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Abstract: In a quest for truth, infinity boggles. It eludes and escapes finite reason, baffles logical expectation, and 

draws to light bias in moments of supposed objectivity. This presentation explores historical and present-day ideas, 

arguments, and biases related to complexities and ambiguities of mathematical infinity. Or rather, of mathematical 

infinities. Of interest: novice and expert a priori and a posteriori knowledge as elicited by falsidical and dialethical 

paradoxes, and the contextually-dependent nature of mathematical correctness. 
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1. Introduction  
 

This paper presents an overview of several years of my research into individuals’ reasoning, 

argumentation, and bias when addressing problems, scenarios, and symbols related to 

mathematical infinity. There is a long history of debate around what constitutes “objective truth” 

in the realm of mathematical infinity, dating back to ancient Greece (e.g., Dubinsky, Weller, 

McDonald, & Brown, 2005). Modes of argumentation, hindrances, and intuitions have been 

largely consistent over the years and across levels of expertise (e.g., Brown, McDonald, & 

Weller, 2010; Fischbein, Tirosh, & Hess, 1979; Tsamir, 1999). This paper takes a playful 

approach to examining the interrelated complexities of notions of objectivity, bias, and 

argumentation as manifested in different presentations and normative interpretations or 

resolutions of a well-known paradox of infinity—the ping pong ball conundrum. This 

conundrum is a deviation of the Ross-Littlewood ‘super-task’—a task which occurs within a 

finite interval of time, yet which involves infinitely many steps (Thompson, 1954).  It requires a 

bit of imagination and something akin to a cognitive leap (Mamolo, 2010). 

 

 The ping pong ball conundrum: Imagine a very large barrel and infinitely many 

ping pong balls numbered 1, 2, 3, …  You will use these in a thought experiment 

that will last no more and no less than 60 seconds. In the first 30 seconds, the task 

is to place the first 10 balls (#1-10) into the barrel, and instantaneously remove 

ball #1. In half of the remaining time, the next 10 balls (#11-20) are placed into 

the barrel and ball #2 is removed. Again, in half the remaining time (and working 

more and more quickly), the next 10 balls (#21-30) are placed in the barrel, and 

ball #3 is removed, and so on. Continuing in this way until the experiment is over, 

at the end of the 60 seconds, how many ping pong balls remain in the barrel? 
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Paradoxes that have highlighted the inherent anomalies of the infinite have had such a 

profound impact on mathematics and mathematical thought that Bertrand Russell (1913) 

attributed to them “the foundation of a mathematical renaissance” (p. 347). Cantor’s (1915) work 

establishing a theory of transfinite numbers offered a first means of rigorous and consistent 

resolution to paradoxes of infinity—including David Hilbert’s Grand Hotel. Indeed, the 

profoundness of Cantor’s work and ideas inspired Hilbert (1925) to praise them as providing 

mathematics “with the deepest insight into the nature of the infinite” procured by “a discipline 

which comes closer to a general philosophical way of thinking” (pp.138-9). Cantor’s theory, 

though controversial at the time, added depth and rigour to emerging conceptions of infinity, 

which included Bolzano’s (1950) progressive views that the infinite is more than “that which has 

no end” (p. 82). 

Paradoxes have been described as occasioning major epistemological reconstructions 

(e.g., Quine, 1966), and in what follows I highlight such occasions as they emerged for both 

novices and experts. As mentioned, the approach I take is a playful one: data from several years 

of my research is represented in a fictionalized retelling in the dialectic tradition well-known to 

philosophers and existent in mathematics education literature (e.g., Lakatos, 1976); it focuses on 

the actual thoughts, arguments, biases, and debates that emerged in my research and that have 

been discussed in prior works (e.g., Mamolo, 2009, 2010, 2014; Mamolo & Zazkis, 2008).  

Connections to historical conceptions, arguments, and biases are woven in with some creative 

liberty, and two formal resolutions are presented. The paper concludes with discussion of some 

of the implications of these resolutions with connection to current conceptualisations of 

objectivity (e.g., Daston, 1992). Of interest is the perception that one single objective truth about 

“actual” mathematical infinity exists—indeed, this is brought to question at an axiomatic level. 

 

2.  Thoughts, biases, and arguments  

 

Imagine a very large barrel… 

 “You could never have a barrel that big,” says Alpha “there isn’t enough space on earth 

for such a large barrel.” 

 “It’s a thought experiment… let’s imagine…” replies Beta. 

 Imagine a very large barrel… moving more and more quickly… 

 “That’s impossible. No one could move that fast,” protests Gamma. Beta, who has 

accepted the premise, rolls his eyes. But Beta’s opinion isn’t a popular one and there are more 

protests. Allis and Koetsier (1995) applied what they call the “abstract continuity principle” to 

handle a variant of the paradox in terms of sequences of actions and address some of the 

controversy (Van Bendegem, 1994) around tasks that require letting go of physical restraints 

such as speed and acceleration.) 

 “The experiment is impossible—it will never end,” this time Delta has chimed in.  “The 

sixty seconds will last for ever. So the barrel will always be full of ping pong balls.” 

 “How is that?” asks Alpha. “If the experiment is impossible, then how can you say it will 

always be full of balls?” 

 “What I mean is, the process is impossible since the time interval is halved infinitely 

many times, so the sixty seconds never ends. Since you’re putting balls in the barrel for eternity, 

it will always be full,” explains Delta. 
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 “Eternity,” muses Epsilon, “didn’t Aristotle describe infinity as inexhaustible?” (Moore, 

1995). “Surely, Aristotle would claim the experiment must last forever, because the process 

‘would require the whole of time’” (Dubinsky, et al., 2005, p. 341). 

 “That’s right!” chimes Gamma. “Even with one second left we can still divide this 

amount of time into infinitely small amounts of time (if physics does not apply). Therefore, the 

experiment will continue into eternity and the number of balls will be infinite in the barrel.”  

 “I partially agree,” says Beta, “no pun intended. The increments of time, ½, ¼, 1/8, 1/16, 

and so on, form a convergent series when summed. We know this because the sequence of its 

partial sums converges, and the limit as n tends to infinity of the set of partial sums has to exist 

as a real number. We know that ∑
1

2𝑛 = 1∞
𝑛=1 , so ‘the end’ of the experiment happens at one 

minute, or sixty seconds!” (Beta, who is quick with numbers, has shifted units from seconds to 

minutes, identifying 30 seconds with a ½ minute, 15 seconds with a ¼ minute, and so on.) 

 Alpha scratches his nose, “Ok, yes, I do remember that from Calculus. So, is this a 

calculus problem? And, are you saying that Aristotle was wrong?!” 

 Nervous laughter. 

 “Aristotle wasn’t wrong.” Quine, who had been walking by and overheard, couldn’t help 

but intervene. “When resolving certain paradoxes of infinity, a fallacy can emerge—‘the 

mistaken notion that an infinite succession of intervals of time has to add up to all eternity’ 

(Quine, 1966, p. 5). Aristotle is thinking of one kind of infinity—potential infinity, but this 

paradox involves a different type—actual infinity.” And with a wry grin, Quine disappeared 

down the hall, leaving the class to grapple with what he considered a falsidical paradox. 

 “Actual infinity—a completed entity which encompasses the potential… The ‘infinite 

present at a moment in time’ (Dubinsky et al., 2005, p. 341),” Epsilon read aloud. “Hm.. I need 

time to wrap my head around that!  Like 2000 years maybe!” 

 “Let’s go back to what Beta was saying. Thinking about this as limits was starting to 

make sense to me,” Alpha starts writing on the board, “as 𝑛 →  ∞, the limit equals one.” 

 “No, no, that’s not right,” insists Delta. “The limit approaches one, it doesn’t equal one.”  

A heated argument ensues – a common conception of post-secondary students is the idea that a 

limit is unreachable (Williams, 1991).  Someone has the idea to check their favourite Calculus 

textbook (Stewart, 1999), which seems to lay the controversy to rest.  The text, acting as an 

authority for proof (Harel & Sowder, 1998), was enough, for the time being, to convince (if only 

grudgingly) the class of the statement ∑
1

2𝑛 = 1∞
𝑛=1 . 

 “I think this is what Professor Quine was talking about.  As n approaches infinity, the 

limit approaches one, but when you take the sum you include all of the infinity of intervals— 

actual infinity—and that’s why the sum equals one…” Epsilon trails off, still thinking. 

 “Here, I’ve found something else,” states Alpha. “Zeno’s paradox—one of them anyway.  

It has a room and a traveller who cuts each distance in half infinitely many times. The Dichotomy 

Paradox… This looks to be the same as our problem.”   

 “Well, almost,” says Beta. “We still have to think about the balls. We’ve only been 

talking about the time intervals so far.” 

 Imagine a very large barrel… place the first 10 balls in, and remove ball #1… and so on 

 “Alright,” says Gamma, “so if we assume the experiment eventually ends—even though I 

really don’t think it could—then, there should still at least be an infinite number of balls left in 

the barrel.” 

 “Even though we’ve removed infinitely many balls?” asks Theta. 
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 “There are infinitely many time periods,” says Psi, “therefore infinitely many times 

during which 10 balls are put in and one thrown out. So—there are an infinite number of balls in 

the basket as well as an infinite number thrown out. It doesn’t make sense to have this result, but 

there it is.” 

 “My head hurts,” sighs Delta. 

 “Wait,” says Alpha, “are you saying that ∞ − ∞ = ∞? How is that possible?” 

 “This is definitely outside the realm of possibility!” pipes Gamma.  

“I might be able to explain this,” replies Theta carefully. “Every time the remaining time 

is halved, the equivalent change (+10 – 1) = 9 balls are added. So there will be an infinite of balls 

in the basket. Some may say that an infinite amount of balls have been taken out of the basket, 

which is true, but it is not an equivalent infinity to what is put in… There will be 9 times as many 

in the basket as you took out.” 

 This explanation seems to cause a bit of panic. 

 “Are you suggesting that there can be different infinities? What do you mean by “not 

equivalent”? probes Epsilon. 

 “Well,” says Theta, “I’m not really sure… it’s just that more balls seem to go into the 

barrel at any given time than come out of it. So, if more go in at each step in the experiment, then 

at the end of the experiment (assuming it ends), there should be more in the barrel than out.” 

 Beta nods, “There is 9x more balls in the barrel than out of the barrel at all times. At the 

end of the 60 seconds there are 9∞ balls in and ∞ balls out.” 

 At this point, chaos ensues and indistinguishable voices proclaim: 

 “Impossible! Infinity is infinity is infinity!” 

 “You can’t have more than one infinity!” 

 “9 infinity is still just infinity!” 

 “How can you compare infinity? What is bigger than endless?” 

 Meanwhile, in the courtyard just outside a game of Parcheesi is underway between 

Galileo and Bolzano. Epsilon, who had been gazing out the window pondering, took notice and 

had an idea. “Beta- why don’t you and I ask Galileo and Bolzano out there what they think? 

They’ll be able to help us resolve this problem!” The two students leave to pursue Epsilon’s 

suggestion as the rest of the class continues to debate—strong opinions fly for both a “bigger” 

infinity remaining in the barrel and the idea that there can be nothing bigger than infinity. 

 Epsilon and Beta approached the pair in the courtyard and, interrupting a pretty intense 

Parcheesi game, presented the paradox and nature of their problem. Galileo and Bolzano smiled, 

happy for the distraction. Bolzano was the first to reply: 

 “Certainly most of the paradoxical statements encountered in the mathematical domain 

… are propositions which either immediately contain the idea of the infinite, or at least in some 

way or other depend upon that idea for their attempted proof” (Bolzano, 1950, p. 75). 

 “Paradoxical indeed,” replied Galileo “I have spent some time myself working on Zeno’s 

paradoxes—of which this seems to be a sort of extension.” 

 “First, we must consider that the infinite is more than ‘that which has no end’” (Bolzano, 

1950, p. 82). “We could compare the sets by coupling, yet I have a better idea, which I think will 

put an end to your struggles Epsilon and Beta.” 

 A slight twitch of Galileo’s right eyebrow. 

 “Let us consider a similar problem, and you can then apply the reasoning in resolving 

your ping pong problem. Consider the sets of rational numbers A = [0, 5] and B = [0, 12]. If we 
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construct a map 5y = 12x for x in A and y in B, then we may couple each element in A with 

exactly one element in B, and vice versa.” 

 “So, you’ve created a bijection,” said Beta. “Does this mean the sets are equinumerous?” 

 Both men shook their heads. 

 “Although every quantity in A or B allows of coupling with one and only one in B or A, 

yet the set of quantities in B is other and greater than in A, since the distance between the two 

quantities in B is other and greater than the distance between the corresponding quantities in A” 

(Bolzano, reprinted 1950, p. 100). 

 “Here a difficulty presents itself which appears to me insoluble. Since it is clear that we 

may have one line greater than another, each containing an infinite number of points, we are 

forced to admit that, within one and the same class, we may have something greater than infinity, 

because the infinity of points in the long line is greater than the infinity of points in the short line. 

This assigning to an infinite quantity a value greater than infinity is quite beyond my 

comprehension” (Galilei, 1914/1965, p. 32). 

 Bolzano insisted, “two sets can still stand in a relation of inequality, in the sense that the 

one is found to be a whole and the other a part of that whole” (Bolzano, 1950, p. 98) 

 Galileo countered, “the attributes ‘equal’, ‘greater,’ and ‘less,’ are not applicable to 

infinite, but only to finite, quantities” (1914/1965, pp. 32-3). 

 Epsilon and Beta were beginning to regret their decision. 

 Galileo continued, “let us consider a different example: the set of natural numbers and the 

set of perfect squares.” 

 “Clearly, one is found to be a whole and the other a part of that whole” chimed Bolzano. 

 “And yet,” replied Galileo, “there are as many [squares] as the corresponding number of 

roots, since every square has its own root and every root its own square, while no square has 

more than one root and no root more than one square” (Galilei, 1914/1965, p.32). 

 “Ah, but my friend, one-to-one correspondence never justifies us,” Bolzano reasoned, “in 

inferring the equality of the two sets, in the event of their being infinite, with respect to the 

multiplicity of their members – that is, when we abstract from all individual differences… two 

sets can still stand in a relation of inequality, in the sense that the one is found to be a whole and 

the other a part of that whole” (1950, p.9 8). 

 “So far as I see we can only infer that the totality of all numbers is infinite, that the 

number of squares is infinite, and that the number of their roots is infinite; neither is the number 

of squares less than the totality of all the numbers, nor the latter greater than the former” (Galilei, 

1914/1965, p. 32).  At this point, Galileo flips the Parcheesi board and the two men succumb to a 

shouting match, leaving poor Epsilon and Beta no nearer to the resolution of their problem. 

 Back in the classroom, Theta asks: “so, how did that go?” 

 Epsilon sighs, and Beta replies “I think there was something useful in the idea of a one-

to-one correspondence, although neither felt that was sufficient to solve our problem. How does 

it go with you?” 

 “I think we are mostly in agreement that there are infinitely many balls remaining in the 

barrel, because even though there is a 1-1 correspondence between the sets {1, 2, 3, 4, …}, {9, 

18, 27, 36, …}, the rate at which you are putting in is more than you are taking out. So even if 

there are just as many numbers in each set, they will never even out, because the process 

continues infinitely and you continue to put more in than you take out,” explains Theta. 
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 “I am not fully convinced,” replies Alpha, “allow me to play devil’s advocate. Let us 

see… If there is, in fact, infinitely many balls remaining in the barrel, what are their numbers?  

That is, which balls remain in the barrel?” 

 “Well,” muses Delta, “There is an infinite number of balls in the barrel, however it is 

impossible to name a specific ball. As soon as a number is chosen, it is possible to determine the 

exact time… that ball was removed… I can’t name a numbered ball that remains but then I also 

couldn’t tell you how many balls we began with because there were infinity. Since you are 

always adding more than you are taking out, you can move at lightning speed, and you have 

infinity time intervals, I believe the task never ends.” 

 “Delta is still insisting the task never ends!” laughs Psi. 

 “But this point is important,” interjects Beta, “for every numbered ball, we know the 

exact time interval that the ball was removed—here is Galileo’s correspondence in effect!” 

 “So, are you saying the barrel must be empty?” asks Gamma. 

 “That seems to be the argument,” replies Alpha. 

 “There are conflicting views and now I am not sure whether there is none or infinite balls 

in the basket. My gut feeling seems to want to say that there are an infinite number but there 

seems to be none as well,” reflects Epsilon. 

 Theta: “I will not accept a logical argument that the basket is empty. Such an argument 

would be flawed.” 

 Delta: “I’m sure it makes sense if you’re comfortable with the concept of infinity.” 

 Psi: “I can’t agree with 0 balls remaining. You put in more number of balls than you take 

out. I still think my original answer is correct!” 

 Slowly, Beta concedes: “I can now entertain the idea that there are no balls in the basket, 

but I don’t like it.”   

 

3. Two contradictory truths 

 

In the previous section, the informal resolutions and conceptions of learners were discussed.  

This data came from research with undergraduate and graduate students, some of whom had a 

limited background in mathematics and others who had advanced backgrounds in the subject 

(e.g., Mamolo, 2010; Mamolo & Zazkis, 2008). Notably, the level of mathematics background 

had little impact on learners’ approaches to resolving the paradox, and indeed similar trends have 

been noted in other research as well (e.g., Ely, 2011; Mamolo, 2014; Radu & Weber, 2011). The 

historical connections highlight what can be considered as epistemological obstacles (in the 

sense of Duroux as described in Brousseau, 1997) related to philosophical beliefs, intuitions, and 

arithmetic properties of actual infinity. Overcoming an epistemological obstacle “means that the 

student will have to rise above his convictions, to analyse from outside the means he had used to 

solve problems in order to formulate the hypotheses he had admitted tacitly so far, and become 

aware of the possible rival hypotheses” (Sierpinska, 1987, p. 374). In some instances, the only 

way to overcome an obstacle—to rise, as Sierpinska (1987) wrote, above convictions, prior 

experience, and intuition—is through a cognitive leap. The call for such a leap (Mamolo, 2010) 

is in resonance with Hahn (1956), who noted the importance of separating realistic and intuitive 

considerations from conventional mathematical ones in understanding properties of actual 

infinity.  So, let us now look to convention... 

 The standard approach to resolving this paradox is a set theoretic one. In this approach, 

the resolution may come as a bit of a surprise: After the experiment is over, at the end of the 60 
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seconds, zero ping-pong balls remain in the barrel. (The resolution presented below appears in 

similar form in Mamolo, 2010, 2014; Mamolo & Bogart, 2011; and Mamolo & Zazkis, 2008.) 

The question ‘how many?’ in this context is a question of cardinality. As such, the 

question ‘how many balls remain in the barrel?’ can be interpreted as ‘what is the cardinality of 

the set of balls which are not removed from the barrel?’. To compare the cardinalities of infinite 

sets in a consistent way, we rely on the work of Cantor (1915), in particular the fact that two sets 

are considered to have the same cardinality if and only if they can be put in one-to-one 

correspondence. Unpacking the experiment, we see there are three infinite sets to consider: the 

in-going ping-pong balls, the out-going ping-pong balls, and the intervals of time. To answer the 

question ‘how many’ we look to the existence (or not) of correspondences between pairs of sets. 

The sets of in-going and out-going balls, being numbered as they are, both correspond to 

the set of natural numbers. This correspondence ensures that at the end of the experiment, as 

many balls were removed from the barrel as went in. The set of out-going balls and the set of 

time intervals, which can be represented as B = {1, 2, 3, … }, and T = {½, ¼, ⅛, …}, 

respectively, can also be put into one-to-one correspondence by pairing any x  B with (½)x  T. 

This correspondence assures that when the 60 seconds runs out, so do the balls. These facts are 

necessary but not sufficient to resolve the paradox. An essential feature of this thought 

experiment is the ordering of the out-going balls. It is not enough that the amount of out-going 

balls corresponds to the amount of time intervals. In order for the barrel to be empty at the end of 

the experiment the ping-pong balls must be removed consecutively, beginning from ball #1. 

Consequently, there will be a specific time for which each of the in-going balls is removed. 

Thus, at the end of the experiment, the barrel will be empty.   

In a set theoretic context, the ordering of the out-going balls is essential for a resolution.  

If we did not know which balls were removed at which time interval, we would be dealing with a 

problem of transfinite subtraction that is undefined. Consequently, if we were to change the 

ordering of balls removed from the barrel, we could end up with a completely different 

resolution even when we have changed nothing else about the experiment. So if we vary the 

paradox even slightly, we might find infinitely different resolutions. But what if, rather than 

varying the paradox, we vary its context? 

For a complete discussion of this variant, please see Mamolo & Bogart (2011).  In what 

follows, I attempt to relay broad strokes of the resolution, as many of the details lie outside the 

scope of this paper. This variation of context relies on the work of Abraham Robinson who gave 

a rigorous mathematical foundation for the use of infinitesimals and infinite numbers in calculus 

(Loeb, 2000).  Robinson’s (1974) introduction of nonstandard analysis allows for the existence 

of an ordered extension field of the real numbers such that it contains both infinitesimal and 

infinite quantities. This extension, known as the hyperreals and denoted as ℝ∗, includes elements 

𝜀 which is positive but less than every positive real number, and 
1

ℇ
 which is greater than every 

positive real number (i.e., it is infinite). Included in the field of hyperreal numbers is the set of 

hyperintegers that extends the set of integers. Any positive hyperinteger that is not already an 

integer is called an infinite integer.  With these bits as a foundation, we can reframe the paradox 

such that the collection of ping pong balls are numbered with the hyperintegers: 1, 2, 3…, 10W 

(where W is greater than any integer in ℤ). We add and remove balls similarly before, continuing 

the process up to the step W, where, for every hyperinteger n less than or equal to W, at time ½𝑛 

from the end of a minute, balls numbered 10𝑛 − 9, 10𝑛 − 8, … 10𝑛 − 1, 10𝑛 are placed into the 

barrel and ball numbered n is removed. This new context allows us to talk about the paradox in 
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terms of measuring properties of numbers—a conceptualization that is consistent with intuitive 

understandings of infinity (e.g., Mamolo, 2009; Tall, 2001).  

In a context of nonstandard analysis, the resolution of this paradox has three main parts: a 

description of the sets of balls, a nonstandard interpretation of quantity, and an application of that 

form of quantification to the problem at hand. The set of all balls can be described by A = {1, 2, 

3, …, 10W-1, 10W}, where each hyperinteger between 1 and 10W occurs exactly once (a 

consequence of the transfer principle, which guarantees that the extended sets, functions, and 

relations continue to behave in familiar ways); let the set of balls removed from the barrel be R = 

{1, 2, …, W-1, W}; thus the set of balls remaining in the barrel at the end of the experiment is: 

 

B = A \ R = {W + 1, W + 2, … 2W, 2W+1, … 10W-1, 10W}. 

 

If we are to resolve this paradox in terms of measurement rather than cardinality, then to 

interpret the question of “how many balls” we need to consider measures of intervals (rather than 

cardinalities of sets). This reasoning is not unlike that of Bolzano’s (1950), though his 

formulation fell short of being complete. To understand the ‘size’ of sets A, R, and B in this 

context, we need to measure the span of each of the intervals [0, 10W], [0, W], and [W, 10W].  

Applying the transfer principle, we deduce that the length (i.e., measure) of the interval [W, 10W] 

is 9W and the length of the interval [0, W] is W. Lengths (unlike cardinalities) are additive in the 

usual way, and as such we can think of the measure of the removed balls as “∞” and the measure 

of the remaining balls as “9∞”.  Mamolo and Bogart (2011) note: 

 

An interesting feature of the hyperreal ball problem is that although we perform 

more steps of adding and removing balls than in the original version (one step for 

each hyperinteger from 1 to W, rather than just one for each natural number), the 

last step ends 2-W seconds before the end of a minute. So the process takes 

(infinitesimally) less time than in the original version, which requires exactly a 

minute. (p. 622) 

  

4. Conclusion  
 

The title of this section is a bit of a misnomer. My intentions have been to invite curiosity and 

conversation, more so than draw any conclusions. However, in some concluding remarks, I turn 

my attention towards the notion(s) of objectivity, engaging as a tourist in a well-traversed 

philosophical field. In Section 2 of this paper, novice and expert ideas about infinity came into 

play in attempted resolutions of the ping pong ball paradox. In Section 3, hoping to resolve some 

of the controversy associated with the tacit biases and beliefs that influenced historical and 

modern day conceptions, two formal resolutions were presented—one which relied on cardinal 

conceptualization of numbers and the other which relied on a measurement approach. In each 

separate context, a rigorous, self-contained, logically consistent and correct argument was made 

to “resolve” the problem. In one context, the barrel was empty at the end of the sixty seconds. In 

the other context, it was infinitely full. Oh my.   

Daston (1992) notes that few philosophical studies, “even those most directly concerned 

with objectivity in the sciences or with the historical context in which objectivity allegedly 

emerged once and for all, seriously entertain the hypothesis that objectivity might have an 

ongoing history intimately linked to the history of scientific practices and ideals” (p. 598).  Yet, 
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the paradox discussed provides a compelling reason to do just that—by and large, the set 

theoretic approach is the one commonly accepted as the normative standard. Not because it is 

“more correct”, but rather there is a seeming resistance by mathematicians to accept Robinson’s 

nonstandard analysis as a viable alternative to the epsilon-delta approaches to analysis laid down 

by Leibnitz and Newton in their attempts to formalize a system without dealing explicitly with 

those tricky creatures known as infinitesimals. The history of mathematical practices and ideals 

related to infinity do seem to suggest that ‘objective’ views of infinity depended largely on 

perspective. Aristotle’s perspective that actual infinity cannot exist because it would take all of 

eternity to enumerate such a set, Galileo’s view of the impossibility of comparing transfinite 

cardinalities, Bolzano’s notions of ‘distances’ between elements, Cantor’s sets, and Robinson’s 

hyperreals all have some credence, yet each relies on a value-laden (if tacit) choice in 

perspective. Mathematicians, writes Daston (1992), have been “indifferent to public opinion… 

because the certainty or near-certainty of their ‘demonstrations’ freed them from evaluations 

based only on ‘a certain nicety of taste’” (p. 606). Yet, it was a world view that dismissed the 

aesthetics of Platonism that led Aristotle to his conclusions, religious belief that led Kronecker to 

deny and supress Cantor, his one-time protégé (e.g., Rucker, 1982)—a perspective felt so heavily 

by Cantor that it is said to have contributed to feelings of persecution and paranoia experienced 

later in life (Aczel, 2000). Indeed, Cantor’s own religious beliefs about the relationship between 

infinity and God is said to have convinced him of the veracity of his work—transfinite numbers 

and their properties were real because “God had told me so” (Aczel, 2000, p. 143). And, it is a 

sign of current value systems that young undergraduates suffer through cumbersome epsilon-

delta proofs, when a viable alternative exists in Robinson’s work. 

Certainly, I am not the first to play with these ideas within the realm of mathematics.  

Gödel’s incompleteness theorems (e.g., Goldstein, 2005) lay a foundation, and the ping pong 

balls provide a striking example of two complete and consistent axiomatic systems that are 

nevertheless incompatible in certain contexts. The idea that objectivity might lie at the heart of 

mathematics is deceiving. Rather, it is ambiguity that lies therein, and “mathematically true” has 

meaning only relative to underlying axioms (e.g., Byers, 2007; Devlin in Suri & Singh Bal, 

2007). As Bertrand Russell (1903/1996) wrote, “mathematics may be defined as the subject in 

which we never know what we are talking about, nor whether what we are saying is true” (p. 75).  
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