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Abstract 

Prescribed burning is used in West Virginia, USA to return the important disturbance process of fire to oak and 

oak-pine forests.  Species composition and structure are often the main goals for re-establishing fire with less 

emphasis on fuel reduction or reducing catastrophic wildfire.  In planning prescribed fires land managers could 

benefit from the ability to predict mortality to overstory trees.  In this study, wildfires and prescribed fires in West 

Virginia were examined to determine if specific landscape and terrain characteristics were associated with patches of 

high/moderate post-fire change.  Using the ensemble machine learning approach of Random Forest, we determined 

that linear aspect was the most important variable associated with high/moderate post-fire change patches, followed 

by hillshade, aspect as class, heat load index, slope/aspect ratio (sine transformed), average roughness, and slope in 

degrees.  These findings were then applied to a statewide spatial model for predicting post-fire change.  Our 

results will help land managers contemplating the use of prescribed fire to spatially target landscape planning and 

restoration sites and better estimate potential post-fire effects.   

 

Keywords: spatial analysis, terrain characteristics, prediction, prescribed fire, wildfire 

 

Introduction 

Fire, human-caused or otherwise, has been a disturbance factor in the forests of the eastern United States for 

thousands of years (Delcourt and Delcourt 1998, Delcourt et al. 1998).  Where there are people there is fire 

(Guyette et al. 2002); it is well established that Native Americans influenced the forest through intentional and 

unintentional use of fire (DeVivo 1991, Delcourt and Delcourt 1998).  Fire can be thought of as an herbivore (Bond 

and Keeley 2005) that has impacted vegetation and evolution since at least the late Cretaceous period (Keeley et al. 

2011).  The suppression of fire in eastern forests has revealed unintended consequences to species composition, 

generally the increase in importance of fire-sensitive species and replacement of fire-tolerant species (Nowacki and 
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Abrams 2008) in both managed and unmanaged forests (Abrams and Downs 1990; Abrams 1998; Fei and Steiner 

2007; Fei et al. 2011).   

 

The use of fire as a management tool in eastern hardwood forests has increased as the role of fire in many 

ecosystems is understood and prescribed fires are implemented.  Prescribed fire is used to create and maintain 

wildlife habitat and to promote the regeneration of oak (Quercus spp.) and some pine (Pinus spp.) species.  In most 

cases, repeated burning is needed to achieve objectives.  National Forest land managers have a mandate for 

restoration of species composition, forest structure, and ecosystem functions on the lands they manage.  Returning 

fire as a disturbance regime may be considered in restoration plans and is often accomplished through prescribed 

fires.  

 

In using prescribed fire, concerns over the spatial variability in severity (as defined by overstory mortality) have 

been raised.  While variability in burn severity is likely in fires covering larger areas and occurring on diverse 

topography, the ability to predict the potential spatial patterns of burn severity before fire is applied would aid in the 

determination of potential negative impacts from the prescribed fire in ecologically, biologically, or socially 

sensitive areas.  This information also would be useful in selecting areas where overstory mortality from prescribed 

fire could create or maintain habitat for specific species.   

 

Previous studies have mapped burn severity using remote sensing techniques to identify changes in spectral 

signatures for western wildfires post-burn (van Wagtendonk et al. 2004, Brewer et al. 2005, Cocke et al. 2005, 

Epting et al. 2005, Chuvieco et al. 2006).  Others have combined remotely sensed severity maps with topographic 

variables to predict future burn severity (Wimberly and Reilly 2007, Holden et al. 2009).  A test of seven image 

processing techniques in mapping fire scars (visibly blackened land surface left after bushfires burn vegetation and 

leaf litter) for the oak-dominated forests of eastern Kentucky found the most useful bands for mapping burned and 

unburned sites were the ETM+3, ETM+4, and ETM+7 bands (Maingi 2005).  Two of these bands (4 and 7) are 

used in the calculation of the normalized burn ratio (NBR) as part of the national fire effects monitoring protocol 

FIREMON (Key and Benson 2006).  These same spectral bands were used in an analysis of a large wildfire in 

North Carolina, which showed a predictable relationship between a composite burn index (CBI) and the change in 

normalized burn ratio (dNBR) obtained from satellite imagery (Wimberly and Reilly 2007).  This relationship then 

allows for CBI to be predicted from topographic and vegetative variables (Wimberly and Reilly 2007).   

 

If similar relationships exist for prescribed fire on similar landscapes across the Central Appalachians, the ability to 

predict burn severity before burning would allow for better assessments of direct and indirect effects.  As 

prescribed fire is applied in larger blocks, variety in topography and vegetation increases the variability of fire 

intensity and severity.  The ability to predict this patchiness would be useful to land managers.   

 

While the use of prescribed fire is increasing across the Central Appalachians, the total area burned in the past few 

years still represents a small percentage of the total.  In order to develop a predictive model of post-fire change, 

information from many fires across the Central Appalachian region would be more useful than the smaller set of just 

prescribed fires.  The objectives of this research were to 1) use remotely sensed data from wildfires and prescribed 

fires in West Virginia to determine which topographic variables were associated with post-fire change and then 2) 
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apply those findings to the entire state to develop a predictive model for post-fire change. 

 

Methodology 

Monitoring Trends in Burn Severity Data 

In an effort to monitor the effectiveness of the National Fire Plan and the Healthy Forest Restoration Act, the 

Wildland Fire Leadership Council sponsored the Monitoring Trends in Burn Severity (MTBS) project, to map and 

assess burn severity for all large (greater than 202 ha) current and historical fires in the United States.  In the 

MTBS dataset, burn severity is defined as visible changes in living and non-living vegetation, combustion 

by-products (scorch, char, ash), and soil exposure within one growing season of the fire (Eidenshink et al. 2007).  

Burn severity products are calculated from Landsat imagery; the normalized burn ratio (NBR) is calculated using 

Landsat imagery as described by Key and Benson (2006), the change in NBR (dNBR) is calculated by subtracting 

post-fire NBR from pre-fire NBR (Key and Benson 2006), a relativized dNBR (RdNBR) is calculated based on the 

methods of Miller and Thode (2007).  The creation of all three of these ratios is a straightforward process, then the 

RdNBR and dNBR are evaluated by an analyst to determine thresholds in the data to assign severity classes 

(Eidenshink et al. 2007).  A categorical thematic burn severity is then created with six classes: unburned/low (1), 

low (2), moderate (3), high (4), increased greenness (5), and no data/masked areas (6).   

 

These thresholds have been criticized as subjective, highly variable, and ecologically invalid (Kolden et al. 2015).  

No field verification of the burn severity classes created by the MTBS group has taken place for fires in the 

hardwood forests of eastern United Sates.  However a test of MTBS methods with field determination of the 

composite burn index (CBI) in oak woodlands in Oklahoma determined that the accuracies of various models were 

comparable to the MTBS classification (Stambaugh et al. 2015).  Because of these concerns with the thematic burn 

severity classes, we propose to use the MTBS class data as an index of post-fire change since the basis for the 

classes is either dNBR or RdNBR, representing a change in reflectance between pre- and post-fire.   

 

We queried the MTBS dataset for all fires partly or completely within the state boundary of West Virginia (Table 1).  

Spatial grids of thematic burn severity for 92 fires, both wild and prescribed, from 1994 to 2012 (for some years, no 

fires of sufficient size occurred) were obtained from the MTSB website (http://www.mtbs.gov/index.html).  Figure 

1 shows the study area location and the fires used as inputs in this study. 
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Table 1. Fires included in the model by ecological subsection and year. 

Subsection 

year 
Number of fires Area (ha) 

Eastern Allegheny Mountain and Valley   

2010 1 556 

Eastern Coal Fields 13 8,253 

2000 2 842 

2001 8 6,452 

2008 1 274 

2009 1 446 

2012 1 240 

Northern High Allegheny Mountain   

2010 1 413 

Northern Ridge and Valley   

2001 1 210 

Ridge and Valley 4 1,191 

1994 1 281 

2000 1 427 

2001 1 195 

2012 1 287 

Teays Plateau 9 1,984 

2000 2 556 

2001 7 1,429 

Western Allegheny Mountain and Valley   

2001 1 280 

Western Coal Fields 68 27,176 

1999 1 316 

2000 13 1,831 

2001 39 18,085 

2005 2 1,041 

2006 1 391 

2007 1 187 

2009 1 264 

2010 8 3,865 

2012 2 1,196 

Grand Total 92 40,064 

1
Number of fires will not match grand total of number of fires as six fires are split between subsections.   
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Figure 1. Study area and locations of fires used to create predictive model. 

 

Topographic Variables 

To create the predictive model of post-fire change, topographic variables were derived from a 3m digital elevation 

model resampled to 30 meter squared grids using cubic convolution with the Spatial Analyst Extension in ArcMap 

(ESRI, 2013).  Variables created with this extension include: aspect (asp), slope (in degrees; slp_deg), and hillshade 

(using the default settings; hs).  Twenty-nine other variables were created using the Geomorphometry and Gradient 

Metrics Toolbox (Evans et al. 2014) and are listed in Table 2.  These variables included measurements of curvature, 
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dissection, roughness, slope position, and surface relief ratio using three levels of search (1, 2, or 3 pixels from 

center) plus an average value.  Forest cover values were derived from land use and land cover (NRAC, 2012) 

resulting in four classes: non-forest, deciduous forest, evergreen forest, and mixed forest. 

 

Table 2. Topographic variables. 

Variable Definition 

asp aspect as discrete classes 

asp_lin transformed circular aspect to linear variable 

cos slope/aspect transformation using cosine 

cti compound topographic moisture index 

curv_1 curvature using circular window with offset of 1 pixel 

curv_2 curvature using circular window with offset of 2 pixel 

curv_3 curvature using circular window with offset of 3 pixel 

curv_a average of three curvature grids 

diss_1 dissection using circular window with offset of 1 pixel 

diss_2 dissection using circular window with offset of 2 pixel 

diss_3 dissection using circular window with offset of 3 pixel 

diss_a average of three dissection grids 

hli heat load index (latitude value set to 38.9537 degrees) 

rough_1 roughness using circular window with offset of 1 pixel 

rough_2 roughness using circular window with offset of 2 pixel 

rough_3 roughness using circular window with offset of 3 pixel 

rough_a average of three roughness grids 

sar surface/area ratio 

sin slope/aspect transformation using sine 

slp_der slope second derivative 

 

 

 

slope_deg slope measured in degrees 

sp_1 slope position using circular window with offset of 1 pixel 

sp_2 slope position using circular window with offset of 2 pixel 

sp_3 slope position using circular window with offset of 3 pixel 

sp_a average of three slope position grids 

srr_1 surface relief ratio using circular window with offset of 1 pixel 

srr_2 surface relief ratio using circular window with offset of 2 pixel 

srr_3 surface relief ratio using circular window with offset of 3 pixel 

srr_a average of three surface relief ratio grids 

trasp slope/aspect transformation – N-NE = 0, S-SW = 1 

 

Predictive Modeling 

To perform the predictive modeling to estimate post-fire change probability for each of the cells we used the 

Random Forest algorithm (Breiman 2001).  The Random Forests algorithm offers many advantages in that it does 

not adhere to parametric assumptions, can utilize mixed data type with different scales, handles high dimensional 

data, is robust to outliers and noise, is not sensitive to autocorrelation, quantifies importance of the predictor 
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variables, and requires minimal parameterization (Cutler et al. 2007, Evans and Cushman 2009, Beyer 2012, Evans 

and Murphy 2014, Strager et al. 2015, Breiman 2001).   

 

A response variable was created where presence was defined as a post-fire change class of moderate (3) or high (4) 

and absence was defined as unburned.  We used the 30 meters squared cells with burn severity class 3 or 4 within 

the fire perimeters from the MTBS dataset for the presence observations.  The fires for our prediction model came 

from eight ecological subsections – Eastern Allegheny Mountain and Valley, Eastern Coal Fields, Northern High 

Allegheny Mountain, Northern Ridge and Valley, Ridge and Valley, Teays Plateau, Western Allegheny Mountain and 

Valley, and Western Coal Fields (Cleland et al. 2007).   

 

To ensure that statistical and spatial variability was represented without introducing a zero-inflation issue (Cutler et 

al. 2007), we created five sets of pseudo-absence data by creating random points selected from within the state 

boundary of West Virginia and then removing observations occurring within 1 km of a fire perimeter.  For each 

training subset, we used an equal number of presence and absence observations, with the same presence data used in 

each subset.  The independent variables (topographic and forest cover parameters) were appended to the points, 

from the corresponding raster cell(s), using the software tool Geospatial Modeling Environment (Beyer 2012).   

 

Using the compiled training data we specified five Random Forests models, representing each random subset, using 

the Random Forests (Liaw 2001) package in R (R Core Team 2014).  We tested models by removing 

low-performing parameters and observed a decrease in model performance as compared to the full model.  Model 

error converged in fewer than 1,000 bootstrap replicates however, since variable interactions stabilize at a slower 

rate than error, we fixed the number of bootstrap replicated at n = 1,000.  Because Random Forests is an ensemble 

approach, as long as the parameter space remains fixed, independent models can be combined into a single 

ensemble- model (Evans and Murphy 2014).  Using only consistently selected parameters in the model selection, 

we fit the final models for each random-subset and combined them into a final ensemble-model.  Model 

significance was evaluated using a permutated (n = 999) randomization procedure and an iterative 10% withhold 

cross-validation using the rfUtilties R package (Hijmans 2014).  Once the significant independent variables were 

identified from the Random Forest models, the probability of the presence class (post-fire change class of 3 or 4) 

was predicted using the scaled posterior distribution of the common observation plurality (Evans and Murphy, 2014) 

with the R raster package (R Core Team 2014) across the entire state of West Virginia.   

 

Results 

The best fitting model with an out-of-bag error rate of 8.2% or 92% accuracy occurred when post-fire change classes 

of moderate and high were combined and compared to the unburned class.  The analyses performed by Random 

Forest identified linear aspect as the most important variable in describing burned patches compared to unburned 

patches, followed by hillshade, aspect (as class), heat load index, slope/aspect ratio (sine transformed), average 

roughness, and slope in degrees (Figure 2).  Our model shows high/moderate post-fire change rating associated 

with southwest and western aspects, and with increasing heat load index, slope/aspect ratio, average roughness, and 

slope. 
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Figure 2. Relative importance of topographic variables in the predictive model of post-fire change using mean 

decrease in accuracy. 

 

When these variables were then used in a predictive model for the entire state, much of the state has a low 

probability of high/moderate post-fire change (Figure 3; Table 3).  On 59% of the area in West Virginia, the 

probability of a fire causing high or moderate post-fire change is predicted to be 0-10%.  Relatively little area is 

predicted to have greater than a 50% probability of a post-fire change rating of high or moderate; approximately 

27,805.5 ha (68,710 acres) or about 0.5% of West Virginia.   

 

Our predictive model was based on binary input, post-fire change class of moderate/high or unburned, while the 

output is a continuous probability (0-1).  Given the skewed nature of the data (Table 3), the modeled probabilities 

were converted to three classes based on natural breaks in the data (Jenks method in ArcMap).  This resulted in 

classes of low, moderate, and high probability of a high/moderate post-fire change patch occurring (Figure 4; Table 

3).  These classes may be more useful for land managers than the original modeled continuous probabilities.   

 

 

 

 

 

 

Out-of-bag mean decrease in accuacy 
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Figure 3. Results of the predictive model of high/moderate post-fire change for West Virginia. 
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Table 3. The probability of high/moderate post-fire change class across West Virginia as both percent probability and 

as three re-classified categories. 

 

Probability of high/moderate post-fire 

change (%) 

Area (ha) Percent of total 

0-10 3,491,755 59 

11-20 1,705,763 29 

21-30 420,521 7 

31-40 173,490 3 

41-50 61,456 1 

51-60 22,298 0 

61-70 5,247 0 

71-80 253 0 

81-90 7 0 

91-100 >1 0 

total 5,880,790   

Probability class   

Low (0-10) 3,491,755 59 

Moderate (11-25) 2,000,809 34 

High (26+) 388,226 7 
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Figure 4. Model results of probability of high/moderate post-fire change reclassified as categorical post-fire change 

for West Virginia. 

 

For the moderate and high probability classes that were mapped, the linear aspect, hillshade, aspect as class, and 

heat load index were the main terrain variables found in the study area for those probability classes.  This was not 

surprising since many of these terrain characteristics correspond with areas of drier and warmer landscape positions.  

In study areas with terrain such as West Virginia which has a high degree of terrain relief, local variation, and 

landform, these driving factors as noted in Figure 2 help to identify patches of high/moderate post-fire change. 

 

While 92 fires were used to determine important variables for the final probability model, only 399 square 
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kilometers of the state was classed as high or moderate burn severity by MTBS analysts.  In our model, cells used 

as observations of absence of high/moderate post-fire change were selected outside of fire perimeters.  This allows 

our model to be independent of ignition patterns and the influences of adjacency.  

 

Conclusions 

The use of the MTBS classified data in our model was partly based on the use of similar spectral bands to map fire 

scars in mixed-oak forests in eastern Kentucky (Maingi 2005).  Fires in eastern Kentucky are very similar to those 

in West Virginia, being largely surface fires occurring in dormant seasons and where leaf litter is the main fuel 

consumed.  These fire scars result in blacked areas that do not persist on the landscape as they are rapidly covered 

up by annual leaf fall.  To map these first-order fire effects, leaf-off imagery is required.  While the MTBS 

methods and definitions of burn severity classes are based on western fire behavior – higher severity fires where 

overstory is consumed directly – the results may still be applicable to eastern hardwood forests.  However, the 

classes may no longer represent burn severity (as defined as overstory mortality), instead they represent an index of 

post-fire change.  What is needed is for these burn severity classes to be field-verified by measuring CBI on recent 

wildfires in eastern hardwood forests.  In the absence of field-verified severity classes, we contend that our model 

predicts areas where post-fire change may be expected and where greater fire effects may be found.  In North 

Carolina, the relationship between observed CBI and dNBR was used to predict CBI in un-observed areas 

(Wimberly and Reilly 2007).  Predicted CBI was found to be highest on southwest and west aspect and higher in 

pine-dominated patches, and increased with higher heat load index, and decreased as topographic wetness increased 

(Wimberly and Reilly 2007).  Our model resulted in similar findings for the topographic variables in common – 

increase probability of a high/moderate post-fire change patch on southwest and west aspects, and increasing 

probability in areas with increasing heat load index.  Elevation was found to have an important effect on burn 

severity in North Carolina (Wimberly and Reilly 2007).  One significant difference between the North Carolina 

study and our analysis is spatial extent; the North Carolina study assessed burn severity and its relationship to 

topographic variables on one large fire as compared to our approach of combining many fires and predicting 

post-fire change across an entire state.   

 

In boreal forests of China, burn severity in small fires was found mainly to be controlled by vegetation while in large 

fires, topography influenced burn severity (Wu et al. 2014).  Small fires were defined as less than 100 ha and large 

fires as greater than 1,000 ha.  These relationships make ecological sense considering ignition patterns and factors 

that constrain fire spread.  Fire ignition largely depends on local vegetation characteristics such as fuel type, fuel 

moisture, and spatial arrangement of fuels (Falk et al. 2011).  Ignitions may occur but not all fires spread or cause 

overstory mortality.  After ignition, burn severity is controlled by topography (Falk et al. 2007).  This relationship 

is illustrated by our model results on the Monongahela National Forest.  Since our model was based on many fires, 

over time, and across a large area, the relationships modeled are essentially those of large fires where topographic 

characteristics control burn severity.  The categorical class model for the Monongahela National Forest shows 

higher probabilities of post-fire change across the complex terrain regardless of forest type (Figure 5).  While an 

ignition is unlikely in the high elevation and moist red spruce forests found at the highest elevations, if a fire did 

occur, post-fire change could be high as controlled by topography.  This did occur in the history of many of these 

high elevation forests during the exploitative logging era (Allard and Leonard 1952).  One refinement that could be 

made to our model is the forest cover type parameter.  The results presented here are based on four simple forest 
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cover types and none were found to be important in describing the occurrence of high/moderate post-fire change 

patches.   

 

 

 

Figure 5. Model results of probability of high/moderate post-fire change reclassified as categorical post-fire change 

for the Monongahela National Forest. 
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As others have done for individual fires, our model may be improved by calculating CBI on a recent fire and 

comparing the observed CBI to dNBR and burn severity classes created from satellite imagery.  The class breaks 

used to create the burn severity categories in the MTBS dataset are made based on remotely sensed data only.  

There may be delayed canopy mortality after wildfires and prescribed fires in eastern forests as has been 

documented in Ohio four years after a prescribed fire (Yaussy and Waldrop 2009).  Post-fire imagery collected and 

used within one year of a fire may not represent the entire range of fire impacts.  The MTBS methodology was 

developed to capture immediate, first-order fire effects, which may vary greatly between western and eastern forests.   

 

Our model for West Virginia should be useful for land managers in planning prescribed fires and estimating effects 

to resources such as canopy cover, rare plant communities, and associated wildlife habitat.  Model results could be 

used in conjunction with site visits to identify areas where post-fire change may be higher than anticipated or desired.  

Burn units and firing patterns may be modified to avoid or minimize these potential effects.  In contrast, higher 

burn severity may be a desired outcome of prescribed fire for regeneration of certain plant species such as Table 

Mountain pine (Pinus pungens Lamb.) or for creating woodland or savannah habitat and our model may be useful in 

identifying those areas.   
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