
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

4-14-2017

Efficient scalar multiplication against side channel attacks using Efficient scalar multiplication against side channel attacks using

new number representation new number representation

Yue Huang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Huang, Yue, "Efficient scalar multiplication against side channel attacks using new number
representation" (2017). Electronic Theses and Dissertations. 5940.
https://scholar.uwindsor.ca/etd/5940

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/84725329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5940?utm_source=scholar.uwindsor.ca%2Fetd%2F5940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient scalar multiplication against side channel attacks using new

number representation

by

Yue Huang

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfilment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2017

c© 2017, Yue Huang

Efficient scalar multiplication against Side Channel Attacks using new

number representation

by

Yue Huang

APPROVED BY:

Dr. Arunita Jaekel

School of Computer Science

Dr. Kemal Tepe

Department of Electrical and Computer Engineering

Dr. Mitra Mirhassani, Co-Supervisor

Department of Electrical and Computer Engineering

Dr. H. Wu, Supervisor

Department of Electrical and Computer Engineering

Jan. 21, 2017

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or oth-

erwise, are fully acknowledged in accordance with the standard referencing practices. Fur-

thermore, to the extent that I have included copyrighted material that surpasses the bounds

of fair dealing within the meaning of the Canada Copyright Act, I certify that I have ob-

tained a written permission from the copyright owner(s) to include such material(s) in my

thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iii

ABSTRACT

Elliptic curve cryptography (ECC) is probably the most popular public key systems

nowadays. The classic algorithm for computation of elliptic curve scalar multiplication

is Doubling-and-Add. However, it has been shown vulnerable to simple power analysis,

which is a type of side channel attacks (SCAs). Among different types of attacks, SCAs are

becoming the most important and practical threat to elliptic curve computation. Although

Montgomery power ladder (MPL) has shown to be a good choice for scalar multiplication

against simple power analysis, it is still subject to some advanced SCAs such like differ-

ential power analysis. In this thesis, a new number representation is firstly proposed, then

several scalar multiplication algorithms using this new number system are presented. It

has also been shown that the proposed algorithms outperform or comparable to the best

of existing similar algorithms in terms of against side channel attacks and computational

efficiency. Finally we extend both the new number system and the corresponding scalar

multiplication algorithms to high radix cases.

iv

DEDICATION

To my family:

Father: Wei Huang

Mother: Yufeng Cong

Sister: Chao Huang

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to everyone who helped

me during my graduate study.

First of all, I am deeply grateful to my supervisor Dr. Huapeng Wu, who guided me

during my study for the master degree. He is always patient with me. He guided me

throughout the writing of this thesis. His broad knowledge have been of great value. In

addition, I would like to show my gratitude to my co-supervisor Dr. Mitra Mirhassani, who

gave me a lot of valuable advices and guidances during my research. Also, I want to thank

my committee members, Dr. Kemal Tepe and Dr. Arunita Jaekel, for their attendance and

advices in my seminar and defense.

Additionally, I would like to appreciate my loving parents. Without their support and

encouragement, it is impossible for me to achieve such accomplishment.

Finally, I wish to extend my gratitude to everyone at UWindsor’s Faculty of Electrical

and Computer Engineering for their efforts during my study in the M.A.Sc. Program.

Moreover, I gratefully thank for the financial support from University of Windsor and my

supervisor Dr. Huapeng Wu.

Yue Huang

vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ALGORITHMS xii

LIST OF ACRONYMS xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions . 2

1.3 Thesis Organization . 3

2 Public Key Cryptography and Side Channel Attacks 4

2.1 Asymmetric Cryptography . 4

2.1.1 Elliptic curve cryptosystem and scalar multiplication 4

2.2 Side Channel Attacks . 5

2.2.1 Timing attack . 6

2.2.2 Powering analysis . 6

2.2.3 Fault attack . 7

vii

2.2.4 Other side channel attacks . 7

3 Overview of Existing Works 9

3.1 Doubling-and-Add Always Algorithms 9

3.1.1 Doubling Attack . 10

3.1.2 C Safe Error Attack . 11

3.2 Montgomery Powering Ladder . 11

3.2.1 Relative Doubling Attack . 12

3.2.2 M Safe Error Attack . 13

3.2.3 Comparative Power Analysis . 16

3.2.4 Park’s Fault Attack . 16

3.3 Follow up Countermeasures on Exponent and Message Masking 18

3.3.1 Exponent Splitting . 18

3.3.2 High Orders Attack against Exponent Splitting 19

3.3.3 Blinded Fault Resistant Exponentiation 19

3.3.4 Template Attack against Masked MPL 20

3.4 Sequence Masking . 21

3.5 Combined Sequence Masking and Exponent Splitting algorithm proposed

by He . 21

3.6 Joye’s m-ary Algorithms . 21

3.6.1 Joye’s Binary Algorithms . 24

4 Proposed Elevated Binary Number System (EBNS) 27

4.1 Elevated Binary Number System Property 27

4.1.1 Convert between EBNS and Binary Number System 27

4.1.2 Conversion between EBNS and Decimal Number System 28

4.2 Elevated High Radix Number System . 29

viii

5 Proposed Algorithms using Elevated Number System 31

5.1 Binary Representation . 31

5.2 High Radix Representation . 35

5.3 Security Analysis and Comparison . 38

5.3.1 Binary Representation . 38

5.3.2 High Radix Representation . 44

5.4 Complexity Analysis and Comparison . 46

5.4.1 Binary Representation . 46

5.4.2 High Radix Representation . 48

6 Conclusions and Possible Future Works 54

6.1 Conclusions . 54

6.2 Possible Future Works . 54

REFERENCES 56

VITA AUCTORIS 60

ix

LIST OF TABLES

2.1 Side channels and Corresponding Side channel attacks 6

3.1 Computations of Me and (M2)e using Montgomery Powering Ladder 14

3.2 Computation of modular exponentiation when a fault is injected in the

squaring operation . 18

3.3 Computation of modular exponentiation when a fault is injected in the

squaring operation . 18

5.1 Computations of kP and 2(kP) using Proposed Alg 5.1 40

5.2 Security against SCAs among Left-to-Right algorithms (Binary Represen-

tation) . 41

5.3 Computation of Alg 5.3 when a fault is injected in the addition operation . . 43

5.4 Computation of Alg 5.6 when a fault is injected in the addition operation . . 43

5.5 Security against SCAs among Right-to-Left algorithms (Binary Represen-

tation) . 44

5.6 Comparison against SCAs among High Radix algorithms 46

5.7 Complexity comparison among left-to-right algorithms (Binary Represen-

tation) . 46

5.8 Complexity comparison among right-to-left algorithms (Binary Represen-

tation) . 47

5.9 Complexity comparison among high radix algorithms 48

5.10 Complexity comparison among high radix algorithms 49

x

LIST OF FIGURES

3.1 Example of comparative power attack against MPL 17

4.1 Architecture of converting EBNS into Binary Number System 28

4.2 Architecture of converting Binary Number System into EBNS 29

5.1 Example of comparative power attack against Alg 5.1 39

xi

LIST OF ALGORITHMS

3.1 Doubling-and-Add algorithm (left-to-right) 9

3.2 Doubling-and-Add algorithm (right-to-left) 9

3.3 Square-and-Multiply Always algorithm (left-to-right) 10

3.4 Montgomery Powering Ladder . 12

3.5 Rewrite square-and-multiply algorithm . 15

3.6 Masked Montgomery Powering Ladder 20

3.7 Joye’s m-ary left-to-right algorithm (RSA) 22

3.8 Joye’s m-ary left-to-right algorithm (ECC) 23

3.9 Joye’s m-ary right-to-left algorithm (RSA) 24

3.10 Joye’s m-ary right-to-left algorithm (ECC) 24

3.11 Joye’s binary left-to-right algorithm (RSA) 25

3.12 Joye’s binary left-to-right algorithm (ECC) 25

3.13 Joye’s binary right-to-left algorithm (RSA) 26

3.14 Joye’s binary right-to-left algorithm (ECC) 26

4.1 Convert EBNS into Binary Number . 27

4.2 Convert Binary Number into EBNS . 28

4.3 Convert Decimal Number into EBNS . 29

5.1 Scalar multiplication using EBNS (left-to-right) 31

5.2 Scalar multiplication using EBNS (right-to-left) version 1 32

5.3 Scalar multiplication using EBNS (right-to-left) version 2 33

5.4 Scalar multiplication using EBNS (right-to-left)version 3 33

5.5 Scalar multiplication using EBNS (right-to-left) version 4 34

5.6 Scalar multiplication using EBNS (right-to-left) version 5 35

5.7 Scalar multiplication using Elevated High Radix Number (left-to-right) . . 35

5.8 Scalar multiplication using Elevated High Radix Number (right-to-left)

version 1 . 36

xii

5.9 Scalar multiplication using Elevated High Radix Number (right-to-left) . . 37

5.10 Scalar multiplication using Elevated High Radix Number (right-to-left)

version 2 . 38

5.11 Scalar multiplication using Elevated High Radix Number (right-to-left)

version 3 . 38

xiii

LIST OF ACRONYMS

DPA Differential Power Analysis

EBNS Elevated Binary System

ECC Elliptic Curve Cryptosystem

ECDLP Elliptic Curve Discrete Logarithm Problem

EM Electromagnetic

MPL Montgomery Power Ladder

SCAs Side channel attacks

SPA Simple Power Analysis

xiv

1 Introduction

1.1 Motivation

The Internet has an enormous impact on many aspects of our daily life. One of the great

advantage of Internet is that it makes data communication much easier. Accordingly, cy-

ber security gains people’s attentions more than ever. Among a variety of technologies

to provide cyber security, cryptography is probably the most important and effective one.

Cryptography can provide many security services, such like confidentiality and authentica-

tion. For instance, public key cryptography is well known for providing digital signature

and solving key distribution problems. Elliptic curve cryptography (ECC) is considered the

most popular public key systems nowadays. The most demanded computation in ECC is

scalar multiplication.

However, there exist many kinds of attacks which can potentially compromise the secu-

rity of the cryptosystems. Besides the brute force attack, mathematical attacks and protocol

level attacks [1], side channel attacks (SCAs) [2] has become probably the most dangerous

threat to cryptosystems. SCAs utilize the information leaked from the physical implemen-

tation of a cryptosystem, rather than the weaknesses in the algorithms and protocols. The

leakage information includes timing information, power consumption, electromagnetic ra-

diation and sounds etc. By collecting and analysing these side channel information, an

attacker is able to launch the corresponding SCAs.

The classic algorithms to compute scalar multiplication is doubling-and-add algorithm.

Due to the unbalanced number of operations for different value of scalar bits, doubling-

and-add algorithm is vulnerable to the most basic SCA, simple power analysis (SPA) [3].

SPA involves that an attacker directly observes the power spectrum of a device on which

the cryptography algorithm is being performed. As an improved scalar multiplication algo-

rithm, MPL can resist to SPA since it has balanced number of operation all the time, thus

corresponding power consumption reveals no useful information about the algorithm.

1

Recently, a few sophisticated SCAs have been proposed to against MPL, such as rel-

ative doubling attack [4], comparative power analysis [5] and Park’s fault attack [6]. For

example, comparative power analysis uses two related inputs to generate collisions for

MPL. A more recent algorithm described in [7] by Joye can successfully resist to the SCAs

proposed in [4] [5] but still shows weakness in resisting Park’s fault attack [6]. In this

thesis, we proposed new scalar multiplication algorithms which are shown more advanta-

geous over or comparable to the best of existing similar algorithms, in terms of resistance

to SCAs and computational efficiency.

1.2 Main Contributions

The main contributions of this thesis are summarized as follows:

• A new binary number system, called Elevated binary number system (EBNS), is

proposed. Conversions between this new number system and the conventional binary

number is discussed. An extension of EBNS to high radix system is also presented.

• New left-to-right scalar multiplication algorithm using EBNS is proposed. This algo-

rithm shows advantage in terms of computation efficiency while maintains the same

security strength against SCAs compared to the best existing work. We also propose

five right-to-left algorithms using EBNS. Compared to the best existing work, all

proposed 5 algorithms have a advantage of not having a constraint condition. One of

the proposed right-to-left algorithm is able to resist Park’s fault attack [6] while all

other existing work can not.

• We propose one left-to-right algorithm using elevated high radix number system.

Compared to the best existing work described in [7], the main superiority of this

algorithm is to reduce complexity while not sacrificing the security strength. We also

propose three right-to-left algorithms. One of them can successfully resist to Park’s

fault attack while the existing work can not.

2

1.3 Thesis Organization

An organization of the rest of this thesis is as follows. Chapter 2 presents the background

of (ECC). A brief overview of existing works is given in Chapter 3. Chapter 4 proposes a

new number system, Elevated Binary Number System (EBNS). In Chapter 5, we propose

several scalar multiplication algorithms using new number system including binary cases

and high radix cases. Their comparison with existing work in terms of complexity and

security strength against side channel attacks are presented in this chapter. In Chapter 6,

the conclusion and possible future works are given.

3

2 Public Key Cryptography and Side Channel Attacks

2.1 Asymmetric Cryptography

Asymmetric cryptography, also known as public key cryptography, uses public and private

keys to encrypt and decrypt data. One key in the pair which can be shared with public is

called public key. The other key in the pair is kept secret named private key. Either of the

keys can be used to encrypt a message, while the opposite key is used for decryption.

Public key cryptography is addressed to provide two main security services: key dis-

tribution, which is used to exchange keys without having to trust a third party, and digital

signature, which is used to verify the intactness of a message from a claimed sender. There

are several public key cryptosystems which are frequently used currently, such as RSA

and ECC. Compared with symmetrical key cryptosystems, public key cryptosystems usu-

ally have higher computational complexity while provides unique security services, which

makes them indispensable in cyber security.

2.1.1 Elliptic curve cryptosystem and scalar multiplication

RSA and ECC are the most widely used and best known asymmetric cryptosystems. The

invention of RSA was in later 1970s at MIT, by Ron Rivest, Adi Shamir and Len Adle-

man [8]. And such cryptosystem is named after the first digit of their last names. The core

operation of RSA algorithm is modular exponentiation. Different from RSA, ECC has not

been patented. The suggestion of using elliptic curve in cryptography is first published

in [9] in 1985. Scalar multiplication is the main computation in ECC algorithm. Scalar

multiplication is very similar to modular exponentiation. On one hand, they both work

with cyclic group. On the other hand, since they share the similar computation structure,

they are subjects to similar SCAs. Because of the similarity, in the following of the pa-

per, we mainly focus on analysing scalar multiplication algorithms and the analysis can be

easily extended to modular exponentiation algorithms.

4

Assume Alice wants to use ECC for communication. She needs to set up an ECC

system. It includes parameters of p,a,b,P,n,h,Q,d. First, she selects a prime p and elliptic

curve E with (a,b) over GF(p).

E : y2 = x3 +ax+b, where a and b ∈ GF(p).

Second, she counts the points on E and let it be]E(GF(p)). Then she selects a point P

of the maximal order n on E, which h =]E(GF(p))/n. For public-private key pair (Q,d),

Alice needs to choose a secret number d ∈ [1,n−1]. Then computes scalar multiplication

Q = dP. Q is Alice’s public key, d is the private key.

In a scenario, Bob wants to send an encrypted message to Alice using ECC. Assume m

is the original message. He should choose a random number r, and computes C1 = m+ rQ,

C2 = rP. Then sends C1 and C2 to Alice. Upon receiving the message, Alice needs to

computes C1−dC2 = m to get the original message m.

From the computations mentioned above, we can see the core operations of ECC en-

cryption and decryption is point addition and point doubling based on elliptic curve. In

order to illustrate how to compute point addition and point doubling, we firstly assume an

elliptic curve:

E : y2 = x3 +ax+b, where a,b ∈ GF(p).

Then let P1(x1,y1) and P2(x2,y2) be the two points on the curve.

Assume P3(x3,y3) = P1(x1,y1)+P2(x2,y1) 6= O. Then we can get

x3 = λ 2− x1− x2; y3 = λ (x1− x3)− y1;

where λ = y2−y1
x2−x1

if P1 6= P2 and λ =
3x2

1+a
2y1

if P1 = P2.

2.2 Side Channel Attacks

The side channel attacks we consider are a class of physical attacks in which an attacker

tries to exploit physical information leakages such as timing information, power consump-

tion, or electromagnetic radiation [2].

Depends on what kind of leakage of system information SCAs relies on, we can cate-

5

Table 2.1: Side channels and Corresponding Side channel attacks

Side Channels Information Side Channel Attacks

Power Consumptions
Simple Power Analysis,

Differential Power Analysis,
Comparative Power Analysis etc.

Timing information Timing attack
Faults response Safe-error Attacks

Other SCAs: Electromagnetic Radiation,
Sounds etc.

EM Attacks,
Acoustic cryptanalysis

gorized it into several types. The common types of leakage information and corresponding

side channel attacks are shown in Table 2.1.

2.2.1 Timing attack

When the running time of a cryptographic device is not constant, this time may leak in-

formation about the secret parameters involved, so that careful timing measurement and

analysis may allow an attacker to recover the system’s secret key. This idea was first ap-

peared in the scientific literature in 1996 [10].

Timing attack is practical in many cases. For example, in 2003, Boneh and Brumley

demonstrated a network-based timing attack on an OpenSSL-based web server running on

a machine in a local network. The attack was able to successfully recover a server private

key [11].

2.2.2 Powering analysis

Power analysis involves an attacker studies the power consumption of a cryptographic hard-

ware device (such as a smart card). It can be roughly divided in two types: simple power

analysis (SPA) and differential power analysis (DPA) [2].

In simple power analysis (SPA), an attacker directly observes a device’s power spec-

trum. It is known that the amount of power consumed by the device varies depending on

6

the data operated on and the instructions performed during different parts of an algorithm’s

execution [3].

Differential power analysis (DPA) is a more advanced form of power analysis which can

allow an attacker to compute the intermediate values within cryptographic computations by

statistically analysing data collected from multiple cryptographic operations [12].

2.2.3 Fault attack

Fault attack is a well known cryptanalysis method in which an attacker purposely induces

certain types of fault into a cryptographic device. Based on the correctness of outputs from

the device due to the injection of faults, an adversary is able to obtain certain knowledge of

the secret key which is embedded in the device [6]. These so-called fault attacks were first

described against public key schemes by Boneh, DeMillo and Lipton [13].

As illustration of the attack scheme, one of fault based attack mentioned by Sung Ming

Yen and Marc Joye is explained as follows. In [14] and [15], they describe the attack as

this: By timely inducing a fault during the execution of an instruction, an attacker may

deduce whether the targeted instruction is redundant. If the final result is correct then

the instruction is indeed redundant (or dummy operation [15]). If not, the instruction is

effective. This knowledge may then be used to obtain one or more bits of an exponent.

Such attacks are referred to as safe-error attack. Since safe error attack is able to check the

effectiveness of each operation, it is dangerous to have dummy operations in cryptographic

algorithms. More fault attacks can be found in [6] [16] [17].

2.2.4 Other side channel attacks

Electromagnetic attack (EM) is a side channel with a long history of rumors and leaks

associated with its use for espionage. It is well known that defence organizations across the

world are paranoid about limiting electromagnetic emanations from their equipment and

facilities and conduct research on EM attacks and defences in total secrecy [3].

7

In the public domain, the significance of the EM side channel was first demonstrated

by van Eck in 1985 [18]. He showed that EM emanations from computer monitors could

be captured from a distance and used to reconstruct the information being displayed.

Acoustic cryptanalysis is a type of side channel attacks which exploits sounds emitted

by computers or machines. Modern acoustic cryptanalysis mostly focuses on the sounds

produced by computer keyboards and internal computer components, but historically it has

also been applied to impact printers and electromechanical cipher machines [19].

One obvious countermeasure is to use sound dampening equipment, such as a silent

keyboard. It can be a keyboard made of rubber, or a keyboard based on a touchscreen or

touchstream technologies. Recently, virtual keyboards have appeared that can be projected

on a flat surface or in the air [20].

8

3 Overview of Existing Works

3.1 Doubling-and-Add Always Algorithms

The most classic algorithms to compute scalar multiplication is Doubling-and-Add algo-

rithms, which are presented as Alg. 3.1 and Alg.3.2. The first one computes from the most

significant bit, while the other one starts from the least significant bit.

Algorithm 3.1 Doubling-and-Add algorithm (left-to-right)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}
Output: R = kP ∈ E

1: x = P;
2: for i = h−2 down to 0 do
3: x = 2x;
4: if ki = 1 then
5: x = x+P;
6: end if
7: end for
8: The final value of x is x = kP.

We can see from Alg 3.1 and Alg 3.2, if ki equals to 1, there are two operations per-

formed, which are one doubling and one addition. If ki = 0, only one doubling operation is

computed. Since the number of operation varies from different value of key bits, the power

spectrum of performing this algorithm can certainly reveal the value of each key bit. So

doubling-and-add algorithms are obviously vulnerable to SPA.

Algorithm 3.2 Doubling-and-Add algorithm (right-to-left)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}
Output: R = kP ∈ E

1: x = O;
2: y = P;
3: for i = 0 down to h−1 do
4: if ki = 1 then
5: x = x+ y;
6: end if
7: y = 2y;
8: end for
9: The final value of x is x = kP.

9

Square-and-multiply always algorithm as an improvement to against SPA was invented

by J. Coron in 1999 [21]. The algorithm which computes scalar multiplication has also been

developed. The left-to-right version of algorithm is shown as Alg 3.3. Dummy operation

is introduced in the algorithm to balance the number of operations for different value of

key bits. Though this algorithm resists to SPA, it’s still vulnerable to newer attacks such as

doubling attack [22] and C safe error attack [15].

Algorithm 3.3 Square-and-Multiply Always algorithm (left-to-right)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}
Output: R = kP ∈ E

1: x = O;
2: y = O;
3: for i = h−1 down to 0 do
4: x = 2x;
5: y = x+P;
6: if ki = 1 then
7: x = y;
8: end if
9: end for

10: The final value of x is x = kP.

3.1.1 Doubling Attack

Doubling attack was proposed in 2003 [22]. It’s so named since it is based on the doubling

operation in the scalar multiplication. Consider left-to-right version of doubling-and-add

algorithm as an example, the main idea of this attack is to compute kP and k(2P) at the

same time and compare the power spectrum of their doubling operations. As a result, we

can observe that if and only if the secret key bit ki equals to 0, the doubling operation

in iteration i+ 1 for compute kP is the same as in iteration i for compute k(2P). So if a

collision is detected, the information of ki = 0 can be obtained. This attack is also effective

to against square-and-multiply algorithms, in which the attacker chooses to compute me

and (m2)e instead.

10

3.1.2 C Safe Error Attack

Another attack square-to-multiply always algorithm vulnerable to is C safe error attack.

It was proposed by S. Yen in 2002 [15]. It specifically targets algorithms with dummy

operations. The error an attacker injects to is a temporary random computational error. The

attack is so named as C safe error attack. We use Alg 3.3 as an example to illustrate how this

attack works in detail. If the attacker injects an error into the dummy operation y = x+P,

then this error will be ignored if the secret bit ki = 0. This is because the faulty result y will

not participate into the next operation x = y. As a result, the algorithm is correct and the

secret bit ki = 0 can be extracted. Otherwise, ki = 1 is obtained.

Even doubling attack and C safe error attack have been proven effectively against sev-

eral algorithms, they can be prevented by using a newer algorithm, Montgomery Powering

Ladder.

3.2 Montgomery Powering Ladder

Montgomery Powering Ladder (MPL) was initially invented as an improvement of square-

and-multiply algorithm towards SPA in 2003 [23]. As shown in Algorithm 3.4, it always

performs a multiplication followed with a squaring. Consequently, there is no difference in

power consumption regarding to compute different value of bits. Also, there is no dummy

operation in the algorithm, the error induced by C safe error attack would always cause

a faulty result. Thus, no useful information can be obtained to tell the value of key bits.

Moreover, the original doubling attack can not tell the value of key bits either.

Even MPL can resist to many SCAs, it is still vulnerable to some advanced side channel

attacks, such as relative doubling attack [24], M safe error attack [14], comparative power

analysis [5] and Park’s fault attack [6].

11

Algorithm 3.4 Montgomery Powering Ladder

Input: M,N,e = (en−1en−2...e1e0)2, ei ∈ {0,1}
Output: C = Me mod N

1: R0 = 1;R1 = M;
2: for i = n−1 down to 0 do
3: if ei = 0 then
4: R1 = R0×R1; R0 = R0

2;
5: else
6: R0 = R0×R1; R1 = R1

2;
7: end if
8: end for
9: The final value of C is C = Me mod N.

3.2.1 Relative Doubling Attack

Relative doubling attack was proposed in 2006 to specifically attack Montgomery power

ladder [24]. The assumption of this attack is basically the same as what is in doubling

attack. The difference is that the relative doubling attack aims to derive the knowledge of

whether or not the key bits equal to each other but not the value of key bits directly. The

relative doubling attack is based on the following observations of MPL:

Let ∑
t−1
i=0 ei2i be the binary expansion of exponent e. Defining L j = ∑

t−1
i= j ei2i− j and

H j = L j +1. Then we have

L j = 2L j+1 + e j = L j+1 +H j+1 + e j−1 = 2H j+1 + e j−2

Based on the above observation, we can obtain

L j = 2L j+1,H j = L j+1 +H j+1,if e j = 0;

L j = L j+1 +H j+1,H j = 2H j+1,if e j = 1;

Recall from the MPL algorithm, the operations of step 4 and step 6 are designed to be

as follows:

Equation 1: (R1 = MHi,R0 = MLi) = (MLi+1 ∗MHi+1,(MLi+12
) if ei = 0;

Equation 2: (R0 = MLi,R1 = MHi = (MLi+1 ∗MHi+1,(MHi+12
) if ei = 1;

It’s easy to observe two facts:

Fact 1. Given ei = 0, then we have Li = 2Li+1.

12

Fact 2. Given ei = 1, then we have Hi = 2Hi+1.

From Equation 1, we understand that if ei = ei−1 = 0 then both

R0 = MLi2: step 4 of iteration i−1 when evaluating Me.

R0 = (M2)
Li+1: step 4 of iteration i when evaluating (M2)e.

will perform the same computation because of Li = 2Li+1. Due to this observation

of collision on computation, a new doubling-like attack can be implemented to obtain the

knowledge of ei = ei−1 = 0.

From Equation 2, we also observe that if ei = ei−1 = 1, then both

R1 = MHi 2: step 6 of iteration i−1 when evaluating Me.

R1 = (M2)
Hi+1: step 6 of iteration i when evaluating (M2)e.

will perform the same computation because of Hi = 2Hi+1. This observation of collision

on computation leads to the knowledge of ei = ei−1 = 1.

It’s easy to understand that the collision of two computations will not reveal the value

of the operand. The only knowledge obtained is ei = ei−1, if a collision is detected. On the

other hand, ei 6= ei−1, if no collision is detected.

For example, we assume the private exponent e to be 75 = (1001011)2 and the two

related input to be Me and (M2)e respectively. Table 3.2 provides the details of computing

Me and (M2)e using MPL. Given e0 = 1, then step 6 of MPL algorithm will be calculated.

If we observe a collision of comparing doubling operation in iteration 0 for compute Me

and in iteration 1 for compute (M2)e, then we can obtain the knowledge of e0 = e1 = 1.

If no collision is detected, e0 = 1 is obtained. The idea of this attack is also applied to

MPL algorithm computes scalar multiplication. Instead of choosing Me and (M2)e, the two

related input data should be chosen as kP and 2(kP).

3.2.2 M Safe Error Attack

M safe error attack is the first published safe error based attack, which was proposed in

2000 [14]. In order to explain how the attack works in detail, we need to rewrite the

13

Table 3.1: Computations of Me and (M2)e using Montgomery Powering Ladder

i ei Process of Me Process of (M2)e

6 1
R0 = 1×M;

R1 = M2
R0 = 1×M2;
R1 = (M2)2

5 0
R1 = M2×M;

R0 = M2
R1 = M4×M2;

R0 = (M2)2

4 0
R1 = M3×M2;

R0 = (M2)2
R1 = M6×M4;

R0 = (M4)2

3 1
R0 = M4×M5;

R1 = (M5)2
R0 = M8×M10;

R1 = (M10)2

2 0
R1 = M10×M9;

R0 = (M9)2
R1 = M20×M18;

R0 = (M18)2

1 1
R0 = M18×M19;

R1 = (M19)2
R0 = M36×M38;

R1 = (M38)2

0 1
R0 = M37×M38;

R1 = (M38)2
R0 = M74×M76;

R1 = (M76)2

Returen R0 = M75 R0 = M150

classic square-and-multiply algorithm first. The commonly used algorithm for computing

Me mod N where the exponent e is expressed in the binary form as e = ∑
n−1
i=0 ei2i. Suppose

that the modular multiplication R = AB mod N has to be preformed. Let ∑
n−1
i=0 ai2i be the

binary expansion of A. Then, A can be recoded in radix 2t as ∑
m−1
j=0 A j(2t) j instead. Hence

we can rewrite the product of A and B. Algorithm 3.5 shows the rewrite version of square-

and-multiply algorithm [14].

14

Algorithm 3.5 Rewrite square-and-multiply algorithm

Input: M,N,e = (en−1,en−2 . . .e0)2
Output: A = Me mod N

1: A = 1;B = M;
2: for i = 0 to n−1 do
3: if ei = 1 then
4: R = 0;
5: for j from m−1 down to 0 do
6: R = (R2t +A jB) mod N;
7: end for
8: A = R;
9: end if

10: R = 0;
11: for j from m−1 down to 0 do
12: R = (R2t +B jB) mod N;
13: end for
14: B = R;
15: end for

The main idea of M safe error can be understood as follows: We can see from algorithm

3.5, if one or several errors are introduced into the more significant bit positions of register

A, after restoring the result R into A (step 8), no error will be detected if the faulty bits

belong to words A j are no loner required. For example, we assume that during iteration i,

an error is injected into word Ak. In the scenario that ei = 1 and the error is induced when

counter j of step 6 is less than k, then the faulty Ak will not affect the final result of R.

Eventually, after step 8, the faulty A will be cleared, Such kind of temporary error is called

a safe error. But in the scenario of ei = 0, the final result will be incorrect. Thus, we can

obtain the value of ei [14] [2].

M safe error attack is effectively against MPL too. Recall from Alg 3.4, suppose that

R1 is assigned as the multiplier. If ei = 0, two operations R1 = R0×R1 and R0 = (R0)
2 are

performed. An error injected into the higher part of R1 is an M safe error, since the error in

register R1 will be cleared after the operation R1 = R0×R1. The error does not affect the

final result of the algorithm. If ei = 1, the error injected into R1 will cause a faulty result.

Based on these two distinct results, an attacker can recover the value of bit ei. It’s the same

15

case of setting R0 as the multiplier.

3.2.3 Comparative Power Analysis

Comparative power analysis is a power analysis technique which was proposed in 2000 [5].

It can attack multiple algorithms including square-and-multiply algorithms, square-and-

multiply always algorithms, Sliding window methods and MPL.

It’s similar to doubling attack only more powerful, the basic idea is also to input a

chosen messages to generate collisions. Instead of choosing Me and (Me)2, The message

pair could be selected as (Me)α and (Me)β . We can see, if 2α = β , it can be seen as the

doubling attack. It’s the same case for MPL algorithm that computes scalar multiplication.

The message pair can be chose as αkP and βkP.

Fig.3.1 shows an example of comparative power analysis applied to MPL. Suppose the

attacker already knows the first four bits of the exponent e, which are (1100)2. Assuming

that ek−5 = 1, we use the value of R1(= Y 13) as the input of the squaring operation. Since

ek−2 = 1, the message pair Y 13 = Z2 is then selected to meet the condition. Compare the

power traces of the two shadow parts, if the results are identical, it means the assumption

is correct. otherwise, the assumption is wrong, which means ek−5 = 0.

3.2.4 Park’s Fault Attack

MPL is also vulnerable to Park’s fault attack which was proposed in 2009 [6]. The main

idea of this attack is to inject a fault into one loop of the algorithm and check the correctness

of the next loop’s result. The attacker is able to obtain the relationship of two adjacent secret

bits.

Take MPL as an example, the basic assumption is that the attacker can insert a fault dur-

ing the exponentiation operation and measure the power consumption traces. We also as-

sume that the attacker knows the power traces of multiplication R0×R1 mod N and squar-

ing R0×R0 mod N of every iteration loop i. There are two scenarios to inject a fault.

16

Fig. 3.1: Example of comparative power attack against MPL

In the first scenario, we assume that an attacker injects a fault during the multiplication

computation R1 or R0 = R0×R1 of the loop i+1. Recall from algorithm 3.4, if ei+1 = 0/1,

then the intermediate value R1/R0 becomes a faulty one. The output of this scenario is

shown as Table 3.2. From the table, we can see if bit ei+1 = ei, the two power traces

of squaring operation in loop i will be the same. However, when the two key bits are

different, the attacker is able to observe difference between two power traces. As a result,

the attacker can obtain the knowledge of whether or not ei+1 equals to ei. More specifically,

if an attacker who knows the value of ei+1, he can obtain the value of next key bit ei by

observing the power differences in loop i.

In the second scenario, we assume that an attacker injects a fault during the squaring

computation R2
0 or R2

1 of loop i+1. If ei+1 = 0/1, then intermediate value R0/R1 becomes

a faulty one. This fault model is independent of the multiplication step of the loop i+ 1,

and has the same assumption of fault type on the multiplication operation. The output of

this scenario is shown as Table 3.3. As we can see, if key bit ei+1 differs from ei, the two

17

Table 3.2: Computation of modular exponentiation when a fault is injected in the squaring
operation

Secret key bit loop i+1 loop i
ei+1 ei Multiply Squaring Multiply Squaring

0 0
A fault is injected,

generate faulty value
Normal Error

Normal
0 1 Error
1 0 Error
1 1 Normal

Table 3.3: Computation of modular exponentiation when a fault is injected in the squaring
operation

Secret key bit loop i+1 loop i
ei+1 ei Multiply Squaring Multiply Squaring

0 0

Don’t care
A fault is injected,

generate faulty value
Error

Error
0 1 Normal
1 0 Normal
1 1 Error

power traces in the squaring operation in loop i will be the same. However, when key bits

ei+1 and ei are the same, the erroneous processing within squaring operation in the loop i

will generate some power differences between the two power traces. So an attacker who

knows ei+1 can also derive the next secret bit ei by observing the power spectrum in the

loop i.

3.3 Follow up Countermeasures on Exponent and Message Masking

3.3.1 Exponent Splitting

The idea of data splitting was first abstracted in [25]. And in [26], the idea was used

specifically on exponent. For modular exponentiation, the idea of splitting is to pick a

random r (smaller than e) and split e as r′ = e− r. Then the modular exponentiation can be

computed as me = mr+(e−r) = mr×me−r. The recovery process can be easily performed as

18

S = Sr× Sr′ = Mr+r′ mod N = Me mod N. The weakness of this method is it doubles the

computation load and can be broke by high order attack [27].

3.3.2 High Orders Attack against Exponent Splitting

High Orders Attack was proposed in [27] by Frederic Muller and Frederic Valette. They

discovered some statistical properties of the exponent splitting. Then they used their dis-

covery to mount side channel attacks.

The properties can be understood as this: Ci =Ci⊕ ri⊕ r′i is always satisfied, where Ci

is the carry bit in i-th iteration and ri, r′i refer to the two split elements of exponent e. Pi is

defined as the probability for the case of Ci = 0 and Pr(ri,r′i) as the probability for bracket

case, we could have the probability transactions. From it, the bit-level probabilities of step

i can be derived from previous steps.

With this property in hand, an attacker can apply it with side channel attacks such as

fault attacks, safe error attacks and address-bit attacks to learn the secret exponent. Then

exponent splitting countermeasure is no longer secure.

3.3.3 Blinded Fault Resistant Exponentiation

Blinded Fault Resistant Exponentiation is also known as Masked Montgomery Powering

Ladder (Masked MPL). It was proposed in [26] by G. Fumaroli and D. Vigilant in 2009.

It is a message masking technique based on MPL. It’s shown as Algorithm 3.6. At the

beginning of the algorithm, two registers R0 and R1 are blinded by multiply a random

picked number r. Then all the intermediate values of R0 and R1 are masked by the element

r2n−i
.

The register R2 is initialized with the anti-mask r−1 and such anti-mask is also updating

during each iteration process. Multiply R0 and R2 at the end of the algorithm will maintain

the correctness of the result. In addition, in order to thwart potential fault attack and expo-

nent or loop counter disturbance, an on-the-fly checksum function is performed to satisfy

19

such purpose.

Other than resist to SPA, Masked MPL also successfully withstand differential power

analysis (DPA) and fault attacks. Unless the random number r is revealed, or it is a weak

mask, Masked MPL is considered secure. And thanks to the Checksum function’s partici-

pation, most fault attack cannot pass the very last sum checking. Failure in such checking

will cause the calculated results wiped. However this attack is vulnerable to template at-

tack, which is able to reveal the secret mask.

Algorithm 3.6 Masked Montgomery Powering Ladder

Input: M,e = (en−1en−2...e1e0); init(CKS)
Output: C = Me

1: Pick random number r
2: R0 = r;R1 = rM;R2 = r−1;
3: for i = n−1 down to 0 do
4: if ei = 0 then
5: R1 = R0×R1; R0 = R0

2; R2 = R2
2

update (CKS,ei);
6: else
7: R0 = R0×R1; R1 = R1

2; R2 = R2
2

update (CKS,ei);
8: end if
9: R2 = R2⊕CKS⊕CKSre f ;

10: end for
11: Return C = R0×R2.

3.3.4 Template Attack against Masked MPL

C. Herbst and M. Medwed proposed the template attacks in [28]. It has been proved that

it is effective to attack Masked Montgomery Ladder via guessing the value of random

mask [28].

Template attack can be seen as a advanced case of SPA. First, the attacker tries to obtain

the Hamming weights from obtained power traces. In this stage, DPA, probability model

multivariate normal distribution (MVN) and maximum likelihood (ML) decision rule are

used. Second, the attacker will filter out impossible operand values to recover an operand

of a multiplication or a squaring. It involves two steps. In the first sieving step, wrong

20

candidates are filtered out. In the second step, the correct bit will be selected. Hence, the

mask will be revealed.

3.4 Sequence Masking

Sequence masking is another effective countermeasure to resist certain side channel attacks.

It usually changes the procedure of exponentiation methods. One example is Square-and-

Multiply-always method [21]. There is few work about sequence masking. since it’s diffi-

cult to change the computation sequence in an algorithm. carelessly modifying may dam-

age its correctness. Also, simply adding dummy operation may make the algorithm more

vulnerable. Nevertheless, sequence masking is a possible countermeasure of preventing

SCAs.

3.5 Combined Sequence Masking and Exponent Splitting algorithm

proposed by He

A highly secure algorithm which combines sequence masking and exponent splitting tech-

nique together was proposed by He in 2013. In [29], it shows that despite its high complex-

ity, the algorithm can successfully resist to all the side channel attacks mentioned above.

3.6 Joye’s m-ary Algorithms

There is another algorithm called highly regular m-ary powering ladders [7], which can be

seen as m-ary generalizations of Montgomery ladder. It was originally invented to compute

modular exponentiation in RSA. It can be easily extended to perform scalar multiplication

in ECC. Similar to MPL, this algorithm always repeat the same instructions in the same

order, without inserting dummy operations. It’s available in any radix m and in any compute

direction (left-to-right or right-to-left).

Joye’s m-ary algorithms derive highly regular exponentiation algorithms by considering

21

a representation of e− 1 instead of the original exponent e. The m-ary algorithms can be

understood as follows:

Let e = ∑
l−1
i=0 eimi denotes the m-ary representation of exponent e. Then

e = (el−1−1)ml−1 +(∑l−2
i=0(di +m−1)mi)+1;

The equation above can be rewritten as

e−1 = ∑
l−1
i=0 e∗i mi;

where e = e∗i = ei +m−1 for 0 6 i 6 l−2; e = e∗i = el−1−1 for i = l−1.

For the left-to-right algorithm which computes modular exponentiation in RSA is shown

as Algorithm 3.7, it makes use of an register A, initialized to ge∗l−1 . At each iteration of the

main loop, the register A is raised to the power of m and then always multiplied by ge∗i .

At the end of the main loop, the register is multiplied by g to get the correct result. The

corresponding algorithm that computes scalar multiplication is shown as Alg 3.8.

Algorithm 3.7 Joye’s m-ary left-to-right algorithm (RSA)

Input: Point g ∈ G, d = ∑
h−1
i=0 dimi, di ∈ {0,1, ...,m−1}

Output: gd

1: for i = 1 to m do
2: R[i] = gm+i−2;
3: end for
4: A = gdh−1−1

5: for i = h−2 down to 0 do
6: A = Am;
7: A = A×R[1+di];
8: end for
9: A = A×g;

10: The final value is A = gd .

22

Algorithm 3.8 Joye’s m-ary left-to-right algorithm (ECC)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1...m−1}
Output: kP

1: for i = 1 to m do
2: R[i] = (m+ i−2)P;
3: end for
4: A = (kh−1−1)P
5: for i = h−2 down to 0 do
6: A = mA;
7: A = A+R[1+ ki];
8: end for
9: A = A+P;

10: The final value is A = kP.

For the right-to-left algorithm, we have

ge−1 = ((gm)l−1)d∗l−1×∏
m−1
j=1 (L

∗
j)

m+ j−2;

where L∗j = ∏06i6l−2,e∗i = j gmi
.

The right-to-left algorithm uses m registers, R[1]...R[m] to keep track of the value of

L∗j and an accumulator that keeps track of the successive value of gmi
. Same case as left-

to-right algorithm, at the end, one multiplication is needed as the correct step to maintain

the correctness of the algorithm. The m-ary right-to-left version algorithm is shown as

Algorithm 3.9. Corresponding algorithm performs scalar multiplication is shown as Alg

3.10.

23

Algorithm 3.9 Joye’s m-ary right-to-left algorithm (RSA)

Input: Point g ∈ G, d = ∑
h−1
i=0 dimi, di ∈ {0,1, ...,m−1}

Output: gd

1: for i = 1 to m do
2: R[i] = 1G;
3: end for
4: A = g;
5: for i = 0 to h−2 do
6: R[1+di] = R[1+di]×A;
7: A = Am;
8: end for
9: A = Adh−1−1×∏

m
i=1 R[i]m+i−2;

10: A = A×g;
11: The final value is A = gd .

Algorithm 3.10 Joye’s m-ary right-to-left algorithm (ECC)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1...m−1}
Output: kP

1: for i = 1 to m do
2: R[i] = O;
3: end for
4: A = P;
5: for i = 0 to h−2 do
6: R[1+ ki] = R[1+ ki]+A;
7: A = mA;
8: end for
9: A = (kh−1−1)A+∑

m
i=1(m+ i−2)R[i];

10: A = A+P;
11: The final value is A = kP.

3.6.1 Joye’s Binary Algorithms

If m = 2, from high radix algorithms, we obtain the binary cases, in which the exponent

e ∈ {0,1}. Then e−1 = ∑
l−2
i=0 e∗i 2i with e∗i = ei +1. Also, el−1 is set to be 1. For the left-

to-right version, the algorithm computes modular exponentiation is shown as Alg 3.11 and

the corresponding algorithm computes scalar multiplication is presented as Alg 3.12. As

seen in Alg 3.11, register A is initialized to R[eh−2+1] and the loop starts at index l−3. In

each loop, there is always a squaring operation followed by one multiplication. Also there

24

is a correction step which includes one multiplication at the end of the algorithm.

Algorithm 3.11 Joye’s binary left-to-right algorithm (RSA)

Input: Point g ∈ G, d = ∑
h−1
i=0 di2i, di ∈ {0,1}

Output: gd

1: R[1] = g;
2: R[2] = R[1]2;
3: A = R[dh−2 +1]
4: for i = h−3 down to 0 do
5: A = A2;
6: A = A×R[1+di];
7: end for
8: A = A×R[1];
9: The final value is A = gd .

Algorithm 3.12 Joye’s binary left-to-right algorithm (ECC)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}, kh−1 = 1
Output: kP ∈ E

1: x = (kh−2 +1)P;
2: y = 2P;
3: for i = h−3 down to 0 do
4: if ki = 0 then
5: x = 2x; x = x+P;
6: else
7: x = 2x; x = x+ y ;
8: end if
9: end for

10: x = x+P;
11: The final value is x = kP.

For right-to-left algorithm, the most significant bit is also set to be 1. In order to prevent

the final correction step, R[1] is initialized to be ge0 and R[2] to g. Then the loop can start at

index 1 instead of 0. At the end of the algorithm, one squaring and one multiplication are

needed to correct the final result. The algorithm computes modular exponentiation is shown

as Alg 3.13 and the corresponding algorithm performs scalar multiplication is presented as

Alg 3.14.

25

Algorithm 3.13 Joye’s binary right-to-left algorithm (RSA)

Input: Point g ∈ G, d = ∑
h−1
i=0 di2i, di ∈ {0,1}

Output: gd

1: R[1] = gd0;
2: R[2] = g;
3: A = R[2]
4: for i = 1 to h−2 do
5: A = A2;
6: R[1+di] = A×R[1+di];
7: end for
8: A = R[1]×R[2]2;
9: The final value is A = gd .

Algorithm 3.14 Joye’s binary right-to-left algorithm (ECC)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}, kh−1 = 1
Output: kP ∈ E

1: x = k0P;
2: y = P;
3: z = P;
4: for i = 1 to h−2 do
5: if ki = 0 then
6: z = 2z; x = x+ z;
7: else
8: z = 2z; y = y+ z ;
9: end if

10: end for
11: z = x+2y;
12: The final value is z = kP.

26

4 Proposed Elevated Binary Number System (EBNS)

4.1 Elevated Binary Number System Property

For an integer in EBNS of length k (there are k digits in the representation),

X = (xk−1xk−2...x1x0)2; where xi ∈ {1,2}

The maximal representable value is 2k+1− 2 and the minimal representable value can be

calculated as 2k− 1. So, the representation range of k digits for this new number system

is
[
2k−1,2k+1−2

]
. By contrast, the representation rang of k digits for binary number is[

2k−1,2k−1
]
. So, for the same value, EBNS representation needs one bit less than binary

number system.

For example, if we want to represent decimal number 27 in this new number system.

We can write it as (2211)2.

4.1.1 Convert between EBNS and Binary Number System

We also present the conversion algorithms between binary number system and EBNS. The

algorithms are shown as Algorithm 4.1 and 4.2. The main difference between EBNS and

binary number system is their digit set. We can consider that for EBNS, we use digit 1 to

replace binary digit 0 and replace binary digit 1 by 2.

Algorithm 4.1 Convert EBNS into Binary Number

Input: x = (xk−1xk−2...x1x0)2, xi ∈ {1,2}
Output: y = (ykyk−1yk−2...y1y0)2 yi ∈ {0,1}

1: xi−−; i = 0,1, ...,k−1;
2: y := (1xk−1...x0)−1;
3: The final value is y = (yk...y1y0)2 yi ∈ {0,1}

We can see from Alg 4.1 and Alg 4.2, when converting EBNS into binary number, only

one binary subtraction is needed. when converting binary number into EBNS, a binary

addition operation is performed. The architecture of these two conversions are shown as

Figure 4.1 and Figure 4.2. They are both low-cost conversion. Because of the different

27

Fig. 4.1: Architecture of converting EBNS into Binary Number System

digit sets, for the same value, EBNS representation is always one bit less than binary rep-

resentation. There is one unique situation, which is all the bits are 1. It’s the same case for

binary number and Elevated binary number. But it has no practical use. We can ignore this

situation.

Algorithm 4.2 Convert Binary Number into EBNS

Input: x = (xk−1xk−2...x1x0)2, xi ∈ {0,1}, xk−1 6= 0
Output: y = (...y1y0)2, yi ∈ {1,2}

1: y = (xk−2...x1x0)+1;
2: yi ++; i = 0,1, ...,k−2;
3: The final value is y =(...y1y0)2 yi ∈ {1,2}

4.1.2 Conversion between EBNS and Decimal Number System

It’s easy to convert EBNS into decimal number system, we just need to calculate the value

of the elevated binary number. For converting decimal number into EBNS, we propose

Algorithm 4.3.

28

Fig. 4.2: Architecture of converting Binary Number System into EBNS

Algorithm 4.3 Convert Decimal Number into EBNS
Input: x in decimal representation
Output: y = (yk−1yk−2...y1y0)2, yi ∈ {1,2}

1: i = 0;
2: while x 6= 0 do
3: y = x mod 2;
4: if yi = 0 then
5: yi = 2; x = x/2−1;
6: else
7: x = (x−1)/2;
8: end if
9: end while,

10: i = i+1;
11: The final value is y =(yk−1yk−2...y1y0)2

4.2 Elevated High Radix Number System

We further extend our elevated binary number system idea into high radix m, we propose

Elevated High Radix Number System. For an integer in Elevated High Radix Number

29

System of length k (there are k digits in the representation),

X = (xk−1xk−2...x1x0)m; where xi ∈ {1,2, · · · ,m}

The maximal representable value is m(1−mk)
1−m . and the minimal representable value can be

calculated as (1−mk)
1−m . So, the representation range of k digits for this new number system is[

(1−mk)
1−m , m(1−mk)

1−m

]
.

30

5 Proposed Algorithms using Elevated Number System

In this section, several algorithms compute scalar multiplication using our proposed new

number systems are proposed. Algorithms using EBNS are firstly presented. Then we ex-

tend the algorithms to high radix cases. We also show the proposed algorithms outperform

or comparable to the best of existing similar algorithms in terms of against side channel

attacks and computational efficiency.

5.1 Binary Representation

For left-to-right version of algorithm, we propose Algorithm 5.1. The correctness of this

algorithm is easy to prove. The core operation can be wrote as {x = 2x; x = x+kiP}. After

h−1 loops of computation, we can get the result of x = 2h−1x+2h−2kh−2P+2h−3kh−3P+

...+ k0P. Since x is initiated as kh−1P, final result x = kP is obtained.

For each loop, the core computation includes one doubling and one addition no matter

k equals to 1 or 2. Apparently, with this balanced number of operation for different value

of key bits, this algorithm can resist to SPA.

Algorithm 5.1 Scalar multiplication using EBNS (left-to-right)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {1,2}
Output: kP ∈ E

1: x = kh−1P;
2: y = 2P;
3: for i = h−2 down to 0 do
4: if ki = 1 then
5: x = 2x; x = x+P;
6: else
7: x = 2x; x = x+ y ;
8: end if
9: end for

10: The final value is x = kP.

For right-to-left algorithms, due to the different initiations steps and correction steps,

we propose five algorithms. The first one is shown as Algorithm 5.2. The main computation

31

can be wrote as {z = 2y; x = x+(2− ki)y; x = x+(ki− 1)y; y = z;}. After computing

from loop 1 to loop h−1. the result of x is k0P+21k1P+22k2P+ ...+2h−1kh−1P. Since

x is initiated as O, we can obtain the final result x = kP. As seen from Alg 5.2, at the end

of each loop, register z needs to be assigned to y. The main computation in every loop also

includes one doubling and one addition. Apparently, Alg 5.2 resist to SPA.

Algorithm 5.2 Scalar multiplication using EBNS (right-to-left) version 1

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {1,2}
Output: kP ∈ E

1: x = k0P;
2: y = 2P;
3: for i = 1 to h−1 do
4: if ki = 1 then
5: z = 2y; x = x+ y;
6: else
7: z = 2y; x = x+ z ;
8: end if
9: y = z;

10: end for
11: The final value is x = kP.

The second algorithm of computing from right to left is illustrated as Algorithm 5.3.

The main computation can be wrote as {x = x+ (2− ki)z; y = y+ (ki− 1)z; z = 2z;}.

So after the h− 1 loops of computation, the result of x is k0P + 21k1P + 22k2P + ...+

2h−1kh−1P. Since x is initiated as O, the final result x = kP is obtained. We can see from

Alg 5.3, in each loop, there is one addition and one doubling, which can be computed in

parallel. There are three registers x,y and z which are initialized as O,O and P. A correction

step z = x+2y is needed at the end of the algorithm.

32

Algorithm 5.3 Scalar multiplication using EBNS (right-to-left) version 2

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {1,2}
Output: kP ∈ E

1: x = O;
2: y = O;
3: z = P;
4: for i = 0 to h−1 do
5: if ki = 1 then
6: x = x+ z; z = 2z;
7: else
8: y = y+ z; z = 2z ;
9: end if

10: end for
11: z = x+2y;
12: The final value is z = kP.

The third right-to-left algorithm is shown as Algorithm 5.4. The core computation is

the same as in Alg 5.3. It can also be calculated in parallel. Differ from Algorithm 5.3, the

correctness step at the end of Alg 5.4 is z = kh−1z+x+2y. There are h−1 loops in total. If

the most significant bit (MSb) is 1, the last correction step includes one doubling and two

additions. Otherwise, it contains two doubling and two additions.

Algorithm 5.4 Scalar multiplication using EBNS (right-to-left)version 3

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {1,2}
Output: kP ∈ E

1: x = O;
2: y = O;
3: z = P;
4: for i = 0 to h−2 do
5: if ki = 1 then
6: x = x+ z; z = 2z;
7: else
8: y = y+ z; z = 2z ;
9: end if

10: end for
11: z = kh−1z+ x+2y;
12: The final value is z = kP.

Algorithm 5.5 is the forth right-to-left algorithm. It’s also similar to Alg 5.3, the main

computation is the same. The difference lie on the initialization step and correction step.

33

In Alg 5.5, we initialize register x to k0P and register z to 2P. The correction step is

represented as z = kh−1z+ x+ 2y. There are two cases for correction step. If kh−1 = 1,

the correction step includes two additions and one doubling. Otherwise, it contains two

additions and two doubling. There are h−2 loops involved.

Algorithm 5.5 Scalar multiplication using EBNS (right-to-left) version 4

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {1,2}
Output: kP ∈ E

1: x = k0P;
2: y = O;
3: z = 2P;
4: for i = 1 to h−2 do
5: if ki = 1 then
6: x = x+ z; z = 2z;
7: else
8: y = y+ z; z = 2z;
9: end if

10: z = kh−1z+ x+2y;
11: end for
12: The final value is z = kP.

The fifth right-to-left algorithm is shown as Algorithm 5.6. Register x, y and z are

initialized as k0P, O and P. The correction step at the end of the algorithm includes one

doubling operation and one addition operation. The main computation can be wrote as

{z = 2z; x = x+(2− ki)y; x = x+(ki−1)y; y = z;}. So after the last correction step, we

can obtain the final result x = kP.

34

Algorithm 5.6 Scalar multiplication using EBNS (right-to-left) version 5

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {1,2}
Output: kP ∈ E

1: x = k0P;
2: y = O;
3: z = P;
4: for i = 1 to h−1 do
5: if ki = 1 then
6: z = 2z; x = x+ z;
7: else
8: z = 2z; y = y+ z;
9: end if

10: z = x+2y;
11: end for
12: The final value is z = kP.

5.2 High Radix Representation

After propose algorithms compute scalar multiplication using EBNS, we extend the algo-

rithms to high radix cases. The left-to-right version of algorithm is shown as Algorithm 5.7.

m represents any high radix. As illustrated in the Alg 5.7, we initialize R[i] to iP for i from

1 to m and A to kh−1P. The main operations for every loop is A = mA; and A = A+R[ki].

There is no correction step needed in the algorithm.

Algorithm 5.7 Scalar multiplication using Elevated High Radix Number (left-to-right)

Input: Point P ∈ E, k = ∑
h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = iP;
3: end for
4: A = kh−1P;
5: for i = h−2 down to 0 do
6: A = mA;
7: A = A+R[ki];
8: end for
9: The final value is kP = A.

For right-to-left algorithms using high radix m, we propose three algorithms. Version 1

35

is shown as Alg. 5.8. For the initialization, R[i] is set to be OG for i from 1 to m and A to P.

The main computation is R[ki] = R[ki]+A; and A = mA. The correction step at the end of

the algorithm is A = ∑
m
i=1 iR[i]. It can be rewrote as

A = R[m];

For i = m−1 down to 1.

R[i] = R[i]+R[i+1];

A = A+R[i]

End for

Alg 5.9 is the rewrote algorithm of Alg 5.8.

Algorithm 5.8 Scalar multiplication using Elevated High Radix Number (right-to-left) ver-
sion 1
Input: Point P ∈ E, k = ∑

h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = OG;
3: end for
4: A = P;
5: for i = 0 to h−1 do
6: R[ki] = R[ki]+A;
7: A = mA;
8: end for
9: A = ∑

m
i=1 iR[i];

10: The final value is kP = A.

The second version of right-to-left algorithm is shown as Alg. 5.10. It’s similar to Alg.

5.8. The initialization steps and main computations are the same. The difference is that

Alg 5.10 has one less loop and the correction step adds kh−1A. The correction step can be

rewrote as follows:

A = (kh−1)A;

A = A+R[m];

For i = m−1 down to 1.

R[i] = R[i]+R[i+1];

36

A = A+R[i]

End for

Algorithm 5.9 Scalar multiplication using Elevated High Radix Number (right-to-left)

Input: Point P ∈ E, k = ∑
h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = OG;
3: end for
4: A = P;
5: for i = 0 to h−1 do
6: R[ki] = R[ki]+A;
7: A = mA;
8: end for
9: A = R[m];

10: for i = m−1 down to 1 do
11: R[i] = R[i]+R[i+1];
12: A = A+R[i];
13: end for
14: The final value is kP = A.

The third right-to-left algorithm is shown as Alg. 5.11. We can see from the algorithm,

the main computation is X = X + kiY ; Y = mY , which can be computed in parallel. kiY is

the multiple results of point P. If we calculate and restore all the multiple results of point

P in advance, kiP does not need to be computed during the algorithm. The core operation

X = X + kiY can be seen as an addition, which is a great advantage in complexity reduce.

No correction step is needed in this algorithm.

37

Algorithm 5.10 Scalar multiplication using Elevated High Radix Number (right-to-left)
version 2
Input: Point P ∈ E, k = ∑

h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = OG;
3: end for
4: A = P;
5: for i = 0 to h−2 do
6: R[ki] = R[ki]+A;
7: A = mA;
8: end for
9: A = kh−1A+∑

m
i=1 iR[i];

10: The final value is kP = A.

Algorithm 5.11 Scalar multiplication using Elevated High Radix Number (right-to-left)
version 3
Input: Point P ∈ E, k = ∑

h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: X = OG;
2: Y = P;
3: for i = 0 to h−1 do
4: X = X + kiY ;
5: Y = mY ;
6: end for
7: The final value is kP = X .

5.3 Security Analysis and Comparison

5.3.1 Binary Representation

In this subsection, we analyse our proposed binary algorithm’s security strength against

several side channel attacks and compared the results with existing works.

Since proposed Alg 5.1 has its feature of highly regular, which means it has balanced

number of operation for different value of key bits. It can certainly resist to simple power

analysis.

Doubling attack and comparative power analysis share the same principle of choosing

related inputs with the purpose of generating collisions, which has been discussed in detail

38

in Section 3.2. However, for our proposed Alg 5.1, those two attacks have no use. In order

to perform a doubling attack, the attacker needs to compute kP and k(2P) at the same time

and compare their power traces of doubling operation to observe a collision. In Alg 5.1,

doubling operation is always performed before the addition operation no matter the secret

key bit equals to 1 or 2. So no collision will be detected. Table 5.1 shows the results of

computing scalar multiplication with input of kP = 49P and k(2P) = 98P using Alg 5.1.

We can see from the table, there is no collision generated. As a result, Alg 5.1 can resist

to doubling attack. It’s the same case for launching comparative power analysis. Even

we chose random input αkP and βkP, there is still no collisions generated since doubling

operation is always performed before the addition operation in the loop. Figure 5.1 is an

illustration for proposed algorithm against comparative power analysis, we assume the first

four digit of k is (1112)2 and the fifth digit is 1. Since k2 = 1, we select message pair of

4A = B. No matter k4 equals to 1 or 2, the shadow parts are always the same. There is no

way to obtain the value of k4. So Alg 5.1 can resist to Comparative Power Analysis.

Fig. 5.1: Example of comparative power attack against Alg 5.1

39

Table 5.1: Computations of kP and 2(kP) using Proposed Alg 5.1

i ki Process of kP Process of k(2P)

4 2
x = 2P;
y = 2P;

x = 4P;
y = 4P;

3 1
x = 2x = 4P;

x = x+P = 5P;
x = 2x = 8P;

x = x+2P = 10;P

2 1
x = 2x = 10P;

x = x+P = 11P;
x = 2x = 20P;

x = x+2P = 22P;

1 2
x = 2x = 22P;

x = x+ y = 24P;
x = 2x = 44P;

x = x+ y = 48P;

0 1
x = 2x = 48P;

x = x+P = 49P;
x = 2x = 96P;

x = x+2P = 98P;

C safe error Attack is specifically attack algorithms with dummy operations. Since

proposed Alg 5.1 does not include dummy operation, this attack has no use toward Alg 5.1.

Proposed Alg 5.1 can also resist to M safe error attack. Recall from Section 3.2.2,

the main idea of M safe error Attack is to inject an error into a register, if the register is

restored afterwards, this attack can be seen as a safe error. Otherwise, it will result into

a faulty result. For Alg 5.1, all the intermediate results are restored into register x, so the

error injected into x will always cause a safe error. Then there is no way to distinguish the

secret key bits from 1 to 2. So Alg 5.1 is M safe error prevented.

Park’s fault attack is no threat to proposed Alg 5.1 either. Recall from Section 3.2.4,

the main idea of this fault attack is to insert a fault during the computation of loop i+ 1

and check the correctness of results in loop i to distinguish the secret key bit. For Alg 5.1,

all the intermediate results are stored into register x, so any fault injected in loop i+1 will

always lead to a faulty result in loop i. Then there is no way to distinguish the different key

bits.

High Order Attack is especially attack countermeasure of exponent splitting, so this

attack is not applicable to Alg 5.1. Also, Template Attack is aim to attack message masking

technique, it’s also not applicable to proposed algorithm. For the rest proposed algorithms,

40

we will not analyse the security strength of proposed algorithms against these two attacks

two attacks, since they are not applicable to all of them.

According to the above analysis, the comparison results of existing and proposed al-

gorithm against Side Channel Attacks is presented in Table 5.2. As seen in Table 5.2, X

means the algorithm can resist to certain attack. while × indicates the algorithm is vulner-

able to the certain attack. Our proposed Alg 5.1 has the same security strength compared

to the best existing algorithm.

Table 5.2: Security against SCAs among Left-to-Right algorithms (Binary Representation)

Existing algorithms
Proposed
algorithm

D-a-A
Alg.3.1

D-a-A Always
Alg.3.3

MPL
Alg.3.4

Joye’s
Alg.3.12

Alg.5.1

Doubling
attack × × X X X

Relative
doubling attack × × × X X

Comparative
power analysis × × × X X

Fault attack × × × X X
M

safe-error × × × X X

C
safe-error × × X X X

We propose five right-to-left algorithms using elevated binary representation. For every

algorithm, we analyse its security strength against side channel attacks.

For Alg 5.2, since there is always a doubling operation followed by an addition in the

main computation, doubling attack and comparative power analysis have no use towards

this algorithm. C safe error attack is no use either, since there is no dummy operation

involved in Alg 5.2. Recall from M safe error attack, if we inject an error into register x,

the error will turn to be a safe error no matter ki = 1 or ki = 2. There is no way to tell the

value of ki. If the error is injected into y or z, the error will cause both faulty results for

41

ki = 1 and ki = 2. So there is still no way to distinguish the secret key bits. As a result, Alg

5.2 is M safe error attack prevented. Alg 5.2 is able to resist Park’s fault attack too. Assume

the attacker injects a fault into the doubling operation in loop i, the addition operation and

the doubling operation in loop i− 1 will both result in faulty outputs. There is no way to

distinguish the secret key bit 1 from 2. If the fault is injected into the addition operation in

loop i, the results of doubling operation in loop i−1 will all be correct. While the results of

addition operation in loop i for both ki = 1 and ki = 2 are wrong. Still no way to distinguish

the secret bits. So it’s safe to say Alg 5.2 can resist to Park’s fault attack.

Alg 5.3, Alg 5.4 and Alg 5.5 share a lot similarities, the main computations are the

same, while the differences lie on initializations steps and correction steps. Due to their

similarities, We analyse their security against side channel attacks together.

First, recall from these three algorithms, the doubling operation of main computation

is z = 2z;, z will always double itself no matter ki equals to 1 or 2. Also it has nothing to

do with other registers like x and y. Then there is no way to generate collision by choosing

different inputs. So doubling attack and comparative power analysis cannot attack these

three algorithms. Second, C safe error attack has no use towards these three algorithms,

since no dummy operation is involved in these three algorithms. Third, M safe error has no

use towards these algorithms either, assume the attacker inject an error into register x. If

ki = 1, a safe error is generated. If ki = 2, the error will not be able to affect the correctness

of the result either. There is no way to tell the value of secret key bits. It’s the same case for

injecting error into register y and z. Unfortunately, these three algorithms are vulnerable

to Park’s fault attack. We use Alg 5.3 as an example, assume a fault is insert into addition

operation in loop i+1. The computation results is shown in Table 5.3.

We can see from the table 5.4, if a fault is injected into addition operation in loop i+1,

the doubling operation followed is normal. But for loop i, if ki+1 equals to ki, the doubling

operation is normal. Otherwise, the doubling operation will generate a faulty result. In this

way, the attacker can obtain the knowledge of whether ki+1 equals to ki or not.

42

Table 5.3: Computation of Alg 5.3 when a fault is injected in the addition operation

Secret key bit loop i+1 loop i
ki+1 ki Doubling Addition Doubling Addition

1 1
A fault is injected,

generate faulty value
Normal

Error

Normal
1 2 Normal
2 1 Normal
2 2 Error

Table 5.4: Computation of Alg 5.6 when a fault is injected in the addition operation

Secret key bit loop i+1 loop i
ki+1 ki Doubling Addition Doubling Addition

1 1

Don’t care A fault is injected,
generate faulty value

Normal

Error
1 2 Normal
2 1 Normal
2 2 Error

Alg 5.6 is the fifth version of right-to-left algorithm. First, for the main computation,

there is always a doubling operation followed by an addition operation. Also, z always

double itself and has nothing to do with other registers. So, there is no way to generate

collisions by choosing different inputs. Then, this algorithm can resist to doubling attack

and comparative power analysis. Second, C safe error attack is still no use towards this

algorithm. Any error injected into register x,y and z will all result in a safe error. Then

there is no way to extract the value of secret key bit. So M safe error is no use either.

Unfortunately, Park’s fault attack can threat Alg 5.6. Assume a fault is injected into addition

operation of loop i+1. The computation results is shown in Table 5.4. We can see from the

table, if the addition operation in loop i generates correct results, we can obtain ki+1 = ki.

Otherwise, we can extract the information of ki is differ from ki+1.

According to the analysis above, the comparison results of existing and proposed right-

to-left algorithms against side channel attacks is presented in Table 5.5. As seen in Table

5.6, X means the algorithm can resist to certain attack. while × indicates the algorithm

43

is vulnerable to the certain attack. According to the table, Proposed Alg 5.11 has the best

performance since it can resist to all the side channel attacks.

Table 5.5: Security against SCAs among Right-to-Left algorithms (Binary Representation)

Existing algorithms Proposed algorithms
D-a-A
Alg.3.2

Joye’s
Alg.3.14

Alg.5.2 Alg.5.3 Alg.5.4 Alg.5.5 Alg.5.6

Doubling
attack × X X X X X X

Comparative
power analysis × X X X X X X

Fault attack × × X × × × ×
M

safe-error × X X X X X X

C
safe-error X X X X X X X

5.3.2 High Radix Representation

Alg 5.7 is the left-to-right version of compute scalar multiplication using high radix m.

The security analysis of this algorithm is very similar to Alg 5.1. First, since the number of

operation is the same for different value of secret key bit, the algorithm can certainly resist

to simple power analysis. Second, the m-times operation A = mA is always performed

before the addition operation, there is no way to generate collisions by choosing different

inputs. Then comparative powering analysis can not threat this algorithm. Third, since all

the intermediate values are restored into A and there is no dummy operation involved, C

safe error and M safe error has no use towards this algorithm either. Last, any fault injected

into loop i+1 will always results in faulty output in loop i. So Alg 5.7 is Park’s fault attack

prevented.

Alg 5.8, Alg 5.10 and Alg 5.11 are the three versions of right-to-left algorithms. We

analyse the security of Alg 5.8 and Alg 5.10 together, since most parts of these two al-

gorithms are the same. First, the main computation always contains one addition and one

44

m-times operation for any key bit, so these two algorithms can certainly resist to SPA. Sec-

ond, register A always m times itself during every loop, so comparative power analysis is

not a threat. Third, for any value ki, any error injected into R[ki] always results into a safe

error and any error injected into A always cause a faulty output. So, there is no way to

distinguish the secret key bits. M safe error is no threat either. Last, since the addition for

main computation is R[ki] =R[ki]+A, there is no guarantee the same R[ki] will be computed

in both loop i+1 and loop i. So, if any fault injected into loop R[ki+1] results into a faulty

output in loop i, then we can obtain R[ki+1] = R[ki]. So Park’s fault attack can successfully

attack these two algorithms.

The main computation of Alg 5.11 is X = X + kiY ; Y = mY , which can be seen as one

addition and one m-times operation. Apparently, this algorithm is SPA prevented. Since

register Y multiple itself during every loop, comparative power analysis is not a threat. No

matter what the value of ki is, any error injected into register X turns to be a safe error and

any error injected into Y will cause faulty outputs. So, M safe error attack cannot threat

this algorithm either. For Park’s fault attack, if a fault is injected into X in loop i+1, it will

cause addition operation in loop i a faulty result for all ki. If the fault is injected into Y ,

the addition and m-times operation in loop i will both be wrong for every key bit. So, this

algorithm can successfully against Park’s fault attack.

Based on the analysis before, Table 5.6 shows the comparison results of security strength

against side channel attacks between Joye’s m-ary algorithms and proposed algorithms.

From this table, we can see our proposed left-to-tight Alg 5.7 is as good as the existing

Joye’s m-ary algorithm. Proposed right-to-left Alg 5.11 can resist to all the side channel

attacks mentioned above, while Joye’s m-ary right-to-left algorithm is vulnerable to Park’s

fault attack.

45

Table 5.6: Comparison against SCAs among High Radix algorithms

Existing algorithms Proposed algorithms
Joye’s m-ary

Alg.3.8
Joye’s m-ary

Alg.3.10
Alg.5.7 Alg.5.8 Alg.5.10 Alg.5.11

Doubling
attack X X X X X X

Comparative
power analysis X X X X X X

Fault attack X × X × × X
M

safe-error X X X X X X

C
safe-error X X X X X X

Table 5.7: Complexity comparison among left-to-right algorithms (Binary Representation)

Existing algorithms
Proposed
algorithm

D-a-A
(Alg.3.1)

D-a-A Always
(Alg.3.3)

MPL
(Alg.3.4)

Joye’s
(Alg.3.12)

Alg.5.1

of loops L(k)−1 L(k) L(k) L(k)−2 L(k)−2
Constraint MSb=1 - - MSb=1 -

Correction step - - - One point add. -
of Addition H(k) L(k) L(k) L(k)−1 L(k)−2
of Doubling L(k)−1 L(k) L(k) L(k)−2 L(k)−2

5.4 Complexity Analysis and Comparison

5.4.1 Binary Representation

In order to compare the complexity of algorithms, we focus on 5 properties, which are num-

ber of loops, number of addition, number of doubling, algorithm constraint and correction

step. For left-to-right version of algorithms, we compare the traditional doubling-and-add

algorithm, doubling-and-add always algorithm, MPL, Joye’s binary case and our proposed

Alg. 5.1. Table 5.7 shows the comparison results.

L(k) shown in table 5.7 is defined as dlog2 ke. H(k) indicated the Hamming weight of

46

Table 5.8: Complexity comparison among right-to-left algorithms (Binary Representation)

Existing algorithms Proposed algorithms
D-a-A

(Alg.3.2)
Joye’s

(Alg.3.14)
Alg.5.2 Alg.5.3 Alg.5.6

No. of
loops

L(k) L(k)−2 L(k)−2 L(k)−1 L(k)−2

Constraint - MSb=1 - - -
Correction

step -
One Dou.
One Add.

One Dou.
One Add.

One Dou.
One Add.

One Dou.
One Add.

No. of
Addition

L(k) L(k)−1 L(k)−2 L(k) L(k)−1

No. of
Doubling

L(k) L(k)−1 L(k)−2 L(k) L(k)−1

k. MSb represents the most significant bit of secret key bit k.

We can see from Table 5.7, compared to existing works, our proposed Alg. 5.1 has the

least number of loops, number of addition and number of doubling. Also, unlike Alg 3.9,

proposed Alg.5.1 does not have a constraint of MSb=1 nor correction step. It is safe to say,

proposed Alg.5.1 has the best complexity performance.

We also compare the right-to-left version of algorithms, which is shown as Table 5.8.

Since Alg 5.3, Alg 5.4 and Alg 5.5 share a lot similarities. We only pick Alg 5.3 to compare

with other algorithms since it has the best complexity performance. The correction step

of Alg 5.4 and Alg 5.6 have two possibilities since the MSb kh−1 could be 1 or 2. If

kh−1 = 1, the correction step includes one doubling and two addition. Otherwise, there

are two doubling and two addition. Accordingly, the number of addition and doubling are

variable.

We can see from Table 5.8, compared to the best existing work, Joye’s algorithm, all

proposed algorithms have an advantage of not having a constraint. Also, Alg 5.6 have the

same performance on number of loops, addition and doubling as Joye’s. Alg 5.2 has a

better performance compared to Joye’s algorithm since it has one less loop, addition and

doubling.

47

Table 5.9: Complexity comparison among high radix algorithms

Joye’s algorithms Proposed Algorithms
L2R

(Alg.3.8)
R2L

(Alg.3.10)
L2R

(Alg.5.7)
R2L

(Alg.5.8)
R2L

(Alg.5.10)
R2L

(Alg.5.11)
No. of
loops

L(k)−1 L(k)−1 L′(k)−1 L′(k) L′(k)−1 L′(k)

Correction
step

Yes Yes - Yes Yes -

No. of
Addition L(k) L(k)+2m L′(k)−1 L′(k)+

2m−2
L′(k)+
2m−2

L(k)′

No. of
m-times

L(k)−1 L(k)−1
one (m−2)-times

L′(k)−1 L′(k) L′(k)−1 L′(k)

5.4.2 High Radix Representation

A complexity comparison of algorithms using high radix is shown in Table 5.9. Recall

from Alg 3.10, step 9 and 10 can be rewrote as

A = (kh−1−1)A

A = A+R[m];

for i = m−1 down to 1.

R[i] = R[i]+R[i+1];

A = A+R[i]

end for

A = A+(m−2)R[1];

A = A+P;

So for the correction steps, there are 2m+1 addition and one (m−2)-times operation. For

proposed Alg 5.9, the correction step can also be rewrote. It contains 2m additions.

We define L(k) in table 5.8 as dlogm ke. For traditional high radix number system, where

m ∈ {0,1, ...m−1}. The representation range of k digits is
[
0,mk−1

]
. For elevated binary

number system, the representation range of k digits is
[
(1−mk)

1−m , m(1−mk)
1−m

]
. So we can obtain

48

Table 5.10: Complexity comparison among high radix algorithms

Joye’s algorithms Proposed Algorithms
L2R

(Alg.3.8)
R2L

(Alg.3.10)
L2R

(Alg.5.7)
R2L

(Alg.5.8)
R2L

(Alg.5.11)
No. of
loops

L(k)−1 L(k)−1 L′(k)−1 L′(k) L′(k)

Correction
step Yes Yes - Yes -

No. of
Addition

L(k) L(k)+2m L′(k)−1
L′(k)+
2m−2

L(k)′

No. of
m-times

L(k)−1
L(k)−1

one (m−2)-times
L′(k)−1 L′(k) L′(k)

following facts:

L(k) = L′(k), when present value of
[
0,mL(k)−1

]
.

L(k) = L′(k)+1, when present value of
[
mL(k), m(1−mL(k))

1−m

]
.

We can see from Table 5.9, proposed left-to-right Alg 5.7 has better performance than

Alg 3.8, since it does not need a correction step and has one less addition operation.

For right-to-left algorithms, Proposed Alg 5.11 has the best performance in complexity

since it has the lest number of addition and number of m-times operation. Plus, it doe s

not need a correction step. Proposed Alg 5.10 also has advantage in number of addition

compared to Joye’s Alg 3.10.

49

Scalar multiplication using elevated high radix number (left-to-right)

Input: Point P ∈ E, k = ∑
h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = iP;
3: end for
4: A = kh−1P;
5: for i = h−2 down to 0 do
6: A = mA;
7: A = A+R[ki];
8: end for
9: The final value is kP = A.

Scalar multiplication using elevated high radix number (right-to-left) version 1

Input: Point P ∈ E, k = ∑
h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = OG;
3: end for
4: A = P;
5: for i = 0 to h−1 do
6: R[ki] = R[ki]+A;
7: A = mA;
8: end for
9: A = ∑

m
i=1 iR[i];

10: The final value is kP = A.

50

Scalar multiplication using elevated high radix number (right-to-left) version 1

Input: Point P ∈ E, k = ∑
h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: for i = 1 to m do
2: R[i] = OG;
3: end for
4: A = P;
5: for i = 0 to h−1 do
6: R[ki] = R[ki]+A;
7: A = mA;
8: end for
9: A = R[m];

10: for i = m−1 down to 1 do
11: R[i] = R[i]+R[i+1];
12: A = A+R[i];
13: end for
14: The final value is kP = A.

Scalar multiplication using elevated high radix number (right-to-left) version 2

Input: Point P ∈ E, k = ∑
h−1
i=0 kimi, ki ∈ {1,2, ...m}

Output: kP ∈ E
1: X = OG;
2: Y = P;
3: for i = 0 to h−1 do
4: X = X + kiY ;
5: Y = mY ;
6: end for
7: The final value is kP = X .

For an integer in EBNS of length k (there are k digits in the representation),

X = (xk−1xk−2...x1x0)2; where xi ∈ {1,2}

The maximal representable value is 2k+1− 2 and the minimal representable value can

be calculated as 2k−1.

So, the representation range of k digits for this new number system is
[
2k−1,2k+1−2

]
.

By contrast, the representation rang of k digits for binary number is
[
0,2k−1

]
. So, for the

same value, EBNS representation needs one bit less than binary number system.

For example, if we want to represent decimal number 27 in this new number system.

51

We can write it as (2211)2.

For an integer in elevated high radix number system of length k (there are k digits in the

representation),

X = (xk−1xk−2 · · ·x1x0)m; where xi ∈ {1,2, ...,m}

The maximal representable value is m(1−mk)
1−m and the minimal representable value can be

calculated as (1−mk)
1−m . So, the representation range of k digits for this new number system

is
[
(1−mk)

1−m , m(1−mk)
1−m

]
. By contrast, the representation rang of k digits for binary number is[

0,mk−1
]
.

For example, if we want to represent decimal number 27 in this new number system

with m = 3. We can write it as (223)3.

Joye’s left-to-right algorithm (Binary case)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}, kh−1 = 1
Output: kP ∈ E

1: x = (kh−2 +1)P;
2: y = 2P;
3: for i = h−3 down to 0 do
4: if ki = 0 then
5: x = 2x; x = x+P;
6: else
7: x = 2x; x = x+ y ;
8: end if
9: end for

10: x = x+P;
11: The final value is x = kP.

52

Joye’s right-to-left algorithm (Binary case)

Input: Point P ∈ E, k = (kh−1kh−2...k1k0)2, ki ∈ {0,1}, kh−1 = 1
Output: kP ∈ E

1: x = k0P;
2: y = P;
3: z = P;
4: for i = 1 to h−2 do
5: if ki = 0 then
6: z = 2z; x = x+ z;
7: else
8: z = 2z; y = y+ z ;
9: end if

10: end for
11: z = x+2y;
12: The final value is z = kP.

Input: Point P ∈ E, k = (11001)2
Output: x = 25P ∈ E

1: x = P;
2: k3 = 1; x = 2x;x = x+P; (Two operations)
3: k2 = 0; x = 2x; (One operation)
4: k1 = 0; x = 2x; (One operation)
5: k0 = 1; x = 2x;x = x+P; (Two operations)
6: The final value of x is x = 25P.

53

6 Conclusions and Possible Future Works

6.1 Conclusions

In the thesis, a new binary number system, called Elevated binary number system (EBNS),

is proposed. Conversions between this new number system and the conventional binary

number is discussed. An extension of EBNS to high radix system is also presented.

Proposed Alg 5.1 is the new left-to-right scalar multiplication algorithm using EBNS.

Compared to the best existing work, it shows advantage in terms of computation efficiency

while maintains the same security strength against SCAs.

We propose five right-to-left algorithms. All of them have an advantage of not having

a constraint compared to the best existing work. Also, Alg 5.3 has the lowest number of

operations among all algorithms and it offers more security strength since it can resist to

Park’s fault attack while all existing work can not.

Proposed Alg 5.7 is the left-to-right scalar multiplication algorithm using elevated high

radix. Compared to the best existing work described in [7], the main superiority of this

algorithm is to reduce complexity while not sacrificing the security strength. We also pro-

pose three right-to-left algorithms. Among them, Alg 5.11 can resist to Park’s fault attack

while all existing works cannot and it also has a better performance in complexity since it

has less number of operations and does not have a constraint.

6.2 Possible Future Works

In the future, the research works presented in this thesis can be further extended in the

following aspects:

• Hardware implementation of proposed algorithms are expected to be accomplished.

• Algorithms that convert between elevated high radix number system and traditional

high radix number system will be developed. Along with their architectures.

54

• All proposed right-to-left scalar multiplication algorithms have a correction step at

the end. This unique feature of algorithms may become a target to certain SCAs.

The next goal of our work is to restructure the algorithms in order to eliminate the

correction step.

55

REFERENCES

[1] L. M. Adleman, P. W. Rothemund, S. Roweis, and E. Winfree, “On applying molecu-

lar computation to the data encryption standard,” Journal of Computational Biology,

vol. 6, no. 1, pp. 53–63, 1999.

[2] F.-X. Standaert, “Introduction to side-channel attacks,” in Secure Integrated Circuits

and Systems. Springer, 2010, pp. 27–42.

[3] P. Rohatgi, “Electromagnetic attacks and countermeasures,” in Cryptographic Engi-

neering. Springer, 2009, pp. 407–430.

[4] S.-M. Yen, L.-C. Ko, S. Moon, and J. Ha, “Relative doubling attack against mont-

gomery ladder,” in Information Security and Cryptology-ICISC 2005. Springer,

2006, pp. 117–128.

[5] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Samir, “Comparative power

analysis of modular exponentiation algorithms,” Computers, IEEE Transactions on,

vol. 59, no. 6, pp. 795–807, 2010.

[6] J. Park, K. Bae, S. Moon, D. Choi, Y. Kang, and J. Ha, “A new fault cryptanalysis

on montgomery ladder exponentiation algorithm,” in Proceedings of the 2nd Inter-

national Conference on Interaction Sciences: Information Technology, Culture and

Human. ACM, 2009, pp. 896–899.

[7] M. Joye, “Highly regular m-ary powering ladders,” in Selected Areas in Cryptogra-

phy. Springer, 2009, pp. 350–363.

[8] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–

126, 1978.

56

[9] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology-

CRYPTO85 Proceedings. Springer, 1985, pp. 417–426.

[10] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and

other systems,” in Advances in CryptologyCRYPTO96. Springer, 1996, pp. 104–

113.

[11] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Net-

works, vol. 48, no. 5, pp. 701–716, 2005.

[12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual International

Cryptology Conference. Springer, 1999, pp. 388–397.

[13] J. Cathalo, F. Koeune, and J.-J. Quisquater, “A new type of timing attack: Application

to gps,” in Cryptographic Hardware and Embedded Systems-CHES 2003. Springer,

2003, pp. 291–303.

[14] S.-M. Yen and M. Joye, “Checking before output may not be enough against fault-

based cryptanalysis,” Computers, IEEE Transactions on, vol. 49, no. 9, pp. 967–970,

2000.

[15] Y. Sung-Ming, S. Kim, S. Lim, and S. Moon, “A countermeasure against one physical

cryptanalysis may benefit another attack,” in Information Security and CryptologyI-

CISC 2001. Springer, 2001, pp. 414–427.

[16] J.-M. Schmidt and C. Herbst, “A practical fault attack on square and multiply,” in

Fault Diagnosis and Tolerance in Cryptography, 2008. FDTC’08. 5th Workshop on.

IEEE, 2008, pp. 53–58.

[17] C. H. Kim and J.-J. Quisquater, “Fault attacks for crt based rsa: New attacks, new

results, and new countermeasures,” in IFIP International Workshop on Information

Security Theory and Practices. Springer, 2007, pp. 215–228.

57

[18] W. Van Eck, “Electromagnetic radiation from video display units: An eavesdropping

risk?” Computers & Security, vol. 4, no. 4, pp. 269–286, 1985.

[19] D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” Journal of Cryptol-

ogy, pp. 1–52, 2016.

[20] A. Shamir and E. Tromer, “Acoustic cryptanalysis,” presentation available from

http://www. wisdom. weizmann. ac. il/ tromer, 2004.

[21] J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryp-

tosystems,” in International Workshop on Cryptographic Hardware and Embedded

Systems. Springer, 1999, pp. 292–302.

[22] P.-A. Fouque and F. Valette, “The doubling attack–why upwards is better than down-

wards,” in Cryptographic Hardware and Embedded Systems-CHES 2003. Springer,

2003, pp. 269–280.

[23] P. L. Montgomery, “Speeding the pollard and elliptic curve methods of factorization,”

Mathematics of computation, vol. 48, no. 177, pp. 243–264, 1987.

[24] S.-M. Yen, L.-C. Ko, S. Moon, and J. Ha, “Relative doubling attack against mont-

gomery ladder,” in Information Security and Cryptology-ICISC 2005. Springer,

2005, pp. 117–128.

[25] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches to counter-

act power-analysis attacks,” in Advances in CryptologyCRYPTO99. Springer, 1999,

pp. 398–412.

[26] G. Fumaroli and D. Vigilant, “Blinded fault resistant exponentiation,” in Fault Diag-

nosis and Tolerance in Cryptography. Springer, 2006, pp. 62–70.

[27] F. Muller and F. Valette, “High-order attacks against the exponent splitting protec-

tion,” in Public Key Cryptography-PKC 2006. Springer, 2006, pp. 315–329.

58

[28] C. Herbst and M. Medwed, “Using templates to attack masked montgomery ladder

implementations of modular exponentiation,” in Information Security Applications.

Springer, 2008, pp. 1–13.

[29] Y. He, “Highly secure cryptographic computations against side-channel attacks,”

2013.

59

VITA AUCTORIS

NAME: Yue Huang

PLACE OF BIRTH: Liaoning, China

YEAR OF BIRTH: 1990

EDUCATION: North China Electric Power University, Beijing, China
Bachelor of Electrical Engineering and Management 2008-
2012

University of Windsor, Windsor, ON, Canada
Master of Applied Science, Electrical and Computer Engi-
neering 2014-2017

60

	Efficient scalar multiplication against side channel attacks using new number representation
	Recommended Citation

	tmp.1492632938.pdf.pWnLZ

