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ABSTRACT 

 

 Eurygaster integriceps Puton, more commonly known as Sunn pest, is 

regarded as one the most harmful pests of wheat, specifically durum wheat and 

bread wheat (Javahery, 1995). They primarily infest the wheat fields of Central 

and Western Asia, as well as areas of Northern Africa and Eastern Europe. The 

pest parasitizes the wheat grains by injecting a prolyl-endylprotease (spPEP), a 

proteolytic enzyme, which degrades the gluten proteins, enabling it to eat 

(Darkoh et al., 2010). Even minimal damage of wheat grains by the Sunn pest (2-

3%) can reduce the grain crop to being unusable in baking (Hariri et al., 2000). 

The impact of the pest in these regions has been extremely detrimental to their 

respective local economies, and more importantly, their overall livelihood. Within 

these locations, wheat is the main source of human food, with over 100 million 

tons of wheat based products harvested annually (Javahery, 1995).   

 To tackle this dilemma, potential inhibitory peptides to the spPEP are being 

considered. Previously, it has been shown that peptides isolated from 

Lactobacillus hydrolysates of caseins in bovine milk can inhibit mammalian PEP 

in colon cells (Juillerat-Jeanneret et al., 2011). While these peptides are potential 

inhibitors of the spPEP, recombinant versions must be created and tested to 

ensure that they are specific to spPEP.  
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To conclude whether these proposed inhibitory proteins can be used as a bio-

pesticide or even function to negate the detrimental effects of spPEP and recover 

compromised wheat grains for human consumption, the inhibitors must have a 

specificity for spPEP while not having an impact on the mammalian PEP 

homologue. The focus of this proposed research project was to clone the human 

prolyl-endylpeptidase (hPEP) into an expression vector and then transform hPEP 

construct into the same expression system as that used for the spPEP. Following 

a confirmation of the desired enzyme activity, it was then expressed in a large 

culture volume and partially purified. As a result of this project, future studies to 

compare the effects of potential inhibitors on hPEP and spPEP will be possible. 
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INTRODUCTION 

Eurygaster integriceps Puton 

 Eurygaster integriceps Puton, more commonly known as Sunn pest, is a 

heteroperous insect, belonging to the order Hemiptera within the family 

Scutelleridae that resides in Northern Africa, Europe, as well as Western and 

Central Asia. It primarily consumes the wheat grains of Triticum aestivum and 

Triticum turgidum (Javahery, 1995). This is problematic, as these grains are vital 

for bread production in the region. With as little as 2% of grain contamination by 

Sunn pest, entire yields of crops can be rendered useless (Hariri et al., 2000). 

 When feeding, the Sunn pest injects the grain with an enzyme known as 

Prolyl Endoprotease (spPEP) which degrades the gluten proteins, rendering the 

grain no longer functional for bread production. While the damage is only 

localized to the grain that the Sunn pest is eating, the damage is significantly 

propagated when the grain is milled (Darkoh et al., 2010 and Vaccino et al., 

2006). 

PEP (Prolyl Endylpeptidase) 

 Prolyl endylpeptidase, otherwise referred to as prolyl oligopeptidase 

(POP), is an enzyme that has been found to be universal to all organisms 
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(Szeltner and Polgar, 2008, and Rawlings and Barrett, 1994). PEPs belong to the 

S9 family of enzymes; they are ubiquitous serine proteases, by activity which is 

mediated by an α/β hydrolase domain (Rawlings and Barrett, 1994). This domain 

contains a conserved catalytic triad, Ser-Asp-His, that is believed to be involved 

in the entry and cleaving of the substrate (Polgar, 2000). PEP isoforms have 

been identified in bacteria, fungi, insects, and animals.  Depending on the 

organism, PEPs can vary in function. 

   For reference, the Km and Kcat in the literature for porcine PEP are 5.9 ± 

0.5 µM and 32.5 ± 1.2 s-1, respectively (Szetlner et al., 2002).  

Human PEP 

When attempting to identify a potential inhibitor to spPEP, human PEP (hPEP) 

must be considered; belonging to the prolyl oligopeptidase family, hPEP shares 

similar conserved regions. Using the UCSF Chimera software (Petterson et al., 

2004) to compare the amino acid sequence of spPEP to the known structure of 

human PEP (Yandamuri et al., 2014) generated a 3-dimensional structure (Fig. 

1) that demonstrates the high level of conservation between mammalian and 

spPEP. Dysfunctional PEP has been linked to a variety of neurological diseases 

in mammals, including Alzheimer’s disease (AD), in which decreased PEP 

activity may lead to neuronal degeneration (Laitinen et al., 2001). More current 

research has controversially suggested that PEP inhibition is linked to Amyloid-β 
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accumulation, another potential factor in AD (Rossner et al., 2005). In previous 

research, hPEP has been shown to be selectively inhibited by peptides 

containing less than 30 amino acid residues; those greater than 30 did not bind 

(Polgar, 2000). Because of this, the hypothesis for this study is that recombinant 

peptides designed to be larger than 30 amino acids should bind and inhibit 

spPEP without affecting hPEP. 

Peptides from casein as potential inhibitors of PEP 

 In recent studies, peptides from Lactobacillus hydrolysates of caseins in 

bovine milk have been shown to inhibit hPEP in human colon cells (Juillerat-

Jeanneret et al., 2010). Since hPEP and spPEP share homology, this suggests 

that recombinant peptides will also inhibit spPEP.  It is suspected that the 

inhibition of PEP is size specific. Previous research has demonstrated that a 

partial digestion of whole casein, resulting in a pool of peptides of varying sizes, 

yielded an 87% inhibition of purified spPEP (Hargrove, 2013). 
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Figure 1: The predicted structural alignment of spPEP (blue) to the 
known crystalized structure of porcine PEP (tan) (Yandamuri et al., 
2014) using UCSF Chimera (Petterson et al., 2004). 



5 
 

MATERIALS AND METHODS 

 

Inserting hPEP into pLIC Vector and Transformation of JM109 E. coli strain. 

Transformation of JM109 with LIC Vector 

 Commercially competent E. coli JM109 cells (≥ 1 x 108 cfu/µg DNA, 

Promega, Corp.) (genotype: F′ (traD36, proAB+ lacI q, lacZ∆M15) endA1 recA1 

hsdR17(rk – ,mk + ) mcrA supE44 λ- gyrA96 relA1 ∆(lac-proAB) thi-1 lon) were 

obtained from the -80°C freezer and placed immediately in ice. Once thawed, the 

tubes were flicked gently to mix the cells. 10 ng of vector pNYCOMPS-LIC-

FH10T+ (pLIC) (Arizona State DNA Repository) DNA was transferred to chilled 

five 17 x 100mm round-bottom polypropylene culture tubes. To each tube, 50 µL 

of the cells was added. These were then gently flicked and placed on ice for 10 

minutes. The cells were then heat-shocked at 42°C for 45-50 seconds. The tubes 

were returned immediately to ice for 2 minutes. 400 µL of SOC medium (Fisher 

Scientific) was added to each tube, which was then incubated at 37°C for one 

hour with shaking at 200 rpm. Aliquots from each tube of 100 µL and 50 µL were 

spread in duplicate on kanamycin/chloramphenicol plates (50 µg/mL kanamycin, 

34 µg/mL chloramphenicol). The plates were then incubated overnight at 37°C. 
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Purification of LIC vector 

Eight kanamycin/chloramphenicol cultures were inoculated using 

individual colonies and incubated overnight at 37°C. For purification, a plasmid 

miniprep (ZymoPURE™ Plasmid Miniprep, cat. D4200/1, Zymo Research) was 

performed per manufacturer’s protocol on each culture. The purified plasmids 

were then stored at −20°C. 

Polymerase Chain Reaction of hPEP transformants 

 A PCR was performed using the gene specific primers listed in Table 1. 

JM109 E. coli cells were previously transformed with hPEP (obtained from GE 

Healthcare Dharmacon, Lafayette, CO). Ten individual bacterial colonies were 

selected and used as a template for a reaction. Colonies selected were first 

transferred to a grid plate using a pipette tip. The tip was then swirled in the PCR 

reaction buffer, transferring the remaining cells to the buffer. GoTaq DNA 

polymerase (Promega Corp., Madison, WI) was used for amplification. The PCR 

was performed using an iCycler thermal cycler (Bio-Rad Laboratories), using the 

reagents and parameters for the reaction listed in Table 2 and Table 3, 

respectively. Additionally, to optimize the annealing step, a temperature gradient 

(55-63°C) was established on the thermal cycler. Following amplification, 



7 
 

agarose gel electrophoresis (1% w/v) was used to screen the PCR products for 

verification. 
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Table 1: Forwards and reverse gene specific primers were used for the       
amplification of hPEP.  

Primer 

Name 

Sequence Tm 

hPEPLICfor 
5’-TATTTTAATCCTACGTAATGCT 

GTCCCTTCAGTACCCCGAC-3’ 
79.2°C 

hPEPLICrev 
5’-CCCTCAATATTATACGGGTCATTAT 

GGAATCCAGTCGACGTTCAGGCA-3’ 
83.7°C 
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Table 2: PCR reaction Mix. Reaction volumes were prepared at 50 µL for each 

tube. A total of 8 reactions were performed using separate bacterial colonies as 

the template. 

Reagents Volume (µL) 

10X GoTaq Buffer 5 

10µM dNTP Mix 2.5 

Forward Primer 10 µM 2.5 

Reverse Primer 10 µM 2.5 

GoTaq Polymerase 0.5 (1.5 U) 

diH2O 37 
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Table 3: PCR parameters for amplification of hPEP With Temperature Gradient   

Step Temperature (°C) Time  

 

 

 

35 
Cycles 

Initial Denaturation 95 4 min 

Denaturation 95 30 sec 

Annealing 55-63 30 sec 

Extension 68 3 min 

Polishing 

Extension 

72 10 min 

Hold 4 ∞ 
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Agarose Gel Electrophoresis 

 Agarose gel electrophoresis was used for all visualization of DNA 

plasmids, restriction enzyme products, and PCR amplicons. For comparison, 5 

µL Bionexus Hi-Lo™ DNA marker was added to one or two lanes in each gel. 

Bromophenol blue containing loading dye was added (5 µL) to 10 µL of each 

PCR product and these were loaded into individual lanes. The gel was run with 

1X TAE buffer (48.4 g Trizma base + 20 mL 0.5M EDTA, pH 8.0 + 11.4 mL glacial 

acetic acid) at 100 V for approximately 40 minutes. For visualization, ethidium 

bromide was added during the preparation of the gel. All gels were analyzed 

using a Typhoon FLA 9500 spectrophotometer (GE Healthcare). The volume 

remaining from the samples that were confirmed to contain hPEP were pooled 

and run on a separate preparative gel.  

Purification of PCR amplicons and restriction enzyme products 

 The bands corresponding to the amplified PCR products as well as 

products from restriction enzyme digestion were cut from the agarose gel and 

purified using Wizard® SV Gel and PCR Clean-Up System (Promega, Corp.) as 

per manufacturer’s protocol. 
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Measurement of DNA Concentration and Purity 

 Following purification of the DNA samples, the concentration was then 

measured using a Cary®50 UV-Vis spectrophotometer (Agilent Corp.). The 

machine was zeroed using the same eluent that was used during the plasmid 

purification, nuclease free water. The absorbance was then measured at A260 and 

A280. For purity, the [A260/A280] was determined.  

To calculate the concentration of DNA, the following formula was used: 

𝐷𝑁𝐴𝑑𝑠
  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 50 

µg

mL
 𝑥 𝑂𝐷260 𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟∗ 

*Using a 1 cm pathlength, the optical density at 260nm (OD260) is equal to 1.0 for 

a 50µg/mL solution of dsDNA (Barbas et al., 2007). 

Concentrating pLIC by Sodium Acetate and Ethanol Precipitation 

To perform the SnaBI restriction enzyme digestion of the pLIC to prepare 

it for the future insertion of hPEP, approximately 10 µg DNA was used. The 

measured pLIC was initially too dilute to accomplish the digestion at the desired 

volume, and therefor was concentrated. One tenth the pLIC volume of 3 M Na-

Acetate and 2x the pLIC volume of ice-cold 100% ethanol was added. This was 

mixed by flicking and left to incubate at -80°C for 30 minutes. After being allowed 

to chill, it was centrifuged at max speed for 15 minutes. The supernatant was 
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carefully decanted from the pellet. The remaining ethanol was evaporated and 

the pellet was re-suspended in 10 µL nuclease-free H2O. 

Restriction Enzyme Digestion of LIC Vector 

 A SnaBI (New England Biolabs, Ipswich, MA) restriction digestion was 

performed to linearize the LIC vector. The pLIC vector contains two restriction 

sites for SnaBI, located at 5313 bp and 6840 bp (Figure 2). The restriction 

digestion was prepared using 10 µg of pLIC DNA and 20 U SnaBI in a 50 µL 

reaction. The reaction components are listed in Table 4. The mixture was 

incubated at 37°C for a minimum of 2 hours. 10 µL of the digested and 20  µL 

undigested products were electrophoresed on an analytical 1% agarose gel for 

comparison. The remainder of the digested pLIC was run on a preparative gel.  

T4 DNA Polymerase Ligation 

The pLIC and hPEP were each treated with 3 U T4 DNA polymerase 

(3U/µL) to create complimentary overhangs on both the vector and the insert 

(Sambrook et al., 2001). In one tube, 500 ng hPEP was treated in the presence 

of dCTPs, producing an overhang on the insert. In a second tube, 500 ng pLIC 

was treated with T4 DNA polymerase in the presence of dGTPs to produce a 

complimentary overhang on the vector to the insert. The reaction components for 

the treatment are listed in Table 5. Both tubes were incubated for 30 minutes at 

room temperature. They were then incubated at 75°C for 20 minutes to inactivate 
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the polymerase. The insert and vector were then mixed at Vector:Insert 

molecular ratios of 1:1, 1:2.5, 1:5, and 1:5 in the presence of 50 µM EDTA. The 

mixtures were incubated at 75°C for 5 additional minutes and then mixed by 

flicking. They were allowed to anneal overnight at 4°C. 
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Figure 2: pNYCOMPS-LIC-FH10T+ (pLIC) (Arizona State DNA Repository) 
plasmid map, 6840 bp. A double digestion was performed using 20 Units of 
SnaBI, cutting out the chloramphenicol resistance segment of the vector 
(CmR). 

SnaBI 

SnaBI 
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Table 4: The reaction mixture for the digestion of pLIC is shown below. As a 

control, a sample of pLIC was also used in a reaction mix lacking the digestion 

enzyme. 

Reaction components Uncut Cut 

SnaBI (4U/µL) N/A 5 µL (20 Units) 

10x CutSmart® Buffer 
(NEB) 

2 µL 5 µL 

pLIC DNA 1 µL 8 µL 

diH2O 17 µL 32 µL 

Total Volume 20 µL 50 µL 
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 Table 5: T4 DNA Polymerase exonuclease activity was used to create 
complimentary overhangs on hPEP and pLIC.

Reaction 
components 

hPEP pLIC 

Sample DNA 500 ng 500 ng 

10x Buffer 3 µL 3 µL 

dCTP 100 μM - 

dGTP - 100 μM 

T4 Polymerase 3 U 3 U 

dH2O 4 µL 3 µL 

Total Volume 30 µL 30 µL 
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Transformation of JM109 With pLIC-hPEP 

 The tubes containing the ligation reactions were briefly centrifuged to 

collect the contents at the bottom. From each of the tubes, 2 µL were used to 

transform commercially competent E. coli JM109 cells (≥ 1 x 108 cfu/µg DNA, 

Promega, Corp.) via heat-shock as described previously. A tube containing 

JM109 cells was taken through the transformation protocol as a negative control. 

After the transformation, the cells were plated in duplicate at aliquots of 100 µL 

and 50 µL. The remaining volume was centrifuged, decanted, re-suspended, and 

then plated. To select for transformants, cells were plated in the presence of 

kanamycin (50mg/mL). Three control plates were also made. Two, containing 

only LB agar, were plated with the non-transformed JM109 cells. The final control 

plate was prepared with 50 μg/mL kanamycin and was plated with the same 

cells. 

Confirmation of Transformation by PCR and Gel Electrophoresis 

 Eighteen colonies were selected at random to be PCR screened for 

verification of hPEP insert as an indication of successful ligation and subsequent 

transformation. The colonies selected were also spot inoculated on a grid plate 

for later use. The previously described PCR reaction mix components and hPEP 

forward and reverse primers were used for the reaction. The parameters for the 
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thermal cycler are listed in Table 6. The amplified products were run on a 1% 

agarose gel for analysis. 
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Table 6: Parameters for PCR screening using colony picks from pLIC-hPEP 
transformed JM109 plates. 

Step Temperature 
(°C) 

Time  
 
 
 
 
 
 
 
 

35 
Cycles 

Initial 

Denaturation 

95 4 min 

Denaturation 95 30 sec 

Annealing 60 30 sec 

Extension 72 3 min 

Polishing 

Extension 

72 5 min 

Hold 4 ∞ 
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Maxiprep of pLIC-hPEP for sequencing 

 A 100-200 ng/µL plasmid concentration was required prior to sending the 

sequencing to Eurofins MWG Operon LLC. To achieve the required 

concentration, four colonies that were shown positive for hPEP were selected 

from the grid plate and used to inoculate individual Erlenmeyer flasks containing 

150 mL Super Broth II (Per liter: 32 g Tryptone, 20 g yeast extract, 5 g NaCl (s), 

and 1 g Trizma base (Sigma-Aldrich Co., St. Louis, MO, USA)). These were 

incubated overnight at 37°C with aeration. To purify the plasmid, a maxiprep 

(ZymoPURE™ Plasmid Maxiprep Kit, Cat. D4202, Zymo Research) was 

performed on each 150 mL culture. The concentration and purity of each plasmid 

sample was determined by measuring the A260 and A280, as described previously. 

The samples were then diluted to 100-200 ng/µL and sent off to Eurofins MWG 

Operon LLC. (Louisville, KY) for both forward and reverse sequencing using the 

previously described hPEP primers. 

Sequence Analysis 

 The resulting sequencing data was received as abi compatible files. 

CodonCode Aligner (Version 6.0.1., CodonCode Corporation, 2015) was used to 

remove any vector and non-reliable (low signal) sequence data. BioEdit (Hall T. 

A., 2013) was used to align the sequences via the sequence-nucleic acid-reverse 

compliment tool. A contig sequence was then built using the BioEdit Cap Contig 
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program on the aligned sequences. The contig sequence was submitted as a 

query to NCBI nucleotide-BLAST (Altschul et al., 1990). 

 

Transformation of BL21(DE3)+pTF-S with the pLIC-hPEP Construct and 

Subsequent Expression 

Inducing the Competency of BL21(DE3) + pTF-S 

 The host that was used for the expression of hPEP was BL21(DE3)pTF-S 

E. coli (Genotype: fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS; λ DE3 = (λ 

sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5) ). Prior to 

transforming the host with the hPEP construct, the cells were made competent 

using the calcium chloride/Tris buffer method (Mendel and Higa, 1970). Ten 

milliliters of LB broth (34 µg/mL chloramphenicol) was aliquoted into two 50 mL 

conical tubes. A glycerol stock of BL21(DE3)+pTF-S (Dareddy, V., 2012) cells 

were thawed on ice and then were mixed by flicking. Ten microliters of the stock 

was used to inoculate one of the conical tubes containing the 

LB/chloramphenicol. This was incubated overnight at 37°C with aeration. The 

following day, 10 µL of the culture was aliquoted into the remaining conical tube. 

This was cultivated at 37°C with aeration. The optical density at 600 nm was 

measured intermittently using a DU® 800 spectrophotometer (Beckman Coulter, 

Brea, CA, USA) until the culture reached an OD600 of ~0.6. The culture was 
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chilled on ice for 10 minutes and centrifuged for 5 minutes at 4000 x g, 4°C. The 

supernatant was aseptically decanted from the pellet. 25mL of sterile, ice-cold 

CaCl2 in Tris buffer (pH 8.0) was added to the pellet, which was then vortexed to 

resuspend. The cells were centrifuged using the same conditions as before. At 

this point, the cells were handled gently due to them being fragile from treatment. 

The supernatant was decanted from the tube carefully as to not dislodge the 

pellet. Five milliliters of ice-cold CaCl2-Tris buffer was added and the tube was 

gently swirled to resuspend the pellet. The cells, now competent for 

transformation, were dispensed into 1.5 mL microcentrifuge tubes, at 500 µL 

aliquots. Five hundred microliters of 70% glycerol was added to each tube 

followed by flash-freezing using liquid nitrogen and then stored at -80°C. 

Transformation of BL21(DE3)+pTF-S cells with pLIC-hPEP 

 A stock of freshly competent BL21(DE3)+pTF-S (Dareddy, 2012) cells was 

removed from -80°C storage and thawed on ice. While thawing, three 17x100mm 

round-bottom polypropylene culture tubes were labeled “1”, “2”, and “3”. Two 

microliters of the hPEP construct was added to Tube 2, while 5 µL was added to 

Tube 3. Tube 1 served as a control, to which no plasmid DNA was added. 50 µL 

of the BL21 cells was aliquoted into each tube. Each tube was subjected to the 

heat-shock method of transformation and plated as previously described in the 

transformation of JM109 with pLIC-hPEP. These plates consisted of LB agar, with 

50 µg/mL kanamycin and 34 µg/mL chloramphenicol to select for transformants. 
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Aliquots of 100 µL from Tube 1 were added to three plates containing only LB agar. 

The plates were incubated overnight at 37°C. Transformants were grid-plated and 

then screened by PCR and 1% agarose gel electrophoresis. 10 mL cultures (LB 

broth with chloramphenicol and kanamycin) were grown using the colonies that 

were confirmed to contain the hPEP construct. Glycerol stocks were prepared for 

each culture, flash-frozen using liquid NO2, and then stored at -80C°. 

Expression of hPEP 

 To express hPEP, a glycerol stock of the BL21(DE3)+pTF-S + pLIC-hPEP 

was first thawed on ice. A loop-full of the stock was used to inoculate 100mL of 

LB broth with 50 mg/mL kanamycin and 34 µg/mL chloramphenicol. This was 

incubated overnight at 37°C with aeration. The following day, 60 mL of the 

culture was used to inoculate 6 liters of 2x LB media containing the previous 

kanamycin and chloramphenicol concentrations. The 6L growth was performed 

using the BioFlow 110 Modular Fermentor & Bioreactor (New Brunswick 

Scientific Co., INC., Edison, NJ, USA). Heat was applied to the vessel by a heat 

jacket, the output of which was monitored and regulated by the system using a 

thermistor. The growth was kept at a constant 30°C. For aeration, O2 was added 

through a 0.22 µm filter by an air pump with the output for the mixer rotor kept at 

a constant 200 rpm. Prior to inoculation, a 3 mL sample was taken out as a 

blank. Once inoculated, the OD600 was measured every 30 minutes until it 

reached approximately 0.6. At this point, 10 mL removed from the culture was 
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incubated overnight at 37°C  to serve as an uninduced sample. The expression 

of the remaining culture was induced by adding IPTG to a final concentration of  

4 mM. The induced sample was allowed to continue growing overnight in the 

fermenter under the same conditions. 

 To harvest the induced cells, the culture was syphoned into 1 L centrifuge 

bottles and centrifuged in a swinging bucket rotor at 1250 x g for 30 minutes. The 

supernatant was decanted from each pellet. The pellets were stored overnight at 

-20°C to assist with cell lysis. The following day, the pellets were resuspended in 

50 to 75 mL of  0.1M sodium phosphate, pH 8.0, buffer. The pellets were pooled 

into a single 1 L bottle. Phosphate buffer was added to bring the total volume to 

500 mL. Ten milliliters of phosphate buffer was added to two vials of CelLytic™ 

Express (Sigma-Aldrich Co., St. Louis, MO, USA). These were added to the 

pooled lysate, which was then shaken vigorously and stored at -4°C for 4 hours. 

The pooled lysate was then pulse sonicated using a 60 Sonic Dismembrator 

(Fischer Scientific, Lafayette, CO, USA) at 1 second intervals for 1 minute to aid 

in lysis. The lysate was divided evenly into three 250 mL centrifuge bottles and 

centrifuged at 9300 x g for 30 minutes. The supernatant from each bottle was 

collected in a 1 L Erlenmeyer flask. TWEEN® 20 (Sigma-Aldrich Co., St. Louis, 

MO, USA) was added to the clarified lysate to a final concentration of 0.1% (v/v). 

A magnetic stir bar was placed in the flask followed by 5 mL Ni-NTA resin 

(Thermo Fisher Scientific, Waltham, MA, USA), pre-equilibrated with the 0.1M 
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phosphate buffer. The resin-lysate mixture was left spinning slowly overnight at 

4°C. 

 

Purification of hPEP with Ni Affinity Chromatography 

 The resin-lysate mixture was removed from 4°C and centrifuged at 9,300 x 

g to pellet the resin. The supernatant was carefully poured away from the pellet 

to remove as much as possible without losing any of the resin. A slurry was 

made of the enzyme-Ni resin which was transferred to an open column for 

column chromatography. An ÄKTA Protein Purification System (GE Healthcare 

Bio-Sciences, Pittsburgh, PA) was used in manual mode for the chromatography. 

The resin was washed using 120 mL of 0.1M phosphate buffer (pH 8.0) 

containing 0.1% TWEEN-20 to remove unbound contaminants. The enzyme was 

eluted using a linear gradient of increasing imidazole from 0 to 0.25 mM over 400 

mL total volume. Fractions of 5 mL were eluted at a flow rate of 1 mL/min. 

Concentration of Enzyme 

 The enzyme fractions were pooled and concentrated using a Centricep® 

Centrifugal filter device with an Ultracel® 50K membrane (EMD Millipore Corp., 

Billerica Massachusetts, USA). Fifteen mililiters of the sample was added to the 

device and centrifuged at 1,500 x g for 2 hours. The filtrate was decanted, and 

then more sample was added up to 15 mL total, followed by another round of 
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centrifugation. This was repeated as necessary to concentrate protein fractions 

for enzyme kinetic assays. 

Gly-Pro-pNA Assay 

 All obtained hPEP lysates were assayed to measure activity. The assay 

was performed in a 96-well microtiter plate, using a SoftMax® Pro 5 plate reader 

(SN# SMP500-05066-QAQD, Molecular Devices, LLC, Sunnyvale, CA). The 

components of the assay are listed in Table 7. Final concentrations of the 

individual components were 1x PBS, 0.3 mM GPpNA, and 0.1 M DTT in a 200µL 

microtiter assay. The absorbance at 410 nm was used to detect hydrolysis of the 

GPpNA. An absorption coefficient of 8800 L/mol•cm was used to convert the 

absorption to µmol of substrate cleaved. The assay was measured in kinetic 

mode using a SoftMax® Pro 5 plate reader (Molecular Devices, LLC) set at 37°C, 

collecting a measurement every 9 seconds over an hour.  

Due to low activity levels in one of the enzyme batches, different amounts 

of enzyme were also tested to determine optimum enzyme amounts to add to 

each assay. Table 8 lists the components of each of these assayst. 

 To determine Km and Vmax of the different samples of hPEP, standard 

assays were performed varying the amount of substrate present (Table 9). For 

the first enzyme batch, the final concentrations of substrate used were 0.3 mM, 

0.15 mM, 0.075 mM, 0.03 mM, 0.015 mM, and 0.0075mM. To determine the Km 
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and Vmax for the hPEP from the second enzyme batch, the final concentrations 

of the substrate were 0.3 mM, 0.15mM, 0.1 mM, 0.075 mM, 0.05 mM, and 0.0 

mM. The data for the assays were analyzed and used to produce a graph 

demonstrating the concentration of pNA released vs Time. Using linear 

regression, the slopes produced by the different substrate concentrations were 

recorded. These slopes correlate to the velocity (Vₒ) of the different reactions. 

Plotting the Vₒ versus concentration of substrate ([S]) produced a Michaelis-

Menton plot of the data. Plotting the inverse (1/Vₒ vs 1/[S]) produced the 

Lineweever-Burk Plot. The Km’s were calculated using linear regression to 

calculate the x-intercepts (x-int) for each assay. The Km is equal to 1/[X-int]. The 

Vmax can be calculated similarly by taking 1/[y-int] (Segel, 2014).
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Table 7: The standard reaction mixture components and volumes for a 

GPpNA microtiter assay are shown. The reaction volume for all wells   

was 200 µL and consisted of 100 µL enzyme   

 
1 Well 

50 Wells 100 Wells 
150 

Wells 

10x PBS 20 µL 1 mL 2 mL 3 mL 

3mM 
GPpNA 

20 µL 1 mL 2 mL 3 mL 

1M DTT 2 µL 100 µL 200 µL 300 µL 

diH2O 58 µL 2.9 mL 5.8 mL 6.7 mL 

Total 
Volume 

100 µL 5 mL 10 mL 15 mL 

Enzyme 
100 µL per 
Well    

Total Well 
Volume 

200 µL 
   



30 
 

  

 

 

 

 

 

Table 8: A GPpNA assay was performed using 3 different volumes of hPEP to 

determine the lowest amount of enzyme that can be used while still achieving 

high activity. hPEP was varied in increments of 50 µL. The volume of diH2O was 

adjusted to maintain a well volume of 200 µL. 

 

10x PBS 
(µL) 

3mM 
GPpNA 

(µL) 

1M DTT 
(µL) 

diH2O 
(µL) 

hPEP (µL) 

20 20 2 108 50 

20 20 2 58 100 

20 20 2 8 150 
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Table 9: GPpNA assays were conducted using hPEP isolated from two different 

expression experiments (A) and (B). The assays were run at 410 nm and the 

absorbance was measured every 9 seconds for 1 hour. The substrate 

concentration was varied, allowing for the determination of Km and Vmax by 

taking the slopes of the linear portions of graphs.   
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150 8 2 20 - 20 0.3 50 108 2 20 - 20 .3 

150 18 2 20 - 10 0.15 50 118 2 20 - 10 .15 

150 23 2 20 - 5 0.075 50 108 2 20 20 - .1 

150 8 2 20 20 - 0.03 50 113 2 20 15 - .075 

150 18 2 20 10 - .015 50 118 2 20 10 - .05 

150 23 2 20 5 - .007 50 128 2 20 0 - 0 
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Bradford Assay 

 To determine total protein content of each cell lysate, a Bradford assay 

(Bio-RAD., Herculus, CA, USA) was performed. Known concentrations of BSA 

from 0.6 µg/mL to 10.0 µg/mL were prepared with ultrapure BSA (1.0 mg/mL, 

Fischer Scientific, Lafayette, CO, USA). These known concentrations were 

assayed to plot the standard curve. BSA was added to the microtiter plate in the 

following amounts: 0.6 µg, 0.8 µg, 1.00 µg, 2 µg, 4 µg, 6 µg, 8 µg, and 10 µg. 

The total volume of each BSA sample was brought to 100 µL with 0.1M sodium 

phosphate buffer (pH 8.0). Dilutions were made for each of the cell lysates to 

1/100 and 1/1000. From both dilutions of each sample, volumes of 10 µL, 5 µL, 

and 2 µL were added to the microtiter plate in duplicate. The total volume was 

brought to 100 µL with 0.1M buffer. Ninety microliters of the 0.1M buffer and 10 

µL diH2O were added to one well as a blank. To all wells, 100 µL of 2x Bradford 

reagent (Bio-RAD, Herculus, CA, USA) was added and mixed by pipetting up 

and down carefully to prevent introducing air bubbles. In instances where air 

bubbles occurred, the plate was centrifuged for 1 minute at 3000 x g. The 

absorbance at 595 nm was measured using a SoftMax® Pro 5 plate reader (SN# 

SMP500-05066-QAQD, Molecular Devices, LLC, Sunnyvale, CA). The total 

protein concentration for each sample was calculated using the linear portion 

from the standard curve and correcting for dilution. 
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SDS-PAGE Analysis 

 To determine the purity of expressed hPEP, sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) was used on both lysates 

demonstrating enzyme activity. A standard Laemmli SDS-PAGE (He, F., 2011) 

was performed using a 10% resolving gel and a 4% stacking gel. These gels 

were handcrafted using the components listed in Table 10. Ten micrograms total 

protein for each hPEP sample (as determined using the standard curve from the 

Bradford assay) was added to 1.5 mL microfuge tubes. Five microliters of sample 

loading dye was added to each, followed by denaturation at 95°C for 2 minutes. 

A 10 µL sample of Precision Plus Protein™ Standards (Bio-RAD., Herculus, CA, 

USA) was subjected to denaturation as well. The samples and standard were 

loaded into individual lanes and electrophoresis was performed at 100 V for 1 

hour. For visualization, the gel was stained in a solution containing 0.25% 

Coomassie Blue (Bio-RAD., Herculus, CA, USA). The staining process took 

place overnight at room temperature while rocking. The gel was destained using 

50% methanol, and 10% glacial acetic acid in H2O.
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 Table 10: Standard Laemmli SDS PAGE Gel Recipe (He, F., 2011). The 
components for preparing the resolving and stacking parts of an SDS PAGE    
gel are shown. Both were prepared in different 50 mL conical tubes. 

 

 

 

 

 

 

 

 

10% Resolving: 29.2% acrylamide + 0.8% bis 5 mL 

 1.5 M Tris-HCl, pH 8.86 3.75 mL 

 diH2O 6.25 mL 

 10% SDS 150 µL 
(When ready to 

polymerize) 
10% APS 70 µL 

TEMED 7 µL 

4% Stacking: 29.2% acrylamide + 0.8% bis 2 mL 

 1.5 M Tris-HCl, pH 8.86 3.78 mL 

 diH2O 9.1 mL 

 10% SDS 150 µL 
(When ready to 

polymerize) 
10% APS 70 µL 

TEMED 14 µL 
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RESULTS 

 

 The overall goal of the project was to clone and express hPEP in the 

same host as spPEP. The first part of the project included the cloning, 

purification, and restriction digestion of the pLIC vector and the subsequent 

ligation of it to PCR amplified hPEP; this construct was cloned into JM109 E. coli 

cells. The second objective of this project was cloning and transforming the pLIC-

hPEP construct into the final E. coli expression host BL21(DE3)+pTF-S cells. The 

final part of the project involved the expression and partial purification of hPEP 

and the subsequent analysis of the enzyme’s kinetics. 

 

PCR Amplified hPEP Products 

 Gene specific primers were used to amplify hPEP, using 10 colonies 

transformed with hPEP as the template for the reaction. A temperature gradient 

from 55-63°C was established for the annealing step of the reaction. The 

amplified products were loaded on a 1% agarose gel for analysis (Figure 3). All 

lanes demonstrated the expected ~2133 bp band except gel A-lane 6, 

corresponding to a 63°C annealing temperature. The hPEP products were 
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pooled and loaded on a preparative 1% agarose gel to purify the amplified hPEP 

products (Figure 4). The resulting band was cut out and purified using Wizard®  

SV Gel and PCR Clean-Up System (Promega, Corp.). The weight of the gel slice 

corresponding to hPEP was 441mg. 

Purification of pLIC 

 The pLIC was transformed into a JM109 E. coli cell line. The plasmid was 

then purified using a ZymoPURE™ Plasmid Miniprep (cat. D4200/1, Zymo 

Research). The purified pLIC and hPEP product were loaded onto a 1% agarose 

gel (Figure 5). The concentration and purity of both samples were determined by 

measuring the A260 and A280 with a Cary®50 UV-Vis spectrophotometer (Varian, 

Inc.). The final measurements, included calculated purity and concentration, are 

listed in Table 11. The average concentration for the hPEP samples was        

28.0 ng/µL, whereas the average for the pLIC was 46.25 ng/µL. 
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Figure 3:  Amplified hPEP products from PCR using individual colonies as 
template on a 1% agarose gel. Ten colonies transformed with hPEP were 
selected as the template for the reaction. A temperature gradient from 55-63°C 
was established for the annealing step of the reaction. On the first gel (A), lanes 
1 through 5 exhibited a band of ~2133bp. The band in lane 5 was noticeably 
lighter than the others. For the different samples, the annealing temperatures 
from the gradient are as follows: Gel A Lane 1 – 57.3°C, lane 2 – 58.4°C, lane 3 
– 59.5°C, lane 4 – 60.6°C, lane 5 – 61.8°C, lane 6 - 63°C; Gel B Lane 1 - 55°C, 
lane 2 - 55°C, lane 3 - 55°C, lane 4 – 56.3°C. M represents Bionexus Hi-Lo™ 
DNA marker. 
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Figure 4: Preparative gel of pooled samples of amplified hPEP. The 
remaining volume from the samples confirmed to contain hPEP (those that 
exhibited a ~2133 bp band on the analytical gels) were pooled. This was run on  
a 1% agarose gel. A single band of (~2133 bp) is visible under the lane marked 
hPEP. This band was excised and purified using Wizard® SV Gel and PCR 
Clean-Up System (Promega, Corp.). M represents Bionexus Hi-Lo™ DNA 
marker. 
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Figure 5: Results of the clean up of LIC vector and the gel purification of 
hPEP. The bands were separated on a 1% (w/v) agarose gel in 1X TAE buffer at 
100V for 40 minutes. The positions of both hPEP are at the desired approximate 
2133 bp. The pLIC bands are consistent with that of undigested plasmids, each 

band resulting from the different plasmid conformations. M represents Bionexus 
Hi-Lo™ DNA marker. 
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Table 11: The concentration and purity of the cleaned up LIC vector and 
amplified hPEP are shown below. 
 

Sample A260 A280 Concentration 
(ng/µL) 

Purity 
(A260/A280) 

hPEP1 0.56 0.31 28.0 1.81 

hPEP2 0.56 0.30 28.0 1.87 

LIC Vector1 1.0 0.55 50.0 1.81 

LIC Vector2 0.85 0.47 42.5 1.81 
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SnaBI Restriction Digestion of pLIC 

 A restriction digestion was performed on the pLIC vector using SnaBI 

enzyme. pLIC contains two restriction sites for SnaBI, resulting in two linear 

fragments when loaded on an agarose gel. This is demonstrated in Figure 6, 

where a sample of the SnaBI digestion of pLIC was loaded side-by-side to an 

undigested sample of pLIC for comparison. The digested sample was comprised 

of two primary fragments: ~1527 bp and ~5313 bp. The remaining volume of the 

digested sample was loaded onto a preparative 1% agarose gel (Figure 7). The 

~5313 bp fragment was excised and purified using Wizard® SV Gel and PCR 

Clean-Up System (Promega, Corp.). The gel slice was measured to be 649 mg. 

Following the purification of the digested pLIC, a sample was loaded onto a 1% 

agarose gel to verify that no other bands were present. Figure 8 demonstrates a 

single band at ~5313 bp. No other bands were visible. 
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Figure 6: Analysis of double SnaBI digestion of pLIC on 1% agarose gel. 

The restriction digestion was prepared using 8 µL of pLIC DNA and 5 µL SnaBI 

in a 50 µL reaction. The mixture was incubated at 37°C for a minimum of 2 hours. 

Digested and Undigested were run side-by-side for comparison. Lane (1) shows 

pLIC digested with SnaBI; two primary bands are visible: (A) the 5313 bp 

fragment and (B) the 1527 bp fragment. Lane (2) shows the undigested plasmid. 

M represents Bionexus Hi-Lo™ DNA marker.  

A 

B 
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Figure 7: Preparative agarose gel (1%) of double SnaBI digestion of pLIC. In 
order to purify and excise the desired pLIC 5313 bp band (A), a 1% agarose 
preparative gel was run using the remainder of the digestion reaction mix. (B) 
The lower band represents the resulting dropout from the double digestion of 
pLIC (1527 bp). M represents Bionexus Hi-Lo™ DNA marker. 

  

A 

B 
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Figure 8: Cleaned up pLIC 5313 bp band on agarose gel (1%). The 
5313 bp band was excised from the analytical gel (weighing 649 mg) 
and purified using Wizard® SV Gel and PCR Clean-Up System 
(Promega, Corp.). The product was then run on a 1% agarose gel for 
verification. The encircled single band above shows the desired 5313 
bp band of the digested pLIC. M represents Bionexus Hi-Lo™ DNA 
marker. 
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Transformation of JM109 with pLIC-hPEP Construct 

 Complimentary overhangs were created on hPEP and the linearized pLIC. 

These were mixed at Vector:Insert molecular ratios of 1:1, 1:2.5, 1:5, and 1:5 in 

the presence of 50 µMol EDTA. After the insert and vector were allowed to 

anneal overnight, the resulting pLIC-hPEP construct was used to transform a 

JM109 E. coli cell line. The cells were plated in duplicate at aliquots of 100 µL 

and 50 µL; the remaining volume was centrifuged, decanted, re-suspended, and 

then plated. The number of colonies that grew after the transformation were 

recorded and are listed in Table 12. The positive control plates grew lawns as 

expected, indicating the cells remained viable throughout the transformation. The 

negative control demonstrated no growth, indicating the selective agent 

(kanamycin) functioned as desired. The vector to insert ratio that demonstrated 

the highest number of transformants, and therefore most successful ligation 

independent cloning, was the 1:1 mol sample. 18 colonies were selected at 

random and screened by PCR for verification using the previously described 

hPEP forward and reverse primers. These samples were loaded onto a 1% 

agarose gel for analysis (Figure 9). Of the 18 colonies screened, the expected 

2133bp band for hPEP was present in 11 samples. In the first gel (fig. 9, A), 

lanes 1 and 7 show bands at (~2133bp), while lanes 2 – 6 failed show the 

presence of amplified hPEP. On the second gel (fig. 9, B), lanes 1 and 4 

contained bands at (~2133bp), whereas this band was absent in lanes 2, 3, 5, 
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and 6. They can likely be explained as being false positive transformants. In the 

preparation of the plates, only 10 of the plates were made by adding the 

antibiotic prior to solidification of the agar. The other 10 plates had the antibiotic 

spread over the surface, and as of such, certain areas of the agar surface may 

have not been treated with the antibiotic. Without the selective agent present 

throughout, it is possible that the colony that grew either kicked out the pLIC-

hPEP or it never actually contained it in the first place. Within the final gel (fig 9, 

B), all seven sample lanes showed a band at (~2133bp).



47 
 

 

Table 12: CFU count of JM109 transformed with pLIC-hPEP. 500 ng hPEP 

was treated with 1 µL T4 DNA polymerase in the presence of 1 µL dCTP to 

create the overhang on the insert. To create the overhang on the vector, 500 ng 

pLIC was likewise treated with 1 µL T4 DNA polymerase in the presence of 

dGTPs. The vector and insert were then mixed at varying molar ratios (1:1, 1:2.5, 

1:5, and 1:5 in the presence of 50 µMol EDTA). These were then incubated at 

75°C for 5 minutes, mixed, and stored over night at 4°C. The following day, these 

mixtures were used to transform JM109 cells via heat shock. The cells were 

plated at varying volumes (100 µL and 50 µL in duplicate, and the remaining 

volume was plated after being centrifuged, decanted, and resuspended). They 

were plated in the presence of kanamycin (50mg/mL) to select for transformants. 

The plates were then incubated at 37°C overnight. The table above shows the 

number of successful transformants per vector to insert ratio and per volume 

plated. 

  

 

Sample 
(V:I)→ 

Volume ↓ 
1:1 1:2.5 1:5 

1:5  +  
50µMol 
EDTA 

100 µL 13 4 2 3 

100 µL 12 8 2 3 

50 µL 11 No Growth 1 1 

50 µL 7 2 No Growth 5 

Resuspended 22 4 5 2 

Positive Control 1 Positive Control 2 Negative Control 

LAWN LAWN No growth 
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Figure 9: PCR screening using colony picks from pLIC-hPEP transformed 
JM109 plates as DNA template and analysis by 1% agarose gel 
electrophoresis. Colonies were selected at random to be PCR screened for 
verification of hPEP insert as an indication of successful ligation and subsequent 
transformation. The colonies selected were also spot inoculated on a grid plate 
for later use. The previously described hPEP forward and reverse primers were 
used for the reaction. The amplified products were run on 1% agarose gels for 
analysis. Of the 18 colonies screened, the expected 2133 bp band for hPEP was 
present in 11 samples. (A) In the first gel, lanes 1 and 7 show bands at 
(~2133bp), while lanes 2 – 6 failed show the presence of amplified hPEP. (B) On 
the second gel, lanes 1 and 4 contained bands at (~2133bp), whereas this band 
was absent in lanes 2, 3, 5, and 6. (C) Within the final gel, all seven sample lanes 
showed a band at (~2133bp). M represents Bionexus Hi-Lo™ DNA marker. 
Interestingly, sample lanes B4 and C1-7 exhibited much darker bands than the 
others, indicating excessive template DNA being used during the PCR 
amplification. 
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Cloning and Purification of pLIC-hPEP  

Four colonies on the grid-plate corresponding to successful transformants 

were used to inoculate separate Erlenmeyer flasks containing 150 mL Super 

Broth II. A ZymoPURE™ Plasmid Maxiprep Kit (Cat. D4202, Zymo Research) 

was performed on the cultures to purify the pLIC-hPEP construct. During the cell 

pelleting step of the maxiprep, it was noticed that the pellet for culture 4 was 

significantly smaller than the 3 other samples (2.4 cm compared to 3.2 cm). The 

concentration and purity of the plasmid from each sample was determined by 

measuring the A260 and A280 (Table 13). The acceptable A260/280 measurement for 

a pure DNA sample is ~1.8 - 2.0 (Sambrook and Russell, 2001). Cultures 1 

through 3 had DNA concentrations of 500, 640, and 740 ng/µL, respectively. 

Culture 4 had a much smaller concentration of 160 ng/µL. All four cultures were 

within the acceptable range for purity. This is likely related to the cell pellet size 

previously mentioned. The first three samples were diluted to 100-200ng/µL and 

sent off along with the previously described hPEP forward and reverse primers to 

Eurofins MWG Operon LLC for Sanger Sequencing.
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Table 13: The concentration and purity of the pLIC-hPEP plasmid, post 
maxiprep, are shown below. Each of the samples was diluted by a factor of 20 
to achieve accurate measurements. The absorbance values are shown below. 
 

Sample A260 A280 
Concentration 

(ng/µL) 
Purity 

(A260/A280) 

Colony 1 

Colony 2 

10.0 
12.8 

4.8 
6.8 

500 
640 

2.08 
1.88 

Colony 3 

Colony 4 

14.8 
3.21 

8.0 
1.58 

740 
160 

1.85 
2.03 
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Sequence Analysis 

 The resulting sequencing data was sent as ab1 compatible files. The 

sequences were first cleaned up using CodonCode Aligner and then aligned with 

BioEdit to form a contig sequence. The contig sequence was subjected to a 

nucleotide-BLAST on the NCBI database. The BLAST result of the hPEP contig 

sequence yielded a 99.9% identity with Homo sapiens prolyl endopeptidase from 

the NCBI database. The contig sequence and the sequence corresponding to the 

highest identity match were aligned using http://www.fr33.net/translator.php to 

identify where disparities occurred between the two sequences. Figure 10 shows 

the nucleotide and amino acid sequence for the contig sequence (fig 10, A) and 

for the sequence of Homo sapiens prolyl endopeptidase from the NCBI database 

(fig 10, B). The alignment for the contig and hPEP cDNA from the NCBI database 

are shown in appendix A. Only two locations contained mismatches between the 

sequences. The first difference occurred at 1576 bp. Here, the sequence from 

the database contained a thymine, whereas the contig contained a cytosine. This 

change also resulted in a single amino acid variation between the query and 

subject sequences. The single nucleotide change resulted in the change of a 

positively charged Arg526 in the subject sequence to a polar Cys526 in the 

contig sequence. The second difference in sequences occurred at 2091 bp, 

where a guanine existed in the sequence from the database and adenine existed 
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in the contig sequence. This variation did not have an impact on the amino acid 

sequence, resulting in a conserved Ala697. 
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A 

 

Figure 10: BLAST result of hPEP contig sequence yielded a 99.9% identity with Homo sapiens prolyl 
endopeptidase from the NCBI database. Changes in nucleotides were shown in bold. A is the contig (query) 
sequence, whereas B (see next page) is the subject sequence. The sequences were aligned to determine 
the location of mismatched bases (http://www.fr33.net/translator.php). 

 

ATGCTGTCCCTTCAG TACCCCGACGTGTAC CGCGACGAGACCGCC GTACAGGATTATCAT GGTCATAAAATTTGT 

 M  L  S  L  Q   Y  P  D  V  Y   R  D  E  T  A   V  Q  D  Y  H   G  H  K  I  C  

GACCCTTACGCCTGG CTTGAAGACCCCGAC AGTGAACAGACTAAG GCCTTTGTGGAGGCC CAGAATAAGATTACT 

 D  P  Y  A  W   L  E  D  P  D   S  E  Q  T  K   A  F  V  E  A   Q  N  K  I  T  

GTGCCATTTCTTGAG CAGTGTCCCATCAGA GGTTTATACAAAGAG AGAATGACTGAACTA TATGATTATCCCAAG 

 V  P  F  L  E   Q  C  P  I  R   G  L  Y  K  E   R  M  T  E  L   Y  D  Y  P  K  

TATAGTTGCCACTTC AAGAAAGGAAAACGG TATTTTTATTTTTAC AATACAGGTTTGCAG AACCAGCGAGTATTA 

 Y  S  C  H  F   K  K  G  K  R   Y  F  Y  F  Y   N  T  G  L  Q   N  Q  R  V  L  

TATGTACAGGATTCC TTAGAGGGTGAGGCC AGAGTGTTCCTGGAC CCCAACATACTGTCT GACGATGGCACAGTG 

 Y  V  Q  D  S   L  E  G  E  A   R  V  F  L  D   P  N  I  L  S   D  D  G  T  V  

GCACTCCGAGGTTAT GCGTTCAGCGAAGAT GGTGAATATTTTGCC TATGGTCTGAGTGCC AGTGGCTCAGACTGG 

 A  L  R  G  Y   A  F  S  E  D   G  E  Y  F  A   Y  G  L  S  A   S  G  S  D  W  

GTGACAATCAAGTTC ATGAAAGTTGATGGT GCCAAAGAGCTTCCA GATGTGCTTGAAAGA GTCAAGTTCAGCTGT 

 V  T  I  K  F   M  K  V  D  G   A  K  E  L  P   D  V  L  E  R   V  K  F  S  C  

ATGGCCTGGACCCAT GATGGGAAGGGAATG TTCTACAACTCATAC CCTCAACAGGATGGA AAAAGTGATGGCACA 

 M  A  W  T  H   D  G  K  G  M   F  Y  N  S  Y   P  Q  Q  D  G   K  S  D  G  T  

GAGACATCTACCAAT CTCCACCAAAAGCTC TACTACCATGTCTTG GGAACCGATCAGTCA GAAGATATTTTGTGT 

 E  T  S  T  N   L  H  Q  K  L   Y  Y  H  V  L   G  T  D  Q  S   E  D  I  L  C  

GCTGAGTTTCCTGAT GAACCTAAATGGATG GGTGGAGCTGAGTTA TCTGATGATGGCCGC TATGTCTTGTTATCA 

 A  E  F  P  D   E  P  K  W  M   G  G  A  E  L   S  D  D  G  R   Y  V  L  L  S  

ATAAGGGAAGGATGT GATCCAGTAAACCGA CTCTGGTACTGTGAC CTACAGCAGGAATCC AGTGGCATCGCGGGA 

 I  R  E  G  C   D  P  V  N  R   L  W  Y  C  D   L  Q  Q  E  S   S  G  I  A  G  

ATCCTGAAGTGGGTA AAACTGATTGACAAC TTTGAAGGGGAATAT GACTACGTGACCAAT GAGGGGACGGTGTTC 

 I  L  K  W  V   K  L  I  D  N   F  E  G  E  Y   D  Y  V  T  N   E  G  T  V  F  

ACATTCAAGACGAAT CGCCAGTCTCCCAAC TATCGCGTGATCAAC ATTGACTTCAGGGAT CCTGAAGAGTCTAAG 

 T  F  K  T  N   R  Q  S  P  N   Y  R  V  I  N   I  D  F  R  D   P  E  E  S  K  

TGGAAAGTACTTGTT CCTGAGCATGAGAAA GATGTCTTAGAATGG ATAGCTTGTGTCAGG TCCAACTTCTTGGTC 

 W  K  V  L  V   P  E  H  E  K   D  V  L  E  W   I  A  C  V  R   S  N  F  L  V  

TTATGCTACCTCCAT GACGTCAAGAACATT CTGCAGCTCCATGAC CTGACTACTGGTGCT CTCCTTAAGACCTTC 

 L  C  Y  L  H   D  V  K  N  I   L  Q  L  H  D   L  T  T  G  A   L  L  K  T  F  

CCGCTCGATGTCGGC AGCATTGTAGGGTAC AGCGGTCAGAAGAAG GACACTGAAATCTTC TATCAGTTTACTTCC 

 P  L  D  V  G   S  I  V  G  Y   S  G  Q  K  K   D  T  E  I  F   Y  Q  F  T  S  

TTTTTATCTCCAGGT ATCATTTATCACTGT GATCTTACCAAAGAG GAGCTGGAGCCAAGA GTTTTCCGAGAGGTG 

 F  L  S  P  G   I  I  Y  H  C   D  L  T  K  E   E  L  E  P  R   V  F  R  E  V  

ACCGTAAAAGGAATT GATGCTTCTGATTAC CAGACAGTCCAGATT TTCTACCCTAGCAAG GATGGTACGAAGATT 

 T  V  K  G  I   D  A  S  D  Y   Q  T  V  Q  I   F  Y  P  S  K   D  G  T  K  I  

CCAATGTTCATTGTG CATAAAAAAGGCATA AAATTGGATGGCTCT CATCCAGCTTTCTTA TATGGCTATGGCGGC 

 P  M  F  I  V   H  K  K  G  I   K  L  D  G  S   H  P  A  F  L   Y  G  Y  G  G  

TTCAACATATCCATC ACACCCAACTACAGT GTTTCCAGGCTTATT TTTGTGAGACACATG GGTGGTATCCTGGCA 

 F  N  I  S  I   T  P  N  Y  S   V  S  R  L  I   F  V  R  H  M   G  G  I  L  A  

GTGGCCAACATCAGA GGAGGTGGCGAATAT GGAGAGACGTGGCAT AAAGGTGGTATCTTG GCCAACAAACAAAAC 

 V  A  N  I  R   G  G  G  E  Y   G  E  T  W  H   K  G  G  I  L   A  N  K  Q  N  

CGCTTTGATGACTTT CAGTGTGCTGCTGAG TATCTGATCAAGGAA GGTTACACATCTCCC AAGAGGCTGACTATT 

 C  F  D  D  F   Q  C  A  A  E   Y  L  I  K  E   G  Y  T  S  P   K  R  L  T  I  
AATGGAGGTTCAAAT GGAGGCCTCTTAGTG GCTGCTTGTGCAAAT CAGAGACCTGACCTC TTTGGTTGTGTTATT 

 N  G  G  S  N   G  G  L  L  V   A  A  C  A  N   Q  R  P  D  L   F  G  C  V  I  

GCCCAAGTTGGAGTA ATGGACATGCTGAAG TTTCATAAATATACC ATCGGCCATGCTTGG ACCACTGATTATGGG 

 A  Q  V  G  V   M  D  M  L  K   F  H  K  Y  T   I  G  H  A  W   T  T  D  Y  G  

TGCTCGGACAGCAAA CAACACTTTGAATGG CTTGTCAAATACTCT CCATTGCATAATGTG AAGTTACCAGAAGCA 

 C  S  D  S  K   Q  H  F  E  W   L  V  K  Y  S   P  L  H  N  V   K  L  P  E  A  

GATGACATCCAGTAC CCGTCCATGCTGCTC CTCACTGCTGACCAT GATGACCGCGTGGTC CCGCTTCACTCCCTG 

 D  D  I  Q  Y   P  S  M  L  L   L  T  A  D  H   D  D  R  V  V   P  L  H  S  L  

AAGTTCATTGCCACC CTTCAGTACATCGTG GGCCGCAGCAGGAAG CAAAGCAACCCCCTG CTTATCCACGTGGAC 

 K  F  I  A  T   L  Q  Y  I  V   G  R  S  R  K   Q  S  N  P  L   L  I  H  V  D  

ACCAAGGCGGGCCAC GGGGCGGGGAAGCCC ACAGCCAAAGTGATA GAGGAAGTCTCAGAC ATGTTTGCATTCATC 

 T  K  A  G  H   G  A  G  K  P   T  A  K  V  I   E  E  V  S  D   M  F  A  F  I  
GCGCGGTGCCTGAAC GTCGACTGGATTCCA TAA 

 A  R  C  L  N   V  D  W  I  P   * 

http://www.fr33.net/translator.php


54 
 

B 

ATGCTGTCCCTTCAG TACCCCGACGTGTAC CGCGACGAGACCGCC GTACAGGATTATCAT GGTCATAAAATTTGT 

 M  L  S  L  Q   Y  P  D  V  Y   R  D  E  T  A   V  Q  D  Y  H   G  H  K  I  C  

GACCCTTACGCCTGG CTTGAAGACCCCGAC AGTGAACAGACTAAG GCCTTTGTGGAGGCC CAGAATAAGATTACT 

 D  P  Y  A  W   L  E  D  P  D   S  E  Q  T  K   A  F  V  E  A   Q  N  K  I  T  

GTGCCATTTCTTGAG CAGTGTCCCATCAGA GGTTTATACAAAGAG AGAATGACTGAACTA TATGATTATCCCAAG 

 V  P  F  L  E   Q  C  P  I  R   G  L  Y  K  E   R  M  T  E  L   Y  D  Y  P  K  

TATAGTTGCCACTTC AAGAAAGGAAAACGG TATTTTTATTTTTAC AATACAGGTTTGCAG AACCAGCGAGTATTA 

 Y  S  C  H  F   K  K  G  K  R   Y  F  Y  F  Y   N  T  G  L  Q   N  Q  R  V  L  

TATGTACAGGATTCC TTAGAGGGTGAGGCC AGAGTGTTCCTGGAC CCCAACATACTGTCT GACGATGGCACAGTG 

 Y  V  Q  D  S   L  E  G  E  A   R  V  F  L  D   P  N  I  L  S   D  D  G  T  V  

GCACTCCGAGGTTAT GCGTTCAGCGAAGAT GGTGAATATTTTGCC TATGGTCTGAGTGCC AGTGGCTCAGACTGG 

 A  L  R  G  Y   A  F  S  E  D   G  E  Y  F  A   Y  G  L  S  A   S  G  S  D  W  

GTGACAATCAAGTTC ATGAAAGTTGATGGT GCCAAAGAGCTTCCA GATGTGCTTGAAAGA GTCAAGTTCAGCTGT 

 V  T  I  K  F   M  K  V  D  G   A  K  E  L  P   D  V  L  E  R   V  K  F  S  C  

ATGGCCTGGACCCAT GATGGGAAGGGAATG TTCTACAACTCATAC CCTCAACAGGATGGA AAAAGTGATGGCACA 

 M  A  W  T  H   D  G  K  G  M   F  Y  N  S  Y   P  Q  Q  D  G   K  S  D  G  T  

GAGACATCTACCAAT CTCCACCAAAAGCTC TACTACCATGTCTTG GGAACCGATCAGTCA GAAGATATTTTGTGT 

 E  T  S  T  N   L  H  Q  K  L   Y  Y  H  V  L   G  T  D  Q  S   E  D  I  L  C  

GCTGAGTTTCCTGAT GAACCTAAATGGATG GGTGGAGCTGAGTTA TCTGATGATGGCCGC TATGTCTTGTTATCA 

 A  E  F  P  D   E  P  K  W  M   G  G  A  E  L   S  D  D  G  R   Y  V  L  L  S  

ATAAGGGAAGGATGT GATCCAGTAAACCGA CTCTGGTACTGTGAC CTACAGCAGGAATCC AGTGGCATCGCGGGA 

 I  R  E  G  C   D  P  V  N  R   L  W  Y  C  D   L  Q  Q  E  S   S  G  I  A  G  

ATCCTGAAGTGGGTA AAACTGATTGACAAC TTTGAAGGGGAATAT GACTACGTGACCAAT GAGGGGACGGTGTTC 

 I  L  K  W  V   K  L  I  D  N   F  E  G  E  Y   D  Y  V  T  N   E  G  T  V  F  

ACATTCAAGACGAAT CGCCAGTCTCCCAAC TATCGCGTGATCAAC ATTGACTTCAGGGAT CCTGAAGAGTCTAAG 

 T  F  K  T  N   R  Q  S  P  N   Y  R  V  I  N   I  D  F  R  D   P  E  E  S  K  

TGGAAAGTACTTGTT CCTGAGCATGAGAAA GATGTCTTAGAATGG ATAGCTTGTGTCAGG TCCAACTTCTTGGTC 

 W  K  V  L  V   P  E  H  E  K   D  V  L  E  W   I  A  C  V  R   S  N  F  L  V  

TTATGCTACCTCCAT GACGTCAAGAACATT CTGCAGCTCCATGAC CTGACTACTGGTGCT CTCCTTAAGACCTTC 

 L  C  Y  L  H   D  V  K  N  I   L  Q  L  H  D   L  T  T  G  A   L  L  K  T  F  

CCGCTCGATGTCGGC AGCATTGTAGGGTAC AGCGGTCAGAAGAAG GACACTGAAATCTTC TATCAGTTTACTTCC 

 P  L  D  V  G   S  I  V  G  Y   S  G  Q  K  K   D  T  E  I  F   Y  Q  F  T  S  

TTTTTATCTCCAGGT ATCATTTATCACTGT GATCTTACCAAAGAG GAGCTGGAGCCAAGA GTTTTCCGAGAGGTG 

 F  L  S  P  G   I  I  Y  H  C   D  L  T  K  E   E  L  E  P  R   V  F  R  E  V  

ACCGTAAAAGGAATT GATGCTTCTGATTAC CAGACAGTCCAGATT TTCTACCCTAGCAAG GATGGTACGAAGATT 

 T  V  K  G  I   D  A  S  D  Y   Q  T  V  Q  I   F  Y  P  S  K   D  G  T  K  I  

CCAATGTTCATTGTG CATAAAAAAGGCATA AAATTGGATGGCTCT CATCCAGCTTTCTTA TATGGCTATGGCGGC 

 P  M  F  I  V   H  K  K  G  I   K  L  D  G  S   H  P  A  F  L   Y  G  Y  G  G  

TTCAACATATCCATC ACACCCAACTACAGT GTTTCCAGGCTTATT TTTGTGAGACACATG GGTGGTATCCTGGCA 

 F  N  I  S  I   T  P  N  Y  S   V  S  R  L  I   F  V  R  H  M   G  G  I  L  A  

GTGGCCAACATCAGA GGAGGTGGCGAATAT GGAGAGACGTGGCAT AAAGGTGGTATCTTG GCCAACAAACAAAAC 

 V  A  N  I  R   G  G  G  E  Y   G  E  T  W  H   K  G  G  I  L   A  N  K  Q  N  

TGCTTTGATGACTTT CAGTGTGCTGCTGAG TATCTGATCAAGGAA GGTTACACATCTCCC AAGAGGCTGACTATT 

 R  F  D  D  F   Q  C  A  A  E   Y  L  I  K  E   G  Y  T  S  P   K  R  L  T  I  
AATGGAGGTTCAAAT GGAGGCCTCTTAGTG GCTGCTTGTGCAAAT CAGAGACCTGACCTC TTTGGTTGTGTTATT 

 N  G  G  S  N   G  G  L  L  V   A  A  C  A  N   Q  R  P  D  L   F  G  C  V  I  

GCCCAAGTTGGAGTA ATGGACATGCTGAAG TTTCATAAATATACC ATCGGCCATGCTTGG ACCACTGATTATGGG 

 A  Q  V  G  V   M  D  M  L  K   F  H  K  Y  T   I  G  H  A  W   T  T  D  Y  G  

TGCTCGGACAGCAAA CAACACTTTGAATGG CTTGTCAAATACTCT CCATTGCATAATGTG AAGTTACCAGAAGCA 

 C  S  D  S  K   Q  H  F  E  W   L  V  K  Y  S   P  L  H  N  V   K  L  P  E  A  

GATGACATCCAGTAC CCGTCCATGCTGCTC CTCACTGCTGACCAT GATGACCGCGTGGTC CCGCTTCACTCCCTG 

 D  D  I  Q  Y   P  S  M  L  L   L  T  A  D  H   D  D  R  V  V   P  L  H  S  L  

AAGTTCATTGCCACC CTTCAGTACATCGTG GGCCGCAGCAGGAAG CAAAGCAACCCCCTG CTTATCCACGTGGAC 

 K  F  I  A  T   L  Q  Y  I  V   G  R  S  R  K   Q  S  N  P  L   L  I  H  V  D  

ACCAAGGCGGGCCAC GGGGCGGGGAAGCCC ACAGCCAAAGTGATA GAGGAAGTCTCAGAC ATGTTTGCGTTCATC 

 T  K  A  G  H   G  A  G  K  P   T  A  K  V  I   E  E  V  S  D   M  F  A  F  I  
GCGCGGTGCCTGAAC GTCGACTGGATTCCA TAA 

 A  R  C  L  N   V  D  W  I  P   * 

Figure 10 (cont’d): BLAST result of hPEP contig sequence yielded a 99.9% identity with Homo sapiens 
prolyl endopeptidase from the NCBI database. Changes in nucleotides were shown in bold. A (see previous 
page) is the contig (query) sequence, whereas B is the subject sequence. The sequences were aligned to 
determine the location of mismatched bases (http://www.fr33.net/translator.php).  

http://www.fr33.net/translator.php
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Transformation of Expression Host with pLIC-hPEP 

 Prior to transforming the pLIC-hPEP into the expression host 

BL21(DE3)+pTF-S E. coli cell line, the host had to be made competent by using 

the CaCl2 Tris buffer method. A glycerol stock of the BL21s was used inoculate 

an overnight culture of LB broth containing 34 µg/mL chloramphenicol. 100 µL of 

the overnight culture was used to inoculate a fresh culture of LB+chlor. The 

optical density at 600nm was measured until it reached approximately 0.6 (Table 

14). After achieving this OD, the cells were carried through the CaCl2 Tris 

protocol and made competent. An aliquot of the competent cells was transformed 

with the pLIC-hPEP construct. For the transformation, two different amounts of 

plasmid DNA were used (2 µL and 5 µL). The cells were plated in duplicate at 

aliquots of 100 µL and 50 µL; the remaining volume was centrifuged, decanted, 

re-suspended, and then plated. The number of colonies that grew after the 

transformation were recorded and are listed in Table 15. Only the transformation 

involving 2 µL of plasmid DNA produced colonies. Increasing plasmid DNA to     

5 µL likely resulted in decreased transformation efficiency. The colonies that 

grew were screened by PCR for hPEP. The PCR products were loaded onto a 

1% agarose gel for confirmation (Figure 11). Out of the three colonies screened, 

only 1 showed a band of ~2133 bp. The colony that was shown to be a 

successful transformant was cloned and subcultured into several glycerol stocks
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Table 14: The optical density at 600nm of BL21(DE3)+pTF-S was measured 
intermittently until the culture reached an approximate OD of 0.6. 

   BL21(DE3)+pTF-S 

Time OD600 

Start 0.01 

60 min 0.0479 

183 min 0.0675 

278 min 0.2664 

317 min 0.568 
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Table 15: The number of colonies/potential transformants that grew following the 
transformation of BL21(DE3)-pTF-S cells with the hPEP construct. The BL21 
cells grew lawns on each control plate, indicating the cells remained viable 
through the transformation protocol. Only cells transformed with 2 µL of construct 
produced colonies. Cells transformed with 5 µL of construct exhibited decreased 
transformation efficiency.  

 

 

  

 

Sample (V:I)→ 
Volume ↓ 

2  µL hPEP 5  µL hPEP 

100 µL 2 No Growth 

100 µL No Growth No Growth 

50 µL 1 No Growth 

50 µL No Growth No Growth 

Resuspended No Growth No Growth 

Control 1 Control 2 Control 3 
 

LAWN LAWN LAWN 
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Figure 11: Confirmation of pLIC-hPEP construct in BL21(DE3)+pTF-S.  
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Expression and Purification of hPEP 

 Several expression studies were performed. The methods for optimized 

expression are as listed in the Material and Methods. Of the studies, two yielded 

sufficient activity for kinetic analysis. For these studies, six liter cultures of the 

BL21(DE3)pTF-S + pLIC-hPEP were grown in 2x LB + Kan + chlor. At an OD600 

of approximately 0.6, IPTG was added to a final concentration of 4 mM, inducing 

enzyme expression. The culture continued to grow overnight and was harvested 

the following day. The lysates collected from this were run over a Ni affinity 

column. The enzyme was eluted using an increasing gradient of imidazole. 

Fractions were collected in 5 mL increments and screened for activity using 

GPpNA assays. Fractions that demonstrated activity were pooled and 

concentrated using Centricep® Centrifugal filter devices with a Ultracel® 50K 

membrane. 

Determination of Km and Vmax of hPEP 

 GPpNA assays were conducted using concentrated hPEP isolated from 

two different expression experiments. The substrate concentration was varied, 

allowing for the determination of Km and Vmax by taking the slopes of the linear 

portions of graphs. First, the amount of pNA in µMol released was plotted versus 

time (Figure 12). The slopes were determined by linear regression. The 

magnitude of the slope is the velocity (Vₒ) at which pNA is released in µMol/min. 
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Plotting Vₒ Vs substrate concentration ([S]) produces the Michaelis-Menton plot 

(Figure 13, A) whereas taking the inverse of the points (1/Vₒ and 1/[S]) yields the 

Line-weever-Burk plot (Figure 13, B). Using linear regression analysis, the Km 

and Vmax of hPEP was determined to be 9.9 µM ± 0.7 and 4.0 µmol/min ± 1 

respectively. 
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Figure 12: Varied substrate for determining the Km of hPEP. GPpNA 
assays were conducted using hPEP isolated from two different expression 
experiments (A) and (B). The assays were run at 410 nm and the absorbance 
was measured every 9 seconds for 1 hour. The substrate concentration was 
varied, allowing for the determination of Km and Vmax by taking the slopes of 
the linear portions of the graphs.   
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Figure 13: Michaelis-Menton and Lineweever Burk plots from GPpNA 
assays of hPEP. GPpNA assays were performed using two different batches of 
enzyme, containing 48 U and 30 U. The slopes of each line from Conc. Vs Time 
(A) and (B) were determined by linear regression. The magnitude of the slope is 
the velocity (Vₒ) at which pNA is released in µMol/min. Plotting Vₒ Vs substrate 
concentration ([S]) produces the Michaelis-Menton plot, whereas taking the 
inverse of the points (1/Vₒ and 1/[S]) gives the Line-weever-Burk plot. Using 
linear regression analysis, the Km’s were estimated by determining 1/x-intercept. 
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Determination of Total Protein in hPEP Samples for SDS-PAGE 

 To determine the total protein content within the cell lysates, a Bradford 

assay was performed. This was done by comparing the absorbance values of the 

lysates to that of BSA on linear portion of the curve and extrapolating the 

concentration. Known concentrations of BSA from 0.6 µg/mL to 10.0 µg/mL were 

used to plot the standard curve (Figure 14, A). The linear portion of the curve 

comprised 0.6 µg/mL to 2.0µg/mL BSA, shown in Figure 14, B.  The total protein 

content of the concentrated hPEP samples from the two expression studies was 

measured to be 120 µg/µL and 70 µg/µL, respectively. A sample from two 

different concentrated flow-through volumes (produced while washing the nickel 

bound enzyme resin) were measured for total protein content, which was 

determined to be 22 µg/µL and 30 µg/µL, respectively. 

For SDS-PAGE visualization, 20 µg of  each sample was loaded. Lanes 1 

and 3 were loaded with the flow-through from the two expression studies, while 

lanes 2 and 4 were loaded with the concentrated hPEP fractions. Lane 5 was 

loaded with a concentrated and purified sample of spPEP for reference. The 

resulting gel (Figure 15) demonstrated a band consistent with the expected 70 

kD for hPEP in each of the sample lanes. The lane loaded with spPEP also 

showed a band at approximately 70 kD. In each lane containing hPEP, there is a 

high presence of contaminating proteins, indicating low purification. 



64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Bradford assay standard curve for the absorbance of BSA. The 
Bradford assay was performed to measure total protein content in the cell 
lysates. This was done by comparing the absorbance values of the lysates to that 
on linear portion of the curve and extrapolating the concentration. Known 
concentrations of BSA from 0.6 µg/mL to 10.0 µg/mL were used to plot the 
standard curve. The linear portion of the curve comprised 0.6 µg/mL to 2.0µg/mL 
BSA. The complete curve is shown in (A). The linear portion shown within the red 
rectangle (L) is shown on larger scale (B).  
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Figure 15: The lysates and concentrated fractions of hPEP were analyzed 
using SDS-PAGE. Lanes 1 and 3 correspond to the concentrated flow-through 
samples. Lanes 2 and 4 represent two different concentrated samples of 
pooled fractions that demonstrated hPEP activity. Potential bands that signify 
hPEP (80 kD) are shown within the white rectangles. Lane 5 contains a purified 
sample of spPEP for reference. M represents Precision Plus Protein™ 
Standards molecular marker (Bio-RAD, Corp.). 
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DISCUSSION 

 The primary focus of this study was to clone and express recombinant 

hPEP in BL21(DE3)+pTF-S cells and perform subsequent kinetic studies on the 

expressed enzyme. The current experiment began with cloning hPEP and the 

pLIC vector into JM109 and then purifying them for ligation independent cloning. 

pLIC was digested using SnaBI and thereafter, the vector and hPEP were treated 

with T4 DNA polymerase to allow for ligation. The pLIC-hPEP was then 

sequenced and aligned to the sequence published within the NCBI database. 

 Alignment showed 2 base substitutions and 1 amino acid change for the 

recombinant hPEP. These sequence variations may be due to differences in the 

specimen from which they were originally obtained or an error that occurred 

during sequencing or during amplification by polymerase reaction. To confirm 

that any mutation that took place, the sequencing could be replicated using 

multiple clones. If a change did indeed occur, this could be repaired using site 

directed mutagenesis. 

While a change in a single amino acid could be problematic due to 

possibly changing the conformation of the overall enzyme, it is not expected this 
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amino acid variation had much impact on the results. hPEP demonstrated 

hydrolysis of the GPpNA in the assay, indicating that the catalytic triad within the 

enzyme remained intact. 

Troubleshooting- 

Expression studies of hPEP yielded significant amounts of active enzyme. 

The purification of hPEP was attempted several times by using a Ni-NTA column 

with standard protocol for immobilized metal affinity chromatography (IMAC), but 

the enzyme continued to come off the nickel during the early washes, as well as 

throughout the imidazole gradient. Modifications to the column purification were 

made, including adjusting pH, adding urea prior to the wash, and changing the 

nickel resin. The addition of urea increased the amount of enzyme that came off 

during the wash before adding imidazole. When reviewing the sequencing data, 

the 10x his-tag was found to be present on the N-terminus of the enzyme. With 

this his-tag, the enzyme was expected to stick to the nickel resin well enough to 

purify by IMAC, but it continued to come off in the wash during every attempt. It is 

possible that the his-tag was shielded by a hydrophobic region of the enzyme 

and therefore only bound weakly to the nickel if at all. 

The SDS-PAGE gels had multiple bands throughout, including a few that 

are consistent with the theoretical molecular weight of hPEP (Figure 15). The 

gels were inconclusive due to the large presence of contaminating proteins that 
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came off the column with the hPEP. To correct for this, the enzyme in study must 

first be purified and then analyzed by SDS-PAGE. 

Future Studies- 

 To solve the problem of hPEP not sticking to the nickel resin, a new 

recombinant hPEP will be designed to have a 10x his-tag on the C-terminus. 

Following similar steps as detailed in this study, the recombinant hPEP will be 

cloned into the expression host. Future expression studies using the recombinant 

hPEP will be performed, which is expected to then be able to be purified using 

Ni-NTA IMAC. The purified enzyme will be used for inhibition studies for side-by-

side comparison of hPEP to spPEP. 
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APPENDIX A 
 

Alignment of Contig to hPEP cDNA 
Contig 
 
hPEP 

ATGCTGTCCCTTCAGTACCCCGACGTGTACCGCGACGAGACCGCCGTACAGGATTATCAT 
 

ATGCTGTCCCTTCAGTACCCCGACGTGTACCGCGACGAGACCGCCGTACAGGATTATCAT 

*********************************************************** 

60 
 

60 
 

Contig 
 
hPEP 

GGTCATAAAATTTGTGACCCTTACGCCTGGCTTGAAGACCCCGACAGTGAACAGACTAAG 
 

GGTCATAAAATTTGTGACCCTTACGCCTGGCTTGAAGACCCCGACAGTGAACAGACTAAG                

*********************************************************** 

120 
 

120 

Contig 
 
hPEP 

GCCTTTGTGGAGGCCCAGAATAAGATTACTGTGCCATTTCTTGAGCAGTGTCCCATCAGA 
 

GCCTTTGTGGAGGCCCAGAATAAGATTACTGTGCCATTTCTTGAGCAGTGTCCCATCAGA 

*********************************************************** 

180 
 

180 

Contig 
 
hPEP 

GGTTTATACAAAGAGAGAATGACTGAACTATATGATTATCCCAAGTATAGTTGCCACTTC 
 

GGTTTATACAAAGAGAGAATGACTGAACTATATGATTATCCCAAGTATAGTTGCCACTTC                

********************************************************** 

240 
 

240 
 

Contig 
 
hPEP 

AAGAAAGGAAAACGGTATTTTTATTTTTACAATACAGGTTTGCAGAACCAGCGAGTATTA 
 

AAGAAAGGAAAACGGTATTTTTATTTTTACAATACAGGTTTGCAGAACCAGCGAGTATTA                

********************************************************** 

300 
 

300 
 

Contig 
 
hPEP 

TATGTACAGGATTCCTTAGAGGGTGAGGCCAGAGTGTTCCTGGACCCCAACATACTGTCT 
 

TATGTACAGGATTCCTTAGAGGGTGAGGCCAGAGTGTTCCTGGACCCCAACATACTGTCT 

*********************************************************** 

360 
 

360 
 

Contig 
 
hPEP 

GACGATGGCACAGTGGCACTCCGAGGTTATGCGTTCAGCGAAGATGGTGAATATTTTGCC 
 

GACGATGGCACAGTGGCACTCCGAGGTTATGCGTTCAGCGAAGATGGTGAATATTTTGCC 

*********************************************************** 

420 
 

420 
 

Contig 
 
hPEP 

TATGGTCTGAGTGCCAGTGGCTCAGACTGGGTGACAATCAAGTTCATGAAAGTTGATGGT 
 

TATGGTCTGAGTGCCAGTGGCTCAGACTGGGTGACAATCAAGTTCATGAAAGTTGATGGT 

*********************************************************** 

480 
 

480 
 

Contig 
 
hPEP 

GCCAAAGAGCTTCCAGATGTGCTTGAAAGAGTCAAGTTCAGCTGTATGGCCTGGACCCAT 
 

GCCAAAGAGCTTCCAGATGTGCTTGAAAGAGTCAAGTTCAGCTGTATGGCCTGGACCCAT 

*********************************************************** 

540 
 

540 
 

Contig 
 
hPEP 

GATGGGAAGGGAATGTTCTACAACTCATACCCTCAACAGGATGGAAAAAGTGATGGCACA 
 

GATGGGAAGGGAATGTTCTACAACTCATACCCTCAACAGGATGGAAAAAGTGATGGCACA 

*********************************************************** 

600 
 

600 
 

Contig 
 
hPEP 

GAGACATCTACCAATCTCCACCAAAAGCTCTACTACCATGTCTTGGGAACCGATCAGTCA 
 

GAGACATCTACCAATCTCCACCAAAAGCTCTACTACCATGTCTTGGGAACCGATCAGTCA 

*********************************************************** 

660 
 

660 
 

Contig 
 
hPEP 

GAAGATATTTTGTGTGCTGAGTTTCCTGATGAACCTAAATGGATGGGTGGAGCTGAGTTA 
 

GAAGATATTTTGTGTGCTGAGTTTCCTGATGAACCTAAATGGATGGGTGGAGCTGAGTTA 

*********************************************************** 

720 
 

720 
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Contig 
 
hPEP 

TCTGATGATGGCCGCTATGTCTTGTTATCAATAAGGGAAGGATGTGATCCAGTAAACCGA 
 

TCTGATGATGGCCGCTATGTCTTGTTATCAATAAGGGAAGGATGTGATCCAGTAAACCGA 

*********************************************************** 

780 
 

780 
 

Contig 
 
hPEP 

CTCTGGTACTGTGACCTACAGCAGGAATCCAGTGGCATCGCGGGAATCCTGAAGTGGGTA 
 

CTCTGGTACTGTGACCTACAGCAGGAATCCAGTGGCATCGCGGGAATCCTGAAGTGGGTA 

************************************************************ 

840 
 

840 
 

Contig 
 
hPEP 

AAACTGATTGACAACTTTGAAGGGGAATATGACTACGTGACCAATGAGGGGACGGTGTTC 
 

AAACTGATTGACAACTTTGAAGGGGAATATGACTACGTGACCAATGAGGGGACGGTGTTC 

*********************************************************** 

900 
 

900 
 

Contig 
 
hPEP 

ACATTCAAGACGAATCGCCAGTCTCCCAACTATCGCGTGATCAACATTGACTTCAGGGAT 
 

ACATTCAAGACGAATCGCCAGTCTCCCAACTATCGCGTGATCAACATTGACTTCAGGGAT 

*********************************************************** 

960 
 

960 
 

Contig 
 
hPEP 

CCTGAAGAGTCTAAGTGGAAAGTACTTGTTCCTGAGCATGAGAAAGATGTCTTAGAATGG 
 

CCTGAAGAGTCTAAGTGGAAAGTACTTGTTCCTGAGCATGAGAAAGATGTCTTAGAATGG 

*********************************************************** 

1020 
 

1020 
 

Contig 
 
hPEP 

ATAGCTTGTGTCAGGTCCAACTTCTTGGTCTTATGCTACCTCCATGACGTCAAGAACATT 
 

ATAGCTTGTGTCAGGTCCAACTTCTTGGTCTTATGCTACCTCCATGACGTCAAGAACATT 

********************************************************** 

1080 
 

1080 
 

Contig 
 
hPEP 

CTGCAGCTCCATGACCTGACTACTGGTGCTCTCCTTAAGACCTTCCCGCTCGATGTCGGC 
 

CTGCAGCTCCATGACCTGACTACTGGTGCTCTCCTTAAGACCTTCCCGCTCGATGTCGGC 

*********************************************************** 

1140 
 

1140 
 

Contig 
 
hPEP 

AGCATTGTAGGGTACAGCGGTCAGAAGAAGGACACTGAAATCTTCTATCAGTTTACTTCC 
 

AGCATTGTAGGGTACAGCGGTCAGAAGAAGGACACTGAAATCTTCTATCAGTTTACTTCC 

*********************************************************** 

1200 
 

1200 
 

Contig 
 
hPEP 

TTTTTATCTCCAGGTATCATTTATCACTGTGATCTTACCAAAGAGGAGCTGGAGCCAAGA 
 

TTTTTATCTCCAGGTATCATTTATCACTGTGATCTTACCAAAGAGGAGCTGGAGCCAAGA 

********************************************************** 

1260 
 

1260 
 

Contig 
 
hPEP 

GTTTTCCGAGAGGTGACCGTAAAAGGAATTGATGCTTCTGATTACCAGACAGTCCAGATT 
 

GTTTTCCGAGAGGTGACCGTAAAAGGAATTGATGCTTCTGATTACCAGACAGTCCAGATT             

********************************************************** 

1320 
 

1320 
 

Contig 
 
hPEP 

AAATTGGATGGCTCTCATCCAGCTTTCTTATATGGCTATGGCGGCTTCAACATATCCATC 
 

AAATTGGATGGCTCTCATCCAGCTTTCTTATATGGCTATGGCGGCTTCAACATATCCATC                

********************************************************** 

1440 
 

1440 
 

Contig 
 
hPEP 

ACACCCAACTACAGTGTTTCCAGGCTTATTTTTGTGAGACACATGGGTGGTATCCTGGCA 
 

ACACCCAACTACAGTGTTTCCAGGCTTATTTTTGTGAGACACATGGGTGGTATCCTGGCA                

*********************************************************** 

1500 
 

1500 
 

Contig 
 
hPEP 

GTGGCCAACATCAGAGGAGGTGGCGAATATGGAGAGACGTGGCATAAAGGTGGTATCTTG 
 

GTGGCCAACATCAGAGGAGGTGGCGAATATGGAGAGACGTGGCATAAAGGTGGTATCTTG           

************************************************************ 

1560 
 

1560 
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Contig 
 
hPEP 

GCCAACAAACAAAACCGCTTTGATGACTTTCAGTGTGCTGCTGAGTATCTGATCAAGGAA 

 

GCCAACAAACAAAACTGCTTTGATGACTTTCAGTGTGCTGCTGAGTATCTGATCAAGGAA 

**************_******************************************* 

1620 
 

1620 
 

Contig 
 
hPEP 

GGTTACACATCTCCCAAGAGGCTGACTATTAATGGAGGTTCAAATGGAGGCCTCTTAGTG 
 

GGTTACACATCTCCCAAGAGGCTGACTATTAATGGAGGTTCAAATGGAGGCCTCTTAGTG                

*********************************************************** 

1680 
 

1680 
 

Contig 
 
hPEP 

GCTGCTTGTGCAAATCAGAGACCTGACCTCTTTGGTTGTGTTATTGCCCAAGTTGGAGTA 
 

GCTGCTTGTGCAAATCAGAGACCTGACCTCTTTGGTTGTGTTATTGCCCAAGTTGGAGTA                

********************************************************** 

1740 
 

1740 
 

Contig 
 
hPEP 

ATGGACATGCTGAAGTTTCATAAATATACCATCGGCCATGCTTGGACCACTGATTATGGG 
 

ATGGACATGCTGAAGTTTCATAAATATACCATCGGCCATGCTTGGACCACTGATTATGGG                

*********************************************************** 

1800 
 

1800 
 

Contig 
 
hPEP 

TGCTCGGACAGCAAACAACACTTTGAATGGCTTGTCAAATACTCTCCATTGCATAATGTG 
 

TGCTCGGACAGCAAACAACACTTTGAATGGCTTGTCAAATACTCTCCATTGCATAATGTG                

********************************************************** 

1860 
 

1860 
 

Contig 
 
hPEP 

AAGTTACCAGAAGCAGATGACATCCAGTACCCGTCCATGCTGCTCCTCACTGCTGACCAT 
 

AAGTTACCAGAAGCAGATGACATCCAGTACCCGTCCATGCTGCTCCTCACTGCTGACCAT                

*********************************************************** 

1920 
 

1920 
 

Contig 
 
hPEP 

GATGACCGCGTGGTCCCGCTTCACTCCCTGAAGTTCATTGCCACCCTTCAGTACATCGTG 
 

GATGACCGCGTGGTCCCGCTTCACTCCCTGAAGTTCATTGCCACCCTTCAGTACATCGTG 

*********************************************************** 

1980 
 

1980 
 

Contig 
 
hPEP 

GGCCGCAGCAGGAAGCAAAGCAACCCCCTGCTTATCCACGTGGACACCAAGGCGGGCCAC 
 

GGCCGCAGCAGGAAGCAAAGCAACCCCCTGCTTATCCACGTGGACACCAAGGCGGGCCAC                

************************************************************* 

2040 
 

2040 
 

Contig 
 
hPEP 

GGGGCGGGGAAGCCCACAGCCAAAGTGATAGAGGAAGTCTCAGACATGTTTGCATTCATC 

 

GGGGCGGGGAAGCCCACAGCCAAAGTGATAGAGGAAGTCTCAGACATGTTTGCGTTCATC                

*****************************************************_****** 

2100 
 

2100 
 

Contig 
 
hPEP 

GCGCGGTGCCTGAACGTCGACTGGATTCCATAA 
 

GCGCGGTGCCTGAACGTCGACTGGATTCCATAA 

********************************* 

2134 
 

2134 
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