oscillating systems as well as to gain 

further insights into the underlying mechanisms driving the behavior.  

1.1.2 Requirements for Oscillation 

Initial reluctance to accept homogeneous chemical oscillations was based on two 

fronts: the system was in fact inhomogeneous, and an apparent conflict with the second 

law of thermodynamics [12]. Perhaps the most crucial requirement allowing nonlinear 

behavior to occur is the necessity for the system to be maintained far from equilibrium 
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[46]. The explanation for this requirement can be looked at from both thermodynamic 

and kinetic perspectives. In terms of thermodynamics, owing to the 2nd law of 

thermodynamics, any creation of order (dynamic self-organization included) is 

accompanied by a decrease in entropy. This implies that the same system must contain an 

entropy producing process (dissipative process) capable of compensating for this 

decrease through the formation of “dissipative structures” [47]. This implies that all 

displays of self-organization (such as temporal oscillation or spatiotemporal pattern 

formation) occurring in nonequilibrium conditions are dissipative structures. Therefore, 

the oscillations that are occurring in a system are taking place on their way towards 

equilibrium [12,47]. 

With respect to the kinetics, there are two crucial requirements that the system 

must contain: (1) a nonlinearity of its dynamic characteristics and (2) the presence of 

feedback loops in its mechanism. The first requirement of nonlinearity implies that the 

reaction will not evolve in a simple linear fashion. This is realized through the presence 

of an autocatalytic reaction, in which a product is formed, which in turn catalyzes its own 

production [47,48]. The simplest representation of an autocatalytic reaction is                 

X + Y ⇌  2Y. Here the rate equation governing the concentration of species Y is 

represented by:  

"
"#
$ = 	'( ) $ −	'+[$].      [1] 

The second requirement is that the system must contain a species capable of providing 

feedback in the mechanism. This feedback can either catalyze the reaction (positive 

feedback) or inhibit the reaction (negative feedback) [12].  
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1.2 Chemical Systems 

Although the theory of nonlinear dynamics has been found to drive many 

processes or behaviors seen in geological and even biological systems, the time scales in 

which these processes occur often makes their direct study difficult or impossible [49,50]. 

Experimental designs can also prove to be outside the capabilities of traditional 

laboratory setups. For these reasons, the study of nonlinear dynamics using chemical 

systems is convenient. The ability to have control over the experimental conditions (such 

as initial reactant concentrations, temperature, stirring, flow rate, etc.) allows the 

researcher to be able to fine-tune the reaction parameters easily. Chemical systems also 

allow for convenient protocols for influencing the reaction through either the application 

of internal (e.g. chemical spiking) or external perturbations (e.g. incorporation of 

illumination).   

1.2.1 Bray - Liebhafsky (BL) Reaction 

The Bray-Liebhafsky (BL) oscillator is not only the first discovered chemical 

oscillator but it is also likely the simplest homogenous oscillator. Once it was accepted 

that the 2nd law of thermodynamics was not being violated and that heterogeneous 

processes were not causing the nonlinear phenomena, the BL oscillator was finally 

accepted and has been thoroughly studied ever since [51-55]. 

The BL reaction is the formation of water and oxygen through the catalytic 

decomposition of hydrogen peroxide (H2O2) in the presence of iodate and hydrogen ions.  

(1) 2H2O2 → 2H2O + O2 
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The overall reaction for the decomposition is shown in reaction (1), however the 

decomposition of hydrogen peroxide occurs through two separate pathways. In one 

pathway, hydrogen peroxide plays the role of a reducing agent (Reaction (2)), reacting 

with iodate ions. In the other pathway it acts as an oxidizing agent (Reaction (3)), 

reacting with iodine (I2) to produce iodate. 

(2) 2IO3
- + 2H+ + 5H2O2 → I2 + 6H2O + 5O2 

(3) I2 + 5H2O2 → 2IO3
- + 2H+ + 4H2O 

A smooth, monotonic decomposition of hydrogen peroxide is observed when the rates of 

the two hydrogen peroxide consuming reactions are equal. However, under certain 

conditions, the rates of these two processes are not equal, resulting in the decomposition 

of hydrogen peroxide being dominated alternatively between the two pathways. This 

alternating dominance between the pathways leads to a non-monotonic consumption of 

hydrogen peroxide in which the concentrations of the intermediates produced during the 

reactions evolve in an oscillatory fashion [52].  

1.2.2 Belousov-Zhabotinsky (BZ) Reaction 

Undoubtedly the most thoroughly investigated chemical oscillator is the Belousov 

Zhabotinsky reaction, which essentially established the field of chemical nonlinear 

dynamics. Many interesting behaviors have been found studying this bromate-based 

oscillator (traditionally using malonic acid (MA) as the organic substrate), ranging from 

sustained oscillations in a batch reactor to deterministic chaos in a Continuous-flowed 

Stirred Tank Reactor (CSTR) [56-59]. The mechanism can be separated into 3 primary 

processes that are in competition with one another. 
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Process 1: begins with the reduction of bromate (BrO3
-) to bromine (Br2) by the reducing 

agent bromide (Br-), through a three-step process: 

(1) BrO3
- + Br- + 2H+ → HBrO2 + HOBr 

(2) HBrO2 + Br- + H+ → 2HOBr 

(3) Br- + HOBr + H+ → Br2 + H2O 

As a result, bromate is reduced, the concentration of bromide eventually falls below a 

critical level [Br-]cr. Below this critical bromide ion concentration, Process 2 begins to 

overwhelm Process 1, where the bromous acid (HBrO2) begins to dominate the reduction 

of bromate [12]. The reaction between bromous acid and bromate leads to the formation 

of 2 molecules of bromine dioxide radicals, one of which is subsequently reduced by 

Ce(III) producing 1 molecule of bromous acid.  

Process 2 

(4) 2HBrO2 → BrO3
- + HOBr + H+ 

(5) BrO3
- + HBrO2 + H+ → 2BrO2* + H2O 

(6) BrO2* + Ce(III) + H+ → HBrO2 + Ce(IV) 

Reactions (5) and (6) make up the autocatalytic sequence. Therefore, the dominant 

process is determined by whether [Br-] is above or below [Br-]cr; either Process 1 

(consuming bromide ions) or Process 2 (autocatalytic oxidation of Ce(III). An important 

product resulting from the formation of bromine in reaction (3) of Process 1 is the 

formation of bromomalonic acid: 
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(7) MA + Br2 → BrMA + Br- + H+ 

The products of process 1 and 2 react, producing bromide ions according to Reaction 8: 

(8) 2Ce(IV) + BrMA + MA → 2Ce(III) + fBr- + other products 

The concurrent oxidation of the organic species in Reaction 8 reduces the cerium catalyst 

Ce(IV) to Ce(III), which is a gradual change since there is no autocatalysis. This process 

eventually causes the bromide concentration to rise above the critical level, causing the 

system to once again be dominated by Process 1, repeating the cycle.  

1.2.3 Briggs-Rauscher (BR) Reaction 

The acidic oxidation of malonic acid by iodate and hydrogen peroxide, when 

catalyzed by manganese(II), is perhaps the most visually appealing chemical oscillator, 

and is referred to as the Briggs-Rauscher (BR) oscillator. Thought of as a hybrid of the 

other two famous chemical oscillators (BZ and BL), the BR oscillator has been found to 

support various forms of complexity in an open system, as well as multiple stable states 

[60-64]. Investigations on the underlying mechanism by Furrow and Noyes, as well as De 

Kepper and Epstein, provide good insights into the nonlinear dynamical behavior [65,66]. 

Kim et al. found that the earlier models could be simplified to a reduced model: 

(1) HOI + I- + H+ ⇌ I2 + H2O 

(2) H+ + HOIO + I- → 2HOI 

(3) 2H+ + IO3
- + I- → HOIO + HOI 

(4) 2HOIO →	H+ + IO3
- + HOI 
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(5) CH2(COOH)2 + I2 →	CHI(COOH)2 + I- + H+ 

(6) HOI + H2O2 →	I- + O2 + H+ + H2O 

(7) H+ + IO3
- + HOIO →	2HOIO + 0

.
O2 

The reduced model, involving seven reactions, was found to support the behavior 

observed experimentally [67,68]. Here molecular iodine serves a similar purpose as 

bromine in the BZ reaction in that it reacts with malonic acid, producing iodide ions here 

instead of bromide ions. 

1.2.4 Closed vs. Open System 

As oscillating chemical systems must be kept far from thermodynamic 

equilibrium, studying them in a closed or batch reactor implies that any dynamic behavior 

can only be transitory (i.e., only exist for a finite period of time). This implication is due 

to the fact that there is no exchange of chemical species with their surroundings and the 

effects of reactant consumption lead to an end of the oscillatory behavior and a 

monotonic approach to an equilibrium state [12]. Studies in a batch reactor are however 

the simplest experimental design for studying chemical kinetics, and many are thermally 

jacketed, allowing for precise control over the temperature of the solution, and 

minimizing the influence of external forces.  

The primary method of studying a chemical oscillator in an open system is 

through the use of a CSTR. The main advantage of using a CSTR is that it allows for the 

system to be maintained sufficiently far from equilibrium in order to extend the reactivity 

of the system for a virtually indefinite time period. By constantly pumping in fresh 
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reactants and removing products, a CSTR affords convenient control over the available 

dynamic states of a system through the manipulation of the inflow/outflow rates of the 

reactants/products. The flow rate, k0, or the average time a molecule spends in the reactor 

(residence time, τ), is a crucial control parameter for operating CSTRs. At low flow rates, 

the system is close to chemical equilibrium and is referred to as the thermodynamic 

branch. At high flow rates, the system is considered to be far from thermodynamic 

equilibrium and is commonly defined as the kinetic or flow branch [12]. As flow rate is 

increased from a k0 value of 0, the system remains on the steady thermodynamic branch 

(i.e., composition of the system resembles the reactants), until such a value is reached that 

causes a jump to the stable kinetic branch (i.e., the composition of the system resembles 

products), showing bistability (Figure 1.1).  

 

Figure 1.1 - Bistability in a CSTR using flow rate as a control parameter.  
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1.2.5 Complexity 

Even though simple periodic oscillations are the prototypical temporal behavior 

associated with nonlinear chemical dynamics, various other types of more exotic 

oscillatory behavior have been discovered. These complex oscillations are most 

frequently found in open systems; however, they have also been found experimentally in 

batch reactors [69-74]. One type of complexity presents itself in the form of two separate 

and distinct bifurcation regimes, separated by a non-oscillatory quiescent period, 

commonly referred to as sequential oscillations. The occurrence of sequential behavior 

may arise through the coupling of two nonlinear feedbacks (common in oscillators 

catalyzed with metal redox couples) [75-77]. It has also been suggested that sequential 

oscillations can occur in uncatalyzed systems when an intermediate product formed 

during the reaction is capable of forming an autocatalytic cycle with the starting oxidant. 

[78,79]  

Perhaps the most common form of complexity experimentally observed in 

chemical systems is referred to as mixed-mode oscillations (MMOs). MMOs have also 

been observed in laser systems and in the firing of neurons [80,81]. MMOs are 

characterized by a single period having a mixture of both large (L) and small (S) 

amplitude oscillations, researchers routinely use the LS notation to describe them. This 

type of complexity largely arises through the presence of multiple time scale processes 

being present, where the evolution of key variables alternates between fast and slow 

modes [82]. Mechanisms leading to MMOs include Hopf bifurcations producing 

oscillations of growing amplitude or “local” mechanisms that produce small amplitude 

oscillations through folded nodes or singular Hopf-bifurcations [82,83].  
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A second type of complex oscillatory behavior observed in chemical systems and 

biochemical systems, as well as during the dynamic firing of neurons, is a phenomenon 

referred to as bursting [84-87]. Bursting is qualitatively observable through the 

occurrence of multiple quiescent (non-oscillatory) periods separated by “bursts” of large 

amplitude oscillations. These oscillations, like MMOs, can arise through the presence of 

multiple time scale processes [80,88]. 

The following two types of complexity are of significant interest to researchers as 

they are capable of transitioning into chaotic behavior. These so-called “routes to chaos” 

include (1) quasiperiodicity (torus oscillations) and (2) period doubling [89,90]. 

Quasiperiodicity occurs in systems that contain oscillatory behavior with two distinct and 

differing frequencies and has been found in many systems, such as in the 

electrodissolution of certain metals [91-93]. Although quasiperiodicity is rarely found in 

single oscillators, it is commonly found in coupled oscillatory systems, as well as in 

systems that are perturbed periodically by an external force [94,95]. In period doubling 

bifurcations, oscillations of the same amplitude do not continue periodically and the 

periods between oscillations of the same amplitude continually double [12]. Therefore, as 

the control parameter is varied, the number of oscillations per cycle would increase from 

1 → 2 → 4 → 8.  

1.2.6 Deterministic Chaos 

As previously implied, deterministic chaos is observable in nonlinear systems and 

has attracted a significant amount of interest over the past few decades [57, 96-100]. 

Deterministic chaos is one of the central classes of dynamical behavior, along with 

stationary and periodic behavior, and refers to non-periodic (or aperiodic) behavior [101]. 
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Importantly, this aperiodicity is driven by nonlinear dynamics and not by a stochastic or 

random event such as experimental noise. Interestingly, in a chaotic system there exists 

an extreme sensitivity to the initial conditions. This sensitivity can manifest in such a way 

that a minute concentration deviation at the onset of the reaction can cause the system to 

evolve in time and yield results which are significantly different than those observed for a 

system without this concentration deviation [102]. Lorenz, when attempting to model 

convection rolls in the atmosphere in order to gain knowledge into how to accurately 

predict weather forecasts, originally observed this extreme sensitivity [101]. He found 

that the solutions to his equations never settled to an equilibrium; however, they 

continued to vary in an aperiodic fashion. Even though the small differences in initial 

values resulted in extremely different (and unpredictable) results, he found that there 

existed a pattern to the results when plotted in three dimensional space (Figure 1.2), 

showing that there is an underlying beauty to the chaotic behavior [104].  

 

Figure 1.2 - Lorenz Attractor in a chaotic system. 
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The study of deterministic chaos in chemical systems is, for the large majority of 

the time, studied in CSTRs where steady states can be maintained while control 

parameters are adjusted accordingly, bringing the system through the bifurcations on a 

route to observing chaos. In fact, the traditional peristaltic pump CSTR was replaced with 

a piston pump in order to study chaos, due to the fact that the systems internal dynamics 

are so sensitive, a continuous inflow was preferable over periodic pulses from the 

peristalic pump, decreasing the stochastic nature of the CSTR [12]. 

1.2.7 Other Chemical Oscillators 

The discovery and subsequent intense study that went into the original chemical 

oscillators, (BZ, BL, BR), resulted in chemists attempting to find oscillators driven by 

different mechanisms. This work was driven by the fact that discovering new chemical 

oscillators, which differ fundamentally from the previously known oscillators, could not 

only lead to the observation of new intricate dynamical behavior but also lead to insights 

regarding the exact conditions required for chemical oscillations to occur. Oxyhalogen 

species, which have multiple oxidation states available, were a logical choice to develop 

experimental methods and concomitant theoretical understandings of dynamical 

behavior. Apart from the traditional bromate-based BZ reaction, chemical oscillators 

based on oxygen, chlorite, bromite, sulfur, pH and others have been developed and have 

led to a wider understanding of the driving forces behind chemical nonlinear dynamics 

[103-110].  

Another important class of chemical oscillator is a pH oscillator, where the 

concentration of hydrogen ions (or hydroxide ions) plays a critical role in the dynamical 

behavior of the system. pH oscillators offer an exciting approach with respect to 
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application based systems. The first pH oscillator was discovered in the mid-1980s, and 

since then, more than 25 different systems driven by the periodic change in hydrogen ion 

concentration have been reported in literature [111]. Of these systems, there are generally 

two classes of pH oscillators: (1) one substrate systems, and (2) two substrate systems. 

Both classes of pH oscillators require an oxidant such as H2O2, IO4
-, IO3

-, BrO3
-, or  

BrO2
- ; however, they differ in the number of substrates included [111]. 

A prototypical one substrate pH oscillator is the oxidation of sodium sulfide 

(Na2S) by H2O2 in the presence of sulfuric acid [112]. Like all one substrate systems, the 

oscillatory behavior in the H2O2 - S2- system arises through competition between two 

distinct stoichiometries. Here, the pH oscillations are driven by an H+ consuming process 

through the partial oxidation of hydrogen sulfide to sulfur (dominant at acidic pH’s) and 

an H+ producing process through the total oxidation of hydrogen sulfide to sulfate (at 

basic pH’s), as shown in reactions (1) and (2) [113].  

(1) HS- + H2O2 + H+ → 0
1
S8 + 2H2O 

(2) HS- + 4H2O2 → SO4
2- + 4H2O + H+ 

The overall pH of the system determines which reaction step is dominant; thus, at acidic 

pHs, the partial oxidation pathway dominates, causing the gradual decrease in H+ 

concentration (self - inhibitory process) until the pH becomes basic enough that the total 

oxidation of hydrogen sulfide to sulfate dominates (leading to the autocatalytic 

production of H+). The overall model proposed by Rabai contained 6 protonation 

equilibria, which control the concentration of H+ by acting as acid-base buffers as well 

influencing the rates of individual reaction steps, and 12 redox reactions [113].  
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In two substrate systems, two consecutive reactions make up the oscillatory 

process, where H+ is a product in one reaction and a reactant in the other. One substrate 

(reductant) undergoes total oxidation, which produces H+ in an autocatalytic fashion 

causing the system to become acidic, causing the consumption of H+, increasing the pH. 

The second substrate primarily acts as another reductant that is only oxidized under 

acidic conditions [111]. An interesting two substrate system is the IO3
- - SO3

2- - 

Fe(CN)6
4- in H2SO4 system, which displays large amplitude oscillations (~4 pH units) as 

well as bistability over a wide range of experimental conditions [114].  

Kovacs et al. were successful at systematically designing an organic pH oscillator 

(the HCHO - HSO3
- - gluconolactone system) that does not include any redox reactions, 

and relies only on acid-base steps, such as base-hydrolysis and acid or base dehydration 

reactions [115]. Working from the knowledge that clock behavior was identified in the 

methylene glycol - sulfite system, they found that coupling the base catalysis of 

methylene glycol with hydrolysis of gluconolactone would produce sustained pH 

oscillations when run in an open system.  

Recently, a new oscillatory system was systematically designed by Semenov et 

al., which coupled networks of organic reactions leading to a chemical oscillator based on 

thiols [116]. Using a protocol similar to the approach used to design the arsenite system 

in 1981, they designed a network of reactions capable of producing a substance 

(cysteamine, CSH) autocatalytically. Starting with cystamine and L-alanine ethyl 

thioester, trace amounts of CSH are produced through the reaction between the 

hydrolysis product of L-alanine ethyl thioester, ethanethiol, and cystamine. The 

autocatalytic production of 2 molecules of CSH from 1 molecule of CSH occurs through 
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two parallel pathways. At the onset, CSH reacts rapidly with L-alanine ethyl thioester 

producing two different thiols, L-alanine mercaptoethylamide and ethanethiol. Each 

produced thiol then independently undergoes thiolate-disulfide interchange with one of 

the starting materials (cystamine), yielding 1 molecule of CSH for each molecule of L-

alanine mercaptoethylamide and ethanethiol. This overall process represents the positive 

feedback loop. Once a bistable region was identified through the use of a CSTR, an 

inhibiting substance needed to be added in order to establish a negative feedback loop. 

The negative feedback loop was implemented through the addition of acrylamide, which 

reacts more slowly with thiols than any other component in the system, which causes a 

competition between the two feedback loops. This thiol-based chemical oscillator makes 

an important contribution to not only chemical nonlinear dynamics, but serves as an 

affirmation of the protocol for designing new oscillatory systems proposed by Epstein 

and Pojman [12].  

1.3 Reaction Diffusion Systems 

The emergence of spatial patterns is a phenomenon found throughout nature 

ranging not only in timescale (from hours to years) but also in physical scale (from 

atomic to global) [117-121]. Spatial patterns can form when diffusive motion is coupled 

with kinetic reactivity, which can manifest itself in a wide range of pattern formations. 

Perhaps the first observation of this type of behavior was made by Raphael Liesegang, 

who noticed the formation of periodic bands of precipitation occurring when certain 

inorganic salts were reacted and allowed to migrate in a gel matrix [122]. Although not 

fully understood at the time, he recognized that the periodic banding was related to how 

the molecules moved in relation to one another. This led to discoveries being made where 
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systems having both diffusive properties and reactivity were found to have very 

interesting behaviors. These findings were not limited to inanimate (or simply inorganic) 

systems, but also found to occur in animate (living) systems as well [123-125].  

 The general form of the reaction diffusion equation is shown in Equation (2). This 

equation accounts for the two ways that a concentration can change, whether it occurs 

through diffusion processes, or through chemical reaction.  

23
2#
= 4 253

256
+ 8(:)      [2] 

Here, D represents the diffusion constant and, R represents the rate law for the kinetic 

component of the system. Reaction-diffusion (RD) processes have been thoroughly 

studied in chemical systems such as the BZ reaction, where interesting phenomena have 

been found to occur in a variety of structured media ranging from aqueous solution to 

gels and membranes [126-132]. An important factor when dealing with RD systems is 

whether the system is excitable, oscillatory or bistable.  

In excitable media, there exists only one stable fixed point, which is stable to 

small perturbations. However, when a large enough (threshold passing) perturbation is 

applied, the system generates a single pulse that travels through the media, after which 

the system relaxes back to the initial (pre-perturbation) state. During the relaxation 

process, the system is in the refractory period (i.e., unresponsive to further perturbations), 

until the system has recovered to its initial state. In order for a second pulse to propagate 

through the media another perturbation must be applied. An oscillatory medium differs in 

that there is no excitation (perturbation) required for pulses to emerge in the media. In 

oscillatory media there exists an unstable fixed point, indicating that the system will not 
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relax back to a stable fixed point as it would in an excitable medium, thereby allowing 

pulses to continually develop. The third type of active media contains two stable fixed 

points and is referred to as bistable media. Here, starting from one of the stable fixed 

points, a large enough perturbation will cause the system to settle at the other stable 

point, without being able to return to the original state, which is referred to as front 

propagation [133].  

The propagation of the pulse (or wave) through the medium can be understood 

with the chemistry of the BZ reaction. At initially high bromide ion levels the system is 

in a reduced state because bromide inhibits the autocatalytic oxidation of the catalyst. 

Once the bromide concentration decreases past a threshold level, that area of medium 

becomes oxidized, forming a concentration gradient with respect to the activator bromous 

acid. The autocatalyst then diffuses into neighboring areas, exciting the area that it 

diffused into, oxidizing it and thereby causing more HBrO2 to be produced, which 

continues to diffuse and excite neighboring areas. Once the bromide ion concentration 

reaches a high enough level, the system reaches a reduced steady state [12]. An important 

consideration with respect to pulse or wave formation is how they set in spontaneously, 

without external perturbation. There are two possibilities that are generally accepted. The 

first deals with a local spontaneous concentration fluctuation that is large enough in 

magnitude to surpass the threshold for excitability, and the second is the presence of a 

catalytic site (dust particle) capable of locally changing relative concentrations through a 

nucleation process [12,134]. The state of the media, whether excitable, oscillatory, or 

bistable, plays a significant role in the types of behaviors seen when dealing with RD 
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systems. Another important factor is whether or not the system is studied in one-

dimension (capillary tube), two-dimensions (petri dish) or three-dimensions (beaker). 

1.3.1 Pattern Formation in 1-D 

The simplest procedure for studying RD behavior is in a capillary tube, which is 

considered pseudo one-dimensional space due to the fact that the inner diameter of the 

tube is small enough such that the diffusion occurring can be thought of as only 

proceeding in one plane. The typical behavior observed in 1-D RD systems is 

propagating fronts, which routinely propagate at constant velocities, assuming convection 

induced instabilities are fully negated [12]. The velocity at which a front propagates is 

related to the diffusion coefficient (D) and the reaction rate coefficient (k), such that the 

speed of the front can be represented by the equation:  

: = < 4'0=#      [3] 

where A is a constant. 

Although confined to a single dimension, interesting behavior can still be observed in 1-

D RD systems, such as intermittent propagation failures, where a front will begin to 

propagate through the medium and stop; however, the preceding front will propagate 

fully through the medium. Interestingly, the phenomenon of intermittent propagation 

failures can resemble MMOs [135]. Complexity can also be observed when fronts 

propagating from opposite ends of the capillary tube interact [136-138].  

1.3.2 Pattern Formation in 2-D 

When RD systems are spatially extended into a 2nd dimension, the observed 

dynamical behavior becomes much richer. When a front emerges in 2-D media, it extends 
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outward in all directions in the form of a circle (if the speed in all directions is uniform) 

from the starting point (nucleation site or from external perturbation). These phenomena 

are commonly referred to as target patterns. Similar to the propagation of multiple fronts 

in 1-D media, multiple target patterns can emanate from the nucleation site [128, 139-

141]. When there are multiple nucleation sites in the media, target patterns can emerge at 

different locations; however, when the waves interact with each other they annihilate, 

often leading to increased complexity in the observed patterns [12]. Unlike in 1-D media, 

a curvature of the wavefront may be observed in two (or three) dimensional space. This 

curvature can be quantitatively characterized through the wavefront’s radius of curvature, 

which can either be positive (curved in the direction of propagation) or negative (curved 

in the opposite direction of propagation). Common notation denotes the radius of 

curvature as R and the curvature as K (equal to 1/R). Research has shown (both 

experimentally and theoretically) that the velocity of the curved wavefront is dependent 

on the curvature [142,143], through the equation: 

> = : + 4? = : + 4(0
@
)      [4] 

where N is normal velocity of the wavefront, c is the velocity of a plane wave, and D is 

the diffusion coefficient of the propagator species.  

In 2-D media another common pattern observed is spiral waves, which occur 

when a target pattern is broken by a physical disruption [128]. The broken ends of the 

wave can curl and continuously rotate. The phenomenon of spiral waves (and target 

waves) has been observed in the BZ reaction, but is also commonly found in nature. An 

important aspect of spiral waves is the behavior of the tip (spiral core) [144]. Spirals can 
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rotate rigidly, where the spiral core does not migrate, however, the spiral tip can also 

become destabilized and either meander or drift. In a rigidly rotating spiral, the shape of 

the spiral arm is fixed and remains constant [128, 145-147]. When meandering occurs, 

the spiral arm changes shape, and when drifting occurs, the entire spiral rotates around a 

moving (drifting) center of rotation [128, 148-150]. 

1.3.3 Pattern Formation in 3-D 

Extending reaction diffusion systems into three-dimensional space is a 

challenging undertaking (owing to problems arising from bubble formation and/or 

convection), however, it offers insight into biological systems such as the human heart. 

For example, cardiac arrhythmia, such as ventricular fibrillation, is thought to be caused 

by the formation of scroll waves in cardiac tissue [151,152]. 3-D spatiotemporal behavior 

has been observed using various modifications of the BZ reaction and is routinely studied 

in gels. The extension of target waves and spiral waves into 3-D systems results in the 

formation of spherical waves and scroll waves respectively. Scroll waves organize around 

a filament, which consists of the inner edge of the scroll wave, and acts as its axis [128]. 

A straight scroll wave, with a linear filament can become distorted by instabilities 

(caused by excitability gradients, temperature gradients, etc.), leading to intricate 

behavior [153]. Scroll waves, similar to spiral waves, can lose their stability through 

meandering. This meandering instability can cause the filament to adopt a zig-zag or 

helical shape, due to an elongation of the filament [153,154]. Another instability is 

referred to as a “sproing” instability, which results in a twist along the filament 

[153,155].  
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1.3.4 Turing Patterns 

Turing patterns, named after British mathematician Alan Turing, are ubiquitous in 

nature and are found in the patterning of zebras, tigers, fish, etc. Turing’s seminal paper 

on morphogenesis in 1952 proposed that sets of reaction-diffusion equations could lead to 

spatially periodic patterns, which are independent of time, and driven by diffusion 

instabilities [156]. It was not until 1990 when researchers were first able to observe 

Turing patterns in a chemical system, which was achieved through the use of the 

chlorite/iodide/malonic acid (CIMA) oscillator [157]. In order for Turing patterns to 

emerge there are three crucial factors, the first two of which can be accomplished with a 

continuously fed unstirred reactor (CFUR): (1) the system must be maintained far from 

equilibrium and (2) only reaction and diffusion can take place (convection processes must 

be absent, and are negated through the use of a CFUR using gel mediums). The 

thirdnrequirement is that the diffusion coefficients of the activator and inhibitor must be 

substantially different (inhibitor diffuses quickly and the activator diffuses slowly) [158]. 

In the CIMA reaction iodine acts as the activator that has its diffusivity drastically 

reduced when starch (initially used as an indicator) is present, as iodine and starch form a 

reversible complex. This complex formation causes a significant difference in the 

diffusion rates of the activator and inhibitor, allowing spatial structures such as stripes or 

spots to emerge.  

The BZ reaction was also found to be capable of exhibiting Turing patterns 

through the use of a new type of structured media, a reverse microemulsion. The system 

contains octane, water, and the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (also 

known as AOT), which led to the overall naming of the BZ-AOT system. When the polar 
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reactants of the BZ reaction are introduced into an AOT reverse microemulsion, they 

separate into droplets, and act as small individually oscillating systems. The BZ reaction 

produces the nonpolar intermediate bromine, which also functions as an inhibitor in the 

BZ oscillator. This nonpolar inhibitor can enter the oil and diffuse through it, drastically 

altering its rate of diffusion with respect to the activator, thus allowing the emergence of 

Turing patterns. Interestingly, using tomographic methods, 3-D Turing patterns were 

observed in the BZ-AOT system, which took the form of spots, curved surfaces, 

hexagonally packed cylinders, as well as labyrinthine and lamellar patterns [159]. 

1.4 Electrochemical Systems 

The study of instabilities in electrochemical systems dates back to the observation 

by Fechner in 1828 of spontaneous oscillatory formation of bubbles during the 

electrochemical dissolution of nickel in nitric acid [9]. Early on, much of the 

investigation of oscillatory behavior in electrochemical systems focused on metal 

dissolution reactions; however, in the past few decades, research has expanded greatly to 

include the study of small organic compounds as well as sulfur containing species [160-

168]. Much focus has also been placed on the electrode being utilized in the 

electrochemical reaction, such as the material (platinum, gold, etc.), configuration (disk 

or ring), size, or number (electrode arrays) [47,169]. 

Electrochemistry offers a convenient protocol for studying nonlinear dynamics in 

that electrochemical kinetics are inherently nonlinear, and the process of applying 

external forces (such as a constant potential drop between two electrodes) causes the 

system to be pushed far from equilibrium [170]. 
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1.4.1 Theory 

In terms of electrochemical surface processes, there are four main factors 

affecting the observed current response during an electrochemical reaction. The first 

property governing the current response is mass transfer of a species from the bulk 

solution to the electrode surface. Secondly, the rate of electron transfer at the electrode 

surface also plays an important role in influencing the observed current. The third factor 

is whether or not chemical reactions occur on the electrode surface (before or after) the 

electron transfer has occurred. Lastly, other surface processes such as adsorption, 

desorption, or electro-deposition can directly influence the observed current during an 

electrochemical reaction [171]. Importantly, many of the rate constants associated with 

the surface processes are directly influenced by the applied potential, and the overall 

current (itot) flowing between the electrodes is represented by the equation of the load line 

[47]: 

A#B# = 	
CDE
@F

= 	 C
@F
− E

@F
     [5] 

Where V is the applied potential, E is the potential drop at the electrode/solution 

interface, and RS is the serial resistance.  

In dynamic systems, there must be a source of instability. In electrochemical 

systems, this instability occurs when the slope of a current / potential (i/E) graph is 

negative [47]. This characteristic, referred to as negative differential resistance (NDR), is 

a prerequisite of “true” electrochemical instabilities [172,173]. The simple representation 

of current is given in Equation (5); however, it does not take into account important 

parameters for dealing with instability, such as the double layer capacitance, Cd. Equation 
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(6) also takes into account the capacitive (G3) and Faradaic	(G() currents, as well as the 

electrode area (A). 

 CDE
@F

= G#B# = G( H +	G3 H = G( H +	I"<
"E
"#

      [6] 

Where the Faradaic current is given by Equation (7): 

G( = JK<' H : 0       [7] 

where F is the Faraday constant, A is the electrode area, k is the heterogeneous rate 

constant of the electron transfer (potential dependent), and c is the concentration of the 

electroactive species. 

An electrical circuit that is equivalent to an electrochemical system is shown in 

Figure 1.3, where an external voltage, V, is applied between a working and reference 

electrode through a serial resistor, RS. The causes of NDR arise through different factors 

or processes with respect to the variables in the above equations.		

 

Figure 1.3 - Equivalent circuit in a dynamic system. 
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1.4.2 Causes of Negative Differential Resistance 

Now that we recognize the significance of negative differential resistance to 

electrochemical oscillators, it is important to understand the underlying factors, which 

cause NDR to emerge in an electrochemical system. There are three principle factors 

leading to NDR in a system: (1) a negative dA/dE slope, (2) a negative dk(E)/dE slope, 

and (3) a negative di(0)/dE slope, where A represents electrode area, E represents applied 

potential, k represents the rate constant, and i represents the current. [47] 

A negative dA/dE slope occurs when there is a decrease in the available area of 

the electrode surface at increased polarization (as the applied potential is increased). This 

decrease in active surface area occurs in a number of different situations, such as when a 

metal becomes passivated by an oxide layer or through the potential dependent 

adsorption of an inhibiting layer.  

A negative dk(E)/dE slope can be caused through two different routes: (a) similar 

to adsorption of an inhibiting layer causing a decrease in active surface area, the potential 

dependent adsorption of an inhibiting layer occurs; however, it simply decreases the 

electron transfers rate constant, as opposed to fully cancelling it. The second route 

leading to a negative dk(E)/dE slope is the opposite case: (b) a potential dependent 

desorption of a catalyst which consequently leads to a decrease in the rate constant 

governing the electron transport.  

The third cause of NDR (a negative di(0)/dE slope) arises when the electric 

potential at the reaction site is different from the electric potential in the bulk (more 

pronounced in electrolyte solutions with low ionic strengths).  
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The presence of NDR in a system which exhibits spontaneous oscillatory 

behavior allows the system to be classified as a truly electrochemical oscillator.  

1.4.3 Types of Electrochemical Oscillators 

Electrochemical systems displaying dynamic self-organization are routinely 

classified based on whether or not the system contains negative differential resistance 

(NDR). However, the location of the NDR (corresponding to a positive or negative slope 

in a linear sweep voltammogram (LSV)), as well as the qualitative shape of the LSV, also 

aid in providing a more descriptive classification of the oscillator. It has been found that 

there are three primary classes of electrochemical oscillators: (1) N-NDR, (2) HN-NDR, 

and (3) S-NDR [174]. In an N-NDR type oscillator the electrode potential, E, supplies the 

fast (autocatalytic) positive feedback and is an essential variable (i.e., variables which 

affect the oscillatory behavior when changes in their time scales are made). The 

oscillations occurring in such a system can be seen in current (or current density) only, 

and are therefore only observable under potentiostatic conditions. It is the simultaneous 

oscillation of the electrode potential (E = V - IR), which manifests oscillations in current. 

[47] A typical Nyquist diagram (obtained through EIS measurements) of an N-NDR 

electrochemical oscillator shows the impedance cross the imaginary axis and intersect the 

real impedance axis at a negative value (Figure 1.4).  
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Figure 1.4 - Nyquist diagram illustrating a characteristic example of N-Shaped Negative 

Differential Resistance 

Characteristic examples of N-NDR type oscillators are the electroreduction of S2O8
2-, as 

well as the polarographic In(III) - SCN- oscillator [175,176].  

A second type of NDR type system occurs when the region of NDR is located 

(hidden) on the positive slope of an LSV, referred to as an HN-NDR oscillator. HN-NDR 

oscillators are similar to N-NDR oscillators in that the electrode potential is responsible 

for the fast positive feedback [47]. However, the presence of hidden negative impedance 

implies that there are two potential dependent processes occurring: a fast process giving 

rise to negative impedance and a slow process with positive impedance. Importantly, 

oscillations in both current as well as potential are realized in systems that belong to the 

HN-NDR class. EIS measurements of HN-NDR systems show that the impedance crosses 

the imaginary axis before intersecting with the real negative impedance axis; however, at 

finite frequencies the impedance ends on the positive side (a representative diagram is 

shown in Figure 1.5). 
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Figure 1.5 - Nyquist diagram illustrating a characteristic example of Hidden N-Shaped 

Negative Differential Resistance 

Examples of electrochemical oscillators falling into the HN-NDR class include 

the oxidation of formic acid on Pt, the dissolution of nickel, and the galvanostatic 

reduction of IO3
- on Ag [160, 177-179]. 

The third NDR based oscillator is an S-NDR (the designation S refers to the shape 

of its I-E curve). In an S-NDR system the electrode potential is again an essential 

variable; however, in this case it supplies the slow negative feedback [47]. The Nyquist 

diagram obtained through EIS measurements of an S-NDR type oscillator is shown in 

Figure 1.6. Here, the impedance intersects the real positive axis before crossing the 

imaginary axis and ends up intersecting with the negative real axis. The electrodeposition 

of Zn is an example of an electrochemical system in the class S-NDR [180,181]. 
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Figure 1.6 - Nyquist diagram illustrating a characteristic example of S-Shaped Negative 

Differential Resistance 

As mentioned above, the presence of NDR is not an absolute requirement for 

oscillations to be observed in electrochemical systems. In fact, two other mechanisms 

leading to oscillations have been observed. Oscillations have been observed in systems 

driven by convection-induced instabilities. These instabilities arise through the formation 

and detachment of bubbles on the electrode surface [182]. The other non-NDR type 

oscillator is Capacitance Mediated Positive Differential Resistance (CMPDR) oscillator 

[183,184]. This CMPDR type oscillator is driven by the formation and dissolution of an 

inhibiting surface layer on the electrode surface. Importantly, these oscillations take place 

on a branch of positive differential resistance. Other features associated with this type of 

oscillator are that no external resistor is needed, the oscillations occur on a current 

plateau in an LSV, admittance spectra displays resonance behavior, and increased serial 

resistance causes oscillation amplitude to decrease. 
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1.5 Applications of Nonlinear Systems 

1.5.1 Applications of Chemical Oscillators 

An interesting application of chemical oscillating systems came in the field of 

analytical chemistry. Jimenez-Prieto et al. proposed what is known as the Analyte Pulse 

Perturbation (APP) technique, where a chemically oscillating system is perturbed with a 

milliliter amount of a target analyte and the resulting change in oscillatory amplitude or 

frequency is linearly proportional to the amount of analyte initially added. To formulate 

their technique, they ran the hydrogen peroxide and sodium thiocyanate reaction 

catalyzed by copper(II) in a CSTR [185]. The use of a CSTR is important in order to 

sustain periodic oscillations over a large timescale, allowing multiple detections to occur, 

without the need to set up a new oscillating reaction. Once a calibration curve is 

established, rapid determination of sodium thiosulfate concentrations with a relative 

standard deviation (RSD) of approximately 1% were achieved with sensitivity in the 

micro-nanomolar range. Although an interesting use of a chemical oscillator, this method 

is confined for strictly quantitative measurements. 

Recently, Zhang et al. used a modified Briggs-Rauscher oscillating reaction to 

successfully identify α-ketoglutaric acid and β-ketoglutaric acid, showing that the use of 

chemical oscillators can be used to differentiate between certain isomers [186]. Using a 

tetraaza-macrocyclic complex [NiL](ClO4)2 where the ligand L in the complex was 

5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4-11-diene, they found that in 

a batch reactor, the addition of α-ketoglutaric acid did not influence the oscillatory 

behavior. However, perturbations with β-ketoglutaric acid influenced the oscillatory 

dynamics by quenching the oscillations for a period of time, which was found to be 



Chapter 1 - Introduction 

34	

	

proportional to the concentration of β-ketoglutaric acid added. This inhibition was 

proposed to be due to a reaction between β-ketoglutaric acid and HOO* radicals, forming 

acetone, the known oxidation product of β-ketoglutaric acid.  

1.5.2 Applications of Reaction - Diffusion Systems 

Stimuli-responsive polymers, also referred to as smart or intelligent polymers, are 

capable of responding to their environment by undergoing changes in either their 

chemical or physical properties [187-189]. The most common stimulus that is utilized to 

induce changes in stimuli-responsive polymers is temperature; however, polymers have 

been designed which are responsive to pH, mechanical force, electrical or magnetic fields 

[189]. Research into the design of smart polymers is an ongoing area of interest due to 

their application in drug delivery, biosensors, and artificial muscles, amongst others [187-

189]. In 1996, Yoshida designed a polymer gel, which was capable of autonomously 

swelling and deswelling through the utilization of the Belousov-Zhabotinsky oscillating 

reaction [190]. A polymer was constructed consisting of N-isopropylacrylamide 

(IPAAm) which had ruthenium(II) tris-(2,2’-bipyridine) (Ru(bpy)3
2+ covalently bonded 

to the polymer chain. IPAAm is one of the most commonly studied thermoresponsive 

polymers, which exhibits Lower Critical Solution Temperature (LCST) [189]. As the 

temperature is increased past the LCST, the IPAAm polymer chains undergo a transition 

from an extended coil to a compact globular conformation. The temperature that the 

transition occurs at can be shifted to a higher or lower temperature by copolymerizing 

with a component with hydrophilic or hydrophobic properties, respectively. The 

copolymerization of Ru(bpy)3
2+ introduced a known catalyst of the BZ reaction to the 

polymer matrix [191]. When the gel was placed in a solution consisting of malonic acid, 
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NaBrO3 and nitric acid, the reaction occurred in the gel through the catalytic function of 

the polymerized Ru(bpy)3, resulting in redox changes of the catalyst moiety (Ru(bpy)3
2+ 

⇌  Ru(bpy)3
3+). The change in oxidation state of the catalyst changed the swelling 

because when the catalyst was in the Ru(III) state, the hydrophilicity of the polymer 

chain increased, subsequently decreasing in the Ru(II) state. As a result of the periodic 

changes in the Ru(II) complex oxidation state autonomous swelling-deswelling volume 

changes were observed in the gel, leading to the first example of a self-oscillating 

polymer gel.  

The use of the ruthenium complex in the design of the self-oscillating polymer 

offered an opportunity to externally control the swelling-deswelling process through the 

process of photo-irradiation. It is known that the Ru(bpy)3
2+ catalyst has extreme 

photosensitivity [192-194]. This photosensitivity was found to be capable of being used 

as an on-off switch depending on which oxidation state the Ru(bpy)3
2+ catalyst was in, by 

either causes the formation of an inhibitor (Br-) or an activator (HBrO2). The future of 

self-oscillating gels may lead to important contributions to drug delivery, microactuators, 

and sensor based devices. 

1.5.3 Applications of Electrochemical Oscillators 

Electrochemistry has been found to be extremely useful in many areas of 

chemical research such as analytical, physical, and materials chemistry. The ease in 

which control parameters can be fine-tuned has allowed electrochemical techniques to be 

utilized towards many applications (chemical/biological sensors, energy storage, etc.) 

[195-197]. One constant area of interest is the fabrication of nanomaterials, due largely to 

their optical and magnetic effects. Electrochemistry offers a convenient and efficient 
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method for the fabrication of nanomaterials, and nonlinear electrochemistry has also been 

found capable of fabricating novel nanostructures. Switzter et al. found that alternating 

nanolayers of copper and cuprous oxide (Cu/Cu2O) were deposited under galvanostatic 

conditions from an alkaline Cu(II) lactate solution [198]. Importantly, they found that the 

Cu/Cu2O layers would only be formed when the system displayed spontaneous 

oscillations, achieved through the application of a constant current density. Through 

manipulation of the frequency of oscillations and the amplitude and waveform of the 

oscillations (by varying pH or applied current density), they were able to fine tune the 

composition and resistivity of the deposited films. They proposed that only Cu2O was 

deposited when the potential was at its highest during an oscillation, and that a Cu/Cu2O 

composite was deposited during the period between potential spikes. Thus, through 

varying the pH or applied current density, they could change the frequency of the 

oscillations, and thereby form deposits having thicker Cu/Cu2O composite layers. With 

respect to the mechanism driving the nonlinear behavior, they recognized that it could be 

due to periodic variations in the pH at the surface as well as the formation and dissolution 

of a Cu2O/solution interface.  

Another application of nonlinear electrochemistry lies in the study of fuel cells. 

One class of fuel cell is the Proton Exchange Membrane (PEM) fuel cell, which relies on 

pure H2 as the fuel [199]. Due to the fact that on site storage of H2 is often impractical, H2 

must be catalytically reformed from other fuel sources such as gasoline or alcohols. 

During this reforming process, substantial amounts of CO are often produced and remain 

at high levels following the water-gas-shift reaction [199,200]. One common method of 

reducing the amount of CO is through the use of preferential oxidation (PrOx) reactors; 
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however, due to the fact that oxygen must also be present in excess to reduce the CO to 

low enough levels, some hydrogen in the reformate is burned, reducing the overall 

efficiency [201]. Electrochemical methods have also been employed for the oxidation of 

CO, based on periodic use of an external power source. Although there is no consumption 

of H2 in this method, there is an overall power consumption. Zhang and Datta showed, 

using a device similar to a PEM fuel cell, that an electrochemical preferential oxidation 

(ECPrOX) process could oxidize CO from mixture rich in H2 without consuming any 

hydrogen and without the need of an external power source [202]. When operated under 

constant current densities in the presence of a feed stream that contains CO, oscillations 

in potential have been observed in PEM fuel cells. Zhang and Datta found that a higher 

power output was achieved when the PEM fuel cell was operated in an oscillatory state as 

opposed to a stable steady state. In fact, the average power density was found to be twice 

as high when in an oscillatory state when the PEM fuel cell was operated at 55 oC. The 

oscillatory dynamics are based on the following: when the surface concentration of CO 

increases, the anode becomes polarized to a higher potential to maintain the applied 

constant current. The increase in overpotential quickens the electro-oxidation of the 

adsorbed CO, which leads to a CO oxidation rate, which is higher than the rate of CO 

adsorption. This causes the overall surface coverage of CO to decline, which happens 

quickly past a threshold overpotential, making the oxidation of H2 the primary reaction 

maintaining the current. A subsequent drop in potential occurs which allows CO 

adsorption to once again occur more rapidly than the oxidation of CO, which restarts the 

cycle. Thus, the fact that there are short bursts in potential that remove the CO from the 

anode surface results in a lowered time-averaged anode overpotential under oscillatory 
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conditions, leading to an increase in average cell voltage and power density compared to 

stable state (non-oscillatory) conditions.  
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CHAPTER 2 - NONLINEAR DYNAMICAL BEHAVIOR IN THE 4-

AMINOPHENOL – BROMATE SYSTEM 

2.1 Introduction 

The study of nonlinear dynamics in chemical systems has seen substantial activity 

over the past few decades and remains a topic of great attention [1-10]. The autocatalytic 

properties of bromate oscillators, first studied by Belousov, have allowed the original 

parameters of the Belousov-Zhabotinsky (BZ) reaction to be expanded upon, in terms of 

catalyst, organic substrate, and external forces [11-20]. In 1978, Orbán and Körös 

published the first evidence of oscillatory behavior in an uncatalyzed system containing 

only H+, BrO3
-, and gallic acid [21]. In later work, they published a list of 23 organic 

substrates which were capable of exhibiting nonlinear behavior, leading to a class of 

bromate oscillators referred to as Uncatalyzed Bromate Oscillators (UBOs) [22]. Being the 

original chemical oscillator, the BZ reaction is likely the most thoroughly explored of all 

chemical oscillators, where the oxidation of the organic substrate by acidic bromate 

catalyzed by metal ions exhibits not only periodic oscillations, but under certain conditions, 

complex or chaotic phenomena [23-30]. One class of complex oscillations that have been 

uncovered in nonlinear chemical systems is mixed mode oscillations (MMOs) [31-34], 

which are characterized by a single period having a mixture of both large and small 

amplitude oscillations (described using the LS notation).  

Complex oscillations may occur, for example, through a series of period doubling 

bifurcations, as a result of adjusting a control parameter. Flow rate is typically 

investigated as the bifurcation control parameter in a chemical oscillator studied in a	
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continuous flow stirred tank reactor (CSTR). The continuous introduction of fresh 

reactants maintains the system far from equilibrium and allows the oscillatory window to 

be lengthened considerably, virtually indefinitely. In closed batch reactors, the gradual, 

but slow consumption of an initial reagent can also make such a reactant concentration 

act as a bifurcation parameter, leading to transient complex oscillations. Another form of 

complexity in batch reactors is sequential oscillations: a spontaneous onset of two 

oscillatory windows separated by a quiescent period [35,36]. Despite that a large number 

of chemical oscillators have been reported, few of them are found to support complex 

oscillations in a closed system [37-40]. 

Recent exploration of chemical oscillators has led to much research on the effects 

of certain external forces on nonlinear dynamics such as stirring rate, temperature, and 

the influence of illumination on the oscillatory phenomena [41-43]. This is partially 

driven by the need to gain insights into the behavior of less controllable nonlinear 

systems in nature, which are frequently subjected to various perturbations. A variety of 

phenomena that do not exist in unperturbed systems have been uncovered [44-46]. 

Among various means to affect reaction kinetics, light is arguably the most convenient 

way to implement various forms of external forcing, such as periodic or aperiodic 

spatiotemporal illumination [47-54]. Photochemical oscillators can loosely be separated 

into two groups: photocontrolled or photosensitive. A photocontrolled reaction system is 

dependent upon illumination in order for certain intermediates to be created, the bromate 

– 4-aminophenol reaction is one such photochemical oscillator where simple periodic 

oscillations have been found in the absence of metal catalyst [55,56]. During this 

photochemical reaction, these spontaneous chemical oscillations are extremely 
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illumination dependent. In photosensitive reactions, the illumination simply gives an 

alternative pathway for the formation of key intermediates.  

In this study, metal catalysts Ce4+/Ce3+ are introduced to the bromate – 4-

aminophenol system to implement another autocatalytic feedback through the reaction 

between Ce3+ and bromine dioxide radicals. As shown in the following, complex 

oscillations emerge as a result of the competing autocatalytic processes. The variation of 

light intensity, as well as other reaction parameters in the cerium - bromate – 4-

aminophenol photoreaction, proves to have drastic effects on the overall complexity of 

the oscillations. In studying the photo-decomposition of the formed intermediate N-

bromo-1,4-benzoquinone-4-imine (BBI) in aqueous solution it was found that while there 

is no reactivity in the absence of light, under illumination the dissolution of BBI exhibits 

an autocatalytic excursion. When sodium bromate is introduced to the BBI photo-

decomposition, spontaneous oscillations occur, forming a new photocontrolled oscillator. 

The results provide new insights into the reaction mechanism of the bromate – 4-

aminophenol oscillations. 

2.2 Experimental Procedures 

All reactions were carried out in a thermal-jacketed 50 mL glass beaker 

(ChemGlass). The reaction temperature was held constant at 25.0 ± 0.1 oC by a 

circulating water bath (Thermo NesLab RTE 7). The volume for every reaction was held 

constant at 30.0 mL. The reaction solution was stirred with a magnetic stirring bar driven 

by a magnetic stirrer (Fischer Isotemp), in order to ensure homogeneity. Reactions were 

monitored with a platinum electrode coupled with a Hg|Hg2SO4|K2SO4 reference 

electrode (Radiometer Analytical, XR200 and M231 Pt-9) filled with a saturated K2SO4 
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solution. A Teflon cap was used on top of the thermal-jacketed beaker in order to hold 

the electrodes. All measurements were recorded through a pH/potential meter 

(Radiometer PHM220) connected to a computer through a PowerLab/4SP data logger. 

The source of illumination was a 150 W halogen bulb (Fisher Scientific, model DLS-

100HD). 

Stock solutions of analytical grade sodium bromate (NaBrO3, Aldrich, 99%), 0.1 

M, sodium bromide (NaBr, Aldrich, 99%) 0.1 M, sulfuric acid (Aldrich 95-98%), 6.0 M, 

and Ce(SO4)2 (Aldrich) 0.003 M were prepared with double-distilled water. The 4-

aminophenol (Aldrich, 98+%) was directly dissolved in the reaction mixture. N-bromo-

1,4-benzoquinone-4-imine was prepared in our lab through the reaction between sodium 

bromate and 4-aminophenol in 1.7 M H2SO4 solution, in which the N-bromo-1,4-

benzoquinone-4-imine was collected through filtration techniques and dried thoroughly. 

The purity of the product was analyzed with 1H NMR spectroscopy and thin layer 

chromatography. To avoid the decomposition of N-bromo-1,4-benzoquinone-4-imine, it 

was prepared immediately prior to its use in the reaction.  

All NMR studies were performed on a Bruker Avance 500 MHz spectrometer, 

and the samples were dissolved in deuterated chloroform (Cambridge Isotope 

Laboratories, 99.8%). Mass spectrometry measurements were performed using a 1200-L 

single quadrupole MS (Varian) through a direct insertion probe, and using a Waters 

XEVO GS-XF Time-Of-Flight, with samples introduced via an Atmospheric Solids 

Analysis probe. Numerical simulations were run using Berkeley Madonna 9.0 software. 

The simulations were performed by integrating a set of differential equations obtained 

through application of the law of mass action on the reaction equations.  
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2.3 Results and Discussion 

2.3.1 Experimental Results: Cerium – Bromate – 4-Aminophenol Photoreaction 

Systematically changing the concentration of sulfuric acid (Figure 2.1) greatly 

affects the complexity of the system. At the onset of the reaction the solution grows 

viscous with the formation of precipitate, N-bromo-1,4-benzoquinone-4-imine (BBI). As 

the reaction continues, the yellow precipitate dissolves, accompanied by the gradual 

decrease of the Pt potential. The sharp potential spike marks the complete dissolution of 

the precipitate, at which point the solution remains yellow, but transparent. After the 

potential spike, there is another induction time before the potential begins to fluctuate 

periodically, leading to spontaneous chemical oscillations. As is evident, the induction 

time increases as the concentration of sulfuric acid decreases from 1.0 M in (a) to 0.4 M 

in (d). When the system is more acidic the frequency and number of oscillations 

increases. At 0.8 M and 0.6 M H2SO4 (time series (b) and (c)) similar complex 

oscillations occur, where one large amplitude peak is preceded by a number of small 

amplitude oscillations, which are characteristics of mixed-mode oscillations (MMO). 

This indicates that the system has the ability to show complexity over a broader range in 

acid. As seen in the inset of time series (c), these complex mixed-mode oscillations range 

from LS = 13 to 11 and then transform into simple periodic oscillations. The inset also 

shows that oscillations with gradually increasing amplitude emerge after a long stable 

interval. The MMOs then last for two hours before the transition into simple oscillations 

occurs, after which the redox potential remains at a low level, indicative of the reduced 

cerium state. 
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Figure 2.1 - Time series of the cerium catalyzed bromate – 4-aminophenol reaction 

carried out at different initial sulfuric acid concentrations: (a) 1.0 M, (b) 0.80 M, (c) 

0.60M, and (d) 0.40 M. Other reaction conditions were [4-AP] = 0.025 M, [NaBrO3] = 

0.06 M, and [Ce(IV)] = 3.0 x 10-5 M. 

As is intuitive in Figure 2.2, variation in the concentration of 4-aminophenol (4-

AP) can have a great influence on the oscillatory dynamics of the system. The other 

reaction conditions are kept constant at 0.06 M NaBrO3, 0.80 M H2SO4, and 3.0 x 10-5 M 

Ce4+. Both the frequency and overall number of oscillations increased significantly as the 

4-AP concentration was decreased from (a) 0.035 M to (e) 0.020 M. The amount of time 

required for the complete dissolution of the bromobenzoquinone imine and the 

corresponding redox potential spike decreases slightly as the concentration of 4-AP is 

decreased, presumably due to less amount of BBI precipitate formed at low 4-AP 

concentrations. The induction time of those transient oscillations can be seen to decrease 

with decreasing concentrations of 4-AP. Complex mixed-mode oscillations occur with a 
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4-AP concentration between 0.025 M and 0.030 M (see inset). Irregular variation in the 

oscillation frequency can also be seen in time series (b). 

 

Figure 2.2 - Time series of the cerium catalyzed bromate – 4-aminophenol 

reaction carried out at different 4-aminophenol concentrations: (a) 0.035 M, (b) 0.030 M, 

(c) 0.0275 M, (d) 0.025 M, and (e) 0.020 M. Other reaction conditions were [NaBrO3] = 

0.06 M, [H2SO4] = 0.80 M, and [Ce(IV)] = 3.0 x 10-5 M. 

Figure 2.3 presents time series illustrating how changing the bromate 

concentration affects the reaction dynamics of the system. Long lasting simple periodic 

oscillations with a high frequency were found when the concentration of bromate was 

0.070 M (Figure 2.3a). The induction time of those spontaneous oscillations is shorter at 

high concentrations of bromate. At 0.060 M bromate, complex mixed-mode oscillations 

occur at the beginning of the oscillatory window. Fewer complex oscillations were found 

at a bromate concentration of 0.050 M, and a marked difference between the amplitude of 

the complex and the simple oscillations was observed. A 20% difference in the bromate 

concentration (from 0.050 to 0.060 M) can be seen to drastically alter the nonlinear 
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behavior indicating that the system is extremely sensitive to the amount of bromate. At 

the low bromate concentration of 0.045 M, no complex oscillations occurred and only 

three, low frequency oscillations with decreasing amplitude arose. 

 

Figure 2.3 - Time series of the cerium catalyzed bromate – 4-aminophenol reaction 

carried out at different initial bromate concentrations: (a) 0.070 M, (b) 0.060 M, (c) 0.050 

M, and (d) 0.045 M. Other reaction conditions were [4-AP] = 0.025 M, [H2SO4] = 0.80 

M, and [Ce(IV)] = 3.0 x 10-5 M. 

The effect of changing the concentration of cerium is shown in Figure 2.4. The 

most noticeable difference in altering the cerium concentration is the effect it has on the 

induction time. Decreasing the concentration of cerium from 4.5 x 10-5 M (Figure 2.4a) to 

1.5 x 10-5 M (Figure 2.4e) causes the induction time to increase from just over 3.5 h to 

slightly less than 9.5 h. The number of oscillations together with the frequency of 

oscillations can also be seen to decrease as the concentration of Ce4+ is decreased, 

indicating that the catalyst plays a crucial role in the onset of chemical oscillations. 
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Meanwhile, the complex oscillation pattern in time series (c) also looks quite different 

from the MMO seen earlier as shown in Figure 2.1c. 

 

Figure 2.4 - Time series of the cerium catalyzed bromate – 4-aminophenol reaction 

carried out at different initial cerium concentrations: (a) 4.5 x 10-5 M, (b) 3.75 x 10-5 M, 

(c) 2.25 x 10-5 M, and (d) 1.5 x 10-5 M. Other reaction conditions were [4-AP] = 0.025 M, 

[H2SO4] = 0.80 M, and [NaBrO3] = 0.060 M. 

Figure 2.5 is a phase diagram representing the concentration of 4-AP and sulfuric 

acid concentration plane, where (×) represents conditions under which the system 

displays transient complex oscillations, and the filled squares (n) represent conditions 

where complex oscillations are not present. Upon increasing the amount of 4-AP in the 

reaction solution, an increase in the amount of sulfuric acid is needed for the system to 

develop complex oscillations. The diagonal strip shaped parameter domain implies that 

the ratio between 4-AP and H2SO4 is more important than the actual concentrations 
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themselves. Notably, the complex oscillation pattern varies within the above parameter 

domain.  

 

Figure 2.5 - Phase diagram presenting the region of complex oscillatory behavior in the 

concentration of 4-AP and H2SO4 concentration plane. (×) Represents conditions under 

which the system displays transient complex oscillations and the filled square (n) 

denotes conditions where complex oscillations were absent. The [NaBrO3] and [Ce(IV)] 

were held constant at 0.06 M and 3.0 x 10-5 M respectively. 

Two representative examples are presented in Figure 2.6, where in time series (a) 

MMO evolve into another complex mode that resembles period-doubled oscillations. 

Figure 2.6b presents mixed mode oscillations ranging from 15 to 12 before transitioning 

into simple oscillations. 
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Figure 2.6 - Time series illustrating rich nonlinear dynamics at boundary regions in the 4-

AP and H2SO4 concentration plane: (a) 0.03 M 4-AP and 1.2 M H2SO4, (b) 0.02 M 4-AP 

and 0.04 M H2SO4. Other reaction conditions were [NaBrO3] = 0.06 M and [Ce(IV)] = 

3.0 x 10-5 M. 

In Figure 2.7, the intensity of the illumination was varied, which showed arguably 

the greatest influence on the nonlinear behavior of the system. At a very high intensity of 

illumination (468 mW/cm2 in (a)), the dissolution of the precipitate occurs very rapidly, 

after approximately 40 min. No spontaneous oscillations were observed here, despite that 

the Pt potential varied continuously over the span of 24 h. At an intensity of 135 mW/cm2 

(Figure 2.7b), the dissolution of the precipitate can be seen to occur in a little over 2 h 

followed by an induction time of 4 h before spontaneous oscillations emerge. Only the 

first oscillation shows any hint of complexity as the remaining oscillations are simple. 

When the intensity is decreased further to 65 mW/cm2, apart from the prolonged time for 

the dissolution of the precipitate, the induction time of those high frequency oscillations 

also becomes significantly longer, taking eleven and a half hours. At this intensity, a new 
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form of complexity arises: there are two oscillation peaks at the point the precipitate 

dissolved. Together with the following long series of high frequency oscillations, the 

system forms the behavior of sequential oscillations. In the absence of illumination, the 

potential remains constant and no oscillations occur even though 4-AP completely 

dissolves (Figure 2.7e), as does the bromobenzoquinone imine, over a span of 24 h. The 

dramatic impact of illumination on the overall kinetics of the system is likely due to the 

photochemical reduction of benzoquinone and the excitation of bromine molecules.  

 

Figure 2.7 - Time series of the cerium catalyzed bromate – 4-aminophenol reaction 

carried out at different light intensities: (a) 468 mW/cm2, (b) 135 mW/cm2, (c) 105 

mW/cm2, (d) 65 mW/cm2, and (e) 0 mW/cm2. Other reaction conditions were [4-AP] = 

0.025 M, [NaBrO3] = 0.06 M, [H2SO4] = 0.80 M, and [Ce(IV)] = 3.0 x 10-5 M. 

Figure 2.8 further illustrates the dependence of the system to the presence of 

illumination and shows the effect that immediate removal of illumination has on the 

reaction kinetics. The abrupt removal of light when the oscillating system is in an 
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oxidized state, high potential, does not completely quench the reaction but does decrease 

both the amplitude and frequency of oscillations. When the illumination was returned to 

the system, the frequency and amplitude returned to the pre-perturbation levels. 

Removing the illumination when the system is in a reduced state, low potential, the same 

effect of reduced amplitude and frequency of the oscillations emerged, which switched 

back to pre-perturbation levels once illumination was restored. Increasing the intensity of 

the illumination, whether at the top or bottom of an oscillation, results in a drastic 

decrease in potential followed by an increase and non-oscillatory evolution. Spontaneous 

oscillations only re-emerge after the intensity is reduced.  

 

Figure 2.8 - Time series illustrating the photosensitive nature of the cerium catalyzed 

bromate – 4-aminophenol reaction. The reaction conditions are: [4-AP] = 0.025 M, 

[NaBrO3] = 0.06 M, [H2SO4] = 0.80 M, [Ce(IV)] = 3.0 x 10-5 M, and light intensity = 65 

mW/cm2. 
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2.3.2 Numerical Simulations: Cerium - Bromate – 4-Aminophenol Photoreaction 

To understand whether the above transient complex oscillations arise from the 

coupling of two autocatalytic cycles, i.e., reaction between bromine dioxide radicals and 

Ce3+ and between bromine dioxide radicals and 4-AP and derivatives from 4-AP, 

numerical simulations were carried out. While the full mechanism of the bromate – 4-AP 

reaction remains to be deciphered, earlier mechanistic studies have demonstrated the 

autocatalytic oxidation of 4-AP by acidic bromate, which led to a major product 1,4-

benzoquinone [56]. Such information led us to adopt a general model (OKN) developed 

by Orbán, Körös and Noyes for uncatalyzed bromate-aromatic oscillators [57], modified 

to include reactions involving Ce4+/Ce3+ as well as the photoreduction of 1,4-

benzoquinone to 1,4-hydroquinone [11,30,54]. The original OKN model consists of 16 

reaction steps, 10 of which have been utilized in our simulation. As listed in Table 2.1, 

reaction steps (R13-R16) incorporated processes from the cerium redox pair. The 

photochemical reduction of benzoquinone, a major component after dissolution of the 

bromobenzoquinone imine, to hydroquinone is represented by a single reaction step 

(R12), in which the rate constant is affected by the intensity of illumination supplied to 

the system. In this model listed in Table 2.1, there are 16 reaction steps and 12 variables, 

BrO3
-, Br-, HBrO2, HOBr, BrO2*, Ce(III), Ce(IV), H+, HAr(OH)2, HAr(OH)O*, 

BrAr(OH)2, HArO2, where HAr(OH)2 is hydroquinone, HAr(OH)O* is semiquinone, 

BrAr(OH)2 is brominated hydroquinone, and HArO2 is benzoquinone. The simulations 

were performed by integrating a set of differential equations obtained through application 

of the law of mass action on the reaction equations. Rate constants used in the 

simulations are listed in Table 2.1. 
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Table 2.1 Model employed for simulating transient complex oscillations  

  Rate Constants*  
Reaction kforward kreverse Ref. 

R1 BrO3
- + Br- + 2H+ « HBrO2 + HOBr 0.1 100 44 

R2 HBrO2 + Br- + H+ ® 2HOBr 1.5 x 109  44 
R3 BrO3

- + HBrO2 + H+ « 2BrO2* + H2O 650 2 x 107 44 
R4 BrO2* + HAr(OH)2 ® HBrO2 + HAr(OH)O* 900  44 
R5 BrO2* + HAr(OH)O* ® HArO2 + HBrO2 1000  44 
R6 2HBrO2 ® BrO3

- + HOBr + H+ 4 x 107  44 
R7 HOBr + HArOHO* ® Br- + HArO2 + H2O 1.5 x 105  44 
R8 HOBr + Br- + H+ « Br2 + H2O 9.5 x 109 110 s-1 44 
R9 Br2 + HAr(OH)2 ® BrAr(OH)2 + Br- + H+ 700  44 
R10 HOBr + HAr(OH)2 ® BrAr(OH)2 + H2O 25  44 
R11 HAr(OH)2 + HArO2 « 2HAr(OH)O* 0.022 4 x 104 44 
R12 2HArO2 + H2O + hv ® HAr(OH)2 + other products 1 x 104  35 
R13 Ce(III) + BrO2* + H+ ® Ce(IV) + HBrO2 + H2O 1.4 x 105  20 
R14 Ce(IV) + BrAr(OH)2 ® Ce(III) + Br- + HArO2 + H+ 1 x 104  46 
R15 Ce(IV) + HAr(OH)2 ® Ce(III) + HAr(OH)O* + H+ 100  45 
R16 Ce(IV) + HAr(OH)O* ® Ce(III) + HArO2 + H+ 1 x 104  45 
*Rate constants have the units (M-1 s-1) unless otherwise stated and their values have been 
adjusted in this study in order to obtain the behavior shown in Figure 9. 

Simple periodic oscillations can be seen in the time series in Figure 2.9a, which 

was calculated with an initial concentration of Ce4+ of 0.0 M, i.e., without coupled 

autocatalytic cycles. Initial concentrations of other reactants are 0.06 M NaBrO3, 0.8 M 

H2SO4, and 0.025 M HAr(OH)2, which are the same as experimental values, except that 

hydroquinone is used in place of 4-AP. Transient complex oscillations of the form 11 

emerged when the Ce4+ concentration was set to 1.317 x 10-5 M in Figure 2.9b. The 

complexity of the oscillation was enhanced further as the Ce4+ concentration was 

increased to 3.0 x 10-5 M (Figure 2.9c). Consistent with what was seen experimentally, as 

Ce4+ concentration became too high, complex oscillations disappeared. The above 

simulation results provide strong support that the observed complex oscillations might 

arise from the coupling of two nonlinear feedbacks and, importantly, show that there 
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exists an optimal coupling strength for the emergence of complex oscillations. During our 

simulations, it was noticed that the reaction between hydroquinone and bromine dioxide 

radicals had significant influences on the reaction behavior, in which a slow reaction 

would favor the complex oscillations. In the modeling, varying the initial reactant 

concentrations resulted in period doubling and dynamically more complex mixed-mode 

oscillations, predicting that very rich nonlinear dynamical behavior could be achieved 

through coupling two autocatalytic cycles. 

 

Figure 2.9 - Time series showing the emergence of complex oscillations through the 

coupling of two autocatalytic cycles. It is calculated with the model proposed in Table I. 

(a) [Ce(IV)]0 = 0.0 M, (b) [Ce(IV)]0 = 1.137 x 10-5 M, and (c) [Ce(IV)]0 = 3.0 x10-5 M. 

[HAr(OH)2] = 0.025 M, [NaBrO3]0 = 0.06 M, [H2SO4]0 = 0.8 M, and [Br-]0 = 1 x 10-7 M. 
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2.3.3 Temporal Kinetics: Bromate – N-Bromo-1,4-Benzoquinone-4-Imine Reaction 

In order to gain further insights into the mechanism driving the bromate – 4-AP 

oscillatory behavior, the precipitate that forms at the onset of the reaction, N-bromo-1,4-

benzoquinone-4-imine (BBI) was collected. It was found that BBI is relatively stable in 

water. For instance, when 3.0 x 10-4 mole of BBI is mixed with 30.0 mL of water, there is 

no visible decrease in the amount of solid after 24 h, while the water shows only a very 

light yellow color. When the BBI and water mixture is exposed to light, however, the 

solution turns yellow rapidly, indicating a photoassisted dissolution/reaction. Figure 2.10 

presents two time series illustrating the critical influence of an acidic environment on the 

photoreaction of BBI. In Figure 2.10a, when the photodecomposition of BBI was studied 

in a neutral solution, the Pt potential gradually increased over the first 90 min and then 

remained at an elevated level throughout the reaction. The reaction solution became light 

orange with very little of the BBI dissolving. In an acidic environment, the 

photodecomposition of BBI began to occur within 15 min where the Pt potential can be 

seen to drastically decrease from its initial high level to a very low level, exhibiting the 

kinetic feature of autocatalytic reactions. The solution became a dark orange color as the 

reaction proceeds and all of the BBI was photodecomposed. 1H NMR measurements, 

taken after all of the BBI had dissolved, show the presence of 1,4-benzoquinone at a 

spectral resonance of δ = 6.80, indicating that the BBI - photoreaction led to the 

production of 1,4-benzoquinone. This conclusion is further supported by characterization 

with Electron Impact (EI) mass spectrometry (m/e = 108). The formation of 1,4-

benzoquinone leads us to speculate that introducing bromate into the photodecomposition 

of BBI may form a new photocontrolled chemical oscillator. 
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Figure 2.10 - Time series showing the photodecomposition of 9.41 x 10-3 M N-bromo-

1,4-benzoquinone-4-imine in (a) neutral solution and (b) 1.7 M H2SO4. Intensity of 

illumination was 468 mW/cm2. 

Figure 2.11a presents a time series under concentrations of bromate (0.040 M), 

BBI (9.41 x 10-3 M), and sulfuric acid (1.7 M). The solution immediately becomes yellow 

upon the addition of BBI and grows viscous after bromate is added and the photoreaction 

proceeds. The sharp spike in potential marks the complete dissolution of the BBI, at 

which point the solution remains yellow but transparent. The potential reaches a 

maximum and slowly decreases until spontaneous oscillations occur. The oscillations 

continue for several cycles, which stop at the low potential, at which point the color of 

the solution remains yellow. 

Figure 2.11b presents time series proving the photocontrolled nature of this new 

bromate oscillator. It shows that when illumination is removed from the reaction system 

while oscillations are occurring, they stop abruptly and the potential reaches a stable non-

oscillatory state. However, when illumination is reintroduced to the system, oscillations 

reemerge. Notably, removing the illumination at opposite phases of the oscillation caused 
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different responses of the system, where turning off the illumination at the bottom of an 

oscillation causes the system to return to the high potential immediately, followed by a 

decrease to the stable potential. The magnitude of the oscillation is also influenced by the 

intensity of the illumination involved; in fact, there is a threshold intensity that must be 

reached in order for oscillations to occur. Notably, both the oscillation waveform and the 

long induction time are reproducible, despite their great sensitivity to illumination. 

 

Figure 2.11 - (a) Time series of the bromate – BBI reaction and (b) Time series 

illustrating the photocontrolled nature of the uncatalyzed bromate – BBI reaction. 

Reaction conditions are [NaBrO3] = 0.04 M, [H2SO4] = 1.7 M, and [BBI] = 9.41 x 10-3 

M. 

Figure 2.12 illustrates the effect of changing the concentration of bromate while 

holding the amount of BBI (9.41 x 10-3 M), and sulfuric acid (1.7 M) constant. It can be 

seen that the concentration of bromate is a critical parameter influencing the nonlinear 

reaction kinetics. At low concentrations of bromate, not enough oxidant is present to 

oxidize the BBI resulting in a Pt potential that decreases and is unable to spike, and the 
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solution becomes a murky yellow/orange color. An increased concentration of bromate 

shows a spike in potential, and an induction time followed by a drastic drop in potential 

with no oscillations. As the concentration of bromate is increased further, to 0.030 M, 

five oscillations are present. When the bromate concentration is increased to 0.040 M, the 

number of oscillations increased; however, the amplitude of the oscillations decreased. 

This decrease in amplitude became more obvious at 0.050 M bromate. The number of 

oscillations can also be seen to decrease as the concentration of bromate is increased and 

at 0.060 M, the potential remains high after the potential spike, and the solution becomes 

transparent with a yellow tint. 

 

Figure 2.12 - Time series of the bromate – BBI reaction carried out at different bromate 

concentrations: (a) 0.02 M, (b) 0.03 M, (c) 0.04 M, and (d) 0.05 M. Other reaction 

conditions were [H2SO4] = 1.7 M and [BBI] = 9.41 x 10-3 M. 

Figure 2.13 is a time series showing the effect of changing the concentration of 

BBI while holding the concentration of bromate (0.040 M) and sulfuric acid (1.7 M) 

constant. Adding 0.105 g of BBI (0.0188M) to the 30.0 mL reaction vessel gives full 
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dissolution; however, adding more BBI effectively saturates the solution leaving a film of 

undissolved powder in the system. Spontaneous oscillations are still present in such 

saturated system, although the exact concentration of BBI is unknown. As such, there is 

no upper boundary to the concentration of BBI.  

 

Figure 2.13 - Time series of the bromate – BBI reaction carried out at different BBI 

concentrations: (a) 3.14 x 10-3 M, (b) 6.28 x 10-3 M, (c) 9.41 x 10-3 M, (d) 1.25 x 10-2 M, 

and (e) 1.88 x 10-2 M. Other reaction conditions were [NaBrO3] = 0.04 M and [H2SO4] = 

1.7 M. 

For this reason, the phase diagrams in Figure 2.14 and Figure 2.16 show no upper 

limit in the concentration of the BBI. Below the concentration of BBI required for 

oscillations the solution does not become murky at the onset of the reaction and as the 

reactant dissolves the solution becomes transparent with a slight yellow color. The 

potential undergoes a gradual decrease until the potential stabilizes. As the concentration 

of BBI is increased, the amount of time for the potential spike to occur increases, which 

is reasonable due to an increased amount of reactant; the induction time also increases. 
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Figure 2.14 is a phase diagram in the concentration of BBI and bromate concentration 

plane, where the filled triangles (p) indicate the conditions under which the system 

displays spontaneous oscillations.  

 

Figure 2.14 - Phase diagram illustrating regions of oscillatory phenomenon in the BBI 

and bromate concentration space. Conditions that displayed spontaneous oscillations are 

denoted by p. 

Figure 2.15 illustrates the effect of changing the concentration of sulfuric acid 

while holding the amount of BBI (9.41 x 10-3 M), and bromate (0.040 M) constant. 

Immediately it is obvious that the range of H+ which allows for oscillations to occur is 

much larger than the range for BrO3
-. The H2SO4 serves simply as a source of H+ needed 

to ensure that the pH is kept low enough for the autocatalytic cycle to continue. Below 

the concentration of sulfuric acid that produces oscillations a sharp potential decrease is 

observed, but unlike being below the lower limit in bromate concentration (where the 

sharp decline occurs quickly), the potential remains stable for over 90 min. The most 

notable difference between the time series in Figure 2.12 and Figure 2.15 is apparent at 

the extreme cases. High acid concentrations have their spike early, whereas cases with 
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high bromate concentrations undergo the potential spike after remaining at a stable 

potential for a prolonged period.  

 

Figure 2.15 - Time series of the bromate – BBI reaction carried out at different sulfuric 

acid concentrations: (a) 0.4 M, (b) 1.0 M, (c) 1.7 M, and (d) 2.2 M. Other reaction 

conditions were [NaBrO3] = 0.04 M and [BBI] = 9.41 x 10-3 M. 

Figure 2.16 is a phase diagram in the BBI and H2SO4 concentration plane, where 

the filled triangle (p) indicates the conditions under which the system displays 

spontaneous oscillations. Notably, a large concentration range of sulfuric acid was 

capable of supporting the occurrence of spontaneous oscillatory behavior depending on 

the initial concentration of BBI. 
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Figure 2.16 - Phase diagram illustrating regions of oscillatory phenomenon in the BBI 

and sulfuric acid concentration space. Conditions that displayed spontaneous oscillations 

are denoted by p. 

2.3.4 Mechanistic Study: Bromate – N-Bromo-1,4-Benzoquinone-4-Imine Reaction 

A study of the compounds involved in the system was undertaken using multiple 

characterization techniques in order to gain insights into the underlying mechanism 

responsible for the oscillatory behavior. Figure 2.17 presents three 1H NMR spectra 

recorded in CDCl3 solvent taken at key intervals as the reaction progressed. Figure 2.17a 

spectrum was taken after all of the BBI had dissolved, but prior to the occurrence of 

spontaneous oscillations. The spectral resonance of δ = 6.80 indicates the presence of 1,4-

benzoquinone and was confirmed by the δ = 136.6 and 187.3 resonances in the 13C NMR 

spectrum of a more concentrated sample. Figure 2.17b shows the 1H NMR spectrum of 

the composition of the reaction solution during the oscillatory window. As can be seen 

the component giving resonances at δ = 6.97 and 7.02 with a distinct AB coupling pattern 

(AB quartet, J = 10.5 Hz), which was only present in minute quantities before oscillations 

occurred, has increased at the expense of 1,4-benzoquinone. Finally, in Figure 2.17c, 
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after the oscillatory window had ceased, the component at δ = 6.97 and 7.02 has grown 

significantly at the expense of 1,4-benzoquinone. 

 

 

Figure 2.17 - 1H NMR spectra at three unique points in the reaction: (a) after potential 

spike and before oscillations (b) during the oscillatory window and (c) after the 

oscillations have occurred. 

Further spectroscopic experiments were conducted in order to establish a 

reasonable candidate for the identity of this new compound. This compound is of limited 

thermal stability, which has precluded chromatographic purification or crystallization. 

Nevertheless, the 13C NMR spectrum of more highly concentrated samples displayed 

resonances at δ = 69.0, 94.6, 135.3, 137.7, 182.3, and 189.2. The HMBC spectrum 

(Figure 2.18) of the same sample showed correlations of both the δ = 69.0 and 189.2 13C 

resonances with the δ = 6.97 1H resonance.  
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Figure 2.18 - Heteronuclear Multiple Bond Correlation (HMBC) spectrum of sample 

taken after oscillations had occurred. 

Finally, electrospray-TOF mass spectrometry (negative ion mode) gives an 

intense set of ions at m/e = 345, 347, 349, and 351, with a characteristic isotope pattern of 

a tribrominated compound. Given the propensity for negative ion electrospray MS to give 

prominent (M + H)- ions [41 BBI], this is strongly suggestive of a compound with a 

C6H3Br3O2 molecular formula. In light of this evidence, it is our working hypothesis that 

this new compound is 3,4,4-tribromo-2-hydroxycyclohexa-2,5-dienone (Figure 2.19). 
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Figure 2.19 - Electrospray-TOF mass spectrometry spectrum and proposed reaction 

intermediate 3,4,4-tribromo-2-hydroxycyclohexa-2,5-dienone. 

2.4 Conclusions 

This work reported a study of nonlinear dynamics in the cerium catalyzed 

bromate – 4-aminophenol photochemical oscillator and observed complex behavior in the 

form of mixed-mode, period doubling and sequential oscillations. The intensity of 

illumination applied to the system was seen to greatly affect the induction time and the 

overall oscillatory dynamics. The system was also found to be sensitive to the initial 

concentrations of bromate, cerium, sulfuric acid, and 4-AP. A phase diagram in the 

sulfuric acid and 4-AP concentration space shows that mixed-mode oscillations emerge 

in a narrow concentration region and have a significant dependence on the ratio of the 

two reactants as opposed to their absolute concentrations. Previous research on the 

uncatalyzed bromate – 4-AP photochemical oscillations did not display any richer 
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dynamical behavior than periodic transient oscillations [56], suggesting that the coupling 

of the catalyst to the photochemical oscillating reaction is responsible for the emergence 

of the complexity.  

Interplay between the concentration of cerium and the intensity of the 

illumination was found to be an important factor in the emergence of complex 

oscillations. Specifically, as concentrations of the catalyst were increased to a level which 

was too high to allow the complexity to form, an increase in light intensity counteracted 

the domination of the catalysts’ autocatalytic cycle through enhancing the formation of 

1,4-hydroquinone that competes with Ce3+ for bromine dioxide radicals and revived the 

complex behavior. The formation of 1,4-benzoquinone in this system was confirmed by 

NMR and GC/MS spectroscopic analysis. As was observed experimentally, the 

emergence of complex oscillations due to the addition of cerium and transitions from 

simple to complex and then to simple oscillations could be reproduced numerically using 

a model that was developed based on general mechanisms proposed for bromate-aromatic 

compounds reactions. 

This study also led to the discovery of a new photochemical oscillator through the 

isolation of the precipitate formed during the reaction of bromate and 4-AP. When 

reacted with acidic bromate, in the presence of illumination, N-bromo-1,4-benzoquinone-

4-imine was found to support spontaneous oscillations. The extreme sensitivity of the 

system to the intensity of the illumination was apparent through the manipulation of the 

oscillatory window by both abruptly removing and reintroducing the illumination, or by 

decreasing and then increasing the intensity of the illumination. The system was also 

found to be sensitive to the concentrations of bromate, sulfuric acid, and BBI. Changing 
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the concentrations of the reactants not only had an effect on the number of oscillations 

but also the amplitude of the oscillations as well as the induction time. Spectroscopic 

measurements indicate that N-bromo-1,4-benzoquinone-4-imine is transformed into 1,4-

benzoquinone preceding the onset of spontaneous oscillations, leading to a major product 

assigned as 3,4,4-tribromo-2-hydroxycyclohexa-2,5-dienone. 
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CHAPTER 3 - COMPLEX REACTION DYNAMICS IN THE 

CATALYZED BROMATE – 2-METHYL-1,4-HYDROQUINONE 

PHOTOREACTION 

3.1 Introduction 

The compound 1,4-hydroquinone is capable of being autocatalytically oxidized by 

acidic bromate, forming benzoquinone [1], which in turn can be photoreduced to reform 

hydroquinone in aqueous solutions and thus create a benzoquinone-hydroquinone cycle 

[2,3]. Chemical oscillations have recently been uncovered in the bromate – 2-methyl-1,4-

benzoquinone (mBQ) photoreaction [4]. However, no attempt was made to study the 

effect that addition of one-electron redox couples would have on the above nonlinear 

system. Introduction of metal catalysts such as ferroin or cerium ions to the reaction have 

the ability to generate a second autocatalytic cycle through their reactions with bromine 

dioxide [5-8]. Körös and co-workers have reported that spontaneous oscillations could be 

revived in the uncatalyzed bromate-aromatic compound oscillators upon the introduction 

of one-electron redox couples [9], suggesting that a nonlinear system consisting of 

multiple oscillatory subunits might be conveniently constructed by introducing metal ions 

into bromate-aromatic compound oscillators. 

Exploration into the intricate nature of those coupled or perturbed nonlinear 

chemical systems has grown substantially over the past two decades and continues to be 

an area of active research [10-16]. Existing reports have shown that the presence of 

coupled autocatalytic cycles could lead to the observation of various complex chemical 

oscillations such as bursting, period-doubling, chaos, etc. [17-20]. Because 
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photosensitivity offers a convenient approach for implementing various temporal and 

spatiotemporal couplings and perturbations, the incorporation of illumination into 

nonlinear chemical dynamics has seen much study in the past two decades [21-28]. 

In this study, the 2-methyl-1,4-hydroquinone (mH2Q) photoreaction was 

investigated with and without the presence of the one-electron redox couples Ce4+/Ce3+ 

and Fe(phen)3
3+/Fe(phen)3

2+. As shown in the following, depending on the concentration 

of the catalyst, different complex oscillations were seen to emerge in this photo-

controlled oscillatory system. When catalyzed by cerium, as the initial reactants are 

consumed in time, the studied chemical system gradually evolves through mixed-mode 

oscillations (MMOs), which are characterized by a single period that contains a large 

amplitude and one or more small amplitude oscillations (LS notation) [29-34]. Under 

suitable conditions, sequential oscillations, which feature the coexistence of two or more 

isolated oscillatory regimes, were also observed in this closed reaction system. Although 

sequential oscillation may occur through coupling of two nonlinear feedbacks, earlier 

studies also have suggested that his may occur if an intermediate product formed during 

the reaction can form an oscillator with the starting oxidant [35,36]. To shed light on such 

a question, mechanistic studies using 1H NMR spectroscopy and ultra-violet-visible (UV-

VIS) spectroscopic techniques were performed to measure intermediate species formed in 

this bromate – Based photochemical oscillator.  

3.2 Experimental Procedure 

All reactions were carried out in a 50 mL thermal-jacketed glass beaker 

(ChemGlass) in which the reaction temperature was sustained at 25.0 ± 0.1 oC by a 

circulating water bath (Thermo NesLab RTE 7). A 30.0 mL volume was used for every 
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reaction. To obtain a homogenous system the reaction solution was stirred with a 

magnetic stir bar, driven by a magnetic stirrer (Fisher Isotemp) at approximately 1000 

rpm. Reactions were monitored with a platinum electrode coupled with a 

Hg|Hg2SO4|K2SO4 reference electrode (Radiometer Analytical, XR200 and M231Pt-9) 

filled with a saturated K2SO4 solution, which were held in place by a Teflon cap placed 

on top of the thermal-jacketed beaker. All reaction profiles were recorded through a pH-

potential meter (Radiometer PHM220) connected to a computer through an e-Corder 201 

data logger (eDAQ company). The source of illumination was a 150 W halogen light 

(Fisher Scientific, Model DLS-100HD) with a continuous variable light level and was 

placed at a distance of 60 mm from the reaction beaker. The intensity of illumination was 

measured with an optical power meter (Model 1815-C, Newport). 

All 1H NMR spectroscopic studies were performed using a Bruker Avance 500 

MHz spectrometer, and the samples were dissolved in deuterated chloroform (Cambridge 

Isotope Laboratories, 99.8%). All electrochemical experiments were performed at room 

temperature (22 ± 2 oC) with a CHI760D electrochemical workstation (CHInstrument, 

USA). A conventional three-electrode system was used. Mass spectrometry 

measurements were performed using a Waters XEVO GS-XF TOF, with samples 

introduced via an ASAP probe. Absorption spectroscopic investigations were performed 

using a UV-visible spectrophotometer (Ocean Optics, 2000 USB), where a quartz cuvette 

(HELLMA) with a 10.0 mm light path was placed in a CUV sample holder. The cuvette 

was stirred continuously with a small magnetic stir bar. Illumination was supplied with a 

halogen lamp with the assistance of an optic fiber that was placed directly above the 

cuvette. Stock solutions of analytical grade sodium bromate (NaBrO3, Aldrich, 99%), 0.6 
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M; sulfuric acid (H2SO4, Aldrich 95-98%), 6.0 M; cerium (IV) (Ce(SO4)2, Aldrich), 0.01 

M, and ferroin (prepared from calculated amounts of FeSO4 and 1,10-phenanthroline, 

Aldrich, 99%), 0.03M, were prepared with double-distilled water. The 2-methyl-1,4-

hydroquinone (C7H8O2, Aldrich, 98+%) was directly dissolved in the reaction mixture. 

3.3 Results and Discussion 

3.3.1 Kinetic Behavior 

Figure 3.1 presents transient oscillatory behavior in the bromate – mH2Q system. 

After a brief induction time, there is a redox potential spike, which signals the 

autocatalytic oxidation of mH2Q to mBQ.  

 

Figure 3.1 - Chemical oscillations in the bromate – mH2Q photoreaction.  Reaction 

conditions were: [mH2Q] = 0.075 M, [H2SO4] = 1.5 M, [NaBrO3] = 0.1 M, and a light 

intensity of 200 mW/cm2. 

Following the drastic potential spike, the redox potential gradually decreases for 
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nearly 5 h. During the potential decrease the solution transitions to a yellow color, which 

persists throughout the reaction until gradually fading. Such a decrease in the redox 

potential will diminish or be significantly slowed when the applied illumination intensity 

is reduced suggesting that such a process is related to the photoreduction of mBQ. Later, 

a group of spontaneous oscillations emerge, suggesting that the bromate – mH2Q 

photoreaction forms a chemical oscillator. There was no evidence of periodic color 

change while the oscillations were occurring. Notably, illumination is absolutely crucial 

in this system as removal of illumination during the oscillations causes the system to 

return to a nonreactive state. Despite our extensive effort of varying reaction parameters 

such as the concentration of each reagent, only transient simple oscillations were 

obtained in the uncatalyzed bromate – mH2Q photoreaction.  

The effect of introducing cerium (IV) to the bromate – mH2Q photoreaction is 

significant, as can be seen in Figure 3.2. At a cerium concentration of 8.3 x 10-5 M 

(Figure 3.2a), sequential oscillations were present with a quiescent period of 

approximately 5 h. Notably, the second set of high-frequency oscillations lasted over 11 

h. Increasing the concentration of cerium proved to increase the number of oscillations in 

both oscillatory windows while decreasing the time interval between them. Complexity at 

the end of the reaction in the form of mixed-mode oscillations, arose at a cerium 

concentration of 2.5 x 10-4 M (Figure 3.2c). In Figure 3.2f, when the concentration of 

cerium was 5.0 x 10-4 M, the two oscillatory windows converge, giving rise to a single 

oscillatory window with aperiodicity emerging near the end of the oscillatory window. 

Here, the variation of cerium concentration was performed with initial reactant 

concentrations of [mH2Q] = 0.075 M, [NaBrO3] = 0.1 M, and [H2SO4] = 1.3 M. The 
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supplied light intensity is 80 mW/cm2, which allowed for a slow evolution of the system. 

The addition of cerium introduces the following reaction:  

(1) Ce(III) + BrO2* + H+ → Ce(IV) + HBrO2 

in which the bromine dioxide radicals that were also autocatalytically generated and 

consumed in the uncatalyzed bromate – mH2Q reaction implement the desired coupling. 

Note that couplings may also take place through the reaction between Ce(IV) and the 

organic reductants, such as:  

(2) 2Ce(IV) + mH2Q → 2Ce(III) + mBQ + 2H+ 

 

Figure 3.2 - Time series of the cerium - bromate – mH2Q photoreaction carried out at 

different initial cerium concentrations: (a) 8.3 x 10-5 M, (b) 1.7 x 10-4 M, (c) 2.5 x 10-4 M, 

(d) 3.3 x 10-4 M, (e) 4.2 x 10-4 M, and (f) 5.0 x 10-4 M.  Other reaction conditions were: 

[mH2Q] = 0.075 M, [H2SO4] = 1.3 M, [NaBrO3] = 0.1 M, and a light intensity of 80 

mW/cm2. 
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In the cerium - bromate – mH2Q system, at a sulfuric acid concentration of 1.0 M 

(Figure 3.3a), only one long-lasting sequence of oscillations occurs. In Figure 3.3b, 

increasing the acid concentration to 1.1 M causes two oscillatory windows to form with a 

brief quiescent period. At the end of the oscillatory window, mixed-mode oscillations 

occur and a transition from 13 to 11 can be seen. An increase in H2SO4 concentration, 

from 1.2 M to 1.5 M (panels c and d in Figure 3.3, respectively) gives an increase in the 

quiescent time period between oscillatory windows as well as mixed-mode oscillations.  

 

Figure 3.3 - Time series of the cerium - bromate – mH2Q photoreaction carried out at 

different initial sulfuric acid concentrations: (a) 1.0 M, (b) 1.1 M, (c) 1.2 M, (d) 1.5 M, 

and (e) 1.8 M. Other reaction conditions were: [mH2Q] = 0.075 M, [Ce(IV)] = 3.3 x 10-4 

M, [BrO3
-] = 0.1 M, and a light intensity of 80 mW/cm2. 

At an even higher acid concentration of 1.8 M, the primary set of oscillations is no longer 

present and two distinct oscillatory frequencies emerge in the second window. This time 
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series highlights that variation in the concentration of sulfuric acid had a profound 

influence on the mH2Q system catalyzed by cerium. 

Changing the concentration of mH2Q also had a significant impact. The quiescent 

period between oscillations decreased when the concentration of mH2Q was increased, 

and at 0.12 M, the two oscillatory windows merged into a single regime. Mixed mode 

oscillations were present between 0.09 and 0.065 M mH2Q when the other reactant 

concentrations were [H2SO4] = 1.0 M, [NaBrO3] = 0.1 M, and [Ce(IV)] = 3.3 x 10-4 M. 

When the concentration of bromate was varied, sequential oscillations were present 

between 0.09 and 0.12 M bromate, and the two oscillatory regimes were seen to merge at 

0.08 M.  

A drastic shortening of the overall oscillatory window was observed when the 

illumination was decreased from 250 mW/cm2 to 20 mW/cm2 (Figure 3.4). When 250 

mW/cm2 illumination is supplied to the reaction, only high-frequency oscillations occur 

(Figure 3.4a). Two separate oscillatory windows emerge when the intensity has been 

decreased to 150 mW/cm2 (Figure 3.4b), and mixed-mode oscillations occur during the 

second oscillatory window when the intensity is further decreased to 80 mW/cm2 (Figure 

3.4c). Further decreasing the intensity eliminates the first set of oscillations, and the 

induction time increases with decreasing intensity. At 40 mW/cm2, oscillations occur 

after a lengthy induction time of approximately 13 h and last for about 25 h (Figure 3.4e). 

An induction time of about 30 h occurs at an intensity of just 20 mW/cm2 (Figure 3.4f), 

but the system maintains oscillations for over 55 h. 
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Figure 3.4 - Time series of the cerium - bromate – mH2Q photoreaction carried out at 

different initial light intensities: (a) 250 mW/cm2, (b) 150 mW/cm2, (c) 80 mW/cm2, (d) 

65 mW/cm2, (e) 40 mW/cm2, and (f) 20 mW/cm2. Other reaction conditions were: 

[mH2Q] = 0.075 M, [H2SO4] = 1.5 M, [Ce(IV)] = 3.3 x 10-4 M, and [BrO3
-] = 0.1 M 

The addition of ferroin to this oscillating reaction introduces a second 

autocatalytic cycle through the interaction of ferroin with bromine dioxide radicals: 

(3) Fe(phen)3
2+ + BrO2* + H+ → Fe(phen)3

3+ + HBrO2 

(4) 2Fe(phen)3
3+ + mH2Q → 2Fe(phen)3

2+ + mBQ 

Figure 3.5 shows the effect of changing the concentration of ferroin while holding 

other initial reactants constant at: [mH2Q] = 0.05 M, [NaBrO3] = 0.1 M, and [H2SO4] = 

1.0 M. At a catalyst concentration of 1.0 x 10-3 M (Figure 3.5c) two oscillatory windows 
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are present, the first having 3 oscillations and the second with 39 with a hint of 

aperiodicity.  

 

Figure 3.5 - Time series of the ferroin-catalyzed bromate – mH2Q photoreaction carried 

out at different initial ferroin concentrations: (a) 1.0 x 10-4 M, (b) 6.0 x 10-4 M, (c) 1.0 x 

10-3 M, (d) 2.5 x 10-3 M, (e) 3.25 x 10-3 M, and (f) 3.75 x 10-3 M.  Other reaction 

conditions were: [mH2Q] = 0.050 M, [H2SO4] = 1.0 M, [BrO3
-] = 0.1 M, and a light 

intensity of 200 mW/cm2. 

The first set of oscillations is accompanied by a color change from turquoise to 

green, which is not the prototypical color change associated with use of the ferroin 

indicator (red in a reduced state and blue in an oxidized state), and suggests that a slight 

modification of the ferroin complex has occurred. The second set of oscillations is also 

accompanied by a color change; however, the change is barely noticeable in that the 

solution changes in the shade of yellow, turning slightly orange. As the concentration of 

ferroin is increased to 2.5 x 10-3 M (Figure 3.5d) the number of oscillations decrease in 

both windows and a further increase eliminates the first set of oscillations altogether.  
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When the concentration is decreased to 1.0 x 10-4 M in Figure 3.5a only 2 oscillations 

occur in the primary window, and the secondary set vanish completely. Overall, the 

Ce4+/Ce3+ redox couple proved to have a greater influence on the system resulting in 

longer lasting oscillations with higher frequencies, as well as displaying complexity in 

the form of mixed mode oscillations. 

Variation in the concentration of sulfuric acid has a profound influence on the 

ferroin – bromate – mH2Q photoreaction as shown in Figure 3.6. Sequential oscillations 

were observed at concentrations of H2SO4 between 0.9 and 1.0 M (Figure 3.6b and 3.6c), 

with other reactant concentrations of mH2Q = 0.05 M, Fe(phen)3
2+ = 0.001 M, and 

NaBrO3 = 0.1 M. Below 0.9 M sulfuric acid no oscillations were present, and above 1.0 

M only the primary set of oscillations occurred.   

 

Figure 3.6 - Time series of the ferroin-catalyzed bromate – mH2Q photoreaction carried 

out at different initial H2SO4 concentrations: (a) 0.8 M, (b) 0.9 M, (c) 1.0 M, (d) 1.1 M, 

and (e) 1.2 M. Other reaction conditions were: [mH2Q] = 0.050 M, [Fe(phen)3
2+] = 1.0 x 

10-3 M, [BrO3
-] = 0.1 M, and a light intensity of 200 mW/cm2. 
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In Figure 3.7 the effect of changing the concentration of mH2Q from 0.03 M to 

0.07 M while catalyzed by ferroin is illustrated.  At the low mH2Q concentration of 0.03 

M (Figure 3.7a) the Pt potential remains fairly level throughout the reaction with no 

oscillations.  Increasing the mH2Q to 0.04 M (Figure 3.7b) allows for spontaneous 

oscillations to occur in the primary window, and between 0.0425 M and 0.06 M 

sequential oscillations are present, with an increasing quiescent time as the concentration 

increases. A further increase to 0.07 M mH2Q, Figure 3.7f, causes the secondary 

oscillations to be absent, and at 0.08 M, neither oscillatory window was visible.  

 

Figure 3.7 - Time series of the ferroin-catalyzed bromate – mH2Q photoreaction carried 

out at different initial mH2Q concentrations: (a) 0.03 M, (b) 0.04 M, (c) 0.0425 M, (d) 

0.045 M, (e) 0.06 M, and (f) 0.07 M. Other reaction conditions were: [H2SO4] = 1.0 M, 

[Fe(phen)3
2+] = 1.0 x 10-3 M, [BrO3

-] = 0.1 M, and a light intensity of 200 mW/cm2. 

Figure 3.8 illustrates the result of changing the bromate concentration on the 

nonlinear kinetics in the ferroin-catalyzed mH2Q photoreaction. In Figure 3.8a, at 0.07 M 
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bromate, there is not enough oxidant present to drive the autocatalytic cycle and no 

oscillations occur. Sequential oscillations occur between 0.08 M (Figure 3.8b) and 0.105 

M bromate (Figure 3.8d) when the initial reactant concentrations are 0.05 M mH2Q, 1.0 

M H2SO4, and 0.001 M Fe(phen)3
2+. In Figure 3.8e when the amount of oxidant is 

increased to 0.11 M only the primary set of oscillations arise, and a further increase to 

0.12 M prevents any oscillatory behavior at all.  

 

Figure 3.8 - Time series of the ferroin-catalyzed bromate – mH2Q photoreaction carried 

out at different initial bromate concentrations: (a) 0.07 M, (b) 0.08 M, (c) 0.09 M, (d) 

0.105 M, and (e) 0.11 M. Other reaction conditions were: [H2SO4] = 1.0 M, [Fe(phen)3
2+] 

= 1.0 x 10-3 M, [mH2Q] = 0.050 M, and a light intensity of 200 mW/cm2. 

An intensity of 200 mW/cm2 was found to be ideal, with respect to number of 

oscillations as well as complexity, in the ferroin-catalyzed system. Altering the intensity 

of the supplied illumination proved to have a significant effect on the ferroin - catalyzed 
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methyl-hydroquinone reaction system. Figure 3.9 shows the time series for the ferroin-

catalyzed system when the intensity of illumination is varied from 0 mW/cm2 

(unilluminated) in 3.9a to 250 mW/cm2 in 3.9f.  

 

Figure 3.9 - Time series of the ferroin-catalyzed bromate – mH2Q photoreaction carried 

out at different initial light intensities: (a) 0 mW/cm2, (b) 150 mW/cm2, (c) 175 mW/cm2, 

(d) 200 mW/cm2, (e) 225 mW/cm2, and 250 mW/cm2. Other reaction conditions were: 

[mH2Q] = 0.050 M, [H2SO4] = 1.0 M, [Fe(phen)3
2+] = 1.0 x 10-3 M, and [BrO3

-] = 0.1 M. 

As can be seen in Figure 3.9a when there is no illumination supplied to the system 

there is no reactivity and after the potential increase (indicating the oxidation of mH2Q to 

mBQ) the potential remains stable for the entirety of the reaction. Increasing the light 

intensity to 150 mW/cm2 (Figure 3.9b) resulted in the initial set of oscillations to emerge, 

however, no sequential behavior was observed. At an intensity of 175 mW/cm2 sequential 

oscillations occurred with a lengthy quiescent period between the two oscillatory regimes 

where the second set of oscillations began approximately 8 hours into the reaction time. 
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Increasing the intensity up to 250 mW/cm2 (Figure 3.9f) was shown to decrease the 

quiescent time drastically, allowing the second set of oscillations to begin just after four 

hours of reaction time. The induction time of the primary set of oscillations was 

influenced much less significantly when the illumination was varied, compared to the 

second set, suggesting that the oscillations occurring during the second set are much more 

sensitive to illumination.  

3.3.2 Mechanistic Characterization 

Compositions of the reaction solution were analyzed shortly after the potential 

spike seen in Figure 3.1, where the formation of mBQ (δ = 6.77, ½ AB, J = 10.5 Hz; 6.73 

doublet of ½ AB, J = 2.5, 10.5 Hz; 6.62, doublet of quartets, J = 2.5 Hz, 1.6 Hz; 2.05, A 

= 3, doublet, J = 1.6 Hz) was confirmed using 1H NMR spectroscopy (Figure 3.10). 

 

Figure 3.10 - 1H NMR spectrum illustrating the formation of 2-methyl-1,4-benzoquinone 

before oscillations begin. The reaction conditions were: [mH2Q] = 0.075 M, [H2SO4] = 

1.5 M, [BrO3
-] = 0.1 M and a light intensity of 200 mW/cm2. 
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Another compound was found to emerge before spontaneous oscillations take 

place and remain throughout the reaction giving spectral resonances of δ = 7.11 and 7.17 

with a distinct AB coupling pattern (J = 10.8 Hz) and δ = 2.03 (singlet, A = 3), indicative 

of a 2,3-disubstituted benzoquinone, of which 2-bromo-3-methyl-benzoquinone is the 

most likely candidate (Figure 3.11). 

 

Figure 3.11 - 1H NMR spectrum showing the formation of a product with a distinct AB 

coupling pattern indicative of a 2,3-disubstituted benzoquinone, of which 2-bromo-3-

methyl-1,4-benzoquinone is the most likely candidate. The reaction conditions were: 

[mH2Q] = 0.075 M, [H2SO4] = 1.5 M, [BrO3
-] = 0.1 M and a light intensity of 200 

mW/cm2. This spectrum was taken after oscillations had ceased. 

Bromine is an important intermediate in bromate based chemical reactions and 

plays a critical role in modulating the concentration of bromide ions, which are known as 

the inhibitor of bromate – Based chemical oscillators. The reaction between bromine and 

mH2Q was studied here using UV-visible spectroscopy. The reaction was first examined 
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while illuminated. In Figure 3.12, absorption spectrum (i) is of 0.001 M mH2Q before 

illumination was present and (ii) was collected after 600 s of illumination; no observable 

change in the mH2Q peak at 290 nm was observed. Once bromine (Br2) was introduced to 

the system, the peak associated with mH2Q (290 nm) immediately disappears and a peak 

indicative of the presence of mBQ appears at 259 nm (spectrum (iii)). Spectrum (iv) was 

collected 600 s after the introduction of bromine, where the absorbance of mH2Q again 

begins to grow. This observation is consistent with an earlier report that mBQ can be 

photoreduced to mH2Q [37].  

 

Figure 3.12 - Absorption spectra of the illuminated mH2Q - bromine reaction. The 

absorption spectrum (i) shows mH2Q at t = 0, (ii) t = 600 seconds, (iii) 15 seconds after 

the addition of bromine, (iv) 600 seconds after the addition of bromine. The 

concentration of mH2Q is 0.001 M. 

1H NMR spectroscopy of the reaction solution was conducted in order to 

determine the products, i.e., whether bromination and oxidation occurred concurrently. 

However, no evidence of bromination of the organic substrate was found in addition to 

mH2Q and mBQ 1H NMR spectral resonances of δ = 6.98, s, 1H; 6.74, ½ AB, J = 10.1 
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Hz, 1H; 6.73, ½ AB, J = 10.1 Hz, 1H; and 1.96, s, 3H are identical with earlier reports for 

the chemical shifts of 2-hydroxy-3-methyl-1,4-benzoquinone, [38,39] the product from 

the photoreduction of mBQ which does not participate in the autocatalytic cycle. The 

above process can be described by Scheme 1: 

 

Scheme 3.1 - Photochemical reduction of 2-methyl-1,4-benzoquinone leads to the 

formation of 2-methyl-1,4-hydroquinone and 2-hydroxy-3-methyl-1,4-benzoquinone 

Next, the experiment was performed without illumination. Spectrum (i) in Figure 

3.13 shows the absorbance of mH2Q before bromine was added, and spectrum (ii) was 15 

s after the addition of bromine.  

 

Figure 3.13 - Absorption spectra of the unilluminated mH2Q - bromine reaction. The 

absorption spectrum (i) shows mH2Q before the addition of bromine, (ii) 15 seconds after 

the addition of bromine, and (iii) 600 seconds after the addition of bromine.  The 

concentration of mH2Q is 0.001 M. 
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As can be seen, the conversion of mH2Q is not illumination-dependent. Spectrum 

(iii) was collected 600 s after the addition of bromine, which essentially overlaps with 

spectrum (ii). Therefore, the main difference caused by the lack of illumination in the 

mH2Q - bromine reaction is the absence of the photoconversion from mBQ to mH2Q. The 

reaction between bromine and mBQ was also studied under both illuminated and 

nonilluminated conditions; however, no formation of brominated mH2Q or brominated 

mBQ was found after 45 min of reaction time. 

To further examine the photoreduction of mBQ, absorption spectra of 0.001 M 

mBQ solution under constant illumination were acquired (Figure 3.14)  

 

Figure 3.14 - Absorption spectrum showing the photoreduction of mBQ to mH2Q under 

35 mW/cm2 intensity of illumination: (i) before illumination, (ii) after 300 s illumination, 

(iii) after 1200 s illumination and (iv) after 3600s illumination.  The concentration of 

mBQ is 0.001 M. 



Chapter 3 - Complex Reaction Dynamics in the Catalyzed Bromate – 2-Methyl-1,4-
Hydroquinone Photoreaction 

103	

	

Spectrum (i) was collected at the start of the experiment, where two absorption 

peaks were seen at 259 and 325 nm. This result provides support that the new peaks seen 

in Figures 3.12 and 3.13 are from mBQ. As can be seen in spectrum (ii), the absorption at 

approximately 290 nm, representative of mH2Q, begins to grow after 300 s of 

illumination time. After 1200 s (spectrum (iii)) the mH2Q peak has grown even more (see 

spectrum (iv)). 1H NMR spectroscopic analysis showed that the resulting product mixture 

was composed of mBQ, mH2Q, and 2-hydroxy-3-methyl-1,4-benzoquinone, in agreement 

with Scheme 3.1. 

3.4 Conclusions 

The one electron redox couples Ce4+/Ce3+ and Fe(phen)3
3+/Fe(phen)3

2+ were 

introduced to the bromate – mH2Q photochemical reaction in order to study coupled 

autocatalytic cycles. Two bifurcation regimes were found to exist when the two 

autocatalytic cycles were effectively balanced which was achieved through manipulation 

of the individual reaction parameters. Cerium proved to exhibit the most prevalent effect 

on the system and was capable of lengthening the oscillatory window substantially as 

opposed to either the uncatalyzed or ferroin catalyzed systems. Mixed-mode oscillations 

were also present when cerium was utilized. The sensitivity of the system to illumination 

was significant as removal of illumination during an oscillatory regime completely 

quenched the reactivity. Analysis with 1H NMR spectroscopy indicates that the presence 

of the methyl group prevents bromination during the mH2Q - bromine reaction. However, 

2-bromo-3-methyl-1,4-hydroquinone was detected with 1H NMR spectroscopic analysis 

during the bromate – mH2Q photoreaction. 
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CHAPTER 4 - COMPLEX SPATIOTEMPORAL BEHAVIOR IN THE 

PHOTOSENSITIVE FERROIN – BROMATE – 4-NITROPHENOL 

REACTION 

4.1 Introduction 

Over the past four decades the theory of nonlinear dynamics has been 

incorporated into a diverse array of scientific disciplines ranging from computer science 

to molecular biology [1-4]. The study of nonlinear chemical dynamics continues to be an 

area of significant interest [5-8]. Chemical oscillators such as the Belousov-Zhabotinsky 

(BZ) reaction rely on autocatalytic processes to establish the necessary nonlinear 

feedback for the development of spontaneous temporal oscillations [9]. A host of organic 

substrates have been found capable of reacting with acidic bromate to form bromate-

based chemical oscillators [10-12]. Among these, aromatic compounds have seen 

increasing use due to the lack of the formation of gas molecules, which is a desired 

property when the system is employed to explore pattern formation in reaction-diffusion 

media. The reaction of phenol with acidic bromate, for example, has been found to give 

rich dynamical behavior, and derivatives of phenol such as 4-aminophenol, 1,4-

dihydroxybenzene, 1,4-benzoquinone, and 1,4-cyclohexanedione have also been found to 

oscillate, although some of these require the presence of external illumination [13-17]. 

The occurrence and evolution of chemical waves, such as propagating fronts, 

target patterns, and spirals in reaction-diffusion media, have been found to mimic 

spatiotemporal phenomena observed in nature such as animal patterning [18-28]. 

Chemical wave activity, when studied in capillary tubes, has been found capable of 
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exhibiting a variety of interesting interactions such as repelling fronts or nonannihilation 

collisions [29-31]. Because illumination can be conveniently implemented in various 

forms as a means of external control or perturbation, photosensitive chemical systems are 

attractive models for studying nonlinear behavior [32-35]. A modulation in reactivity by 

illumination may be observed in the form of longer lasting oscillatory windows or in a 

complexity emerging when only simple oscillations are present in an unperturbed system, 

whereas a decrease in reactivity can be as significant as a complete quenching of the 

oscillatory behavior.  

The oxidation of 4-nitrophenol (4-NP) by bromate has been studied by Nair and 

co-workers [36]. They reported in 1981 that chemical oscillations could be seen in the 

bromate oxidation of 4-NP in an unstirred batch reactor, but noted that the oscillations 

would be fully quenched if the system was made homogeneous through stirring. The 

inability of supporting temporal oscillations has made this ferroin – bromate – 4-NP 

system less appealing and there have been no further reports on this system since the 

1981 paper. In contrast to the earlier report, in this study we found that long lasting 

chemical oscillations could exist in the well-stirred ferroin – bromate – 4-NP system. The 

success was achieved through our extensive exploration of the uncatalyzed bromate – 4-

NP reaction, in which spontaneous oscillations were observed over broad concentration 

ranges. A study of propagating fronts in a one-dimensional ferroin – bromate – 4-NP 

reaction-diffusion medium unveiled long lasting wave activity with various complex 

behaviors. Interestingly, a strong effect of light on the reaction behavior was also 

observed in both stirred and reaction-diffusion media, making this low-cost reaction 
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system a potential model for investigating perturbed nonlinear dynamics. Preliminary 

mechanistic studies were also carried out in this report. 

4.2 Experimental Procedure 

Spatiotemporal behavior was investigated at room temperature (22.0 ± 1 oC) by 

injecting the reaction solution into a glass capillary tube, which has an inner diameter of 

1.8 mm. The capillary tube is horizontally placed on a flat table. We have also carried out 

experiments with a 0.9 mm diameter capillary tube, and the same behavior was obtained 

there. The evolution of the spatially extended medium was monitored with a charge 

coupled device (CCD) camera equipped with a zoom lens. The CCD camera was 

connected to a personal computer running a frame grabber program (Matrox Imaging 

Library). Temporal kinetics were investigated in a thermal-jacketed 50 mL glass beaker 

(ChemGlass). A circulating water bath (Thermo NesLab RTE 7) held the reaction 

temperature constant at 25.0 ± 0.1 oC. The reaction solution was held constant at 30.0 mL 

and was stirred continuously with a magnetic stirring bar driven by a magnetic stirrer 

(Fisher Isotemp) to ensure homogeneity. All 1H NMR studies were performed using a 

Bruker Avance 500 MHz spectrometer and the samples were dissolved in deuterated 

chloroform (Cambridge Isotope Laboratories, 99.8%). 

Stock solutions of analytical grade sodium bromate (NaBrO3, Aldrich, 99%), 0.1 

M and sulfuric acid (Aldrich, 95-98%), 6.0 M were prepared with double-distilled water. 

The 4-nitrophenol (Aldrich, 98+%) was directly dissolved in the reaction mixture. A 

Teflon cap was placed on top of the thermal-jacketed beaker to hold the electrodes. 

Reactions were monitored with a platinum electrode coupled with a Hg|Hg2SO4|K2SO4 

reference electrode (Radiometer Analytical, XR200 and M231 Pt-9) filled with a 
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saturated K2SO4 solution, and the electrode potential was recorded through a pH/potential 

meter (Radiometer PHM220) connected to a computer through a PowerLab/4SP data 

logger. The illumination source was a 150 W halogen light (Fischer Scientific, Model 

DLS-100HD) with a continuous variable light level. The intensity of the illumination was 

measured with an optical power meter (Model 1815-C, Newport).	

4.3 Results and Discussion 

4.3.1 Temporal Reaction Kinetics 

Figure 4.1 shows a typical time series illustrating the reaction dynamics of the 

well-stirred bromate – 4-nitrophenol reaction measured with a platinum electrode. At the 

onset of the reaction the potential can be seen to slightly increase and subsequently 

decrease before a drastic drop in potential occurs, which is then followed by the 

occurrence of spontaneous oscillations. Under these conditions, 0.01 M 4-NP, 1.0 M 

H2SO4, and 0.03 M BrO3
-, the oscillatory window lasts for approximately 14 hours and 

over 40 oscillations occur.  

 

Figure 4.1 - Time series showing chemical oscillations in the bromate – 4-NP reaction. 

Reaction conditions were: [4-NP] = 0.010 M, [H2SO4] = 1.0 M, and [NaBrO3] = 0.03 M. 
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The amplitude of the oscillations increases before decreasing as the reaction 

proceeds, and the frequency of the oscillations appears to increase monotonically. The 

color of the reaction mixture gradually changes from colorless to pale yellow (at the onset 

of the oscillatory window) as the reaction progresses. No periodic color change was seen 

in this uncatalyzed system, and there was no visible precipitation formed. Figure 4.2 

shows the effect of changing the concentration of 4-NP. Decreasing the 4-NP 

concentration from 0.03 M in Figure 4.2a to 0.01 M in Figure 4.2d leads to an overall 

decrease in the amplitude of the oscillations, but an increase in the oscillatory frequency.  

 

Figure 4.2 - Time series of the bromate – 4-NP reaction carried out at different initial 4-

NP concentrations: (a) 0.030 M, (b) 0.020 M, (c) 0.0125 M, (d) 0.010 M, (e) 0.0075 M, 

and (f) 0.00075 M. Other reaction conditions were [NaBrO3] = 0.03 M and [H2SO4] = 1.0 

M. 
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For 4-NP below 0.0075 M (Figure 4.2e), the number of oscillations, amplitude, 

and the oscillatory time period begin to decrease. This trend continues, as evidenced in 

Figure 4.2f, where the amplitude is very small. A further decrease of 4-NP causes the 

oscillations to vanish.   

In Figure 4.3 the concentration of bromate is varied from 0.05 M (Figure 4.3a) to 

0.01 M (Figure 4.3f). As the bromate concentration was decreased from 0.05 to 0.03 M, 

the bromate – 4-NP system exhibited increasing numbers of oscillations, where the 

frequency of oscillations remained similar. Further lowering the bromate concentration 

led to a significant decrease in both the frequency and number of oscillations. When the 

concentration of bromate was decreased to 0.01 M, the oscillations ceased to emerge. 

 

Figure 4.3 - Time series of the bromate – 4-NP reaction carried out at different initial 

bromate concentrations: (a) 0.05 M, (b) 0.04 M, (c) 0.03 M, (d) 0.02 M, (e) 0.015 M, and 

(f) 0.01 M. Other reaction conditions were [H2SO4] = 1.0 M and [4-NP] = 0.010 M. 
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Variation in the concentration of sulfuric acid, while holding the concentration of 

4-NP and bromate at 0.01 M and 0.03 M respectively, can be seen to have a significant 

influence on the reaction behavior (Figure 4.4).  

 

Figure 4.4 - Time series of the bromate – 4-NP reaction carried out at different initial 

sulfuric acid concentrations: (a) 2.0 M, (b) 1.2 M, (c) 1.0 M, (d) 0.60 M, (e) 0.20 M, and 

(f) 0.10 M. Other reaction conditions were [4-NP] = 0.01 M and [NaBrO3] = 0.03 M. 

Decreasing the concentration of sulfuric acid from 2.0 M (Figure 4.4a) to 0.1 M 

(Figure 4.4f) leads to a drastic increase in the induction time of those spontaneous 

oscillations. As the acid concentration decreases, the amplitude of the oscillations 

increases while their frequency decreases. At a sulfuric acid concentration of 0.6 M, 17 

oscillations occur over a span of approximately 30 hours before reaching a stable state, an 

extremely long time for an uncatalyzed bromate oscillator to remain oscillatory. Figure 

4.5 is a phase diagram in the 4-NP and sulfuric acid concentration plane, where the 
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regime filled with solid triangles (p) represents conditions at which the system exhibits 

spontaneous oscillations. Notably, very minute amounts of 4-NP (3.0 x 10-5 M) are 

needed for the system to exhibit spontaneous oscillations, whereas the sulfuric acid 

concentration can be adjusted over a range from 0.025 M to 2.2 M. This plot 

demonstrates that very broad concentration ranges of 4-NP and sulfuric acid are capable 

of supporting the occurrence of chemical oscillations. 

 

Figure 4.5 - Phase diagram illustrating regions of oscillatory phenomenon in the 4-NP 

and sulfuric acid concentration plane, where the filled triangle (p) represents conditions 

that exhibit spontaneous oscillations. Bromate concentration is held constant at 0.03 M. 

In Figure 4.6, the photosensitivity of the bromate 4-NP oscillator was 

investigated. For comparison, Figure 4.6a presents an unilluminated system to display the 

prototypical behavior. In Figure 4.6b, at a light intensity of 25 mW/cm2 there is a 

dramatic transition in the frequency of oscillations in the middle of the oscillatory 

window, as opposed to the gradual increase of the oscillation frequency seen in the 
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unilluminated system. This change became more apparent as the illumination intensity 

was increased. Increasing the intensity from 25 to 400 mW/cm2 (Figure 4.6f) appears to 

have completely eliminated those high frequency oscillations. Clearly, the introduction of 

illumination can greatly alter the waveform of the corresponding oscillations, depending 

upon the light intensity supplied. 

 

Figure 4.6 - Time series illustrating the effect of light on the bromate – 4-NP system: (a) 

0, (b) 25, (c) 50, (d) 100, (e) 200, and (f) 400 mW/cm2. Other reaction conditions were: 

[H2SO4] = 1.0 M, [4-NP] = 0.010 M, and [NaBrO3] = 0.03 M. 

To gain insight into the intermediates and final products of the bromate – 4-NP 

oscillatory reaction, 1H NMR spectroscopy measurements were performed. A reaction 

containing 0.01 M 4-NP, 1.0 M sulfuric acid, and 0.03 M bromate was stopped after 5 h, 

approximately halfway through the oscillatory window, and was extracted twice with 

diethyl ether. After the diethyl ether solution was concentrated under reduced pressure, an 
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1H NMR sample was prepared with deuterated chloroform. The 1H NMR spectrum 

indicated the presence of a small amount of starting material (doublets at 6.91 and 8.16 

ppm) as well as 1,4-benzoquinone (singlet at 6.80 ppm). The spectrum also showed that 

bromination occurred on both 1,4-benzoquinone and 4-NP, yielding 2-bromo-1,4-

benzoquinone (doublet of doublets at 6.85, doublet at 6.98, and the small doublet at 7.32 

ppm), 2,6-dibromo-1,4-benzoquinone (singlet at 7.34 ppm), 2-bromo-4-nitrophenol 

(doublet at 7.12, small doublet at 8.44, and partially obscured doublet of doublets under 

the 8.15 ppm peaks). The presence of mono- and dibrominated 4-NP suggests that 

bromination occurs fairly easily in the studied system. A speculative pathway forming 

1,4-benzoquinone in proposed in Scheme 4.1, where the starting material reacts with 

bromine dioxide radicals. This reaction oxidizes the phenolic group, leading to 

destabilization of the aromatic ring, which results in the indirect formation of 1,4-

benzoquinone through the autocatalytic step. 

 

Scheme 4.1 - Proposed scheme for the formation of 1,4-benzoquinone in the bromate – 4-

NP reaction. 

To gain further insight into the bromination of 4-NP, the reaction with bromine 

and 4-NP was investigated using UV-VIS spectroscopy (Figure 4.7). Two absorbance 

peaks were present in a 0.001 M 4-NP and 1.0 M sulfuric acid solution (~240 nm and ~ 

310 nm). Upon the reaction of bromine with 4-NP there is a drastic increase in the peak at 
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240 nm while the peak at 310 nm decreased; these results strongly suggest that a reaction 

has occurred.  

 

Figure 4.7 - UV-VIS spectrum showing the reaction between bromine and 4-NP in 1.0 M 

sulfuric acid. Addition of bromine causes 4-NP absorbance peak at 240 nm to increase 

and the peak at 310 decreases. 

To achieve periodic color change for the study of spatiotemporal behavior, metal 

catalyst ferroin was introduced to the above bromate – 4-NP reaction. Note that the 

presence of ferroin implements a second autocatalytic cycle through the reaction between 

ferroin and bromine dioxide radicals. As a result, dramatic effects on the nonlinear 

phenomenon may occur. In Figure 4.8 at a ferroin concentration of 1.0 x 10-6 M, low 

frequency oscillations emerged. Both the frequency and the total number of oscillations 

were reduced greatly, when being compared with the time series of the ferroin-free 

system listed in Figure 4.8a.  

Increasing the concentration of ferroin to 1.0 x 10-4 M (Figure 4.8c), however, led 

to high frequency oscillations lasting over 10 h. At 1.0 x 10-3 M ferroin (Figure 4.8d) low 

frequency oscillations emerged that lasted approximately 7 h. The subtle influences of 

ferroin may arise from the fact that there are coupled autocatalytic cycles in the ferroin – 
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bromate – 4-NP system. Notably in Figure 3.8d the oscillation frequency appears to 

modulate, as opposed to gradual change seen in most of the closed reaction systems [5,6]. 

When the concentration of ferroin was increased, red precipitates were found to form in 

the stirred system, which stopped us from examining the kinetics at higher ferroin 

concentrations. 

 

Figure 4.8 - Time series of the ferroin catalyzed bromate – 4-NP reaction at different 

ferroin concentrations: (a) 0, (b) 1.0 x 10-6 M, (c) 1.0 x 10-4 M, and (d) 1.0 x 10-3 M. 

Other reaction conditions were [H2SO4] = 1.0 M, [4-NP] = 0.010 M, and [NaBrO3] = 

0.030 M. 

4.3.2 Spatiotemporal Behavior 

Spatiotemporal behavior of the ferroin – bromate – 4-NP system in a pseudo-one-

dimensional configuration was investigated as described below. Pictures of the capillary 

tube were taken every 15 s and later a space-time plot was generated by taking one 

horizontal cut through the center of the capillary tube and sequentially arranging these 
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one-dimensional images. In Figure 4.9 the horizontal axes represent space and the 

vertical axes represent time. Bright and dark gray levels correspond to the oxidized and 

reduced states of the ferroin/ferriin complex, respectively. As can be seen here, pulses are 

formed at both boundaries, propagating inward; however, after a few pulses wave activity 

at the left boundary evolved to the state where only every other pulse could propagate 

fully through the medium to collide with the one formed at the opposite end of the tube. 

This intermittent propagation failure phenomenon resembles the 11 mixed mode 

oscillations in homogenous systems. The 11 patterns can be seen to repeat in Figure 4.9 

for more than 2 h. Meanwhile, pulses formed at the right boundary also exhibited some 

sort of complexity due to an unsteady propagation rate.  

 

Figure 4.9 - Space-time plot of propagating wave trains in the ferroin – bromate – 4-NP 

reaction. Reaction conditions were [H2SO4] = 1.3 M, [4-NP] = 0.011 M, [NaBrO3] = 

0.036 M, and [ferroin] = 2.7 x 10-3 M. The time scale presented is (a) 0-4455 s and (b) 

4455-8910 s. 
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Panel (b) in Figure 4.9 indicates that wave activity may also emerge at other 

regimes in the tube, leading to rich interactions. Notably, wave trains observed here could 

last for more than 20 h, which is long enough to make this closed system suitable for 

studying interactions between intrinsic dynamics and various external perturbations. The 

identical reaction was carried out with the ends of the capillary tube sealed and the same 

phenomenon was observed, suggesting that the intermittent propagation failure behavior 

is not due to the influence of air/oxygen at the boundaries. 

The effect of sulfuric acid concentration on the above spatiotemporal behavior 

was examined (Figure 4.10). At a sulfuric acid concentration of 1.0 M (Figure 4.10a), 

during the initial reaction stage, pulses that fail to fully propagate alternate with a pulse 

that is able to propagate through the medium, showing the pattern 11 (1 failure, 1 

success). As the reaction progresses, the frequency of the propagation failure begins to 

decrease, where three pulses fully propagate before one failure and then four fully 

propagating pulses precede the propagation failure, exhibiting 13 and 14 behaviors. In 

Figure 4.10b, an increase in the sulfuric acid concentration to 1.4 M increases the 

observed complexity. Here, four propagation failures occur before the first fully 

propagating pulse emerges, after which the pattern 11 persists until a series of 13 

behavior, which transitions into the pattern 11 that lasts for several hours. In Figure 4.10c, 

at a sulfuric acid concentration of 1.6 M a different form of complexity arises as the 

reaction proceeds. The observed curvature in all three conditions indicates that pulses do 

not propagate at a constant speed as normally seen with chemical waves. Such a property 

may potentially result in even more complex spatiotemporal behavior.  
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Figure 4.10 - Space-time plot of propagating wave trains in the ferroin – bromate – 4-NP 

reaction carried out at different sulfuric acid concentrations: (a) 1.0 M, (b) 1.4 M, and (c) 

1.6 M. Other reaction conditions were [4-NP] = 0.009 M, [NaBrO3] = 0.027 M, and 

[ferroin] = 2.7 x 10-3 M. The amount of time elapsed in each panel is 13500 s. 

Figure 4.11 shows the effect of light on the reaction-diffusion behavior, where a 

60 s pulse of illumination was supplied to the center of the capillary tube (ca. 3 cm). It 

effectively quenched the wave activity and drove that area to a reduced state. Upon the 

removal of light, the medium was able to regain its activity to support wave propagation. 

This preliminary test demonstrates the feasibility of manipulating the 4-NP reaction-

diffusion system with light, although the catalyst ferroin does not have great 

photosensitivity. 
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Figure 4.11 - Space-time plot showing the photosensitivity of the wave activity. Reaction 

conditions were [4-NP] = 0.011 M, [NaBrO3] = 0.036 M, [H2SO4] = 1.0 M, and [ferroin] 

= 2.7 x 10-3 M. Illumination was applied for 60 s (the bright strip in the image). 

Interestingly, when the wave behavior was investigated in a vertically, as opposed 

to horizontally, positioned capillary tube, red precipitates were formed (Figure 4.12) at 

the same ferroin concentration used in Figures 4.9 and 4.10, presumably through a 

buoyancy-driven aggregation process.  

Figure 4.12 shows the evolution of the formation of the precipitate as the reaction 

proceeded in the capillary tube. In Figure 4.12a, there are no precipitates observable after 

3000 s reaction time; however, at 10800 s, (Figure 4.12b) the presence of precipitate is 

obvious. Importantly there is virtually no change in the amount/appearance of the 

precipitate as the reaction continues to progress to 6 h (Figure 4.12c).   
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4.12 - CCD snapshots of the capillary tube showing the formation of precipitation after 

(a) 3000 s, (b) 10800 s, and (c) 19000 s. 

Variation in the local kinetics due to the formation of precipitates caused wave 

pulses to preferentially develop at the bottom end of the tube, while intermittent 

propagation failure phenomena could still be seen, as shown in Figure 4.13. 

 

Figure 4.13 - Space-time plot showing the formation of precipitation in the capillary tube 

when the capillary tube was placed in a vertical orientation. 

4.4 Conclusions 

This exploration leads to the conclusion that the bromate – 4-NP reaction supports 

spontaneous oscillations over a broad concentration window, in which low frequency 

oscillations can last longer than 12 h. In complement to the earlier report [36] here we 

show that the ferroin – bromate – 4-NP reaction also supports long lasting temporal 

oscillations. However, depending on the ferroin concentration, the oscillation frequency 
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can be reduced to a very low value, which is in great contrast to oscillations seen in other 

ferroin-catalyzed bromate oscillators. Overall, ferroin has a very subtle influence on the 

nonlinear behavior, presumably due to the implementation of a second autocatalytic 

cycle. Complexity in the form of intermittent propagation failure was observed in the 

reaction-diffusion media. Preliminary exploration illustrates that the complexity exhibits 

a strong response to variation of the sulfuric acid concentration. Consistent with the 

observation that those long-lived spontaneous oscillations in the bromate 4-NP system 

were inhibited by external illumination, an inhibitory effect of light on wave activity was 

also seen. 

The long lasting oscillation window (>12 h) in both stirred and reaction-diffusion 

media makes this bromate oscillator an attractive chemical system for use in investigating 

perturbed nonlinear dynamics; in particular, this system has great photosensitivity. For 

those applications, developing a realistic chemical model is necessary. So far, through 1H 

NMR spectroscopic measurements key components of this reaction system were 

determined to be 1,4-benzoquinone, 2-bromo-1,4-benzoquinone, and 2-bromo-4-

nitrophenol. 
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CHAPTER 5 - CURRENT AND POTENTIAL OSCILLATIONS DURING 

THE ELECTRO-OXIDATION OF BROMIDE IONS 

5.1 Introduction 

Electrochemical oxidation of bromide ions on platinum electrodes has recently 

been thoroughly researched due to their potential applications in the construction of a 

new class of energy storage devices [1-3]. Recent reports, for example, have indicated 

that the recombination of hydrogen, H2, and bromine, in a fuel cell allows for up to 90% 

of the chemical energy stored in the reactants to be converted to electricity, which is 

much higher than that associated with the state of the art H2/air fuel cells, for which the 

conversion can only reach about 50% [3,4]. Investigations undertaken by Conway and 

co-workers have led to the suggestion that the recombination of bromine radicals is the 

rate determining step in the formation of bromine (2Br* →  Br2) [1]. Other possible 

reaction steps from the most recent report on bromide electro-oxidation include [3]: 

(1) Br- → Br* + e- 

(2) Br- → Br(1-d) + de- 

(3) Br* + Br- → Br2 + e- 

(4) Br- + Br2 ⇌ Br3
- 

Despite the earlier investigation on its electrochemical kinetics, there is no report 

on nonlinear instabilities during the oxidation of bromide ions on polycrystalline Pt 

electrodes. On the other hand, the importance of bromide ions in chemical and 

electrochemical oscillations is well documented [5-10]. For example, oscillations have 
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been observed during the electro-dissolution of gold in an electrolyte solution containing 

bromide ions [9]. The introduction of bromide ions to a solution of hydrogen peroxide 

and sulfuric acid has also been found to induce chaotic behavior when being studied on a 

platinum electrode [10]. Overall, nonlinear behavior in electrochemical systems has been 

a subject that constantly attracts intense attention [11-19]. The first reported instance of 

nonlinear dynamics in electrochemistry can be dated back to 1828 [20], and since then, 

electrochemical oscillations have been found during the dissolution of certain metals such 

as iron, copper, and nickel, the oxidation of H2 on platinum, the oxidation of sulfur 

containing compounds such as thiosulfate, and the oxidation of small organic molecules 

such as methanol [21-29]. 

Thorough investigation has led to the classification of electrochemical oscillations 

into four types on the basis of the systems’ Electrochemical Impedance Spectroscopic 

(EIS) results [30]. Of the four categories, the three most prevalent classes of 

electrochemical oscillators are those having N-Shaped Negative Differential Resistance 

(N-NDR), S-Shaped Negative Differential Resistance (S-NDR), and Hidden N-Shaped 

Differential Resistance (HN-NDR). An important feature of those NDR systems is that 

there exists a negative Faradic resistance where the double layer potential becomes an 

essential variable in the oscillation mechanism [31]. Oscillatory phenomena can also 

occur when convection assumes the role of the essential parameter through the process of 

replenishing the diffusion layer with the electroactive species [32]. Very recently, Zensen 

and co-workers demonstrated with two- and three-variable models the possibility of 

capacitance mediated positive differential resistance oscillators, in which the formation 

and dissolution of inhibiting surface layers played a key role [33]. Through systematic 
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exploration, this study uncovered the fact that the electro-oxidation of bromide ions could 

undergo both potential and current oscillations under a positive differential resistance and 

without an external resistor, pointing to the possibility of being a capacitance-mediated 

electrochemical oscillator. Under high applied potentials (> 1.5 V), the current oscillates 

above a limiting current and is accompanied with vigorous bubble formation, suggesting 

that the observed oscillations are likely driven by convection processes [32]. 

5.2 Experimental Procedures 

All the electrochemical experiments were performed on a CHI660D Instrument 

(CHI Instruments, US). Polycrystalline platinum electrodes with a diameter of 2.0 mm 

(CHI Instruments) were applied as working electrodes. The counter electrode was a 

platinum film (3 mm x 5 mm, Shanghai Ruosull Technology Co., LTD) and a saturated 

calomel electrode (SCE) was applied as the reference electrode. All the potential values 

reported in this study are versus SCE. Before each experiment the working electrode was 

polished with fine alumina powder (0.05µm), rinsed with double distilled water, cleaned 

by an ultrasonic cleaner (Branson 1510, USA) for 10 min, and again rinsed with double 

distilled water. 

All reactions were carried out in a custom built thermal-jacketed electrochemical 

cell with 5 multi-purpose ports. The three electrodes were placed in the traditional 

triangle configuration and all electrochemical experiments were performed at room 

temperature (22.0 ± 1 oC). Stock solutions of sulfuric acid (Aldrich, 95-98%), 6.0 M, 

were prepared with double distilled water and the sodium bromide (NaBr, Aldrich, 98 + 

%) and potassium sulfate (K2SO4, ACP Chemicals) was directly dissolved in the reaction 

mixture. Reaction solution volumes were held constant at 60.0 mL. Electrochemical 
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impedance spectroscopy (EIS) experiments were measured in the frequency range of 100 

kHz to 0.001 Hz. 

5.3 Results and Discussion 

5.3.1 Nonlinear Kinetics 

Figure 5.1a is a linear sweep voltammogram (LSV) of 0.075 M bromide in a 0.75 

M H2SO4 solution conducted at a scan rate of 1.0 mV/s. It shows that following the onset 

of bromide oxidation at around 0.8 V, oscillations in the current take place on an 

otherwise fairly flat branch. When the potential is increased to above 1.5 V, the current 

density resumes its increase, but in an oscillatory fashion. 

 

Figure 5.1 - Linear sweep voltammogram (LSV) of the solution consisting of (a) 0.075 M 

NaBr and 0.75 M H2SO4 and (b) 0.75 M H2SO4. 

Meanwhile, small bubbles begin to form at the working electrode, suggesting that 

this second positive branch is increasingly dominated by the oxidation of hydroxide ions. 

To examine the relative influence that oxygen formation would have on the oxidation of 

bromide ions, Figure 5.1b shows the LSV of 0.75 M sulfuric acid without the presence of 
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bromide ions, where the current density begins to increase sharply, accompanied with 

bubble formation, once the potential reaches approximately 1.5 V.  

Results in Figure 5.1 suggest that convection processes are negligible at low 

potentials, but may play a very important role in the observed nonlinear kinetics at the 

potential above 1.5 V. At a high potential of 1.75 V, irregular oscillations are observed 

which begin at a current value that is above the limiting current of bromide oxidation. 

The presence of visible bubbles on the working electrode supports the notion that 

convection induced by bubble formation and detachment plays an important role in those 

current oscillations, where the irregularity is likely due to the non-uniform formation of 

bubbles. As suggested in an earlier report [32], at the minimum peak current of the 

oscillations, oxygen gas evolution becomes prominent, while at the maximum peak 

currents of the oscillations, gas evolution is repressed by the oxidation of Br- ions that are 

replenished through the convection induced by the gas evolution. If the system is exposed 

to a constant agitation with a strength that is equal or larger than that induced by the 

oxygen evolution, the oscillations will stop and the current stabilizes at a state where only 

the bromide ions are oxidized (i.e., the oxidation of OH- is negligible) [32]. Our 

experiments conducted with a rotating disk electrode confirm the above scenario. 

Figure 5.2 presents a series of potentiostatic experiments conducted at the low 

potential range where the effect of convection is considered negligible. At the applied 

potential of 0.84 V, no oscillations take place and the current density remains near 0. 

When the applied potential is increased to 0.85 V in time series (b), oscillations emerge 

after a brief induction period. A further increase to 0.95 V shows oscillations occurring 

without an induction time, where the oscillation frequency is 0.042 Hz. The time series 
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(d) shows current oscillations at the applied potential of 1.15 V, where the oscillation 

frequency increases slightly to 0.05 Hz. Notably, for the applied potential between 1.0 V 

and 1.5 V, the current was found to oscillate around a plateau in an LSV (see Figure 

5.1a)). This is one of the features associated with a capacitance mediated electrochemical 

oscillator [33]. No external resistor is required in the above current oscillations, which is 

another property associated with the capacitance-mediated electrochemical oscillator. 

 

Figure 5.2 - Potentiostatic experiments performed with applied potentials of (a) 0.84 V, 

(b) 0.85 V, (c) 0.95 V, and (d) 1.15 V (vs. SCE). Other reaction conditions were: [NaBr] 

= 0.075 M and [H2SO4] = 0.75 M. 

Electrochemical Impedance Spectroscopy (EIS) measurements have been found 

very useful in the classification of the type of electrochemical oscillator [30]. Here, the 

electro-oxidation of bromide ions exhibits oscillations even without the presence of 

external resistance, which restricts us to conduct the impedance measurements at the 

potentials studied in Figure 5.2. Figure 5.3 shows EIS obtained at an applied potential of 

0.84 V with the applied perturbation of 0.0008 sin(ωt)V. There is a semicircle, reflecting 

the charge transfer resistance, and Warburg diffusion impedance. Notably, at the low 
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frequency range, while remaining in the positive range, the impedance showed some 

fluctuation, presumably because the system is just outside of the oscillatory regime and is 

therefore sensitive to external perturbation/noise.  

 

Figure 5.3 - Electrochemical Impedance spectrum performed at 0.84 V. The perturbation 

amplitude is 0.8 mV and a frequency range of 100 kHz to 1.0 mHz. 

The admittance spectrum in Figure 5.4 shows a small resonance peak at a 

frequency of 0.014 Hz, which is close to the frequency of current oscillations seen at 0.85 

V (0.025 Hz).  

 

Figure 5.4 - Admittance spectrum performed at 0.84 V with a frequency range of 100 

kHz to 1.0 mHz and the perturbation amplitude is 0.8 mV. 
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It is useful to point out that time series in Figure 5.2 indicate that the frequency of 

oscillations decreases as the applied potential moves closer to the bifurcation point. The 

resonance behavior is also affected by its distance from the bifurcation point. Such a 

feature is consistent with the simulations performed by Zensen et al. [33]. This 

admittance spectrum, together with the two features mentioned above, suggests that at the 

low potential range (0.85 V to 1.4 V) the oxidation of bromide is likely a capacitance 

mediated positive differential resistance oscillator.  

To make further comparisons with the behavior of capacitance-mediated positive 

differential resistance oscillators, external resistors of various resistances were introduced 

to monitor their influence on the system. Figure 5.5 shows that the oscillation amplitude 

is decreased through increasing the magnitude of the external resistor.  

 

Figure 5.5 - Linear sweep voltammograms showing the effect of external resistance on 

the electro-oxidation of 0.075 M NaBr in 0.75 M H2SO4, performed at a scan rate of 1 

mV/s. The resistors used were (a) 220 Ω, (b) 3900 Ω, (c) 8200 Ω. 

 



Chapter 5 - Current and Potential Oscillations During the Electro-Oxidation of Bromide Ions 

136	

	

Such a trend is, again, the same as that seen in the modeling of capacitance-

mediated electrochemical oscillators [33]. Another notable difference in Figure 5.5 is a 

change in the slope of the positive branch of the oxidation peak during an LSV, shifting 

the oscillations to a higher potential range. 

Using the applied current density as a control parameter, a linear galvanostatic 

sweep was performed at a scan rate of 1.0 x 10-5 mA/s. The shape of the galvanostatic 

linear voltammogram in Figure 5.6 shows that an excursion occurs at approximately 5.6 

mA/cm2, causing a jump from below 1.0 V (oxidation of Br-) to above 1.5 V (oxygen 

production).  

 

Figure 5.6 - Galvanodynamic experiment performed between 3.5 and 7.5 mA/cm2 at a 

scan rate of 1.0 x 10-5 mA/cm2. Reaction conditions were [NaBr] = 0.075 M and [H2SO4] 

= 0.75 M. 

Figure 5.7 presents time series conducted at different constant currents. For the 

current above 5.7 mA/cm2, potential oscillations occur in a range between 1.5 and 1.7 V 

(time series d) and begin to fluctuate aperiodically as the applied current increases. Time 

series (a to c) illustrate that when the applied current was between 1.6 mA/cm2 and 4.5 
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mA/cm2, sustained potential oscillations occurred between approximately 0.83 and 0.90 

V.  

 

Figure 5.7 - Time series under galvanostatic conditions: (a) 0.3, (b) 1.6, (c) 3.8, and (d) 

6.1 mA/cm2. Other reaction conditions were: [NaBr] = 0.075 M and [H2SO4] = 0.75 M. 

Figure 5.8 shows the effect of bromide concentration on the current oscillations. 

As can be seen in Figure 5.8a, at a bromide concentration of 0.012 M no oscillations 

occur. Once the concentration was increased to 0.025 M (Figure 5.8b), small amplitude 

oscillations in the current emerge after a brief induction period. A further increase to 0.05 

M (Figure 5.8c) causes a decrease in the induction period and an increase in the 

amplitude and frequency of the oscillations. As can be seen in the time series (e) at a 

concentration of 0.125 M, the oscillations have a much higher frequency and an irregular 
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oscillation pattern. A yellow stream is visible, emanating from the working electrode at 

further increased concentrations of bromide, which is indicative of a high concentration 

of bromine being formed. A general trend in increased frequency with increase bromide 

concentration was observed here. 

 

Figure 5.8 - Time series showing the effect that varying the concentration of NaBr has on 

the reaction behavior under potentiostatic conditions. The reaction solutions are: (a) 

0.0125 M, (b) 0.025 M, (c) 0.05 M, (d) 0.075 M, and (e) 0.125 M. The concentration of 

H2SO4 was constant at 0.75 M and the applied potential was 1.2 V (vs. SCE) 

In the absence of supporting electrolyte, only transient oscillations were observed, 

which lasted longer as the NaBr concentration was increased. There are more than 20 

peaks in a 0.2 M NaBr solution (Figure 5.9d), as opposed to only 2 peaks in a 0.05 M 

NaBr solution (Figure 5.9a). A trend of increased oscillatory frequency when the 

concentration of bromide was increased was observed, which is similar to the result 

shown in Figure 5.8. The transitory nature of the oscillations may have been due to the 

absence of an inhibitory effect from such as supporting anions occupying the active sites. 

This speculation is supported by the fact that at the same bromide concentration the 
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oxidation current density is a lot higher in the absence of supporting electrolyte than that 

in the presence of H2SO4.  

 

Figure 5.9 - Time series showing the effect that varying the concentration of NaBr 

without the presence of any supporting electrolyte has on the reaction behavior under 

potentiostatic conditions (the applied potential = 1.2 V). The [NaBr] was (a) 0.05 M, (b) 

0.1 M, (c) 0.15 M, and (d) 0.2 M. 

Figure 5.10 shows the effect of the supporting electrolyte H2SO4 on the nonlinear 

behavior, in which sustained periodic oscillations were present between 0.2 and 1.0 M 

H2SO4 (time series (b) and (c)). For H2SO4 concentration above 1.0 M the oscillations 

became irregular, however, the current density of the system remains within the region 

under which periodic oscillations were observed. Other supporting electrolytes such as 

potassium sulfate were used. Using 0.2 M K2SO4 was found to have nearly the same 

outcome as using 0.2 M H2SO4 supporting electrolyte, suggesting that pH of the solution 

does not play an essential role in the observation of nonlinear instability. 
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Figure 5.10 - Potentiostatic experiments at an applied potential of 1.2 V (vs. SCE) 

showing the effect influence of the supporting electrolyte by varying the concentration of 

sulfuric acid: (a) 0 M, (b) 0.3 M and (c) 0.75 M. The concentration of NaBr was 0.075 M. 

Figure 5.11 presents cyclic voltammograms (CVs) of the three solutions 

investigated in Figure 5.10. There are noticeable changes in the CVs, including the peak 

potential. Variation in the peak potential as well as the limiting current is likely 

responsible for the transformation to transient oscillations seen in Figure 5.10. 

 

Figure 5.11 - Cyclic voltammograms at a scan rate of 100 mV/s of 0.075 M NaBr 

dissolved in (a) 0, (b) 0.1 M, and (c) 0.3 M H2SO4. 
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The decrease of the solution resistance from 300 Ω (a) to 5 Ω (c) is also likely playing an 

important role here, although oscillations have been seen over a broad resistance range. 

5.3.1 Mechanistic Discussion 

In this system it is necessary to separetly analyze the oscillations occurring in 

current density and those occurring in potential. For the current oscillations occurring 

between the applied potentials of 0.85 V and 1.4 V, the electro-oxidation of bromide ions 

likely belongs to the class of electrochemical oscillators known as capacitance-mediated 

positive differential resistance oscillators, which relies on the formation and dissolution 

of inhibiting surface layers. Here, the inhibiting layer (capacitor) is established through 

tribromide complexes (Br3
-), where its formation and dissolution is described as Br2 + Br- 

⇌ Br3
- [2,3]. The anodic current Jox is proportional to (U - Δφsl), where U equals Δφdl 

(double layer potential) in the absence of ohmic series resistance and Δφsl is the potential 

drop of the inhibiting solution layer Br3
-. When Jox increases, the capacitance of the 

inhibiting solution layer Br3
- (Csl) increases, which results in the decrease of Δφsl. 

Consequently, the term (U - Δφsl) increases, which subsequently leads to the increase of 

Jox. Therefore, a positive feedback loop is established through Δφsl. As discussed by 

Zensen and co-workers [33], this positive feedback loop requires a positive differential 

resistance of the current-potential curve Jox (U - Δφsl). The formation of tribromide 

complexes, meanwhile, causes a decrease of reactant ion Br-, implementing a negative 

feedback on Jox. 

Oscillations in potential occurring under galvanostatic conditions were seen to 

occur in two regions as shown in Figure 5.6, between 0.83 and 0.9 V (current below 

limiting current) and above 1.6 V (current above limiting current). For the oscillations 
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occurring while the applied current is below the limiting current the feedback is 

implemented by the reaction between the anodic oxidation product Br2 and reactant Br-, 

which causes the accelerated decrease of Br- concentration (i.e. faster than the 

consumption by anodic oxidation). It consequently forces the potential to increase in 

order to maintain the current density (i.e., generating a positive feedback). When the 

potential increases to the point where the anodic reaction becomes limited by the 

diffusion-transportation of Br- ions, Br2 production is slowed down and the dissociation 

of Br3
- overwhelms its formation, making a positive contribution to the increase of Br- 

concentration. As a result, the required potential for maintaining the current decreases. 

Above the limiting current, when the oscillations in potential occur above 1.6 V, 

the observation of bubble formation and detachment suggests that those oscillations may 

be accounted for on the basis of convection-driven feedbacks [32], where as a current 

larger than the limiting current (stationary) is imposed, the surface concentration of Br- 

ions depletes to zero due to the limited supply rate by diffusion. This depletion 

implements a negative feedback. Meanwhile, the potential moves to the higher side of the 

plateau with the decrease of the Br- surface concentration until oxygen evolution takes 

place to keep up the applied current. Because growth, detachment, and movement of 

bubbles produce a forced convection that replenishes the surface concentration Br- ions, 

oxygen evolution is thus repressed and the potential drops again [32]. Li and co-workers 

have demonstrated that convection-enhanced mass transportation can induce oscillatory 

behavior in both current and potential. In the system studied here mass transportation of 

Br- affects the formation of the inhibitory layer, Br3
-. The thickness of the inhibitory layer 

has been reported to be an important quantity in the capacitance-mediated 
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electrochemical oscillator [33]. To examine such a factor, rotating disk experiments were 

undertaken in Figure 5.12 to determine if oscillations persist when the diffusion layer was 

decreased through forced convection. It was found that rotation speeds of just 50 rpm 

were capable of quenching the oscillatory behavior. This confirms that the diffusion layer 

plays an important role in the current and potential oscillations seen here. 

 

Figure 5.12 - Potentiostatic experiments performed with a Pt rotating disk electrode with 

various rotation speeds: (a) 0 rpm and (b) 50 rpm. Reaction conditions were [NaBr] = 

0.075 M and [H2SO4] = 0.75 M, and the applied potential was 1.0 V (vs. SCE). 

5.4 Conclusions 

Bromide ions have been known to have great effects on the nonlinear behavior of 

a number of electrochemical reactions; however, there was no report on the nonlinear 

instabilities of their own. This research illustrates that electro-oxidation of bromide ions 

at a Pt electrode could undergo sustained oscillations in both current and potential over a 

broad bromide concentration range. The supporting electrolytes can be sulfuric acid, 

potassium sulfate, or potassium nitrate, suggesting that pH of the solution does not play 

an essential role in the observed oscillations. Under galvanostatic conditions two regions 
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of oscillatory behavior emerged, which correspond, respectively, to the peak oxidation 

potentials of bromide and hydroxide ions. Oscillations seen on the second positive 

differential resistance branch are likely governed by convection driven processes, as 

supported by the vigorous bubble formation at the electrode. 

Current oscillations observed at the low potential range between 0.85 and 1.5 V, 

however, have several features associated with a capacitance-mediated positive 

differential resistance oscillator [33,34], which include (1) taking place at a current 

plateau in an LSV, (2) occurring without an external resistor, (3) having a decreased 

amplitude with the increase of external resistance, (4) occurring on a positive differential 

resistance branch, and (5) demonstrating resonance behavior in the admittance spectra. In 

our experiments, current oscillations are seen in both the forward and reverse CV scans. 

In this system, the formation and dissolution of tribromide complexes are proposed to be 

responsible for the capacitance-mediated nonlinear instability. 
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CHAPTER 6 - ELECTROCHEMICAL OSCILLATIONS DURING THE 

OXIDATION OF IMPORTANT SULFUR CONTAINING SPECIES 

6.1 Introduction 

Dynamic instabilities in electrochemical reactions have been a topic of great 

interest ever since the first report of oscillating current in an electrochemical cell in 1828 

[1-4]. Oscillations in electrochemical systems have been uncovered during the oxidation 

or reduction of various organic and inorganic substances as well as during the corrosion 

of various metals [5-13]. For example, the dissolutions of vanadium, iron, copper, nickel, 

and cobalt (amongst others) have been found to lead to oscillatory behavior [14-20]. In 

corrosion-driven nonlinear electrochemical systems, upon an increasing applied potential, 

the system goes through three distinct regions, which become visible on polarization 

curves. Firstly, the current increases as the metal is oxidized in the active region; the 

abrupt decrease in current at the Flade potential is caused by the onset of the passive 

region; finally, at sufficiently high applied potentials, the passive layer is destroyed due 

to the formation of oxygen bubbles caused by the oxidation of hydroxide ions [2]. The 

passivation of the electrode causes the presence of negative differential resistance (NDR), 

which is a prerequisite for an electrochemical system’s classification as an 

electrochemical oscillator [21,22]. Electrochemical oscillators are classified differently 

depending on the location of their NDR, whether it is hidden on a positive slope (HN-

NDR) or whether it is on a negative branch (N-NDR). Koper described a method for 

determining the presence of NDR through the use of Electrochemical Impedance 

Spectroscopy (EIS), through the plotting of Nyquist diagrams [23,24]. In systems that 

contain NDR the double layer potential (φdl) acts as an essential variable (autocatalytic in 
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the case of N-Shaped plots or acting as the slow variable in S-Shaped plots) occurring at 

regions of negative Faradic resistance [25]. The oscillations in these types of systems 

arise through the presence of a positive feedback loop (supplied through the NDR) and a 

negative feedback loop (surface coverage of a potential dependent adsorbed species or 

surface concentration of an electroactive species) [23,25]. Nyquist diagrams have been 

useful in locating regions of NDR in various systems such as ethanol, formaldehyde, H2, 

formic acid, and others [5,26-32]. 

Sulfur-containing compounds have very important functions in a variety of areas 

ranging from industrial applications to biochemical processes [33-36]. In fact, much 

attention in nonlinear electrochemical systems focuses on sulfur compounds due to 

potential access through oxidation/reduction to reach multiple oxidation states, leading to 

rich dynamical behavior being observed in sulfur based electrochemical systems, such as 

thiosulfate, thiourea, and hydrogen sulfide [37-42]. Temporal oscillations have been 

reported in systems utilizing sulfur compounds, and various interesting spatial patterns 

have been observed in reaction diffusion experiments [43-46].  In this study the 

electrochemical oxidation of two important sulfur-based compounds were investigated.  

Firstly, the compound hydroxymethanesulfinate (HMS) was chosen, as it is an 

important sulfur based reducing agent and has been used in the reduction of vat dyes, in 

anticancer formulations as an antioxidant stabilizer, and in emulsion polymerization 

experiments as a redox initiator [47-49]. Earlier studies have shown that the 

decomposition of HMS may occur in parallel with main reactions, resulting in the 

conspicuous consumption of the reagent in the industrial process. Polenov and coworkers 

have developed a kinetic model for the decomposition of HMS in aqueous solution [50]. 



Chapter 6 - Electrochemical Oscillations During the Oxidation of Important Sulfur Containing 
Species 

150	

	

The investigation of its electrochemical reaction behavior shall provide useful insights 

into the chemical stabilities. The fact that HMS contains a hydroxyl group as well as a 

sulfur atom also makes this kinetic study particularly interesting due to the fact that very 

rich nonlinear phenomena have recently been observed during the oxidation and 

bromination of aromatic compounds containing hydroxyl functional groups [51-53]. As 

shown in the following, oscillations in both potential and current density are observed at 

Pt and Au electrodes. Notably, the oxidation products of HMS show strong interactions 

with Au, leading to severe pitting of the Au surface. 

Methionine is one of two sulfur-containing proteinogenic α-amino acids (cysteine 

being the other) and is crucial to many biological functions such as its important role as 

an initiator in protein synthesis [54]. In biological systems, its oxidation also plays an 

important role in protein stability and can lead to biological damage depending on the 

nature of the oxidant involved [55]. Apart from biology, methionine has been found to 

form Self-Assembled Monolayers (SAMs) on gold surfaces [56], suggesting that a study 

of its oxidation on a gold electrode could provide insights into not only relevant 

biochemical processes, but could also lead to useful information to material chemists 

researching applications of methionine - gold SAMs. This study reports on the discovery 

of electrochemical oscillations during the oxidation of methionine on a gold electrode. 

Dissolution of the gold electrode was found to occur, and likely plays a significant role in 

the nonlinear behavior. 
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6.2 Experimental Procedures 

The electrochemical experiments were performed on a Voltalab PGZ100 system 

(Radiometer Analytical, USA) and CHI 660D/760E (CHI Instruments, Texas, US). 

Polycrystalline platinum and gold electrodes with diameters of 2.0 mm (CHI Instruments) 

were applied as working electrodes. The counter electrode was a platinum film (Shanghai 

Ruosull Technology Co., LTD) and a saturated calomel electrode (SCE) was applied as 

the reference electrode. Before each experiment the working electrode was polished with 

consecutively finer grades of alumina powder, rinsed with double distilled water, cleaned 

by an ultrasonic cleaner (Branson 1510, USA) for 10 minutes, and again rinsed with 

double distilled water. The three electrodes were placed in the traditional triangle 

configuration and all electrochemical experiments were performed at room temperature 

(22 ± 2 oC).  

Reagents sodium hydroxymethanesulfinate (CH3NaO3S . 2H2O, 98+%), l-

methionine (C5H11NO2S, 98+%), potassium ferricyanide (K3Fe(CN)6, 99%) and 

potassium chloride (KCl, 99+%) were purchased from Sigma Aldrich. All reactions 

investigating HMS contained 0.2 M sodium hydroxymethanesulfinate (with no additional 

supporting electrolyte), unless otherwise stated. All reactions investigating methionine 

contained 0.05 M l-methionine in 0.1 M KCl, unless otherwise stated. Reaction volumes 

were held constant at 60.0 mL, and all experiments were performed under ambient 

conditions (no purging with inert gases). Electrochemical impedance spectroscopy 

experiments were measured in the frequency range of 100 kHz to 34 mHz (unless 

otherwise stated) with an amplitude of 5 mV and 12 points per frequency decade were 

collected. Scanning electron microscopy (SEM) and energy-dispersive X-ray 
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spectroscopy (EDS) were performed with a Quanta 200 FEG microscope (FEI, Inc.). 

Mass Spectrometry measurements were taken on a Micromass LCT - electrospray 

ionization time-of-flight mass spectrometer. Images were also taken with a charge 

coupled device (CCD) camera equipped with a zoom lens. 

6.3 Results and Discussion 

6.3.1 Oxidation Behavior of Hydroxymethanesulfinate on a Au Electrode 

Figure 6.1 shows the chemical structure of hydroxymethanesulfinate (HMS). 

 

Figure 6.1 - Chemical Structure of sodium hydroxymethanesulfinate 

Figure 6.2 shows a linear sweep voltammogram (LSV) at a scan rate of 0.5 mV/s. 

Using such a low scan rate allows one to mimic potentiostatic conditions where the 

applied potential can be considered a control parameter, gaining information on the 

various dynamic regimes of the system. Here, oscillations with a high frequency emerged 

at around 0.8 V (vs. SCE electrode) and existed over a large potential range (0.8 - 2.0 V). 

At even higher potentials, vigorous bubble formation was seen, indicating that the 

oxidation of hydroxide ions became significant under those conditions.  



Chapter 6 - Electrochemical Oscillations During the Oxidation of Important Sulfur Containing 
Species 

153	

	

 

Figure 6.2 - Linear sweep voltammogram performed with a scan rate of 0.5 mV/s, in a 

solution of 0.2 M HMS. Experiment was performed on a gold working electrode 

Figure 6.3 shows a current ramp experiment performed between 47 and 70 

mA/cm2 at a scan rate of 3.2 x10-3 mA/cm2/s. As can be seen here, high frequency 

potential oscillations occur, which grow in amplitude as the current is increased.  

 

Figure 6.3 - A current ramp experiment between 47 mA/cm2 and 70 mA/cm2 mA at a 

scan rate of 1.0 x 10-4 mA/s, in a solution of 0.2 M HMS. Experiment performed on a 

gold working electrode. 



Chapter 6 - Electrochemical Oscillations During the Oxidation of Important Sulfur Containing 
Species 

154	

	

Past 70 mA/cm2, large bubbles may form on the working electrode, which causes 

an immediate jump in the potential to approximately 2.2 V, which then returns to the low 

potential once the bubble bursts, as shown in the inset in Figure 6.3 

The effect of altering the applied potential on the electrochemical oscillations is 

shown in Figure 6.4. At a constant external potential of 0.9 V (Figure 6.4a) the current 

density can be seen to decrease while oscillations of a moderate frequency persist for 

approximately 10 min before low frequency, low amplitude oscillations emerge. When 

the potential was increased to 1.0 V (Figure 6.4b), the current density again decreased at 

the onset of the reaction reaching a stable current density after approximately 5 min. The 

amplitude and frequency of the oscillations had increased in comparison to the results of 

Figure 6.4a. Complex behavior in the form of quasi-periodic oscillations was found to 

emerge when the applied potential was between 1.2 V and 1.3 V (Figure 6.4d and Figure 

6.4e). At these potentials there was no decrease in current density at the onset of the 

reaction, and increasing the external potential caused an increase in the mean current 

density around which the system oscillated. A further increase in the potential to 1.5 V 

caused the current density to again decrease where low frequency, small amplitude 

simple oscillations were observed.  
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Figure 6.4 - Time series showing the effect that varying the applied potential has on the 

reaction behavior of a 0.2 M HMS solution. The applied voltages are: (a) 0.9 V, (b) 1.0 

V, (c) 1.1 V, (d) 1.2 V, (e) 1.3 V, and (f) 1.5 V (vs. SCE). A gold working electrode was 

employed. 

The above observed oscillations are not transitory and could last for several hours, 

but become irregular as the time period increased. The frequency of the oscillations seen 

under potentiostatic conditions on gold were seen to range from 43 mHz at an applied 

potential of 1.0 V, which increased to 95 mHz at applied potentials of 1.2 and 1.3 V, 

before decreasing to 25 mHz at 1.5 V. According to literature, nonlinear behavior of 

sulfur compounds electrochemically oxidized on a gold surface has only been observed 

once [38], for the oxidation of thiosulfate. Bi et al. found that the frequency of 

oscillations under potentiostatic conditions was significantly higher than that found in 
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this study, where frequencies of 200 and 360 mHz were found for simple oscillations, and 

increased to as high as 480 mHz during complex behavior. Figure 6.5 shows 

galvanostatic experiments performed at different applied current densities, the results of 

which are consistent with the current ramp results shown in Figure 6.3.  

 

Figure 6.5 - Time series showing the effect that varying the applied current has on the 

reaction behavior of a 0.2 M HMS solution. The applied currents are: (a) 51 mA/cm2, (b) 

54 mA/cm2, (c) 64 mA/cm2, and (d) 70 mA/cm2. A gold working electrode was 

employed. 

At an applied current density of 51 mA/cm2 the potential rises from 

approximately 0.7 V to 1.0 V while oscillating. Increasing the current density to 54 

mA/cm2 (Figure 6.5b) the frequency and amplitude of the oscillations increase 

substantially, as does the amount of time required for the system to reach its stable 

oscillatory potential. In Figure 6.5c very high frequency oscillations occur between 0.9 

and 1.1 V with some variation in the waveform, again, which resembled quasi-periodic 

oscillations. When the applied current density is increased further to 70 mA/cm2 very 
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high amplitude potential oscillations emerge which reach maximum amplitude of about 

0.6 V.  

Varying the concentration of HMS was found to have a substantial effect on the 

nonlinear behavior (Figure 6.6), in which experiments were run under potentiostatic 

conditions with the applied potential of 1.0 V. At 0.4 M HMS (Figure 6.6a) irregular 

oscillations emerge, which become more regular when the concentration was decreased 

to 0.3 M (Figure 6.6b). Stable oscillations occurred at both 0.2 M and 0.1 M (Figures 6.6c 

and 6.6d); however, a brief induction time was observed before oscillations emerged at 

the HMS concentration of 0.1 M. An obvious trend in decreasing current density with 

decreasing HMS concentration can be observed in Figure 6.6. At an HMS concentration 

of 0.05 M, no oscillations were found.  

 

Figure 6.6 - Time series showing the effect that varying the concentration of HMS has on 

the reaction behavior under a potentiostatic condition (1.0 V vs. SCE). The reaction 

solutions are: (a) 0.4 M, (b) 0.3 M, (c) 0.2 M, (d) 0.1 M, and (e) 0.05 M. A gold working 

electrode was employed. 
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As that was confirmed through mass spectrometry, thiosulfate is one of the 

products formed during the electro-oxidation of HMS. Thiosulfate is a disproportionation 

product of dithionite, one of the precursor compounds (together with formaldehyde), 

which are used to form HMS. Compounds such as thiosulfate, thiourea, and sulfite have 

been reported as being capable of causing Au dissolution under certain conditions [57-

59]. Thiosulfate is capable of forming a complex with gold in aqueous solutions 

according to: Au + 2S2O3
2- → Au(S2O3)2

3- + e-. The gold-thiosulfate complex is soluble 

and leads to the dissolution of the gold electrode [57]. To shed light on this issue, CCD 

images of the Au electrode prior to the electrochemical reaction and after multiple long 

time scale reactions (cleaned ultrasonically after each reaction) are presented respectively 

in Figure 6.7a and Figure 6.7b, which clearly demonstrate the occurrence of pitting on the 

Au electrode.  

 

Figure 6.7 - (a) CCD image of gold electrode before electrochemical reaction in 0.2 M 

HMS solution and (b) CCD image of gold electrode after multiple electrochemical 

reactions showing pitting on the surface. 

Careful examination showed that a black film formed on the gold electrode at the 

applied potentials above 1.0 V when the experiments were run for an extended period of 

time. Figure 6.8a and 6.8b show scanning electron microscopy (SEM) images of the film, 
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which formed on the Au electrode. The film appears to have a very porous structure, and 

cavities are present, which are likely caused due to the continuous dissolution of the thus-

formed Au-sulfur complexes. Energy-dispersive X-ray spectroscopy (EDS) results of the 

corresponding film (see Figure 6.8c) indicate the presence of sulfur as well as oxygen in 

the film. The carbon element in the EDS comes from the conductive tape used for the 

sample preparation. To understand the importance of Au dissolution (i.e., the formation 

of Au complexes) in the above-observed rich nonlinear behavior, electro-oxidation of 

HMS was also performed on a Pt surface in this study. 

 

Figure 6.8 - (a) and (b) SEM images of the black film which formed on the gold surface 

and (c) EDS spectrum of the porous black film. 
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6.3.2 Oxidation Behavior of Hydroxymethanesulfinate on a Pt Electrode 

Figure 6.9a shows an LSV performed at a scan rate of 0.5 mV/s, where there are 

low frequency fluctuations in the response current in two regions: between 0.6 and 1.0 V 

and above 1.6 V. Potentiostatic experiments were subsequently conducted in and around 

the two dynamically unstable regions. At a potential of 0.6 V, short-lived irregularities in 

the current density were observed (Figure 6.9b(i)). Increasing the potential to 0.65 V 

caused approximately 10 oscillations to occur (see Figure 6.9b(ii)) and a further increase 

to 0.7 V increased the number of oscillations and the length of the oscillatory window 

(Figure 6.9b(iii)).  

 

Figure 6.9 - (a) Linear sweep voltammogram 0.2 M HMS solution performed with a scan 

rate of 0.5 mV/s. (b) Potentiostatic experiments at applied potentials (i) 0.6 V, (ii) 0.65 V, 

and (iii) 0.7 V (vs. SCE). A platinum working electrode was employed. 
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Further increases in potential to above 0.8 V, however, caused the oscillations to vanish. 

Notably, on the platinum surface, the observed oscillations are always transitory and all 

attempts to achieve long lasting stable oscillations under the potentiostatic conditions 

were unsuccessful. No oscillations were present with the applied potentials ranging from 

1.5 - 1.9 V, which correspond to the second oscillatory regime observed in Figure 6.9a. 

The frequencies of the transient oscillations ranged from 13 mHz at 0.6 V to 33 mHz at 

0.7 V. Unlike gold, nonlinear phenomena have been extensively studied on platinum, 

allowing for a more thorough comparison of the behavior of HMS on Pt to other sulfur 

based systems. Interestingly, the electro-oxidation of thiosulfate on platinum was found 

to have a much lower oscillatory frequency (6.5 - 18 mHz) [39] than was observed when 

oxidized on a gold surface, which is the same phenomenon found in this study. Other 

compounds such as sulfur dioxide [42] had higher frequency oscillations under 

potentiostatic conditions (60.90 - 64.39 mHz), and the electrochemical oxidation of 

thiourea on platinum [41] produced oscillations with frequencies between 50 and 70 

mHz. 

Figure 6.10 presents several galvanostatic experiments at the Pt electrode. In 

order to avoid overlap in the time series, the time series labeled (a) has been shifted down 

by 0.1 V and the time series labeled (e) has been shifted upward by 0.1 V. At an applied 

current of 12.7 mA/cm2 (time series (a)) transient small amplitude oscillations emerged 

between 0.6 and 0.7 V. Increasing the current density from 14.3 to 15.3 mA/cm2 (time 

series (b) and (c)) shows oscillations in potential beginning around 0.7 V and lasting until 

approximately 0.9 V, before a potential spike occurred after which no oscillations 

emerged. At 15.9 mA/cm2, after a few oscillations the potential spiked and stable large 
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amplitude low frequency oscillations began. A further increase to 19.1 mA/cm2 caused a 

similar rapid increase in potential, after which stable oscillations were developed with 

smaller amplitude and higher frequency than those obtained at 15.9 mA/cm2. No bubble 

formation was observed on the platinum electrode when the potential was oscillating at 

such a high potential. In contrast to the behavior under potentiostatic conditions, stable 

oscillations were found to emerge under the galvanostatic conditions, which occurred in 

the second oscillatory region seen in Figure 6.9a. 

 

Figure 6.10 - Time series showing the effect that varying the applied current density has 

on the reaction behavior of a 0.2 M HMS solution. The applied currents are: (a) 12.7 

mA/cm2, (b) 14.3 mA/cm2, (c) 15.3 mA/cm2, (d) 15.9 mA/cm2, and (e) 19.1 mA/cm2. A 

platinum working electrode was employed. 
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Analysis of the Pt electrode with a CCD camera prior and after the electrochemical 

oxidation of HMS does not show the occurrence of pitting. However, characterizations of 

the Pt electrode with SEM (Figure 6.11a) and EDS (Figure 6.11b) illustrate that the 

oxidation of HMS has resulted in the partial coverage of the Pt surface by sulfur 

compounds.  

 

Figure 6.11 - (a) SEM image showing the presence of a film on the Pt surface, (b) EDS 

spectrum of formed film on Pt electrode which indicates the film contains sulfur. 

The formation of a film on the Pt electrode was further confirmed by 

electrochemical impedance spectroscopy (EIS) in Figure 6.12, which shows the behavior 

in a 2 mM ferricyanide solution of (a) a bare Pt electrode, (b) a Pt electrode having been 

used for 100 s and (c) a Pt electrode having been used for 1200 s at 1.0 V in an HMS 

solution.  
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Figure 6.12 - EIS spectrum of (a) a bare Pt electrode, (b) Pt electrode used for 100 s in a 

HMS oxidation and (c) Pt electrode used for 1200 s in a HMS oxidation reaction. 

As can be seen, the behavior of the bare Pt electrode showed a semicircle and 

straight line, however, the Pt electrode used for 100 s demonstrated a significantly 

smaller semicircle, and the electrode used for 1200 s (Figure 6.12c) showed virtually no 

semicircle. The above results provide strong evidence that the Pt electrode has been 

covered by the oxidation products of HMS, leading to the passivation of the active 

surface and the development of negative differential resistance in the system. Under 

galvanostatic conditions, however, the lowered surface activity due to the partial 

coverage would force the system to adjust to a higher potential value in order to maintain 

the constant current. This in turn might become powerful enough to oxidize/remove the 

deposition layer. Then, the revived surface activity should lead the system to return to a 

low potential in order to ensure the constant current. As such, sustained oscillations in the 

potential were developed. As shown in Figure 6.13, the deposit can be electrochemically 

dissolved at the applied potentials where electrochemical oscillations have been 

observed.  
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Figure 6.13 - Cyclic voltammograms conducted at a scan rate of 100 mV/s in a 0.1 M 

KCl solution with three Pt electrodes: (dotted line) bare Pt electrode, (solid line) Pt 

electrode covered with sulfur compounds deposit (see Figure 6.11a) and (dashed line) the 

coated Pt electrode that has been subjected to 100 s oxidation at 1.4 V in 0.1 M KCl. The 

results illustrate that sulfur compounds deposit can be electrochemically dissolved. 

As suggested by Koper et al., EIS measurements are an effective tool for gaining 

further insights into the type of electrochemical oscillator. EIS measurements at 0.8 V 

show both a semicircle and a straight line, which indicates that the charge transfer 

process was driven by mass transportation of reactant from the solution bulk to the 

electrode surface. The fact that transient oscillations could be obtained at the Pt surface 

under those potentials may be attributed to the gradual modification of the Pt surface by 

deposition of the electro-oxidation products of HMS. Increasing the applied potential to 

1.0 V, the EIS intersects with the imaginary axis as can be seen in Figure 6.14, which is 

indicative of the presence of hidden negative differential resistance in the oxidation of 

HMS.  
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Figure 6.14 - EIS spectrum performed at a platinum working electrode showing the 

crossing of the imaginary axis. It was performed at an applied potential of 1.0 V (vs. 

SCE). 

Therefore, the type of electrochemical oscillator shall fit HN-NDR. The presence 

of oscillations in both current and potential also lends support to the classification of the 

HMS electrochemical oscillator as an HN-NDR oscillator [23,24]. 

In order to gain insight into the reaction mechanism, mass spectrometry 

measurements were carried out. Prior to analysis, the HMS solution was oxidized for 12 h 

under potentiostatic conditions at 1.0 V. The sample was diluted 5:1500 with LC-MS 

water and then a 5 µL aliquot of this dilution was further diluted with approximately 

1000 µL 50:50 H2O:CH3CN before measurements were conducted. The analysis 

indicated the presence of thiosulfate (S2O3
2-), bisulfate (HSO4

-) and sulfite (SO3
2-). The 

presence of thiosulfate gives strong support for S2O3
2- being responsible for the observed 

phenomenon of gold dissolution. In addition to the three reagents being proposed here, 
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the mass spectra also contain peaks with higher m/e numbers such as 233.25, 325.18, etc., 

which we have not been able to determine. 

6.3.3 Oxidation Behavior of L-Methionine  

Whereas HMS was an important industrial sulfur based compound, methionine 

(shown schematically in Figure 6.15) is a biologically important sulfur based compound.  

 

Figure 6.15 - Chemical structure of methionine 

In Figure 6.16, a linear sweep voltammetry (LSV) experiment was performed at different 

scan rates. At 100 mV/s there is an oxidation peak centered at approximately 1.1 V. The 

oxidation peak becomes more broad as the scan rate is decreased to 25 mV/s (Figure 

6.16b) and at a scan rate of 1.0 mV/s (Figure 6.16c) oscillations in current density 

become observable on the oxidation peak and disappear during the abrupt decrease in 

anodic current. Scanning at such a slow scan rate as 1.0 mV/s utilizes the applied 

potential as a control parameter taking the system through various dynamical regimes. 

Importantly, the shape of the linear voltammogram at 1.0 mV/s exhibits the classic N-

shape, which is suggestive of the presence of negative differential resistance (NDR). The 

presence of the negative branch in the LSV at sufficiently slow scan rate is strongly 

suggestive that the negative branch is caused by negative differential resistance as 

opposed to limited mass transportation of analyte from the electrode surface.  
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Figure 6.16 - Linear sweep voltammogram at scan rates of: (a) 100 mV/s, (b) 25 mV/s, 

and (c) 1.0 mV/s in a solution of 0.05 M methionine and 0.1 M KCl. 

In order to confirm that the system indeed possesses NDR, electrochemical 

impedance measurements were conducted at various potentials along the positive and 

negative branches seen in Figure 6.16. Along the positive slope, from 0.6 V to 0.9 V 

there is no evidence of any hidden NDR (HN-NDR) properties, as a semicircle and a line 

were found at high and low frequencies respectively. This indicates that both electron 

transfer processes as well as mass transportation (diffusion) of the reactant from the bulk 

solution to the electrode surface are important. In the regions where oscillations were 

observed, approximately 1.0 V - 1.2 V the EIS spectra were expectedly unstable, 

however, once EIS measurements were taken at potentials on the negative branch the EIS 

became stable. Figure 6.17 shows an EIS spectrum conducted at 1.25 V, which shows the 

impedance crossing the imaginary axis and intersecting with the negative axis before 

intersecting again at -2000 W.  
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Figure 6.17 - Electrochemical Impedance spectrum (EIS) at an applied potential of 1.25 

V in a solution consisting of 0.05 M methionine and 0.1 M KCl. 

These results clearly indicate that the system possesses NDR on the negative 

branch and together with the classic n-shape curve obtained during slow scan LSV 

experiments this new electrochemical oscillator falls into the N-NDR class.  

In N-NDR type oscillators the double layer potential ØDL acts as an essential 

variable driving the oscillatory behavior. During the electrochemical oxidation of 

methionine in potassium chloride, there is gold dissolution occurring, as evidenced by 

visible pitting on the Au surface. Gold dissolution has been found to occur through the 

electrochemical oxidation of sulfur containing species, but has also been observed in 

solutions containing halogens such as bromide ions [60]. The oxidation of methionine 

was also conducted on a platinum electrode, which showed no evidence of NDR or of 

dissolution of platinum. Figure 6.18 shows an LSV of a 0.1 M KCl solution without 

(Figure 6.18a) and with (Figure 6.18b) the presence of methionine.  
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Figure 6.18 - Linear sweep voltammogram at a scan rate of 1.0 mV/s in a solution 

of 0.1 M KCl with a methionine concentration of (a) 0.0 M and (b) 0.05 M. 

As can be seen, the presence of methionine drastically changes the shape of the 

LSV, however, the negative differential resistance is present in the solution containing 

just 0.1 M KCl. Notably, the shape of the LSV resembles an LSV for a system in which 

activation/passivation of the electrode surface is occurring, and the drastic decrease in 

current density corresponds to the Flade potential (here 1.25 V). This result indicates that 

passivation of the Au surface in the presence of chloride ions occurs, however, 

oscillations seen in Figure 6.18b cease to exist once this potential is surpassed. The LSV 

in Figure 6.18 suggest that there is a competition occurring at the electrode surface. The 

oxidation of methionine can be seen to begin at approximately 0.7 V whereas the 

oxidation of the gold electrode occurs at approximately 0.9 V. The flat methionine 

“oxidation peak” overlaps with the region where gold is being actively oxidized, which 

suggests that the oxidation of gold is playing a role in the oxidation kinetics of 

methionine, leading to oscillatory behavior. This implies that the interactions between 

methionine and gold, more particularly the strong interactions between sulfur and gold 
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are likely responsible for the nonlinear behavior. The NDR (positive feedback) here is 

likely caused by the decrease in active surface area caused by the passivation of the 

electrode area through the adsorption of methionine or methionine oxidation products on 

the gold surface. The negative feedback would then be driven by the surface 

concentration of methionine. To gain insights into the possible oxidation products high-

resolution mass spectrometry analysis was conducted. These results indicated that the 

electrochemical oxidation of methionine (C5H11NO2S) results in the formation of the 

compounds methionine sulfoxide, (m/e 165, C5H11NO3S), as well as methionine sulfone 

(m/e 181, C5H11NO4S). The formation of methionine sulfoxide and methionine sulfone 

corresponds to consecutive two-electron oxidation processes, as shown in Scheme 6.1.  

 

Scheme 6.1 - Oxidation pathway for the electrochemical oxidation of methionine. 

Figure 6.19 shows potentiostatic experiments demonstrating the effect that 

changing the applied potential has on the methionine system and interestingly no external 

resistance is required to maintain the oscillatory behavior. In Figure 6.19a, at an applied 

constant potential of 0.8 V, there are very small amplitude damped oscillations before the 

system remains stable (non-oscillatory) for the duration of the reaction. Once the applied 

potential is increased to 1.0 V simple oscillations can be seen to emerge. Increasing the 

potential to 1.1 V and 1.2 V (Figure 6.19c and 6.19d) simple oscillations occur and once 

the applied potential is 1.3 V (Figure 6.19e) oscillations no longer exist. The frequency of 
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the oscillations does not change between 1.0 V and 1.2 V and is approximately 90 mHz; 

however, the amplitude of the oscillations can be seen to increase as the potential is 

increased from 1.0 V to 1.2 V.  

 

Figure 6.19 - Potentiostatic experiments performed with applied potentials of (a) 0.80 V, 

(b) 1.0 V, (c) 1.1 V, (d) 1.2 V, and (e) 1.3 V. Other reaction conditions were: 

[methionine] = 0.05 M and [KCl] = 0.1 M with no external resistance. 

It should be noted that theoretically systems which fall into the classification of an 

N-NDR type electrochemical oscillator require the incorporation of external resistance, of 

a magnitude matching the resistance where the first intersection with the negative axis in 

an EIS spectrum occurs, in order to sustain oscillatory behavior. The occurrence of 

oscillations in this system without external resistance is likely due to the fact that the 
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concentration of supporting electrolyte is sufficiently low, such that the solution 

resistance overcomes the necessity for the inclusion of external resistance. To test this 

theory, a solution of methionine containing 1.0 M KCl (ten times the original supporting 

electrolyte concentration) was studied with EIS, which similarly to 0.1 M KCl solutions, 

showed the presence of NDR. The solution resistance was found to be 22 W, and the 

impedance was found to cross the negative axis at approximately -330 W. An LSV of the 

methionine oxidation in 1.0 M KCl is shown in Figure 6.20 with and without the 

presence of external resistance, dashed line and solid line respectively. As can be seen, no 

oscillations in current emerge at this concentration of supporting electrolyte when no 

external resistance is incorporated. However, once an appropriate resistor was utilized to 

compensate for the shift in solution resistance, the oscillatory regime emerged.  

 

Figure 6.20 - Linear sweep voltammogram in a solution of 0.05 M methionine and 1.0 M 

KCl without external resistance (dashed line) and with an external resistor of magnitude 

330 W (solid line). 

Figure 6.21 shows a time series of the methionine oxidation in 1.0 M KCl with 

and without the presence of an external resistor of magnitude 330 W (under potentiostatic 
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conditions). As can be seen, oscillations in current are absent without the external 

resistor in series (dotted line), however, once the resistor is in series, stable oscillations 

emerge, giving more evidence that this new methionine electrochemical oscillator falls 

into the N-NDR class.  

 

Figure 6.21 - Potentiostatic experiments conducted at 1.25 V without external resistance 

(dashed line) and with an external resistor of magnitude 330 W. 

6.4 Conclusions 

Electrochemically oxidizing hydroxymethanesulfinate was found to exhibit very 

different behaviors on Au and Pt surfaces. Long lasting, high frequency oscillations in 

both potential and current density were observed on a gold electrode, as opposed to only 

transient oscillations in current observed on a platinum electrode. As evidenced by SEM 

measurements, the oxidation of HMS (on both Pt and Au) led to the formation of a 

sulfur-based deposit on the electrode, which reduced the active surface area of the 

electrode. Such a passivation process resulted in a negative differential resistance, a 

necessary condition for the occurrence of electrochemical oscillations. This deposit can 

be electrochemically dissolved at the applied potentials where electrochemical 
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oscillations have been observed. The passivation-depassivation of working electrodes 

causes the observed oscillatory behavior in the studied system.  

The gradual dissolution of Au due to its etching by sulfur compounds formed 

during the oxidation of HMS provides another feedback to the nonlinear oxidation of 

HMS, leading to both sustained oscillatory behavior as well as complex oscillations such 

as quasi-periodic oscillations. Mass spectrometry measurements illustrate the production 

of thiosulfate (S2O3
2-), bisulfate (HSO4

-) and sulfite (SO3
2-) in the solution. EIS 

measurements indicate that the oxidation of HMS has a hidden negative differential 

resistance, placing this new electrochemical oscillator in the category of HN-NDR. 

Overall, the observed nonlinear behavior was found to be very sensitive to varying 

experimental parameters, including the applied potential, applied current density as well 

as the solution concentration. The pitting of the Au electrode during the oscillatory 

process offers an interesting and perhaps nonlinear dynamical approach to generate an Au 

surface with different morphologies, which could have great potential applications in 

electrochemical analysis.  

The electrochemical oxidation of methionine on a gold electrode led to the 

discovery of a new electrochemical oscillator, which fits the classification of an N-NDR 

type. Oscillations in current were found to occur with and without the presence of 

external resistance depending on the overall solution resistance. During the oxidation 

process pitting was found to occur on the Au surface caused by the dissolution of the 

electrode by methionine and methionine oxidation products (the oxidation products 

methionine sulfoxide as well as methionine sulfone were both identified using high-

resolution mass spectrometry). The presence of regions of NDR on a Au surface and not 
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on a Pt surface is due to the strong affinity of sulfur compounds with Au, which leads to 

the dissolution and passivation of the electrode surface. 
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CHAPTER 7 - APPLICATION OF NONLINEAR DYNAMICS TO THE 

FABRICATION OF NANOMATERIALS 

7.1 Introduction 

A significant amount of research has been conducted in the field of materials 

science towards the fabrication of nanomaterials with distinct morphologies [1-6]. A 

major motivation behind the control of morphology with respect to nanoparticles is 

driven by the desire to fine tune their properties [7-10]. Various methods have been 

utilized for the formation of different nanoparticle shapes, such as triangles, tubes, stars, 

etc. One common method is the incorporation of a reductant such as ascorbic acid or 

citrate, which may also act as a capping agent, inhibiting the growth of the nanoparticle 

[11-13]. The introduction of halides has also been found to play a role in tuning the 

morphology of nanoparticles by preferentially adsorbing to certain facets [14-18]. Of 

course, new methods of reproducibly fabricating nanoparticles represent a major area of 

active research. The field of nonlinear chemical dynamics may prove to be very effective 

for enhancing the rational design of nanoparticles with fixed sizes and novel 

morphologies.  

The application of nonlinear dynamics to materials science has been a topic of 

interest for chemists who wish to exploit the inherent instabilities in these systems. One 

example of using nonlinear behavior in materials science is the polymerization of 

acrylonitrile in a solution containing acidic bromate, malonic acid, and cerium 

(Belousov-Zhabotinsky reaction) [19-21]. It was found that the polymerization only 

occurs in the oscillatory regime and that bromine dioxide was responsible for the periodic 
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termination and polymerization processes. Switzer et al. found that multilayers of 

Cu/Cu2O could form during electrodeposition experiments, which were accompanied by 

spontaneous oscillations of the electrode potential [22]. Interestingly, they also found that 

the composition of the formed layer was dependent on the oscillating electrode potential. 

Electrodeposited layers, through their ability to modify the activity of electrode surfaces, 

have great potential to be applied in the field of electroanalysis. In fact, modified 

electrodes have been fabricated through the use of conductive polymers, graphene, metal 

nanoparticles, nanotubes and other similar materials for the purpose of selectively and 

sensitively detecting target analytes in solution [23-30]. However, to the best of our 

knowledge, no electrodes that have been fabricated under oscillatory regimes have been 

applied for the detection of analytes in solution.  

This chapter explores the novel use of two separate nonlinear systems for the 

fabrication of nanomaterials. Through the use of the bromate – 4-nitrophenol chemical 

oscillator [31], platinum nanocubes were synthesized by introducing platinum chloride to 

the oscillating reaction. The second nonlinear system utilized was the methionine 

electrochemical oscillator, in which dissolution of the gold electrode was found to play a 

significant role in the nonlinear behavior and led to the coating of the counter electrode 

with gold nanoparticles. As a test case, this gold nanoparticle modified electrode was 

used for the oxidation of hydroquinone and pyrocatechol in solution, showing excellent 

catalytic behavior and yielding a good peak-to-peak separation of the two isomers during 

differential pulse voltammetry (DPV) experiments.	
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7.2 Experimental Procedures 

7.2.1 Bromate – 4-Nitrophenol Oscillator - Pt Nanocubes  

Kinetics were investigated in a thermal-jacketed 50 mL glass beaker. A 

circulating water bath (THX-2005, Ningbo Tianheng Instrument Factory) held the 

reaction temperature constant at 25.0 ± 0.1 oC. The reaction solution was held constant at 

30.0 mL and was stirred continuously with a magnetic stirring bar driven by a magnetic 

stirrer (MS-H-PRO, Daxingxing Experimental Instrument (Beijing) Co.) to ensure 

homogeneity. Stock solutions of sodium bromate (NaBrO3, Shanghai Aladdin 

Biochemical Technology Co., Ltd, GR Grade), 0.1 M and sulfuric acid (H2SO4, Zhejiang 

Zhongxing Chemical Reagent Co., Ltd, AR Grade), 6.0 M were prepared with doubly 

distilled water (Elix5-Milli-Q, Millipore (US)). The 4-nitrophenol (C6H5NO3, Shanghai 

McLean Biochemical Technology Co., Ltd, GC Grade) was directly dissolved in the 

reaction mixture. The platinum chloride (PtCl2, Shanghai Aladdin Biochemical 

Technology Co., Ltd, AR Grade) was either directly added to the reaction or dispersed 

using an ultrasonic bath (Kunshan City Ultrasound Instrument Co., Ltd.). Ethanol (Anhui 

Ante Foods Co., Ltd., AR Grade) and acetone (Zhejiang Zhongxing Chemical Reagent 

Co., Ltd, AR Grade) were used in conjunction with a centrifuge (KQ-300DB, Shanghai 

Anting Scientific Instrument Co., Ltd.) for collecting products after reactions had 

finished. A Teflon cap was placed on top of the thermal-jacketed beaker to hold the 

electrodes. Reactions were monitored with a platinum electrode (Pt005, Tiangin Adaheng 

Sheng Technology Co., Ltd) coupled with a Hg|Hg2SO4|K2SO4 reference electrode 

(R0401,Tiangin Adaheng Sheng Technology Co., Ltd) filled with a saturated K2SO4 
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solution. Scanning Electron Microscopy (SEM) measurements were conducted on a Nova 

Nanosem 200 (FEI, US) system. 

7.2.2 Methionine Electrochemical Oscillator - Au Nanoparticles  

Electrochemical experiments were performed on a Voltalab PGZ100 system 

(Radiometer Analytical, USA) and CHI 760E (CHI Instruments, Texas, US). 

Polycrystalline gold or platinum electrodes with diameters of 2.0 mm (CHI Instruments) 

were applied as working electrodes. The counter electrode was a platinum wire 

(PT99WIRE0508, KITCO) and a saturated calomel electrode (SCE) was applied as the 

reference electrode. Before each experiment, the working electrode was polished with 

consecutively finer grades of alumina powder, rinsed with doubly distilled water, cleaned 

by an ultrasonic cleaner (Branson 1510, USA) for 10 minutes, and again rinsed with 

double distilled water. The three electrodes were placed in the traditional triangle 

configuration and all electrochemical experiments were performed at room temperature 

(22 ± 2 oC).  

Reagents L-methionine (C5H11NO2S, 98+%), potassium chloride (KCl, 99+%), 

hydroquinone (C6H6O2, 99%), pyrocatechol (C6H6O2, 99%) and potassium ferricyanide 

(K3Fe(CN)6, 99%) were purchased from Sigma Aldrich. All reactions contained 0.05 M 

L-methionine in 0.1 M KCl, unless otherwise stated. Reaction volumes were held 

constant at 60.0 mL, and all experiments were performed under ambient conditions (no 

purging with inert gases). Electrochemical impedance spectroscopy experiments were 

measured in the frequency range of 100 kHz to 0.1 mHz (unless otherwise stated) with an 

amplitude of 5 mV and 12 points per frequency decade were collected. Scanning electron 

microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were performed 



Chapter 7 - Application of Nonlinear Dynamics to the Fabrication of Nanomaterials 

186	

	

with a Quanta 200 FEG microscope (FEI, Inc.). The parameters used in differential pulse 

voltammetry (DPV) experiments were 10 mV increments, 50 mV pulse amplitude, 200 

ms pulse width and 500 ms pulse period.  	

7.3 Results and Discussion 

7.3.1 Fabrication of Pt Nanocubes with Chemical Oscillator  

The bromate – 4-nitrophenol chemical oscillator was studied in Chapter 4 and 

shown to exhibit long lasting and relatively low frequency chemical oscillations. Being a 

bromate based system, periodic changes in the concentration of bromide ion are 

occurring. This changing bromide ion concentration offers a dynamic protocol for 

introducing halogens towards the manipulation of nanoparticle morphology. 

Traditionally, reductants such as ascorbic acid or citrate are used to reduce metal ions 

during nanoparticle synthesis [11,12], implying that if the bromate – 4-nitrophenol 

oscillator could potentially be used towards Pt nanoparticle fabrication, 4-NP (or a 

formed intermediate) must be able to reduce platinum ions. Figure 7.1 shows a time 

series of the reaction between 4-NP and platinum chloride. The arrow in Figure 7.1 

indicates the moment that 0.015 mmol of PtCl2 was added to a 0.01 M 4-NP solution in 

1.0 M sulfuric acid. As can be seen, a drastic spike in the potential was observed, 

followed by a gradual leveling off at approximately 0.45 V. 
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Figure 7.1 - Time series of the reaction between PtCl2 and 4-nitrophenol. 0.015 mmol 

PtCl2 was added to the solution at the arrow. Other reaction conditions were: [4-NP] = 

0.01 M and [H2SO4] = 1.0 M. 

Even though the change in potential is suggestive of a reaction occurring, 

Scanning Electron Microscopy (SEM) measurements were conducted on the PtCl2 before 

and after the reaction in the acidic 4-NP solution. Figure 7.2a shows an SEM of the PtCl2 

that was dissolved in ethanol and Figure 7.2b shows the solid product of the reaction of 

PtCl2 with 4-NP collected after 5 h. Here a distinct change in morphology was observed, 

as the product of the reaction demonstrated a tubular morphology implying the reduction 

might have occurred. Transmission Electron Microscopy (TEM) measurements 

confirmed the formation of Pt.  
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Figure 7.2 - SEM images of (a) unreacted PtCl2 and (b) the product of the reaction 

between PtCl2 and 4-nitrophenol after 5 h reaction time. Reaction conditions for (b) were: 

[4-NP] = 0.01 M, [H2SO4] = 1.0 M, and [PtCl2] = 0.015 mmol. 

Figure 7.3 shows a time series illustrating the influence that the addition of 0.015 

mmol PtCl2 at the onset of the reaction had on the kinetics of the bromate – 4-NP 

oscillator. A prototypical time series is shown in Figure 7.3i, where the incorporation of 

PtCl2 causes a decrease in the oscillatory window as well as the number of oscillations 

(Figure 7.3ii). This phenomenon was expected as some of the 4-NP was consumed 

through its reaction with PtCl2 and therefore unable to participate (directly or indirectly) 

in the autocatalytic cycle. 
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Figure 7.3 - Time series showing the effect of PtCl2 on the kinetics of the bromate – 4-

nitrophenol oscillator. Reaction conditions were: [4-NP] = 0.01 M, [H2SO4] = 1.0 M, 

[NaBrO3] = 0.03 M. (i) [PtCl2] = 0.0 mmol and (ii) [PtCl2] = 0.015 mmol. 

SEM measurements of the solid products collected after the PtCl2 was in the 

oscillatory reaction showed that the bromate – 4-NP oscillator, after a 3 h reaction time, 

had resulted in the formation of platinum nanocubes as seen in Figure 7.4a and Figure 

7.4b. Comparing with the tubular structure seen in the PtCl2 - 4-NP reaction, this result 

provides proof of concept evidence that bromate-based chemical oscillators have the 

ability to manipulate and direct the formation of nanoparticles with distinct 

morphologies. The preferential adsorption of bromide ions on a particular facet of the 

platinum crystals has likely controlled the growth of the nanoparticle leading to the 

preferential formation of platinum nanocubes in this system. 
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Figure 7.4 - SEM images showing the formation of Pt nanocubes through the 

incorporation of PtCl2 in the bromate – 4-nitrophenol oscillator. Reaction conditions 

were: [4-NP] = 0.01 M, [H2SO4] = 1.0 M, [NaBrO3] = 0.03 M and [PtCl2] = 0.015 mmol. 

Samples were collected after 3 h reaction time. 

Varying the initial reaction conditions, as well as the reaction time, both had a 

minimal effect on the morphology of the formed nanocubes. Figure 7.5 shows the effect 

that different reaction times had on the Pt nanoparticles.  

 

Figure 7.5 - SEM images showing the influence of reaction time on the formation of Pt 

nanocubes. Conditions were: [4-NP] = 0.01 M, [H2SO4] = 1.0 M, [NaBrO3] = 0.03 M and 

[PtCl2] = 0.015 mmol. Samples were collected after (a) 2 h, (b) 6 h, and (c) 12 h. 
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7.3.2 Fabrication of Au Nanoparticles with an Electrochemical Oscillator  

The phenomenon of electrochemical oscillations during the oxidation of 

methionine on a gold working electrode was discussed in Chapter 6. As mentioned, 

during the electro-oxidation of methionine on a gold surface, gold dissolution occurs, 

causing significant pitting on the electrode surface. The dissolution is likely driven by the 

formation of a sulfur-Au complex, which becomes soluble in solution. Once the 

dissolution has occurred, the sulfur-gold complexes migrate toward the platinum counter 

electrode and when operated under potentiostatic conditions, which exhibited nonlinear 

behavior, the sulfur-gold particles get reduced and become capable of coating the Pt 

counter electrode. Scanning Electron Microscopy (SEM) of the Pt counter wire after 

potentiostatic oxidation of methionine for 6 h showed that nanoparticles with consistent 

size and shape were deposited (Figure 7.6). 

 

Figure 7.6 - SEM image showing the as-deposited Au nanoparticles occurring during the 

electro-oxidation of methionine. Reaction conditions were: [methionine] = 0.05 M and 

[KCl] = 0.1 M. Deposition occurred during a 6 h potentiostatic experiment conducted at 

1.0 V (vs. SCE). 
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In Figure 7.7 energy-dispersive X-ray spectroscopy (EDS) measurements confirmed that 

the as-deposited nanoparticles consisted of Au. 

 

Figure 7.7 - EDS measurement of the deposited Au nanoparticles shown in Figure 7.6. 

To further characterize the modified electrode, EIS measurements were conducted 

in a 2 mM K3Fe(CN)6 solution. When a bare gold electrode was used (Figure 7.8i), there 

was a small semi-circle followed by a straight line. Figure 7.8ii and 7.8iii show the 

difference between the unmodified Pt wire electrode (7.8ii) and the modified electrode 

(7.8iii). As can be seen, there is a distinct difference between the Au-nanoparticle 

modified Pt electrode and either the bare Au or bare Pt, indicating that the modified 

electrode has different properties compared to either unmodified surface.  
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Figure 7.8 - Electrochemical Impedance Spectroscopic (EIS) Spectrum of (i) bare Au 

electrode, (b) bare Pt electrode and (c) Pt wire modified with gold nanoparticles. 

Experiments were conducted in a 2 mM Ferricyanide and 0.1 M KCl solution, at an 

applied potential of 0.25 V. 

As a case study, this Au-nanoparticle modified electrode, fabricated through the 

nonlinear dynamical reaction, was applied towards the detection of the isomers 

hydroquinone (HQ) and pyrocatechol (PC). Hydroquinone and pyrocatechol are two 

important toxicological compounds that often coexist in environmental samples; hence, 

the ability to detect both isomers in solution at low concentrations could have a mojor 

impact on environmental research. Figure 7.9 shows the DPV (Differential Pulse 

Voltammogram) of a solution consisting of 2000 µM HQ and 2000 µM PC in 0.1 M KCl. 

Neither the bare Au (dashed line) nor the bare Pt (dotted line) electrodes are capable of 

detecting both HQ and PC simultaneously, showing the presence of an unresolved single 

peak. However, once the Au-nanoparticle modified electrode was used (solid line), the 

two isomers become individually detectable (HQ at approximately 0.05 V and PC at 0.11 

V).  
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Figure 7.9 - Differential Pulse Voltammogram (DPV) measurements of a 2000 µM 

hydroquinone (HQ) and 2000 µM pyrocatechol (PC) solution on a: bare Pt wire electrode 

(dotted line) a bare Au electrode (dashed line) a Pt wire electrode modified with gold 

nanoparticles (solid line). The solution also contained 0.1 M KCl. 

The ability to differentiate the two isomers is likely due to their differing degrees 

of interaction with the Au-nanoparticle modified surface. Also, in comparison to the bare 

electrodes, the modified electrode shows excellent catalytic properties for the oxidation 

of HQ and PC.  

7.4 Conclusions 

This research provides encouraging results and preliminary support for the use of 

nonlinear systems for the fabrication of nanomaterials. Through the use of a chemical 

oscillator, the bromate – 4-nitrophenol system, platinum nanoparticles with distinct 

morphologies were formed. Although the only observed morphology came in the form of 

nanocubes, this protocol offers a dynamic approach of introducing halides into reactions 

aimed at directing the growth of nanomaterials. This research also demonstrates the first 
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example of fabricating an electrochemical sensor using the dynamic regime of a 

nonlinear electrochemical oscillator. In order to harness the nonlinear dynamical behavior 

occurring during the electrochemical oxidation of methionine towards an application in 

electroanalysis a thorough exploration of the system was reported in Chapter 6. During 

the oscillatory reaction the dissolved gold was found to migrate and coat the Pt counter 

electrode with Au-nanoparticles, which was confirmed by SEM and EDS measurements. 

Successfully, this modified electrode was applied to the electroanalysis of HQ and PC 

coexisting in solution. DPV experiments were able to simultaneously differentiate 

between the two isomers. 	
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CHAPTER 8 - CONCLUSIONS AND PERSPECTIVES 

8.1 Conclusions 

The research presented in this thesis focused on finding new chemical and 

electrochemical nonlinear systems and gaining insights into their reaction mechanisms. In 

Chapter 2, the bromate – 4-aminophenol photochemical oscillator was investigated from 

two viewpoints, in order to gain insight into the underlying mechanisms driving the 

nonlinear behavior. Firstly, the redox catalyst cerium was introduced in order to 

implement coupled autocatalytic feedbacks. Here, mixed-mode and sequential 

oscillations emerged making it one of the few chemical systems known to support 

complex behavior in a batch reactor [1]. The complex behavior showed a strong 

dependence on the intensity of illumination supplied to the system. Removal of 

illumination during an oscillatory window affected both the frequency and amplitude of 

the oscillation but did not fully extinguish them, indicating that the cerium - bromate – 4-

aminophenol oscillator was photosensitive, rather than photo-controlled. A moderate 

light intensity allowed for a slow evolution of the system, which proved critical for the 

emergence of transient complex oscillations. Kinetic simulations provided strong support 

that transient complex oscillations observed experimentally arise from the coupling of 

two autocatalytic cycles.  

Second, a subset of the 4-aminophenol oscillator was studied by isolating the 

formed precipitate N-bromo-1,4-benzoquinone-4-imine. Interestingly, the 

photodecomposition of N-bromo-1,4-benzoquinone in an acidic media exhibited the 

nonlinear kinetic feature of an autocatalytic excursion. During the photodecomposition 

process the N-bromo-1,4-benzoquinone-4-imine is converted into 1,4-benzoquinone, as 
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was confirmed with 1H NMR and mass spectrometry. When bromate was introduced to 

the studied system, transient spontaneous oscillations were uncovered, forming a new 

photochemical oscillator [2]. The system’s sensitivity to the intensity of the illumination 

was great as decreases below a threshold value completely quenched the reactivity. 

Electrospray-TOF mass spectrometry and 13C NMR spectra suggest that 3,4,4-tribromo-

2-hydroxycyclohexa-2,5-dienone is a major product in the system. The insights gained 

while studying the N-bromo-1,4-benzoquinone-4-imine system led to important 

mechanistic information with respect to the bromate – 4-aminophenol oscillator, and 

suggested a strong importance on the formation of 1,4-benzoquinone in both the 4-

aminophenol and N-bromo-1,4-benzoquinone oscillators.  

In Chapter 3, the bromate – 2-methyl-1,4-hydroquinone oscillator was studied. 

Based on previous knowledge regarding the formation of 1,4-benzoquinone in the 4-

aminophenol oscillator, the influence of a functional group on the reduction product of 

1,4-benzoquinone was investigated. Spectroscopic investigation showed the oxidation of 

2-methyl-1,4-hydroquinone by bromine molecules and the photoreduction of 2-methyl-

1,4-benzoquinone reforming 2-methyl-1,4-hydroquinone in aqueous media. 1H NMR 

measurements suggest that the presence of the methyl group hinders the bromination of 

the organic substrate. The concurrent photoreduction of 2-methyl-1,4-benzoquinone and 

oxidation of 2-methyl-1,4-hydroquinone by bromate derivatives lead to spontaneous 

oscillations in a closed reaction system [3]. A substantial lengthening of the oscillatory 

window and a dramatic increase in the complexity of the reaction behavior arose upon the 

addition of ferroin or cerium (IV) ions to the bromate – 2-methyl-1,4-hydroquinone 

system. Sequential oscillations were observed through the addition of each metal catalyst 
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and mixed-mode oscillations were present in the cerium - catalyzed reaction. A strong 

dependence of the complexity of the reaction behavior on the intensity of illumination 

supplied was observed. 

In order to gain further insights into 1,4-disubstituted aromatic oscillators, which 

contain hydroxyl functionalities, 4-nitrophenol was investigated in Chapter 4. Systematic 

investigation found that the bromate – 4-nitrophenol reaction could undergo spontaneous 

oscillations under very broad reaction conditions [4]. Similar to the bromate – 4-

aminophenol oscillator, the presence of 1,4-benzoquinone was identified in the bromate – 

4-nitrophenol oscillator. However, the incorporation of illumination was not required in 

order for the bromate – 4-nitrophenol system to support oscillations. The addition of 

ferroin has subtle influences on the nonlinear behavior, in which the frequency and total 

number of oscillations were greatly reduced at a low or high ferroin concentration as 

opposed to the significant increase at a moderate ferroin concentration. Temporal 

oscillations with a modulating frequency were observed in the ferroin – bromate – 4-

nitrophenol system. In a capillary tube the ferroin – bromate – 4-nitrophenol reaction 

generated propagating wave trains with various complex behaviors such as period-

doubled intermittent propagation failure. Overall, the behavior of the 4-nitrophenol 

system differed greatly to the other. 

Owing to the significant role of bromide ions in bromate based chemical 

oscillators, an electrochemical study of bromide ions in acidic media was undertaken in 

Chapter 5 to gain insights into its oxidation process, which could provide useful 

information applicable to bromate oscillators. Interestingly, the electrochemical oxidation 

of bromide ions led to the observation of both current and potential oscillations [5]. 
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Under galvanostatic conditions the electrode potential was seen to oscillate around two 

narrow regions, 0.9 V and 1.6 V. Sustained current oscillations at the high potentials were 

accompanied with bubble formation and are often irregular, implicating that their 

development may be attributed with convection-driven processes. At the low potentials, 

the current oscillations exhibit several features associated with a capacitance mediated 

electrochemical oscillator, such as (1) taking place around a current plateau in a cyclic 

voltammogram, (2) occurring without the need of an external resistor, (3) showing a 

decrease in amplitude with the increase of external resistance, (4) emerging on a branch 

of positive differential resistance, and (5) having resonance behavior in an admittance 

spectra. The reversible formation and dissolution of tribromide complexes (Br3
-) from the 

reaction between bromide (Br-) and its electro-oxidation product bromine (Br2) was 

proposed to have played an important role in this system. 

After achieving success with hydroxyl containing compounds in nonlinear 

chemical systems and gaining insight into the oxidation of bromide ions 

electrochemically, the compound hydroxymethanesulfinate was investigated 

electrochemically in Chapter 6. Consisting of not only a hydroxyl group, but also a sulfur 

compound, which can potentially give access to multiple oxidation states, the electro-

oxidation of hydroxymethanesulfinate was an ideal candidate to display rich dynamical 

behavior. The oxidation of hydroxymethanesulfinate was conducted on both platinum 

and gold electrodes. On a platinum surface, the oscillatory behavior was transient when 

operated under potentiostatic conditions; however, sustained oscillations in potential were 

observed under galvanostatic conditions [6]. Scanning Electron Microscopic (SEM) 

measurements showed that the platinum electrode was coated with sulfur deposits, which 
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were capable of being oxidized at high potentials, leading to the sustained oscillatory 

behavior seen under galvanostatic conditions. Interestingly, SEM measurements show 

that the electro-oxidation process caused significant pitting of the gold electrodes. The 

continuous dissolution of the gold surface is likely to have played an important role in the 

sustained simple and complex oscillatory behaviors in both current density and potential. 

Electrochemical Impedance Spectroscopy (EIS) results indicate that the oxidation of 

hydroxymethanesulfinate possesses a hidden negative differential resistance, implying 

that this new electrochemical oscillator belongs to the HN-NDR class. Mass spectrometry 

analysis of the reaction solution suggests the formation of thiosulfate, a reagent which is 

likely responsible for the observed gold dissolution occurring during the electro-oxidation 

of hydroxymethanesulfinate.  

To gain further insights into the oxidation of sulfur containing compounds the 

biologically important amino acid methionine was also investigated in Chapter 6. On a 

gold electrode negative differential resistance was observed through the use of EIS. The 

presence of negative differential resistance allowed this new oscillator to be classified as 

an N-NDR type. Under the potentiostatic conditions at which the system exhibits 

oscillatory behavior the process of gold dissolution occurs, which is likely due to the 

strong interactions of sulfur compounds and gold. Spectroscopic studies of the 

methionine reaction mixture after electrochemical oxidation were able to identify 

methionine sulfoxide and methionine sulfone as the major oxidation products. 

8.2 Perspectives 

In depth study of the mechanisms behind these chemical and electrochemical 

systems will provide insight not only into their driving forces but also into the most 
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effective ways to control and manipulate their behavior. One interesting way to 

potentially manipulate photochemical oscillators is through the use of a shutter. 

Incorporating a shutter with open and close intervals that can be externally controlled 

provides a direct way to perturb and manipulate the photochemical reactivity of 

oscillatory systems. The 4-aminophenol system discussed in Chapter 2 of this dissertation 

would be an ideal candidate to begin such a perturbation study. The extreme 

photosensitivity exhibited by the 4-aminophenol oscillator could lead to very rich 

nonlinear behavior through periodically perturbing the system with illumination. This 

may also lead to an interesting method of studying the influence of various light 

intensities or wavelengths on synchronization and entrainment of the reactivity of the 

system with the period of the perturbation.  

With respect to the utilization of a chemical oscillator towards the selective 

control of nanoparticle morphology, more work is needed. Experiments in this 

dissertation have shown that the bromate based 4-nitrophenol oscillator is capable of 

directing the formation of platinum nanocubes; however, no other morphology was 

observed. This could be due to the fact, that at least on gold, relatively high 

concentrations of bromide ions are needed (> 1 mM) to have a noticeable influence on 

the surface morphology [7,8]. Due to the fact that the overall bromide ion concentration 

in bromate based oscillators is quite low (10-6 - 10-8 M) and that the overall concentration 

change occurring during an individual oscillation cycle is also low, bromate-based 

oscillators may not be the most efficient towards this endeavor. Research has shown that 

iodide ions can also influence nanoparticle morphology and can do so at lower 

concentrations in comparison to the concentration of bromide ions often required [7,8]. 
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Fortunately, this suggests that the Briggs-Rauscher oscillator, which undergoes periodic 

oscillation in the concentration of the iodide ion can potentially be utilized as a dynamic 

fabrication method aimed at manipulating the morphology of nanoparticles [9].  

As reported in Chapter 5, oscillations occurring during the electro-oxidation of 

bromide ions were found to fit the mechanism of a Capacitance Mediated Positive 

Differential Resistance oscillator, in which the formation and dissolution of an inhibiting 

layer was crucial for the nonlinear behavior. In this system the inhibiting layer is the 

tribromide species, Br3
-, whose formation occurs through the reaction between the 

oxidation product bromine and bromide ions according to the reaction: Br2 + Br- ßà 

Br3
-. This important reaction step offers the opportunity to manipulate the formation of 

the inhibitory layer through introducing a second compound which is easily brominated 

which may lead to dynamically much richer phenomenon than was seen in the bromide 

system alone. Preliminary experiments were conducted with the traditional Belousov-

Zhabotinsky reactant, malonic acid, with the goal of influencing the production of the 

Br3
- complex through inhibiting its formation to an extent that the system would evolve 

into complex behavior as opposed to simple periodic oscillations. A noticeable change in 

the oscillatory behavior was not seen, however, other compounds could potentially be 

used, such as 1,4-cyclohexanedione. 1,4-cyclohexanedione has demonstrated oscillatory 

behavior during its oxidation with bromate, and a key intermediate in the overall 

mechanism driving the oscillatory behavior is 2-bromo-1,4-cyclohexanedione [10]. 

Another exciting opportunity for the use of nonlinear dynamics is through the use 

of electrochemical oscillators towards the constructive manipulation of electrode 

surfaces. An example was shown in Chapter 7 showing how dissolution of a gold 
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electrode can lead to the fabrication of a gold nanoparticle modified electrode. 

Electrochemical oscillators, which undergo passivation/dissolution processes, offer a 

potentially nonlinear protocol for the modification of the electrode surface with distinct 

morphologies. Through altering the experimental parameters such as applied potential or 

current can lead to a variation in not only oscillatory frequency but the amplitude as well. 

These changes in frequency or amplitude have been directly related to thickness of 

deposited films and could potentially lead to different morphologies of the electrode 

surface in corrosion driven reactions [11]. For example, the corrosion of copper in 

various media has been studied and rich dynamical behavior has been observed [12-14]. 

Copper nanoparticles as well as nanotubes have also been utilized in various 

electroanalytical experiments towards the detection of glucose, with differing sensitivities 

[15-17]. Therefore, research conducted towards modifying the morphology of copper 

electrodes through nonlinear processes could potentially lead to the fabrication of 

affordable and sensitive electrodes useful for the detection of glucose.  
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APPENDICES 

Appendix A - Code of Simulation for Table 2.1 
	

METHOD	ROSENBROCK	(STIFF)	

	

STARTTIME	=	0	

STOPTIME	=	80000	

DTMIN	=	1.OE-8	

DTMAX	=	0.1	

DTOUT	=	0	

TOLERANCE	=	0.001	

	

{	1:	 BrO3	+	Br	+	2H	<	-	-	>	HBrO2	+	HOBr	}	

	 RXN1	=	K1f*BrO3*Br*H^2	-	K1r*HBrO2*HOBr	

	 K1f	=	0.1	

	 K1r	=	100	

	 INIT	Br	=	1.0e-7	

	 INIT	BrO3	=	0.06	

	 INIT	H	=	0.8	

	 INIT	HBrO2	=	0	

	 INIT	HOBr	=	0	

	

	 d/dt(Br)	=	-RXN1	-	RXN2	+	RXN7	-	RXN8	+	RXN9	-	RXN14	

	 d/dt(BrO3)	=	-RXN1	-	RXN3	+	RXN6	

	d/dt(H)	=	-2*RXN1	-	RXN2	-	RXN3	+	RXN6	-	RXN8	+	RXN9	-	RXN13	+	RXN14	+	

RXN15	+	RXN16	
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	 d/dt(HBrO2)	=	+RXN1	-	RXN2	-	RXN3	+	RXN4	+	RXN5	-	2*RXN6	+	RXN13	

	 d/dt(HOBr)	=	+RXN1	+	2*RXN2	+	RXN6	-	RXN7	-	RXN8	-	RXN10	

	

{	2:		 HBrO2	+	Br	+	H	<	-	-	>	2HOBr	}	

	 RXN2	=	K2f*HBrO2*Br*H	-	K2r*HOBr^2	

	 K2f	=	1.5e+09	

	

{	3:		 BrO3	+	HBrO2	+	H	<	-	-	>	2BrO2	+	H2O	}	

	 RXN3	=	K3f*BrO3*HBrO2*H	-	K3r*BrO2^2*H2O	

	 K3f	=	600	

	 K3r	=	2e+07	

	 INIT	BrO2	=	0	

	 INIT	H2O	=	55	

	

	 d/dt(BrO2)	=	2*RXN3	-	RXN4	-	RXN5	-	RXN13	

	 d/dt(H2O)	=	RXN3	+	RXN7	+	RXN8	+	RXN10	-	RXN12	+	RXN13	

	

{	4:	 BrO2	+	HArOH2	<	-	->	HBrO2	+	HArOHO	}	

	 RXN4	=	K4f*BrO2*HArOH2	-	K4r*HBrO2*HArOHO	

	 K4f	=	900	

	 K4r	=	0	

	 INIT	HArOH2	=	0.025	

	 INIT	HArOHO	=	0	

	

	 d/dt(HArOH2)	=	-RXN4	-	RXN9	-	RXN10	-	RXN11	+	RXN12	-	RXN15	

	 d/dt(HArOHO)	=	RXN4	-	RXN5	-	RXN7	+	2*RXN11	+	RXN15	-	RXN16	



 

211	

	

	

{	5:	 BrO2	+	HArOHO	<	-	-	>	HArO2	+	HBrO2	}	

	 RXN5	=	K5f*BrO2*HArOHO	-	K5r*HArO2*HBrO2	

	 K5f	=	1000	

	 K5r	=	0	

	

	 d/dt(HArO2)	=	RXN5	+	RXN7	-	RXN11	-	2*RXN12	+	RXN14	+	RXN16	

	

{	6:	 2HBrO2	<	-	-	>	BrO3	+	HOBr	+	H	}	

	 RXN6	=	K6f*HBrO2^2	-	K6r*BrO3*HOBr*H	

	 K6f	=	4e+07	

	 K6r	=	0	

	

{	7:	 HOBr	+	HArOHO	<	-	-	>	Br	+	HArO2	+	H2O	}	

	 RXN7	=	K7f*HOBr*HArOHO	-	K7r*Br*HArO2*H2O	

	 K7f	=	150000	

	 K7r	=	0	

	

{	8:	 HOBr	+	Br	+	H	<	-	->	Br2	+	H2O	}	

	 RXN8	=	K8f*HOBr*Br*H	-	K8r*Br2*H2O	

	 K8f	=	9.5e+09	

	 K8r	=	110	

	 INIT	Br2	=	0	

	

	 d/dt(Br2)	=	RXN8	-	RXN9	
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{	9:	 Br2	+	HArOH2	<	-	-	>	BrArOH2	+	Br	+	H	}	

	 RXN9	=	K9f*Br2*HArOH2	-	K9r*BrArOH2*Br*H	

	 K9f	=	700	

	 K9r	=	0	

	 INIT	BrArOH2	=	0	

	

	 d/dt(BrArOH2)	=	RXN9	+	RXN10	-	RXN14	

	

{	10:	 HOBr	+	HArOH2	<	-	-	>	BrArOH2	+	H2O	}	

	 RXN10	=	K10f*HOBr*HArOH2	-	K10r*BrArOH2*H2O	

	 K10f	=	25	

	 K10r	=	0	

	

{	11:	 HArOH2	+	HArO2	<	-	-	>	2HArOHO	}	

	 RXN11	=	K11f*HArOH2*HArO2	-	K11r*HArOHO^2	

	 K11f	=	0.022	

	 K11r	=	40000	

	

{	12:	 2HArO2	+	H2O	<	-	-	>	HArOH2	}	

	 RXN12	=	K12f*HArO2^2*H2O	-	K12r*HArOH2	

	 K12f	=	10000	

	 K12r	=	0	

	

{	13:	 CeIII	+	BrO2	+	H	<	-	-	>	CeIV	+	HBrO2	+	H2O	}	

	 RXN13	=	K13f*CeIII*BrO2*H	-	K13r*CeIV*HBrO2*H2O	

	 K13f	=	140000	
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	 K13r	=	0	

	 INIT	CeIII	=	0	

	 INIT	CeIV	=	0.00003	

	

	 d/dt(CeIII)	=	-RXN13	+	RXN14	+	RXN15	+	RXN16	

	 d/dt(CeIV)	=	RXN13	-	RXN14	-	RXN15	-	RXN16	

	

{	14:	 CeIV	+	BrArOH2	<	-	-	>	CeIII	+	Br	+	HArO2	+	H	}	

	 RXN14	=	K14f*CeIV*BrArOH2	-	K14r*CeIII*Br*HArO2*H	

	 K14f	=	10000	

	 K14r	=	0	

	

{	15:	 CeIV	+	HArOH2	<	-	-	>	CeIII	+	HArOHO	+	H	}	

	 RXN15	=	K15f*CeIV*HArOH2	-	K15r*CeIII*HArOHO*H	

	 K15f	=	100	

	 K15r	=	0	

	

{	16:	 CeIV	+	HArOHO	<	-	-	>	CeIII	+	HArO2	+	H	}	

	 RXN16	=	K16f*CeIV*HArOHO	-	K16r*CeIII*HArO2*H	

	 K16f	=	10000	

	 K16r	=	0	
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