
Cooperative Resource Allocation in Wireless

Communication Networks

Vom Fachbereich 18
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von
M.Sc. Oscar Dario Ramos Cantor

geboren am 15.05.1986 in Ibagué - Kolumbien

Referent: Prof. Dr.-Ing. Marius Pesavento
Korreferent: Prof. Dr.-Ing. Constantinos B. Papadias
Tag der Einreichung: 09.05.2017
Tag der mündlichen Prüfung: 18.07.2017

D 17
Darmstädter Dissertation

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/84705267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




To my uncle,
my mother

and the rest of my family





I

Acknowledgments

I would like to sincerely thank Prof. Marius Pesavento and Dr. Gerhard Kadel, from
Technische Universität Darmstadt and Deutsche Telekom AG, respectively, for believ-
ing in the bene�ts of the close cooperation between academia and industry. Their
constant support made this work possible.

I would like to acknowledge the cooperation and support of the simulation team from
the Technology Innovation Division (Deutsche Telekom AG) in developing and provid-
ing the system-level simulator, whose functionality has been extended in the realization
of this work.

I also would like to thank all my colleagues at both, the Communication Systems
Group (TU Darmstadt) and the Wireless Technologies and Innovation Division (former
Telekom Innovation Laboratories), for the valuable discussions and lessons throughout
the realization of this thesis. I have not only improved my technical skills, but I have
had also the chance to come to know new cultures and to broaden my perspectives
about life.

Furthermore, thanks to Marlis Gorecki and Heike Ka�enberger for all their support on
the administrative related issues. You have been always attentive and ready to give
any guidance when needed.

Finally, I would like to thank my family and friends for all their love, patience and sup-
port. To make you proud is my main motivation to work hard towards the achievement
of my goals.





III

Kurzfassung

Das Konzept der Kooperation, in dem zwei oder mehr Parteien zusammenarbeiten,
um ein gemeinsames Ziel zu verfolgen, ist auf fast jeden Aspekt des heutigen Lebens
anwendbar. Zum Beispiel, in der kommenden Fahrzeug-zu-Fahrzeug (eng. car-to-car)
Kommunikation Szenarien tauschen die Fahrzeuge Informationen über ihren aktuellen
Status sowie potenzielle Bedrohungen auf der Straÿe aus, um Unfälle zu vermeiden. Mit
der Entwicklung drahtloser Kommunikationssysteme, dem Aufkommen neuer Dienste
sowie Geräten mit zusätzlichen Fähigkeiten steigt die Nachfrage nach höheren Daten-
raten an.

In zellularen Mobilfunknetzen werden die erreichbaren Datenraten der Nutzer be-
schränkt durch die Inter-Zell-Interferenz, welche durch die gleichzeitige Nutzung von
Zeit/Frequenz Ressourcen verursacht wird. Besonders die Datenraten derjenigen Nut-
zer werden beschränkt, die sich in der näheren Umgebung anderer Basisstationen be-
�nden. Das ist der Ausgangspunkt dieser Arbeit, in der die Kooperation in zellularen
Mobilfunknetzen für die Datenübertragung von Basis- zu Mobilstationen untersucht
wird, insbesondere, um den Ein�uss der Gleichkanal-Inter-Zell-Interferenz zu reduzie-
ren, wodurch der ständig ansteigende Nutzerbedarf erfüllt werden kann. Kooperative
Ressourcen-Zuteilungsverfahren werden hergeleitet, wobei praktische Gegebenheiten
und Einschränkungen bezüglich der verfügbaren Kanalinformation an den Basisstatio-
nen berücksichtigt werden.

Hauptsächlich wird dabei die Kooperation in der Form der Sendeleistungskontrolle und
der gemeinsamen Zeit-/Frequenzplanung untersucht. In der ersten Art der Kooperation
regeln die Basisstationen dynamisch ihre eigene Sendeleistung, um weniger Inter-Zell-
Interferenz für Nutzer, die mit Nachbarbasisstationen verbunden sind, zu erzeugen. Im
Fall der kooperativen Ressourcenzuweisung werden die Zeit-/Frequenzressourcen durch
die Basisstationen gemeinsam zugeteilt um einen Kompromiss zwischen erreichbaren
Nutzerdatenraten und Inter-Zell-Interferenzen zu erreichen. Die kooperativen Ressour-
cenzuweisungsverfahren wenden zwei Sonderfälle des Leistungskontrollverfahrens an.
Hierbei bedienen die Basisstationen entweder ihre verbundenen Nutzer mit maxima-
ler Sendeleistung, oder eine Datenübertragung wird unterdrückt (engl. muting), um
die Interferenz für Nutzer, die durch benachbarte Basisstationen bedient werden, zu
reduzieren. Ein Hauptbeitrag dieser Arbeit ist die mathematische Formulierung der
kooperativen Ressourcenzuteilungsprobleme unter Zuhilfenahme der verfügbaren Ka-
nalinformation am Sender, in Form von Kontrollinformationen über die erreichbaren
Datenraten, welche auf den Standardprozeduren der aktuellen Mobilfunkstandards wie
LTE und LTE-Advanced basieren.

Aus einer Systemperspektive werden in dieser Dissertation zwei Parameter betrach-
tet, um die vorgeschlagenen kooperativen Verfahren abzuleiten. Diese Parameter sind
die Kooperationsarchitektur und das Verkehrsmodell zur Charakterisierung des Nut-
zerbedarfs. Im Falle der Kooperationsarchitektur werden zentralisierte und dezentra-
lisierte Verfahren untersucht. In ersterer führt ein zentraler Controller die kooperati-
ven Verfahren, basierend auf der Kenntnis der globalen Kanalinformation, aus und in
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letzterer werden die kooperativen Entscheidungen von den Basisstationen unabhängig
gefällt, basierend auf lokalen Informationen, die mit den angrenzenden Basisstationen
ausgetauscht werden. Es wird erwartet, dass eine zentralisierte Architektur die beste
Leistungsfähigkeit bereitstellt, trotzdem reduziert sich der Unterschied signi�kant in
Bezug auf dezentralisierte Verfahren bei Berücksichtigung von Annahmen über prakti-
sche Netze, wie in dieser Arbeit basierend auf numerischen Simulationen gezeigt wird.
Dabei wird der Nutzerbedarf durch Modelle mit voller und teilweiser Auslastung des
Netzes charakterisiert. Das erste Modell wird angewandt, um die Leistungsfähigkeit
des vorgeschlagenen kooperativen Verfahrens aus Netzwerkkapazitätsperspektive ein-
zuschätzen, wobei alle Nutzer gleichbleibend so viele Daten wie möglich anfordern. Im
Gegensatz dazu repräsentieren die Modelle mit teilweiser, dynamischer Auslastung des
Netzes ein eher realistisches Netzwerkszenario. Hier werden Verfahren abgeleitet, um
die Linkanpassungsprozeduren durch die Basisstationen zu verbessern, die Nutzer mit
ungleichmäÿigem (engl. bursty) Verkehr bedienen. Die Linkanpassungsprozeduren kon-
�gurieren die Übertragungsparameter pro bedientem Link, z. B. die Sendeleistung, die
Modulationsverfahren und die Kodierungsverfahren.

Im Detail wird ein kooperatives Leistungskontrollverfahren mit einer geschlossenen
Form hergeleitet, wobei die Basisstationen ihre eigene Sendeleistung dynamisch anpas-
sen, um die geforderten Datenraten der Nutzer, die mit den Nachbar-Basisstationen
verbunden sind, zu erreichen. Auÿerdem wird zur Erhöhung der Datenraten der Nutzer
eine zentralisierte und eine dezentralisierte koordinierte Ressourcenzuweisung inklusi-
ve möglicher Unterdrückung der Übertragung untersucht. Für den zentralisierten Fall
wird die Formulierung eines ganzzahlig linearen Optimierungsproblems vorgeschlagen,
welches durch die Benutzung kommerzieller Löser optimal gelöst wird. Die optimale
Lösung wird als Maÿstab zur Bewertung heuristischer Algorithmen genutzt. Im Fall
der dezentralisierten koordinierten Planung mit möglicher Unterdrückung der Über-
tragung wird ein heuristisches Verfahren hergeleitet, welches nur einen geringen Nach-
richtenaustausch zwischen den Basisstationen benötig, um die Kooperation zu koordi-
nieren. Weiterhin wird ein ganzzahliges lineares Optimierungsproblem formuliert, um
die Linkanpassungsprozeduren für Netzwerke mit dynamischem Verkehr zu verbessern.
Das Ergebnis ist eine Reduzierung der fehlerhaft übertragenen Datenblöcke und ein
Anstieg der von den Nutzern erfahrenen Datenraten. Im Vergleich zu unkoordinierten
Systemen und Koordinationsverfahren nach dem Stand der Technik werden unter An-
wendung des vorgeschlagenen kooperativen Verfahrens signi�kante Verbesserungen der
erreichbaren Datenraten der Nutzer erzielt, insbesondere für die Nutzer, die schwer-
wiegender Inter-Zell-Interferenz ausgesetzt sind.
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Abstract

The concept of cooperation where two or more parties work together to pursue a
common goal, is applicable in almost every aspect of today's life. For instance, in
the upcoming car-to-car communications, the vehicles exchange information regarding
their current status and potential threats on the road in order to avoid accidents. With
the evolution of the wireless communication systems and the advent of new services
and devices with more capabilities, the demand for higher data rates is ever increasing.

In cellular networks, the achievable data rates of the users are limited by the inter-
cell interference, which is caused by the simultaneous utilization of the time/frequency
resources. Especially, the data rates of the users located at the vicinity of neighboring
base stations is a�ected by the inter-cell interference. Hence, in this dissertation,
cooperation in cellular communication downlink networks is investigated, where the
base stations coordinate their operation in order to mitigate the impact of co-channel
inter-cell interference. Thus, the constantly increasing user demand can be satis�ed.
Cooperative resource allocation schemes are derived, where practical conditions and
side constraints regarding the available channel state information at the base stations
are taken into account.

Cooperation in the form of power control and joint time/frequency scheduling is mainly
studied. In the former type of cooperation, the base stations dynamically adjust their
own transmit powers to cause less inter-cell interference to the users connected to neigh-
boring base stations. In the case of cooperative scheduling, the available time/frequency
resources are jointly allocated by the base stations in order to trade o� user through-
put and inter-cell interference. The cooperative scheduling schemes apply two special
cases of the power control approach, where the base stations either serve their con-
nected users with maximum transmit power, or abstain from transmitting data, i.e.,
muting, in order to reduce the interference caused to users served by neighboring base
stations. One major contribution of this work is the formulation of the cooperative re-
source allocation problems by considering the availability of channel state information
at the transmitter in form of data rate measurement reports, which follows standard
compliant procedures of current mobile networks such as LTE and LTE-Advanced.

From a system perspective, two parameters are considered throughout this dissertation
in order to derive the proposed cooperative schemes. These parameters are the coop-
eration architecture and the tra�c model characterizing the demand of the connected
users. In the case of the cooperation architecture, centralized and decentralized schemes
are studied. In the former, a central controller performs the cooperative schemes based
on global knowledge of the channel state information, and in the latter, the coopera-
tive decisions are carried out independently per base station based on local information
exchanged with adjacent base stations. It is expected that the centralized architecture
provides the best performance, however, the gap with respect to the decentralized ap-
proaches reduces signi�cantly under practical network assumptions, as demonstrated
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in this work based on numerical simulations. With respect to the tra�c model, the
user demand is characterized by full-bu�er and non-full-bu�er models. The �rst model
is applied in order to assess the performance of the proposed cooperative schemes from
a capacity enhancement perspective, where all users constantly demand as much data
as possible. On the other hand, the non-full-bu�er model represents a more practical
network scenario with a dynamic utilization of the network resources. In the non-
full-bu�er model case, the proposed schemes are derived in order to improve the link
adaptation procedures at the base stations serving users with bursty tra�c. These link
adaptation procedures, establish the transmission parameters used per serving link,
e.g., the transmit power, the modulation and the coding schemes.

Speci�cally, a cooperative power control scheme with closed-form solution is derived,
where base stations dynamically control their own transmit powers to satisfy the data
rate requirements of the users connected to neighboring base stations. Moreover, cen-
tralized and decentralized coordinated scheduling with muting is studied to improve
the user throughput. For the centralized case, an integer linear problem formulation is
proposed which is solved optimally by using commercial solvers. The optimal solution
is used as a benchmark to evaluate heuristic algorithms. In the case of decentralized
coordinated scheduling with muting, a heuristic approach is derived which requires a
low number of messages exchanged between the base stations in order to coordinate
the cooperation. Finally, an integer linear problem is formulated to improve the link
adaptation procedures of networks with user demand characterized by bursty tra�c.
This improvement results in a reduction of the transmission error rates and an in-
crease of the experienced data rates. With respect to non-cooperative approaches and
state-of-the-art solutions, signi�cant performance improvement of the achievable user
throughput is obtained as the result of applying the proposed cooperative schemes,
especially for the users experiencing severe inter-cell interference.
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Chapter 1

Introduction

In cellular communication networks, the simultaneous utilization by the transmitters
of the available time/frequency resources cause two opposite e�ects. On the one hand,
high spectral e�ciency is achieved, which describes the average amount of bits per sec-
ond per channel use supported by the network. On the other hand, co-channel interfer-
ence is generated, which represents one of the main limiting factors of the user through-
put. This co-channel interference particularly a�ects the users located at the cell-edge,
in the following referred to as the cell-edge users [BPG+09,KG08,KOG07,YZSL14].
In contemporary and future cellular communication networks, a constantly increas-
ing demand for high data rates of new services and devices with more capabilities is
expected. It is foreseen that by 2021 more than 11.5 billion connected devices gen-
erate a global mobile data tra�c reaching 49 exabytes per month, which represents
a sevenfold increase with respect to the global mobile data tra�c from 2016 [Cis17].
Therefore, the networks are planned to operate with full frequency reuse in order to
achieve high spectral e�ciencies. Moreover, all users expect to enjoy excellent network
performance irrespective of their geographic location and the load conditions of the
network. In order to ful�ll the ever increasing requirements, new solutions are required
in particular for the cell-edge users su�ering from large path loss and strong inter-cell
interference. Promising advances in this aspect have been made with multi-antenna
technology [GS05,LHZ09,PNG03,ZT03], network densi�cation with interference man-
agement schemes [And13, LCLV14, LHAL11], and Coordinated Multi-Point (CoMP)
transceiver techniques [IDM+11,LKL+12,SKM+10].

To enhance the network capacity, Multiple-Input-Multiple-Output (MIMO) technology
has been introduced that increases the throughput and reliability of the transmissions
by means of multiplexing and diversity, respectively [LHZ09, LJ10, ZT03]. Addition-
ally, MIMO technology is used for beamforming in order to reduce interference towards
co-channel users [GS05, PNG03]. Another sound alternative corresponds to network
densi�cation, i.e., the deployment of a larger number of base stations (BSs) per unit
area, which boosts the network capacity due to an increase in the cell-splitting gain and
a reduction in the path loss [And13,LCLV14,LHAL11]. Nevertheless, the increase in the
network capacity due to the introduction of small cells, depends on the ability to coun-
teract high inter-cell interference caused by the signi�cant di�erence of transmit power
levels among the distinct serving points. In particular, the cell-edge users experience
high interference from neighboring BSs that heavily impact the achievable data rates.
In order to increase the user data rates, especially of the cell-edge users, interference
management schemes are proposed to diminish or completely cancel the interference
at the user equipment (UE) [CJ08, LPVdlRZ09, RY10, RYW09]. In Long Term Evo-
lution (LTE)-Advanced networks [DPS14, GRM+10, SBT11], the enhanced-Inter-Cell
Interference Cancellation (ICIC) scheme establishes a muting pattern for the BSs over
time/frequency resources, where the BSs are requested to suspend transmission in order
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to reduce the interference to UEs located in neighboring cells [LPGdlR+11]. Addition-
ally, cooperation between BSs, known as CoMP, improves the UEs' channel conditions
through the coordination of the interfering BSs [IDM+11,LKL+12,SKM+10].

In this dissertation, CoMP network operation is studied, where the BSs connected
within a cooperation cluster are prompted to cooperate with each other with the
objective of improving the cell-edge network performance, even at the expense of
their individual cell or user throughputs [LJ08]. In the literature and in LTE-
Advanced networks, four main CoMP schemes are considered for the downlink sce-
nario [BBB14,BO16, rGPP11]. These are: i) Joint Transmission (JT), where multiple
BSs simultaneously transmit a common message to a UE usually located at the cell-
edge, ii) Dynamic Point Selection (DPS), where the UEs can be served by di�erent
BSs at each transmission time, iii) Dynamic Point Blanking (DPB), where the BSs ab-
stain from transmitting data on speci�c time/frequency resources, and iv) Coordinated
Scheduling (CS), where the BSs jointly make scheduling decisions to manage the avail-
able time/frequency resources.

The performance of the above mentioned CoMP schemes heavily depends on the qual-
ity of the channel state information (CSI) available at the transmitter. This CSI can be
of di�erent types, e.g., in form of instantaneous channel values or user's average achiev-
able downlink data rates, where the former represents the deepest level of detail and
�nest granularity, while the latter has the highest abstraction and aggregation levels.
In practical downlink networks, where perfect global knowledge of the instantaneous
channel values is generally not available at the BSs, CSI is typically obtained in form
of data rate measurement reports generated by the UEs. These data rate measurement
reports are averaged over multiple time/frequency/space dimensions and quantized to
reduce the signaling overhead. Moreover, in order to limit the processing and trans-
mission overheads, the CSI estimation process is only periodically carried out by the
UEs. Thus, energy consumption is reduced at the expense of outdated CSI. In this
work, the CoMP problem formulation is based on practical considerations of the CSI
in form of periodic data rate measurement reports, in the following referred to as CSI
reports.

The network architecture in which the CoMP schemes are implemented, also in�uences
the performance of such schemes. Two main CoMP network architectures are typically
de�ned, namely, the centralized and the decentralized ones [SYH13]. In the case of
centralized CoMP, a central entity, also known as central processing unit or central
controller, is connected to multiple BSs via backhaul links. This central controller is in
charge of gathering and using the CSI reports to make a coordinated decision among
the connected BSs. For the decentralized CoMP case, no central processing unit to
control the coordination is available. Instead, decisions are individually made by each
BS based on the information exchanged with neighboring BSs. A trade-o� between
coordination gains and system requirements, such as signaling overhead and compu-
tational complexity, needs to be found when designing a proper CoMP solution. In
the case of centralized CoMP, high coordination gains are achievable at the expense of
high computational complexity and large signaling overheads. Moreover, decentralized
CoMP requires signi�cantly less information exchange with lower coordination gains.
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1.1 Aims, Contributions and Overview

The objective of this dissertation is to study and develop new techniques to improve
the user throughput, especially for the cell-edge users, by applying cooperative resource
allocation schemes on wireless mobile communication downlink systems. The focus
relies on cooperative power control and CoMP CS schemes, where one special case of
the former approach corresponds to the CoMP DPB scheme. One major contribution
of this thesis is the consideration of practical restrictions related to the usage of CSI
reports in the derivation of the proposed cooperative schemes. The used CSI reports
are standardized in the 3rd Generation Partnership Project (3GPP) LTE and LTE-
Advanced networks. Therefore, a deeper understanding of the potential gains and
expected performance of the studied cooperative schemes is achieved under practical
network conditions.

Additionally, the proposed cooperative schemes take into account practical network
considerations with respect to the network architecture and the tra�c models char-
acterizing the users' demand. Hence, cooperative schemes are derived for centralized
and decentralized CoMP architectures, and for user demands resembling full-bu�er
and bursty tra�c. The problem formulations, the corresponding derived solutions and
the numerical evaluations constitute valuable information to support the design and
deployment of current and future generations of mobile communication networks.

The detailed outline of this dissertation is as follows.

In Chapter 2, the theoretical background utilized throughout the thesis is presented.
The focus relies on the description of standardized procedures in LTE and LTE-
Advanced networks, where among others, the available time/frequency resources are
described in detail together with the process to estimate and report CSI. These stan-
dardized procedures are of signi�cant relevance since they determine the formulation
of the cooperation problems, as well as the derivation of their corresponding solutions
in the proceeding chapters.

In Chapter 3, the general system model of cellular communication networks is pre-
sented, which is used throughout this work in order to introduce and evaluate the
studied cooperative schemes. In each of the remaining chapters, this general system
model is adjusted and extended accordingly to the particular conditions of the studied
scenarios.

In Chapter 4, a cooperative power control scheme is presented for heterogeneous
networks, where cooperation between a macro BS and the small cells located within the
coverage area of the macro BS is considered [RCBP14]. After the scheduling decisions
have been independently made by the BSs, the macro BS can adjust its transmit power
on the available time/frequency resources in order to reduce the inter-cell interference
caused to the UEs served by the small cells. If a cell-edge user is served by a small cell,
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the macro BS can reduce its transmit power to the point that the macro BS avoids
transmitting on a particular time/frequency resource. In this particular case, the macro
BS is called muted, and the cooperative control approach is equivalent to the CoMP
DPB scheme.

In Chapter 5, centralized CS with muting is studied for macro-only and heterogeneous
networks, where a central controller is in charge of making the scheduling and muting
decisions to be carried out by the connected BSs [RCBHP17]. The central controller
decides whether the BSs serve their connected UEs on particular time/frequency re-
sources, or if the BSs are muted to reduce the inter-cell interference experienced by the
UEs served by neighboring BSs. Since the proposed centralized CS with muting scheme
includes the scheduling and muting decisions in the cooperation, the CS approach ex-
tends the cooperative power control scheme studied in Chapter 4. Nevertheless, the CS
scheme is restricted to only two power control scenarios corresponding to the BSs trans-
mitting with maximum transmit power, or muted. Hence, the number of CSI reports
required to support the operation of the proposed CoMP CS with muting scheme is
limited. This restriction to only two power control scenarios is introduced by following
the standardized procedures of LTE-Advanced networks.

In Chapter 6, a decentralized CS with muting scheme is proposed for macro-only and
heterogeneous networks [RCP17]. The derived decentralized scheme aims to reduce the
amount of information exchanged between adjacent BSs, by making muting decisions
based on the altruistic behavior of the BSs. Thus, the BSs independently decide
to avoid transmitting on particular time/frequency resources, based on their current
knowledge of the CSI reports from their own UEs and limited feedback from adjacent
BSs describing the impact of muting decisions made on previous transmission times.
Compared to its centralized counterpart from Chapter 5, the decentralized CS with
muting scheme achieves a lower performance in terms of cell-edge user throughput.
Nevertheless, the simplicity of the derived scheme and its decentralized nature, make
it applicable for large-scale networks where the implementation of real-time centralized
cooperation is restricted due to its high computational complexity. Furthermore, the
performance gap between the centralized and the decentralized schemes is marginal
under current practical network considerations.

In Chapter 7, centralized CS is studied for a network under bursty tra�c condi-
tions [RCBP16]. In chapters 4 to 6, the proposed schemes are derived from a capacity
enhancement perspective, thus, full-bu�er systems are assumed, where the UEs con-
stantly demand as much data as possible. However, in many practical networks, such
a full-bu�er system assumption generally does not hold true. Therefore, the proposed
scheme in Chapter 7 is derived with the aim to improve the performance of the link
adaptation procedures under bursty tra�c conditions, i.e., in non-full-bu�er systems.
These link adaptation procedures, establish the transmission parameters used per serv-
ing link, e.g., the transmit power, the modulation and the coding schemes.

Finally, conclusions are drawn and future work is discussed in Chapter 8.



5

Chapter 2

Theoretical Background

A revision of the main theoretical concepts applied throughout this thesis are presented
in the following. Along this work, the proposed cooperative schemes are designed and
investigated by taking into account their implementation in LTE-Advanced networks.
Therefore, in Section 2.1 relevant aspects of LTE-Advanced networks such as the de-
ployment of BSs and UEs, the de�nition of physical resources in time/frequency/space,
and the estimation and reporting of CSI are revised. Furthermore, an overview of in-
terference management schemes is given in Section 2.2, where implicit and/or explicit
cooperation among the BSs is exploited in order to improve the downlink network
performance in terms of the average user throughput. Speci�cally, CoMP operation is
introduced, from which the practically relevant DPB and CS schemes are studied in
this work. As previously mentioned in Chapter 1, the investigated cooperative schemes
are derived with restrictions on the available CSI at the transmitter, which is in form
of standardized CSI reports from LTE and LTE-Advanced networks. In the case of
the proposed CS schemes, such a restriction on the CSI implies that the resulting CS
problem formulations are integer linear programs (ILPs), where the selection of a par-
ticular CSI report corresponds to an integer, or even binary, decision. Hence, a short
description of integer linear programming with focus on its combinatorial nature is pro-
vided in Section 2.3. Finally, system-level simulations are used to evaluate the studied
algorithms. For that purpose, a system-level simulator has been extended to support
such simulations. In Section 2.4, the main modules of the system-level simulator are
presented and brie�y explained.

2.1 LTE-Advanced Networks

LTE-Advanced [DPS14, GRM+10, SBT11] standardized by 3GPP (www.3gpp.org) is
the most recognized technology of the fourth generation of mobile communications.
The �rst release of LTE, i.e., Release-8, was published in December 2008 with the
introduction of Orthogonal Frequency Division Multiple Access (OFDMA) as the radio
access scheme, in contrast to Wideband Code Division Multiple Access (WCDMA)
used in the previous generation. Additional features of LTE Release-8 are the usage
of MIMO technology, variable bandwidth and ICIC procedures, among others. The
latter feature, i.e., ICIC, is explained in Section 2.2.1. Extensions to the LTE standard
have been further brought in later releases, with the Release-10 introducing LTE-
Advanced in March 2011 [DPS14, GRM+10, SBT11]. LTE-Advanced was proposed
to ful�ll the International Mobile Telecommunications (IMT)-Advanced requirements
of the International Telecommunications Union (ITU) for the fourth generation of
mobile communications [Int15]. Some of the new features in LTE-Advanced correspond
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to the usage of additional number of antenna ports at the transmitter and at the
receiver, where LTE-Advanced supports up to eight antenna ports in contrast to the
four ports supported by LTE Release-8 [GS05,LHZ09,PNG03,ZT03], the deployment
of heterogeneous networks with interference management schemes [And13, LCLV14,
LHAL11], and the aggregation of multiple frequency bands for transmission, known as
carrier aggregation [PFR+11,SPM+12,YZWY10].

This work is mainly based on the features of LTE-Advanced networks. Therefore, the
main aspects of the LTE-Advanced standard, related to this dissertation, are brie�y
described in the following.

2.1.1 Network deployments

Cellular communication networks are considered where UEs are deployed in the cov-
erage area of the BSs. The BSs are usually classi�ed based on their transmit power.
Hence, the so called macro cells correspond to BSs with a high transmit power, e.g.,
46 dBm, and the small cells correspond to BSs with lower transmit power than the
macro BSs. Some examples of small cells are the pico BSs with a typical transmit
power of 30 dBm and the femto BSs, which usually transmit with a total power of
24 dBm [rGPP10]. Due to the di�erence in the transmit powers and the resulting cov-
erage area of the above mentioned BSs, the macro and pico cells are typically used for
outdoor coverage, while the femto BSs are deployed indoors. Throughout this thesis,
the performance of the proposed cooperative schemes is studied for outdoor deploy-
ments of BSs and UEs, where the mobile communication network is classi�ed into a
homogeneous or heterogeneous cellular network depending on the type of deployed BSs.

A homogeneous cellular network implies that all deployed BSs are of the same type,
where a well-known example corresponds to a macro-only network with all the cells
consisting of macro BSs. This macro-only network has been commonly used in previous
generations of mobile communications, including LTE Release-8. A macro-only net-
work is illustrated in Figure 2.1a with seven cells composed of three macro BSs each.
In Chapter 1, it has been mentioned that the networks typically operate with full
frequency reuse, i.e., all BSs simultaneously transmit over the same time/frequency re-
sources in order to achieve high spectral e�ciency [BPG+09,KG08,KOG07]. However,
when operating with full frequency reuse, the UEs served by one BS, and especially
the cell-edge UEs, are a�ected by considerable inter-cell interference caused by the
neighboring BSs. One alternative to cope with the inter-cell interference is to restrict
the minimum separation distance between neighboring BSs, such that the interference
caused to the neighboring cells is below a threshold. The minimum separation distance
is then a function of the transmit power of the BSs and the propagation parameters such
as path loss and shadow fading. For the macro-only network in Figure 2.1a, the mini-
mum separation distance between BSs can be large due to the high transmit power of
the macro cells. In such a case, each BS needs to cover a large area with a non-uniform
distribution of the signal strength due to fading. Thus, the performance experienced
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by the UEs depends on their locations in the cell, where the cell-edge UEs which are
located far away from the serving BS, usually experience lower user throughputs than
the UEs located closer to the BS. Additionally, as a result of the large coverage area
the BSs need to serve more UEs. Due to the fact that the time/frequency resources are
limited, serving more UEs per unit area reduces the average amount of time/frequency
resources that each UE receives. One solution to cope with the above mentioned disad-
vantages of the macro-only networks is to deploy homogeneous networks with smaller
coverage areas and lower transmit power per BS, e.g., pico-only networks. However,
the requirements regarding the number of small cells, the backhaul connectivity, i.e.,
connectivity to the core network, and the deployment costs, make the implementation
of such a homogeneous network infeasible in practice. Therefore, solutions to cope with
the inter-cell interference are favored such as ICIC, explained in Section 2.2.1.

Heterogeneous networks are proposed as a trade-o� between inter-cell interference and
cell size, where small cells are located within the coverage area of the macro BSs. More
speci�cally, the small cells are typically located in regions where the signal strength of
the macro BS is low in comparison to the maximum signal strength observed in the
macro cell, due to fading or path loss. In this manner, a more uniform distribution
of the signal strength experienced by the UEs is achieved in the geographical area.
Furthermore, because the UEs can connect to additional BSs in the same area, and
assuming that all BSs use the same time/frequency resources, it is possible to increase
the average amount of resources per UE, i.e., cell-splitting gain is achieved [Don79,
GMD13]. However, due to the di�erence in transmit powers of the macro BSs and the
small cells lying on the coverage areas of the former, the UEs connected to the small
cells su�er from high inter-cell interference coming from the macro BSs. If the inter-cell
interference is not kept su�ciently low, the cell-splitting gain might be counteracted by
the e�ects of the interference. Mechanisms to manage the inter-cell interference such
as ICIC and enhanced-ICIC are explained in Section 2.2.1. Figure 2.1b illustrates an
example of a heterogeneous network, where one small cell is located in the coverage
area of a macro BS.

2.1.2 Physical resources

LTE downlink and uplink transmissions are based on the Orthogonal Frequency Di-
vision Multiplexing (OFDM) transmission scheme, where narrow-band subcarriers are
combined over the time/frequency domains in order to achieve wider-band transmis-
sions [rGPP04,rGPP06]. Due to the narrowness of the subcarriers and the large number
of them, the OFDM systems successfully counteract the negative e�ects of frequency
selective channels by increasing the frequency diversity. Thus, it is typically possi-
ble to �nd favorable subcarriers to transmit. However, OFDM transmissions have
some associated drawbacks, such as the reduction of the spectral e�ciency due to
the utilization of a cyclic pre�x and the low power ampli�er e�ciency caused by the
high peak-to-average-power ratio [LS06,Pra04]. The cyclic pre�x is used to make the
OFDM transmission less sensitive to time dispersion and thus, to avoid inter-symbol-
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(a) (b)

Figure 2.1. Illustration of network deployments. (a) Homogeneous network of macro
BSs. (b) Heterogeneous network with small cells (circles) within the coverage area of
the macro BSs

and inter-subcarrier-interference by inserting a copy of the last part of the OFDM sym-
bol, right before the symbol starts. Since a fraction of the transmitted OFDM symbols
is redundant, the spectral e�ciency decreases, i.e., lower throughput per channel use
is obtained. Moreover, due to the high variations between the peak and the average
powers of the transmitted OFDM symbols, the power ampli�ers require a large opera-
tional dynamic range, which reduces their e�ciency and increases the implementation
costs [DPS14].

In the time domain, the OFDM symbols are grouped into time-slots with a duration of
0.5 ms. The number of OFDM symbols per time-slot depends on the length of the cyclic
pre�x. Hence, when a normal cyclic pre�x is used, one time-slot is formed by seven
OFDM symbols, while in the case of an extended cyclic pre�x, the time-slot contains
only six OFDM symbols. Two time-slots constitute one subframe with a duration of
1 ms, and one radio frame consists of ten subframes. Figure 2.2 illustrates the time
domain con�guration of the LTE resources when using the normal cyclic pre�x [DPS14].
In the frequency domain, the OFDM subcarrier spacing is equivalent to 15 kHz. Thus,
the total amount of subcarriers in the system depends on the available bandwidth. As
an example, a 20 MHz LTE system has 1200 subcarriers without including the carrier
center frequency, i.e., the Direct Current (DC) subcarrier which remains unused.

A Resource Element (RE) corresponds to one subcarrier in the frequency domain with a
duration of one OFDM symbol in the time domain. Furthermore, a Physical Resource
Block (PRB) is formed by 12 subcarriers in the frequency domain, and one time-
slot in the time domain. Therefore, if the normal cyclic pre�x is used, a total of 84
REs represent one PRB. The time/frequency representation of a PRB is illustrated
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Figure 2.2. Con�guration of the LTE resources in the time domain when using normal
cyclic pre�x

in Figure 2.3. Regarding the scheduling process, the minimum scheduling unit that
can be assigned to a UE corresponds to a resource block pair. Thus, the scheduling
decisions are given in a time span of one subframe in the time domain, i.e., 1 ms.
In this dissertation, the term PRB is used in association to the scheduling decisions.
Therefore, in the following, a PRB refers to a resource block pair.

Time
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u
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1 slot

12 subcarriers
PRB
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Figure 2.3. De�nition of a PRB in the time and the frequency domains

2.1.3 CSI estimation and reporting

In order to support opportunistic scheduling, CSI knowledge at the transmitters is
required. In this dissertation, the cooperative schemes are studied for downlink trans-
missions. Thus, the BSs require CSI knowledge to serve the connected UEs in the
downlink. In systems operating in Time Division Duplexing (TDD) mode, where the
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uplink and downlink transmissions make use of the same frequency resources, channel
reciprocity can be exploited, enabling the BSs to estimate the downlink channel from
the incoming uplink reference signals transmitted by the UEs [Bal29,Car29]. Never-
theless, in several cases assuming the reciprocity of the channel is not realistic due to
e.g., the usage of di�erent antennas for transmission and reception [GL14,HYW+13].
In the case of non-reciprocal channels when operating in TDD mode, or in the case
of Frequency Division Duplexing (FDD) mode operation, where the downlink and up-
link transmissions take place in di�erent frequency bands, alternative mechanisms are
required in the network to acquire CSI. In LTE systems, the UEs estimate the chan-
nel in the downlink and report this information back to the serving BSs to support
the scheduling and link adaptation procedures for the upcoming downlink transmis-
sions [KW15].

In LTE networks, the CSI reported by the UEs is typically composed of a Channel
Quality Indicator (CQI), a Precoding Matrix Index (PMI) and a Rank Indication
(RI) [3rd13]. The CQI re�ects the estimated signal-to-interference-plus-noise ratio
(SINR) and the corresponding achievable data rate of a UE, when assuming a downlink
transmission of rank indicated by the RI and transmit precoding vector taken from a
�nite-length codebook and indexed by the PMI. In the selection of the CQI, lookup
tables are typically used by the UEs depending on the device capabilities. These lookup
tables indicate the modulation and coding scheme (MCS) with the highest achievable
data rate that the UE can decode for a maximum Block Error Rate (BLER) of 10 %
[SBT11, SMR10]. Examples of such lookup tables are available in [CPP12, FYL+11].
Throughout this thesis, a similar lookup table is used based on proprietary link-level
simulations.

In order to estimate the downlink channel, the BSs transmit known training pilots to
the UEs. In the case of LTE networks, these training pilots are referred to as downlink
reference signals (RSs). In this work, two kinds of RSs used by the UEs for CSI
estimation are considered as follows [DPS14,SBT11].

Cell-Speci�c Reference Signal (CRS): in order to estimate the CSI, CRSs have been
introduced in the �rst LTE release, i.e., Release-8. Each BS can transmit one to
four di�erent CRSs, corresponding to an equal number of antenna ports, with the
port numbers indexed by {0, 1, 2, 3}. The CRSs are transmitted on every time
subframe on speci�c REs, where the selectable REs are illustrated in Figure 2.4.
In the case of the �rst two antenna ports, i.e., antenna ports P0 and P1, a total
of 16 REs are available for the transmission of the CRSs, while for the additional
antenna ports, i.e., antenna ports P2 and P3, only eight REs can be used for the
CSI estimation. The reason for such a reduction in the number of REs is to limit
the signaling overhead, thus, more REs are available for data transmission.

CSI Reference Signal (CSI-RS): in LTE-Advanced, i.e., Release-10, the CSI-RSs were
included as a complement of the already existing CRSs. The available REs to
be used for the transmission of CSI-RSs are illustrated in Figure 2.4, where 40
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Figure 2.4. Possible REs to be used for CRS and CSI-RS within a PRB

possible positions can be selected. Each BS can transmit CSI-RSs for one, two,
four or eight antenna ports. Therefore, MIMO transmissions with more than four
antenna ports are possible in comparison to LTE Release-8. A main di�erence
between the CSI-RSs and the CRSs, is that the transmission of the former is
not expected at every time-slot. Thus, in the case of slowly varying channels,
the overall signaling overhead can be reduced by sporadically transmitting the
CSI-RSs. Moreover, in order to ease the estimation of CSI from neighboring
cells, it is possible to con�gure muted CSI-RSs, which implies the lack of any
transmission from a speci�c cell on given REs. These muted CSI-RSs are further
exploited in the cooperative schemes studied in this work and introduced in LTE
Release-11.

By using the above described reference signals, the UEs can estimate the CSI either in
the time or the frequency domains by applying e.g., the maximum likelihood approach.
The CSI estimation mechanisms are beyond the scope of this thesis. Interested readers
are referred to [ABB+07,ABS07,MM01] for more information on CSI estimation ap-
proaches. After the CSI estimation is performed, the UEs report the CQI, PMI and RI
values to the BSs to support the downlink transmissions. Moreover, the CSI estimation
can be based on CRSs or CSI-RSs, where the latter support the estimation for muted
antenna ports. In order to distinguish between the CSI based on the di�erent reference
signals, the notation CSIR-8 and CSIR-11 is used, where the former corresponds to the
CSI generated based on CRSs, as introduced in LTE Release-8, and the latter refers to
the CSI obtained by using the CSI-RSs, to support the cooperative schemes from the
LTE Release-11.
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TimeT 2T 3TT + δ 2T + δ

CSI R0 CSI R1 CSI R2

Active R0 Active R1

Figure 2.5. Periodic CSI estimation and reporting process. The CSI reports are gen-
erated by the UE with periodicity T and get active at the serving BS after a time δ

Regarding the timing for reporting CSI, Figure 2.5 illustrates the periodic CSI esti-
mation and reporting process of a UE. The UE reports CSI to the serving BS every
time T , where the reported CSI gets active, i.e., is used for the scheduling process,
after a time δ. The reported CSI remains active for the periodicity T . Typical values
for T and δ in LTE networks correspond to a periodic reporting of T = 5 ms and an
activation delay of δ = 6 ms.

2.2 Interference Management Schemes

In a multi-cell scenario as depicted in Figure 2.1, inter-cell interference represents a
limiting factor in the achievable user throughput. As mentioned in Section 2.1.1, this
inter-cell interference is caused by the simultaneous utilization of the time/frequency
resources by neighboring BSs. In the heterogeneous network case, the negative e�ect
of such an inter-cell interference is even higher due to the signi�cant di�erence in
transmit powers between the macro and small cells. Hence, interference mitigation
techniques target to reduce the inter-cell interference by applying di�erent approaches
as follows [CJ08,RY10,RYW09].

Interference cancellation: in this technique, coherent, phase synchronous signal pro-
cessing at the receiver is performed in order to estimate and subtract the inter-
ference from the desired signal.

Interference averaging: in this approach, the BSs transmit data to the UEs by hopping
over the time/frequency dimensions in order to average the e�ect of interference.

Interference avoidance: this scheme concentrates on reducing the simultaneous uti-
lization of the time/frequency resources in order to �nd a good trade-o� between
achievable data rates and inter-cell interference.

In this work, interference avoidance schemes are investigated. Thus, two main inter-
ference avoidance approaches are presented in more detail in the following.
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2.2.1 ICIC and enhanced-ICIC

In homogeneous networks, e.g., macro-only networks, ICIC is applied in order to reduce,
or completely avoid, the inter-cell interference over time/frequency resources [DPS14,
SBT11]. When decreasing the interference, ICIC speci�es transmissions over a pattern
of time/frequency resources with reduced transmit power. In that manner, the cell-
edge UEs can be served while experiencing a lower received interference power level.
Hence, increasing the achievable data rates of the cell-edge UEs. Moreover, due to
the reduced transmit power, the neighboring BSs schedule transmissions to cell-center
UEs, i.e., UEs located at the vicinity of the serving BSs, with low impact on their
achievable data rates. This ICIC option is also known as Fractional Frequency Reuse
[LHXQ13, RYW09]. However, in some scenarios the cell-edge UEs experience such
a high inter-cell interference, that a limited reduction of the interference power does
not improve their achievable data rates. Therefore, a complete avoidance of the inter-
cell interference is required. In those cases, the frequency reuse factor, de�ned as the
number of BSs that do not transmit on a certain frequency band1, is larger than one and
the BSs abstain from transmitting on certain time/frequency resources [RY10,RYW09].
Since the neighboring BSs do not transmit on all the available time/frequency resources,
a reduction of the spectral e�ciency typically occurs, with respect to a system operating
with full frequency reuse.

In the heterogeneous network case, the deployment of small cells attempts to achieve
cell-splitting gains, as mentioned in Section 2.1.1. For that purpose, load balancing
is required among the macro and small cells, implying that each type of BS serves a
similar number of UEs. A typical strategy to select the serving BS for a UE corresponds
to the selection of the BS providing the highest total received power. However, due
to the signi�cant di�erence of transmit powers between the macro and small cells,
such a selection strategy of the serving BS causes that most of the UEs are served by
the macro BSs despite of their proximity to the small cells. Thus, the load balancing
is negatively a�ected. In order to balance the load among the BSs, techniques like
cell-range expansion (CRE) are applied, e.g., in LTE-Advanced, where the UEs are
instructed to add a constant o�-set in the computation of the total received powers
of the small cells for the purpose of selecting the serving cell [DMW+11, GLBC17,
YRC+13]. For UEs located in the cell-range extended region, the interference level
of the macro BSs is higher than the received power from the serving small cell, thus,
these UEs experience a negative SINR in dB. In order to improve the achievable data
rates of these cell-edge UEs, ICIC with complete interference avoidance in the time
domain is applied, known as enhanced-ICIC [LPGdlR+11,OH12]. An example of the
enhanced-ICIC operation is illustrated in Figure 2.6, where two subframe types are
con�gured, namely, normal and Almost Blank Subframe (ABS) [CWW+13,KPRA15].
In the normal subframe, the macro BS, i.e., BS m, transmits with maximum transmit

1In the literature, two de�nitions of the frequency reuse factor can be found. In the second
de�nition, the factor corresponds to the inverse of the number of BSs that do not transmit. Thus, the
maximum frequency reuse factor is one. In this work, the commonly used de�nition related to LTE
and LTE-Advanced networks is adopted.
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Figure 2.6. Enhanced-ICIC mechanism. The macro BS m does not transmit during
the ABS to avoid interfering UE p, located in the CRE region of the small cell BS p

power, thus, causing severe interference to a UE located in the CRE region of the
pico cell BS p, i.e., UE p. As a consequence, the achievable data rate of UE p is very
low, or even equal to zero, during the normal subframes as illustrated in the right-
hand side of Figure 2.6. During the ABS, the macro cell BS m is muted, i.e., it does
not transmit data. Therefore, the interference level experienced by UE p decreases
and its achievable data rate increases. Although the spectral e�ciency is negatively
a�ected by the introduction of the ABSs, this negative e�ect can be compensated by
the cell-splitting gains achieved by the deployment of the small cells.

The bene�ts of ICIC and enhanced-ICIC have been studied in e.g., [BGG+12,
DMBP13], especially in fully-loaded systems, i.e., the UEs constantly demand as much
data as possible. However, when the load conditions in the network vary, the static
patterns usually con�gured in ICIC and enhanced-ICIC operation potentially reduce
the network performance. Therefore, more dynamic algorithms based on the ICIC
operational principle have been proposed in di�erent works such as [OH12,SPK+13].

2.2.2 CoMP transmission

In order to improve the network performance, the concept of BS cooperation has
been subject of study in recent years [LJ08]. In CoMP transmission, the BSs are
prompted to cooperate with each other even at the expense of their individual cell
or user throughputs, so that the performance of the cell-edge users is enhanced. As
mentioned in Chapter 1, four main CoMP schemes are considered in the literature, as
follows [BBB14,BO16,MHV+12].
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Joint Transmission (JT): in this CoMP scheme, the BSs simultaneously transmit a
common message to a UE usually located at the cell-edge. Therefore, the inter-
ference experienced by the UE from the neighboring BSs is converted into useful
signal and the UE's SINR is increased. From another perspective, in CoMP JT
the cooperative BSs behave as a single BS with widely separated antennas. The
potential gains of CoMP JT are the highest among the CoMP schemes because
the schemes described below are special cases of JT. However, the practical im-
plementation of CoMP JT heavily depends on the quality of the available CSI at
the BSs. If the quality of the CSI is low, the correct reception of the transmit-
ted symbols is a�ected by the imperfect combination of the signals transmitted
from the cooperative BSs. Additionally, the CoMP JT scheme requires the avail-
ability of the UE data at each of the cooperative BSs, which represents a strict
requirement in backhaul capacity and connectivity.

Dynamic Point Selection (DPS): for the cell-edge UEs, small modi�cations of the
channel conditions can trigger handover procedures, where the serving BS changes
from the current BS to the neighboring cell. Such handover procedures represent
signaling overheads and the possibility of ping-pong e�ects if the channel con-
ditions again vary in favor of the previously serving BS [KBL+14]. The CoMP
DPS scheme, enables the quick change per transmission time of serving BS with-
out triggering any handover procedures. In this way, the UE is served at each
transmission time by the BS providing the best SINR. Since the serving BS can
change per transmission time, the UE data needs to be simultaneously available
at each potential serving BS.

Dynamic Point Blanking (DPB): this scheme prompts the BSs to abstain from trans-
mitting data on speci�c time/frequency resources to reduce the inter-cell interfer-
ence caused to the UEs connected to neighboring BSs. If a BS does not transmit
on a particular time/frequency resource, the BS is called muted. Similar to DPS,
in DPB the BSs can be muted at each transmission time. Thus, the UE's achiev-
able data rate can be improved according to the current channel conditions.

Coordinated Scheduling (CS): another alternative of cooperation is to allow the BSs
to jointly make the scheduling decisions. In CoMP CS, the BSs manage the in-
terference experienced by the UEs in either one of the following approaches: i)
designing the beamformers in a coordinated manner, i.e., coordinated beamform-
ing, ii) assigning orthogonal resources to the BSs, i.e., muted BSs, or iii) keeping
stable interference conditions under highly varying tra�c in order to improve the
e�ectiveness of radio link adaptation procedures which select the transmit power,
modulation and coding, among others. Although the potential gains of CoMP
CS are lower than CoMP JT, the dependency of the former scheme on the CSI
is limited. Moreover, since the transmissions to each UE take place only from
its serving BS, the cooperative BSs do not need to share UE data. Thus, the
requirements on the network's backhaul are relaxed.

An illustration of the above mentioned CoMP schemes is presented in Figure 2.7,
together with the case where no cooperation takes place among the BSs. If the BSs do
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Figure 2.7. Comparison of non-cooperative and cooperative schemes. The solid arrow
represents the serving link, the dashed/dotted arrows represent the interfering links

not cooperate with each other, all the available time/frequency resources are used for
simultaneous transmissions. Thus, inter-cell interference is experienced, as illustrated
in the case (a) No CoMP. However, if CoMP JT is applied, both BSs transmit useful
signals to both connected UEs over all available time/frequency resources. Therefore,
no inter-cell interference is present and the UEs are served with maximum achievable
data rates. In the case (c) CoMP DPS/DPB, the serving BS that provides the best
SINR conditions for each UE is selected. Additionally, the BSs are muted on speci�c
time/frequency resources to avoid interference. Nevertheless, the spectral e�ciency is
negatively a�ected by the reduction of the available time/frequency resources. Finally,
CoMP CS achieves a trade-o� between spectral e�ciency loss and inter-cell interference
reduction, by jointly making scheduling decisions among the BSs, including muting on
time/frequency resources.



2.3 Integer Linear Programming 17

In the following chapters, CoMP DPB and CS with muting schemes are studied, with
the main focus relying on the latter CoMP approach.

2.3 Integer Linear Programming

One type of linear programming problems corresponds to the ILP, where one or more
variables are restricted to take only integer values. If all the variables are integers, the
problem is known as a pure-ILP. On the other hand, if some of the variables can take
continuous values, then the problem is said to be a mixed-ILP. Moreover, in the case
that the variables can only take the values in the set {0, 1}, the problem is known as a
binary-LP [BHM77]. The scheduling problem is a typical example of an ILP, where the
resources to be distributed can only take integer values, e.g., only an integer number of
PRBs can be scheduled to a UE. Moreover, from a di�erent perspective, the scheduling
problem can be modeled as a binary-LP, where the decision variable states whether a
given PRB is assigned or not, to a speci�c UE. In this work, the centralized CoMP CS
problems studied in chapters 5 and 7 are classi�ed as binary-LPs.

The problems classi�ed as ILP are generally considered to be purely combinatorial
in nature. Thus, they are typically classi�ed as non-deterministic polynomial-time
(NP)-hard. Hence, the ILP problems are known to be di�cult to solve optimally and
the computational complexity generally scales poorly with the problem size. For ILP
problems of small- to moderate-size, the commercial solvers such as CPLEX [Flo95]
or MATLAB Optimization Toolbox [Mes15] can e�ciently �nd optimal solutions. For
larger-size ILP problems, however, approximate solutions need to be found by using
fast heuristics [Wol98]. In this dissertation, commercial solvers are used to �nd optimal
solutions of the formulated problems in medium- to large-scale networks, and these
solutions are used as benchmarks to compare with state-of-the-art and proposed fast
heuristics.

2.4 System-Level Simulations

In order to evaluate the performance of the cooperative schemes proposed in this work,
system-level simulations are performed. For that purpose, an LTE-compliant system-
level simulator has been jointly extended in collaboration with the Technology Innova-
tion Division of Deutsche Telekom AG, to introduce the cooperative schemes proposed
in this thesis. From a system-level perspective, the evaluations are focused on the
network performance mainly in terms of average UE and BS throughputs.

A simpli�ed block diagram description of a system-level simulator is illustrated in
Figure 2.8 for a single iteration, where the following four modules are considered.
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Initialization
CSI

reporting
Scheduling Analysis

Figure 2.8. Simpli�ed block diagram of a system-level simulator. In this thesis, the
main focus relies on the CSI reporting and Scheduling modules, where the proposed
cooperative schemes are implemented

Initialization: the con�guration of the system-level simulation is performed in this
module, where some of the main procedures are described as follows: i) BSs and
UEs are deployed in the studied area, ii) the parameters for determining the
channel coe�cients between BSs and UEs are generated based on the network's
geometry, e.g., the location of the BSs, UEs and scatterers; where two main
channel models are typically used, such as the Spatial Channel Model (SCM)
[rGPP12] and WINNER Phase I model [SGS+05], iii) mobility and tra�c models
are de�ned and associated to the deployed UEs, and iv) initial serving relations
between the BSs and the UEs are established.

CSI reporting: in this module, the estimation and reporting process of CSI is carried
out at the UEs, as explained in Section 2.1.3. Once the CSI is available at the
BSs, it is used to support the scheduling and link adaptation procedures.

Scheduling: in this module, the available PRBs are distributed by the BSs among the
UEs for uplink/downlink transmissions. For that purpose, di�erent scheduling
approaches can be applied such as Round-Robin (RR) or Proportional Fair (PF)
schedulers [TV05,WMMZ11,ZH07]. In the following chapters, di�erent schedul-
ing strategies are proposed based on cooperative schemes as introduced in Sec-
tion 2.2.2. After making the scheduling decisions, the data transmission takes
place as con�gured by the CSI reports, where parameters such as the MCS are
speci�ed.

Analysis: �nally, the evaluation of the scheduling and link adaptation procedures
is performed in this module by means of calculating the resulting BLER and
average user throughput of the deployed UEs. Some of the key performance
parameters recommended to be evaluated in [rGPP10] are the average UE and
BS throughputs and spectral e�ciency, among others. In this thesis, the main
performance parameters are the long-term average user throughput of the cell-
edge UEs, and the mean and geometric mean of the long-term average user
throughput of all UEs.

This work is focused on the study of cooperative schemes under practical considerations
of available CSI at the transmitter. Therefore, the CSI reporting and Scheduling
modules were modi�ed with regard to the guidelines in [rGPP10], in order to support
the system-level evaluation of the proposed schemes.
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Chapter 3

Mobile Communication Networks

A general mobile communication network is considered as illustrated in Figure 3.1,
where M BSs operating in FDD mode serve N UEs in the downlink. OFDMA is as-
sumed with frequency reuse one, where at each transmission time all BSs can make
use of the same L PRBs for transmission, with the PRBs as de�ned in Section 2.1.2.
Thus, inter-cell interference a�ects the SINR and the achievable data rates of the UEs,
especially of those located at the cell-edge. Two network types are considered through-
out this work, namely, macro-only and heterogeneous networks, as introduced in Sec-
tion 2.1.1, where connectivity between the BSs is assumed through the implementation
of backhaul links. Moreover, depending on the particular scenario, the presence of a
central controller is considered as explicitly mentioned in the upcoming chapters. In
the following, the sets of indicesM = {1, . . . ,M}, N = {1, . . . , N} and L = {1, . . . , L}
are used to address the BSs, UEs and PRBs, respectively.

The received power at UE n ∈ N from BS m ∈M on PRB l ∈ L is denoted as pn,m,l.
Hence, for Single-Input-Single-Output (SISO) transmission,

pn,m,l = |qn hn,m,l|2 Φm,l, (3.1)

where Φm,l corresponds to the maximum transmit power of BS m on PRB l, the
complex coe�cient hn,m,l represents the downlink channel gain between BS m and
UE n on PRB l, aggregated over all subcarriers of PRB l, and qn is the receiver
processing gain of UE n after applying receiving processing methods such as Maximum
Ratio Combining (MRC) or Zero-forcing (ZF) [Gol05,K�06]. In (3.1) the transmitted
symbols are assumed to exhibit unit average power. Moreover, in the case of multiple
antennas at the transmitter and at the receiver, i.e., MIMO transmissions, pn,m,l as in
(3.1) can be straightforwardly extended as in [MHV+12]. The total received power at
UE n from BS m, denoted as pn,m, is obtained as the sum over all PRBs such that

pn,m =
L∑
l=1

pn,m,l. (3.2)

Generally, the serving BS for UE n ∈ N is selected as the BS from which the highest
total received power, as de�ned in (3.2), is obtained. In Section 2.1.1, it has been
explained that in the case of heterogeneous networks, the di�erence in transmit powers
between the macro BSs and the small cells is signi�cant. Thus, the total received powers
at the UEs from the macro BSs are typically larger than the received powers from the
small cells, which are deployed in the coverage area of the macro BSs. Hence, the above
mentioned selection strategy of the serving BS implies that the UEs attempt to connect
to the macro BSs despite their proximity to the small cells. As a consequence, the macro
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Figure 3.1. Mobile communication network ofM BSs and N UEs in the downlink. For
UE n, the solid arrow represents the serving link while the dashed arrows correspond
to the interfering links. Connectivity between the BSs is achieved through backhaul
links (dotted lines)

BSs need to serve a larger number of UEs while the available time/frequency/space
resources at the small cells are underutilized. In order to achieve cell-splitting gain, an
alternative serving BS selection method for heterogeneous networks is based on CRE
techniques as mentioned in Section 2.2.1. In this work, both homogeneous macro-only
and heterogeneous networks are studied, where for the latter case, CRE is applied.
The N ×M connection matrix C is de�ned, with elements

cn,m =

{
1 if UE n is served by BS m ∈M
0 otherwise,

(3.3)

characterizing the serving conditions between BSs and UEs. It is assumed that only
one BS serves UE n over all PRBs. Hence, it is worth noting that the PRB index is
not considered in C, and that ∑

m∈M
cn,m = 1 ∀n ∈ N . (3.4)

It is further assumed for simplicity, that the UEs are quasi-static, such that no handover
procedures are triggered between the BSs. Therefore, the connection matrix C is
assumed to be updated periodically at a much lower rate than the scheduling time and
it is, thus, assumed to be constant during the considered operation time.

The set of indices of BSs within the cooperation cluster, that interfere with UE n ∈ N
is de�ned as In = {m | cn,m = 0, ∀m ∈M}, with cardinality |In| = M − 1. Moreover,
since UE n experiences di�erent interfering power levels from the interfering BSs in-
dexed by In, the set of indices of the M ′ strongest interfering BSs of UE n, denoted as
I ′n, with I ′n ⊆ In, |I ′n| = M ′, is de�ned such that

min
m′∈I′n

pn,m′ ≥ max
m∈In\I′n

pn,m, (3.5)
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i.e., the set I ′n contains the indices of the M ′ interfering BSs with the highest total
received powers at UE n, as calculated in (3.2). The number of strongest interfering BSs
is bounded as 0 ≤M ′ ≤M − 1, where the sets I ′n and In are identical if M ′ = M − 1.
The sets In and I ′n apply for all PRBs in the reporting period.

One of the aspects of the cooperative schemes studied in this thesis, considers the
cooperation between the BSs in form of power control, where the BSs reduce their
own transmit powers in order to improve the interference conditions experienced by
the UEs connected to neighboring BSs. As explained in Section 2.2.2, in some of the
cooperative schemes the transmit power reduction method even mutes the BSs if it
is considered bene�cial for the network. At transmission time t, the transmit power
of BS m ∈M on PRB l ∈ L is controlled by the transmit power control parameter
ᾱm,l(t), with 0 ≤ ᾱm,l(t) ≤ 1. Therefore, the transmit power of BS m on PRB l,
denoted as φm,l, is given by

φm,l(t) = (1− ᾱm,l(t)) Φm,l, (3.6)

with Φm,l corresponding to the maximum transmit power of BS m on PRB l, as in-
troduced in (3.1). At the boundaries of ᾱm,l(t), i.e., ᾱm,l(t) = 0 or ᾱm,l(t) = 1, BS m
transmits with maximum transmit power Φm,l or, BS m is muted, respectively. In
order to simplify the notation in the remainder of this document, the dependency of
ᾱm,l(t) on the transmission time t is ignored, except for the cases where di�erentiation
between transmission times is required. Based on (3.1) and (3.6), the SINR on PRB l
of UE n, which is served by BS k ∈M, is de�ned as the ratio between the average
received signal power and the average received interference and noise powers, and it is
given by

γn,l (ᾱl) =
(1− ᾱk,l) pn,k,l
In,l (ᾱl) + σ2

, (3.7)

where the M × 1 vector ᾱl = [ᾱ1,l, . . . , ᾱM,l]
T , with [·]T denoting the transpose op-

eration, contains the transmit power control parameters of all the M BSs on PRB l.
The numerator corresponds to the average received power at UE n from the serving
BS k on PRB l, with pn,k,l as de�ned in (3.1). The �rst term in the denominator, i.e.,
In,l (ᾱl), corresponds to the average inter-cell interference power experienced by UE n
on PRB l from the remaining BSs in the network, with

In,l (ᾱl) =
∑
m∈In

(1− ᾱm,l) pn,m,l

=
∑
m′∈I′n

(1− ᾱm′,l) pn,m′,l +
∑

m∈In\I′n

(1− ᾱm,l) pn,m,l.
(3.8)

The second term in the denominator, i.e., σ2, is the additive white Gaussian noise
(AWGN) power level assumed, without loss of generality, to be constant for all UEs
over all PRBs.

The achievable data rate on PRB l ∈ L of UE n ∈ N , denoted as rn,l, is modeled as a
function of the UE's SINR, as de�ned in (3.7). Hence,

rn,l = f (γn,l) , (3.9)
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where f (γn,l) denotes a mapping from the SINR on PRB l of UE n, to the achievable
data rate.

Example 3.1. A widely used mapping based on Shannon's capacity bound is

f (γn,l) = D log2 (1 + γn,l) , (3.10)

where the scaling factor D represents the PRB bandwidth and the selected MCS
[FYL+11, rGPP16], and γn,l is de�ned in (3.7). In (3.10), it is assumed without loss
of generality, that all PRBs correspond to the same time-bandwidth product.

3.1 CSI Reports for non-Cooperative and Coopera-

tive Schemes

In order to support the scheduling schemes for both, non-cooperative and coop-
erative approaches, knowledge about the achievable data rates of the UEs, i.e.,
rn,l, ∀n ∈ N , ∀l ∈ L, as de�ned in (3.9) is required at the BSs. These achievable
data rates depend on the values of the transmit power control parameters of allM BSs
on PRB l, as expressed in ᾱl. Therefore, the BSs need to know the achievable data
rates of their connected UEs for speci�c combinations of the transmit power control
parameters, referred to as interference scenarios. For that purpose, CSI is estimated
and reported by the UEs to the serving BSs. The CSI can be of di�erent types, such as
instantaneous channel coe�cients, received powers from BSs, SINR values and average
achievable data rates. In the following, a brief description of the main characteristics
of the above mentioned CSI types is presented.

Instantaneous channel coe�cients: this typically complex-valued type of CSI repre-
sents the channels between the BSs and UEs. In the case of SISO transmis-
sion, if CSI is available in form of the instantaneous channel coe�cients hn,m,l,
∀n ∈ N , ∀m ∈M, ∀l ∈ L, as introduced in (3.1), then the computation of the
SINR, γn,l (ᾱl), and the achievable data rates, rn,l, as de�ned in (3.7) and (3.9),
respectively, can be carried out in a straightforward manner for any possible inter-
ference scenario. Despite the great �exibility associated to the knowledge of CSI
in form of instantaneous channel coe�cients, the reporting process of such CSI
represents a signi�cant overhead. Each UE needs to report complex quantities
per PRB, per BS, and per antenna link in the case of MIMO transmission.

Received powers: CSI in form of real-valued received powers at the UEs as de�ned
in (3.1), is aggregated over the multiple antennas in the case of MIMO transmis-
sion. Thus, the signaling overhead is reduced in comparison to CSI in form of
instantaneous channel coe�cients. Nevertheless, in order to compute the achiev-
able data rates, rn,l, ∀n ∈ N , ∀l ∈ L, information related to each of the BSs in
the network is still required in order to support the scheduling process for any
possible interference scenario. Therefore, if the size of the network is large, the
amount of CSI to be reported still represents a signi�cant signaling overhead.
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SINR values: this continuous real-valued type of CSI is calculated as given by (3.7)
for a speci�c interference scenario. Therefore, the amount of SINR values that
need to be reported per UE is equivalent to the number of interference scenarios
under investigation. If the number of interference scenarios considered for CoMP
operation is large, and taking into account the continuous nature of the SINR
values, the signaling overhead in terms of bits can still be prohibitive.

Average achievable data rates: CSI in form of achievable data rates as de�ned in (3.9),
can be calculated for any level of granularity, starting from a single subcarrier and
ending in a wide-band achievable data rate value. As mentioned in Example 3.1,
the achievable data rates are typically calculated with the logarithmic function
of the SINR according to the Shannon's capacity bound. Therefore, similar to
the case of CSI in form of SINR values, multiple achievable data rates need to be
reported as the number of interference scenarios under investigation. However, in
contrast to the continuous real-valued SINR information, these achievable data
rates generally correspond to a �nite MCS in practical networks. Thus, the
achievable data rates are characterized by discrete indices which can be reported
with less bits as compared to the CSI in form of SINR values.

In the literature it is common to assume perfect CSI knowledge in form of the instan-
taneous channel coe�cients as described above. In this dissertation, one of the major
contributions is to study the mobile communication networks from a more practical
perspective. Therefore, in this work it is assumed that the CSI is reported as standard-
ized for LTE and LTE-Advanced networks, as described in Section 2.1.3. Thus, CSI
is considered to be in form of average achievable data rates, in the following referred
to as CSI reports, where each CSI report describes the average achievable data rates
for a speci�c interference scenario. Furthermore, the CSI reports are di�erentiated
according to the type of reference signals used for their calculation. Hence, the CSIR-8

reports refer to CSI reports generated from LTE Release-8 CRSs, while the CSIR-11

reports are generated based on LTE-Advanced CSI-RSs. The information provided by
the CSIR-8 reports supports one particular interference scenario corresponding to the
non-cooperative case, where all BSs constantly transmit with maximum transmit power
over all PRBs. The information provided by multiple CSIR-11 reports re�ects di�erent
interference scenarios, including the non-cooperative case. In the following chapters, it
is assumed that a total of J interference scenarios are signaled by the CSIR-11 reports,
with each interference scenario addressed by the index set J = {1, . . . , J}. For inter-
ference scenario j ∈ J , the CSIR-11 report contains the information of the SINR and
achievable data rate on PRB l ∈ L of UE n ∈ N , denoted as γn,l,j and rn,l,j, respec-
tively, which follow the de�nitions in (3.7) and (3.9).

In Section 2.1.3, the timing of the CSI reports has been depicted in Figure 2.5, where the
CSI reportR0 is generated at the transmission time T and it is used at the transmission
times T+δ ≤ t ≤ 2T+δ. It is possible that the transmit power control parameters, and
hence, the interference scenario, vary from the time when the CSI report is generated,
to the moment when the CSI report is actually used. Moreover, some CSI reports
can even represent hypothetical interference scenarios. Therefore, the transmit power
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control parameters used for transmission, and for the generation of the CSI reports,
are distinguished as follows. The variable αm,l describes the transmit power control
parameter of BS m ∈M on PRB l ∈ L, as assumed in the generation of the CSI
report. On the other hand, the variable ᾱm,l refers to the transmit power control
parameter used at the current transmission time, as a result of the implementation of
the cooperative schemes under investigation.

Example 3.2. The CSIR-8 reports support only one interference scenario, i.e., J = 1,
where α = ᾱ = 0M×L, where 0M×L is an M × L matrix with zero elements. There-
fore, in the non-cooperative case, all BSs transmit with maximum transmit power
Φm,l, ∀m ∈M, ∀l ∈ L, as introduced in (3.1).

Example 3.3. In a speci�c CSI-RS con�guration, BS m ∈M can be de�ned as not
transmitting, i.e., muted, so that the CSIR-11 report provides information regarding
the achievable data rates for CS with muting. In that case, the CSIR-11 report as-
sumes the transmit power control parameters to be α = 0mM×L, where 0mM×L is an
M × L matrix with zero elements in all but the m-th row, which contains one ele-
ments. If at the time of generating the CSIR-11 report, the set M̃ of BSs such that
φm̃,l < Φm̃,l, m̃ 6= m, ∀m̃ ∈ M̃, ∀l ∈ L, is not empty, then α 6= ᾱ.

In order to reduce the signaling overhead and the number of studied interference sce-
narios, as denoted by J , the proposed schemes consider the cooperation of a subset of
interfering BSs per UE n ∈ N . The set of indices of cooperative interfering BSs of UE n
is denoted by Icn, with Icn ⊆ I ′n ⊆ In. In the following chapters, a detailed description
of the BSs that belong to the set Icn is given according to the studied cooperative
scheme.

3.2 Scheduling Strategy

In downlink transmissions, the BSs can apply di�erent scheduling strategies in order to
serve the connected UEs such as RR or PF scheduling [TV05,WMMZ11,ZH07]. In the
former scheduling strategy, the BSs attempt to distribute the time/frequency resources
in a fair fashion among the served UEs. Although the RR scheduler is fair in terms
of scheduled time/frequency resources, this strategy negatively a�ects the spectral
e�ciency of the network since the opportunity to exploit favorable channel conditions
is limited by the fairness constraint. In the case of the opportunistic PF scheduler, a
trade-o� between user throughput and fairness is pursued, where the objective is to
maximize the sum over all UEs, of the PF metrics given by

Ωn =
rn
Rn

∀n ∈ N . (3.11)

For UE n ∈ N , the ratio between the total instantaneous achievable data rate and the
average user throughput over time, denoted by rn and Rn, respectively, is considered
in (3.11). The total instantaneous achievable data rate of UE n is calculated as

rn = g (rn,l,j, ᾱ) ∀l ∈ Ľn, ∀j ∈ J , (3.12)
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where g(·) denotes a function of the achievable data rates of UE n, as de�ned in (3.9),
over the PRBs scheduled to UE n as described by the index set Ľn, and the matrix ᾱ
of transmit power control parameters. The average user throughput over time of UE n
at transmission time t is de�ned by an averaging window and it is updated based on
the scheduling decisions made at the previous transmission time t− 1. Therefore,

Rn(t) = κRn(t− 1) + (1− κ) rn(t− 1), (3.13)

with κ = 0.97, denoting the forgetting factor parameter used to trade o� user through-
put and fairness [Mot06]. The total instantaneous achievable data rate of UE n, at the
previous transmission time, denoted by rn(t− 1), is calculated as given by e.g., (3.12).
Hence, the PF scheduler serves the UEs experiencing favorable channel conditions, and
thus, having high total instantaneous achievable data rates, together with the UEs that
have not been served for a certain period, which have a low average user throughput
over time.

In this dissertation, both, non-cooperative and cooperative schemes are based on a PF
scheduler, where it is assumed without loss of generality that single-user transmissions
are carried out, i.e., each available PRB is scheduled to only one UE per BS.
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Chapter 4

Cooperative Power Control for Hierarchical

Mobile Communication Networks

In this chapter, cooperative power control is studied in a heterogeneous network operat-
ing under the License Shared Access (LSA) principle [Rad11]. The incumbent network,
corresponding to the small cells, owns the available time/frequency resources. The li-
censee system is represented by the macro BSs which are allowed to transmit on the
same time/frequency resources as the small cells, if minimum requirements regarding
the SINR and the equivalent achievable data rates of the UEs connected to the small
cells are satis�ed. As explained in Section 2.1.1, the di�erence in the transmit powers
of the macro and small cells is signi�cant. Therefore, the cooperative scheme investi-
gated in this chapter, dynamically applies a power control procedure which decreases
the transmit power of the macro BS in order to reduce the interference experienced
by the UEs connected to the small cells. If required, the macro BSs can even mute
transmissions on particular time/frequency resources, which resembles the CoMP DPB
scheme as described in Section 2.2.2.

In order to support the cooperative power control method, a minimum number of
CSIR-11 reports as explained in Section 2.1.3 is required. These CSIR-11 reports, re�ect
the behavior of the incumbent network with and without the interference caused by the
licensee system. Thus, the derived cooperative scheme calculates the required transmit
power reduction of the macro BSs to ful�ll the achievable data rate requirements of
the UEs connected to the small cells.

One major di�erence of the cooperative scheme investigated in this chapter, with re-
spect to the cooperative schemes derived in the remaining chapters, is the separation
between the scheduling and the power control procedures. Given the assumption of an
LSA framework in this chapter, the macro and small cells make independent scheduling
decisions based on their individual objectives of maximizing their PF metrics as intro-
duced in Section 3.2. Once the scheduling decisions are made, the macro BSs apply
the cooperative power control procedure. In contrast, the remaining chapters focus on
CoMP CS, where the scheduling and power control decisions are jointly made by the
cooperative BSs in the network.

4.1 State-of-the-art and Contributions

In order to reduce the inter-cell interference, power control is one of the most studied
approaches in cellular communication networks. In the speci�c case of heterogeneous
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networks, a plethora of schemes are available in the literature for uplink and downlink
transmissions with some examples described as follows.

In [MBS+10], joint cell association and power control is studied in order to enhance
the user throughput of the heterogeneous networks. With regard to the power control,
semi-static and dynamic approaches are considered. In the semi-static approaches,
frequency reuse patterns are de�ned which are used for a long time span, while in
the dynamic case, the transmit powers of the BSs are calculated on a transmission
time basis. Due to the complexity of the optimization problem, iterative algorithms
are used to solve the joint formulation in [MBS+10]. A similar problem is studied
by the authors in [CHS+14], where the macro BSs vary their own transmit powers in
order to adapt the user association and the inter-cell interference. The power control
only applies for a prede�ned set of frequency resources, named the capacity band,
while on the remaining frequency resources the macro BSs transmit with maximum
transmit power. Moreover, the power reduction is equally applied for all the frequency
resources in the capacity band. Another approach that applies fractional frequency
reuse, i.e., less than the maximum transmit power is applied on certain frequency bands,
is proposed in [LHXQ13] for a heterogeneous network with prede�ned user association.
In order to maximize the long-term log-scale user throughput, the proposed optimal
fractional frequency reuse scheme determines then, the size of the frequency bands and
the transmit power on each of them. With respect to the scheduling, the served UEs are
pre-assigned to the corresponding frequency bands. Thus, the �exibility of the applied
scheduler is limited to these pre-assigned frequency bands per UE. With respect to
CoMP, the discussion in [CKL+11] considers a di�erent deployment scenario, where
the small cells are part of the macro BS in the form of Remote Radio Heads (RRHs).
In order to reduce the interference in the resulting Distributed Antenna System (DAS),
great �exibility on the selection of the serving cells and the possibility to apply power
control for speci�c RRHs is ensured. Nevertheless, high demanding requirements on
the backhaul connections and the complexity imposed to the algorithms applied by the
macro BSs, represent a challenge for the implementation of such DASs. Furthermore,
the schemes proposed in [FSCK10] study CoMP DPS/DPB, where the power control
consists of binary decisions on whether to transmit with maximum transmit power
or to mute the BSs on particular time/frequency resources. With exception of the
approach in [FSCK10], the above mentioned schemes do not consider limitations on
the knowledge of CSI. Thus, it is assumed that instantaneous channel coe�cients are
available at a central entity to carry out the power control schemes.

The cooperative power control scheme studied in this chapter is derived in relation to a
heterogeneous network operating under the LSA principle. In that case, the objective
of the cooperation is to ensure that the simultaneous transmissions of the licensee
system, i.e., the macro BSs, have a limited impact on the performance in terms of
user throughput of the incumbent users, i.e., the UEs connected to the small cells.
In [NTP15], a coordinated beamforming scheme is proposed, where in contrast to the
scheme investigated in this dissertation, the licensee system corresponds to the small
cells deployed within the coverage area of a macro BS, which is considered to be the
incumbent transmitter.
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The major contributions of this chapter are summarized as follows.

• In order to enhance the user throughput of the UEs connected to the small cells,
which are located within the coverage area of the macro BSs, a cooperative power
control scheme is proposed where the macro BSs reduce their own transmit powers
to reduce the interference in the small cells.

• The studied cooperative power control scheme requires a minimum exchange of
CSIR-11 reports between the macro and small cells, in order to dynamically select
the transmit power of the macro BSs on a PRB basis.

• The formulated problem is solved by close-form expressions with low computa-
tional complexity. Thus, the proposed method is applicable for large-size hetero-
geneous networks and/or for networks with limited backhaul and computation
capabilities.

4.2 System Model

In this section, the system model of Chapter 3 is extended to the particular scenario
under investigation, which consists of a heterogeneous cellular network whereM macro
BSs and S small cells operating in FDD mode, serve N UEs in the downlink. At each
transmission time, all BSs, i.e., macro and small cells, can make use of the same L
PRBs for transmission, provided that the UEs connected to the small cells achieve a
certain user throughput under the inter-cell interference caused by the macro BSs. The
set of indicesM = {1, . . . ,M}, S = {1, . . . , S}, N = {1, . . . , N} and L = {1, . . . , L}
are used to address the macro BSs, the small cells, the UEs and the PRBs, respectively.
Moreover, the set of indices Sm ( S,∀m ∈ M is de�ned to indicate the indices of the
small cells located within the coverage area of the macro BS m, where it is assumed
that each small cell is associated to only one macro BS. Thus,

Sb ∩ Sk = ∅ ∀b, k ∈M | b 6= k, (4.1)

where ∅ denotes the empty set.

A cooperation cluster is formed by one macro BS m ∈M, in the following referred
to as the cooperative macro BS, and the small cells located within its coverage area,
i.e., BS k,∀k ∈ S such that k ∈ Sm. In order to reduce the interference caused to
the UEs connected to the small cells in the cooperation cluster, a cooperative power
control scheme is carried out by the cooperative macro BS. A cooperation cluster
is illustrated in Figure 4.1, where it is assumed that the cooperative macro BS m is
connected through an ideal backhaul link to the small cell BS k. In the following, the
discussion is focused on a single cooperation cluster as illustrated in Figure 4.1, with
the remaining cooperation clusters in the heterogeneous network behaving similarly.
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BS m

BS k

UE v

UE u

pu,kpu,m

Figure 4.1. Cooperation cluster consisting of one cooperative macro BS m and a small
cell BS k to improve the performance of the UE u, connected to the BS k. The solid
arrows represent the serving links, while the dashed arrows correspond to the interfering
links. Connectivity between the BSs is achieved through backhaul links (dotted lines)

The received powers at UE n ∈ N from macro BS m ∈M on PRB l ∈ L, denoted as
pn,m,l, and from small cell BS k, ∀k ∈ S such that k ∈ Sm, denoted as pn,k,l, are de�ned
according to (3.1), where Φm,l and Φk,l correspond to the maximum transmit powers
of macro BS m and small cell BS k, respectively. Furthermore, the total received
powers at UE n from BS m and BS k, denoted as pn,m and pn,k, respectively, are
calculated as in (3.2). As previously discussed in Sections 2.1.1 and 2.2.1, one of the
bene�ts of implementing heterogeneous networks is the possibility of achieving cell-
splitting gains, where additional PRBs are in average available per UE. However,
in order to achieve these cell-splitting gains, load balancing is necessary, i.e., a fair
distribution of served UEs among the macro BSs and the small cells. Due to the
signi�cant di�erence between the transmit powers from the macro BSs and the small
cells, where Φm,l > Φk,l, ∀m ∈ M, ∀k ∈ S, the load balancing is negatively a�ected.
Thus, in this chapter it is assumed that CRE is applied, where the serving BS for UE n
is selected as the BS providing the maximum received power after adding a constant
o�-set to the received power from the small cells. Mathematically, the serving BS for
UE n is de�ned as

arg max
b∈M∪S

pn,b + ϕb, (4.2)

where pn,b is calculated as in (3.2), and the CRE o�-set parameter, denoted as ϕb, is
given by

ϕb =

{
0 if BS b ∈M
Φ̃ if BS b ∈ S,

(4.3)

with Φ̃ a constant value. Thus, the connection matrix C of size N ×M + S is de�ned
similarly to (3.3), with elements

cn,b =

{
1 if UE n is served by BS b ∈M∪ S
0 otherwise,

(4.4)
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characterizing the serving conditions between BSs and UEs. Given that the cooperation
takes place between the macro BS m and the small cells located within its coverage
area, the set of indices of cooperative interfering BSs of UE n, introduced in Chapter 3,
is given by

Icn =

{
{m} if cn,k = 1, ∀m ∈M, ∀k ∈ S | k ∈ Sm
∅ otherwise.

(4.5)

Therefore, the macro BS m is considered as the cooperative interfering BS of the UEs
served by the small cells, located within the coverage area of BS m. On the other
hand, the UEs connected to the macro BSs do not require cooperation, since these
UEs belong to the licensee system, and thus, the index set of cooperative interfering
BSs is empty.

Example 4.1. In Figure 4.1 an exemplary cooperation cluster is illustrated, where
UE u is served by the small cell BS k as depicted by the solid green arrow, i.e., cu,k = 1.
Therefore, UE u experiences interference from BS m as illustrated by the dashed red
arrow, with cu,m = 0. Similarly, UE v is served by BS m, i.e., cv,m = 1 and experiences
interference from the small cell BS k, i.e., cv,k = 0. Furthermore, the sets of indices of
cooperative interfering BSs of UE u and UE v are Icu = {m} and Icv = ∅, respectively.

The objective of the cooperative power control scheme carried out at the macro
BS m ∈M, is to reduce the interference experienced by the UEs connected to the
small cells located within its coverage area. For that purpose, the cooperative macro
BS m scales its maximum transmit power on PRB l ∈ L, according to the transmit
power control parameter ᾱm,l, with 0 ≤ ᾱm,l ≤ 1, as introduced in Chapter 3. In the
following, the transmit power control parameter is referred to as the transmit power
scaling factor. Based on (3.7), the SINR on PRB l of UE u ∈ N , connected to the
small cell BS k,∀k ∈ S such that k ∈ Sm, is de�ned as

γscu,l (ᾱl) =
pu,k,l

Icu,l (ᾱl) + Inc-scu,l (ᾱl) + σ2
, (4.6)

where the M × 1 vector ᾱl contains the transmit power scaling factors of all the macro
BSs in the network on PRB l. It is assumed, without loss of generality, that the
small cells always transmit with maximum transmit power, i.e., Φk,l, ∀k ∈ S, ∀l ∈ L.
Thus, the numerator of (4.6) describes the average received power at UE u from the
serving BS k on PRB l, without any transmit power scaling factor or, in other words,
αk,l = 0,∀k ∈ S, ∀l ∈ L. The denominator in (4.6) consists of the inter-cell interference
and the noise powers at UE u on PRB l. The �rst term in the denominator corresponds
to the interference from the cooperative macro BS m, denoted by Icu,l and de�ned as

Icu,l (ᾱl) = (1− ᾱm,l) pu,m,l, (4.7)

where the dependency on the transmit power scaling factor ᾱm,l is highlighted. The
interference from the remaining BSs in the network is given by

Inc-scu,l (ᾱl) =
∑

b∈M\Icu

(1− ᾱb,l) pu,b,l +
∑

k′∈S | k′ 6=k
pu,k′,l, (4.8)
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with the �rst term corresponding to the interference from the additional macro BSs in
the network, and the second, representing the interference from the remaining small
cells. Again, the dependency on the transmit power scaling factor is highlighted for the
interference caused by the remaining macro BSs. The AWGN power is denoted by σ2,
which is assumed without loss of generality to be constant for all UEs over all PRBs.
Similarly, the SINR on PRB l of UE v ∈ N , connected to the cooperative macro BS m,
is de�ned as

γmc

v,l (ᾱl) =
(1− ᾱm,l) pv,m,l
Inc-mc

v,l (ᾱl) + σ2
, (4.9)

where the numerator corresponds to the average received power at UE v from the
serving macro BS m on PRB l, which depends on the transmit power scaling factor
ᾱm,l. The denominator is composed by the inter-cell interference at UE v on PRB l,
given by

Inc-mc

v,l (ᾱl) =
∑

b∈M | b6=m
(1− ᾱb,l) pv,b,l +

∑
k′∈S

pv,k′,l, (4.10)

and the noise power σ2. Furthermore, the achievable data rate on PRB l of UE n ∈ N
is de�ned as in (3.9), where the SINR on PRB l of UE n depends on the serving BS
for UE n, such that

γn,l =

{
γscn,l if UE n is served by BS k ∈ S
γmc

n,l if UE n is served by BS m ∈M,
(4.11)

with γscn,l and γ
mc

n,l de�ned in (4.6) and (4.9), respectively.

De�nition 4.1. In this chapter, the achievable data rate on PRB l ∈ L of UE n ∈ N
is calculated with the function f (γn,l), as given by (3.10) in Example 3.1, where the
SINR on PRB l of UE n is calculated as in (4.11).

4.2.1 Available CSI reports

In order to support the scheduling and cooperative power control procedures, CSI at
the transmitters, i.e., at the BSs, is required. In this section, it is assumed that CSI
is available at the BSs in form of the CSIR-11 reports as explained in Section 3.1. In
the following, a description of the di�erent CSIR-11 reports generated by the UEs and
used by the BSs is presented, where the M ×L matrix α is employed in order to refer
to the assumed transmit power scaling factors of all M macro BSs over all L PRBs,
associated to a speci�c CSIR-11 report.

CSI reports for scheduling and link adaptation

From a network perspective, all the N UEs generate CSIR-11 reports to support the
scheduling and link adaptation procedures, which are carried out at the serving BSs.
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In order to calculate the achievable data rates of UE n, denoted by rn,l, as given in
De�nition 4.1, the UEs use the SINR values, γn,l, ∀n ∈ N , ∀l ∈ L, as de�ned in (4.11),
in the generation of the CSIR-11 reports. Thus, the achievable data rates rn,l, signaled
in the CSIR-11 reports, re�ect the values of the transmit power scaling factors ᾱ, for
the M macro BSs, which were used at the time of generating such CSIR-11 reports.
Therefore, α = ᾱ.

CSI reports for cooperative power control scheme

At each cooperation cluster with cooperative macro BS m ∈M and small cells indexed
by Sm, the UEs connected to the small cells, i.e., UE n, ∀n ∈ N ,∀k ∈ Sm | cn,k = 1,
generate additional CSIR-11 reports to support the cooperative power control scheme
carried out at the cooperative macro BS m. As explained in Section 3.1, the additional
CSIR-11 reports re�ect di�erent interference scenarios with respect to the transmit
power of the cooperative macro BSm. A total of J = 2 additional interference scenarios
are considered as follows.

In a �rst interference scenario, the cooperative macro BSm ∈M is assumed to transmit
with maximum transmit power Φm,l, ∀l ∈ L, i.e., the macro BS does not cooperate
with the small cells located within its coverage area. Thus, from (4.6), the SINR on
PRB l of UE n ∈ N , connected to the small cell BS k ∈ S, located within the coverage
area of the macro BS m such that k ∈ Sm, is de�ned as

γn,l,j0m =
pn,k,l

pn,m,l + zn,l
. (4.12)

In (4.12), the index j0
m is used to indicate the interference scenario with the transmit

power scaling factor of the cooperative macro BS m considered to be αm,l = 0, ∀l ∈ L,
and the term zn,l, contains the inter-cell interference from the remaining BSs and the
noise power on PRB l. A second interference scenario considered in the CSIR-11 reports,
denoted as j1

m, assumes the cooperative macro BS m to abstain from transmitting, i.e.,
αm,l = 1, ∀l ∈ L. Therefore, the SINR on PRB l of UE n under the assumption of no
interference from the cooperative macro BS m, is given by

γn,l,j1m =
pn,k,l
zn,l

. (4.13)

It is worth noting that given the de�nition of the cooperation cluster with cooperative
interfering BSs as in (4.5), the UEs connected to the small cells located within the
coverage area of the cooperative macro BS m, are not aware of the transmit power
scaling factors applied by the remaining macro BSs in the network. Therefore, it is
assumed that the inter-cell interference from the remaining BSs in the network, i.e.,
zn,l, is constant in the calculation of the di�erent CSIR-11 reports used to support the
cooperative power control scheme as de�ned in (4.12) and (4.13). Thus, based on (4.8),

zn,l =
∑

b∈M\Icn

pn,b,l +
∑

k′∈S | k′ 6=k
pn,k′,l + σ2, (4.14)
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Table 4.1. Summary of the CSIR-11 reports generated by UE u, served by the small cell
BS k on PRB l

CSIR-11 Data
SINR αm,l

αb,l
Description

report index rate ∀b ∈M | b 6= m

1 ru,l γscn,l ᾱm,l ᾱb,l Used for scheduling

2 ru,l,j0m γn,l,j0m 0 1 Macro BS m transmits

3 ru,l,j1m γn,l,j1m 1 1 Macro BS m muted

where it is assumed without loss of generality, that all the remaining macro BSs trans-
mit with maximum transmit power, i.e., αb,l = 0,∀b ∈M | b 6= m, in order to generate
conservative CSIR-11 reports. Based on the assumption on the inter-cell interference
from (4.14), the interference scenarios de�ned in (4.12) and (4.13) represent the lower
and upper bounds, respectively, of the SINR on PRB l of UE n, with respect to the
interference caused by the cooperative macro BS m.

As explained in Section 2.1.3, in order to reduce signaling overhead, the CSIR-11 reports
supported in LTE-Advanced contain information of the achievable data rates as given in
De�nition 4.1. As previously mentioned, the UEs connected to the small cell BS k ∈ S
located within the coverage area of the macro BS m ∈M, such that k ∈ Sm, gener-
ate two additional CSIR-11 reports to support the cooperative power control scheme.
Therefore, the additional CSIR-11 reports correspond to the interference scenarios with
the cooperative macro BS m either transmitting with maximum transmit power, or
muted. These two interference scenarios are then described by the achievable data
rates, denoted as rn,l,j0m and rn,l,j1m , ∀n ∈ N | cn,k = 1, ∀l ∈ L, respectively. In order to
support the cooperative power control scheme, it is assumed that the BSs are able to
translate the reported achievable data rates into the corresponding experienced SINRs
by applying De�nition 4.1.

Example 4.2. Continuing with the exemplary cooperation cluster from Example 4.1,
Table 4.1 summarizes the CSIR-11 reports generated by UE u, which is served by the
small cell BS k on PRB l ∈ L. It is assumed that BS m corresponds to the cooperative
macro BS, i.e., Icu = {m}.

4.2.2 Scheduling strategy

Supported by the CSIR-11 reports, the BSs in the cooperation cluster, i.e., the macro
BS and the small cells located within its coverage area, independently perform the
scheduling procedure. In Section 3.2, the PF scheduler has been introduced, where
the BSs pursue a trade-o� between user throughput and fairness. In this chapter, it
is assumed without loss of generality, that the BSs apply the PF scheduling strategy,
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where single-user transmissions are carried out. That is, each BS assigns one UE per
available PRB.

After the scheduling decisions are made, these decisions are transmitted from the small
cells to the cooperative macro BS, together with the CSIR-11 reports of the UEs to be
served, in order for the cooperative macro BS to perform the cooperative power control
scheme.

4.3 Power Control Scheme

The description of the cooperative power control scheme is focused on a single coop-
eration cluster with cooperative macro BS m ∈M and small cells BS k,∀k ∈ S such
that k ∈ Sm. It is assumed that the remaining cooperation clusters in the network
behave similarly. For the UE n ∈ N to be served by the small cell BS k on PRB l ∈ L,
the impact of the interference caused by the cooperative macro BS m, with respect to
the additional interference and noise zn,l, as introduced in (4.14), is de�ned as

γ̄n,l =
pn,m,l
zn,l

=
γn,l,j1m
γn,l,j0m

− 1, (4.15)

where the information from the CSIR-11 reports, for the interference scenarios with
and without interference from the cooperative macro BS m, denoted as j0

m and j1
m as

given in (4.12) and (4.13), respectively, has been used. The impact coe�cient γ̄n,l, as
de�ned in (4.15), indicates the in�uence of the cooperative macro BS m on UE n to
be served on PRB l. That is, if γ̄n,l = 0, UE n does not experience interference from
the cooperative macro BS m, and if γ̄n,l is large, the interference experienced by UE n
from the cooperative macro BS m on PRB l is signi�cant, and thus, UE n can bene�t
from any reduction on the transmit power of the cooperative macro BS m.

With respect to the interference scenario where the cooperative macro BS m ∈M
transmits with maximum transmit power Φm,l on PRB l ∈ L, denoted by j0

m, the
achievable data rate gain on PRB l of UE n ∈ N , to be served by the small cell
BS k ∈ S such that k ∈ Sm, is de�ned as

ηn,l =
rn,l
(
ᾱnm,l

)
rn,l,j0m

=
D log2 (1 + γn,l)

D log2

(
1 + γn,l,j0m

) , (4.16)

where the numerator corresponds to the achievable data rate on PRB l of UE n, with
the cooperative macro BS m transmitting with transmit power scaling factor ᾱnm,l. For
the calculation of the achievable data rates in (4.16), De�nition 4.1 with scaling factor
D is used under the assumption of the remaining interference and noise being de�ned
as in (4.14). The achievable data rate gain of UE n to be served on PRB l, i.e., ηn,l,
is considered to be a design parameter and it is therefore, known by the cooperative
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macro BS m. Hence, in order to obtain the design achievable data rate gain ηn,l, the
required SINR of UE n to be served on PRB l, is given by

γn,l =
(
1 + γn,l,j0m

)ηn,l − 1, (4.17)

where the property of logarithms

logx (ay) = y logx (a) , (4.18)

has been used in (4.16).

Furthermore, the SINR gain of UE n ∈ N to be served on PRB l ∈ L, required to
obtain the design achievable data rate gain ηn,l, is de�ned as

Γn,l =
γn,l
γn,l,j0m

, (4.19)

where γn,l is calculated according to (4.17), and γn,l,j0m is obtained from the CSIR-11

reports as de�ned in (4.12). Similar to the design achievable data rate gain ηn,l, the
SINR gain of UE n to be served on PRB l is considered to be known by the cooperative
macro BS m ∈M. The goal of the cooperative power control scheme is to determine
the transmit power scaling factor of the cooperative macro BS m, in order to enhance
the achievable data rate on PRB l of UE n, to be served by the small cell BS k ∈ S
such that k ∈ Sm, denoted as ᾱnm,l. For that purpose, the SINR gain of UE n to be
served on PRB l, Γn,l, is rede�ned based on the calculation of γn,l as in (4.6), such that

Γn,l =
pn,m,l + zn,l(

1− ᾱnm,l
)
pn,m,l + zm,l

, (4.20)

with the additional interference and noise powers given in (4.14). Based on the de�-
nition in (4.15) of the impact coe�cient γ̄n,l, and by solving from the SINR gain Γn,l,
given in (4.20), the required transmit power scaling factor of the cooperative macro
BS m, to obtain the design achievable data rate gain ηn,l, is de�ned as

ᾱnm,l (ηn,l) = 1− γ̄n,l − Γn,l + 1

γ̄n,l Γn,l
. (4.21)

Moreover, in the case that multiple small cells are located within the coverage area
of the cooperative macro BS m, the transmit power scaling factor of the cooperative
macro BS m corresponds to the maximum required value, among the UEs to be served
by the small cells on PRB l. Therefore, by denoting the set of UEs to be served on
PRB l by the small cells, which are located within the coverage area of the cooperative
macro BS m, as N sc

m,l, the selected transmit power scaling factor of the cooperative
macro BS m is

ᾱm,l = max
n∈N sc

m,l

ᾱnm,l (ηn,l) . (4.22)

In practice it may not always be possible to obtain all design achievable data rate gains
under the constraint that the transmit power scaling factor ᾱm,l, lies in the range of
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0 ≤ ᾱm,l ≤ 1, ∀m ∈ M,∀l ∈ L, as introduced in Section 4.2. Moreover, speci�c
requirements on the transmit power of the macro BSs can be de�ned in the context of
the LSA principle. Therefore, choosing ᾱmin and ᾱmax, as the lower and upper bounds
for the transmit power scaling factor, respectively, with 0 ≤ ᾱmin ≤ ᾱmax ≤ 1, a
thresholded version of the transmit power scaling factor, denoted as α̃m,l, is applied in
practice and computed as

α̃m,l =


ᾱmin if ᾱm,l ≤ ᾱmin

ᾱm,l if ᾱmin ≤ ᾱm,l ≤ ᾱmax

ᾱmax if ᾱm,l ≥ ᾱmax,

(4.23)

with ᾱm,l de�ned in (4.21). The thresholds ᾱmin and ᾱmax can be chosen to respect
power budget limitations or to avoid that the cooperative macro BS m ∈M is muted,
respectively.

4.4 Simulation Results

In order to evaluate the performance of the proposed cooperative power control scheme,
system-level simulations are carried out by following the 3GPP recommendations
in [rGPP10, rGPP11, rGPP13c]. A total of M = 57 macro BSs and S = 57 pico cells,
serve N = 1710 UEs in the downlink, with an inter-site distance of 500 m for the macro
BSs. The selected transmission scheme is the Single-Input-Multiple-Output (SIMO)
operation mode with users containing two receive antennas. The equivalent isotropi-
cally radiated power (EIRP) of the macro BSs and pico cells di�er by 23.4 dBm, with
maximum transmit powers of 63.4 dBm and 40 dBm, respectively. For the selection
of the serving cell, the users apply a CRE o�-set to prioritize the pico cells over the
macro BSs. Thus, users connect to the pico cells even if the received power from the
macro BSs is higher (up to 6 dB di�erence). Hence, o�-loading the macro BSs. In
this situation, users within the CRE area are a�ected by very high inter-cell interfer-
ence. The UEs apply an MRC receiver which provides an e�ective SISO channel, as
assumed in the formulation of Section 4.2. Moreover, ideal link adaptation and full-
bu�er transmissions are assumed, i.e., the decoding in the simulations is error-free and
the users demand as much data as possible. For more information on 3GPP-compliant
system-level simulations, including channel and path loss models, the interested reader
is referred to [rGPP10] (see 3GPP Case 6.2 from Section A.2.1).

It is considered that the proposed cooperative power control scheme is performed be-
tween a macro BS and the pico cell located within its coverage area, as explained in
Section 4.2. Moreover, it is assumed that the scheduling information from the pico
cell is shared with the cooperative macro BS, in order to calculate the transmit power
scaling factors α̃m,l, ∀m ∈M, ∀l ∈ L, as de�ned in (4.23).

The results are presented in terms of the long-term average user throughput, which is
calculated per UE as the total amount of received data over the simulated time. There-
fore, the long-term average user throughput is expressed in bits per second (bps). Since
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the performance of the cell-edge UEs is of particular interest, the cell-edge throughput
is considered, where the average user throughput is calculated from the worst 5 % of
the UEs in the network. Moreover, the mean of the average user throughput is also
presented, involving all the deployed UEs.

4.4.1 Impact of the transmit power reduction schemes

The simulation results presented in this section, illustrate the impact of applying trans-
mit power control to the heterogeneous network under investigation. In order to assess
the average in�uence of the proposed cooperative power control scheme on the user
throughput of the UEs connected to the macro BSs and the small cells, the transmit
power scaling factors of the macro BSs are set to constant values during the complete
simulation time.

Potential gains for di�erent network deployments

In order to analyze the performance of the proposed cooperative power control scheme,
initial simulations are carried out to identify the deployment scenario of the small cells,
in which the implementation of such a cooperative power control scheme can poten-
tially improve the network performance in terms of user throughput. Four deployment
scenarios are considered related to the distribution of the UEs in the network, and the
separation distance of the small cells to the macro BSs. The UEs are either uniformly
distributed in the studied area, denoted as �Un�, or in a hotspot fashion, labeled as
�Hs�, where the probability of the UEs being located closer to a pico cell is higher.
With respect to the separation distance between macro BSs and small cells, the small
cells are located either at the cell-center or at the cell-edge, where in the former, a
separation distance of 125 m from the cooperative macro BS is considered, labeled as
�0.25�, and in the latter, a separation distance of 250 m from the cooperative macro
BS is assumed, referred to as �0.5�, with the labels denoting the applied factor to the
inter-site distance between the macro BSs.

The average user throughput of the cell-edge UEs, i.e., the cell-edge throughput, is
presented in Figure 4.2 for the di�erent network deployments, where a comparison
with respect to a network without any cooperative power control scheme is illustrated.
In the case of the cooperative power control scheme, the results are normalized with
respect to the results obtained when no cooperation takes place. A constant value of
the transmit power scaling factor is assumed for all M macro BSs, with α̃m,l = 0.5,
∀m ∈M, ∀l ∈ L, that is, the macro BSs transmit with half of the maximum transmit
power Φm,l. Moreover, the results are presented with respect to the UEs served by
the macro BSs, i.e., �Macro�, the UEs served by the pico cells, labeled as �Pico�, and
all the UEs, referred to as �Total�. In Figure 4.2, it is observable that by applying
the cooperative power control scheme with a constant transmit power scaling factor,
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Figure 4.2. Cell-edge throughput for di�erent heterogeneous network deployments.
(a) Power control is not applied. (b) Constant power control with α̃m,l = 0.5,
∀m ∈M, ∀l ∈ L, where the user throughput is normalized with respect to the sce-
nario without any cooperation

the user throughput of the cell-edge UEs connected to the pico cells improves signi�-
cantly, while the performance of the UEs served by the macro BSs is slightly reduced
with respect to the scenario without any cooperation. Furthermore, the deployment
scenario with uniformly distributed UEs and small cells located at the cell-center, i.e.,
�Un-0.25� presents the highest potential for the application of the cooperative power
control scheme and it is, therefore, selected for the remaining simulations in this sec-
tion. Similarly, the mean of the average user throughput is presented in Figure 4.3.
However, as explained in Section 2.2.2, the cooperative schemes mainly target to im-
prove the performance of the cell-edge UEs, and therefore minimal gains with respect
to the scenario without cooperation are observable.

Performance with respect to the transmit power scaling factor

In the simulation results from �gures 4.2 and 4.3, the transmit power scaling factors of
the cooperative macro BSs were set constant to a value of α̃m,l = 0.5, ∀m ∈M, ∀l ∈ L.
In this section, a study of the performance gains in terms of user throughput, with
respect to the constant value of the transmit power scaling factors α̃m,l, is presented
for the selected deployment scenario Un-0.25.

The cell-edge and mean of the average user throughput are presented in Fig-
ure 4.4 for di�erent values of the transmit power scaling factors α̃m,l, with
α̃m,l = {0.1, . . . , 0.9}, ∀m ∈M, ∀l ∈ L, where the results are normalized with respect
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Figure 4.3. Mean of the average user throughput for di�erent heterogeneous net-
work deployments. (a) Power control is not applied. (b) Constant power control with
α̃m,l = 0.5, ∀m ∈M, ∀l ∈ L, where the user throughput is normalized with respect to
the scenario without any cooperation

to a scenario without cooperation. Similar to the results from Figure 4.3, the mean of
the average user throughput does not vary signi�cantly with α̃m,l. On the other hand,
the user throughput of the cell-edge UEs connected to the pico cells, signi�cantly im-
proves under larger reductions of the transmit powers of the cooperative macro BSs,
i.e., larger transmit power scaling factors. However, such a larger reduction of the
transmit powers, implies a negative e�ect on the cell-edge UEs served by the macro
BSs as depicted in Figure 4.4. It is observable that for α̃m,l = 0.8, i.e., the macro BSs
transmit with 20 % of the maximum transmit power, the network achieves the best
overall performance with maximum gain in the total cell-edge user throughput.

4.4.2 Performance of the proposed cooperative power control

scheme

The performance of the proposed cooperative power control scheme as presented in Sec-
tion 4.3 is evaluated for di�erent con�guration parameters as follows: i) with respect to
the achievable data rate gain of the UEs n ∈ N served by the small cells k ∈ S | cn,k = 1
as de�ned in (4.16), three design values are selected with ηn,l = {1.5, 2, 3} , ∀l ∈ L, and
ii) regarding the maximum value of the transmit power scaling factor as introduced in
(4.23), the threshold values are selected as ᾱmax = {0.2, 0.5, 0.8, 1}, ∀m ∈M, ∀l ∈ L,
where the minimum value is set to ᾱmin = 0, ∀m ∈ M, ∀l ∈ L. As previously men-
tioned, the studied deployment scenario corresponds to a uniform UE distribution with
the pico cells located at the cell-center, i.e., Un-0.25.
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Figure 4.4. Cell-edge and mean of the average user throughput for di�erent values of
the transmit power scaling factors α̃m,l, ∀m ∈M, ∀l ∈ L. Results are normalized with
respect to a scenario without cooperation. The deployment scenario corresponds to
Un-0.25

The cell-edge and the mean of the average user throughput, normalized with respect
to a scenario without cooperation, are presented in Table 4.2 for all combinations of
the design parameters ηn,l and ᾱmax as described above. The results in Table 4.2 agree
with the observations from Section 4.4.1, where the performance of the UEs connected
to the pico cells is improved by the reduction of transmit power of the cooperative
macro BSs, i.e., larger transmit power scaling factors, while the UEs served by the
macro BSs are negatively a�ected. In some scenarios, the performance of the UEs
connected to the macro BSs is even worse than the scenario without cooperation, due
to the impact of the cooperative power control on the spectral e�ciency of the macro
BSs. Nevertheless, such a lost is expected and it is minimal in comparison to the gains
provided to the UEs served by the pico cells.

With respect to the maximum value that the transmit power scaling factor can take,
i.e., ᾱmax, it is recognizable especially for the cell-edge user throughput, that a larger
reduction of the transmit power of the cooperative macro BSs, provides a higher user
throughput gain for the UEs served by the pico cells. As an example, the cell-edge
user throughput of the UEs served by the pico cells is 98 % higher than the scenario
without any cooperation when the cooperative macro BSs can mute some PRBs, i.e.,
for ᾱmax = 1 and ηn,l = 1.5. The cell-edge user throughput gains reduce when αmax

decreases.

The target achievable data rate gains decrease when increasing the parameter ηn,l,
which is contradictory to the purpose of such a parameter. To explain this contradic-
tory behavior, it is worth noting that the cooperative power control scheme only takes



42 Chapter 4: Cooperative Power Control

Table 4.2. Average user throughput normalized with respect to a scenario without any
cooperation

Throughput UE Data rate ᾱmax

type type gain 0.2 0.5 0.8 1

Cell-edge

Macro

ηn,l = 1.5

1 1.03 0.98 1.03

Pico 1.05 1.49 1.53 1.98

Total 0.95 1.18 1.25 1.32

Macro

ηn,l = 2

1.04 1.05 1.01 1.06

Pico 0.96 1.07 1.39 1.4

Total 0.99 0.99 1.19 1.16

Macro

ηn,l = 3

1.02 1.01 1.06 1.06

Pico 0.99 1.05 1.05 1.18

Total 0.98 1.02 1.03 1.02

Mean

Macro

ηn,l = 1.5

1.01 0.99 0.96 0.96

Pico 1.02 1.04 1.07 1.03

Total 1.01 1.01 1.02 1

Macro

ηn,l = 2

1 0.99 0.99 0.97

Pico 1.02 1.04 1.06 1.06

Total 1.01 1.02 1.03 1.01

Macro

ηn,l = 3

1.01 0.99 1 0.99

Pico 1.02 1.03 1.02 1.03

Total 1.02 1.01 1.01 1.01

place for the UEs, connected to the pico cells, for which the expected throughput gain
is achievable under the constraint on the minimum transmit power scaling factor of the
cooperative macro BS. If the achievable throughput gain is lower than the target pa-
rameter ηn,l, then the cooperative macro BS transmits with maximum transmit power.
For the case that ᾱmax = 1, the amount of times that the cooperative power control
scheme selects a transmit power scaling factor α̃m,l, such that 0 < α̃m,l ≤ ᾱmax, is pre-
sented in Table 4.3, together with the average applied value. If the required achievable
data rate gain is higher, the reduction in the transmit power of the cooperative macro
BSs is larger and the transmit power scaling factor approximates ᾱmax. Moreover, the
number of UEs connected to the pico cells, that can achieve the target data rate gains
reduces with a higher target. The proposed power control scheme is only e�ectively
used 14 % of the time when ηn,l = 3, with respect to the case when ηn,l = 1.5.

As a �nal remark, the macro BSs also interfere each other as described in (4.10).
Therefore, an indirect result of the cooperative power control scheme is a reduction of
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Table 4.3. Summary of cooperative power control scheme for ᾱmax = 1

Description ηn,l = 1.5 ηn,l = 2 ηn,l = 3

Count of applied scheme 317.706 (1) (0.46) (0.14)

Average applied α̃m,l 0.72 0.83 0.91

the inter-cell interference experienced by the UEs served by the macro BSs, which is
observable in Table 4.2, with the gains of the cell-edge user throughput for the UEs
connected to the macro BSs.

4.5 Summary

In this chapter, a dynamic power control scheme was proposed to improve the per-
formance of UEs heavily a�ected by inter-cell interference, i.e., cell-edge UEs. This
inter-cell interference is produced by neighboring BSs operating in the same frequency
bands. Therefore, the studied cooperative power control scheme reduces the transmit
power of the interfering BSs in order to increase the SINR and the achievable data
rates of the cell-edge UEs served by the neighboring BSs. The power reduction can
even mute the cooperative BSs, which resembles the behavior of a CoMP DPB scheme.

In heterogeneous networks operating under the LSA principle, where the available
time/frequency resources are shared by the incumbent system with the licensee BSs,
the proposed cooperative power control scheme represents an attractive solution to
limit the interference caused to the UEs connected to the incumbent BSs.

Simulation results demonstrate the capacity of the proposed scheme to reduce the
interference caused to the cell-edge UEs in a dynamic manner and on a per PRB basis.
Furthermore, the cooperative power control scheme is entirely based on measurements
available in LTE�Advanced wireless networks, which makes its application possible in
current and upcoming systems.

Despite the potential gains of the proposed cooperative power control scheme, the
cooperation is limited to a reduction of the transmit power after the scheduling deci-
sions have been made in an independent and uncoordinated fashion. Therefore, large
transmit power reductions or even muting can be applied, which signi�cantly a�ect
the performance of the UEs connected to the BSs performing the power reduction. In
the following chapters, cooperative schemes are presented that perform scheduling and
power control decisions in a jointly manner.
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Chapter 5

Centralized Coordinated Scheduling in

Mobile Communication Networks

As mentioned in Section 4.5, the cooperative power control scheme investigated in
Chapter 4 considers the cooperation of the BSs after the scheduling decisions have
been independently made. Therefore, the cooperative scheme of Chapter 4 is limited
to coordinating the transmit powers of the BSs in order to reduce the inter-cell in-
terference. In this chapter, the cooperation between the BSs is extended to include
the scheduling decisions. For that purpose, CoMP CS with muting in LTE-Advanced
downlink networks is studied, as introduced in Section 2.2.2.

Throughout this dissertation, and unlike most existing approaches, the derived coop-
erative schemes do not rely on exact CSI but only make use of the speci�c CSIR-11

reports de�ned in the 3GPP standard, as introduced in Section 2.1.3. Therefore, in
order to support the investigated CoMP CS schemes proposed in this chapter, the in-
terference scenarios signaled by the CSIR-11 reports are limited to cooperation in the
form of muting. This limitation with respect to the cooperative power control from
Chapter 4, is introduced in order to restrict the signaling overhead.

In this chapter, the presence of a central controller with connectivity to the cooperative
BSs is assumed, which coordinates the scheduling and muting decisions among multiple
BSs in order to manage the inter-cell interference. In contrast to Chapter 4, the
proposed cooperative schemes can be applied to di�erent types of networks, such as
macro-only and heterogeneous networks. The CS with muting problem is initially
formulated as an integer non-linear program (INLP) and further reformulated to an
equivalent ILP which can be e�ciently solved by commercial solvers. Simulations
of medium- to large-size networks are carried out to analyze the performance of the
proposed CS with muting approaches. These simulations con�rm available analytical
results that report fundamental limitations in the cooperation, due to residual out-of-
cluster interference [LJA13]. Nevertheless, the schemes proposed in this chapter show
important gains in average user throughput of the cell-edge users, especially in the case
of heterogeneous networks. Since the deployment of a central controller to coordinate
the cooperation among the BSs may not be possible in some scenarios, a decentralized
CS with muting scheme is derived in Chapter 6.

5.1 State-of-the-art and Contributions

Over the past years, important research has been carried out regarding CoMP
schemes under di�erent network architectures and CSI assumptions. In [MHV+12]
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and [MVT+12], JT and DPS schemes based on the enhanced CSI reports supported
by LTE-Advanced Release 11, i.e., CSIR-11 reports, have been investigated. The results
therein show throughput gains, especially for the cell-edge users, and the possibility to
improve mobility management by means of DPS. Even though the potential cell-edge
user throughput gains of JT are high, the strict requirements on the reliability of the
CSIR-11 reports represent a key drawback to its implementation. Barbieri et al. stud-
ied CS as a complement of enhanced-ICIC in heterogeneous networks in [BGG+12]. In
their scheme, cooperation takes place in the form of CS supported by beamforming in
order to mitigate the interference caused by the macro BSs, to the UEs connected to
the small cells. Multiple CSI reports are generated, where all possible precoders the
macro BS can select from a �nite precoder codebook are considered for the cooperation.
The results present negligible gain for the enhanced-ICIC with CS scheme, in compar-
ison to the approach with only enhanced-ICIC. In [DMBP13], a Cloud-Radio Access
Network (C-RAN) architecture is used for centralized CoMP JT in heterogeneous net-
works, which enables the cooperation of larger cluster sizes. In that case, gains over
approaches with only enhanced-ICIC are observed, especially for large cluster sizes.
Authors in [ABK+14] propose centralized and decentralized CoMP CS schemes that
utilize CSIR-11 reports, in which muting is applied to one BS at a time. As men-
tioned in Chapter 1, a BS is called muted if it does not transmit data on a speci�c
time/frequency resource to any of its connected UEs. It has been shown that under
this muting condition, both centralized and decentralized schemes achieve similar per-
formance, favoring the decentralized scheme due to the reduced information exchange.
Moreover, in [GKN+15] the authors extend the cooperation scheme of [ABK+14], to
introduce muting of more than one BS per scheduling decision in a larger network. A
greedy CS algorithm is presented to solve the centralized problem, which yields limited
additional gain with respect to the decentralized scheme with overlapping cooperation
clusters. It is important to note that the coordination scheme of [GKN+15] consists of
a greedy optimization procedure. It is therefore suboptimal and further investigation
regarding the optimally achievable performance of coordination, in the case of CSIR-11

reports, has not been carried out. Additionally, the results are focused on macro-only
networks, where the gains of cooperation are restricted due to similar interfering power
levels experienced from multiple BSs.

Although the above mentioned works show that CoMP schemes enhance the user
throughput with respect to a network operating without any cooperation, no detailed
studies are carried out in order to establish the maximum achievable gains that CoMP
schemes can o�er in realistic network scenarios and under LTE-Advanced speci�c CSI
reports, i.e., CSIR-11 reports. In [LJA13], it has been demonstrated from an analyti-
cal perspective that cooperative schemes have fundamentally limited gains. That is,
even under the assumption of centralized coordination and ideal CSI in form of in-
stantaneous channel coe�cients, the cooperation gains are limited due to the residual
interference from BSs outside of the cooperation area, the signaling overheads and the
�nite nature of the time/frequency/space resources. In this chapter, such limits are
investigated under practical conditions by means of system-level evaluations. For that
purpose, a CoMP CS with muting scheme is proposed and solved optimally for an
LTE-Advanced downlink network with centralized architecture. The problem formu-
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lation is based on multiple CSIR-11 reports generated by the UEs and gathered by the
central controller, which uses this information to determine the coordinated scheduling
and muting decisions for all connected BSs. The central controller then decides which
BSs serve their connected UEs on a given time/frequency resource, and which BSs are
muted in order to reduce the interference caused to the UEs served by the neighboring
transmitting BSs.

The major contributions of this chapter are summarized as follows.

• The CoMP CS with muting problem, where BSs cooperate by abstaining
from transmitting on particular time/frequency resources based on standardized
CSIR-11 reports, is formulated as an INLP.

• The non-linear CS with muting problem is reformulated into a mathematically
equivalent ILP, which enjoys low computational complexity and can be e�ciently
solved by commercial solvers. This reformulation is based on the lifting technique
and exploits speci�c separability and reducibility properties of the problem. Thus,
making the optimization scheme applicable as a valuable benchmark scheme in
medium- to large-scale networks.

• A con�gurable heuristic algorithm is proposed as an extension to the greedy al-
gorithm in [GKN+15], which achieves an excellent trade-o� between performance
and computational complexity.

• In order to assess the maximum achievable gains of the proposed and state-of-
the-art CoMP CS schemes, numerical simulations are carried out under practical
scenarios for macro-only and heterogeneous networks. The obtained results pro-
vide insights into the scheduling mechanism and fundamental limitations of the
coordination.

5.2 System Model

Based on the system model presented in Chapter 3, in the following a description of the
scenario investigated in this chapter is presented. A cellular network is considered, as
illustrated in Figure 5.1, where a cooperation cluster ofM BSs operating in FDD mode
serves N UEs in the downlink. The BSs can be all of the same type, e.g., a macro-
only network, or they can have di�erent capabilities as in the case of heterogeneous
networks, as introduced in Section 2.1.1. At each transmission time, all BSs can make
use of the same L PRBs for transmission. Thus, inter-cell interference a�ects the UEs,
especially of those located at the cell-edge. Additionally, interference from BSs outside
of the cooperation cluster is considered. The operation of the cooperation cluster is
managed by a central controller with backhaul connectivity to all M BSs, where it is
worth to mention that this central controller can be deployed as a separate unit or
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Figure 5.1. Cooperation cluster of M BSs and N UEs in the downlink. For UE n,
the solid arrow represents the serving link while the dashed arrows correspond to the
interfering links. The BSs are connected through the backhaul to a central controller
(dotted lines)

as an extension of a BS. The sets of indices M = {1, . . . ,M}, N = {1, . . . , N} and
L = {1, . . . , L} are used to address the BSs, UEs and PRBs, respectively, as introduced
in Chapter 3.

The received power at UE n ∈ N from BS m ∈M on PRB l ∈ L, is denoted as pn,m,l
and calculated as in (3.1). Similarly, (3.2) de�nes the total received power at UE n
from BS m, denoted as pn,m, as the sum of the received powers from BS m over all
PRBs. In order to select the serving BS for UE n, di�erent strategies are available
depending on the network deployment. Thus, in the case of homogeneous networks, a
typical serving BS selection strategy corresponds to choosing the BS from which the
highest total received power pn,m, ∀m ∈ M, is obtained. On the other hand, in the
case of heterogeneous networks, the CRE strategy is considered in order to achieve
load balancing, as explained in Section 4.2, with (4.2) and (4.3) de�ning the CRE
selection strategy and o�-set, respectively. In this chapter, both homogeneous macro-
only and heterogeneous networks are studied, where for the latter case, CRE is applied
as in Chapter 4. The N × M connection matrix C is de�ned, with elements as in
(3.3) characterizing the serving conditions between BSs and UEs, where it is assumed
that only one BS serves UE n over all PRBs as described by (3.4). As mentioned in
Chapter 3, it is further assumed for simplicity, that the connection matrix C is constant
during the considered operation time.

Given the connection matrix C, and the corresponding index sets for the interfering
and strongest interfering BSs of UE n ∈ N , denoted by In and I ′n, respectively, as
introduced in Chapter 3, the set of indices of cooperative interfering BSs of UE n is
given by

Icn = I ′n. (5.1)

In (5.1), it is considered that the M ′ strongest interfering BSs of UE n can cooperate
to improve the performance, in terms of user throughput of UE n. Therefore, the
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cardinality of the set of indices of cooperative interfering BSs of UE n is given by
|Icn| = M ′. It is worth noting that a di�erent selection of the cooperative interfering
BSs of UE n is possible, and has no implication in the discussion presented in the
remainder of this chapter.

Within the cooperation cluster, the BSs cooperate in the form of CoMP CS with
muting, as previously mentioned in Section 5.1. The central controller is then, in
charge of managing the downlink transmissions of the BSs, where at each transmission
time and on a per PRB basis, each BS can be requested to abstain from transmitting
data. Hence, the interference caused to UEs located in neighboring BSs is reduced on
the PRBs with muted BSs. Based on the transmit power control parameter ᾱm,l, as
introduced in Chapter 3, in the following the binary muting decision matrix denoted
as ᾱ, of dimensions M × L and elements

ᾱm,l =

{
1 if BS m ∈M is muted on PRB l ∈ L
0 otherwise,

(5.2)

is used in order to control the transmit power of the BSs. If ᾱm,l = 0, then BS m
transmits on PRB l, with maximum transmit power Φm,l. Thus, by following the
de�nition in (3.7), the SINR on PRB l of UE n ∈ N , which is served by BS k ∈M, is
de�ned as

γn,l (ᾱl) =
(1− ᾱk,l) pn,k,l

Iccn,l (ᾱl) + Iocn,l + σ2
. (5.3)

TheM×1 vector ᾱl, is equivalent to the l-th column of ᾱ. The numerator corresponds
to the average received power at UE n from the serving BS k on PRB l, as de�ned
in (3.1). The �rst term in the denominator, i.e., Iccn,l (ᾱl), corresponds to the average
inter-cell interference from the BSs within the cooperation cluster, with

Iccn,l (ᾱl) =
∑
b∈In

(1− ᾱb,l) pn,b,l

=
∑
m′∈Icn

(1− ᾱm′,l) pn,m′,l +
∑

m∈In\Icn

(1− ᾱm,l) pn,m,l.
(5.4)

In (5.4), the inter-cell interference is further decomposed into two terms corresponding
to the inter-cell interference from the cooperative interfering BSs of UE n, as addressed
by the index set Icn, and the remaining BSs in the cooperation cluster. Furthermore, the
dependency of Iccn,l on the muting decision matrix is highlighted. The second term in the
denominator, i.e., Iocn,l, is the average out-of-cluster interference, which is assumed to be
independent of the muting decision matrix ᾱ since the central controller is not aware
of the muting decisions made by the BSs outside of the cooperation cluster. Moreover,
UE n experiences AWGN with power σ2, which is further assumed without loss of
generality, to be constant for all UEs over all PRBs. Based on the SINR de�nition in
(5.3), the achievable data rate on PRB l of UE n is modeled as in (3.9).
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5.2.1 CSI reporting for centralized CS with muting

It is considered that the cooperation among the BSs takes place in the form of CoMP
CS with muting. Therefore, in contrast to the cooperative power control scheme studied
in Chapter 4, no distinction between the CSI reports for scheduling and cooperation is
made in this section. In the following, a description of the CSIR-11 reports available at
the central controller, which are used to support the proposed CS with muting schemes,
is presented. For that purpose, the M × L muting matrix α is used, as introduced
in Section 3.1, in order to describe the assumed transmit/muting states of the BSs
associated to a speci�c CSIR-11 report.

For a cooperation cluster with M BSs, a total of J = 2M − 1 muting decisions can be
made per PRB l ∈ L, where the decision corresponding to all BSs being muted is not
considered, i.e., on each PRB l at least one BS transmits. In Section 5.2, it has been
mentioned that each UE considers the cooperation from a subset of BSs within the
cooperation cluster. Moreover, the set of cooperative interfering BSs of UE n ∈ N ,
denoted by Icn, has been de�ned as in (5.1), where only the M ′ strongest interfering
BSs are considered for cooperation. The reason for such a de�nition relies on the fact
that the SINR and the achievable data rates of UE n, are dominated by its strongest
interfering BSs [ABK+14]. Therefore, UE n generates a total of J ′ = 2M

′
CSIR-11

reports per PRB, with J ′ < J .

Each of the J ′ CSIR-11 reports generated by UE n ∈ N on PRB l ∈ L, re�ects a unique
interference scenario for its cooperative interfering BSs. More speci�cally, the interfer-
ence scenario j ∈ J ′, with J ′ = {1, . . . , J ′}, is characterized by the muting indicator
set Jn,j, which contains the indices of the cooperative interfering BSs considered to be
muted in the j-th CSIR-11 report of UE n. Hence, the set Jn = P(Icn) contains all J ′

muting indicator sets for UE n, with P(·) denoting the power set of its argument, i.e.,
the set of all subsets of Icn. The set Jn is common to all PRBs, due to the de�nition of
the strongest interfering BSs of UE n as in (3.5). From the muting indicator set Jn,j,
the muting pattern of the j-th CSIR-11 report of UE n on PRB l is de�ned as

αn,m′,l,j =

{
1 if m′∈ Jn,j on PRB l

0 otherwise
∀m′∈ Icn, (5.5)

i.e., αn,m′,l,j = 1, if the cooperative interfering BS m′ is muted on PRB l un-
der interference scenario j ∈ J ′. The de�nition in (5.5) considers only the set of
cooperative interfering BSs of UE n indexed by Icn. Therefore, a constant mut-
ing state of the remaining BSs in the cooperation cluster is required for all in-
terference scenarios indexed by J ′. In the following, it is assumed without loss
of generality, that αn,m,l,j = 0, ∀m /∈ Icn, ∀j ∈ J ′. In other words, the CSIR-11 re-
ports of UE n are conservative with respect to the interference from the non-
cooperative interfering BSs, by assuming them to transmit with maximum transmit
power Φm,l, ∀m /∈ Icn, ∀l ∈ L, ∀j ∈ J ′. As explained in Section 3.1, although the def-
inition of the muting pattern in (5.5) is similar to the de�nition of the muting decision
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in (5.2), the two concepts are di�erent. The muting pattern α describes the assumed
muting conditions during the generation of the CSIR-11 reports for the di�erent inter-
ference scenarios, while the muting decision ᾱ represents the real muting conditions of
the BSs within the cooperation cluster, imposed by the central controller as the result
of the implementation of the CS with muting scheme.

For the generation of the CSIR-11 reports, UE n ∈ N calculates the SINR and the
achievable data rates on PRB l ∈ L under interference scenario j ∈ J ′. Therefore,
similar to (5.3), the SINR on PRB l of UE n, served by BS k ∈M, under interference
scenario j, is de�ned as

γn,l,j (αn,m′,l,j) =
pn,k,l

Icn,l,j (αn,m′,l,j) + Incn,l + Iocn,l + σ2
, (5.6)

where the �rst term in the denominator of (3.7) has been decomposed into two terms
corresponding to the interference from the cooperative interfering BSs of UE n, i.e.,
Icn,l,j (αn,m′,l,j), and the interference from the remaining non-cooperative interfering BSs
of UE n, denoted by Incn,l. From the previous discussion on the muting patterns of UE n,
the interference from the cooperative interfering BSs that can be muted to improve the
SINR of UE n, depends on interference scenario j and thus, the muting pattern as

Icn,l,j (αn,m′,l,j) =
∑
m′∈Icn

(1− αn,m′,l,j) pn,m′,l. (5.7)

On the other hand, the interference from the non-cooperative interfering BSs of UE n
is assumed to be constant and independent of the possible muting decisions, with

Incn,l =
∑

m∈In\Icn

pn,m,l. (5.8)

Furthermore, the out-of-cluster interference, denoted by Iocn,l, and the noise variance σ2

are also assumed to be constant terms among all the J ′ interfering scenarios considered
in the CSIR-11 reports. Hence, sub-index j is not used in the last three terms of the
denominator in (5.6).

To complete the information for the CSIR-11 reports, rn,l,j denotes the achievable data
rate on PRB l ∈ L of UE n ∈ N considered under interference scenario j ∈ J ′. The
calculation of rn,l,j follows the de�nition in (3.9), with

rn,l,j = f (γn,l,j) . (5.9)

Proposition 5.1. For UE n ∈ N on PRB l ∈ L, if Jn,i ( Jn,j,∀i, j ∈ J ′, i 6= j, then
γn,l,i < γn,l,j.

Proof. See Appendix A.

The Proposition 5.1 implies that the SINR on PRB l ∈ L of UE n ∈ N increases when
muting additional cooperative interfering BSs.
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Table 5.1. CSIR-11 reports for UE n on PRB l with M ′ = 2

Interference scenario Muting indicator Muting pattern Achievable

(j ∈ J ′) (Jn,j) (αn,l,j) data rate

1 ∅ [0, 0, 0, 0] rn,l,1

2 {1, 2} [1, 1, 0, 0] rn,l,2

3 {1} [1, 0, 0, 0] rn,l,3

4 {2} [0, 1, 0, 0] rn,l,4

Corollary 5.1. For UE n ∈ N on PRB l ∈ L, if Jn,i ( Jn,j,∀i, j ∈ J ′, i 6= j and
f (γn,l) introduced in (3.9) is a non-decreasing function, then rn,l,i ≤ rn,l,j.

Corollary 5.2. The minimum achievable data rate on PRB l ∈ L of UE n ∈ N among
all J ′ CSIR-11 reports, corresponds to the interference scenario j0, with all M ′ cooper-
ative interfering BSs transmitting with maximum transmit power Φm,l, ∀m ∈ Icn, i.e.,
with muting indicator set Jn,j0 = ∅, where ∅ denotes the empty set.

Hence, based on the Corollary 5.1, the achievable data rate on PRB l ∈ L of UE n ∈ N
increases or remains constant when muting additional cooperative interfering BSs. The
observations in the Proposition 5.1, Corollary 5.1 and Corollary 5.2 dictate the solution
of the CS with muting problem formulated in Section 5.3.

Example 5.1. In an exemplary network with a cooperation cluster of M = 4 BSs,
and a total of M ′ = 2 strongest interfering BSs per UE, UE n ∈ N selects BS 1 and
BS 2 for cooperation such that Icn = {1, 2}. Thus, UE n generates J ′ = 4 CSIR-11

reports on PRB l ∈ L as summarized in Table 5.1. According to the Proposition 5.1,
Corollary 5.1 and Corollary 5.2, the highest achievable data rate is reported by UE n
on PRB l, when all the cooperative interfering BSs are muted, which corresponds to
interference scenario j = 2. Furthermore, the lowest achievable data rate reported by
UE n on PRB l occurs when the two cooperative interfering BSs are transmitting, i.e.,
interference scenario j = j0 = 1. Thus, rn,l,2 ≥ rn,l,3, rn,l,4 ≥ rn,l,1.

5.3 Centralized CS with Muting

In this section, the proposed CoMP CS with muting schemes are presented. The studied
CS with muting schemes are implemented in the central controller, which relies on the
CSIR-11 reports as introduced in Section 5.2.1.
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5.3.1 Proposed INLP - Problem formulation

At the central controller, the CSIR-11 reports generated by the UEs and forwarded
by the BSs, are used in order to compute the CS with muting decision. The CS
decision consists of two main components, namely, a scheduling decision that assigns
PRBs to UEs, and a muting decision that mutes BSs on particular PRBs to reduce
the interference experienced by the UEs connected to neighboring BSs. The matrix
variable S̄ of dimensions N × L and elements

s̄n,l =

{
1 if PRB l ∈ L is scheduled to UE n ∈ N
0 otherwise,

(5.10)

is used to denote the scheduling decision for all UEs on each PRB l, while the M × L
matrix variable ᾱ, with elements as introduced in (5.2), refers to the muting decision
for all BSs on each PRB l. Both decisions depend on each other. On the one hand,
the selection of the UEs to be served on a given PRB l, depends on the data rates
these UEs can achieve under a particular muting decision. On the other hand, the
muting decision depends on the margin by which the achievable data rates of the UEs
to be served increases with respect to the loss on the achievable data rates of the UEs
connected to the muted BSs, for that particular muting decision. In the following, an
INLP is proposed, to carry out joint BS muting and UE scheduling in a coordinated
network.

Typically, the schedulers in mobile communications pursue a trade-o� between user
throughput and fairness as explained in Section 3.2. In this chapter, the same objective
is de�ned by maximizing the PF metric as given in (3.11), with the total instantaneous
achievable data rate of UE n calculated similarly to (3.12) by

rn = g (rn,l,j, s̄n, ᾱ) ∀l ∈ L, ∀j ∈ J ′, (5.11)

where g(·) denotes a function of the achievable data rates of UE n, as de�ned in (5.9),
over the PRBs scheduled to UE n, as described by the n-th row of S̄, denoted by s̄n,
and the muting decision matrix ᾱ.

The LTE-Advanced CS with muting problem can be formulated as the following INLP

max
{S̄,ᾱ}

∑
n∈N

Ωn (5.12a)

s.t.

ᾱm,l +
∑
n∈N

cn,m s̄n,l ≤ 1 ∀m ∈M, ∀l ∈ L, (5.12b)

rn =
∑
l∈L

ρ (rn,l, ᾱl, Icn) s̄n,l ∀n ∈ N , (5.12c)

s̄n,l ∈ {0, 1} ∀n ∈ N , ∀l ∈ L, (5.12d)

ᾱm,l ∈ {0, 1} ∀m ∈M, ∀l ∈ L, (5.12e)
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where the objective in (5.12a) is to maximize the sum of the PF metrics over all UEs,
with the PF metric of UE n ∈ N calculated as in (3.11). The constraints in (5.12b)
link the scheduling decision S̄ with the muting decision ᾱ. If BS m ∈M is muted on
PRB l ∈ L, then PRB l cannot be scheduled to any UE n connected to BS m. Thus,
if ᾱm,l = 1 in (5.12b) for BS m, the second term on the left-hand-side must be equal to
zero, which is true in either of the following cases with the connection indicator cn,m
given by (3.3):

• No UEs are connected to BS m, i.e., cn,m = 0, ∀n ∈ N .

• PRB l is not scheduled to any UE served by BS m, i.e., s̄n,l = 0, ∀n ∈ N such
that cn,m = 1.

Furthermore, in the case that BS m is not muted on PRB l, i.e., ᾱm,l = 0, the con-
straints in (5.12b) ensure that single-user transmissions are carried out, where each BS
is allowed to serve a maximum of one UE per PRB. Additionally, the total instanta-
neous achievable data rate of UE n, denoted by rn as introduced in (5.11), is calculated
in (5.12c), with

g (rn,l,j, s̄n, ᾱ) =
∑
l∈L

ρ (rn,l, ᾱl, Icn) s̄n,l ∀n ∈ N . (5.13)

In (5.13), ρ (rn,l, ᾱl, Icn) is a lookup table function that selects the achievable data rate
on PRB l of UE n, based on the muting decision ᾱl of the cooperative interfering
BSs of UE n, as indexed by Icn. The lookup table function ρ (·), selects the achievable
data rate from the J ′ × 1 vector, rn,l, with elements rn,l,j, ∀j ∈ J ′, obtained from the
CSIR-11 reports of UE n on PRB l, as de�ned in (5.9).

Example 5.2. Based on the Table 5.1 from Example 5.1, with J ′ = 4 CSIR-11 reports,
the lookup table function for UE n ∈ N on PRB l ∈ L provides the results as in Ta-
ble 5.2. Note that the value of ρ (·) does not depend on the muting decision of the
remaining non-cooperative BSs.

Due to the utilization of the J ′ CSIR-11 reports, the achievable data rate on PRB l ∈ L
of UE n ∈ N under interference scenario j ∈ J ′, is constant in the problem formulation
and limited to the set of reported muting patterns. Additionally, when assuming
that the achievable data rate function f (γn,l), as de�ned in (5.9), is piece-wise non-
decreasing, the following Proposition 5.2 applies.

Proposition 5.2. For UE n ∈ N on PRB l ∈ L, if Jn,i ( Jn,j,∀i, j ∈ J ′, i 6= j and
rn,l,i = rn,l,j, then the interference scenario i ∈ J ′ provides the highest sum of PF
metrics over all UEs in the cooperation cluster among both scenarios i, j ∈ J ′.

Proof. See Appendix B.



5.3 Centralized CS with Muting 55

Table 5.2. Lookup table function ρ (rn,l, ᾱl, Icn) for UE n on PRB l with M ′ = 2

αm,l, ∀m ∈ Icn ρ (rn,l, ᾱl, Icn)

[0, 0] rn,l,1

[0, 1] rn,l,4

[1, 0] rn,l,3

[1, 1] rn,l,2

Hence, from Proposition 5.2, it follows that additional cooperative interfering BSs are
only muted if the achievable data rate of UE n ∈ N is increased.

Moreover, as previously explained, the scheduling and muting matrix variables S̄ and
ᾱ are binary as described by the constraints in (5.12d) and (5.12e), respectively.

The following remarks summarize the characteristics of the LTE-Advanced CS with
muting problem formulation in (5.12).

• As mentioned in Section 5.2.1, given M ′ cooperative interfering BSs per each
UE n ∈ N , a total of J ′ = 2M

′
interfering scenarios per UE n are available. Hence,

two special cases of the problem formulation are observed:

i) If M ′ = 0, each UE n generates one CSIR-11 report under the assumption
of no BS muting. At the central controller, the CS with muting problem
formulation becomes a PF scheduler without any cooperation. That is, the
CSIR-11 report is equivalent to the CSIR-8 report introduced in Section 2.1.3.

ii) If M ′ = M − 1, all the interfering BSs within the cooperation cluster can
be muted to improve the performance of any UE on each PRB l ∈ L. The
formulated CS with muting problem has, at the central controller, a solution
space of size

∏
m∈M

(
1 +

∑
n∈N cn,m

)L
, i.e., each BS m can schedule PRB l

to either one of the connected UEs, or BS m can be muted. If the network
size is large, �nding the solution while assuming cooperation of all interfering
BSs for all UEs approximates an exhaustive search.

• The problem is purely integer, and furthermore binary because of the constraints
in (5.12d) and (5.12e). Thus, only a discrete number of PRBs can be scheduled
to any UE, and the BSs either transmit or are muted on PRB l.

• Due to the combinatorial nature of the problem formulation, it is classi�ed as
NP-hard [BHM77].

• The problem is non-linear because of the relation between the muting and the
scheduling decision variables, ᾱl and s̄n,l, ∀l ∈ L, ∀n ∈ N , respectively, in the
constraints in (5.12c).
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Although the number of reported interference scenarios J ′ = 2M
′
can be limited by

selecting a small value M ′ of cooperative interfering BSs per UE n ∈ N , the CS with
muting INLP formulation in (5.12) also depends on the number of UEs N , and the
number of PRBs L. For certain network scenarios, N and L can be large. Therefore,
given the non-linear nature of the problem in (5.12), �nding a solution with commercial
solvers may either not be possible or ine�cient in terms of computation time. In the
following, separability, reducibility and lifting concepts are used, in order to formulate
parallel ILP sub-problems that scale better with the network size.

5.3.2 Proposed ILP - Parallelized sub-problem formulation

Separability. When analyzing the objective function described by (5.12a), the total PF
metric corresponds to the sum of the individual PF metrics for all UEs. Furthermore,
at each UE n ∈ N , it is assumed that the total instantaneous achievable data rate
is equivalent to the linear combination of the decoupled achievable data rates per
scheduled PRBs, as given by (5.12c). Therefore, it is possible to separate the CS
with muting problem in (5.12), into L independent sub-problems corresponding to
the scheduling decision of one PRB each1. By performing this parallelization, and by
exploiting the advances in massively parallel processors [KmWH17], the computation
time of the CS with muting problem is reduced without a�ecting the quality of the
solution. In other words, the solution of the parallelized CS with muting problem
remains optimal.

Reducibility. It is expected that some of the UEs connected to a common BS m ∈M,
share one or more cooperative interfering BSs. From a BS perspective, the set

Jm = ∪
n∈N
cn,m=1

Jn ∀m ∈M, (5.14)

contains all the unique muting indicator sets associated to its connected UEs. Similar
to the set Jn of muting indicator sets for UE n, Jm is common to all PRBs in the
reporting period. The number of unique muting indicator sets for BS m, given by
J ′m = |Jm|, depends on the number of UEs connected to BS m and the maximum
number J ′ of reported interference scenarios per UE, as introduced in Section 5.2.1.
Thus, J ′ ≤ J ′m ≤

∑
n∈N cn,m J

′, where the lower bound corresponds to the case when
all connected UEs are interfered by the same set of cooperative interfering BSs, and the
upper bound represents the case with all UEs having di�erent cooperative interfering
BSs. For the unique muting indicator set Jm,j′ , where j′ ∈ J ′m and J ′m = {1, . . . , J ′m},
the set of indices of UEs, connected to BS m, with equal muting indicator set is de�ned
as

Nm,j′ = {n ∈ N | cn,m = 1, Jm,j′ ( Jn, ∀m ∈M, ∀j′∈ J ′m} . (5.15)

Based on the de�nitions in (5.14) and (5.15), the following Proposition 5.3 is given.

1It is worth mentioning that also non-linear combinations of the achievable data rates can be
applied. One example is the Mutual Information based Exponential SNR Mapping (MIESM) [LKK12,
WIN05]. However, in the case of non-linear combination, the formulation is no longer an ILP.



5.3 Centralized CS with Muting 57

Proposition 5.3. Assume BS m ∈M, with unique muting indicator set index given
by j′∈ J ′m and the set Nm,j′ as introduced in (5.15). If |Nm,j′| > 1, then the optimal
contribution of BS m on PRB l ∈ L to the total PF metric in (5.12a), corresponds to
the PF metric of UE n̂, with

n̂ = arg max
n∈Nm,j′

Ωn,l,j = arg max
n∈Nm,j′

rn,l,j
Rn

∀j ∈ J ′ | Jn,j = Jm,j′ , (5.16)

where Ωn,l,j is de�ned as in (3.11).

Proof. See Appendix C.

Based on Proposition 5.3, it is su�cient that each BS m ∈M forwards to the central
controller on PRB l ∈ L, the CSIR-11 reports related to one UE per unique muting
indicator set Jm,j′ , ∀j′ ∈ J ′m, instead of the CSIR-11 reports from all connected UEs.
The set of indices of UEs connected to BS m that maximize the PF metric on PRB l,
in at least one of the unique muting indicator sets indexed by j′ ∈ J ′m, is de�ned as

N ′m,l =

{
n̂ | ∃j : n̂ = arg max

n∈Nm,j′
Ωn,l,j, ∀j′∈ J ′m, ∀j ∈ J ′ | Jn,j = Jm,j′

}
. (5.17)

The cardinality of the set N ′m,l, is bounded as 1 ≤
∣∣N ′m,l∣∣ ≤∑n∈N cn,m, where the lower

bound implies that only one UE provides the maximum PF metric on PRB l, among all
unique muting indicator sets, and the upper bound corresponds to the case when each
UE reports di�erent muting indicator sets with respect to the other UEs connected to
BS m.

Example 5.3. Assume a network with M BSs, where BS m serves a total of Ñ UEs.
It is further assumed that all Ñ UEs served by BS m, have the same set of coopera-
tive interfering BSs, such that Icn = I ′, ∀n ∈ N | cn,m = 1, with |I ′| = M ′. Thus,
the number of unique muting indicator sets for BS m is J ′m = 2M

′
. If the reducibil-

ity concept is not applied, BS m needs to forward to the central controller a total of
Ñ · J ′m CSIR-11 reports on PRB l ∈ L, corresponding to the interference scenarios of
all connected UEs. However, if BS m applies the reducibility concept, the number of
forwarded CSIR-11 reports to the central controller decreases to J ′m, with

∣∣N ′m,l∣∣ ≤ J ′m.
Hence, the total number of connected UEs impacts marginally the size of the solution
space.

At the central controller, all the achievable data rates rn,l,j, ∀n ∈ N ′m,l, ∀m ∈M,
∀l ∈ L, ∀j ∈ J ′, are per de�nition set to zero for the interference scenarios where
UE n does not provide the maximum PF metric among the UEs connected to the same
BS m. The set N ′l = ∪m∈MN ′m,l is used to denote the indices of UEs to be consid-
ered in the reformulated ILP on PRB l. The cardinality of the set N ′l is described as
M ≤ |N ′l | ≤ N . In the special case of M ′ = 0, all UEs report only one interference
scenario where no cooperative interfering BS is muted, and thus, |N ′l | = M .
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Lifting. In order to linearize the constraints in (5.12c), a variable transformation is
introduced based on the lifting technique [Bal05]. A new coordinated decision variable
is de�ned, denoted by the tensor S of dimensions N × L × J ′. The new coordinated
decision variable contains both, the scheduling and the muting decisions, and has ele-
ments

sn,l,j =


1 if PRB l ∈ L is scheduled to UE n ∈ N

under interference scenario j ∈ J ′
0 otherwise.

(5.18)

The new decision variable, sn,l,j, is related to the muting and scheduling decisions in
(5.2) and (5.10), respectively, as

sn,l,j = 1⇔ s̄n,l = 1 ∧ ᾱm,l = 1, ∀n ∈ N , ∀l ∈ L, ∀j ∈ J ′, ∀m ∈ Jn,j, (5.19)

with ∧ denoting the logical and operator. Hence, the non-linear constraints in (5.12c)
reduce to a linear combination of the achievable data rates, rn,l,j, and the new decision
variable, sn,l,j.

Problem Reformulation. Using the above described concepts of separability, reducibility
and lifting, the CS with muting INLP formulation in (5.12) can be reformulated as an
ILP, which can be e�ciently solved by commercial solvers as mentioned in Section 2.3.
Hence, with the set N ′l as introduced above, and de�ning the binary decision variable
Sl to have dimensions |N ′l | × J ′, the sub-problem formulation for PRB l ∈ L is

max
{Sl}

∑
n∈N ′

l

Ωn,l (5.20a)

s.t.

sn,l,j +
∑
u∈N ′

l

∑
i∈J ′

cu,m su,l,i ≤ 1 ∀n ∈ N ′l , ∀j ∈ J ′, ∀m ∈ Jn,j, (5.20b)

∑
n∈N ′

l

∑
j∈J ′

cn,m sn,l,j ≤ 1 ∀m ∈M\ ∪n∈N ′
l
Icn, (5.20c)

rn,l =
∑
j∈J ′

rn,l,j sn,l,j ∀n ∈ N ′l , (5.20d)

sn,l,j = 0 ∀n ∈ N ′l , ∀j ∈ J ′ | rn,l,j = 0, (5.20e)

sn,l,j ∈ {0, 1} ∀n ∈ N ′l , ∀j ∈ J ′, (5.20f)

where the objective in (5.20a) is to maximize the sum of the PF metric over all UEs on
PRB l. The constraints in (5.20b) restrict the scheduling decisions of the cooperative
interfering BSs of UE n ∈ N ′l , i.e., ∀m ∈ Jn,j, in order to agree with the muting state
considered in the interference scenario j ∈ J ′. If PRB l is scheduled to UE n under the
condition of muting the cooperative interfering BSs indexed by the set Jn,j ∈ Jn, then,
no other UE connected to the muted BSs can be simultaneously assigned to the same
PRB l. Thus, if sn,l,j = 1 in (5.20b), the second term on the left-hand-side must be
equal to zero. Furthermore, in the case that sn,l,j = 0, the constraints in (5.20b) ensure
that single-user transmissions are carried out, where each BS m ∈ Jn,j is allowed to
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serve a maximum of one UE per PRB, over all possible interference scenarios j ∈ J ′.
Since it is possible that speci�c BSs within the cooperation cluster do not belong to
the set of cooperative interfering BSs of any UE, the constraints in (5.20c) complement
the restriction on the single-user transmissions from (5.20b). Additionally, the total
instantaneous achievable data rate on PRB l of UE n, denoted by rn,l, is calculated in
(5.20d) as the achievable data rate for the selected interference scenario j, as de�ned by
the coordinated decision variable sn,l,j. It is worth noting that from the CSIR-11 reports,
rn,l,j is uniquely related to sn,l,j, thus, no lookup table function as used in (5.13) is
required. Furthermore, the constraints in (5.20e) are incorporated as a pre-processing
step to ensure that no PRB is scheduled to UEs for which a maximum PF metric for
the corresponding interference scenario j is not available. Finally, the elements of the
coordinated decision matrix Sl are binary as described by the constraints in (5.20f).

Theorem 5.1. The LTE-Advanced CS with muting problem formulations in (5.12)
and (5.20) are equivalent.

Proof. See Appendix D.

The proposed parallelized formulation in (5.20) reduces signi�cantly the CS with mut-
ing problem complexity, enabling its application even for large-size networks as illus-
trated in Section 5.4.

5.3.3 State-of-the-art greedy heuristic algorithm

In this section, a brief description of the greedy heuristic de�ation algorithm proposed
in [GKN+15] (see algorithm in Section II) for the deployment scenario with centralized
controller, is provided.

The greedy heuristic algorithm iteratively solves the CS with muting problem per
PRB l ∈ L. At each iteration, one BS is muted corresponding to the BS m ∈M
which, when muted, maximizes the sum of the PF metrics among all UEs on PRB l.
The algorithm stops when muting any additional BS does not improve the sum of the
PF metrics with respect to the previous iteration. The greedy heuristic algorithm for
PRB l ∈ L is summarized as follows.

1. Initialize the reference PF metric

Ωref

l =
∑
m∈M

max
n∈N

cn,m Ωn,l,j ∀j ∈ J ′ | Jn,j = ∅, (5.21)

with the value corresponding to the interference scenario where no BS is muted,
i.e., PF scheduler without any cooperation. The symbol ∅ denotes the empty
set.
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2. Initialize the set of indices of possible muted BSs as M′ = M, and the set of
indices of already muted BSs as M̌ = ∅.

3. For the set of indices of possible muted BSsM′, calculate the PF metrics under
the assumption that the BSs M̌ ∪ k are muted, denoted as Ωk

l and given by

Ωk
l =

∑
m∈M\M̌∪k

max
{n,j}

cn,m Ωn,l,j ∀k ∈M′, ∀n ∈ N , ∀j ∈ J ′. (5.22)

Note that the selection of the interference scenario j, should not violate the
assumption of only BSs M̌ ∪ k to be muted.

4. Select the muted BS m̌ ∈M′, that maximizes the PF metric Ωk
l , i.e.,

m̌ = arg max
k∈M′

Ωk
l , (5.23)

and set the result as Ωmax

l = Ωm̌
l .

5. Compare Ωmax

l with Ωref

l

• If Ωmax

l > Ωref

l , set the selected BS m̌ as muted and update the reference PF
metric, that is, M̌ = M̌ ∪ m̌, M′ =M′\m̌, Ωref

l = Ωmax

l . Return to step 3.

• If Ωmax

l ≤ Ωref

l , muting BS m̌ brings no additional gain. The reference
metric Ωref

l determines the resulting scheduling decision. Stop the algorithm
for PRB l.

It is not guaranteed that the heuristic algorithm yields a globally optimal point, because
the quality of the scheduling decision depends directly on the gain achieved from muting
one interfering BS at a time.

Example 5.4. A new exemplary scenario is considered where three UEs are served by
three BSs over one PRB. The connection matrix C, with elements as de�ned in (3.3),
is given by C = I3×3, where I3×3 corresponds to a 3 × 3 identity matrix, i.e., UE k is
served by BS k, ∀k ∈ {1, 2, 3}. At the central controller, the PF metric information
for all possible muting patterns is summarized in Table 5.3. If no muting is applied,
i.e., PF scheduler without any cooperation, the interference scenario corresponds to the
last row of Table 5.3, with a total sum of the PF metric of 4.5. In the case of the
state-of-the-art greedy heuristic algorithm, a �rst iteration is performed where only one
BS is muted at a time, which corresponds to the �rst three rows of Table 5.3. When
comparing the maximum achievable sum of the PF metrics obtained when muting either
BS 1 or BS 3, with the sum of the PF metric obtained when no BS is muted, the results
are equal, i.e., 4.5. Therefore, the greedy heuristic algorithm stops the iterative process
and serves all the UEs without muting. Contrary to the greedy heuristic algorithm, the
proposed ILP formulation analyzes all the possible interference scenarios. Thus, the
scheduling decision of the ILP is to serve UE 3 while muting BS 1 and BS 2, which
achieves the maximum sum of the PF metrics, equivalent to 6.
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Table 5.3. PF metrics for di�erent muting patterns

Muting Pattern UE Index
∑

n Ωn

[α1, α2, α3] 1 2 3 n ∈ {1, 2, 3}
[1, 0, 0] � 3 1.5 4.5

[0, 1, 0] 2.5 � 1.5 4.0

[0, 0, 1] 3 1.5 � 4.5

[1, 1, 0] � � 6 6

[1, 0, 1] � 3 � 3

[0, 1, 1] 5 � � 5

[1, 1, 1] � � � 0

[0, 0, 0] 2 1.5 1 4.5

5.3.4 Generalized greedy heuristic algorithm

Given the disadvantage of the CS with muting greedy heuristic algorithm from
[GKN+15] as mentioned in Section 5.3.3, an extension is proposed in this work called
generalized greedy heuristic algorithm, which trades o� computational complexity with
performance gains. The main di�erence with respect to the algorithm in [GKN+15], is
the evaluation of additional muting patterns per iteration. The proposed generalized
greedy heuristic algorithm for PRB l ∈ L is summarized as follows.

1. Initialize the reference PF metric Ωref

l as in (5.21).

2. Initialize the set of indices of possible muted BSs as M′ =M, and the set of
indices of already muted BSs as M̌ = ∅.

3. De�ne the set of muting indicator sets as the union of binomial coe�cients, such
as

M̂ =
⋃

m̂∈{1,...,m̃}

(M′

m̂

)
, (5.24)

where
[
M̂
]
i
contains the indices of BSs to be muted under interference scenario i,

and m̃ is a con�guration parameter to control the amount of muting patterns to
be considered per iteration, with m̃ ≤M − 1.

4. For the set of muting indicator sets M̂, calculate the PF metrics under the

assumption that the BSs M̌ ∪
[
M̂
]
i
are muted, denoted as Ωi

l and given by

Ωi
l =

∑
m∈M\M̌∪[M̂]

i

max
{n,j}

cn,m Ωn,l,j ∀i ∈
{

1, . . . ,
∣∣M̂∣∣} , ∀n ∈ N , ∀j ∈ J ′.

(5.25)
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Note that the selection of the interference scenario j, should not violate the

assumption of only BSs M̌ ∪
[
M̂
]
i
to be muted.

5. Select the index w̌ of the muting indicator sets that maximizes the PF metric Ωi
l,

i.e.,
w̌ = arg max

i∈{1,...,|M̂|}
Ωi
l, (5.26)

and set the result as Ωmax

l = Ωw̌
l .

6. Compare Ωmax

l with Ωref

l

• If Ωmax

l > Ωref

l , set the selected BSs indexed by
[
M̂
]
w̌
as muted and update

the reference PF metric, that is, M̌ = M̌ ∪
[
M̂
]
w̌
, M′ = M′\

[
M̂
]
w̌
,

Ωref

l = Ωmax

l . Return to step 3.

• If Ωmax

l ≤ Ωref

l , muting the BSs indexed by
[
M̂
]
w̌
brings no additional gain.

The reference metric Ωref

l determines the resulting scheduling decision. Stop
the algorithm for PRB l.

It is worth to mention that the con�guration parameter m̃, with 1 ≤ m̃ ≤ M − 1, as
introduced in (5.24), determines how many BSs are muted at a time. The con�gura-
tion parameter m̃ controls the complexity of the proposed generalized greedy heuristic
algorithm by determining the muting patterns to be evaluated. If m̃ = 1, the gener-
alized greedy heuristic algorithm reduces to the heuristic algorithm from [GKN+15].
In the case that m̃ = M − 1, the generalized greedy heuristic algorithm performs an
exhaustive search.

Example 5.5. Further elaborating on the Example 5.4, the generalized greedy heuristic
algorithm with con�guration parameter m̃ = 2 evaluates all muting patterns involving
one or two muted BSs. Thus, the generalized greedy heuristic algorithm serves UE 3
while muting BS 1 and BS 2, which achieves the maximum sum of the PF metrics,
equivalent to 6. Therefore, the proposed generalized heuristic algorithm makes the same
scheduling decision as the ILP formulated in Section 5.3.2, in contrast to the heuristic
algorithm from [GKN+15] which does not mute any BS.

5.4 Simulation Results

In this section, simulation results are presented to evaluate the performance of the
CoMP CS schemes with respect to a PF scheduler without any cooperation, referred
to as �non-coop. PFS�. The proposed parallelized sub-problem formulation as presented
in Section 5.3.2, labeled as �ILP�, is examined together with the state-of-the-art greedy
algorithm described in Section 5.3.3, denoted as �GA�, and the proposed generalized
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greedy algorithm of Section 5.3.4, labeled as �GG�. In the simulations,M ′ = 2 strongest
interfering BSs per UE are considered, which according to (5.1) are also assumed to be
the cooperative interfering BSs per UE.

Similar to Chapter 4, the results are presented in terms of the long-term average user
throughput, with particular interest on the cell-edge throughput corresponding to the
average user throughput of the worst 5 % of the UEs in the network. Additionally, the
geometric mean of the average user throughput from all UEs is evaluated as proposed by
the authors in [GKN+15] as a direct measure of the PF scheduler's objective function.

5.4.1 Performance analysis

In order to study the performance of the CS with muting schemes, Monte Carlo stan-
dalone simulations have been carried out, where the CSIR-11 reports are generated
based on channels obtained from a 3GPP compliant system-level simulator as speci�ed
in [rGPP10, rGPP12, rGPP13a, rGPP13b]. At each transmission time t, the average
user throughput over time of UE n ∈ N is updated as de�ned in (3.13), where the total
instantaneous achievable data rate of UE n at the previous transmission time, denoted
by rn(t− 1), is calculated as given by e.g., (5.20d). This average user throughput over
time is further used to calculate the PF metric of UE n as in (3.11).

The performance of the CS with muting algorithms in terms of average user throughput,
is studied with respect to the data rates the users can achieve per symbol and to
the noise power level considered in the calculation of these achievable data rates. In
practical LTE-Advanced systems, �nite MCSs are used which restrict the achievable
data rates per symbol. For the current analysis, two cases are considered with respect
to the maximum achievable data rate: i) the MCS is unbounded, denoted as �Unb.
MCS�, where the maximum achievable data rate can approach arbitrarily large values,
and ii) a maximum achievable data rate of 5.4 bits/symbol is used, as imposed by a
typical highest MCS bound in LTE-Advanced, referred to as �B. MCS�. Similarly, two
noise power levels are considered, where in the �rst case, noise free decoding is assumed,
denoted as �N.-less�, and in the second case, noise at the receivers is included, referred
to as the �Noisy� case. The noise power level, in dBm, is calculated as

σ2 = −174 + ς + 10 log10(B), (5.27)

where B corresponds to the transmission bandwidth in Hz, and ς represents the noise
�gure of the receiver in dB [SBT11], with

ς =

{
−1000 dB in the N.-less case

9 dB in the Noisy case [rGPP10].
(5.28)

The cell-edge and the geometric mean of the user throughput are shown in �gures 5.2
and 5.3, respectively, for a scenario with M = 3 BSs, N = 30 UEs (ten UEs per BS)
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Figure 5.2. Cell-edge throughput for the CoMP CS schemes, normalized with respect
to the non-coop. PFS. Scenario with M = 3 BSs, N = 30 UEs, L = 10 PRBs and
M ′ = 2 BSs. Four cases with limitations on the maximum achievable data rate and
the noise power level are considered. Out-of-cluster interference is not considered

and L = 10 PRBs. The user throughputs achieved by the CS with muting schemes
ILP, GA and GG, are normalized by the resulting user throughput when no coopera-
tive scheduler is applied, i.e., non-coop. PFS. Four cases are considered for di�erent
combinations of maximum achievable data rate and noise power level, as speci�ed in
the horizontal axis. No additional BSs are considered in the network, hence, the out-
of-cluster interference Iocn,l = 0. Under no limitations on the achievable data rate and
noise free receivers, i.e., Unb. MCS and N.-less, signi�cant user throughput gains for
both, the cell-edge and the geometric mean, are achieved by the cooperative schemes
with respect to the non-coop. PFS. Moreover, the optimality of the proposed ILP
formulation is notable, with the GA being unable to obtain the optimal solution. Due
to the unboundedness of the MCS and the noise free decoder assumptions in this case,
simultaneously muting the two cooperative interfering BSs can signi�cantly increase
the UE's data rate. Nevertheless, only muting one cooperative interfering BS does not
yield su�cient PF metric gain, causing the GA scheme to stop prematurely. Such a lim-
itation of the GA is not present in the proposed GG, which achieves the same optimal
performance as the ILP scheme. Once limitations are assumed in the maximum achiev-
able data rate or the noise power level, the observed gains from the CS with muting
schemes with respect to the non-coop. PFS approach, vanish. Due to the low number
of BSs in the cooperation cluster and given the above mentioned limitations, few users
bene�t from the simultaneous muting of the two cooperative interfering BSs. Thus, a
greedy algorithm performs near-optimal under such practical network assumptions.

In Table 5.4, the average percentage of muted PRBs per BS is presented considering the
four di�erent scheduling schemes and four combinations of maximum achievable data
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Figure 5.3. Geometric mean of the average user throughput for the CoMP CS schemes,
normalized with respect to the non-coop. PFS. Scenario withM = 3 BSs, N = 30 UEs,
L = 10 PRBs andM ′ = 2 BSs. Four cases with limitations on the maximum achievable
data rate and the noise power level are considered. Out-of-cluster interference is not
considered

Table 5.4. Average percentage of muted resources per BS

Scheduling scheme non-coop. PFS ILP GA GG

Unb. MCS & N.-less 0 0.67 0.53 0.67

Unb. MCS & Noisy 0 0.22 0.21 0.22

B. MCS & N.-less 0 0.08 0.08 0.08

B. MCS & Noisy 0 0.08 0.07 0.08

rate and noise power level. The non-coop. PFS does not apply muting, therefore the
table contains zero entries for all cases. For the CS with muting schemes, according to
�gures 5.2 and 5.3, the average percentage of muted resources per BS reduces when the
gain of muting is restricted. It is worth noting that even when the maximum achievable
data rate is assumed to be unbounded above, i.e., Unb. MCS, and noiseless receivers
are considered, i.e., N.-less, the ILP scheme mutes 2/3 of the resources per BS, which
means that each BS orthogonally serves its UEs over 1/M -th of the available resources.
Further muting resources per BS, reduces the network performance because the user
throughput distribution lacks fairness among the BSs. The value 1/M , represents a
fundamental limit of the cooperation and agrees with analytical studies presented by
Lozano et al. in [LJA13]. Although the performance of the heuristic CS with muting
schemes is near-optimal under current practical network conditions, it is envisioned
that the evolution of mobile communications introduces, for future networks, receivers
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Figure 5.4. Cell-edge throughput, normalized with respect to the non-coop. PFS, for
di�erent noise �gure values ς. Scenario with M = 3 BSs, N = 30 UEs, L = 10 PRBs
and M ′ = 2 BSs. Out-of-cluster interference is considered

with enhanced capabilities to suppress noise and to support the usage of higher MCSs.
Hence, the results in �gures 5.2 and 5.3, provide a reference to the potential gains
of these heuristic schemes with respect to the optimal performance obtained with the
proposed ILP.

In order to further illustrate the impact of the noise at the receiver on the performance
of the studied CS with muting schemes, Figure 5.4 presents the average user through-
put of the cell-edge users under di�erent noise �gure values, with ς ∈ {0, . . . , 9} dB.
This resulting noise power, calculated according to (5.27), can be also interpreted as
residual interference from BSs outside of the cooperation cluster. From Figure 5.4, it is
observable that the gain of the CS with muting schemes, with respect to the non-coop.
PFS, reduces with a higher noise �gure. Moreover, the gap between the proposed ILP
and the state-of-the-art GA vanishes for typical noise �gure values such as ς = 9 dB.
Despite the cooperation between the BSs located within the cooperation cluster, the
studied CS with muting schemes have no mechanisms to cope with the additional
noise and possibly uncoordinated interference at the receivers, which further limits the
performance gains of these cooperative schemes.

In order to study the performance of the CS with muting schemes with respect to the
cooperation cluster size, the more practical scenario with a maximum achievable data
rate of 5.4 bits/symbol and a noise �gure ς = 9 dB is considered in the following. A
network of seven BSs is simulated, where a single cooperation cluster of variable size,
with M ∈ {3, . . . , 7} is assumed. The BSs outside of the cooperation cluster are as-
sumed to transmit data with maximum transmit power over the complete simulation
time, i.e., Iocn,l ≥ 0. Additionally, two alternatives for the number of cooperative inter-
fering BSs per UE, denoted by M ′, are considered with M ′ = M − 1 and M ′ = 2.
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Figure 5.5. Cell-edge throughput, normalized with respect to the non-coop. PFS,
for di�erent values of the cooperation cluster size M . Scenario with N = 10M UEs,
L = 10 PRBs and M ′ = {2,M − 1} BSs. Out-of-cluster interference is considered

In the latter case, in order to have a conservative estimation of the achievable data
rate, the UEs generate CSIR-11 reports assuming maximum interference from the non-
cooperative interfering BSs as de�ned in (5.8). Each BS serves ten UEs over L = 10
PRBs. The cell-edge throughput, as a function of the cooperation cluster size M , is
shown in Figure 5.5 for the UEs served by the BSs within the cooperation cluster. The
presented results are normalized with respect to the user throughput achieved by the
same UEs if the non-coop. PFS is used. In accordance to the previous results, the
CS with muting schemes provide gains with respect to a non-cooperative PF sched-
uler, with an increase in the gains for a larger cooperation cluster size. The reason
for such an improvement is the opportunity of further reducing the interference, and
thus enhancing the SINR by increasing the amount of BSs involved in the coordinated
scheduling procedures. It is also observable that a larger number of M ′ cooperative
interfering BSs per UE improves the gains of the CS with muting schemes, at the cost
of additional computational complexity and signaling overhead. In agreement with
the results presented in �gures 5.2 and 5.3, the greedy algorithm of [GKN+15] shows
a near-optimal performance under practical conditions, with the proposed GG algo-
rithm performing better than the GA scheme when all possible cooperative interfering
BSs are considered. Similar results were observed for the geometric mean of the user
throughput as illustrated in Figure 5.6.

5.4.2 Potential gains

System-level simulation results are presented in order to demonstrate the achievable
gains of the CS with muting schemes for LTE-Advanced macro-only and heterogeneous
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Figure 5.6. Geometric mean of the average user throughput, normalized with respect to
the non-coop. PFS, for di�erent values of the cooperation cluster sizeM . Scenario with
N = 10M UEs, L = 10 PRBs and M ′ = {2,M − 1} BSs. Out-of-cluster interference
is considered

networks in an urban deployment. In both cases, N = 630 UEs are served over L = 10
PRBs by M = 21 BSs in the macro-only network and M = 42 BSs in the heteroge-
neous case, where one pico cell is located within the coverage area of a macro BS with
a separation distance of 125 m from the macro BS. The UEs are uniformly distributed
in the macro-only case, while in the heterogeneous network the UEs are located in a
hotspot fashion, where 2/3 of the UEs are deployed in the vicinity of the pico BSs. In
order to move UEs from the macro BSs to the small cells in the heterogeneous net-
works, CRE is used with a SINR o�-set of 6 dB for the small cells. The out-of-cluster
interference is modeled using the wrap-around technique [YDKS02], where additional
BSs are deployed surrounding the M BSs of interest. Additionally, CSIR-11 reporting
with periodicity of 5 ms is applied, where similar to the simulations in Section 5.4.1,
a conservative estimation of the achievable data rates is calculated by assuming max-
imum interference from the remaining non-cooperative BSs. Full bu�er conditions,
ideal link adaptation and rank one transmissions are assumed, i.e., all users are always
active and demand as much data as possible, the decoding is error-free and only trans-
mit beamforming is applied, respectively. For more information on 3GPP-compliant
system-level simulations, including channel and path loss models, the interested reader
is referred to [rGPP10] (See 3GPP Case 1 and Case 6.2 from Section A.2.1).

The cell-edge and the geometric mean of the user throughput, normalized with respect
to the non-coop. PFS, are presented in Figure 5.7 for a macro-only and in Figure 5.8
for a heterogeneous network. In order to follow the standard CSIR-11 reporting pro-
cedure, only M ′ = 2 cooperative interfering BSs within the cooperation cluster are
reported by each UE. In terms of the geometric mean, gains are limited to values
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Figure 5.7. Cell-edge and geometric mean of the average user throughput, normalized
with respect to the non-coop. PFS, for a scenario with M = 21 BSs, N = 630 UEs,
L = 10 PRBs andM ′ = 2 BSs, with wrap-around technique. Results from system-level
simulations of a macro-only network

around 11 % for both cases, macro-only and heterogeneous networks. Additionally,
the di�erence between the proposed schemes ILP and GG, and the state-of-the-art
GA is negligible. As observed in Section 5.4.1, the out-of-cluster interference and the
number of cooperative interfering BSs represent a limitation for the gains of the CS
with muting schemes. For the UEs with the worst average user throughput, i.e., the
cell-edge users, even with the limitation in the number of cooperative interfering BSs,
the CS with muting schemes achieve a considerable gain in performance, with gains
above 40 % being observable. In the case of heterogeneous networks, the cell-edge gain
is even higher due to the presence of a clear strongest interfering BS for the pico UEs
corresponding to the macro BS, which is considered to cooperate within the restriction
of M ′ = 2. The proposed generalized greedy algorithm GG performs better than the
scheme in [GKN+15], i.e., GA, which follows from the �exibility to muting additional
BSs. The average percentages of muted PRBs for the CS with muting schemes in the
macro-only and heterogeneous networks are presented in Table 5.5. One implication
of the muted PRBs is the opportunity to save transmit power at the BSs, with the
proposed ILP and GG schemes muting more PRBs than the GA scheme.

Focusing on the proposed parallelized ILP, it is recognizable that the simpli�cations
proposed in Section 5.3.2 enable the implementation of such a CS with muting approach
even for medium- to large-size networks. Hence, instead of solving the CS with muting
problem by considering the total of N = 630 UEs per PRB l ∈ L, only |N ′l | = 136 and
|N ′l | = 213 UEs were included in average for the macro-only and the heterogeneous
network, respectively. That implies a reduction of 78 % and 66 % in the problem size,
for each of the cases, respectively.
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Figure 5.8. Cell-edge and geometric mean of the average user throughput, normalized
with respect to the non-coop. PFS, for a scenario with M = 42 BSs, N = 630 UEs,
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Table 5.5. Average percentage of muted resources

Network ILP GA GG

Macro-only 0.11 0.10 0.10

Heterogeneous 0.13 0.08 0.09

Finally, in contrast to the authors in [GKN+15], the analysis of the coordinated schedul-
ing schemes in terms of the geometric mean of the user throughput, although meaning-
ful, is not su�cient to evaluate the bene�ts of such schemes especially when the aim
is to improve the performance of the cell-edge users.

5.5 Summary

In this chapter, the CoMP CS with muting problem in the framework of LTE-Advanced
networks with a centralized controller has been studied, where the BSs connected to
the central controller cooperate by jointly making scheduling and muting decisions.
An INLP formulation has been proposed to solve the problem optimally, where a com-
putationally e�cient equivalent ILP reformulation has been presented to extend the
applicability of the proposed scheme even to large-size networks. Moreover, a heuris-
tic approach has been derived where the computational complexity can be adjusted
according to con�gurable parameters.
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System-level simulation results show that CS with muting can potentially improve the
cell-edge user performance, with higher gains in heterogeneous networks. Nevertheless,
these gains are limited by the remaining uncoordinated interference and the �nite
time/frequency/space resources to be shared in the network.

Given the still high computational complexity of the proposed ILP centralized scheme,
heuristic algorithms such as the state-of-the-art greedy algorithm or the proposed gen-
eralized greedy algorithm are more appealing for practical implementations. However,
the usage of the proposed ILP formulation is recommended as a benchmark to evaluate
future schemes.

With respect to maximum achievable data rates and noise level at the receivers, al-
though the simulation results have shown that the gap between the optimal ILP formu-
lation and the suboptimal greedy algorithms reduces under current network parameters,
it is worth to remark the di�erence in the performance of these schemes under relaxed
network conditions. It is expected that the future technologies enable an evolution of
the mobile communication systems towards such relaxed scenarios, where the proposed
ILP proves to provide signi�cant higher performance. Nevertheless, the low gap moti-
vates the investigation of new schemes with lower computational complexity, such as
the decentralized algorithms studied in Chapter 6.
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Chapter 6

Decentralized Coordinated Scheduling in

Mobile Communication Networks

In Chapter 5, CoMP CS has been investigated from a centralized architecture perspec-
tive, where a central controller manages the cooperation between the connected BSs.
The CS with muting schemes proposed in that chapter enhance the user throughput
performance, especially for the cell-edge users. Moreover, the performance improve-
ment gap considering the solutions of the computational complex ILP formulation and
the fast heuristic algorithms, is negligible under practical considerations of current
LTE-Advanced networks. The implementation of a central controller represents some
challenges in terms of costs and the need to ensure robustness to failures of the cen-
tral processing unit. Therefore, alternative cooperative schemes that achieve similar
performance gains and that do not require a central controller are desirable.

In this chapter, CoMP CS with muting is further investigated, where in contrast to
Chapter 5 no central controller is available to coordinate the cooperation between the
BSs. Therefore, the BSs cooperate in a decentralized manner by muting particular
time/frequency resources in order to reduce the inter-cell interference experienced by
the UEs connected to adjacent BSs. The proposed decentralized CS with muting
scheme is derived to reduce the information exchange between the BSs, thus trading
o� user throughput performance and backhaul connectivity requirements.

6.1 State-of-the-art and Contributions

In [ABK+14], centralized and decentralized CS with muting schemes have been pro-
posed where only one BS can be muted on a time/frequency resource. The results
therein show that under such a muting condition, the performance of both, centralized
and decentralized CS with muting schemes, is similar in terms of cell-edge and aver-
age user throughput, favoring the decentralized architecture due to the applicability in
large-size networks and the reduced information exchange. Furthermore, in [GKN+15]
the authors extend the CS with muting schemes from [ABK+14] to enable the simul-
taneous muting of multiple BSs on the same time/frequency resource. The proposed
schemes in [ABK+14] and [GKN+15] are based on heuristics. In Chapter 5, it has
been demonstrated with numerical simulations that the performance gap, in terms of
user throughput, between the above mentioned CS with muting heuristics and the
optimally solved ILP formulation vanishes under currently practical LTE-Advanced
network conditions. Despite the near-optimal behavior of the state-of-the-art decen-
tralized schemes proposed in [ABK+14] and [GKN+15], these state-of-the-art schemes
still require to exchange a signi�cant amount of messages between the neighboring BSs,
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which can represent a limiting performance factor, especially under non-ideal backhaul
links [GKN+15]. Therefore, in this chapter a novel decentralized CS with muting
heuristic algorithm is proposed that requires low information exchange between the
neighboring BSs by appealing to an altruistic behavior of the BSs.

The major contributions of this chapter are summarized as follows.

• A novel decentralized CS with muting heuristic algorithm is proposed based on
LTE-Advanced standardized CSIR-11 reports, as presented in Section 2.1.3. Each
BS independently decides to mute time/frequency resources to reduce the inter-
ference caused to UEs connected to neighboring BSs, without knowing the bene�t
that this muting decision can bring to the overall network.

• A limited amount of feedback is used in order to assess the bene�t/loss of the
muting decisions made in previous transmission times and react accordingly.

• The proposed CS with muting algorithm requires a considerably low information
exchange between the BSs in comparison to the state-of-the-art decentralized
heuristics in [ABK+14].

6.2 System Model

The decentralized CS with muting schemes are studied based on the system model as
presented in Chapter 5 (see Section 5.2). However, as mentioned above, the absence
of a central controller is considered in the following. Therefore, new de�nitions of
the cooperation cluster and the cooperative interfering BSs per UE are required as
explained below.

A cellular network is considered as in Figure 6.1, where M BSs serve N UEs in the
downlink over the same L PRBs. Thus, inter-cell interference a�ects the UEs, especially
of those located at the cell-edge. The BSs can be all of the same type, i.e., homogeneous
networks, or they can have di�erent capabilities as in the case of the heterogeneous
networks introduced in Section 2.1.1. Moreover, limited backhaul connectivity between
only adjacent BSs is considered, as depicted in Figure 6.1 by the dotted lines. The sets
M = {1, . . . ,M}, N = {1, . . . , N} and L = {1, . . . , L} are used to address the indices
of the BSs, UEs and PRBs, respectively, as introduced in Chapter 3.

The received power at UE n ∈ N from BS m ∈M on PRB l ∈ L, denoted as pn,m,l, is
de�ned as in (3.1). Moreover, the sum over all PRBs of the received power per BS m,
constitutes the total received power at UE n from BS m, denoted by pn,m, as de�ned
in (3.2). The performance of the decentralized CS with muting schemes for macro-only
and heterogeneous networks is studied where, for the latter, CRE strategy is considered
as described in Section 4.2, with (4.2) and (4.3) de�ning the CRE selection strategy
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Figure 6.1. System model withM BSs and N UEs in the downlink. For UE n, the solid
arrow represents the serving link while the dashed arrows correspond to the interfering
links. The BSs are connected to their neighbors through backhaul links (dotted lines)

and o�-set, respectively. Therefore, the N ×M connection matrix C is de�ned, with
elements as in (3.3) characterizing the serving conditions between BSs and UEs.

In agreement to its centralized counterpart from Chapter 5, the decentralized CS with
muting scheme studied in this chapter considers cooperation between the BSs in the
form of muting time/frequency resources. Therefore, the binary muting decision ma-
trix, denoted as ᾱ and de�ned in (5.2), is used to describe the transmit powers of the
BSs. If ᾱm,l = 1, BS m ∈M is muted on PRB l ∈ L. On the other hand, BS m
transmits on PRB l with maximum transmit power Φm,l, when the muting decision
variable ᾱm,l = 0.

6.2.1 Decentralized cooperation clusters

From a BS perspective, cooperation can take place with the adjacent BSs from which
connectivity is ensured via backhaul links. For BS m ∈M, the set M̂m (M contains
the indices of BSs that can cooperate to improve the performance of the UEs connected
to BSm according to the connection matrix C. Multiple methods are available to de�ne
the index set M̂m, such as static prede�ned cooperation clusters [MF11] or dynamic
overlapping clusters [ABK+14]. In this work, each BS m selects its cooperation cluster
based on the dynamic method from [ABK+14], where the M̂ BSs that produce the
highest total interference power levels to the UEs connected to BS m are included in

M̂m, with 0 ≤ M̂ < M , such that
∣∣∣M̂m

∣∣∣ = M̂ . The total interference power level

experienced at UE n ∈ N connected to BS m from BS k ∈M, such that k 6= m, is
calculated as

In,k = pn,k, ∀n ∈ N , cn,m = 1, (6.1)

with pn,k de�ned in (3.2). Moreover, it is assumed that connectivity through backhaul
links is available between BSm and the BSs indexed by M̂m. Additionally, it is possible
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that the cooperation sets of two BSs are not reciprocal. That is, although BS m
considers BS k as part of its cooperation cluster, i.e., k ∈ M̂m, the UEs connected to
BS k may not experience signi�cant interference from BS m, and therefore, m /∈ M̂k.

Hence, the index set K̂m =
{
k | m ∈ M̂k, ∀k ∈M

}
, is used to address the indices of

BSs that consider BS m as part of their cooperation clusters.

From a UE perspective, the UEs connected to BS m ∈M as indicated by the connec-
tion matrix C with elements given in (3.3), can only expect cooperation from the BSs
belonging to the cooperation cluster of BS m, as indexed by the set M̂m. Furthermore,
the interference power levels experienced by the UEs from the BSs indexed by M̂m can
vary signi�cantly, depending on the channel coe�cients between UEs and BSs as intro-
duced in (3.1). In order to reduce the signaling overhead, the UEs connected to BS m
generate CSIR-11 reports considering cooperation of only M ′ ≤ M̂ BSs, corresponding
to the BSs from which the M ′ highest interference power levels are experienced. The
set Icn ⊆ M̂m addresses the indices of the cooperative interfering BSs considered in the
CSIR-11 reports generated by UE n ∈ N , with |Icn| = M ′.

6.2.2 CSI reporting for decentralized CS with muting

In the decentralized network architecture studied in this chapter, the CSI knowledge of
the BSs is considered to be in form of the CSIR-11 reports as introduced in Section 3.1.
These CSIR-11 reports contain information of a subset of possible muting decisions based
on the cooperation cluster of the serving BS, as previously introduced in Section 6.2.1.
Similar to Chapter 5, the muting matrix α is used as de�ned in Section 3.1, in order
to describe the assumed transmit/muting states of the BSs associated with a speci�c
CSIR-11 report.

In order to support the decentralized CS with muting scheme, UE n ∈ N served by
BS k ∈M, generates CSIR-11 reports for all L PRBs containing information on the
downlink data rates achievable under particular interference scenarios. As explained
in Section 6.2.1, UE n considers only M ′ BSs indexed by Icn, in the generation of the
CSIR-11 reports. Therefore, UE n generates a total of J ′ = 2M

′
CSIR-11 reports per

PRB l ∈ L, corresponding to all possible combinations of transmit and muting states
of the M ′ cooperative interfering BSs. To address the assumed interference scenarios
in the J ′ CSIR-11 reports generated by UE n, the index set J ′ = {1, . . . , J ′} is used.
Moreover, the muting indicator set Jn,j is de�ned similarly to Section 5.2.1, containing
the indices of the cooperative interfering BSs considered to be muted in the j-th CSIR-11

report of UE n. Hence, the muting pattern of the j-th CSIR-11 report of UE n on PRB l,
is de�ned as

αn,m′,l,j =

{
1 if BS m′∈ Jn,j on PRB l

0 otherwise
∀m′∈ Icn. (6.2)
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In the generation of the CSIR-11 reports, the SINR on PRB l ∈ L of UE n ∈ N con-
nected to BS k ∈M, under interference scenario j ∈ J ′, is given by

γn,l,j (αn,m′,l,j) =
pn,k,l

Icn,l,j (αn,m′,l,j) + Iocn,l + σ2
, (6.3)

where the �rst term in the denominator corresponds to the interference from the co-
operative interfering BSs of UE n, denoted as Icn,l,j and de�ned as

Icn,l,j (αn,m′,l,j) =
∑
m′∈Icn

(1− αn,m′,l,j) pn,m′,l, (6.4)

the second term in the denominator, i.e., Iocn,l, refers to the interference from the re-
maining BSs in the network, given by

Iocn,l =
∑

m∈M\Icn

pn,m,l, (6.5)

where it is assumed that all remaining BSs in the network transmit on PRB l with
maximum transmit power Φm,l, in order to have conservative CSIR-11 reports regarding
the non-cooperative interfering BSs, and the last term in the denominator represents
the AWGN power σ2, which is assumed without loss of generality, to be constant for
all UEs over all PRBs as in Chapter 5. Moreover, the achievable data rate on PRB l
of UE n under interference scenario j, denoted as rn,l,j, is de�ned as in (5.9).

6.3 Decentralized CS with Muting

Based on the CSIR-11 reports provided by the connected UEs, as described in Sec-
tion 6.2.2, the BSs carry out the decentralized CS with muting scheme. This CS with
muting scheme identi�es which PRBs are used to serve the connected UEs, and on
which PRBs the BSs are muted to reduce the interference experienced by UEs con-
nected to neighboring BSs. The scheduling and muting decisions are made indepen-
dently per PRB, which resembles the centralized schemes from Sections 5.3.2 to 5.3.4.
In order to ease the comparison between the proposed decentralized CS with muting
scheme and the state-of-the-art heuristic algorithms from [ABK+14], the notation used
in the latter is adopted in the following.

Similar to the centralized CS with muting case, the decentralized scheme relies on
the PF scheduling metric as given in (3.11) in order to obtain a trade-o� between
user throughput and fairness. Therefore, the PF metric on PRB l ∈ L of UE n ∈ N
connected to BS m ∈M, under interference scenario j ∈ J ′, is de�ned as

Ωn,l,j =
rn,l,j
Rn

, (6.6)

where the numerator corresponds to the instantaneous achievable data rate on PRB l
of UE n under interference scenario j, obtained from the CSIR-11 reports as de�ned
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in Section 6.2.2. The denominator refers to the average user throughput over time of
UE n, considered to be constant among all L PRBs and updated according to (3.13).

Based on the CSI reports of UE n ∈ N , the interference scenario j0
n ∈ J ′ is de�ned as

the interference scenario where no BSs are muted, i.e., αn,k,l,j0n = 0, ∀k ∈ Icn, ∀l ∈ L.
Hence, the interference scenario j0

n corresponds to the non-cooperative case, with all
BSs transmitting with maximum transmit powers over all PRBs. The achievable PF
metric on PRB l of BS m ∈M, when scheduling without muting takes place, denoted
as Ω0

m,l, is given by

Ω0
m,l = max

n∈N
cn,m=1

Ωn,l,j0n
, (6.7)

with Ωn,l,j0n
calculated according to (6.6). On the other hand, in the case that BS k ∈M

is muted on PRB l, the bene�t metric of BS m, which considers BS k as part of its
cooperation cluster such that k ∈ M̂m, is de�ned as

βkm,l = max
{

Ωk
m,l − Ω0

m,l, 0
}
. (6.8)

In (6.8), the PF metric on PRB l of BS m under the interference scenario where only
BS k is muted, denoted as Ωk

m,l, is calculated similarly to (6.7), with jkn ∈ J ′ denoting
the considered interference scenario with only BS k muted. It is worth noting that
βkm,l ≥ 0, since the scheduler is expected to select the best PF metric between either
assuming that BS k is muted on PRB l, or that no cooperation is taking place. For
BS k, which was assumed to be muted on PRB l according to (6.8), the net bene�t
metric is calculated as

Bk,l =
∑

m∈M\k
k∈M̂m

βkm,l − Ω0
k,l. (6.9)

The net bene�t metric represents a measure of the impact on the network performance,
of muting BS k on PRB l. If Bk,l > 0, the BSs that consider BS k as part of their
cooperation clusters bene�t more, in terms of PF metric, than the loss from muting
BS k. On the other hand, if Bk,l ≤ 0, muting BS k on PRB l, is not bene�cial for the
cooperative network.

6.3.1 State-of-the-art decentralized CS with muting scheme

The CS with muting scheme proposed in [ABK+14] (see Max-Net Bene�t algorithm,
Figure 6 in Section IV) is summarized as follows for PRB l ∈ L and transmission time t.

1. Calculate the bene�t metrics as in (6.8):

βkm,l ∀m ∈M, ∀k ∈ M̂m.
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2. Report the calculated bene�t metrics to the BSs belonging to the set of
cooperative BSs:

βkm,l → BS k ∈ M̂m ∀m ∈M.

3. Calculate the net bene�t metrics as in (6.9):

Bm,l ∀m ∈M.

4. Report the calculated net bene�t metrics to the BSs belonging to the set of
cooperative BSs:

Bm,l → BS k ∈ M̂m ∀m ∈M.

5. Mute PRB l if BS m has the maximum net bene�t metric among the known net
bene�t metrics, indexed by the set K̂m as de�ned in Section 6.2.1:

ᾱm,l =

1 if Bm,l ≥ max
k∈K̂m

Bk,l

0 otherwise
∀m ∈M. (6.10)

6. Report the muting decision to the BSs belonging to the set of cooperative BSs:

ᾱm,l → BS k ∈ M̂m ∀m ∈M.

7. If not muted, perform PF scheduling as introduced in Section 3.2, based on the
available information from the CSIR-11 reports and the known muting decisions
from the BSs indexed by the set K̂m. Transmit with maximum transmit power.

The above described Max-Net Bene�t algorithm has two major disadvantages: i) three
information exchange steps are required among the BSs in the cooperation clusters
before the downlink transmissions take place, which can cause high latency depending
on the quality of the backhaul links as investigated in [GKN+15], and ii) these three
information exchange steps correspond to the reporting of all the bene�t metrics, all
the net bene�t metrics and the resulting muting decisions for each PRB l ∈ L, which
represent a large amount of messaging between the BSs. It is worth to mention that,
although an alternative method with only two information exchange steps is also de-
rived in [ABK+14], referred to as autonomous muting, where the fourth step from the
Max-Net Bene�t algorithm is removed and muting applies if the net bene�t metric is
positive, the reduction in the amount of exchanged messages is negligible.

6.3.2 Proposed decentralized CS with muting scheme

To overcome the limitations of the state-of-the-art heuristic algorithms as mentioned
in Section 6.3.1, in the following a decentralized CS with muting scheme that reduces
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the amount of information exchanged between the BSs is proposed. In the proposed
scheme, the BSs make muting decisions without current knowledge of the e�ect that
these muting decisions have on the bene�t metrics of the neighboring BSs. Hence,
an altruistic behavior of the BSs is expected in the proposed scheme. To reduce the
negative impact of the uninformed muting process on the BSs, a feedback method
is considered which is carried out after the current transmit/muting procedures take
place.

For BS m ∈M, the index set Lm(t) ⊆ L is used to address the PRBs on which BS m
is muted at transmission time t. Moreover, the variable µm(t) = |Lm(t)| indicates the
number of PRBs where BS m is muted. In the following, the proposed decentralized
CS with muting scheme is presented for transmission time t, which is simultaneously
carried out for all L PRBs.

Initialization (t = 1)

0. At transmission time t = 1, assign initial values to the index set of muted PRBs
and the counting variable µ:

Lm(t) = ∅, µm(t) = 1 ∀m ∈M,

with ∅ denoting the empty set.

Altruistic muting (t ≥ 1)

1. Select PRBs with the lowest PF metrics, as de�ned in (6.7), to be muted:

L′m(t) =
⌊
Ω0
m,l

⌋
µm(t)−|Lm(t)| ∀m ∈M, ∀l ∈ L\Lm(t),

where the operator
⌊
Ω0
m,l

⌋
y
selects the y indices of PRBs corresponding to the

lowest PF metrics.

2. Update the index set of muted PRBs and the counting variable µ:

Lm(t) = Lm(t) ∪ L′m(t), µm(t) = |Lm(t)| ∀m ∈M.

3. Set the muting decision according to the index set of muted PRBs:

ᾱm,l =

{
1 if PRB l ∈ Lm(t)

0 otherwise
∀m ∈M, ∀l ∈ L. (6.11)

4. Report the muting decision to the adjacent BSs that consider the reporting BS
as part of their cooperation clusters:

ᾱm,l → BS k ∈ K̂m ∀m ∈M, ∀l ∈ Lm(t).
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5. Perform PF scheduling as introduced in Section 3.2 on the PRBs where the BS
is not muted, i.e., ∀l /∈ Lm(t), ∀m ∈ M. The PF scheduling is based on the
available information from the CSIR-11 reports and the known muting decisions
from the BSs indexed by the set M̂m. Transmit with maximum transmit power
on the scheduled PRBs.

Feedback mechanism (t ≥ 1)

6. After transmitting, calculate bene�t metrics as de�ned in (6.8) on the PRBs,
where the BSs belonging to the cooperation cluster were muted:

βkm,l ∀m ∈M, ∀k ∈ M̂m, ∀l ∈ Lk(t).

7. Report the calculated bene�t metrics to the BSs belonging to the set of
cooperative BSs:

βkm,l → BS k ∈ M̂m ∀m ∈M, ∀l ∈ Lk(t).

8. Calculate net bene�t metrics as in (6.9) for the muted PRBs:

Bm,l ∀m ∈M, ∀l ∈ Lm(t).

9. Evaluate impact of own muting decision. Con�gure the index set of muted PRBs
and the counting variable µ for the next transmission time, accordingly:

Lm(t+ 1)→
{
l ∈ Lm(t+ 1) if Bm,l > 0

l /∈ Lm(t+ 1) otherwise
∀l ∈ Lm(t), ∀m ∈M. (6.12)

µ(t+ 1) =

{
min {µ(t) + 1, Lmax} if |Lm(t+ 1)| = µ(t)

max {|Lm(t+ 1)| , Lmin} otherwise
∀m ∈M.

(6.13)
If the net bene�t metric of BS m muted on PRB l is positive, the applied muting
decision was bene�cial for the network. Therefore, BSm remains muted on PRB l
for the next transmission time t + 1. Moreover, if all the net bene�t metrics of
BS m are positive, BS m increases the amount of PRBs on which it is muted
for the next transmission time as described in (6.13), up to a maximum value
Lmax ≤ L. On the other hand, if the net bene�t metric of BS m muted on PRB l
is negative, then the muting decision negatively a�ected the network. Thus,
BS m transmits data on PRB l for the next transmission time t+1. If all the net
bene�t metrics of BS m are negative, BS m sets the amount of PRBs on which it
is muted to a minimum value for the next transmission time according to (6.13),
with Lmin ≥ 1 in order to avoid falling into a scenario without cooperation.
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Since in the proposed CS with muting scheme the muting decisions are made by the BSs
without current knowledge of the bene�t metrics of the remaining BSs, the information
exchange is reduced with respect to the state-of-the-art scheme in [ABK+14]. Moreover,
the reporting of the muting decisions and the feedback of the bene�t metrics are limited
to only PRBs on which the BSs were muted, which further reduces the amount of
messages exchanged between the BSs. Another mechanism from the proposed CS with
muting scheme to reduce the information exchange, is to carry out muting decisions
for multiple transmission times, where the feedback step is performed only once before
the new muting decision is made.

6.4 Simulation Results

In this section, the system-level simulation results from Chapter 5 (see Section 5.4.2)
are extended to include the results from the studied decentralized CS with muting
schemes. Therefore, the same network scenarios as in Section 5.4.2 are considered,
with N = 630 UEs served over L = 10 PRBs by M = 21 BSs in the case of a macro-
only network and M = 42 BSs in a heterogeneous network, where one pico cell is
located within the coverage area of a macro BS with a separation distance of 125 m
from the macro BS. As explained in Section 6.2.1, each BS considers M̂ = 6 BSs as
part of its cooperation cluster, while each UE generates CSIR-11 reports with M ′ = 2
cooperative interfering BSs.

Similar to Chapter 5, the performance of the decentralized CS with muting schemes is
evaluated with respect to a PF scheduler without any cooperation, labeled as �non-coop.
PFS�. The proposed decentralized CS with muting scheme as explained in Section 6.3.2,
labeled as �dA�, is analyzed together with the Max-Net Bene�t and the autonomous
muting algorithms from [ABK+14], labeled as �dMB� and �dBA�, respectively. Addi-
tionally, for comparison purposes, results from two of the centralized CS with muting
schemes presented in Section 5.4.2 are reproduced in the following, corresponding to
the ILP scheme with optimal solution from Section 5.3.2, referred to as �cILP�, and the
suboptimal heuristic algorithm from Section 5.3.3, denoted as �cGA�, where the pre�x
�c� is used to highlight the presence of the central controller.

The cell-edge and the geometric mean of the user throughput are shown in Figure 6.2
for the macro-only network, and in Figure 6.3 for the heterogeneous network, where
the values are normalized with respect to the results obtained from a scenario without
any cooperation, i.e., non-coop. PFS. In the case of the proposed decentralized scheme,
the muting decisions are valid for a period of 1 ms, denoted by �dA1�, and a period
of 5 ms, labeled as �dA5�. For all the additional schemes, 1 ms muting decisions are
made. As expected, the decentralized CS with muting schemes behave worse than the
centralized counterparts from Chapter 5. Nevertheless, the gains of the decentralized
schemes with respect to the non-coop. PFS scheme are remarkable, especially for the
cell-edge throughput. Although the proposed schemes, i.e., dA1 and dA5, are not aware
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Figure 6.2. Cell-edge and geometric mean of the average user throughput, normalized
with respect to the non-coop. PFS, for a scenario with M = 21 BSs, N = 630 UEs,
L = 10 PRBs andM ′ = 2 BSs, with wrap-around technique. Results from system-level
simulations of a macro-only network

of the current bene�ts the muting decisions can bring to the network, they perform close
to the state-of-the-art approaches dMB and dBA. Furthermore, in the heterogeneous
network case, the fact of providing muting decisions over a longer period of time,
i.e., 5 ms in dA5, further improves the performance of the cell-edge UEs, achieving
the highest gain between the decentralized schemes. In terms of the geometric mean,
which measures the PF scheduler's objective function, since muting decisions without
bene�ting the network can occur, the proposed CS with muting schemes achieve the
lowest performance, that is, they are less proportionally fair.

A comparison of the messages exchanged between the BSs for each decentralized CS
with muting scheme is presented in Table 6.1, where the results are normalized with
respect to the scheme with the largest information exchange, i.e., dMB. Each infor-
mation exchange, e.g., the report of the muting decision or the bene�t metric per
PRB, is counted as a message, with the state-of-the-art dMB scheme transmitting a
total of 3'979.801 and 5'908.347 messages in the macro-only and heterogeneous net-
works, respectively. The schemes proposed in this work require a minimum of 6 % and
a maximum of 22 % of the messages exchanged in the state-of-the-art dMB method,
which represents a signi�cant reduction on the capacity and latency requirements of
the backhaul links.

Furthermore, the dependency of the proposed dA scheme on the periodicity of the
muting decisions, is presented in Figure 6.4 for the studied macro-only and heteroge-
neous networks, where the former is labeled as �M� and the latter is referred to as �H�.
The cell-edge, i.e., �Edge�, and the geometric mean, labeled as �Gmean�, of the user
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Figure 6.3. Cell-edge and geometric mean of the average user throughput, normalized
with respect to the non-coop. PFS, for a scenario with M = 42 BSs, N = 630 UEs,
L = 10 PRBs andM ′ = 2 BSs, with wrap-around technique. Results from system-level
simulations of a heterogeneous network

Table 6.1. Relative amount of exchanged messages in the decentralized schemes

Network
CS scheme

dMB dBA dA1 dA5

Macro-only 1 0.83 0.16 0.06

Heterogeneous 1 0.82 0.22 0.07

throughput are illustrated, normalized with respect to the scenario without any coop-
eration, i.e., non-coop. PFS. In the macro-only case, higher periodicity values imply a
reduction in performance for both, the cell-edge and the geometric mean of the average
user throughput, which is explained by the risk of making wrong muting decisions for
a longer period of time. In contrast, the cell-edge throughput of the heterogeneous
networks bene�ts from higher periodicity values, as observed in the previous results.
Nevertheless, muting time/frequency resources for longer time represents also a reduc-
tion in the geometric mean of the heterogeneous networks as a consequence of the lower
spectral e�ciency.

6.5 Summary

In this chapter, further investigations of the CoMP CS with muting schemes were
carried out with focus on decentralized architectures. Similar to Chapter 5, the co-
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Figure 6.4. Cell-edge and geometric mean of the average user throughput of the pro-
posed dA scheme, normalized with respect to the non-coop. PFS, for di�erent period-
icity values. Macro-only �M.� and heterogeneous �H.� networks are considered

operation takes place between the BSs by means of coordinating the scheduling and
muting decisions in order to improve the performance, in terms of user throughput
of the UEs, especially of those located at the cell-edge. However, in contrast to the
schemes studied in Chapter 5, in this chapter the BSs cooperate in a decentralized fash-
ion with only adjacent BSs, where low information exchange between the cooperative
BSs is pursued.

System-level simulation results show that the proposed decentralized CS with muting
scheme greatly reduces the amount of information exchange between the neighboring
BSs, while achieving similar or even better results for the user throughput of the
cell-edge UEs when compared to the state-of-the-art schemes in [ABK+14]. With
respect to the results from the centralized CS with muting schemes as presented in
Chapter 5, a reduction in performance is observable as expected for the decentralized
case. Nevertheless, when considering that the cooperation is restricted to a limited
number of adjacent BSs and that the computational complexity of the proposed scheme
is negligible, the performance gap is remarkably small.
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Chapter 7

Coordinated Scheduling under Bursty Tra�c

The investigation of the cooperative resource allocation schemes from chapters 4 to 6,
was carried out under the assumption of full-bu�er systems for quasi-static scenarios,
where the UEs demand as much data as possible while moving at very low speeds.
For the link adaptation procedures, which establish the transmission parameters used
per serving link, e.g., the transmit power, the modulation and the coding schemes,
these relative stable conditions experienced by the UEs do not represent a signi�cant
challenge. Therefore, in full-bu�er systems and even if no cooperation takes place, the
link adaptation procedures at the BSs succeed to serve the UEs in the downlink with
low error probabilities, because the CSI reports correctly re�ect the channel conditions
experienced by the UEs in terms of intended signal and interference. Although the
full-bu�er assumption is useful for the capacity analysis of the investigated schemes,
this assumption does not typically hold true in practical communication networks. In
mobile communication networks under bursty tra�c conditions, the interference ex-
perienced by the UEs varies constantly. Therefore, the periodic reporting of CSI as
explained in Section 2.1.3 becomes inaccurate and the performance of the link adapta-
tion procedures deteriorates.

In this chapter, a centralized CoMP CS scheme is proposed to improve the performance
of the link adaptation procedures for a non-full-bu�er network in the downlink. For that
purpose, an ILP problem is formulated, which at the time of serving a UE, attempts
to reproduce the interference scenario as observed during the generation of the CSI
report. Despite its combinatorial nature, the optimization framework proposed in this
chapter is suitable for even medium- to large-scale networks. Additionally, CSI in form
of CSIR-8 reports is assumed in the scheme proposed in this chapter, which in contrast
to the CSIR-11 reports used in the schemes investigated in the previous chapters, does
not cause any additional signaling overhead between the UEs and the BSs.

7.1 State-of-the-art and Contributions

The performance evaluation of interference mitigation techniques is generally carried
out with a capacity enhancement perspective. Thus, the assumption of a full-bu�er
system where all UEs constantly demand as much data as possible is typically used.
Hence, this kind of analysis considers a worst case scenario and provides lower bounds
of the network performance [DGA13]. However, the full-bu�er assumption might not
hold true in many practical scenarios where the networks are over-dimensioned in or-
der to ensure availability of time/frequency resources at any time, and where the UEs
demand small data volumes. Several works take into account the network load in
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their approaches to improve the user throughput. For instance, in [SPK+13] enhanced-
ICIC is dynamically adapted according to the BS load. Thus, BSs with low load are
muted more frequently in order to reduce the interference to UEs in neighboring BSs.
In [CJXH13], a coordinated scheduling scheme is proposed where spectral resources
and/or BSs are muted over time, in order to reduce energy consumption and interfer-
ence when the network load is low.

In cellular networks, one way of performing the link adaptation procedures, i.e., the
selection of the transmit powers and the MCS parameters for transmission [FYL+11],
relies on the availability of CSI at the transmitter [3rd13]. As explained in Section 2.1.3
in the downlink case, such CSI is estimated and reported by the UEs in transmission
times preceding the data transmission as depicted in Figure 2.5. In addition to the
channel �uctuations, if the time/frequency resources are not fully occupied and the UEs
demand short bursts of data, the interference scenario experienced by the UEs varies
drastically due to changing transmission conditions of the BSs. As a consequence,
the reported CSI may not correctly re�ect the interference scenario to be experienced
at the time of scheduling a new data transmission and therefore, the performance
of the link adaptation procedures is a�ected, resulting in a signi�cant increase of the
BLER. Thus, more retransmissions are triggered that increase the delay and reduce the
user throughput. Under such a non-full-bu�er condition, instead of using traditional
techniques designed for full-bu�er networks to increase the achievable data rates, it is
generally of higher importance to enhance the reliability of the CSI reports in order to
reduce the BLER. Hence, retransmissions are avoided and the low demand caused by
the bursty tra�c of the UEs is satis�ed within a short period of time.

In this chapter, a coordinated scheduling scheme is proposed in order to improve the
performance of the link adaptation procedures for a non-full-bu�er network with CSIR-8

feedback. The problem formulation aims to reduce the BLER by means of reproducing
the interference scenario of the UEs to be served, at the time of generating the respective
CSIR-8 reports.

The major contributions of this chapter are summarized as follows.

• The centralized CoMP CS problem under bursty tra�c conditions is formulated
as an ILP with the objective of reducing the BLER. The scheduling decisions
pursue a trade-o� between the user throughput and fairness, while considering
the interference scenarios re�ected in the CSIR-8 reports of the UEs to be served.
Therefore, BSs can be muted in order to reproduce the interference scenario from
the CSIR-8 report.

• The ILP is formulated under consideration of a low computational complexity,
thus being also applicable in medium- to large-scale networks.

• System-level simulations are provided to evaluate the performance of the pro-
posed scheme under di�erent network loads.
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7.2 System Model

In this chapter, the system model introduced in Chapter 3 is extended, where bursty
tra�c is incorporated as presented below. A cellular network is considered where M
BSs serve N UEs in the downlink over L PRBs, as illustrated in Figure 7.1. Moreover,
the BSs can be all of the same type, as in the case of homogeneous networks, or
they can have di�erent capabilities, such as in the case of heterogeneous networks as
introduced in Section 2.1.1. The sets of indices M = {1, . . . ,M}, N = {1, . . . , N}
and L = {1, . . . , L} are de�ned as in Chapter 3, to address the BSs, UEs and PRBs,
respectively. Moreover, it is assumed that the BSs are connected via backhaul links to
a central controller, which can be deployed as an independent entity or as part of a
BS.

The received power at UE n ∈ N from BS m ∈M on PRB l ∈ L, denoted as pn,m,l,
is given by (3.1). Furthermore, the total received power at UE n from BS m over
all L PRBs is denoted by pn,m, as de�ned in (3.2). Similar to the previous chapters,
di�erent serving BS selection strategies can be carried out according to the network
type. In the case of homogeneous networks, the serving BS corresponds to the BS
which provides the largest total received power at the UE, while in the heterogeneous
networks case, CRE strategy is applied as described by (4.2), with CRE o�-set given
by (4.3). Therefore, the N ×M connection matrix C is de�ned, with elements as in
(3.3) characterizing the serving conditions between BSs and UEs. Moreover, the set of
interfering BSs of UE n is de�ned as In = {k | cn,k = 0, ∀k ∈M}, as introduced in
Chapter 3.

7.2.1 Tra�c modeling

In order to simulate non-full bu�er systems, time varying tra�c at the UEs needs to
be modeled. In the literature, especially when simulating LTE and LTE-Advanced net-
works, it is common to apply a File Transfer Protocol (FTP) tra�c model to represent
networks with underutilized time/frequency resources, as described in [rGPP10] (see
Model 1 from Section A.2.1.3.1). The FTP tra�c model considers UEs downloading
single �les of size V at a time, where the UEs are assumed to get active by following a
Poisson process, with UE arrival rate of λ, λ > 0 [Ros10]. The arrival rate λ describes
then, the activation time of the UEs. The Probability Density Function (PDF) of a
Poisson process for variable values of the UE arrival rate λ is illustrated in Figure 7.2,
where the horizontal axis corresponds to the number of active UEs, denoted by Λ, with
Λ ≥ 0, and the PDF is calculated as

PDF =
λΛ

Λ!
e−λ. (7.1)

Given that each UE downloads only one �le at a time, the data demand of UE n ∈ N
is de�ned as dn, with 0 ≤ dn ≤ V .
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BS 1

BS m

BS M

UE 1

UE n

UE N

pn,1 pn,M

pn,m

Central Controller

Figure 7.1. System model withM BSs and N UEs in the downlink. For UE n, the solid
arrow represents the serving link while the dashed arrows correspond to the interfering
links. The BSs are connected through the backhaul to a central controller (dotted
lines)

Although the FTP tra�c model enjoys high simplicity, the model lacks of �exibility to
represent more complex interactions and service types available in wireless networks,
such as streaming and voice services, among others. For that purpose, alternative
tra�c models based on Markov chains [Ros10, Sen06], have been proposed e.g., in
[LAD+15, RCLD+14]. Since in this chapter the focus relies on networks with bursty
tra�c, the FTP tra�c model is su�cient and it is therefore implemented in the system-
level simulations of Section 7.4, with small �le size V and low arrival rate λ.

Due to the non-full bu�er assumption, the transmission state of the BSs varies according
to the demand of their connected UEs. Therefore, at transmission time t, the state
of BS m ∈M on PRB l ∈ L is de�ned by the binary muting decision matrix ᾱ, of
dimensions M × L and elements as introduced in (5.2). If ᾱm,l = 0, BS m transmits
on PRB l with maximum transmit power Φm,l. On the other hand, BS m is muted on
PRB l, when the muting decision variable ᾱm,l = 1. In this chapter, three reasons can
cause a muted BS under a non-full-bu�er system, as follows.

• The demand of the connected UEs is served by the BS at the current transmission
time t. In this case, the BS is muted on a subset of PRBs.

• The connected UEs are inactive, i.e., the UEs are not demanding data on the
current transmission time t. Thus, the BS is muted on all L PRBs.

• The BS is muted as the result of the proposed CS scheme, in order to re�ect the
interference scenario as reported in the CSIR-8 report.
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Figure 7.2. PDF of the Poisson distribution for di�erent values of the UE arrival rates
denoted by λ

7.2.2 CSI feedback and uncertainty

The transmitter requires CSI for the link adaptation procedures to determine a suitable
MCS. In this chapter, it is assumed that the UEs use LTE standardized CSIR-8 reports
as described in Section 2.1.3, where the UEs signal a CQI value per PRB. As previously
explained in Section 7.2.1, the BSs can have di�erent transmit/muting states depending
on the demand of their connected UEs, as described by the muting decision matrix ᾱ.
Thus, the CSIR-8 reports re�ect the transmit/muting states of the BSs at the time
of generating such reports, where the SINR on PRB l ∈ L of UE n ∈ N served by
BS m ∈M, is de�ned as

γn,l =
pn,m,l∑

k∈In (1− αk,l) pn,k,l + σ2
. (7.2)

The numerator of (7.2) corresponds to the received power from the serving BS m, as
de�ned in (3.1). For the purpose of generating the CSIR-8 report, it is assumed that
the serving BS transmits with maximum transmit power Φm,l, i.e., αm,l = 0. Moreover,
the denominator of (7.2) is the sum of the received powers from the interfering BSs
of UE n, indexed by the set In and controlled by the muting state matrix α, and the
AWGN power at the receiver, denoted by σ2 and assumed without loss of generality,
to be constant for all UEs over all PRBs. It is worth noting that, as explained in
Section 3.1, the notation α is used in order to describe the assumed transmit/muting
state of the BSs at the moment of generating the CSIR-8 report. Moreover, due to the
utilization of CSIR-8 reports, both variables, ᾱ and α, coincide at the transmission
time t when the report is generated. Furthermore, the achievable data rate on PRB l
of UE n, denoted as rn,l, is modeled as a function of the UE's SINR, as de�ned in (3.9).
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As explained in Section 2.1.3, the estimation and reporting process of CSI is typically
performed in a periodic fashion, where UE n ∈ N feeds the generated CSIR-8 reports
back to its serving BS m ∈M at time t. The CSIR-8 report is then available for the
scheduling and the link adaptation procedures at the serving BS m, after a delay of δ
transmission times, and it is used for a period of T transmission times as depicted
in Figure 2.5. It is commonly assumed that the BSs try to serve the UEs quickly
using as few resources as possible, hence having available time/frequency resources
to serve additional users. Thus, when considering bursty tra�c, the BSs may serve
the requested data demands using only a subset of the available PRBs, leaving the
remaining PRBs unused, i.e., the BSs are inactive on the remaining PRBs. As a
consequence of this common scheduling practice, the PRB utilization in the network
is rapidly changing and the UEs experience drastically time-varying interference levels
from the neighboring BSs. Based on Figure 2.5, the time of generating a CSIR-8 report
is de�ned as t1, and the time of using it at the BS is de�ned as t2, where t2 is bounded
by t1 + δ ≤ t2 ≤ t1 + T + δ. Thus, by denoting γR-8n and γt2n , as the SINR of UE n at
times t1 and t2, respectively, three di�erent interference scenarios are distinguished.

• If γR-8n < γt2n , then the CSIR-8 report was generated in a situation with higher
interference than in the case when the CSIR-8 report is actually used. Thus,
the CSIR-8 report pessimistically recommends the utilization of a lower MCS,
resulting in lower user throughput.

• If γR-8n = γt2n , then the interference scenarios at the generation and utilization
times t1 and t2, respectively, coincide, and the CSIR-8 report correctly represents
the current interference condition.

• If γR-8n > γt2n , then the reported CSIR-8 underestimated the interference at the
time t2 of using the CSIR-8 report. This is the most critical situation because the
utilization of a higher MCS increases the probability of a higher BLER. Once
the transmissions are not successful, the time required to serve the UEs' demands
increases due to retransmissions, thus reducing the experienced user throughput.

It is worth to mention that channel variations over time, due to time selective fading,
also lead to CSIR-8 report mismatch. However, these fading e�ects generally occur on
a much slower time scale and are less drastic to the CSI mismatch than the variations
in PRB utilization. Therefore, this chapter is focused on the impact of bursty tra�c,
while considering the channels to be time invariant.

7.3 Coordinated Scheduling for Link Adaptation

In this section two schedulers are presented corresponding to a common non-cooperative
scheduler and the proposed coordinated scheduling approach. In both cases, due to the
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burstiness of the UE tra�c, the scheduling decisions are carried out by selecting one
PRB at a time, together with the UE to be served by each BS on the selected PRB.
Moreover, as mentioned in Section 7.2, in the case of the coordinated scheduling for-
mulation, the BSs can be muted on speci�c PRBs in order to improve the performance
of the link adaptation procedures of the UEs to be served by neighboring BSs. In the
following, the index τ ∈ {1, . . . , L} is used to refer to the iterative scheduling process
of selecting one PRB at a time.

7.3.1 Non-cooperative scheduling

A non-cooperative PF scheduler is considered, which is widely used to evaluate the
performance of current cellular networks due to its simplicity, as introduced in Sec-
tion 3.2. To obtain the scheduling decision, each BS independently maximizes the PF
metric per PRB among its served UEs, as given by (3.11), which represents a trade-o�
between user throughput and fairness.

At each transmission time t, the PF scheduler at BS m ∈M iteratively schedules the
PRBs to the UEs served by BS m. In order to describe the iterative process of the
PF scheduler, with iteration index τ ∈ {1, . . . , L} as introduced above, the following
de�nitions are required. At iteration τ , the sets D(τ)

m and L̃(τ)
m contain the indices of the

UEs to be served by BS m, and the indices of PRBs of BS m available for scheduling,
respectively. Thus, D(τ)

m is de�ned as

D(τ)
m =

{
n | cn,m = 1, dn > 0, υ(τ)

n < dn, ∀n ∈ N
}
∀m ∈M, (7.3)

where UE n ∈ N still requires scheduling of PRBs at iteration τ , if its data demand
dn is not covered by its total scheduled data volume at transmission time t, denoted as
υ

(τ)
n and given by

υ(τ)
n =

{
0 if τ = 1

g
(
rn,l, Ľn

)
if τ > 1

∀n ∈ N . (7.4)

At iteration τ = 1, no PRB has been scheduled and therefore υ(1)
n = 0, ∀n ∈ N . In the

next iterations, the total scheduled data volume for UE n is calculated as a function
g(·) of the instantaneous data rates rn,l, over the scheduled PRBs as indexed by the
set Ľn. The instantaneous data rates of UE n, denoted as rn,l and de�ned in (3.9), are
available from the CSIR-8 reports. Moreover, the set of indices of PRBs scheduled to
UE n, denoted as Ľn, is given by

Ľn =
{
l(ζ) | n(ζ) = n, ζ = 1, . . . , τ − 1

}
∀n ∈ N . (7.5)

Example 7.1. The function g(·) to calculate the scheduled data volume υ
(τ)
n of

UE n ∈ N at iteration τ , with τ > 1, can be given by

g
(
rn,l, Ľn

)
=
∑
ľ∈Ľn

rn,ľ, (7.6)
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with the achievable data rates rn,ľ as de�ned in (3.9), and the set of indices of scheduled
PRBs of UE n, denoted as Ľn, de�ned in (7.5).

Furthermore, the index set of available PRBs of BS m ∈M at iteration τ , denoted as
L̃(τ)
m , is given by

L̃(τ)
m =

{
L if τ = 1

L̃(τ−1)
m \l(τ−1) if τ > 1

∀m ∈M, (7.7)

where the already scheduled PRBs, denoted as l(ζ), ζ = 1, . . . , τ − 1, are removed for
the next iterations. At iteration τ ∈ {1, . . . , L}, the non-cooperative scheduler of BS m
selects the tuple of PRB l(τ) to be scheduled to the UE n(τ), which maximizes the PF
metric Ωn,l, as de�ned in (3.11), ∀n ∈ D(τ)

m , ∀l ∈ L̃(τ)
m . Mathematically, the iterative

non-cooperative PF scheduler decision is given by{
n(τ), l(τ)

}
= arg max

n∈D(τ)
m , l∈L̃(τ)m

Ωn,l ∀τ ∈ {1, . . . , L} , (7.8)

where the scheduling procedure �nalizes when all the L PRBs have been scheduled,
i.e., L̃(τ)

m = ∅, or when the demand of all UEs has been covered, i.e., D(τ)
m = ∅, with ∅

denoting the empty set.

In Section 7.2.2, it has been explained in which sense the bursty tra�c generates
uncertainties in the CSIR-8 reports. If at the time t1 of generating the CSIR-8 report,
one or multiple BSs were inactive on a particular PRB, then it is expected that the
CSIR-8 report describes this PRB as suitable for high achievable data rates, simply
because the interference experienced on that PRB was low. Moreover, multiple UEs
connected to di�erent BSs generate CSIR-8 reports simultaneously, re�ecting the same
bene�cial condition on the PRB with low interference. In this case, when the non-
cooperative PF scheduler is used at the BSs according to (7.8), it is then expected
that several BSs select the same reported high data rate PRBs for transmission at
time t2, with t1 + δ ≤ t2 ≤ t1 + T + δ. Thus, the interference is increased with respect
to the scenario from the CSIR-8 report. Therefore, the non-cooperative PF scheduler
strengthens the negative e�ect of underestimating the interference.

Example 7.2. An example of the consequences of CSI uncertainty when applying the
non-cooperative PF scheduler is shown in Figure 7.3, where at transmission time t = t1,
the CSIR-8 report R0 is generated by the UEs, with the BSs utilizing the frequency
resources as depicted. At transmission time t = t2, with t1 + δ ≤ t2 ≤ t1 + T + δ,
the BSs use CSIR-8 report R0 for scheduling, where the previously unloaded PRBs are
selected by each BS independently because they provide, with high probability, the largest
PF metrics. However, that scheduling decision is going to increase signi�cantly the
interference along with the probability of a higher BLER.
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Figure 7.3. Example of CSI uncertainty with non-cooperative PF scheduler. At trans-
mission time t = t1 the CSIR-8 report R0 is generated with no interference in a portion
of the frequency band. By independently using R0 at time t = t2, each BS decides to
schedule transmissions in the reported low interference region, causing collisions and
possible increase of the BLER

7.3.2 Cooperative scheduling

In this section, a cooperative scheduling scheme is proposed, where an ILP is formu-
lated to improve the performance of the link adaptation procedures. When serving
a UE, the proposed scheme targets to reproduce the same or even a more favorable
interference scenario than experienced during the time of generating the CSIR-8 report.
This cooperative approach assumes the presence of a central entity that performs the
scheduling decision for all BSs. By making the decisions, the central entity keeps track
of the interference scenarios in which the CSIR-8 reports were generated. Thus, the
proposed scheme introduces only additional signaling between the BSs and the central
controller, without increasing the complexity or signaling overhead at the UE side, i.e.,
support of CSIR-11 reports is not needed. In order to reduce the computational com-
plexity, the scheduling decision is performed per PRB for all connected BSs, in contrast
to the non-cooperative PF scheduler of (7.8), which is performed independently per
BS over all PRBs.

Before formulating the ILP, the set of indices of cooperative interfering BSs of
UE n ∈ N served by BS m ∈M, denoted as Icn as introduced in Section 3.1, is given
by

Icn = {k | cn,k = 0, pn,k ≥ νn pn,m, ∀k ∈M} ∀n ∈ N . (7.9)

In (7.9), BS k belongs to the set Icn, if it does not serve UE n and its total received
power pn,k is above a threshold determined by a fraction of the total received power
from the serving BS m, as de�ned in (3.2). The factor νn, with 0 ≤ νn ≤ 1, is used
to determine the threshold level for the selection of the strongest interfering BSs of
UE n. It is worth noting that Icn ⊆ In and, thus, the maximum cardinality of the
set Icn is equivalent to M − 1, if the received power from all interfering BSs is above
the threshold determined by νn, e.g., by setting νn = 0. Additionally, the set of in-
dices of muted cooperative interfering BSs of UE n on PRB l ∈ L, denoted as Mn,l,
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represents the cooperative interfering BSs of UE n, that did not schedule transmis-
sions on PRB l, while UE n generated the currently used CSIR-8 report. Therefore,
Mn,l = {k | αk,l = 1, ∀k ∈ Icn}, with αk,l, ∀k ∈ Icn, representing the transmit/muting
state of the cooperative interfering BSs of UE n, at the time of generating the CSIR-8

report, as introduced in Section 7.2.2. Since the setMn,l considers only the indices of
the cooperative interfering BSs of UE n, thenMn,l ⊆ Icn. A cooperative interfering BS
may not schedule PRBs for transmitting data either because the connected UEs are
not demanding data, or because the proposed coordinated scheduling scheme mutes
the BS in order to reproduce a former interference scenario. Since the set Icn depends
on the total received power at UE n, and the setMn,l depends on the currently used
CSIR-8 reports, these sets remain constant in the current transmission time and can be
determined upfront the CS scheme.

Similar to the non-cooperative PF scheduler of Section 7.3.1, the CoMP CS scheme at
the central controller iteratively schedules the PRBs to the UEs. In contrast, however,
to (7.3) and (7.7), where the sets were de�ned per BS m ∈M, in the proposed coop-
erative scheduling scheme, new sets D(τ) and L̃(τ) are considered which are de�ned for
all M BSs. Thus,

D(τ) =
{
n | dn > 0, υ(τ)

n < dn, ∀n ∈ N
}
, (7.10)

with υ
(τ)
n given in (7.4), and L̃(τ) is calculated as in (7.7) for the complete network.

With the sets de�ned as above, the proposed CS scheme for iteration τ ∈ {1, . . . , L} is
formulated as the following ILP

max
{sl(τ)}

∑
n∈D(τ)

Ωn,l(τ) sn (7.11a)

s.t.

sn +
∑
u∈D(τ)

cu,m su ≤ 1 ∀n ∈ D(τ), ∀m ∈Mn,l(τ) , (7.11b)∑
n∈D(τ)

cn,m sn ≤ 1 ∀m ∈ Al(τ) , (7.11c)

sn ∈ {0, 1} ∀n ∈ D(τ), (7.11d)

where the parameter
l(τ) = arg max

n∈D(τ), l∈L̃(τ)
Ωn,l, (7.12)

corresponds to the PRB with the maximum PF metric Ωn,l as given in (3.11), among all
UEs and all available PRBs at iteration τ . The objective in (7.11a) is to maximize the
sum of the PF metric Ωn,l, over all UEs with demand as indexed by the set D(τ). The
scheduling decision variable sl(τ) , corresponding to a vector of dimensions

∣∣D(τ)
∣∣ × 1,

with elements

sn =

{
1 if PRB l(τ) is scheduled to UE n ∈ D(τ)

0 otherwise,
(7.13)

is used to express the result of the ILP formulation for PRB l(τ). The constraints in
(7.11b) ensure that the interference experienced by the served UEs is not higher than
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the interference experienced at the time of generating the CSIR-8 report. In detail, the
constraints in (7.11b) consider the case when PRB l(τ) is scheduled to UE n and the
cooperative interfering BSs in Mn,l(τ) were muted at the moment of generating the
CSIR-8 report. For (7.11b) to be ful�lled, the second term on the left-hand-side must
be equal to zero, which is true in either of the following cases, with cu,m given by (3.3)
and ∅ denoting the empty set.

• No cooperative interfering BS was muted during the generation of the CSIR-8

report, i.e.,Mn,l(τ) = ∅.

• The UEs served by the cooperative interfering BSs inMn,l(τ) are not demanding
data, i.e., cu,m = 0, ∀u ∈ D(τ), ∀m ∈Mn,l(τ) ,Mn,l(τ) 6= ∅.

• PRB l(τ) is not scheduled to any UE served by the cooperative interfering BSs in
Mn,l(τ) , i.e., su = 0, ∀u ∈ D(τ), such that cu,m = 1, ∀m ∈Mn,l(τ) , Mn,l(τ) 6= ∅.

In the case that PRB l(τ) is not scheduled to serve UE n, i.e., sn = 0, the constraints in
(7.11b) restrict each BS indexed by the setMn,l(τ) , ∀n ∈ D(τ), to serve only one UE per
PRB, i.e., single-user transmissions per BS are enforced. Since cooperative interfering
BSs of UE n can be transmitting at the time of generating the CSIR-8 reports, and hence,
these BSs are not indexed by the setMn,l(τ) , ∀n ∈ D(τ), the constraints in (7.11c) are
used to complement the single-user transmission requirement on the remaining BSs,
indexed by the set Al(τ) =M\∪n∈D(τ)Mn,l(τ) . Moreover, the constraints in (7.11d)
ensure that the decision variable is integer and furthermore, binary. Similar to the
non-cooperative case, the coordinated scheduling procedure is �nalized if L̃(τ) = ∅, or
D(τ) = ∅.

7.4 Simulation Results

In this section, system-level simulations are carried out to show the performance of the
proposed CS scheme based on an LTE network as described in [rGPP10] (see 3GPP
Case 1 from Section A.2.1.1.1). For the simulations, a �rst scenario is considered with
M = 10 BSs serving ten UEs each, i.e., N = 100, over a total of L = 50 PRBs. The
channels between the BSs and the UEs are assumed to be time invariant, but frequency
selective [rGPP12]. The FTP tra�c model from Section 7.2.1 is used, where the UEs
download �les of size V = 1 KB with arrival rates of λ ∈ {0.25, 0.5, 1, 1.5, 2.5, 3.5}, in
order to vary the network resource utilization in terms of scheduled PRBs. The average
data rate over time of UE n, used to calculate the PF metric in (3.11) is updated for
the next transmission time t+ 1, according to (3.13). The total scheduled data volume
to UE n ∈ N , υn, is calculated as described in (7.4), where an average achievable data
rate of UE n over the scheduled PRBs is obtained by using the MIESM procedure as
described in [LKK12,WIN05].
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Figure 7.4. Average network PRB utilization as a function of the FTP arrival rate λ.
The PRB utilization is normalized by the total number of PRBs, ML. Scenario with
N = 100 UEs, M = 10 BSs, L = 50 PRBs

Table 7.1. Average BLER for di�erent FTP parameter λ

FTP model (λ) non-coop. PFS CS (νn = 0) CS (νn = 0.5)

0.25 0.33 1e-3 0.27

0.5 0.43 1e-3 0.34

1 0.36 1e-3 0.30

1.5 0.26 1e-3 0.25

2.5 0.12 1e-3 0.15

3.5 0.06 3e-3 0.08

The average PRB utilization normalized by the total number of PRBs in the network,
i.e., ML, is given in Figure 7.4 as a function of the FTP parameter λ. These results
illustrate the network load situation for the non-cooperative PF scheduler, labeled as
�non-coop. PFS�, and the proposed coordinated scheduling scheme, referred to as �CS�.
In the CS case, two di�erent values of νn, ∀n ∈ N , have been used to control the level
of coordination between the BSs, as described in (7.9), with νn = 0, ∀n ∈ N , meaning
that all interfering BSs are considered to cooperate. The results in Figure 7.4 show
that the network load increases with the arrival rate λ. The proposed CS scheme has a
lower average PRB utilization than the non-coop. PFS, because the former introduces
orthogonal transmissions from the BSs in order to keep a more persistent interference
scenario. Additionally, the average BLER is presented in Table 7.1, where it is observed
that the average BLER is inversely proportional to the network load. This observation
is an expected result due to the more persistent interference situation when all BSs
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Figure 7.5. User throughput of the proposed CS scheme, normalized by the non-coop.
PFS. Scenario with N = 100 UEs, M = 10 BSs, L = 50 PRBs

constantly transmit over all PRBs. Therefore, when all available PRBs are constantly
utilized for transmissions and the channel is time-invariant, the BLER reduces to zero
even in the case of non-coop. PFS. Under non-full-bu�er conditions, the proposed CS
scheme with νn = 0 provides the lowest BLER by introducing cooperation among all
BSs. Therefore, the CS scheme with νn = 0 signi�cantly improves the performance
of the link adaptation procedures compared to the non-coop. PFS. In the case of CS
with νn = 0.5, the average BLER is not as improved as in the case of νn = 0, because
a lower number of interfering BSs are considered to cooperate per UE.

The average user throughput of the proposed CS scheme, normalized with respect to
the non-coop. PFS, is presented in Figure 7.5 for the cell-edge users, labeled as �Edge�,
and for all users, referred to as �Mean�. Based on the results from Figure 7.4, low values
of the UE arrival rate λ correspond to scenarios with low PRB utilization. Furthermore,
scenarios with intermediate and high PRB utilization occur for large values of λ. In a
scenario with low PRB utilization and as a consequence of the persistent interference
constraints described by (7.11b), the proposed CS scheme favors the scheduling of
orthogonal transmissions where no interference a�ects the served UEs. Therefore, the
proposed CS scheme enhances signi�cantly the user throughput performance of the cell-
edge users, especially in the case of νn = 0. In scenarios with intermediate and high
PRB utilization, such orthogonal transmissions represent a reduction in the average
user throughput with respect to the non-coop. PFS scheme, since more PRBs are
required for data transmission. Hence, any muting decision despite positive for the
UE that triggers such a decision, impacts negatively the average performance of the
remaining UEs which were not served due to the unavailability of PRBs. In the CS
case with νn = 0.5, since less BSs are considered to cooperate in serving UE n ∈ N , the
throughput performance is closer to the non-coop. PFS scheme for both, the cell-edge
users and in average.
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Figure 7.6. User throughput of the proposed CS scheme, normalized by the non-coop.
PFS. Scenario with N = 210 UEs, M = 21 BSs, L = 50 PRBs

In a second scenario, the proposed CS scheme is applied in a larger-scale network of
M = 21 BSs, N = 210 UEs and L = 50 PRBs, for the same FTP parameters V
and λ, as mentioned above. On the one hand, the results for the average network PRB
utilization and BLER show the same characteristics as in the case with M = 10 BSs,
given in Figure 7.4 and Table 7.1, respectively. On the other hand, the user throughput
of the proposed CS scheme, normalized with respect to the non-coop. PFS, presented
in Figure 7.6, is lower than in the smaller-scale network with M = 10 BSs, especially
for the cell-edge users. The reason for such a decrease is the scheduling of orthogonal
transmissions among a larger number of BSs, while maintaining a constant number of
PRBs. Thus, it is better to limit the set of cooperating BSs per UE, which is shown by
a reduction in the performance gap between the CS schemes with νn = 0 and νn = 0.5.

The dependency of the proposed CS scheme on the parameter νn, ∀n ∈ N , used
to control the level of coordination between the BSs is presented in Figure 7.7 for
the cell-edge and the average user throughput of the network corresponding to the
second simulation scenario. The results are normalized with respect to the non-coop.
PFS, where a constant value of the UE arrival rate for the FTP model has been used
with λ = 2.5. The larger the parameter νn, the lower the number of interfering BSs
that cooperate to improve the performance of the UEs connected to neighboring BSs.
Therefore, the cell-edge gain decreases with respect to the non-coop. PFS. On the
other hand, given the lower number of muted BSs per UE, the negative impact in the
average user throughput is reduced with a larger value of νn. It is worth noting that
even in the extreme case of setting up the selection threshold to νn = 0.9, i.e., the
cooperative interfering BSs correspond to the BSs with a total interfering power of
90 % the total received power from the serving BS, the cell-edge gain is close to 50 %.
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Figure 7.7. User throughput of the proposed CS scheme for di�erent values of νn,
normalized by the non-coop. PFS. Scenario with N = 210 UEs, M = 21 BSs, L = 50
PRBs and λ = 2.5

7.5 Summary

In this chapter, a CoMP CS scheme has been proposed to improve the performance of
the link adaptation procedures of wireless networks with bursty tra�c. The proposed
CS scheme reproduces the same or even better interfering conditions, as experienced
by the served UEs at the time of generating the CSI reports. Due to the presence
of a central controller that manages and keeps track of the scheduling decisions, the
proposed CS scheme represents no additional signaling or processing overhead at the
UEs, which are requested to feedback standardized LTE CSIR-8 reports.

Simulation results show the e�ectiveness of the proposed ILP formulation to reduce
the BLER. In the proposed scheme, the UE throughput, especially of the heavily
interfered users, is signi�cantly improved with respect to a standard non-cooperative
PF scheduler. Moreover, since the proposed CS scheme is solved per PRB, it enjoys
low computational complexity and it is, therefore, applicable in medium- to large-scale
networks.

The proposed scheme is derived for a network under non-full-bu�er conditions, where
the users' demand is characterized by bursty tra�c. In such a scenario, the average
resource utilization is low and the link adaptation procedures bene�t from the more
stable interfering conditions enforced by the proposed cooperative scheme. In scenar-
ios with a high average resource utilization, as in full-bu�er systems, the cooperative
scheme proposed in this chapter behaves as a non-cooperative scheme with all BSs con-
stantly transmitting. For full-bu�er conditions, the implementation of the approaches
derived in chapters 4 to 6 is recommended.
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Chapter 8

Conclusions and Outlook

In this dissertation, �ve cooperative resource allocation schemes are developed for
mobile downlink communication networks. The proposed schemes pursue to enhance
the network performance, in terms of user throughput, by means of mitigating the
inter-cell interference experienced by the users. For that purpose, two main forms
of cooperation are investigated, where in a �rst case, cooperative power control is
dynamically applied in order to reduce the interference caused to users connected to
neighboring base stations, and in a second case, joint scheduling and muting decisions
are performed in order to trade o� spectral e�ciency and inter-cell interference.

One major contribution of this thesis is the consideration of practical channel state
information in the derivation of the cooperative resource allocation approaches. Hence,
channel state information in form of data rate measurement reports is considered,
which follows standard compliant procedures of current mobile networks such as LTE
and LTE-Advanced. These reports limit the knowledge of the network to a �nite
set of achievable data rates under speci�c assumptions on the interference scenarios
experienced by the users. The inclusion of this type of channel state information,
enables the assessment of the proposed cooperative schemes under a more practical
perspective of modern and future mobile communication networks.

The cooperative resource allocation schemes are mainly formulated as optimization
problems and heuristic algorithms. In the �rst case, integer linear programs are pro-
posed that make use of the �nite nature of the resources to be allocated, such as users,
time/frequency resources and reported data rates. Despite its combinatorial nature,
the proposed integer linear programs are applicable in medium- to large-size networks
due to the simpli�cations introduced in this work. Nevertheless, the assumption of cen-
tral entities with connectivity to the base stations is required in the formulation of the
proposed optimization problems. On the other hand, heuristic algorithms applicable
in centralized and decentralized architectures are also proposed in this thesis, where
the performance gains are traded o� by the reduction in computational complexity and
signaling overheads.

The simulation results obtained from a standard-compliant system-level simulator,
demonstrate the potential of the proposed cooperative schemes and their advantages
over state-of-the-art approaches. In general, the results in this thesis show gains in
the throughput of the cell-edge users, which experience high inter-cell interference. In
detail, the following observations are made.

In hierarchical mobile communication networks, the application of the cooperative
power control scheme proposed in this thesis provides an e�ective alternative to selec-
tively manage the inter-cell interference caused by a particular group of base stations.
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In this dissertation, the inter-cell interference caused by the macro base stations to
the users connected to the small cells deployed in the coverage area of the former, is
controlled by dynamically reducing the transmit power of the macro base stations. In
especial cases, when the a�ected user is located at the cell-edge of the small cell, the
macro base stations can be even muted in order to enhance the user throughput of the
cell-edge users. Although the improvement of the user throughput by the proposed
cooperative scheme is observable with respect to approaches that do not consider co-
operation, the application is limited to scenarios where the users are clearly a�ected
by one interfering base station. In other scenarios, where additional base stations have
comparable interfering power levels, more advanced cooperative schemes are recom-
mended, such as coordinated scheduling.

Coordinated scheduling with muting in centralized and decentralized architectures is
also investigated in this dissertation. The proposed schemes have no restrictions with
respect to the type of mobile communication networks in which they are deployed.
Thus, the applicability of the previously mentioned cooperative power control scheme
is extended. The cooperation takes place between neighboring base stations, where
the scheduling and muting decisions are jointly made in order to enhance the overall
network throughput. Although cooperative power control can be incorporated, the
schemes derived in this thesis consider only on-o� power control decisions where the
base stations transmit either with maximum transmit power or they are muted. This
restriction is imposed in order to follow the standardized reporting of channel state in-
formation and to reduce the signaling overhead. For both, centralized and decentralized
schemes, signi�cant gains in the user throughput are observed for the cell-edge users,
with respect to scenarios without cooperation. In agreement with analytical results
available in the literature, the achievable user throughput gains are limited by param-
eters which are not directly controlled by the proposed cooperative schemes. Such
parameters correspond to the number of available time/frequency resources, which are
prede�ned in the network, and the noise and residual inter-cell interference caused by
non-cooperative base stations. Moreover, although the solution of the proposed cen-
tralized scheme is optimal, the di�erence in performance gains with respect to state-
of-the-art heuristic algorithms is negligible under current practical network conditions.
Therefore, the application of the proposed decentralized schemes is recommended in
an initial stage, until new technologies emerge that enable the complete utilization of
the bene�ts provided by the centralized architecture.

Coordinated scheduling with muting is additionally studied for bursty tra�c, with the
objective of improving the link adaptation procedures by enhancing the reliability of
the reported channel state information. In this particular scenario, the users are not
expected to demand high data rates, but to be served with low latency and in a reliable
fashion. By applying the cooperative scheme derived in this work, the transmission
error probability is signi�cantly reduced and hence, the link adaptation procedures are
improved. In scenarios with higher demands, where the serving and interference condi-
tions experienced by the users are more stable, the bene�ts of the proposed cooperative
scheme reduce and non-cooperative schemes can be preferred.
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It is worth to mention that the bene�ts observed in this dissertation are mainly focused
on the user throughput of the cell-edge users. In average, the network marginally
bene�ts by the application of the proposed cooperative schemes, with respect to the
non-cooperative counterparts. Therefore, no network capacity enhancements should
be expected from the studied forms of cooperation. A trade-o� between inter-cell
interference and average user throughput is present, where the former is reduced at the
expense of the latter. Hence, the cooperative schemes derived in this thesis sacri�ce
the network's capacity in order to improve the performance of the cell-edge users.

Several interesting directions are envisioned for extending the work presented in this
dissertation, as listed below.

• The impact of residual interference and noise is a main limiting factor on the
performance of the cooperative schemes. Although the noise at the receivers is
being reduced with the advent of new and more capable devices, the residual in-
terference from uncoordinated sources still represents a challenge to be addressed.
Therefore, investigations on deriving robust algorithms to residual interference
are left open for future work.

• In spite of the practical considerations, especially with respect to the channel
state information, the implementation of the optimal proposed schemes in real-
world scenarios might be limited by the computational capabilities of the devices
on which the cooperative schemes are executed. For the proposed integer linear
programs, a study of possible equivalent linear formulations is recommended. If
possible, the reformulated linear programs could compete in terms of computa-
tional complexity with the heuristic algorithms proposed in this work.

• Inter-cell coordination is considered as one of the key features for the upcoming
generations of mobile communications. Research on new scenarios such as co-
operation on multi-cell massive MIMO systems or device-centric coordination is
recommended.
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Appendix

A Proof of Proposition 5.1

Given the condition that Jn,i ( Jn,j,∀i, j ∈ J ′, i 6= j, the common cooperative in-
terfering BSs of UE n ∈ N are considered to be muted in the interference sce-
narios i and j. Thus, from the de�nition of the muting patterns in (5.5),
αn,m,l,i = αn,m,l,j = 1,∀m ∈ Jn,i. Furthermore, interference scenario j mutes addi-
tional cooperative interfering BSs in comparison to interference scenario i, i.e.,
αn,m,l,i = 0, αn,m,l,j = 1, ∀m ∈ Jn,j\Jn,i. Thus, from (5.7),

Icn,l,i (αn,m,l,i) > Icn,l,j (αn,m,l,j) . (A.1)

In (5.6), the interference from the cooperative interfering BSs of UE n is the only
term depending on interference scenarios i and j. Therefore, taking into account the
inequality in (A.1), the SINR on PRB l ∈ L of UE n under interference scenario j, is
higher.

B Proof of Proposition 5.2

The set Nn,j = {u | cu,m = 1, ∀u ∈ N , ∀m ∈ Jn,j} is de�ned, denoting the indices of
UEs connected to the cooperative interfering BSs of UE n ∈ N for interference sce-
nario j ∈ J ′. Given that Jn,i ( Jn,j, then Nn,i ( Nn,j,∀i, j ∈ J ′, i 6= j. Based on
(5.12a) and (5.12c), the sum of the PF metrics over all UEs on PRB l ∈ L, under
interference scenario w ∈ J ′ of UE n, can be written as∑

n′∈N
Ωw
n′,l = Ωw

n,l +
∑

u∈Nn,w
Ωu,l +

∑
v∈N\{n,Nn,w}

Ωv,l, (B.1)

where the �rst right-hand-side term corresponds to the PF metric on PRB l of UE n
under interference scenario w. The second term corresponds to the sum of the PF
metrics of the UEs connected to the cooperative interfering BSs of UE n, considered to
be muted in the interference scenario w, and the last term represents the sum of the PF
metrics of the UEs connected to the remaining non-cooperative BSs. If it is assumed
that the muting decision agrees with interference scenario w, then the second term on
the right-hand-side is equal to zero, because the cooperative interfering BSs are muted.
Thus, for interference scenarios i and j, agreeing with the muting decision ᾱl, (B.1) is
rewritten as ∑

n′∈N
Ωi
n′,l = Ωi

n,l +
∑

v∈N\{n,Nn,i}
Ωv,l, (B.2a)

∑
n′∈N

Ωj
n′,l = Ωj

n,l +
∑

v∈N\{n,Nn,j}
Ωv,l. (B.2b)
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If rn,l,i = rn,l,j, then Ωi
n,l = Ωj

n,l. Hence, the only di�erence between (B.2a) and (B.2b)
lays on the second term on the right-hand-side. This term is determined by the sets
N\{n,Nn,j} ( N\{n,Nn,i} due to Nn,i ( Nn,j, ∀i, j ∈ J ′, i 6= j. Therefore, it is pos-
sible to conclude that,

∑
v∈N\{n,Nn,i}Ωv,l >

∑
v∈N\{n,Nn,j}Ωv,l and thus,∑

n′∈N
Ωi
n′,l >

∑
n′∈N

Ωj
n′,l, (B.3)

where it has been assumed that each non-muted BS serves one UE with a non-zero PF
metric.

C Proof of Proposition 5.3

It is assumed, without loss of generality, that J ′ CSIR-11 reports are generated by UEs
{u, v} ∈ N and received by BS m ∈M, with equal muting indicator sets indexed by
{j, i} ∈ J ′, respectively, such that Ju,j = Jv,i. Hence, from a BS perspective, the
unique muting indicator set j′ ∈ J ′m | Jm,j′ = Ju,j = Jv,i, implies that Nm,j′ = {u, v}.
Based on (3.11), the PF metrics on PRB l ∈ L of UEs u and v under unique muting
indicator set Jm,j′ , correspond to

Ωu,l,j =
ru,l,j
Ru

,

Ωv,l,i =
rv,l,i
Rv

.
(C.1)

Thus, the following relations are possible between the PF metrics from (C.1):
Ωu,l,j = Ωv,l,i, Ωu,l,j < Ωv,l,i or Ωu,l,j > Ωv,l,i. In the �rst case, no e�ect on the total
sum of the PF metrics is observable if BS m schedules PRB l to any of the both UEs,
since the PF metrics are equal. In the remaining cases, however, selecting the UE with
the lowest PF metric corresponds to a lower total sum of the PF metrics. Hence, the
optimal allocation of PRB l, under muting indicator set Jm,j′ , is given by (5.16).

D Proof of Theorem 5.1

Both problem formulations, (5.12) and (5.20), are related by the lifting procedure where

sn,l,j = s̄n,l
∏

m∈Jn,j
ᾱm,l ∀n ∈ N ,∀l ∈ L,∀j ∈ J ′. (D.1)

Thus, as mentioned in (5.19) and repeated below for convenience,

sn,l,j = 1⇔ s̄n,l = 1 ∧ ᾱm,l = 1, ∀n ∈ N , ∀l ∈ L, ∀j ∈ J ′, ∀m ∈ Jn,j, (D.2)

with ∧ denoting the logical and operator. Based on the previous de�nition in (D.1)
and the implication in (D.2), a one-to-one equivalence of both problems is shown as
follows.



D Proof of Theorem 5.1 109

Equivalence between (5.12a) and (5.20a): the objective of both problem formulations
corresponds to maximize the sum of the PF metrics. In the case of (5.12a), the
sum is over all UEs, while in the case of (5.20a), the sum is restricted to the UEs
that maximize the PF metric in at least one of the unique muting indicator sets
on PRB l ∈ L, as introduced in Section 5.3.2. According to Proposition 5.3, it is
su�cient to evaluate the objective function on the index set N ′l ⊆ N . Moreover,
since the objective in (5.12) is decoupled in the PRBs, then the objectives of both
problem formulations are clearly equivalent.

Equivalence between (5.12b), (5.20b) and (5.20c): the constraints in (5.12b) and
(5.20b) ensure that the muting and scheduling decisions agree. For that purpose,
no PRB l ∈ L is scheduled to any UE served by any muted BS. It is worth
noting that the perspective in both problems is di�erent. Due to the separation
of muting and scheduling decisions, the constraints in (5.12b) focus on the muted
BSm ∈M, while the constraints in (5.20b) focus on UE n ∈ N ′l , for which PRB l
has been scheduled under interference scenario j ∈ J ′, where the cooperative
interfering BSs indexed by Jn,j ∈ Jn are muted. Hence, from (D.2), if sn,l,j = 1,
then ᾱm,l = 1,∀m ∈ Jn,j, for UE n on PRB l under interference scenario j. Thus,
the constraints in (5.12b) and (5.20b), reduce to∑

u∈N
cu,m s̄u,l = 0 ∀u ∈ N , ∀j ∈ J ′, ∀m ∈ Jn,j, ∀l ∈ L, (D.3)

and ∑
u∈N ′

l

∑
i∈J ′

cu,m su,l,i = 0 ∀n ∈ N ′l ,∀j ∈ J ′, ∀m ∈ Jn,j,∀l ∈ L, (D.4)

respectively. It can be observed, that (D.3) and (D.4) are equivalent. On the
other hand, if sn,l,j = 0, then no muting is imposed to the cooperative interfering
BSs of UE n on PRB l under interference scenario j, i.e., ᾱm,l = 0,∀m ∈ Jn,j.
Therefore, the constraints in (5.12b) and (5.20b) enforce single-user transmissions
and are rewritten as ∑

u∈N
cu,m s̄u,l ≤ 1 ∀m ∈M, ∀l ∈ L, (D.5)

and ∑
u∈N ′

l

∑
i∈J ′

cu,m su,l,i ≤ 1 ∀n ∈ N ′l ,∀j ∈ J ′,∀m ∈ Jn,j,∀l ∈ L, (D.6)

respectively, which are equivalent for the BSs identi�ed as cooperative interfering
BSs of any UE. For the remaining non-cooperative BSs in problem (5.20), the
constraints in (5.20c) are used. Similar to the objective function in (5.20a),
Proposition 5.3 states that it is enough to consider the set N ′l ∈ N of indices of
UEs.
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Equivalence between (5.12c) and (5.20d): both constraints, (5.12c) and (5.20d), de�ne
the calculation of the instantaneous achievable data rate on each PRB l ∈ L of
UE n ∈ N . In the case of the constraints in (5.12c), the lookup table function
ρ (rn,l, ᾱl, Icn) maps the achievable data rate of UE n to the muting decision ᾱl
of the cooperative interfering BSs of UE n, as indexed by Icn. The total instanta-
neous achievable data rate is calculated as the sum of the instantaneous achiev-
able data rates per scheduled PRB, as de�ned by the scheduling decision s̄n,l.
Similarly, the constraints in (5.20d) consider directly the achievable data rates
of UE n under the interference scenarios j ∈ J ′, as given in the CSIR-11 reports.
Although the constraints in (5.20d) consider only the scheduling decision for the
current PRB l, given by sn,l,j, the separability concept introduced in Section 5.3.2
indicates the equivalence of both constraints, given the linear calculation of the
total instantaneous achievable data rate and the constant value of the average
user throughput over time for all PRBs.

Binary decision variables: in (5.12d), (5.12e) and (5.20f), both problem formulations
consider the decision variables to be integer, and furthermore, binary.
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List of Abbreviations

1-9

3GPP 3rd Generation Partnership Project

A

ABS Almost Blank Subframe
AWGN Additive white Gaussian noise

B

BLER Block Error Rate
BS Base station

C

CoMP Coordinated Multi-Point
CQI Channel Quality Indicator
C-RAN Cloud-Radio Access Network
CRE Cell-range expansion
CRS Cell-Speci�c Reference Signal
CS Coordinated Scheduling
CSI Channel state information
CSI-RS CSI Reference Signal

D

DAS Distributed Antenna System
DC Direct Current
DPB Dynamic Point Blanking
DPS Dynamic Point Selection

E

EIRP Equivalent isotropically radiated power

F

FDD Frequency Division Duplexing
FTP File Transfer Protocol

I

ICIC Inter-Cell Interference Cancellation
ILP Integer linear program
IMT International Mobile Telecommunications
INLP Integer non-linear program
ITU International Telecommunications Union
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J

JT Joint Transmission

L

LSA License Shared Access
LTE Long Term Evolution

M

MCS Modulation and coding scheme
MIESM Mutual Information based Exponential SNR Mapping
MIMO Multiple-Input-Multiple-Output
MRC Maximum Ratio Combining

N

NP Non-deterministic polynomial-time

O

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access

P

PDF Probability Density Function
PF Proportional Fair
PMI Precoding Matrix Index
PRB Physical Resource Block

R

RE Resource Element
RI Rank Indication
RR Round-Robin
RRH Remote Radio Head
RS Reference signal

S

SCM Spatial Channel Model
SIMO Single-Input-Multiple-Output
SINR Signal-to-interference-plus-noise ratio
SISO Single-Input-Single-Output

T

TDD Time Division Duplexing

U

UE User equipment
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W

WCDMA Wideband Code Division Multiple Access

Z

ZF Zero-forcing
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List of Symbols

Symbols

αm,l Transmit power control parameter of BS m on PRB l
(assumed by the CSI report)

ᾱm,l Transmit power control parameter of BS m on PRB l
(de�ned by the cooperative scheme)

αn,m,l,j Muting pattern of BS m on PRB l under interference scenario j of UE n
B Transmission bandwidth in Hz
Bk,l Net bene�t metric of BS k, when muted on PRB l
βkm,l Bene�t metric of BS m on PRB l, when BS k is muted
C Connection matrix with elements cn,m ∈ {0, 1}
dn Data demand of UE n
δ CSI report activation delay
γn,l SINR on PRB l of UE n
γn,l,j SINR on PRB l of UE n under interference scenario j
hn,m,l Instantaneous channel coe�cient between BS m and UE n on PRB l
In,l Average interference power at UE n on PRB l
Icn,l Average interference power at UE n on PRB l from the

cooperative interfering BSs
Incn,l Average interference power at UE n on PRB l from the

non-cooperative interfering BSs
κ Forgetting factor of the PF scheduler
λ UE arrival rate for FTP tra�c model
Λ Number of active UEs in FTP tra�c model

µm(t) Number of PRBs on which BS m is muted at time t
ν Threshold level parameter for selection of cooperative interfering BSs

Ωn,l PF metric on PRB l of UE n
Ωn,l,j PF metric on PRB l of UE n under interference scenario j
Ωm
l Sum of PF metrics on PRB l with muted BS m

Ω0
m,l PF metric on PRB l of BS m when not muted

pn,m Total received power at UE n from BS m
pn,m,l Received power at UE n from BS m on PRB l
φm,l Transmit power of BS m on PRB l
Φm,l Maximum transmit power of BS m on PRB l
ϕm CRE o�-set parameter for BS m
rn Total instantaneous achievable data rate of UE n
rn,l Instantaneous achievable data rate on PRB l of UE n
rn,l,j Instantaneous achievable data rate on PRB l of UE n

under interference scenario j
R Average user throughput over time
S̄ Scheduling decision matrix with elements sn,l ∈ {0, 1}
S Scheduling and muting decision tensor with elements sn,l,j ∈ {0, 1}
σ2 AWGN power level at the receiver
ς Noise �gure at the receiver in dB
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T Periodicity of CSI reporting process
τ Iteration number
υ

(τ)
n Total scheduled data volume of UE n at iteration τ
V Download FTP �le size

Sets

A Set of indices of available BSs, which were transmitting at the time of
generating the CSI report

D(τ)
m Set of indices of UEs to be served by BS m at iteration τ
In Set of indices of interfering BSs of UE n
I ′n Set of indices of strongest interfering BSs of UE n
Icn Set of indices of cooperative interfering BSs of UE n
J Set of indices of interference scenarios
Jn,j Muting indicator set of UE n under interference scenario j
Ǩm Set of indices of BSs that consider BS m as cooperative BS
L Set of indices of PRBs
Lm(t) Set of indices of PRBs in which BS m is muted at time t
L̃(τ) Set of indices of available PRBs at iteration τ
Ľn Set of indices of PRBs scheduled to UE n
M Set of indices of BSs
M̂m Set of indices of cooperative BSs of BS m
Mn,l Set of indices of cooperative interfering BSs of UE n, muted on PRB l

in the CSI report
N Set of indices of UEs
N ′l Set of indices of UEs considered for scheduling on PRB l
S Set of indices of small cells
Sm Set of indices of small cells located within the coverage area of

macro BS m
∅ Empty set

Notation

f(·) Mapping from SINR to achievable data rate
g(·) Function of instantaneous achievable data rates
P(·) Power set (set of all sets)
ρ(·) Lookup table function selecting achievable data rates

from muting patterns
[·]T Transpose operation(
a
b

)
Binomial coe�cient operator (choose b from a)[

M̌
]
i

i-th set of M̌⌊
Ω0
m,l

⌋
y

Select the y indices with the lowest values in Ω0
m,l

0M×L M × L matrix with zero elements
0mM×L M × L matrix with zero elements in all but the m-th row
IN×N N ×N identity matrix
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