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VUV Study of Electron Impact Dissociative Excitation  

of Thymine 

 

C J Tiessen¶, J A Trocchi J D Hein*, J Dech, W Kedzierski, and J W McConkey 

Physics Department, University of Windsor, ON N9B 3P4, Canada. 

 

Abstract: 

A crossed electron-gas beam system coupled to a VUV spectrometer has been used 

to investigate the dissociation of thymine into excited atomic fragments in the 

impact energy range from threshold to 400 eV. The main features in the spectrum 

are the H Lyman series lines. The relative emission cross section of Lyman-α has 

a broad maximum at an energy of 160 eV. The probability of extracting excited C, 

N or O atoms from the parent molecule is shown to be very small. Possible 

dissociation channels and excitation mechanisms in the parent molecule are 

discussed.  
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Introduction. 

     As one of the DNA base molecules, thymine (C5H6N2O2) and its interactions 

with charged particles have been widely studied in recent years. Ever since it was 

demonstrated [1] that dissociative electron attachment (DEA) at low energies 

provided a mechanism for double and single strand breaking within the DNA 

structure, there has been a need for quantitative electron scattering data for this 

molecule. This is to enable accurate modelling of damage produced by the entry of 

high-energy radiation into biological media and the subsequent low energy 

electron cascade which is released. Recent work by van der Burgt et al [2] 

references a large body of relevant work on ionization, dissociative ionization and 

DEA. A number of review articles are also available [3-7]. Elastic scattering from 

thymine at 100 and 500 eV has been reported by Colyer et al [8] while Abouaf et al 

(27) and Chernyshova et al (28) have studied low energy energy-loss spectroscopy. 

Calculations of low-energy, elastic and inelastic scattering from thymine and 

cytosine, have been reported by Winstead et al [9] and Dora et al [10].  

    Photon impact studies on isolated nucleobases such as thymine are also 

numerous [e.g.11-13 and included references]. These are relevant as they provide 

information on the dipole allowed channels for exciting and dissociating the 

molecule. 

   A more limited number of studies is available where photon emission following 

electron collisions with DNA bases was investigated. To date the only spectral 

information following such electron bombardment consists of observations in the 

visible and near-UV spectral regions where the data are dominated by radiation 

from molecular fragments. Target molecules studied include uracil, cytosine 

adenine and thymine [14-18]. In the present work we investigate the break-up of 

the thymine molecule into excited atomic fragments. By working in the VUV 

spectral region where atomic radiation dominates the spectrum we were able to 

gain useful data on which bonds are most likely to be broken in such electron 

collisions. Because of the close relationship between thymine and pyrimidine we 

will draw comparisons with our previous study [19] of this latter molecule. 

Preliminary results from this study were presented at recent conferences [20, 21] 

     



Experimental Details: 

The experimental set-up and techniques are very similar to those used in earlier 

work [19, 22-24, and references therein] on molecular dissociative excitation in 

this laboratory and so only a brief summary is given here together with details 

pertinent to thymine. Reagent grade thymine was contained in a stainless steel 

oven with a capillary output nozzle. On heating, to around 150oC, the oven 

projected a beam of thymine vapour vertically upwards where it was intersected at 

right angles by a magnetically collimated electron beam. The capillary nozzle was 

kept at a temperature some 40-50oC higher than the main oven to prevent clogging. 

Radiation from the interaction region was observed in a direction orthogonal to 

both the electron and gas beams by a ½ metre Seya-Namioka VUV spectrometer 

coupled to a CsI coated channel electron multiplier. The energy resolution of the 

electron beam was approximately 1 eV full width at half maximum (FWHM) and 

beam currents were typically 50 μA. Electron beam currents were recorded 

synchronously with measurements of photon emission rates so that photon rates 

could be properly normalized. Photon fluxes were assumed to be unpolarized. This 

is a reasonable assumption given the size and complexity of the parent molecule. 

When required, He gas could be mixed with the thymine vapour so that energy 

calibration of the system could be carried out using the known 21.21 eV threshold 

of the 58.4 nm He (21P – 11S) transition 

Two types of experimental data were collected. In the first, a constant electron 

beam energy (100 eV) was maintained and the photon emission spectrum was 

recorded over the wavelength range 90-160 nm. In the second, a particular spectral 

feature (wavelength) was selected and the photon emission rate (relative excitation 

cross section or probability) was measured as the electron beam energy was 

scanned. This produced a so-called “excitation function” for the line under 

consideration. 

The relative spectral sensitivity of the detection system was established using a 

refinement of the so-called “molecular branching-ratio” technique. Essentially this 

involved taking a spectrum of the well-known H2 emissions in the relevant 

wavelength region (90-160 nm) and then comparing this with the theoretical H2 

spectrum. This method is fully discussed in [22]. Having established the relative 

sensitivity of the system with wavelength, the entire observed thymine spectrum 

could be scaled to show the correct relative strengths of the different features. 

Unfortunately the data could not be put on an absolute basis because, as yet, we 

have no accurate method of determining the target number density in our thymine 

beam. Background spectra taken under identical experimental conditions except 

with the thymine oven cold revealed a small nitrogen contamination in the system. 

This has been subtracted from the data.  

 



    To determine the relative cross sections, we fitted Gaussian line shapes to obtain 

the areas under the peaks. This procedure enabled the relative individual emission 

line intensities to be extracted even when it was not possible to fully resolve the 

spectral features  

 

Results and Discussion: 

 

A. Spectra: 

 

 

Figure 1.  Thymine VUV spectrum excited by 100 eV electrons. The features are 

identified in Table 1 where their relative emission cross sections are given. Data 

have been corrected for variation of the detection sensitivity with wavelength. A 

small nitrogen background component has been subtracted off as mentioned in the 

text. The insert shows the geometry of the thymine molecule. 

 

As can be seen from Fig 1, the dominant spectral features constitute the hydrogen 

Lyman series. There are a number of reasons why this might be expected. First, the 

structure of the molecule, (see insert, Figure 1), suggests that it should be much 

easier to break a C-H or N-H bond with excitation of the resultant H atom than 



extract an excited  C or N atom from the ring. The double-bonded O atoms should 

similarly be more difficult to release and excite. This is discussed more 

quantitatively later. Secondly, comparison with the electron impact mass 

spectroscopy work [25] indicates that C+, N+ and O+ ions are very minor (1% or 

less) components in the overall mass spectrum whereas both H+ and H2
+ are more 

prominent. Thus excited H species are expected to be more significant than excited 

C, N or O.  

                   The relative emission cross sections of the first two members of the 

Lyman  series, α:β, are 1.00:0.16 (see Table 1). This may be compared with the 

equivalent value obtained with pyrimidine targets, namely 1.00:0.19. The 

uncertainties listed in Table 1 were computed using standard mathematical 

techniques and were a combination of statistical and spectral calibration errors.  

 

Feature Wavelength (nm) Relative Cross-section  

     α        121.6            1.00 

     β        102.6     0.16 ± 0.01          

     γ          97.3     0.08 ± 0.01 

     δ          95.0     0.05 ± 0.01           

                

 

Table 1.   100 eV relative emission cross section data for the individual lines of the 

Lyman series. 

B. Excitation functions: 

     Figure 2 shows the relative excitation function (emission cross section) of the 

dominant Lyman-α feature. As can be seen, it is devoid of sharp features and 

displays a broad maximum near 160 eV. Analysis of more detailed near threshold 

data reveals a rather gradual threshold at 23 ± 1.0 eV followed by a steeper rise in 

the excitation probability function some 6 eV higher in energy. This suggests that 

at least two different processes are active in the near threshold region. Progression 

to higher impact energies sees a further steepening of the cross section curve 

indicating the presence of more contributing processes. 

 



 

Figure 2. Relative emission cross section for the 121.6 nm H[2p-1s] transition 

in the electron-impact energy range from 0-435 eV 

     Removal of an excited hydrogen atom involves the breaking of a single C-H 

or N-H bond in the molecule. Schneider et al [12] indicate that the minimum 

energy required with production of ground state H is that to fracture the C(7)-H 

bond in the methyl group, namely 3.72 eV. For the C(6)-H bond cleavage 4.77 eV is 

required. The N(1)-H and N(3)-H bonds require energy inputs of 4.08 and 5.19 eV 

respectively. Excitation of the H atom to the 2p state requires a further 10.2 eV and 

hence the lowest possible thresholds for Lyman-α emission would occur between 

13.92 and 15.39 eV. We measure a gradual onset of excitation starting at 

approximately 23 eV followed by a rapid rise in the excitation function some 6 eV 

higher. Even assuming that some kinetic energy release accompanied the 

dissociation, it is very unlikely that this would be sufficient to account for the large 

difference between the observed and calculated thresholds for simple extraction 

with excitation of a hydrogen atom.   



A significant feature of the mass spectrometry work is the revelation [26, 11, 

2] that very often H atoms are released as a by-product of more complicated parent 

molecule break-up. For example ion mass 82 is produced in the reaction: 

             e + T  →  C4H4NO+  +  HNCO + H  + 2e*                               (1) 

Similarly, appearance energy measurements [2] of ionic fragments with masses  

53, 52 and 51 and also the mass sequences 40, 39, 38 and 37 together with 28, 27 

26 and 15, 14, 13 were all shown to be consistent with the loss of H atoms from a 

heavier fragment. This means that H atoms are released in a number of 

fragmentation processes and hence excited H dissociation channels are likely 

available also. Significantly these groups of ions are among the most intense of the 

observed mass spectrum [25] following electron impact.  

      The appearance energy of the mass 82, C4H4NO+ ion, Eq 1, was measured 

(2,11) to be close to 13 eV and so a channel similar to this could be producing 

H(2p) above an appearance energy of around 23 eV in rather close accord with our 

observations. A similar statement could be made about mass 54, NC3H4
+, where 

again a H atom is released in the fragmentation at a threshold energy close to 13 

eV [2, 11]. We note that these ionization processes were observed using either 

photon or electron impact indicating that they were optically allowed. 

       Unfortunately although H+ has been observed (25), its appearance energy 

does not appear to have been measured. Schneider et al (12) have studied the 

details of the dissociation dynamics of thymine following absorption of photons of 

insufficient energy to produce ionic fragmentation. They found that H atoms were 

released from the neutral molecule with kinetic energies in the range 0-2.5 eV. 

Two photons and an intermediate “dark” state were involved. Their minimum 

photon energy was 4.59 eV (270 nm). This channel is open in the electron impact 

case as well as demonstrated by Abouaf et al [27] and so, if additional excitation to 

H(2p) occurred, a minimum appearance energy around 19.4 eV would be expected. 

Again, our measured Lyman-α appearance energy of ~23 eV suggests that this 

channel is not an important contributor even if significant release of kinetic energy 

occurred. The rather sharp rise in the probability function at energies close to 30 

eV suggests that a number of additional processes are contributing at these higher 

energies but it is not possible to quantify these channels. We note that similar 

effects were observed in the ionization channels [2].    

The overall shape of the excitation function with its broad maximum at 160 

eV suggests that spin-flip processes (which would demonstrate a sharp rise in the 

excitation function followed by a rapid decay) are unimportant. The fall off in the 



excitation with energy (E) in the high energy region goes approximately as 1/E 

suggesting that spin-allowed but dipole forbidden processes play an important role. 

Conclusions: 

 Dissociative excitation of thymine has been studied in the VUV spectral 

region. As when pyrimidine targets were considered [19], by far the dominant 

spectral features are the H Lyman lines. Their relative emission cross sections have 

been established using the emissions from H2 in this spectral region to obtain the 

relative sensitivity of our detection system with wavelength. Significantly, we were 

not able to observe emissions from any other atomic species confirming that the 

probability of extracting excited C, O or N atoms from the molecule is very small. 

Clearly break-up into molecular fragments dominates. This is consistent with 

dissociative ionization measurements [2, 11, 25] which indicate that a very small 

(1% or less) fraction of total ionization results in C, O or N atomic ions. Simple 

removal with excitation of the H atom from the molecule, leaving the rest of the 

molecule intact, has been shown to be unimportant in the near threshold region. A 

more likely scenario is fragmentation of the target molecule with release of an 

excited hydrogen atom. 

    It will be interesting to study related bio-molecules, e.g. cytocine, adenine etc, to 

see if similar patterns occur. Rupturing of the hydrogen bonds for such molecules, 

when in the DNA context, could have serious harmful effects. Such experiments 

are currently underway in our laboratory.  
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