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Abstract

Ultrasound Imaging has been favored by clinicians for its safety, affordability, ac-

cessibility, and speed compared to other imaging modalities. However, the trade-

offs to these benefits are a relatively lower image quality and interpretability, which

can be addressed by, for example, post-processing methods. One particularly dif-

ficult imaging case is associated with the presence of a barrier, such as a human

skull, with significantly different acoustical properties than the brain tissue as the

target medium. Some methods were proposed in the literature to account for

this structure if the skull’s geometry is known. Measuring the skull’s geometry

is therefore an important task that requires attention. In this work, a new edge

detection method for accurate human skull profile extraction via post-processing

of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo

Extraction algorithm, SEE, processes each A-Scan separately and determines the

outermost and innermost boundaries of the skull by means of adaptive filtering.

The method can also be used to determine the average attenuation coefficient of

the skull. When applied to simulated B-Mode images of the skull profile, promis-

ing results were obtained. The profiles obtained from the proposed process in

simulations were found to be within 0.15λ ± 0.11λ or 0.09 ± 0.07mm from the

actual profiles. Experiments were also performed to test SEE on skull mimicking

phantoms with major acoustical properties similar to those of the actual human

skull. With experimental data, the profiles obtained with the proposed process

were within 0.32λ± 0.25λ or 0.19± 0.15mm from the actual profile.
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Chapter 1

Introduction: an overview of

medical imaging modalities

Non-invasive medical imaging is a necessity of modern medicine as most diseases

are diagnosed through different medical imaging equipment. In the last century,

many types of medical imaging devices have emerged, ranging in complexity, cost,

size, and image quality. The most common medical imaging techniques used nowa-

days are X-Ray, X-Ray Computer Tomography (X-Ray CT), Positron Emission

Tomography (PET), γ-Ray Computer Tomography (γ-Ray CT), Magnetic Res-

onance Imaging (MRI), and Ultrasonography. Each of these techniques offers

advantages that give it a preference depending on the condition.

All of the above non-invasive medical imaging modalities rely on observing wave

disturbances that have been sent into the body and have interacted with the inter-

nal anatomy[1]. Those wave disturbances can be of electromagnetic nature as in

X-Ray, γ-Ray, and MRI, or of high frequency acoustic nature as in Ultrasonogra-

phy. In all cases, the wave disturbances are created artificially with distinct char-

acteristics such as frequency, intensity, and polarization. While passing through

1
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Figure 1.1: A typical X-Ray radiographic geometry [1]

the body, the waves change in nature or intensity and are observed and decoded

outside the body to determine physical properties of the internal anatomy.

1.1 X-Ray Imaging and X-Ray Computer To-

mography

X-Ray was first used in 1896, making it the first medical imaging technique to

be developed[5]. X-Ray Images are obtained by firing X-Ray photons into the

body, and observing the photons that have not been absorbed or scattered by

the different types of tissue it passes through, as shown in Figure 1.1. The value

of X-Ray absorption coefficient varies depending on the type of tissue. At each

cross-section of the body, different types of tissue absorb varying amounts of the

rays, creating a shadow: the X-Ray image is an overlap of those shadows. This

is considered a limitation of X-Ray as it does not provide enough information
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Figure 1.2: PET scan event detection. [1]

to diagnose illnesses. Moreover, although X-Ray provides appropriate contrast

between bone tissue and soft tissue, it fails to provide contrast between different

types of soft tissues. These limitations were improved upon after the development

of X-Ray CT scan, which acquires X-Ray images at different angles of the body.

By using computer generated tomography, a three dimensional description of the

body can be acquired, increasing the diagnostic information dramatically. The

drawback of this method stems from the fact that each X-Ray CT scans requires

an average of 200 X-Ray scans. This results in a large dosage of radiation being

absorbed by the body after the procedure.

1.2 Positron Emission Tomography

Similar to X-Ray CT, Positron Emission Tomography relies on sending a positron

beam towards the body and projecting the after effects on a detector. The positron

beam is able to travel for approximately 5 mm before annihilation occurs, at that

point, two γ-Rays are produced and travel in opposite directions, as shown in
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Figure 1.2. By detecting the γ-Rays, the event location can be pin-pointed. After

a sufficient number of events are collected, a series of projections are combined

to produce 2D images of isotope concentrations. PET scan is able to produce

clear images of the target organ as the number of events occurring in a region can

be used to identify the type of tissue. However, PET equipment is rather large

and a working cyclotron has to be available to produce the required short-lived

positron emitting radionuclide. In addition, when annihilation occurs between an

electron and a positron, a substantial amount of ionizing energy is released into

the surrounding tissue, which is harmful to the body.

1.3 γ-Ray Computer Tomography

Another γ-Ray utilized medical imaging technique relies on the idea of using

molecules that are known to interact with the target tissue to create an image

of it. For example, iodine is highly reactive in the thyroid gland and not reactive

in other areas of the body. Other molecules, such as glucose, are important for

the function of tissue and can be used to identify metabolic processes. γ-Ray CT

is based on injecting patients with radio-active labeled compounds and observing

the movement of those compounds as they pass through the blood stream. The

radio-active labeled compounds continue to release γ-Rays as they travel through

the body without affecting the interaction of the compounds they are attached

to. In the case of radioactive labeled iodine, the molecules will be localized in the

thyroid gland. This movement or location detection is done by obtaining images

from a γ-Ray camera at different angular positions, similar to X-Ray CT. This

process produces tomographic images of the organ where the compounds are being

utilized. Limitations of γ-Ray CT include the inability to inject patients with a

substantial dose of radio-active labeled compounds, which limits the image quality.

Gamma-Ray CT, like X-Ray CT, and PET, produces ionizing radiation, which is
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not free of health risks. Long or frequent exposure to ionizing radiation may cause

cellular damage or cancerous cellular mutations.

1.4 Magnetic Resonance Imaging

Unlike X-Ray, γ-Ray, and PET, which comes at the cost of radiation exposure,

Magnetic Resonance Imaging (MRI) relies on no ionizing radiation and provides

clear images. MRI uses three parameters for observation: the ‘free water density’,

longitudinal relaxation time, T1, and transverse relaxation time, T2. The water

proton resonance allows for observation of fluid flow and tissue magnetic suscep-

tibility. Nuclear magnetic resonance technique can be expanded to observe other

nuclei when necessary for diagnostics. Thus, MRI provides more information than

other techniques with no association to health risks. Although MRI provides high

contrast between different types of soft tissue, the equipment is usually over-sized

and the process is slow and expensive. For these reasons, MRI is only available in

large hospitals and is used to diagnose specific conditions.

1.5 Ultrasonic Imaging

Unlike all other medical imaging techniques, Ultrasonography is arguably the

safest, most affordable, and most portable method. Although these benefits come

at a trade off of image quality, Ultrasonography still remains a favorite for physi-

cians. Most commonly, Ultrasound imaging systems rely on sending acoustic waves

through the body and observing reflections off each boundary between different

types of tissue. Ultrasound provides an effective contrast between different types

of tissue if uninterrupted by bone.

When bone tissue is present, the significant difference in acoustical properties

between bone tissue and soft tissue causes high reflections, phase aberration, and
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absorption at those boundaries, thereby limiting the quality of images beyond the

bone. Regardless of this physical phenomenon, researchers have been encouraged

to improve imaging through bone. If an ultrasonic device is capable of scanning

the brain through the skull is introduced to the medical community, it will have

the potential benefits of affordability, safety, and portability that other imaging

devices lack.

Figure 1.3: Flat Bone Anatomy in the skull [2]

For over four decades, re-

searchers have sought to de-

velop ultrasonic trans-skull imag-

ing in order to upgrade con-

ventional imaging. To be able

to image through the skull, it

is important to understand the

skull’s anatomy.

There are four classification of

bones: long bone, short bone,

flat bone, and Irregular bone[2,

6]. Long bones are rod shaped

and, as the name suggests, are

longer in one direction that the

other two. They are primarily

present in limbs. Short bones

are also rod shaped; however,

their length is about the same

as their width and they can be

found in the wrist and ankle.

Flat bones, unlike the other

classifications, extend in two dimensions, such as in the skull, shoulders, and ribs.
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Finally, the irregular bone, includes any bones that do not fit in other descriptions

such as hip bone.

Skull bone belongs to the flat bone type and consists of three major layers, as

shown in figure 1.3. The name “Flat bone” is only meant to imply the extension

of this type of bone in two dimensions and it does not necessarily mean any of the

layers are flat. In the skull, flat bone is curved with a large radius that gives it

the spherical shape, while small curvatures exist in the inner/outer compact layer

and the spongy (diploe) layer.

Unlike the outer compact bone layer, which is relatively smooth, the inner compact

bone layer is rough and curvy. It is responsible for refraction and phase aberra-

tions in trans-skull imaging. The diploe layer, however, is responsible for other

distortions, such as scattering and attenuation. The diploe layer is a network of

bone fragments that are aligned to support the stress points in the skull. Since

those fragments are small, they can only be observed at high frequencies in ultra-

sonic imaging (> 10MHz). For the purpose of imaging the brain through the skull,

though, using high frequency is not recommended. At high frequencies, the diploe

layer is more attenuative and since the wavelength of the transmitted field become

comparable in size to the fragments in the diploe layer, non-negligible scattering

effects are present. To avoid this, trans-skull imaging is generally limited to a

central frequency of no more than 5MHz.

1.5.1 Transcranial ultrasonic imaging

Ultrasonic imaging techniques that are created for trans-skull imaging have been

suggested since the 1960s [7–9]. Since then, many types of approaches have been

proposed. Some methods limit imaging to the temporal window, at which there

is no diploe layer and the skull is the flattest [10–13]. Some suggest imaging using

shear mode [14, 15], where better axial target localization is provided at the cost
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of inferior lateral resolution. Others focus through the skull using time-reversal

technique[16–19]. Although time-reversal has been very successful at imaging the

brain, it requires a hemispherical transducer array surrounding the entire head

which can be difficult to manage. The most success has been achieved using

adaptive beamforming technique [20–26] which uses a small hand held ultrasonic

transducer for imaging. The time-reversal and adaptive beamforming technique

show the most promising results. Thus, perfecting this method gives physicians

the freedom to expand imaging to areas other than the temporal window, acquire

higher quality images than using shear mode, for instance, all with a small hand

held device. However, for adaptive beamforming to work, an accurate skull profile

has to be available as an inaccuracy of 0.1mm could result in imaging error of up

to 1mm in 12cm depth [27].

In order to account for the skull curvature using adaptive beamforming, it is

necessary to have an accurate measurement of the skull geometry, especially the

curvature of the inner compact bone. The presence of curvature in thick diploe

bone also distorts the image and makes it impossible to observe the curvature of

the inner compact bone with minimal processing and, as a result, failing to image

the brain. Having an accurate measurement of the skull geometry can dramatically

enhance the quality of brain imaging of the brain via ultrasonography.

1.6 Purpose statement and thesis organization

The purpose of this thesis is to develop a signal processing technique applied to

acoustic signals to accurately extract the curvature of the skull’s inner compact

bone boundary such that it lies within ±0.5mm of the actual value. The method

can also be used to determine the averaged attenuation coefficient of the skull.

The method is applied to six types of skull phantoms with varying diploe layer

thickness and curvatures. In general, the proposed technique is comprised of three
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major steps. In the first step, the method is used to determine the attenuation

coefficient of the skull. This value as well as the raw data are input into the

developed Selective Echo Extraction (SEE) signal processing technique, to produce

two reflections that show the skin/skull boundary and the skull/brain boundary.

The results are then curve fitted to show a smooth curvature representing the

inner compact bone boundary.

The thesis is divided into five chapters. Chapter 2 presents a complete literature

review and explains the necessity of a reliable method for human skull profile

extraction. Chapter 3 shows the Selective Echo Extraction signal processing al-

gorithm, the simulation processes, the curve fitting process, and the attenuation

coefficient determining algorithm. Chapter 4 illustrates the experimental setup,

optimization of it, and results from the acquired experimental data. Chapter 5

discusses the conclusion.



Chapter 2

Ultrasonic imaging and

post-processing: a review

Medical Ultrasonography is one of the leading non-invasive diagnostic imaging

techniques. The cost-benefit ratio of Ultrasonic Imaging far exceeds other imaging

techniques in terms of affordability, accessibility, safety, and promptness. However,

the low spatial resolution has been one of the major limitations of ultrasonic

imaging and cannot compete with the quality of other modalities, such as X-Ray

CT, γ-Ray CT, or MRI. Low resolution is mainly caused by the finite bandwidth

of the imaging transducer or the non-negligible width and duration of ultrasonic

pulses [28]. As the demand of ultrasonography increased over the last few decades,

efforts have been made to improve the quality of the hardware in ultrasonic devices

and incorporate effective digital signal processing techniques in post-processing.

In this chapter, Section 2.1 briefly introduces Ultrasonic Phased Arrays. Section

2.2 explains signal post-processing techniques with an overview of the most com-

monly used post-processing methods to enhance ultrasonic scans. Finally, Section

2.3 discusses the applicability of those post-processing methods to the case of skull

imaging, and explains the motivation for this study and the proposed method.

10
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2.1 Ultrasonic phased arrays

Ultrasonic Imaging relays on sending an acoustic wave into a target system and

observing the reflections that occur at each boundary between the different media

in the system. Those reflections are collected to produce an Amplitude Scan (A-

Scan), Brightness Scan (B-Scan), and other types of scans. A-Scans show the

amplitude of the reflections as a function of time. When the amplitude is high, a

boundary is postulated to exist at a distance d = 1
2
vτ , where v is the velocity of

sound wave in the medium and τ is the time at which the reflection occurs. A B-

Scan is obtained by collecting a number of A-Scans at different transducer element

displacements. The B-Scan is displayed as a brightness map that is produced by

converting the amplitude at points in time of each A-Scan to brightness such that

a two dimensional image is constructed.

It is the convention in ultrasonic imaging to focus the transducer into a specific

point or depth in the target medium in order to receive high reflections, and

therefore, a hight contrast image. This can be done by varying the geometry of

the transducer or by using an Ultrasonic Phased Array.

An Ultrasonic Phased Arrays is a collection of elements that can be driven indi-

vidually to form an acoustic field [29]. Elements arranged in a 1-D array can be

driven to focus or steer the acoustic field in the two dimensional plane perpendic-

ular to the array. Focusing the acoustic field into a singular point can be done by

exciting the elements with different time delays to account for the path differences

to the focal point between each elements and the center of the array. By doing

this, the waves sent from every element in the array interfere constructively at the

focal point. Figure 2.1 shows a one dimensional array that is focused at the focal

point shown. the elements are excited with a delay parameter according to the

following equation:
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(a) Delay Parameters (b) Resulting Wavefront

Figure 2.1: Conventional Beamforming Illustration

τk =

√
R2
f + (kd+ ε)2 − 2Rfkd sin(θs))−Rf

c
(2.1)

where τk is the time delay applied to the kth element, Rf is the distance between

the focal point and the center of the array as shown in Figure 2.1a, d is the pitch

between the elements, θs is the angle between the normal to the array plane and

the focal point as shown in Figure 2.1a, and c is the speed of sound in the target

media.

Figure 2.1b shows the wavefront at times t1 and t2 after all elements have been

excited, where t1 < t2. It is clear that the waves from all elements will intersect

at a later time at the focal point.

Such time delay scenario can be generalized to focus a 2-D array in a 3-D volume

and produce a three dimensional tomographic image of the target object.
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Once the beam is focused onto a point in space, the energy of the constructively

interfered waves is high enough that a noticeable reflection can be observed if a

boundary is present. To image a volume, the ultrasonic array is focused at several

points in the target media, and the reflections are collected to compose a 2-D

image or a volume tomography.

In many cases this image needs further processing to clarify it in order for a

physician to make a diagnosis. This process is refereed to as post-processing and

has been tackled since the advent of ultrasonic imaging.

2.2 The convolution model

One of the major advancements in the field of post-processing in medical ultra-

sonography is the introduction of a convolution model from the standard wave

equation using the first-order Born approximation [30–36].

The convolution model states that the acquired B-Scan, which contains many

Radio-Frequency lines (RF-lines), y(n) can be displayed as:

y(n) = x(n) ∗ h(n) + η(n) (2.2)

where x(n) is the Point Spread Function (PSF) that is produced by the transducer,

h(n) is the tissue response function representing the reflections at each boundary,

and η(n) is any additive white noise present in the system. In many cases, η(n) ≈ 0

and the noise in the system is convoluted noise present in h(n).

This model has been revolutionary in the field of ultrasonic digital signal process-

ing as solving for h(n) with the least amount of error results in a clear image of

the target organ. It is important to note that the convolution model is a gener-

alized expression that cannot simply be solved using conventional deconvolution.
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The Point Spread function cannot be assumed to be the original transmitted sig-

nal. In ultrasonic imaging, the PSF exhibits a spatial dependency due to the

non-uniformity of focusing, diffraction effects, dispersive attenuation, and phase

aberrations [37–40]. Thus, the PSF has to be estimated in each B-scan in order

to acquire the tissue response function. In fact, in some cases PSF has to be esti-

mated in each section of the B-scan to accommodate for the spatial dependency

it exhibits.

The generalized convolution model also assumes a linear relation between the

acoustic field and the targeted biological tissue, which is not true as the linear

relation can only occur on conditions of weak scattering [41].

Even in the presence of the limitations to the Convolution Model mentioned above,

it can still provide a relatively accurate estimation. In order to solve for h(n),

advanced digital signal processing techniques have to be applied instead of applying

conventional deconvolution.

Because of the nature of PSF in ultrasonography, the most effective way to ex-

tract the tissue response function in post-processing is through blind-deconvolution

[42]. Blind deconvolution can be achieved by either estimating the PSF first then

applying non-blind deconvolution[43], or by directly finding the tissue response

function.

In upcoming sections, the most commonly used post-processing techniques in ul-

trasonography are introduced. Section 2.2.1 and 2.2.2 follow the approach that

relies on finding an accurate estimation of the PSF, then applying non-blind decon-

volution. Section 2.2.3 explains the adaptive filtering tool, which many non-blind

and blind deconvolution methods use. Finally, Sections 2.2.4 and 2.2.5 show two

blind methods that rely on finding h(n) directly or simultaneously with x(n).
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2.2.1 PSF estimation via statistical modeling: the ARMA

Process

The convolution model can be solved by means of system identification[44, 45].

More specifically, PSF can be estimated statistically through the autoregressive

moving average (ARMA) model[46, 47]. This approach considers the PSF x(n) to

be the impulse response of a linear time-invariant system that is defined by the

generic difference equation as follows:

y(n) =

p∑
k=1

a(k)y(n− k) +

q∑
k=0

b(k)h(n− k) (2.3)

In the context of the theory of system identification, equation 2.3 is known as the

ARMA model. This method is a generalization of autoregressive (AR) and moving

average (MA) models. AR is obtained by setting q = 0, and MA by setting p = 0.

Using the ARMA model in ultrasonography means that the PSF can be calcu-

lated by estimating the ARMA parameters {a(k)}pk=1 and {b(k)}qk=1. After those

parameters are estimated, the tissue response function can be found by means of

non-blind deconvolution.

Since the z-transform X(z) ≡
∑∞

n=0 x(n)z−n of x(n) is given by:

X(z) =
B(z)

A(z)
=

1 +
∑q

k=0 b(k)z−k

1 +
∑p

k=0 a(k)z−k
(2.4)

Estimating ARMA parameters can be done through maximum likelihood estima-

tion [45]. When the number of data points is relatively small, as is the case in

ultrasonography, this method proves inefficient. Other solutions that have been

proposed suggest minimizing the sum of squares of the one-step-forward prediction

error within the sampling range. The estimates are referred to as the Least square

Estimates [48].
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It is important to note that although the ARMA process proves successful in many

cases in ultrasonic application, it assumes that the system is time-invariant. This

leads ARMA model to be susceptible to noise, and so it is important to either

filter the noise beforehand or restrict the use of the ARMA model to non-noisy

data.

2.2.2 Homomorphic estimation of PSF: the Cepstrum Model

The most common way to find PSF is using Homomorphic signal processing [49], or

more specifically, the cepstrum based methods for estimating PSF [35, 38, 46, 50–

52].

The method applies a Non-linear mapping to the cepstrum domain in which a

linear filter (referred to as a lifter) is applied and then a non-linear mapping is

applied to return the signal to the original domain.

The cepstrum model, unlike the ARMA model, is a non-parametric model that is

used to extract PSF from RF-line or B-scan. The procedure is shown in Figure

2.2.

Consider the convolution model stated in equation 2.2 in the Fourier Domain:

Figure 2.2: Determining PSF using Cepstrum Domain
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Y (f) = X(f)·H(f) (2.5)

where upper case denotes their lower case counterparts after applying a Discrete

Fourier Transform[43]. In this case the pulse spectrum is convoluted with the

reflection spectrum. In order to separate the two, the logarithm is taken:

log(Y (f)) = log (X(f) ·H(f))

= log(X(f)) + log(H(f))

= log|X(f)|+jarg(X(f)) + log|H(f)|+jarg(H(f))

In some simple cases, minimum phase can be assumed in X(f) and in H(f),

and so, only the amplitude of those spectra are taken into consideration when

performing the following operations. This type of cepstrum analysis is referred to

as real cepstrum [50]. However, in ultrasonography, phase cannot be avoided due

to the non-negligible effects it has on the signal[35]; this is referred to as complex

cepstrum. To convert to the cepstrum domain, one must apply an inverse fourier

transform to the logarithm of the Fourier transform of the RF-line:

IFFT (log(Y (f))) = IFFT (log|X(f)|+jarg(X(f)) + log|H(f)|+jarg(H(f)))

= IFFT (log|X(f)|) + IFFT (jarg(X(f))) + IFFT (log|H(f)|

+IFFT (jarg(H(f)))

or

yc(n) = xc(n) + xc,arg(n) + hc(n) + hc,arg(n) (2.6)
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where the subscript c refers to the mapping of each of the variable in the spectrum

domain to the cepstrum domain. Moreover, the subscript c, arg represents the

phase contribution.

In the cepstrum domain, the PSF spectrum and the response function spectrum

are added instead of being convoluted. Thus, since the nature of the cepstrum

leaves the components of xc(n) at the lower portion of the cepstrum and the

components of hc(n) scattered across the sample, a simple low-pass lifter can be

applied to extract the signal xc(n) and its phase xc,arg(n).

Since a B-scan has multiple RF-lines, it is recommended to average all of the

results acquired after applying the lifter and before performing the mapping back

to the spectrum domain.

The conversion to the spectrum domain can be done by taking the Fourier trans-

form, applying the natural exponential, and taking the inverse Fourier transform.

Once PSF is acquired, deconvolution can be applied to reconstruct h(n). At that

point, the image is restored to a high quality. Deconvolution approaches that

can be used are ones acquired from a stable model, such as Lucy-Richardson

deconvolution and Weiner deconvolution.

2.2.3 Adaptive filtering tool and its application for non-

blind deconvolution

Adaptive filtering is a signal processing tool designed to converge on a solution for

an Unknown System given an input and the Desired Response as shown in Figure

2.3[3]. This tool relays on minimizing a cost function e(n), which is defined as

the deference between the System Output and the “guessed” Network Response.

When e(n) is minimized, the Unknown System is identified.
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Figure 2.3: Basic Adaptive Filter for System Identification[3]

For example, in the case of non-blind deconvolution, xk can be considered the

estimation of the PSF, dk can be considered the RF-line y(n), and h(n) is the

unknown system.

To Identify the system, this process is taken:

1. xk is convoluted with some initial guess to produce the first Network Re-

sponse

2. The Error function is calculated by subtracting the Network Response from

the Desired Response and is inputted into the Adaptive Network

3. If the cost function has a large value, another guess is made. The new guess

is made using a learning algorithm that depends on both the value of the

cost function as well as other parameters

4. If the error function is small, then the Network Response is approximately

equal to the desired response, and so the guessed system is the unknown

system.
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There are many variables that can be changed to tailor the adaptive filter to one’s

needs. One of the main variables is the learning algorithm that is responsible of

changing the adaptive network in every iteration. The learning algorithm is most

commonly an intensive equation which takes into account the cost function, the

previous estimation of the network response, and many other variables. Chapter 3

shows that the learning algorithm is linear and the error function is not calculated

by simple arithmetic; rather, it is calculated after a mapping to a different domain

is done.

2.2.4 Blind-deconvolution via Single Input Multiple Out-

put Model (SIMO)

SIMO-based blind deconvolution is based on treating the echo response as a black

box whose input is the PSF and whose output is a collection of RF-lines[28]. In

this approach:

yk(n) = x(n) ∗ hk(n) (2.7)

Yk(f) = X(f) ·Hk(f) (2.8)

X(f) =
Yk(f)

Hi(f)
(2.9)

where the subscript k refers to the kth A-scan and the upper-case letters in 2.8

refer to the DFT of their lower-case counterparts in 2.7. In this case, we do not

need information about X(n); we only need to solve for Hk(n). Thus, assuming

X(f) is a common variable for all A-scans:

Yi(f)

Hi(f)
=
Yk(f)

Hk(f)

Yi(f) ·Hk(f) = Yk(f) ·Hi(f)



Ultrasonic imaging and post-processing: a review 21

For N A-scans and N variables, this process produces N(N−1)
2

equations. Since

PSF may have spatial dependency, one can use only consecutive scans to estimate

the tissue response function.

2.2.5 Blind-deconvolution via Inverse Filtering

A popular Blind-deconvolution model is based on using the inverse filtering approach[53,

54]. Inverse filtering is based on restructuring the convolution model, then solving

for both the echo response and the inverse of PSF simultaneously. The convolution

model can be restructured as follows:

y(n) = x(n) ∗ h(n)

Y (f) = X(f) ·H(f)

H(f) =
1

X(f)
· Y (f)

H(f) = S(f) · Y (f)

and so the restructured convolution model is:

h(n) = s(n) ∗ y(n) (2.10)

This restructured convolution model comes with two problems: the scale ambiguity

problem and phase ambiguity problem. The scale ambiguity arises from the fact

that the convolution model is

y(n) =
1

a
x(n) ∗ ah(n) (2.11)

where a is arbitrary scalar, and the phase problem arises from the fact that
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y(n) = x(n− no) ∗ h(n+ n0) = x(n+ n0) ∗ h(n− n0) (2.12)

where n0 is an arbitrary constant. Those two problems can be solved by changing

the assumption of the restructured model to be

γh(n− n0) ≈ s(n) ∗ y(n) (2.13)

Estimating s(n) requires the assumption that h(n) is independent and identically

distributed (i.i.d) and non-Gaussian random variable. This is essential as the

estimation method takes advantage of this assumption and builds on it.

Taking the central limit theorem into account, and because the PSF must be

Gaussian, the convolution between the Gaussian PSF and non-Gaussian h(n) is

always more Gaussian. The optimal inverse filter can then be determined using

this property to restore the non-Gaussianity of the data. To achieve this task, one

must minimize the entropy of the deconvolved result. This idea was first proposed

in [55] and implemented in [56].

In [55], maximizing the non-Gaussianity is done by the following:

sopt(n,m) = argmax
s

[∑
n

∑
m|(s(n,m) ∗ y(n,m))|4∑

n

∑
m|(s(n,m) ∗ y(n,m))|2

]
(2.14)

where m represents the mth RF-line and the corresponding tissue response func-

tion. Although it has been proven to be an effective measure of non-Gaussianity,

using the forth moment in this manner may be problematic because of its inability

to account for large and unsuccessful data samples.
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To improve the robustness of 2.14, [57] suggests generalizing the equation to find

an optimal filter using the following equation:

sopt(n,m) = argmax
s

[ ∑
n

∑
m|(s(n,m) ∗ y(n,m))|p∑

n

∑
m|(s(n,m) ∗ y(n,m))|p/2

]
(2.15)

Another approach is the Claerbout’s measure and the resulting Claerbout’s par-

simonious deconvolution [58], which is based on inverse filtering with sopt defined

as:

sopt(n,m) = argmax
s

[
1

NM

∑
n

∑
m

(
NM |(s(n,m) ∗ y(n,m)|2∑
n

∑
m|(s(n,m) ∗ y(n,m)|2

× log
(

NM |(s(n,m) ∗ y(n,m)|2∑
n

∑
m|(s(n,m) ∗ y(n,m)|2

))]
(2.16)

Regardless which method is used from Equation 2.14, 2.15, or 2.16 the procedure

is always the same. An adaptive filter is used to carry out the calculation using

the steepest decent algorithm [59].

2.3 Conclusion: post-processing methods’ com-

patibility for ultrasonic skull imaging

Methods mentioned in Section 2.2 are all outstanding approaches to the convo-

lution model in ultrasonography. However, in the case of skull imaging, these

methods encounter several difficulties. For example, the presence of the diploe

layer physically distorts the path of the beams. Thus, in the case of SIMO (Sec-

tions 2.2.4) and Inverse Filtering (Section 2.2.5), which relay on adjacent scans for

estimating h(n), the results will be misleading.
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The most reliable approach for skull profile extraction is, therefore, to tackle each

RF-line separately, and filter out non-conclusive results. For this case, in order to

estimate h(n) as accurately as possible, a precise estimation of the PSF is criti-

cal. Estimating the PSF can be done either through the ARMA Model (Section

2.2.1) or through homomorphic estimation using cepstrum (Section 2.2.2). After

estimating PSF it is necessary to perform deconvolution to acquire h(n). Adap-

tive filtering shown in Section 2.2.3 is one of the most stable methods to perform

Non-blind deconvolution to acquire an accurate estimation of h(n). However, the

deconvolution process proves more accurate for the cases where consecutive reflec-

tions are separated by a time delay larger than the pulse length. In skull imaging,

Adaptive filtering based deconvolution fails to locate the boundaries of the skull

since most of the reflections from the skull overlap.

In this study, a reliable and robust novel signal-processing technique, referred to as

the Selective Echo Extraction algorithm (SEE), is developed for the specific case of

ultrasonic skull imaging and accurate profile extraction. SEE does not relay on an

accurate pre-measurement of the PSF for clear results eliminating the effects of the

spatial dependence of PSF. In fact, only the acquisition system specifications and

a rough estimate of the skull’s acoustical properties are essential for the process.

The method is capable of disregarding the distortions caused by the diploe layer,

reviving reflections off of the skull-brain boundary, and accurately measuring the

skull’s inner boundary and its variable thickness across the examination area.

Additionally, a proposed method that utilizes SEE is shown to be able to measure

the averaged attenuation coefficient of the skull.



Chapter 3

Theory and simulations

Acquiring skull profile from a distorted ultrasonic B-Scan proves quite difficult

using conventional signal processing techniques. This chapter introduces a novel

method for blind-deconvolution to acquire a clear image of the skull’s innermost

curvatures. The suggested Selective Echo Extraction Algorithm (SEE) can be used

to accurately detect both inner and outer curvatures of the skull. Furthermore,

SEE can be utilized to attain the average attenuation coefficient of the skull.

Chapter 3 is divided into four sections: Section 3.1 introduces the algorithm and

thoroughly discusses its details, Section 3.2 shows simulation results of B-Scans

processed through SEE and the custom-designed curve fitting method used to

acquire a correct curvature of the skull, Section 3.3 shows how SEE can be utilized

to determine the attenuation coefficient in the skull, and Section 3.4 discusses

the importance of SEE and the potential for its applications in ultrasonic post-

processing.

25
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3.1 The Selective Echo Extraction algorithm

For the case of ultrasonic skull profile extraction, current conventional methods

for post-processing of RF data from the probed skull segment do not produce

accurate results as discussed in Chapter 2. For this reason, the Selective Echo

Extraction (SEE) algorithm has been developed and reported in this thesis. The

skull structure by nature, as discussed in Section 1.5, has three layers. The middle

layer which is referred to as “diploe” causes first and second strong reflections

that could be mistaken for the second boundary of the skull structure when using

conventional methods. SEE is a signal processing technique that is based on

extracting only useful information from a noisy ultrasound scan obtained from a

skull geometry.

The convolution model discussed in Chapter 2 states that:

y(n) = x(n) ∗ h(n) (3.1)

where y(n) is the collected A-Scan, x(n) is the point spread function, and h(n) is

the tissue response function. The convolution model in the skull portion of the

A-Scan can be further expanded as follows.

y(n) = x(n) ∗ (hb(n) + hd(n) + hη(n)) (3.2)

where hb(n) represents the portion of the reflectivity function representing the

inner most and the outer most boundaries of the skull, hd(n) represents the reflec-

tions caused by diploe, and hη(n) represents the noise in the response function.

The goal of the SEE is to extract hb(n) and disregard all unnecessary information

included in the reflectivity function. In order to do so, SEE is created as per

the adaptive filter model and is tailored to the needs of the proposed convolution

model shown in equation 3.2. In this section, the process of SEE is implemented
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in Algorithm 1 and each step in the Algorithm is thoroughly discussed to show

the physics and calculations performed to achieve the desired results.

Algorithm 1 The Selective Echo Extraction Algorithm

Input: y, Fc, BW , N , zf , d, W , cs, ρs, α, dmin, dmax
. y: Normalized RF-line in time domain.
. Fc,BW : The central frequency and bandwidth of the transducer [MHz]
. N , zf : The number of elements used to focus. and the focal distance [m]
. d,W : The pitch and element size of the transducer [m]
. cs,ρs, α: The speed of sound

[
m
s

]
, density

[
kg
m3

]
, and attenuation coefficient[

Np
mMHz

]
of the skull

. dmin, dmax: The minimum and maximum thicknesses of the skull.
Output: hb
. hb: The reflectivity function corresponding to outer boundaries of the skull

1: σω = 1
2.67BWfc

2: x̂ = e
− t2

2σ2ω

3: t1 = argmax(y) . the skull’s outermost boundary
4: for t = t1 + (dmin : dmax)/cskull do
5: reset ĥ
6: ĥ(t1) = 1

7: ĥ(t) = 1
N

∑N
n=1

[
sinc

(
W |N+1

2
−n|dfc

tc2s

)
e−2α

√
(|N+1

2
−n|d)2+(t−t1)2c2s

e
−
(
t−
(√

(|N+1
2
−n|d)2−t2c2s−zf

)
/c

)2

/(2σ2
ω)

( 2csρs
csρs+cwρw

)2
csρs−ctρt
csρs+ctρt

8: ŷ = x̂ ∗ ĥ
9: cyŷ = y ? ŷ

10: cyŷ(n) = cyŷ(n− argmax(cyŷ))
11: e(t) = max|cyŷ(t)− cyŷ(−t)|
12: if e contains a global minimum then
13: t2 = t1 + argmin(e) . skull’s innermost boundary
14: reset ĥ
15: t̂1 = 1

16: ĥ(t2) = 1
N

∑N
n=1

[
sinc

(
W |N+1

2
−n|dfc

t2c2s

)
e−2α

√
(|N+1

2
−n|d)2+(t2−t1)2c2s

e
−
(
t2−

(√
(|N+1

2
−n|d)2−t22c2s−zf

)
/c

)2

/(2σ2
ω)

( 2csρs
csρs+cwρw

)2
csρs−ctρt
csρs+ctρt

17: break
18: end if
19: end for
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In order for SEE to commence, only elementary information is needed along side

the A-Scan. Mainly, information related to experimental setup such as the trans-

ducer’s central frequency, bandwidth, pitch, element size, the number of elements

used for focusing, and the focal distance. Additionally, information is needed

about the target media, in this case the skull, such as the attenuation coefficient,

the speed of sound, and a rough estimation of the skull’s minimum and maximum

thicknesses. These properties, except the speed of sound, can be roughly estimated

and will not reduce the accuracy of the method. The speed of sound, however, is

a key property that is used to convert the samples from time based to distance

based via the basic formula d = ct, thus, must be provided with the least amount

of error.

The behavior of the point spread function (PSF) is well known in ultrasound to be

a Gaussian modulated sinusoidal waveform [4]. The waveform of PSF is produced

by the vibration of a piezoelectric element as a response to an applied square

electric pulse.

In a blind deconvolution problem, as discussed in Chapter 2, it is essential to

estimate the PSF before applying deconvolution or to estimate the PSF simulta-

neously with the reflectivity function. However, Since SEE is a numeric method

rather than deterministic, it is unnecessary to estimate both aspects of the PSF:

Gaussian and sinusoidal. Therefore, additional processing can be avoided by only

estimating the portion of PSF with the dominant effect: the Gaussian portion.

The variance of the Gaussian portion of PSF can be calculated directly from the

frequency and bandwidth of the transducer as follows:

σω =
1

2.67BWfc
(3.3)

then the estimated PSF x̂, in line 2 of algorithm 1 is proposed to be a Gaussian

function as follows:
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x̂ = e
− t2

2σ2ω (3.4)

where σω is the pulse width of the excitation signal. It is important to note that

the estimated PSF is not claimed to fully represent the original PSF, rather is

used only for calculations inside the algorithm.

In an ideal experimental or clinical setup, reflections are expected to occur at the

following boundaries: the coupling medium and scalp boundary, the scalp and

skull boundary, the different layers of the skull, and the skull and brain boundary.

An estimation of the reflection at each boundary is described by the reflection

coefficient formula for normal incidence:

R =
Z1 − Z2

Z1 + Z2

(3.5)

where Z1 and Z2 represent the acoustic impedance of the first and second media at

a specific boundary, respectively. The transmission coefficient, on the other hand,

is:

T =
2Z2

Z1 + Z2

(3.6)

such that the R + T = 1. The acoustic impedance, Z, is defined as:

Z = ρc (3.7)

where ρ is the density in the medium, and c is the speed of sound in the medium.

In medical application, transducers are mostly designed to be water or tissue cou-

pled. Thus, at the coupling medium-scalp boundary, the impedance difference

between the two media is minimal and the reflection coefficient is small; therefore,
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most of the wave is transmitted. At the scalp-skull boundary, however, the reflec-

tion coefficient is rather high since the difference between the acoustic impedances

is high (Ztissue ≈ 1.6 × 106
[
kg
m2s

]
while Zbone ≈ 6.2 × 106

[
kg
m2s

]
)[65, 69]. Thus,

it is fair to state that the reflection with the highest amplitude in the A-Scan

occurs at the scalp-skull boundary. This fact is utilized in the algorithm at line 3,

where the first boundary of the skull is shown to be at the location of the highest

peak. Additionally, since the y is normalized, the amplitude of the first peak in

the reflectivity function must be unity as shown in line 6.

To find the outermost boundary of the skull, the algorithm loops through various

proposed second boundary locations ranging from the minimum to the maximum

possible thickness provided. Thereafter, the algorithm performs calculations to

determine the most accurate estimation of the location of the second boundary.

The loop is performed in line 4 of Algorithm 1. Since in any given A-Scan the

acquired date is in units of time rather than distance, the loop is performed in the

time domain.

For each proposed location of the outermost boundary, the amplitude of the re-

flection must be calculated to properly perform comparison between the original

A-Scan and the proposed A-Scan. The amplitude of this reflection is dependent

on the distance from the first reflection, the nature of the skull, and the nature of

the wave. Each of these factors which contribute to the amplitude of the reflection

are discussed bellow.

Although the diploe layer of the skull is not considered to be a homogeneous

medium, the compact bone layers is composed from a dense homogeneous material

[2, 60]. Consider the propagation of a wave in a solid lossy medium [4, 61]. The

pressure,p, wave propagation in a homogeneous medium is expressed as follows:

∇2p− 1

c2
∂2p

∂t2
+ L(t) ∗ p = 0 (3.8)
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Figure 3.1: Geometry defining the coordinate system for the Fraunhofer ap-
proximation for a rectangular transducer.[4]

where c is the phase velocity at a reference frequency of ω, and L(t) is the convo-

lutional loss operator that guarantees causality and which accounts for the effects

of dispersion and attenuation. The integral solution to this equation in the z

direction can be expressed as:

p(z : t) =
1

2π

∫ ∞
−∞

p(0 : ω)e−i(
ω
c
−iα(ω))zeiωtdω (3.9)

where p is the phasor pressure produced by the transducer and α is the attenuation

coefficient as a function of angular frequency ω.

The phasor pressure can be calculated using the Fraunhofer Approximation [4].

For a rectangular transducer, The phasor pressure is given by:

p(x0, y0, z : w) =
ωρ0c0
2πR

e
−ik

[
z+

x20+y
2
0

2z

]
WHsinc

(
Wx0
λz

)
sinc

(
Hy0
λz

)
(3.10)

where W, H, R, x0, y0, and z are as shown in figure 3.1, and λ is the wavelength

of the pressure wave in the target medium.



Theory and simulations 32

Figure 3.2: One transducer element used to image a simple two media sample.

Thus the pressure produced by one rectangular element in a lossy medium with

attenuation coefficient α(ω) is:

p(x0, y0, z : t) =
ωρ0c0
4π2R

e
−ik

[
z+

x20+y
2
0

2z

]
WHsinc

(
Wx0
λz

)
sinc

(
Hy0
λz

)
e−α(ω)z (3.11)

Equation 3.11 can be tailored to calculate the amplitude of peaks in A-Scans

undergoing certain conditions. For example, in a simple case shown in figure 3.2,

a transducer consisting of one rectangular element is used to acquire an A-Scan of

a system consisting of two media. In a normalized A-Scan, the amplitude of the

pressure at the first boundary is set to unity p(z1) = 1 such that the reflectivity

function at that location is 1: h(z1) = 1. Thus, to calculate the amplitude at the

boundary between Medium 1 and Medium 2 the following computations must be

incorporated: the pressure at z1, the pressure at z2, the transmission coefficient

at z1 and the reflection coefficient at z2. The observed second boundary location

corresponds to a reflection from normal incidence at x0 = 0 and y0 = 0. Since,

the normalized pressure at z1 < z < z2 is:
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p(z) = e−α(ω)(z−z1)
2c1ρ1

c0ρ0 + c1ρ1
(3.12)

The amplitude of the reflectivity function from a normalized A-Scan at z = z2 is:

h(z2) = e−2α(ω)(z2−z1)
(

2c1ρ1
c0ρ0 + c1ρ1

)2
c2ρ2 − c1ρ1
c1ρ1 + c2ρ2

(3.13)

The process discussed above can be extended to calculate the expected value of

the reflectivity function of more complex cases. In the case of an A-Scan acquired

from an N-element focused transducer, the pressure can be found by summing

over the pressure produced by each element. Note that if N is even, the x position

of the focal point at which the reflection is observed is between the central two

element, alternatively, if N is odd, the x position of the focal point is at the center

of the central element. Thus, the x0 displacement between each element and the

observed point is:

xn =

∣∣∣∣N + 1

2
− n

∣∣∣∣ d (3.14)

where d is the pitch of the transducer. xn is substituted in equation 3.11 as x0 for

each transducer element. Additionally, it’s worth mentioning, that each element is

excited at different excitation time to produce a focal point as discussed in Section

2.1. The pressure of each element is also dependent on time of arrival and the pulse

width. Thus the pressure produced from N elements at a distance z1 < z < z2

and time t is given by:

p(z : t) =
1

N

N∑
n=1

[
sinc

(
Wxn
λz

)
e−2α(ω)

√
x2n+(z−z1)2e

− (t−tn)2

2σ2ω

]
2c1ρ1

c0ρ0 + c1ρ1
(3.15)
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where the time delay is given by:

tn =

√
x2n + z2 − zf

c
(3.16)

where zf is the distance at which the transducer is focused. If z = z2 then the

reflection coefficient has to be considered as well a second transmission coefficient.

Thus, the amplitude of the reflectivity function from a normalized A-Scan at z = z2

is:

h(z2) =
1

N

N∑
n=1

sinc(Wxn
λz

)
e−2α
√
x2n+(z−z1)2e

−
( z2c1 −tn)

2

2σ2ω

( 2c1ρ1
c0ρ0 + c1ρ1

)2
c2ρ2 − c1ρ1
c1ρ1 + c2ρ2

(3.17)

Line 7 of Algorithm 1, corresponds to an expanded form of equation 3.17 in terms

of the variables available in the algorithm. Line 7 states:

ĥ(t) =
1

N

N∑
n=1

[
sinc

(
W
∣∣N+1

2
− n

∣∣ dfc
tc2s

)
e−2α

√
(|N+1

2
−n|d)2

+(t−t1)2c2s

e
−
(
t−
(√

(|N+1
2
−n|d)2

−t2c2s−zf
)
/c

)2

/(2σ2
ω)
](

2csρs
csρs + cwρw

)2
csρs − ctρt
csρs + ctρt

(3.18)

This completes the estimation of hb which is referred to as ĥ in the algorithm. The

estimate of the A-Scan corresponding to the two skull boundaries, ŷ, is calculated

in line 8 as the convolution of x̂ and ĥ. In line 9, the cross correlation between the

original and the proposed signals is calculated and in line 10 the cross correlation

function is centered about its maximum point. The centering is important to

ensure that the first reflections in the original and proposed A-Scans are perfectly

aligned.

The cross-correlation function between two arbitrary functions f(t) and g(t) de-

scribes the general dependence of the values of f(t) at one time on the values of
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g(t) at another time. Therefore, Cross-Correlation in line 9 provide a description

of the similarity between the estimated signal and the original. Cross-correlation

is calculated as follows[3]:

rfg(τ) = lim
T→∞

1

T

∫ T

0

f(t)g(t+ τ)dt (3.19)

where rfg(τ) is the cross correlation between the functions f and g at time τ , and

T is the total observation time. To show the necessity of using cross correlation to

compare the original A-Scan and the proposed A-Scan two cases are shown bellow.

Consider a hypothetical A-Scans with a PSF of Gaussian nature and two distinct

reflections as shown in figure 3.3a. Assume the proposed estimation of the A-

Scan is as shown in figure 3.3b. Then the Cross-Correlation between the original

and the proposed A-Scan is given in figure 3.3c. The high peak in the center of

the cross-correlation is a product of the first reflection from each A-Scans added

to the product of the second reflections from each A-Scans. This is because the

highest correlation between the two A-Scans happens at zero shift. The peak on

the right side in the correlation, however, represents the product between the first

reflection of the proposed A-Scan and the second reflection of the original A-Scan

thus representing the behavior of the original A-Scan post the first peak. Similarly,

the peak on the left side represents the correlation between the first reflection of

the original with the second reflection of the proposed A-Scan.

This convention is also shown in figure 3.4, where figure 3.4a contains the origi-

nal A-Scan including many reflections and uniformly distributed error, and figure

3.4b contains the proposed A-Scan including only two reflections. It is safe to

assume from these two cases that the right hand side of the correlation represents

the original A-Scan behavior post first peak while the left hand side represents

the proposed’s A-Scan’s behavior post first peak. Moreover, the cross-correlation

produces results with no error which is essential in scans with low signal to noise

ratio.
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(a) Original A-Scan

(b) Proposed A-Scan

(c) Cross-Corrolation between the original A-Scan and the proposed A-Scan

Figure 3.3: Cross-Correlation example for a hypothetical simple case of A-
Scans with a Gaussian PSF

It is important to note that the similarity between the two sides of the correlation

is maximum when ŷ best describes the hb portion of the A-Scan. Therefore, the

two sides of the correlation can be effectively used to produce an error factor

between the proposed A-Scan and the Original. The error factor e(τ) is defined

in line 11 as:

e(τ) = max|cyŷ(t)− cyŷ(−t)| (3.20)

where cyŷ is the cross correlation between the original A-Scan y and the proposed
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(a) Original A-Scan

(b) Proposed A-Scan

(c) Cross-Corrolation between the original A-Scan and the proposed A-Scan

Figure 3.4: Cross-Correlation example for a hypothetical complex case of
A-Scans constructed with a Gaussian PSF and added uniformly distributed

random error

A-Scan ŷ. e(τ) provides an illustration of the difference between the the original

A-Scan and a proposed A-Scan where the proposed A-Scan contains only two

peaks separated by time shift τ .

In every iteration shown in line 4 of the algorithm, a new A-Scan is proposed and

the error for the time shift is calculated. After a few alterations, the process of

detecting the highest similarity (lowest error) starts.

Highest similarity occurs when the error value reaches the global minimum. When
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e(τ) contains a minimum of certain criteria that corresponds to the global min-

imum as stated in line 12, the algorithm fixates the location of the second peak

at that minimum as shown in line 13, and exits the loop as shown in line 17. If

the algorithm reaches the iteration that corresponds to the maximum thickness of

the skull and is yet to detect a minimum, no second boundary will be included in

the result. Although not detecting a second boundary may seem like a drawback

to the algorithm, it is in fact an advantage: in sections of the skull that contain

highly irregular second boundary, the ultrasound beam may deflect causing no

second boundary echo in the A-Scan. By excluding the absolute minimum which

does not behave as a global minimum in the error function as the second boundary,

SEE ensures that any reflections that do not conform to the physical properties

and conditions specified by the user are not mistaken to be the second boundary

of the skull guaranteeing no false positives are detected.

3.1.1 Simulation of SEE for single A-Scans

As a proof of concept, simulations of A-Scans with the same reflectivity function

and different types of noise are carried out to test SEE. The reflectivity function is

constructed to mimic the response from a skull sample containing diploe. There-

fore, the reflectivity function contains four reflections: the first reflection occurs

at a water-skull boundary, the porous layer introduces two separate reflections at

2mm and 3mm away from the first boundary. Finally, the inner most boundary

of the skull produces a reflection 8mm away from the first boundary.

The PSF, the reflectivity function, and the original A-Scan with no additive noise

are shown in figure 3.5. After processing the A-Scan using SEE, the portions of

the A-Scan corresponding to the outer boundaries of the skull are retrieved as

shown in figure 3.6a. The error function produced by SEE is shown in 3.6b, where

the location of the minimum represents the location of the outermost boundary.

It is worth noting that SEE exits as soon as a minimum is found, however, for
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(a) The point spread function (PSF)

(b) The Reflectivity Function

(c) The A-Scan

Figure 3.5: The point spread function in 3.5a convoluted with the reflectivity
function in 3.5b produce the A-Scan shown in 3.5c.

the sake of this study the entire error function is shown and the location at which

SEE would normally exit is noted on the figures of the error functions.

To clarify the SEE results, the original A-Scan and the A-Scan acquired from SEE

are plotted on the same figure as shown in figure 3.6c. It is clear that SEE has

successfully found the second peak of the A-Scan for the simplest case possible, in

fact, SEE detected the peak within 0.36mm from the real value. More importantly,

it has detected the peak within 0.6λ.

Consider a case where additive noise is present in the A-Scan, mainly:

y(n) = x(n) ∗ h(n) + η(n) (3.21)
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(a) The Estimated A-Scan corresponding to hb(n)

(b) The error function generated in SEE

(c) Original A-Scan vs Processed A-Scan

Figure 3.6: Processing an A-Scan with no added noise.

where η(n) is white Gaussian noise. For this case, an A-Scan with a relatively high

signal-to-noise ratio of 12dB/sample is shown in figure 3.7a. Note that the value

of SNR is proportional to the amplitude of the signal, thus, the value of SNR is

an average over the A-scan. It is clear that although the signal to noise ratio in

the region of the second reflection is quite high, SEE is able to detect the location

with an accuracy of 0.18mm or 0.3λ.

In the next simulation, the signal to noise ratio is reduced to a 6dB.sample SNR.

The simulation is shown in figure 3.8. At this level of noise, the second reflection

is comparable in amplitude to the additive noise. However, SEE is able to detect

the location of the second peak with an accuracy of 0.12mm or 0.2λ.

Another type of noise SEE is tested with is convoluted noise, mainly:
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(a) The noisy A-Scan.

(b) The extracted A-Scan corresponding to hb.

(c) The error function generated in SEE

(d) Noisy A-Scan vs processed A-Scan.

Figure 3.7: Processing a noisy A-Scan with additive Gaussian noise corre-
sponding to 12dB/sample SNR in the A-Scan.

y(n) = x(n) ∗ (h(n) + η1(n)). (3.22)

With this type of noise, the produced A-Scan will contain waveforms that are

similar in nature to PSF. Convoluted noise is especially hard to filter using con-

ventional methods since it is present inside the reflectivity function.

The first simulation carried out with this type of noise is with additive Gaussian
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(a) The noisy A-Scan.

(b) The extracted A-Scan corresponding to hb.

(c) The error function generated in SEE

(d) Noisy A-Scan vs processed A-Scan.

Figure 3.8: Processing a noisy A-Scan with additive Gaussian noise corre-
sponding to 6dB/sample SNR in the A-Scan.

noise in the reflectivity function that corresponds to 12dB/sample SNR as shown

in Figure 3.9. In this simulation, the peak location is detected with an accuracy

of 0.06mm or 0.1λ.

Similarly, another simulation is carried out with convoluted Gaussian noise which

produces a reflectivity function with 6dB/sample SNR. The results from this

simulation are shown in figure 3.10. The results show that the signal is detected

with an accuracy of 0.06mm or 0.1λ.
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(a) The noisy reflectivity function.

(b) The noisy A-Scan.

(c) The extracted A-Scan corresponding to hb.

(d) The error function generated in SEE

(e) The noisy A-Scan vs the processed A-Scan.

Figure 3.9: Processing a noisy A-Scan with convoluted Gaussian noise corre-
sponding to 12dB/sample SNR in the reflectivity function.

Finally, a simulation with an A-Scan containing both types of noise is carried out

as shown in figure 3.11. An A-Scan with both types of noise has the form:

y(n) = x(n) ∗ [h(n) + η1(n)] + η2(n) (3.23)
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(a) The noisy reflectivity function

(b) The noisy A-Scan.

(c) The extracted A-Scan corresponding to hb.

(d) The error function generated in SEE

(e) The noisy A-Scan vs the processed A-Scan.

Figure 3.10: Processing a noisy A-Scan with convoluted Gaussian noise cor-
responding to 12dB/sample SNR in the reflectivity function.

where η1 produces convoluted noise which results in SNR of 12dB per sample in

the reflectivity function and η2 produces additive noise that results in SNR of 12dB
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(a) The Noisy reflectivity function.

(b) The Noisy A-Scan

(c) The extracted A-Scan corresponding to hb.

(d) The error function generated in SEE

(e) The Noisy A-Scan vs processed A-Scan.

Figure 3.11: Processing a noisy A-Scan with convoluted Gaussian noise corre-
sponding to 12dB/sample SNR in the reflectivity function and additive Gaus-

sian noise corresponding to 12dB/sample SNR in the A-Scan.



Theory and simulations 46

per sample in the A-Scan. The second boundary is detected with an accuracy of

0.06mm or 0.1λ.

In all of these simulations, SEE detected the reflectivity function corresponding to

the two boundaries of the skull to an accuracy 0.23λ ± 0.20λ or 0.14 ± 0.12mm.

This shows that SEE has proven effective for scans with varying SNR and vary-

ing types of noise. The results are not surprising given the fact the SEE is not

strictly mathematical nor does it depend strictly on Digital Signal Processing

techniques: SEE relays heavily on the physics behind pressure wave propagation

in the medium. Thus, the algorithm results in a more physically sound method

than other methods that may detect false positives for the lack of incorporation of

wave propagation, attenuation, beamforming, and the physical properties of the

propagation media.

3.2 Applying SEE to determine the curvature of

the skull from simulated B-Scans

In the case of skull imaging, two dimensional scans can be acquired using the

full array and beamforming algorithms. Those B-Scans are composed of multiple

A-Scans. To determine the curvature, SEE is applied to each A-Scan separately,

and then, the information is combined to produce an accurate depiction of the

curvature. Consider the B-Scan shown in figure 3.12. Each A-Scan in the proposed

B-Scan is constructed similarly to the A-Scans shown in section 3.1.1. The first

reflection is produced at the coupling medium-skull boundary, the second and

third reflections are produced at 2 ± 0.3[mm] and 3 ± 0.3[mm] away from the

first boundary, respectively. Those reflections mimic the porous layer present in

the skull. Finally, a reflection is produced at the skull-brain boundary at varying

distances as if the curvature of the skull has a sinusoidal form:
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Figure 3.12: Noiseless B-Scan of a skull geometry.

z2(x) = sin

(
4π

Mp
x

)
+ 7 (3.24)

where z2 represents the location of the innermost boundary of the skull, M corre-

sponds to the number of A-Scans acquired, p is the pitch of the transducer, and 7

is the average thickness of the skull. Note that all distances in equation 3.24 are

in mm.

Similar to the process performed in section 3.1.1, SEE will be tested against dif-

ferent types of noise and noise levels incorporated into the B-Scan. Additive noise

resulting in 12dB per sample SNR is applied to the B-Scan to produce the dis-

torted B-Scan shown in figure 3.13a. The distorted B-Scan is then fed into SEE,

one A-Scan at a time, to produce the curvature shown in 3.13b. The curve ac-

quired from SEE is not considered the final output since it is irregular and could

be inconclusive if outliers are present in certain complex cases. Therefore, curve

fitting should be performed to produce a more reliable curvature.
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(a) The noisy B-Scan. (b) Results from SEE

(c) Results from curve fitting. The line
denotes the original curvature.

(d) The Noisy B-Scan with the line de-
noting the curvature form curve fitting

Figure 3.13: Processing a noisy B-Scan with Additive Gaussian noise corre-
sponding to 12dB/sample SNR in each A-Scan.

Although applying a simple curve fitting algorithm using Fourier functions or

polynomial functions seems to be a good approach, it is not an optimal method

for this study. In more complex cases, the curvature of the skull does not exhibit

a periodic behavior, therefore, those curve fitting methods are not optimal. To

tackle this issue, the points acquired from SEE are segmented into smaller subsets,

thereafter, curve fitting is applied to each subset, and points in overlapping subsets
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are averaged to create an accurate depiction of the curvature.

The subsets in this study are chosen to be 10mm wide with a curve fitting algo-

rithm using a third order polynomial. These parameters are chosen considering

the fact that the skull, by nature, does not contain a high frequency of maxima

and minima. It is postulated in this thesis that in a 10mm section there should

not be more than one maximum and one minimum. Therefore the curve fit for

each subset is calculated as follows:

zfit,k =

fit(x, z(x),
∑3

n=0 aknx
n)

(
k − M−1

2

)
p ≤ x ≤

(
(k +Nsub − 1)− M−1

2

)
p

0 else

(3.25)

where k represents the index of the subset(k = 0, 1, ...,M − Nsub + 1), x is the

location of the center of the elements at which the respective A-Scans are acquired:

x =
(
k − M−1

2

)
p, z(x) is the location of the detected peak acquired from SEE, akn

is the constant corresponding to the kth curve fit and the nth polynomial power,

and Nsub is the number of A-Scans used for each subset. Note that if the boundary

is not detected by SEE at any given A-Scan, that location will carry no weight in

the curve fitting functions.

In the case where a subset contains a small number of detected points, Nsub is

adjusted such that each subset contains no less than 10 A-Scans. This property

proves more relative in chapter 4 where sections of the skull with a high slope fail

to be detected since the transmitted waves deflect at a high angle.

The fit function is a standard Linear regression model created to minimize the

deviation between the inputs (x and z) and the proposed curve fitting function.

The results from the curve fit for each subset are combined to produce a continuous

curve as follows:
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ẑ =

∑M−Nsub+1
k=1 fk(x)u(fk(x))∑M−Nsub+1

k=1 u(fk(x))
(3.26)

where

fk(x) =
∑3

n=0 aknx
n (3.27)

u(x) =

1 x > 0

0 x <= 0
(3.28)

This allows for only non-zero values each curve fits to be averaged.

Results obtained from the curve fitting are referred to throughout the thesis as

the final result. For the example given in figure 3.13, the results are shown in

figure 3.13c. Another illustration is shown in figure 3.13d, where the image shows

the original scan with a dashed line denoting the curve acquired from curve fitting

post SEE.

Similarly, results from a B-Scan with additive noise corresponding to 6dB per

sample SNR in each A-Scan are shown in figure 3.14. These results show that

even when noise with comparable magnitude to the second boundary’s amplitude

is added to the B-Scan, SEE is able to detect the boundary to an excellent accuracy.

SEE is also tested with convoluted noise that corresponds to 12dB and 6dB per

sample SNR in the reflectivity function of each A-Scan, as shown in figures 3.15

and 3.16, respectively.

To obtain a more realistic B-Scan, a simulation is carried out for a B-Scan using

convoluted noise as well as additive noise. For this case, SEE is tested using

a B-Scan containing Gaussian noise resulting in SNR = 12dB/sample in the

reflectivity function and Gaussian noise resulting in SNR = 12dB/sample in each

A-Scan. Results for this type of B-Scan are shown in figure 3.17.
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(a) The noisy B-Scan. (b) Estimated B-Scan after applying
SEE

(c) Clean B-Scan after applying curve
fitting. The dashed line denotes the

curvature shown in equation 3.24.

(d) The Noisy B-Scan with the dashed
line denoting estimated curvature ac-

quired from SEE and curve fitting.

Figure 3.14: Processing a noisy B-Scan with Additive Gaussian noise corre-
sponding to 6dB/sampel SNR in each A-Scan.

The accuracy of SEE and SEE with curve fitting can be calculates with respect

to the original curve as follows:

∆z = mean(|ẑ − z|) (3.29)



Theory and simulations 52

(a) The noisy B-Scan. (b) Estimated B-Scan after applying
SEE

(c) Clean B-Scan after applying curve
fitting. The dashed line denotes the

curvature shown in equation 3.24.

(d) The Noisy B-Scan with the dashed
line denoting estimated curvature ac-

quired from SEE and curve fitting.

Figure 3.15: Processing a noisy B-Scan with convoluted Gaussian noise cor-
responding to 12dB/sample SNR in each reflectivity function.

and

∆zλ =
∆zfc
cs

(3.30)
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(a) The noisy B-Scan. (b) Estimated B-Scan after applying
SEE

(c) Clean B-Scan after applying curve
fitting. The dashed line denotes the

curvature shown in equation 3.24.

(d) The Noisy B-Scan with the dashed
line denoting estimated curvature ac-

quired from SEE and curve fitting.

Figure 3.16: Processing a noisy B-Scan with convoluted Gaussian noise cor-
responding to 6dB/sample SNR in each reflectivity function.

The accuracy of SEE can be determined by substituting the values obtained di-

rectly from SEE for ẑ in equation 3.29. Alternatively, the accuracy of SEE with

the additional step of curve fitting can be calculated by substituting the values

from equation 3.26 as ẑ in equation 3.29. Since both methods are compared to
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(a) The noisy B-Scan. (b) Estimated B-Scan after applying
SEE

(c) Clean B-Scan after applying curve
fitting. The dashed line denotes the

curvature shown in equation 3.24.

(d) The Noisy B-Scan with the dashed
line denoting estimated curvature ac-

quired from SEE and curve fitting.

Figure 3.17: Processing a noisy B-Scan with convoluted Gaussian noise corre-
sponding to 12dB/sample SNR in each reflectivity function and added Gaussian

noise resulting to 12dB/sample SNR in each A-Scan.

the original curve from simulations, z is the same from both cases and is shown

in equation 3.24.
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Results of the accuracy of data acquired from SEE versus from SEE in addition

to curve fitting are shown in Table 3.1. Results show that the accuracy of SEE is

consistent regardless of the type of noise and noise level applied to the B-Scan. The

accuracy of SEE is 0.19 ± 0.11[mm] or 0.31λ ± 0.18λ. The accuracy is increased

to 0.09 ± 0.07[mm] or 0.15λ ± 0.11λ after applying the curve fitting algorithm.

With an accuracy well bellow one wavelength of sound in the target medium,

and given the types of noise and noise levels applied to the original B-Scans in

simulations, SEE proves to be a promising Algorithm for accurate human skull

profile extraction.

3.3 Using SEE to determine the attenuation co-

efficient of the skull.

One of the parameters used to determine the curvature of the skull in SEE is

the attenuation coefficient. This parameter is very important to produce accurate

results and must be chosen to be as close to the actual value as possible. Selecting

an attenuation coefficient that is inaccurate will result in no detection of the sec-

ond peak or a measurement of an outlier. This disadvantage can be harnessed to

determine the attenuation coefficient using SEE. Mainly, by varying the attenua-

tion coefficient value and recording the behavior of SEE, the optimal attenuation

coefficient value can be determined. There are two measurements of the behavior

of SEE when applied to a B-Scan that can be used for this purpose: the number of

detected points and the continuity of the detected curvature. The number of de-

tected points at the various attenuation coefficient values gives a good estimation

of the attenuation coefficient since at more accurate attenuation coefficient values

more points are detected. However, the number of points is not enough to de-

termine the attenuation coefficient since it accounts only for the number of peaks

detected and not the detection accuracy. To determine the detection accuracy, a
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measurement of continuity of the curvature of the second boundary is suggested

to be made. The measurement of continuity is performed through the following

process:

Given that SEE detected Np points and that the location of the detected points

are xp(n) and yp(n), where n = 1, 2, . . . , Np, then:

β(k − 1) =

∣∣∣∣ yp(k)− y(k − 1)

xp(k)− xp(k − 1)

∣∣∣∣ ; k = 2, 3, . . . , Np (3.31)

C =

√√√√ 1

Np − 1

Np−1∑
i=1

(
β(i)− β

)2
(3.32)

where β represents the absolute value of the slope between consecutive detected

points, and C is the continuity factor. In continuous functions, the absolute value

of the slope between consecutive points is the absolute value of the derivative at

those points. Therefore, when an outlier is introduced to the continuous function,

it can only increase the absolute value of the slope between consecutive points.

Thus, considering the standard deviation of the absolute value of the slope between

consecutive points is a good measure of the continuity of the function: as the

function becomes more continuous, C decreases.

When the attenuation coefficient value is close or equal to the actual value, the

curvature obtained from SEE will contain maximum number of detected points

and a minimum value of C, therefore:

E(α) = Nd(α)
C(α)

(3.33)

αoptimal = argmax(E(α)) (3.34)

where E is the effectiveness of the algorithm as a function of the attenuation

coefficient, Nd(α) is the number of points detected by SEE at the attenuation

coefficient value α, and C(α) is the continuity factor of the curvature obtained
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Algorithm 2 Attenuation determiner using SEE

Input: y, Fc, BW , N , zf , d, W , cs, ρs, α, dmin, dmax
. y: Normalized RF-line in time domain.
. Fc,BW : The central frequency and bandwidth of the transducer [MHz]
. N , zf : The number of elements used to focus. and the focal distance [m]
. d,W : The pitch and element size of the transducer [m]
. cs,ρs, α: The speed of sound

[
m
s

]
, density

[
kg
m3

]
, and attenuation coefficient[

Np
mMHz

]
of the skull

. dmin, dmax: The minimum and maximum thicknesses of the skull.

. αmin, αmax: The minimum and maximum attenuation coefficient values of the
skull.
Output: αopt
. αopt: The optimal attenuation coefficient value corresponding to the averaged
attenuation coefficient value in the skull.

1: for α = αmin : αmax do
2: reset xp and yp
3: for i = 1 : M do
4: hi = SEE(Bscan(i),Fc, BW , N , zf , d, W , cs, ρs, α, dmin, dmax)
5: if hi contains a boundary then
6: xp = [xp (i− M−1

2 )p]
7: yp = [yp find(0 < h < 1)]
8: end if
9: end for

10: Np =length(xp)

11: β =
∣∣∣ dypdxp

∣∣∣
12: C =

√
1

M−2
∑M−1

k=1

(
β(k)− β

)2
13: E = [E

Np
C ]

14: end for
15: αopt = argmax(E′)

from SEE at the attenuation coefficient value α. The optimal value of attenuation

coefficient αoptimal is when the ratio is maximized.

The process proposed to determine the attenuation coefficient is shown in Algo-

rithm 2. In this algorithm, a for loop is conducted in line 1 to vary the value

of the attenuation coefficient. In every iteration, SEE is applied to each A-Scan

using a second loop as shown in line 3 and 4. In every iteration in the second

loop, a condition is used to determine whether SEE has detected a boundary as

shown in line 5; if it did, the coordinates of the second peak are recorded in lines
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(a) B-Scan with η1 = η2 = 0 (b) B-Scan with 20log
(
P (x∗h)
P (η2)

)
= 12

(c) B-Scan with 20log
(
P (x∗h)
P (η2)

)
= 6 (d) B-Scan with 20log

(
P (h)
P (η1)

)
= 12

(e) B-Scan with 20log
(
P (h)
P (η1)

)
= 6 (f) B-Scan with 20log

(
P (h)
P (η1)

)
= 12

and 20log
(
P (x∗(h+η1))

P (η2)

)
= 12

Figure 3.18: Testing Algorithm 2 for different types of B-Scans to determine
the optimal attenuation coefficient value. In each sub figure, the y axis repre-
sents the effectiveness E as discussed in equations 3.33 and the x axis represents

attenuation coefficient

7 and 7. After all points are detected, Np is determined in line 10 as the length of

the vector containing the x location of the points. β is calculated as the absolute

value in the change in yp with respect to the change in xp as shown in Line 11. C

is calculated to be the standard deviation of β as shown in line 12. Finally, the

effectiveness of the algorithm in terms of the attenuation coefficient is calculated

to be Nd
C

as shown in line 13.
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The B-Scans discussed in Section 3.2 are used to test the effectiveness of Algo-

rithm 2. The B-Scans are all constructed with the same base B-Scan built with an

attenuation coefficient value of α = 20.8dB/cm. The B-Scans experience different

noise types and noise levels, thus, the B-Scans are an appropriate choice to test

the algorithm. Figure 3.18 shows the effectiveness value as a function of attenu-

ation coefficients from different B-Scans. In all the B-Scans, αopt is consistently

determined to be 20.8dB/cm proving the effectiveness of this modality.

3.4 Conclusion

Details of the proposed method for skull profile extraction via a post-processing

adaptive-filtering algorithm, referred to as the Selective Echo Extraction algorithm

(SEE) were discussed in Chapter 3. It was previously shown in Section 2.2 that

the point spread function in biological tissues is spatially dependent; therefore, the

averaged PSF from an entire B-Scan is not equal to the PSF from spatially localized

segments of the B-Scan. In this case, processing the B-scan as a whole may lead

to inaccuracy in the deconvolved signal; corresponding to the reflectivity function

of the target media, and consequently inconclusive results. To avoid the effects

of a spatially dependent PSF, the proposed method is based on independently

processing A-Scans in a given skull profile B-scan. SEE is a blind algorithm in the

sense it does not need previous information about PSF to process an A-Scan. The

input requirements for SEE are limited to the acquisition system specifications

and a rough estimate of major acoustical properties of the skull, as the target

medium in this study.

When SEE is applied to an A-Scan, it extracts the portions which represent the

innermost and the outermost boundaries of the skull by minimizing an error func-

tion as explained in section 3.1. The algorithm proposes various solutions to the

A-Scan and compares each solution to the original A-Scan to produce an error
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value. The correct solution results in a minimal error value and contains accurate

locations of the innermost and outermost boundaries of the skull.

Results from simulations show that the algorithm is effective for noiseless A-Scan

as well as A-Scans with the following types of noise and noise levels: additive

noise ≈ 6dB/sample and ≈ 12dB/sample SNR in the A-scan, convoluted noise ≈

6dB/sample and ≈ 12dB/sample SNR in the reflectivity function, and convoluted

noise ≈ 12dB/sample SNR in the reflectivity function combined with additive

noise ≈ 12dB/sample SNR in the A-Scan. The algorithm detects the innermost

boundary of the skull to an accuracy of 0.23λ± 0.20λ or 0.14± 0.12mm.

When applied to skull profile B-Scans the algorithm proves effective for the same

types of noise with an accuracy of 0.31λ ± 0.18λ or 0.19 ± 0.11mm. A custom-

designed curve fitting algorithm is used to further enhance the accuracy of the

results and produce a continuous skull profile. The curve fitting algorithm is

performed in three steps: results from SEE are divided into small segments, simple

polynomial curve fitting is applied to each segment, then the results from all

segments are combined to produce one skull profile. The application of curve

fitting for the same simulated B-Scans result in an accuracy of 0.15λ ± 0.11λ or

0.09± 0.07mm.

Another application of SEE is shown in section 3.3 which discusses how SEE can

be used to determine the attenuation coefficient of the skull. Determination of

the attenuation coefficient can be done by observing the effectiveness of SEE at

different attenuation coefficient values: SEE is most effective when the attenua-

tion coefficient value is closest to the actual value. The effectiveness of SEE can

be calculated by maximizing the number of detected points and minimizing the

discontinuity of the produced curvature.

The proposed attenuation coefficient estimation algorithm is applied to B-Scans

with varying noise types and noise levels. The attenuation coefficients are consis-

tently found to be equal to the actual attenuation coefficient values proving the
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effectiveness of the algorithm. Skull profile extraction results and the attenuation

coefficient estimation results discussed in this chapter showed great potential of the

proposed method for accurate skull profile extraction. In chapter 4, experimental

verification of SEE is presented.



Chapter 4

Experiments and results

To perform brain imaging through the skull, researchers have proposed a variety

of methods to accommodate for the skull’s distortive effects and topography. In

some cases, such as adaptive beamforming methods [16–27], transcranial imaging

requires an accurate measurement of the skull’s profile. In Chapter 3, a novel

signal processing algorithm capable of extracting the curvature of the skull using

transducer’s specifications and a rough estimate of the skull’s acoustical properties

was discussed. The algorithm uses the aforementioned parameters to numerically

find the optimal location of the second boundary of the skull. In addition to

finding the curvature of the skull, SEE can be used to find the average attenuation

coefficient of the skull. The purpose of this chapter is to test SEE on adult

human skull mimicking phantoms of known curvature to draw conclusions on the

effectiveness of the algorithm in experiments.

The chapter is divided into three sections. Section 4.1 shows the experimental

setup, the design and properties of the skull phantoms used for testing, the speci-

fications of the transducer, and the specifications of the data acquisition system.

Section 4.2 discusses the experimental data, the process used to obtain the skull

profile, and the final results. Finally, Section 4.3, discusses the accuracy of the

method and draws conclusions to the effectivness of SEE in experiments.

63
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Figure 4.1: Experimental Setup showing OmniScan acquisition system, 64
element 5MHz IMASONIC linear phased array, delay line, and a skull phantom

4.1 Experimental setup

The experimental setup used to test SEE is composed of a data acquisition system,

OmniScan MX, a 5 MHz IMASONIC transducer array, a delay line with known

acoustical properties, and the sample as shown in figure 4.1. The data acquisition

system is used to drive the transducer elements separately and collect data. The

samples used in this setup are skull phantoms which mimic the acoustical proper-

ties of the human skull. The above major elements are discussed in the following

sub-sections.

4.1.1 The human skull mimicking phantoms

In order to test SEE in experiments, skull phantoms of known curvatures and

acoustic properties are designed, ordered, and tested. The skull phantoms were
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(a) The curvature of phantoms labeled
A.

(b) The curvature of phantoms labeled
B.

Figure 4.2: Skull Phantom Curvatures.

(a) The 3-D structure of the phantoms
labeled A.

(b) The 3-D structure of the phantoms
labeled B.

Figure 4.3: 3-D Skull Phantom structure.

designed using the softwares MATLAB[62] and AutoCAD [63] to create 3-D ob-

jects that are used to 3-D print a mold for production. Two types of curvature

were designed and six phantoms were ordered from the manufacturer, True Phan-

tom Solutions, exhibiting varying attenuation coefficient values. The materials

used for production are throughly discussed in [60, 64]. The acoustical proper-

ties of the materials are outstandingly similar to human skull properties making

the skull phantoms a perfect fit for testing in the laboratory before advancing to

in-vivo clinical studies.

The phantoms are labeled either A or B to denote their curvature, and 1,2, or 3 to

denote their diploe layer’s thicknesses as 1mm, 2mm, or 3mm thick, respectively.

The dimensions of the phantoms are 5cm by 5cm by 0.7cm. The innermost

boundary of the phantoms labeled A have a sinusoidal form as follows:

yA = 7 + 0.75sin

(
4π

50
x

)
− 0.50sin

(
2π

50
x

)
(4.1)
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Figure 4.4: Human Skull mimicking phantoms

Table 4.1: Properties of phantom bone materials

Bone phantom type Sound speed[m/s] Density [g/m3] Attenuation

at 5MHz in dB/cm

Cortical bone 3050 ± 20 2.31 14.2 ± 0.7

Trabecular bone 2800 ± 50 2.03 47 ± 4

where all the units are in mm. Alternatively, the innermost boundary of the

phantoms labeled B is generated from a set of random points which are curve

fitted to produce a randomized profile. The curvature for phantoms labeled A

and phantoms labeled B are shown in Figure 4.2. The two curvatures created in

MATLAB are exported to AutoCAD and a 3-D model is created and sent to the

manufacturer for production. The models are shown in figure 4.3.

The final product received from True Phantom Solutions is shown in figure 4.4.

The acoustical properties of the materials are shown in table 4.1, and the specifi-

cations of the phantoms are shown in table 4.2. Uniqueness of these phantoms can

be realized by comparing their acoustical properties with human skull’s in-vivo or

ex-vivo measured counterparts reported in the literature [65–69].
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Table 4.2: Properties of the phantoms

Sample Average thickness [mm] Diploe Thickness [mm] Attenuation

at 5MHz in dB/cm

A1 6.7 ± 0.7 1.0 ± 0.5 19 ± 3

A2 6.2 ± 0.7 2.0 ± 0.5 25 ± 3

A3 6.3 ± 0.7 3.0 ± 0.5 30 ± 4

B1 6.9 ± 0.7 1.0 ± 0.5 19 ± 3

B2 6.4 ± 0.7 2.0 ± 0.5 24 ± 3

B3 6.2 ± 0.7 3.0 ± 0.5 30 ± 4

4.1.2 The IMASONIC array transducer

The transducer used in this setup is a 64 element IMASONIC linear phased ar-

ray with a central frequency of 5 MHz ±10% and a −6dB bandwidth ≥ 60%.

The transducer has a pitch of 0.6mm and element size of 0.5mm × 10mm. The

traducer’s matching layer is water coupled with acoustic impedance of 1.5 MRayl.

To avoid distortive reverberation effects at the surface of the transducer, a delay

line was used as a buffer between the transducer’s surface and the phantom. The

delay line had a speed of sound of 2320m/s and was 24.90mm thick.

4.1.3 The data acquisition system

OmniScan system was used for data acquisition in the experiments. The system

is portable, with 25 MHz sampling rate and 16 channels. The number of channels

allow the system to excite and beamform using up to 16 elements of the transducer

at a time. The number of elements used for focusing was chosen to be 12 element;

having a larger number of elements results in higher imaging quality at the trade
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of number of scanning area. Number of A-Scans that can be acquired are:

M = Napp −Nsubapp + 1 (4.2)

where M is the number of A-Scans, Napp is the number of elements in the trans-

ducer, and Nsubapp is the number of elements used for focusing. In this setup,

Napp = 64 therefore choosing the maximum number of elements for focusing

(16) will result in only 49 A-Scans and a scanning area of 29.4mm. Choosing

Nsubapp = 12 increases the number of A-Scans to 53 and the scanning area to

31.8mm while maintaining similar image quality.

The speed of sound of the delay line as well as the thickness of it were specified in

the system to insure data acquisition is performed with the correct initial delay.

For the purpose of this study, no digital filters are applied to the A-Scans through

the system and gain is kept at zero to insure external effects on the A-Scans are

minimal and the attenuation calculations are conclusive.

The experiments were carried out by coupling the transducer to the delay line and

the delay line to each sample using ultrasonic coupling gel. The data was then

transfered to and processed in MATLAB on a PC.

4.2 Experimental Data and Results

Using the setup discussed in section 4.1 B-Scans are acquired from each phantom.

Raw RF data from the experiments are shown in figure 4.5, where a faint innermost

profile can be seen at ≈ 10mm in the y direction in every B-Scan. In order to

process B-scans from different phantoms the following steps are taken:

1. SEE is used to determine the average attenuation coefficient of the phantom.
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2. SEE is used to extract points from the innermost and boundaries of the

skull.

3. The custom-designed curve fitting method is used to process results from

SEE and produce a continuous curvature.

In section 3.3, an algorithm was proposed to determine the attenuation coefficient

of the skull. Algorithm 2 showed great results for simulations, however, since the

skull is not an ideal medium, two additions were made to the algorithm to make

it compatible with experiments. The changes are shown in Algorithm 3 and are

explained bellow.

It is important to note that in experimentations, some reflections caused by im-

purities in the skull or reverberation from diploe occur around the area of the

innermost boundary of the skull that behave similarly to the actual innermost

boundary’s reflections. Those reflections are sometimes detected by SEE instead

of the actual boundary and are considered outliers that must be eliminated before

calculating the Effectivity of SEE for the specified attenuation coefficient value.

The first addition to Algorithm 2 involves a process for removing outliers. In

Algorithm 3, lines 11 to 17 discuss the steps taken to remove the outliers. In line

11, the rate of change of the detected skull curvature is calculated and noted as

y′p. In line 12, the custom curve fitting function discussed in section 3.2 is used

to curve fit the points acquired from SEE. Since the outliers have a low chance of

existing in the curve fitted data, then the curve fitted data value at an outlier’s

location must vary greatly from the SEE results. This is shown in lines 14 to 16

which state that if the difference of the curve fitted data and SEE data is higher

than the acceptable range denoted by the standard deviation of the rate of change

in SEE, then an outlier exists and is removed. The Effectivity factor of SEE at

each attenuation value is calculated as discussed in section 3.3. The Effectivity

factor shows the number of peaks detected by SEE and their continuity, mainly:
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Algorithm 3 Attenuation determination algorithm using SEE with the removal
of outliers
Input: y, Fc, BW , N , zf , d, W , cs, ρs, α, dmin, dmax
. y: Normalized RF-line in time domain.
. Fc,BW : The central frequency and bandwidth of the transducer [MHz]
. N , zf : The number of elements used to focus. and the focal distance [m]
. d,W : The pitch and element size of the transducer [m]
. cs,ρs, α: The speed of sound

[
m
s

]
, density

[
kg
m3

]
, and attenuation coefficient[

Np
mMHz

]
of the skull

. dmin, dmax: The minimum and maximum thicknesses of the skull.
Output: αopt
. αopt: The optimal attenuation coefficient value corresponding to the averaged
attenuation coefficient value in the skull.

1: M= length(Bscan)
2: for α = αmin : αmax do
3: reset xp and yp
4: for i = 1 : M do
5: hi = SEE(Bscan(i),Fc, BW , N , zf , d, W , cs, ρs, α, dmin, dmax)
6: if hi contains a boundary then
7: xp = [xp (i− M−1

2 )p]
8: yp = [yp find(0 < h < 1)]
9: end if

10: end for
11: y′p =

dyp
dxp

12: yf = segfit(xp, yp,M, p)
13: for (xi, yi) in (xp, yp) do

14: if
|yf (xi)−yi|
xi+1−xi > std(y′p) then

15: remove xi, yi from xp, yp
16: end if
17: end for
18: Np =length(xp)

19: β =
∣∣∣ dypdxp

∣∣∣
20: C =

√
1

M−2
∑M−1

k=1

(
β(k)− β

)2
21: E = [E

Np
C ]

22: end for
23: E′ = A(E)p(E)w(E)
24: αopt = argmax(E′)

E =
Np

C
(4.3)

where Np the number of detected points and C is the continuity factor.
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At an optimal attenuation coefficient value, points acquired from SEE are pos-

tulated to be more continuous and larger in number than inaccurate attenuation

coefficient value. In this chapter, the investigated attenuation coefficients range

from 14dB/cm to 40dB/cm to cover all possible attenuation coefficient values that

the phantoms may exhibit. The Effectivity calculated from the B-Scans are shown

in figure 4.6. In each plot in figure 4.6, the dotted box encompasses the acceptable

attenuation coefficient range which corresponds to the actual attenuation values

shown in table 4.2. The peaks are each labeled in a descending order by height.

The peaks’ prominence and half prominence width are also shown in the plots.

In contrast with results from simulations shown in section 3.3, it is not enough

to evaluate the peaks of the Effectivity function from their amplitude alone. To

properly analyze the results from the algorithm, the peak amplitude, peak promi-

nence, and peak width should be taken into account. A new Effectivity function

is derived from the original Effectivity function as follows:

E ′(α) = A(E,α)P (E,α)W (E,α) (4.4)

where A(E,α), P (E,α), and W (E,α) are functions that extract the amplitude,

prominence, and half prominence width of each peak in E, respectively. A maxi-

mum value of each peak, denoted by A(E,α) is now one of three factors considered

in analyzing the peaks instead of being the only factor.

The prominence of the peaks, P (E,α), provides a depiction of how much the peak

stands out due to its intrinsic height and its location relative to other peaks [62].

To illustrate the importance of prominence, consider peak 3 in figure 4.6a. This

peak has a higher amplitude than most peaks in the Effectivity function, however,

it is unlikely to represent the actual attenuation coefficient value since it is not very

dominant compared to the points near it; where as peak 7 in the same figure has

a higher chance of representing the actual value of attenuation since it dominates

the region.
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Figure 4.7: Attenuation coefficient value for each skull sample

Finally, the half prominence width of the peaks, W (E,α) will provide a final

comparison between peaks with similar amplitude and prominence but different

broadness: varying attenuation slightly should not change the Effectivity factor

of SEE drastically, therefore, a peak with large width is more likely correlated to

the actual attenuation coefficient value than a peak with small width. Results for

calculated E ′(α) for each phantom are shown in figure 4.8

Results in figure 4.8 show that the values of E ′, which highlight the peaks’ ampli-

tude, prominence, high half prominence width, are much more distinctively related

to the actual attenuation coefficient values than values of E. The values are more

clearly seen in Figure 4.7 where they are shown to be found within error range of

the actual attenuation coefficient values.

The attenuation coefficient values determined in the previous step are used to run

SEE for each B-Scan. The values from SEE are then curve fitted using the custom

curve fitting algorithm. Results from SEE and the curve fitting algorithm are

plotted over the original B-Scans in figure 4.9 along side the original 3-D printed

curvature.
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Results from SEE show outstanding accuracy and continuity. Outliers do not

exist in the final results since their detection is avoided inside the process of SEE

as discussed in section 3.1 and they are tackled again outside SEE as shown in

Algorithm 3. The empty sections in the B-Scans where no points are detected are

present mostly in areas of high slope. In those areas, ultrasonic waves are reflected

at a high angle causing no echo from the boundary to be present in the A-Scan,

and therefore, they are not expected to be detected by SEE.

The plot from the curve fitted data is almost indistinguishable from the actual

3-D printed curve in most areas. The areas of the curve fitted data that are not

perfectly aligned with the 3-D printed curve exist mostly in areas of high curvature

and small number of detected points.

Figures 4.9a, 4.9b,and 4.9c show the results from the phantoms manufactured

using the sinusoidal curve shown in equation 4.1 and figure 4.2a. Figure 4.9a

shows the results from phantom A1 which contains 1mm diploe. This phantom

contains 3 areas with no detected points. The missing points all exist in areas of

high slope. Although SEE is unable to detect the points in that area, the curve

fitting function fills in the space to an excellent quality since the points from SEE

are detected to a high accuracy. Figure 4.9b shows the results from phantom A2

which contains 2mm diploe. Although this B-Scan is obtained from a sample

with thicker diploe than the one in 4.9a, more points are detected by SEE. This

is possible since diploe thickness is not the only factor in detection: other factors

include the physical alignment of the probe with the sample and the quality of

coupling. These factors vary from scan to scan and may result in more difficult

phantoms to produce better data if aligned and coupled well. Figure 4.9c shows

the results from phantom A3 which contains 3mm diploe. In this B-Scan, the area

between 10mm and the end of the scan is not detected to a high accuracy. This

might be caused by the slight inaccuracy of the last few detected points in the

B-Scan. However, this inaccuracy is still insignificant since it is less than 0.5mm.
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Figures 4.9d, 4.9e,and 4.9f show the results from the phantoms manufactured us-

ing the randomized curvature shown in figure 4.2b. Figure 4.9d shows the results

from the phantom B1 which contains 1mm diploe. The results from this phan-

tom are the most inaccurate results in the set. Between −13mm and 0mm the

estimated curvature is continuously not consistent with the actual curvature and

the flat region at −3mm is not detected. Since the positive slopes in the profile

are detected while negative slopes are not, the inaccuracy is most likely caused by

the positioning of the probe. However, even with this inaccuracy, the results still

meets the objective of the study. Figure 4.9e shows the results from phantom B2

which contains 2mm diploe. This phantom seems to be well aligned since many

points are detected. However, reverberations from diploe layer may be affecting

the results in the area from the beginning of the scan to −10mm. Finally, fig-

ure 4.9f shows the results from phantom B3 which contains 3mm diploe. This

phantom is considered the most difficult phantom in the set since it contains the

randomized curvature as well as thick diploe. Results from this phantom are still

successful since the detected profile is within 0.5mm of the actual.

4.3 Discussion

Calculations of variation from the original data obtained in section 4.2 are per-

formed similar to the calculations in section 3.2; i.e. results from SEE and results

from curve fitting are compared to the original 3-D printed curvature as follows:

4z = mean(|ẑ − z|) (4.5)

4z = std(|ẑ − z|) (4.6)

where ẑ is the data obtained from the respective method and z is the original 3-D

printed curvature. The results are also displayed as a ratio of the wavelength in
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Table 4.3: Accuracy of detection method with SEE vs with SEE and curve
fitting using experimental data

SEE SEE and curve fitting

∆z ∆zλ ∆z ∆zλ

A1 0.08 ± 0.06 0.14 ± 0.10 0.07 ± 0.05 0.12 ± 0.08

A2 0.16 ± 0.21 0.26 ± 0.35 0.16 ± 0.20 0.27 ± 0.33

A3 0.19 ± 0.15 0.32 ± 0.26 0.20 ± 0.13 0.33 ± 0.22

B1 0.36 ± 0.25 0.60 ± 0.41 0.27 ± 0.16 0.44 ± 0.27

B2 0.24 ± 0.18 0.40 ± 0.30 0.21 ± 0.15 0.35 ± 0.25

B3 0.27 ± 0.23 0.45 ± 0.38 0.25 ± 0.20 0.42 ± 0.34

skull, 4zλ = 4z
λ

. Table 4.3 shows the results for all B-Scans.

The results show that although the transducer has a relatively low sampling rate

compared to the central frequency and bandwidth, the profiles are detected to

the desired accuracy. With SEE alone, the profiles are detected to be within

0.22± 0.18mm or 0.36λ± 0.30λ. After the curve fitting algorithm is applied, the

profiles are detected to be within 0.19 ± 0.15mm or 0.32λ ± 0.25λ. Although, in

some cases, the curve fitting algorithm does not reduce the range as well as it did

in simulations, it does however, interpolate the results in areas with no detected

points to an outstanding accuracy.

Sources of error in the results stem from the experimental setup and the materi-

als used. Highest error occurs from the positioning of the probe relative to the

sample. Since the highest reflections occur at normal incidence, the more parallel

the surface of the probe is to the sample, the more accurate the results. Another

source of error stems from coupling the transducer to the delay line and the delay

line to the sample. It is important that coupling is done properly and the coupling

gel contains no air bubbles. It is assumed that for the scans presented in the

previous section that the coupling is done successfully since an image is received

in each scan. Other sources of error could rise from inaccuracy in the measured
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acoustical properties of the skull and coupling medium used in the calculations.

Those effects are minor except for the effect of the speed of sound. Since the speed

of sound is the key property used to convert the units in the scans from temporal

to spatial, inaccuracy in the speed of sound may cause the collective thickness of

skull to be altered. For the purpose of this thesis, this effect is negligible since

the properties of the phantoms are well known. Finally, the discretization of the

received signal may cause slight variations in the results. The signal is sampled

at a mere 25MHz, which is above the Nyquist frequency for the central frequency

of 5MHz. With this sampling rate, the signal is segmented into 0.12mm sections,

meaning the profile detection from SEE is limited to that accuracy.



Chapter 5

Conclusion

Medical Ultrasonic Imaging is an outstanding tool used by clinicians to image

the body for diagnosis. Ultrasonic Imaging relays on the difference in acoustical

properties in the target media to distinguish different types of tissue. This comes as

a drawback when the imaging area of the body is covered by bone such as the brain.

Bone tissue has significantly different acoustical properties than soft tissue causing

a variety of distorting effects and limiting imaging in that area. Finding solutions

for such limitation would bring tremendous benefits for trauma diagnosis and

therefore has been a popular area of research in the ultrasonic imaging community.

Transcrainial imaging has been a sought out application in ultrasound for decades.

Many methods have been proposed over the years to accommodate for the skull’s

distortive effects and topography. In some cases, such as adaptive beamforming

methods [16–27], transcranial imaging requires an accurate measurement of the

skull’s profile. The skull is composed of three layers, the innermost and outermost

layers are composed of compact bone that can be considered a dense and homo-

geneous tissue. The middle layer, however, is composed of a highly porous and

non-homogeneous material which causes scattering, phase aberration, and attenu-

ation. Thus, conventional ultrasonic scans of human skull do not correlate directly

to its actual structure.

81
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A new post-processing technique referred to as the Selective Echo Extraction al-

gorithm (SEE) has been developed and reported for accurate human skull profile

extraction via ultrasonic phased arrays. The objective was to develop a technique

applied to ultrasonic RF signals to accurately extract the curvature of the skull’s

inner boundary such that it lies within ±0.5mm of the actual undulating thickness.

The developed method can also be utilized to determine the averaged attenuation

coefficient of the skull.

The proposed method is based on an adaptive filtering model. In order to extract

the curvature of the skull from a B-Scan through SEE, each A-Scan is processed

independently. Each A-Scan along with the transducer’s specifications and a rough

estimate of the major acoustical properties of the skull are input into SEE. The

algorithm extracts the portions of the A-Scan which represents the innermost

and the outermost boundaries of the skull by minimizing an error function as ex-

plained in section 3.1. The algorithm generates each value of the error function by

proposing a solution to the A-Scan and comparing it to the original A-Scan. The

solution, which produces a global minimum in the error function, is the correct

estimation of the reflectivity function corresponding to the innermost and outer-

most boundaries. A custom-designed curve fitting algorithm was also developed

to further enhance the accuracy of the results and produce a continuous skull pro-

file. The curve fitting algorithm is performed in three steps: results from SEE

are divided into small segments, simple polynomial curve fitting is applied to each

segment, then the results from all segments are combined to produce a complete

skull profile.

SEE can further be utilized to determine the attenuation coefficient of the skull us-

ing a secondary process. Since attenuation is a key factor for the accuracy of SEE,

varying it will influence the results. By quantifying the accuracy of the results,

SEE can be tested against different attenuation coefficient values to determine the

one that most effectively produces accurate results. The attenuation value which
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optimizes the results of SEE is postulated to be the actual attenuation coefficient

value of the sample.

The proposed method is verified in simulations for single A-Scans with varying

applied noise in section 3.1. It is also verified for skull curvature and attenuation

coefficient determination in simulations in section 3.2 and section 3.3, respectively,

and for skull curvature and attenuation detection in experiments in section 4.2.

Results from simulations show that the algorithm is effective for noiseless A-Scans

as well as A-Scans with the following types of noise and noise levels: additive

noise ≈ 6dB/sample and ≈ 12dB/sample SNR in the A-scan, convoluted noise ≈

6dB/sample and ≈ 12dB/sample SNR in the reflectivity function, and convoluted

noise ≈ 12dB/sample SNR in the reflectivity function combined with additive

noise ≈ 12dB/sample SNR in the A-Scan. For single A-Scans, the algorithm

detects the innermost boundary of the skull to an accuracy of 0.23λ ± 0.20λ or

0.14± 0.12mm.

When applied to simulated skull profile B-Scans with an attenuation coefficient

of 20.8dB/cm at 5MHz, the algorithm proves effective for the same types of noise

mentioned above with an accuracy of 0.31λ ± 0.18λ or 0.19 ± 0.11mm. The ap-

plication of curve fitting for the same simulated B-Scans results in an accuracy

of 0.15λ± 0.11λ or 0.09± 0.07mm. The noisy B-Scans are further used to verify

the attenuation determination algorithm. The results are shown to converge to a

value of 20.8dB/cm in every simulation.

The experimental setup used for verification was composed of the data acquisi-

tion system, OmniScan, a 5MHz 64-element IMASONIC linear phased array, a

delay line, and custom ordered skull phantoms. The phantoms were made using

two known curvatures which were 3-D printed into molds and used for precise

manufacturing the phantoms.
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In general, the proposed process to determine the skull’s curvature from a B-Scan

is comprised of three major steps. In the first step, the attenuation coefficient de-

termination algorithm is used to find the attenuation coefficient of the skull. This

value as well as each A-scan extracted from the B-Scan are inputted into SEE to

produce two measurements that show the skin/skull boundary and the skull/brain

boundary. The results are then curve fitted using a customized method to show a

smooth curvature representing the inner compact bone boundary. It is worth not-

ing that the original attenuation determination algorithm discussed in section 3.3

was further enhanced for better accuracy in the experiments. Enhancing the algo-

rithm included adding a portion to remove outliers and considering more factors

in the Effectivity function.

Results from experiments show that the attenuation coefficients of the phantoms

are determined within the error range and the curvatures of the phantoms are

detected to a better accuracy than proposed in the objectives of this thesis in

section 1.6. The attenuation coefficient values are found to be within 9.6% of

the actual attenuation values. With SEE alone, the curvatures are detected to

be within 0.36λ ± 0.30λ or 0.22 ± 0.18mm . After the curve fitting algorithm is

applied, the curvatures are detected to be within 0.32λ± 0.25λ or 0.19± 0.15mm.

Although the curve fitting algorithm does not reduce the range in experiments as

well as it did in simulations, it does however, interpolate the results in areas with

no detected points to an outstanding accuracy.

Sources of error in the experiments stem mostly from the experimental setup and

instrumentation. Major error in the results is caused by the misalignment of the

probe with the phantoms. This misalignment might cause maxima and minima of

the phantom to not be detected to a high accuracy, thus, altering the results from

curve fitting. Another source of error is caused by imperfections in coupling of the

array to the delay line and the delay line to the sample. However, this source of

error had negligible impact on the reported results in this study. The sampling

frequency on the acquisition system is also a limitation to the observed data.
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The sampling frequency was limited to 25MHz for the 5 MHz probe used in the

experiments. This means the A-Scans are segmented to 0.12mm sections, limiting

the resolution of acquisition. Ideally, the sampling frequency is much higher.

Finally, the estimation of the acoustical properties of the media that are input to

SEE can contribute to errors in the results. The density of the media will have

minimal effects since it is not a major contributer to the equations determining

the error function in SEE. However, variations in the speed of sound can cause the

highest amount of error in the results. The speed of sound in the skull is used to

convert the scaling in the A-Scan from time-based to spatially-based. Therefore,

variations in the speed of sound will change the total thickness of the probed area.

This source of error has been avoided in the thesis, since the speed of sound in the

phantoms is well known but has to be further investigated for other applications.

In conclusion, the reported results from both simulations and experiments show

that the proposed Selective Echo Extraction algorithm (SEE) is highly effective

for human skull attenuation coefficient estimation and accurate profile extraction.

Recommendations for future work include further testing the algorithm’s applica-

bility with varying probe frequencies and bandwidths. Applying this method for

C-Scans obtained from matrix array and 3-D skull phantoms; and finally, incor-

porating this method with in-vivo applications in transcrainial imaging.
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