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Abbreviations

AOM acousto-optic modulator

CAP composite adiabatic passage

CP  composite pulse

CPMG Carr-Purcell-Meiboom-Gill (sequence)
DD dynamical decoupling

DDC dynamic decoherence control

DSB dark state beating

EIT electromagnetically induced transparency
EIT-LS light storage based on electromagnetically induced transparency
FWHM full width at half maximum

HSE Hahn spin echo

KDD Knill dynamical decoupling (sequence)
NMR nuclear magnetic resonance

OPO optical parametric oscillator

PrYSO praseodymium-doped yttrium orthosilicate (Pr** : Y,SiOs)
RAP rapid adiabatic passage

REIDS rare-earth ion-doped solids

RF  radio-frequency

RHD Raman heterodyne detection

RWA rotating wave approximation

SSSP single-shot shaped pulse

TDSE time-dependent Schrodinger equation
UCP universal composite pulse

UR universal robust (sequence)



Contents

Contents

Introduction 1
1 Rare-Earth Ion-doped Solids 3
1.1 Praseodymium-doped Yttrium Orthosilicate Crystal . .......... 3
1.2 Spectroscopic Properties of Pr**:Y,SiOg . . . ... ..o 4
1.2.1 Fine Structure and Crystal Field Interaction . . . . ........ 5

1.2.2 Hyperfine Structure . . . .. ....... ... . ... ..., 6

1.3 Line Broadening Mechanisms . ........................ 8

2 Coherent Wave Matter Interactions 11
2.1 Coherent Interactions in a Two-Level System . .............. 11
2.1.1 Rabi Oscillations and Pulsed Excitation. . . .. ... ....... 12

2.1.2 Description of Macroscopic Systems . . . . ... .......... 13

2.1.3 Composite Pulses . ... .. .. ... ... ... ... 14

2.2 Coherent Interactions in a Three-Level System . ............. 17
2.3 Adiabatic Light Storage in a Three-Level System ............. 18
2.3.1 Electromagnetically Induced Transparency ............ 18

2.3.2 EIT-based Light Storage . ....................... 21

2.3.3 Limitations on the Efficiency of the EIT Light Storage Protocol 23

2.3.4 Limitations on the Efficiency due to the Storage Medium ... 29

2.4 Raman Heterodyne Detectionina A-System . . . ............. 30

3 Experimental Setup 32
3.1 Optical Setup . . . . . oo 32
3.2 Crystaland Cryostat Setup . . . . .. ... ... 34
3.3 Radio-frequency Magnetic Field System and Mounts . . . . ... .. .. 35
3.4 Detection of Light Storage Signals . ..................... 37
3.5 Raman Heterodyne Detection . ... ..................... 37

4 Optimization of the EIT Light Storage Efficiency 38
4.1 Preparation of a A-System for EIT Light Storage. . . ... ........ 39
4.2 Experimental Observation of EITin PrYSO .. ............... 40
4.3 Determination of the Light Storage Efficiency ............... 42
4.4 Optimization of the Light Storage Efficiency . ............... 43
4.5 Concepts to Increase the Optical Depth . . . ... ............. 44
4.5.1 Multipass Geometry to Increase the Optical Depth . . . ... .. 45

4.6 EIT Light Storage in a Multipass Setup . . . ................ 47
4.6.1 Maximum Light Storage Efficiency for Variable Optical Depths 50

4.7 ConcluSion . . .. ...ttt e 52

vi



Contents

5 Rephasing of Atomic Coherences by Composite/Adiabatic Techniques
5.1 Introduction to Rephasing of Atomic Coherences . ............
5.1.1 Generation and Detection of an RF-induced Coherence . . . . .
5.1.2 Atomic Coherences in Inhomogeneous Broadened Transitions
5.1.3 Diabatic Rephasing of Atomic Coherences . .. ..........
5.1.4 Rephasing Efficiency of Imperfect 7-Pulses . ...........

5.2 Universal Composite Pulses. . . . ... ....... ... ... ......
5.2.1 Theory of Universal Composite Pulses . ..............
5.2.2 Experimental Results on Universal Composite Pulses . . .. ..

5.3 Composite AdiabaticPassage . . . . .. ....................
5.3.1 Adiabatic Passage Processes . . . . . . .. ..ottt
5.3.2 Theory on Composite Adiabatic Passage . .............
5.3.3 Experimental Results on Composite Adiabatic Passage . . . ..
5.3.4 Conclusion. . ... ... ... ...

5.4 Single-Shot Shaped Pulses . ............ ... ............
5.4.1 Derivation of Single-Shot Shaped Pulses . . ... .........
5.4.2 Experimental Results on Single-Shot Shaped Pulses . . . . . ..
543 Conclusion. . ... ... ... ...

6 Composite Pulses for Dynamic Decoherence Control
6.1 Implementation of Dynamical Decoupling Sequences . .........
6.2 DDC for Coherences prepared by RF-Pulses . . . ... ...........
6.3 DDC for EIT-LS Coherences . . . . . .. ... ...,
6.4 Conclusion . .. ... ... ... ..

Conclusion and Prospects for Future Work
Zusammenfassung

A Additional Experimental Results on SSSP

B Investigations on Stimulated Photon Echos
C Determination of HF Transition Frequencies
D Derivation of the Linear Susceptibility y
Bibliography

Publications and Conference Contributions
Supervisions and Contributions to Teaching
Curriculum Vitae

Acknowledgment

53
54
54
55
56

101
104
106
108
109
111
125
128
129
130

vii






Introduction

Introduction

Reliable and efficient quantum memories are of crucial relevance for current, and
future applications in quantum computation, and quantum as well as classical
communication networks. Such applications rely on fault tolerant, highly efficient,
long term storage memories. However, these requirements can currently only be
well satisfied by classical electronic storage media, which on the other hand are
unsuitable to store an arbitrary quantum state. Only the properties of a quantum
state, capable to carry a coherent superposition of states, enables the realization of
quantum information processing [1], and the development of quantum repeaters
[2] for quantum networks [3,4]. Most approaches investigate quantum memories
based on the interaction between photons and matter [5]. Photons represent a
reliable carrier of quantum information. The rather strong interaction between
photons and matter permits an efficient transfer of information.

In the last decade a number of different optical storage protocols [5-7] suit-
able for quantum information storage by photon-matter interactions have been
proposed. In particular, storage techniques based on atomic frequency combs
(AFC) [8], controlled reversible inhomogeneous broadening (CRIB) [9], gradi-
ent echo memories (GEM) [10] and electromagnetically induced transparency
(EIT) [11,12] have been investigated. These protocols transfer the information of
the photon into an atomic coherent superposition of a storage medium, aiming for
high storage efficiency, large storage capacity and long storage duration. This work
focuses on EIT-based optical data storage [13, 14], which preserves the quantum
state of a input photon (light) pulse as an atomic coherence between two states.
Next to different storage protocols, there also exists a number of different media
in which quantum storage can be achieved. For example, EIT-based light storage
was first experimentally realized in vapors [14, 15] and cold atomic gases [16]
because of their well defined spectral structures and potential high optical depth,
necessary to achieve high storage efficiencies. However, the main disadvantage of
such gaseous media is, that prepared coherences suffer from diffusion and collision
processes, which limit the achievable storage time to the us-regime. In contrast,
solid state media, like NV centers [17], quantum dots [18,19], and rare-earth ion-
doped solids (REIDS) [20] can provide atom-like spectroscopic properties with the
advantages of localized interaction centers, simpler scalability and handling. Such
media provide exceptionally long coherence lifetimes [21], and therefore excellent
properties for long term ElIT-based light storage [22]. However, the storage effi-
ciency in such EIT-driven solid state media is usually rather low, i.e. a few % only,
in contrast to vapors, where storage efficiencies of 87 % had been achieved using
GEM [10]. The purpose of this work is to improve an previously demonstrated
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Introduction

ElT-based solid state memory, realized in a praseodymium-doped yttrium orthosil-
icate (PrYSO) crystal. In particular, we optimize the EIT-based light storage, and
increase the optical depth, in order to maximize the storage efficiency in PrYSO.
We further investigate a number of diabatic and adiabatic techniques, based on
composite pulses (CP), to efficiently preserve atomic coherences prepared by the
EIT light storage protocol in order to improve the storage time of the memory.'

This thesis is structured as follows: In Chapter 1 we give an introduction on
REIDS, in particular PrYSO. We focus on the spectroscopic structure, relevant for
this work. Mechanisms and processes defining these spectroscopic properties are
described and the relevance of PrYSO as a possible medium for quantum infor-
mation storage is pointed out. In Chapter 2 we introduce coherent wave-matter
interactions in two-state and three-state systems. First, we describe diabatic exci-
tations in single and inhomogeneously broadened two-state systems. We discuss
their robustness with regard to inhomogeneities and variations of experimental
parameters, and introduce CP as a common technique to enhance diabatic ex-
citations. Second, we describe the theory on EIT-based light storage in a three-
state system, including theoretical and experimental limitations of the storage ef-
ficiency. We find the optical depth of the medium limiting the achievable light
storage efficiency. Chapter 3 introduces the experimental setup, the optical setup
and the radio-frequency magnetic field system. In Chapter 4 we show the experi-
mental results on the optimization of the EIT light storage efficiency. The storage
efficiency is limited by the rather low optical depth of the PrYSO crystal. We thus
present the concept of a probe multipass setup to increase the effective optical
depth of the storage medium. We use this multipass setup to optimize the EIT
light storage efficiency for different optical depths. We will see that it is possible
to drastically increase the efficiency of our solid state memory. Chapter 5 presents
the experimental results on diabatic and adiabatic techniques for rephasing of
atomic coherences. We discuss the differences between coherences prepared by
the EIT-based light storage, and by direct excitation in an inhomogeneous hyper-
fine transition of PrYSO. We investigate universal composite pulses [24], compos-
ite adiabatic passage [25] and single-shot shaped pulses [26] with respect to their
capability to rephase atomic coherences prepared in PrYSO. Furthermore, we com-
pare the robustness of these rephasing protocols with well known techniques such
as diabatic m-pulses and rapid adiabatic passage (RAP). We will find that com-
posite techniques can feature an enhanced robustness with regard to variations of
experimental parameters. In Chapter 6 we discuss CP to prolong the storage time
in PrYSO. The maximal storage time is limited by the lifetime of the atomic co-
herences. Decoherence effects usually restrict this lifetime to values much shorter
than the theoretical limit given by twice the population lifetime. We apply dy-
namic decoherence control (DDC) techniques, consisting of a series of driving
pulses, to minimize the effect of system-environment interactions leading to de-
coherence. We investigate the performance of CP for DDC to prolong the storage
time in PrYSO, and compare with state of the art dynamical decoupling sequences.
We will see that CP can be used to enhance DDC in PrYSO.

!An overview on the progress made by research teams in the last years is given by Cho et al.
[23], comparing maximal storage efficiencies and storage times of different media and protocols.

2



Chapter 1. Rare-Earth Ion-doped Solids

Chapter 1

Rare-Earth lon-doped Solids

For many decades rare-earth ion-doped solids (REIDS) have been of general scien-
tific interest in fundamental research fields and of significant relevance for many
basic applications. Today the most prominent example might be the neodymium-
doped yttrium aluminum garnet crystal, which is used as a active medium in solid-
state laser systems, in research and industrial applications. In the last years REIDS
also aroused interest as media for optical data storage [27], as well as for their us-
age in quantum information processing [28-32], because in contrast to most solid
state media, REIDS feature very narrow optical linewidth, and therefore favorable
long coherence lifetimes, caused by the weak interaction of the dopant ions with
the crystal environment. Most experiments in quantum optics require such precise
spectroscopic properties. Thus, the majority of experiments in the past have been
performed in atomic or molecular systems, with their spectrally narrow transi-
tions, e.g. warm gases, cold gases, and Bose-Einstein condensates [33-36]. Apart
from these gaseous media a group of atom-like solids, like nitrogen-vacancy cen-
ters in diamond [37-43], quantum dots [18,19,44-46], or REIDS [47-50] exist.
In contrast to gases these solid media are easy to handle, scalable and can feature
high optical depth. All experiments in this work are performed in a praseodymium-
doped yttrium orthosilicate crystal, Pr**:Y,SiOs, (hereafter referred to as PrYSO).
In this chapter a general overview of rare-earth ion-doped solids for coherent op-
tical data storage is given. Particular emphasis is put on the praseodymium-doped
yttrium orthosilicate crystal and its spectroscopic properties that are important for
optical data storage. Additional information on REIDS can be found in [47-49].

1.1 Praseodymium-doped Yttrium Orthosilicate Crystal

"

The term "rare-earth metals"” includes the elements scandium, yttrium and the
15 lanthanides including praseodymium (Pr). A special subgroup of these ele-
ments are the 3 times ionized lanthanides cerium to ytterbium, featuring a par-
tially populated 4f orbital, while the 5s and 5p orbitals are fully populated. This
electronic configuration leads to a electronic shielding of the electrons in the 4f
orbital. Though the transitions in the 4f orbital are usually dipole forbidden in
free atoms, they can be weakly driven when lanthanides are embedded as dopants
in inorganic crystals. The optical transitions of the 4f orbital in such doped solids
feature remarkably narrow homogeneous linewidth [51,52].

In this work the only stable isotope of praseodymium, !4'Pr, is used. The
electronic configuration of Pr’*-ion is [Xe]4f*, with two free electrons in the 4f
orbital. Figure 1.1 shows the absolute square of the radial wave functions of
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Chapter 1. Rare-Earth Ion-doped Solids

the 4f, 5s and 5p orbitals for the free Pr’*-ion and the electronic shielding of
the 4f orbital. The yttrium orthosilicate crystal is of monoclinic biaxial form
with a CSh (C2/c) space group symmetry, including four Y,SiOs molecules per
unit cell [53,54]. Each molecule holds two Y**-ions in two different crystal-
lographic sites. Thus, a doping with Pr’" by replacing some of the Y**-ions in
the host crystal can occur at different crystallographic sites. These sites show
only C; symmetry [55], and thus feature different crystal environments, which
results in slightly different spectroscopic properties for each site. In addition,
the ions in each crystallographic site can be further distinguished by two possi-
ble magnetic orientations, as a result of the alignment of the nuclear magnetic
spins with respect to the C, crystal axis. Because of the larger transition dipole
moment, all experiments in this work are realized in ions of site 1, with a tran-
sition at a wavelength of A = 605.98 nm [56] to the first optical excited state.
Using Y,SiO; as a host crystal for Pr** is fa-
vorable, as Y>© and Pr®" have similar ion
radii, resulting in only small crystal defor-
mations. Due to the weak nuclear magnetic
moments of Y>* and Pr’*, there is only a
small interaction between Pr** and the host
crystal environment [49]. These proper-
ties lead to an exceptionally long popula-
tion lifetime of up to 100 s [49, 58]. Typ-
ically in optical data storage and quantum
optics experiments rather low dopant con-
centrations in the order of 0.01 —0.1at.%
are used. Much larger dopant concentra-
tions can lead to additional line broaden-
ing [59, 60] in such a way, that favorable
properties of long lifetimes and decoher-
ence times are lost. Materials with carefully selected atomic radii of the dopant
[61], can avoid these problems.

Figure 1.1: Absolute square of the radial
wave functions of the 4f, 5s and 5p or-
bitals for the free Pr’*-ion of the ground
configuration 4f25s25p®. Figure taken
from [57].

1.2 Spectroscopic Properties of Pr3*:Y,SiO:

The relevant optical transitions used in this work are driven in the 4f orbital. The
electronic ground state in Russell-Saunders notation is *H,. For site 1 this state can
be coupled to the optical excited state 'D, with a wavelength of 605.98 nm [56]. In
general this optical spectrum is modified by a number of effects. We can describe
the system by a simplified Hamilton operator [49]:

Hipn=[Hy+Hc+Hgo |+ Hep +[Hyp+Ho+H;+H,] (1.1)
freg,ion crystal field hyperﬁn;,structure

Here the level structure of a free ion is described by its potential and kinetic energy
(H,), the Coulomb interaction (H.), and the spin-orbit interaction (Hg,). The
interaction of Pr** with the crystal field, when used as a dopant in a host crystal,
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Chapter 1. Rare-Earth Ion-doped Solids

is described by H. Additionally, hyperfine interactions lead to a further splitting
of the levels, primarily caused by magnetic hyperfine interaction (H,;), and the
electric quadrupole interaction (ﬁQ). In the presence of an external magnetic field
additional splitting by electronic Zeeman effect (H,) and nuclear Zeeman effect
(FIZ) occurs. In the following, the different interactions and their effects on the
level structure will be explained. A detailed description can be found in [47-49].

1.2.1 Fine Structure and Crystal Field Interaction

The primary terms of the Hamilton operator for an ion with N free electrons with-
out external fields are:

Y o — BN g2V oz

Hy = 2m Zi:l vi Zi:l ri

A . N 2

He = 23, (1.2)

Hgo = Zivzl g(rl)l_:‘gl

In Equation 1.2 the first term of H, is the kinetic energy and the second term the
potential energy of the 4f electrons in the field of the nucleus. As H, is purely radial
the energy shifts are the same for all levels, thus level structure is not changed.
The Coulomb and spin-orbit interactions however are radial but non symmetric,
affecting the level structure, which leads to a splitting of the energy levels (fine
structure). We can usually describe a system in Russell-Saunders notation (LS-
coupling), if the interaction between the electrons in the 4f orbital is stronger
than the spin-orbit coupling, i.e. H. > H,. If the spin-orbit interaction becomes
much stronger than the Coulomb interaction, i.e. (H, > H), the jj-coupling can
be used to describe the system. In rare-earth ions, Coulomb interaction and spin-
orbit interaction are comparable, thus both coupling schemes are inappropriate.
However, starting from the LS-coupling an intermediate coupling scheme can be
developed [49]. Nevertheless, energy levels of rare-earth ions are mostly labeled
in Russell-Saunders notation. The fine structure is defined by the total angular
momentum J with typical energy level splittings of ~ 1000 cm ™! [47]. These levels
are in general degenerated by (2J + 1) with regard to m,, i.e. J-multiplets. This
degeneracy is lifted by the crystal field interaction (H.;) due to low symmetry,
leading to internal Stark shifts of the levels. The J-multiplets split into (2J+1)
energy levels with energy differences in the order of 100 cm™ [48]. In addition,
the crystal field causes a mixing of alternative electron configurations of different
parity, e.g. of the [Xe]4f5d and [Xe]4f* configuration. Due to this mixing the
selection rules are no longer valid. This results in weak allowed electric dipole
transitions within the 4f" configuration. Regarding Pr®* doped into Y,SiOs, this
fact allows to drive the transition between the lowest crystal field states *H, «
'D,. However, the mixing of electronic configurations in PrYSO is rather small,
which leads to a weak transition moment, but on the other hand exceptionally
long population lifetime for the first optically excited state 'D,(m; = —2) in the
order of ~ 100 us. Populations in higher m;-states relax much faster (~ 1 ns) into
the lowest state of the corresponding J-multiplet by phonon interactions (see blue
arrows in Figure 1.2). However, phonon interactions can also excite electrons into
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) 5 T ~ 100 ps
D2 —— ~ 100 cm?!
. Ty~100us
3H4 g; ~ 100 cm —_— o {0MHz
T, ~10—100s
free ion iting Shcire

Figure 1.2: (left) Relevant level structure of free Pr®*. (center) When used as dopant in a
rare-earth crystal, the interaction with the crystal field introduces a splitting of the levels.
(right) Hyperfine structure of the lowest crystal field levels. Figure based on [48].

higher crystal field levels or J-multiplet states by absorption. These excitations
can be suppressed by cooling the crystal to temperatures below 4 K. Relaxation
from the lowest excited state 'D,(m; = —2) into *H,(m; = —4) occurs mainly via
higher crystal field levels (*H,(m; > —4) and *Hs) by fluorescence at wavelength
A > 610 nm and from there by an non-radiative decay due to phonon interactions.
The level structure due to the crystal field interaction is shown in Figure 1.2.

1.2.2 Hyperfine Structure

Rare-earth ions doped in solids, with a nuclear spin I # 0, feature an additional hy-
perfine structure in the range from MHz to GHz. This structure can be observed,
because the homogeneous linewidth of the crystal field levels, when cooled to
cryogenic temperatures, is well below 1 MHz. Pr** has a nuclear spin of I = 5/2.
In the following, the different contributions to the hyperfine structure, as described
by the Hamilton operator (see Equation 1.1), are discussed. In the case of no ex-
ternal magnetic field two effects contribute to the hyperfine splitting. First, the
magnetic hyperfine interaction Hy, which is based on the interaction between
nuclear spin I and the effective magnetic field induced by the electronic angular
momentum J. However, for electronic singlet states, like the Pr**-ion with its two
free electrons, the total angular momentum J vanishes. Thus, in first order, as
Hy; o< I-J, the splitting due to this interaction is zero. In second order, when tak-
ing into account also higher crystal field levels of the corresponding J-multiplet,
e.g. states H,(m, > —4) for the ground state *H,(m, = —4), a contribution to
the hyperfine structure can be calculated. A second, nuclear electric contribution
to the hyperfine structure is mainly given by the electric quadrupole interaction
(ﬁQ), as the expectation value of the nuclear electric dipole moments vanish. The
Pr**-nucleus shows a electric quadrupole moment which interacts with the inho-
mogeneous crystal field. We can combine the magnetic hyperfine interaction and
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Chapter 1. Rare-Earth Ion-doped Solids

the electric quadrupole interaction into an effective pseudo-quadrupole Hamilton
operator

. 1
HHF,Q:D[Izz—gI(I+1)]+E(I§+I}2,) (1.3)

with effective hyperfine constants D and E. Written in this form, one can see that
this leads to a twofold degenerated hyperfine structure. An additional splitting
of the hyperfine structure can occur by taking into account the interaction of the
the nuclear magnetic moment of the dopant ion with the nuclei of the surround-
ing atoms in the host material [62]. This so-called, superhyperfine interaction or
transferred hyperfine interaction, usually leads to energy splittings of a few kHz.
When additional external magnetic

fields are applied the degeneracy of ; |£5/2) 4.8 MHz
the hyperfine levels is suspended and DZ,mJ=-2 Ii?ﬁg 4.6 MHz
a further splitting by magnetic Zeeman

shifts occurs. This can be described

by the electronic Zeeman interaction

(a ») and the nuclear Zeeman interac-

. A . . |+1/2)

tion (H,). However, as in this present 10.19 MHz
work no external magnetic fields are 3H4’mJ=_4 |%3/2)

applied, the magnetic Zeeman shifts 17.31 MHz
are insignificant to the total hyperfine |£5/2)

structure. Due to the nuclear spin
of I = 5/2 of Pr’* each crystal field
level splits up into three hyperfine lev-
els, typically labeled with the quantum
number m,, i.e. |£1/2), |+3/2) and | +£5/2). Figure 1.3 shows the hyperfine
structure of the relevant optical transition *H,(m; = —4) < 'D,(m; = —2) with-
out external magnetic field. Note that the energetic ordering of the excited state
hyperfine levels is inverted compared to the ground state hyperfine levels. Due
to the low crystal field symmetry the selection rule Am; = 0 is no longer valid.
Thus, all nine transitions between the ground state hyperfine levels and excited
state hyperfine levels are allowed. However, the transition moments are quite dif-
ferent. In particular, it is possible to identify an effective 4-level system and an
effective 2-level system with only a weak coupling between the systems. Table 1.1
depicts the transition moments u and relative oscillator strength f between the
hyperfine levels of the electronic ground state *H,(m, = —4) and the excited state
'D,(m,; = —2). These still rather weak transition moments lead to a relatively long
population lifetime of the excited state of T, = 164 us [56]. The relaxation time
of the ground state hyperfine levels is limited by spin flips, and phononic interac-
tions with a strong temperature dependence [63]. At temperatures below 4 K the
relaxation times are in the order of 10 — 100 s, depending on the specific hyper-
fine transition [58]. These relaxation properties, in combination with the unequal
transition moments of the hyperfine levels, give rise to population redistribution
by optical pumping [63]. The spectroscopic properties of PrYSO of relevance for
the present work are summarized in Table 1.2.

Figure 1.3: Hyperfine structure of the rele-
vant crystal field transition 3H4(m j=—4) —
ID,(m; = —2) of Site 1 of the PrYSO crystal.
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Table 1.1: Relative oscillator strength f and transition moments u between the hyperfine

levels of the electronic ground state H,(m; = —4) and the excited state 'D,(m; = —2) of
PrYSO (Site 1) taken from [64,65]. The effective 4- and 2-level systems are marked in green.
1]:)2
|+£1/2) | | +3/2) | | +5/2)
1£1/2) f =0.55 f=0.38 f =0.07
pw=2.0-10*Cm | u=1.7-10°*Cm | 1 =0.7-1032Cm
=04 =0.6 =0.01
Hy | 1£3/2) u= 1].c7- 1032 Cm | u= 2).c1 +1073%2Cm | u= ({.3 10732 Cm
| +5/2) f =0.05 f =0.02 f=0.93
©u=0.6-103Cm | u=0.4-1032Cm u=2.6- 10732 Cm

1.3 Line Broadening Mechanisms

The set of REIDS feature a broad range of different spectral linewidths. From
~ 100 Hz in trivalent rare-earth ions in host materials with negligible small nu-
clear moments, to ~ 1 THz in systems at room temperature, strongly coupled by
phonons. The nature of REIDS spectral linewidths requires to distinguish between
homogeneous and inhomogeneous contributions to the total linewidth. While
homogeneous effects contribute equally to all ions in the host crystal, an inho-
mogeneous broadening arises due to the fact that each dopant ion in the crystal
experiences a different local crystal field environment.

Homogeneous Linewidth

The homogeneous linewidth T;,,, i.e. the spectral broadening within a single
ion, is determined by the coherence time T,, with I}, = 1/nT,. Even at very
low temperatures, dynamic interaction processes, driving transitions between the
electronic states, contribute to this broadening. The total homogeneous linewidth
[49,56] is thus given by:

l—‘hom =T

nat

+T;

ion—spin + 1—‘ion—ion + thonon (14)
The natural linewidth is caused by the population decay of the excited state and
can be calculated by T,,, = 1/(2nT;), using the population relaxation time T; of
the transition. Hence, without any additional interaction, the theoretical maxi-
mum coherence time T, is limited by the population decay time T; with T, = 2T;
only. However, in REIDS in addition to population decay, other effects contribute
to the total homogeneous linewidth. Moreover, the interaction between ions and
fluctuating atomic nuclei spins and electron spins in the environment lead to
Tion_spin- A second contribution results from the ion-ion interaction I},,_;,, between
the excited Pr¥*-ions by electrostatic dipole-dipole interaction. A third contribu-
tion (Tyy.n0n) is given by phonon excitation and relaxation processes to and from
higher crystal field states. In general, the coherence time T, is reduced due to
these interactions, and thus is much smaller than T;. In a PrYSO crystal, cooled
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Chapter 1. Rare-Earth Ion-doped Solids

Table 1.2: Relevant relaxation times and corresponding linewidth of PrYSO.

Excited state 'D,(m; = —2) < Ground state *H,(m; = —4) transition

Population lifetime T/ =164 us [56] < I ~970Hz
Coherence time Ty~ 111 us [56] < Iy ~29kHz
Theoretical dephasing time T opn ™ 45 PS — r .. ~7GHz
Ground state *H,(m; = —4) hyperfine transitions

Relaxation time |3/2) «—|5/2) T, =109.5s[58] <« I =1.5mHz

Relaxation time |1/2) «— |3/2) T, =8.7s[58] <« r* =18.3mHz
Coherence time T, ~ 500 us «—  [L,m~640Hz [27]
Dephasing time [|3/2) <= |5/2) Tgepn ®4.5us <> Tipom ~ 70 kHz [63]
Dephasing time |1/2) < |3/2) Tyepn ~ 10 s —  Tnom ~ 30kHz [63]

to cryogenic temperatures to reduce phononic interactions, the resulting homo-
geneous linewidth of the excited state 'D,(m; = —2) is I¥ =~ 2.9 kHz, and thus
much larger than I'*  ~ 970 Hz. The homogeneous linewidth of the ground state
hyperfine levels is T}, ~ 640 Hz, leading to a coherence time of T, ~ 500 us.

Inhomogeneous Linewidth

The homogeneous linewidth usually can not be measured directly by spectroscopic
techniques, due to a large additional inhomogeneous broadening even at very
low temperatures. The broadening of the optical transition arises from inhomo-
geneities in the crystal lattice environment due to defects, like mechanical stress
and chemical impurities from the crystal growing process and different atomic
radii to the praseodymium ions that substitute the yttrium ions [61]. This leads
to local variations in the crystal field for different ions. Thus, ions at different
locations feature different crystal field, i.e. optical, transition frequencies. As a
result a broadened optical transition is measured. We group all ions with the
same transition frequency and label them as a frequency ensemble. The inhomo-
geneous broadening of the optical transition in REIDS are usually in the order of
I .. ~ 10 GHz [49]. Likewise, the transitions within the hyperfine states fea-
ture a inhomogeneous broadening T, of a few kHz, leading to dephasing times
Tyepn in the order of us, with its origin also due to variations in the crystal field
environment. We note, that the inhomogeneous broadening in general strongly
depends on the dopant concentration [59,60]. Higher dopant concentrations lead
to additional mechanical stress, due to the different atomic radii of the dopant ions
and as a result to larger values of T, . and T},,,, respectively [60]. In addition,
with an increase of the dopant concentration the ground state hyperfine splittings
is reduced, and a slight dependence of the ground state hyperfine splitting with
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crystal lattice energy level shifts absorption spectra
/ 4.8 MHz o
— [e]
) 113/2)/“///: g
|£1/2)— @
C

° \

[ £ 1/2) i g

10.19 MHz

|+£3/2)

17.31 MHz

| £ 5/2) N—

HF transition
frequency

Figure 1.4: Origin of the inhomogeneous broadening of the optical and hyperfine transi-
tion. (Left) Several Pr>*-ions (colored dots) experience different crystal field environments.
(Center) This leads to variations in the optical and hyperfine transition frequencies. (Right)
The superposition of all homogeneously broadened transitions result in a inhomogeneously
broadened transition. The center of the hyperfine transition frequencies slightly depend on
the position within the inhomogeneous optical line. Figure taken from [58], modified.

respect to the optical transition frequency, i.e. the position within the inhomoge-
neous broadening of the optical transition was identified [60]. In order to reduce
these effects typical dopant concentrations should be well below 1 %.

Dynamic Effects on the Inhomogeneous Linewidth and Transitions

The inhomogeneous linewidth described in the previous section was introduced
as a static phenomena, in which each Pr*" exhibits a temporally constant, though
from ion to ion slightly different, crystal field environment. However, in general,
the crystal field represents a dynamically changing, open-bath environment for
Pr*. The Pr’*-ions interact with the surrounding yttrium ions of the host crystal
via dipole-dipole interaction. Thus, if a stochastic yttrium spin flips occurs, the
crystal field environment, and therefore the level structure of the close-by ions
changes. The small change of the ions transition frequency can be understood as a
spectral movement within the inhomogeneous line. The overall width of the inho-
mogeneous line is not changed due to this effect. The Pr’* ions, with their homoge-
neous linewidth, just diffuse within the inhomogeneous line, thus this effect is also
known as spectral diffusion [48,49,66]. In addition, also the interaction between
Pr**-ions can result in a shift of the transition frequencies. The Pr**-ions feature a
state dependent, electric dipole moment. Thus, a Pr**-ion, excited by an external
field, changes the transition frequency of the surrounding Pr**-ions. This field in-
duced transition frequency change is called instantaneous spectral diffusion [67].
Both effects strongly depend on the interaction strengths and distances between
the interacting ions. Static and dynamic inhomogeneous linewidths represent the
major obstacles for highly efficient, long-term data storage in REIDS. Thus, in the
past years, intensive efforts have been put in the development of techniques to
either minimize or compensate these effects. Also the present work deals with
advanced compensation techniques, to achieve such a highly efficient, long-term
quantum storage device, known as dynamic decoherence control (DDC).

10
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Chapter 2

Coherent Wave Matter Interactions

The experiments, conducted in the scope of this work, are based on the interaction
of coherent radiation, in the optical regime and radio-frequency regime, with an
atom-like solid, the praseodymium ions in the yttrium orthosilicate host crystal. In
particular, light storage based on EIT and the techniques applied to preserve the
stored information are based on coherent interactions. Thus, in this chapter the
basics on coherent wave matter interactions, relevant for this work are described.

We discuss the interactions of an ideal two-state quantum system driven by
a coherent field in the diabatic picture. We saw in Chapter 1, that PrYSO ex-
hibits rather large inhomogeneous broadened transitions. We thus introduce a
two-state system including a inhomogeneous broadening of the transition and in-
homogeneities of the driving field, to describe the hyperfine transitions of PrYSO.
We show the population dynamics in such a inhomogeneous two-state system,
and introduce composite pulses for robust two-state manipulations. An extensive
discussion on coherent dynamics in a two-state system can be found in [68].

The description of the EIT light storage protocol is based on the interaction
of a three-state system with two coherent fields. We introduce the adiabatic light
storage in a three-state system based on electromagnetically induced transparency
(EIT) and discuss limiting effects of the efficiency of the storage protocol and of
the storage medium. A detailed description on EIT and light storage by EIT is
given in [69, 70].

2.1 Coherent Interactions in a Two-Level System

In this section the coherent interactions in a two-state quantum system driven
by a coherent field are discussed in a semi-classical description. We assume the
coherent driving field, to be a classical electric field. The description holds true for
classical magnetic dipole transitions as well. We describe the changes induced by
a coherent driving field in a two-state quantum system, as depicted in Figure 2.1,
using the time-dependent Schrodinger equation (TDSE):

- 19(0) = A1) @2.1)

The Hamilton operator H(t) consists of H,, the Hamilton operator describing the
eigenstates of the unperturbed two-state system, and the operator V(t) describing
the time-dependent interaction between the electric field and the two-state system.
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We define the electric field with the angular frequency w -K--:‘"""‘""
and the real amplitude &,(t) as v | 2)
- ]. - . .
8(t) = Ego(t)(e_l‘”t +elt), (2.2) Q
W12 w
leading to the total Hamilton operator

- = v

A 2 3 E —f126(t) | 1)

Ht)=H,+V(t)=| . % , (2.3)
0 —iy E(t) E,

Figure 2.1: Two-state
with E; and E, the energies of levels |1), and |2), respec- System with transition
tively. The interaction of the coherent field with the system frequency s, coher-
is described by fi;;&(t) with the transition dipole moments e;‘ﬂy drllven fby a field
defined by fi;, = —e(i|F|j) = §i*. After a transformation ©°f (3ngular)irequency
. Y . J! . w, Rabi frequency ,
into the rotating wave picture [68], we define the detun- _. ;

. . with a detuning of A.
ing A = w — w,,, and the Rabi frequency as

_ﬁugo(t)
h J
If the angular carrier frequency w of the driving electric field is much faster than

the dynamics of the system, i.e. Q(t), Q(t),and A(t) < w, we can apply the
rotating wave approximation (RWA), and write

Q(t) = 2.4)

A h
Hpwa(t) = 5 (Q’ﬁt) (1(;)) (2.5)

2.1.1 Rabi Oscillations and Pulsed Excitation

Solving the Schrédinger Equation 2.1 with the RWA Hamilton operator 2.5 one
can calculate the dynamics of the probability amplitudes c,(t) and c,(t), and using
P,(t) = |c,(t)|?, the corresponding populations P;(t), and P,(t). If we assume the
system is initially prepared in state |1), i.e. ¢;(0) =1 and ¢,(0) = 0, the population
dynamics are given by

0? A2 0?
Pl(t) = [1 + cos (Qefft)] + 5 and Pz(t) = [1 — COs (Qefft)] (26)
2Qeff Qeff 2Qeff

Here, we introduced the effective Rabi frequency given by Q.¢(t) = +/ Q2(t) + A2(t).
From Equation 2.6 we see that the populations oscillate with the effective Rabi
frequency between the states |1) and |2) with an amplitude ©*/Q2;. Only in
the case of resonant driving (A = 0) a total population inversion is achieved.
In this case we define the pulse area as A = fOT Q(t)dt, with the duration of in-
teraction 7. We find population inversion for A = (2n + 1) with n € N and
complete population return for A = (2n)n. Note that A can in principle be
positive, negative, or even zero, depending on the pulse shape of the complex
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Rabi frequency Q(t). With a pulse area of A = (2n + 1)7t/2 the system is ex-
cited into a maximal coherent superposition of states |1) and |2). Note that all
pulses of pulse areas 0 < A < 1 excite the system into a coherent superposition,
however not in any case a maximal superposition. Figure 2.2 (top) depicts the
Rabi oscillations in a single two-state system for different detuning A from the
resonance frequency w;,. In the case of an off-resonant driving the maximal
possible population inversion reduces and the oscillation frequency increases.
This effect becomes of special interest, in
situations involving an ensemble of two- [
state systems, where each ensemble € ex- osl
periences a different environment, e.g. a
different Rabi frequency Q.(t) or a differ- [
ent detuning A.. In this case each individ- 04f
ual ensemble has to satisfy the TDSE with

1.0

. o : . 'S 02}
its specific detuning A, and Rabi frequency % I Q / /
Q.(t). We assume an ensemble of two-state EN 0.0 i L e "
systems with different detunings, i.e. anin- & 1.0 —————————"7——7
. 5 I —— 50 =-0.150..0.15Q

homogeneous broadening I}, = —A....A, -2 — 0.0

> T o8} 1= Q- .
of the transition [1) < [2) and an en- 3 |
semble driven by different Rabi frequen- § 06} .
cies, i.e. 6Q = —Q,...Q.. We evaluate the oal i
probabilities of the ensemble of two-state i

02} .

systems as weighted sums of the individ-
ual probabilities, P,(t) = >, _p(e)lc,(e, )I?, ool o+ T L
with the weighting factor p(e) defining the O In ~ 2m 3 4
shape of the inhomogeneous broadening time ¢ [1/0]

and the.distl.‘ibujcion of Rabi frequencigs. Figure 2.2: (Top) Rabi oscillations for dif-
The Rabi oscillation of an ensemble of dif- ¢, .+ detunings A in units of  from the
ferent detunings, with I}, = —Q...Q, and regonance w,, of the single two-state sys-
with different Rabi frequencies with 6Q = tem. (Bottom) Averaged Rabi oscillations
—0.150...0.15Q is depicted in Figure 2.2 in an ensemble of two-state systems with
(bottom). We find in both cases that the an inhomogeneous broadening I3, and
inhomogeneities lead to a damping of the aninhomogeneity of the driving field 6.
Rabi oscillations and for the case of I3, also

to an increase of the effective Rabi frequency. Thus, in order to efficiently drive an
ensemble of two-state systems the Rabi frequency Q has to be much larger than the
inhomogeneous broadening I}, and inhomogeneities in the Rabi frequency have
to be avoided.

2.1.2 Description of Macroscopic Systems

The previous section treated a single, idealized quantum system in a pure state
) = > c,lv,), with [¢,) = e Oy ), using the state vectors |¥) to describe
the system. Alternatively, the state of the system can be described in the density
matrix formalism, with the density matrix of a single, pure system given by

p = ¥)(¥|. (2.7)
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Thus, in the basis {|v,)} the density matrix can be written as
p =D b . (2.8)
L,j

Here, the product of the probability amplitudes c;c; gives the density matrix ele-
ment p;; = pj;. The diagonal elements p;; correspond to the populations of states
l;). Any kind of coherent superposition is described by the off-diagonal elements
p;;(i # j). This formalism can also be used to describe a macroscopic system, con-
sisting of a number of single quantum systems with different probabilities p. and
states |¥,.). The density matrix of such a macroscopic system can thus be written
as

A AA] 2.9)

A collective coherent superposition is then described by

Py = p.lpgle™, (2.10)

with the individual transition frequency w, = w;; + A.. We thus find that the
individual coherences e of a macroscopic collective coherence created in an inho-
mogeneous broadened system feature different time evolutions of the coherence
phases. Hence, the collective coherence is reduced for t > 0. This effect is called
dephasing. In both cases, single quantum systems and macroscopic systems, the
dynamics can be described by the Liouville-von-Neumann equation, given by

a N A
ih=—p = [H,p]+inD, (2.11)
with the dissipator D including relaxations of populations and coherences by spon-
taneous emission and decoherence effects. For a two-state system we find the

dissipator given by

D= ( [5109 _Y12P12)

1 p
with = =—-I)+7,,. (2.12)
—Y21P21 —I21P2 Y2 =Tz 2" T

2

The spontaneous decay rates I,;, is given by the natural lifetime T; = 1/T,;. The
decoherence is described by the decoherence rates y;; and decays with half the
rate of spontaneous decay I;. Additional decoherence effects are summarized in
7’/21' In PrYSO spectral diffusion gives a large contribution to }//21 in which usually
also the reversible effect of dephasing is included.

2.1.3 Composite Pulses

We saw in Section 2.1.1 that an efficient diabatic driving of a inhomogeneously
broadened two-state system from a initial state into a precisely defined final state
becomes ambitious if T}, = 2. One possible solution to overcome the inefficient
driving of a single excitation pulse is the application of pulse sequences, i.e. a se-
ries of pulses of possibly different durations T and phases ¢. Such composite pulses

14



Chapter 2. Coherent Wave Matter Interactions

(CP) are usually designed to perform a defined system excitation, e.g. a popula-
tion inversion as it is achieved by a single m-pulse, while compensating for pulse
errors of a single pulse and inhomogeneities of the driven system. CP were first
proposed in the mid 70 s by Redfield et al. [71] and Levitt et al. [72] in the field
of nuclear magnetic resonance. Today there are an enormous number of different
CP especially designed for their specific application goals and the type of errors
involved [73,74]. One can categorize them into narrowband and broadband CB
i.e. operating for a smaller, or larger bandwidth of parameter variations compared
to a single pulse and one can group them regarding their type of error compensa-
tion. There are two major types of errors. First, pulse area errors, which can arise
e.g. from field inhomogeneities across the sample dimensions, or fluctuations in
the driving field. Second, errors induced due to a detuned driving, as it exists in
ensemble systems featuring an inhomogeneous broadening. The effect of driving
a two-state system using a CP can be understood intuitively in the Bloch sphere
picture, represented in a rotating frame with the transition frequency of the two-
state system, see Figure 2.3. The Bloch vector (green arrow) describes the state of
the system, defined by

7 = (2Re(p12), 2Im(p12), [p22| — P11 ])- (2.13)

The z-axis represents the population difference between state |1) and |2).
The x- and y-axis depict the coherence p;, = |[p¢,le®*7) with y, =
arctan (Im(p,,)/Re(p;5)). The driving of the two-state system is described by
rotations of the Bloch vector on the Bloch sphere. The driving field can be trans-
lated into a torque vector T driving the Bloch vector 7 with

—

T = (Re(Q),Im(Q),A)), and 7 =T x 7. (2.14)

Figure 2.3 depicts the motion (green line) of the Bloch vector (green arrow) by
the torque vector (red arrow) on the Bloch sphere for different driving pulses. The
system is initially prepared in state |1), i.e. the Bloch vector is pointing into the
-z-direction. A driving with a perfect n-pulse, yielding a total population trans-
fer from state |1) into |2), would rotate the Bloch vector from the -z direction
through the equatorial plane into the z-direction. However, depicted here are
driving pulses with pulse area errors (top row) with a reduced Rabi frequency
Q = 0.99Q, from the optimal Rabi frequency, here denoted Q,, and detuning error,
i.e. off-resonant driving of the two-state system (bottom row), with a detuning
A =—0.1Q,. We find that a single pulse (left column) can not drive a total popu-
lation inversion in the presence of pulse area or detuning errors. In both cases the
final Bloch vector is not pointing completely into the z-direction. In our example,
the population in state |2) is 95 % with the pulse area error, respectively 98 % with
a off-resonant driving. The most intuitive CP consists of three pulse components
with pulse areas n/2, m and ©/2. The relative phases between the pulses are 0°,
90° and 0°. These phases are imprinted on the complex Rabi frequency Q. In the
following, we will use the common notation from NMR with the pulse areas A and
phases ¢ as subscripts, i.e. Ay. For this example it leads to (70/2, — gy — 7/2,).
This CP is capable of compensating pulse area errors as one can see in Figure
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single pulse
/29— Mo — 7/2 T —
[Pl — P11
[\99.8 % [
0=0.9Q,
A=0
Re(py
<\98 %
Q=1Q,
A=0.1Q, )

Figure 2.3: Motion (green line) of the Bloch vector (green arrow) on the Bloch sphere for a
single pulse and CP of three components, for a pulse area error (top row) and a detuning
error (bottom row), i.e. off-resonant driving of the two-state system. The pulses are applied
to drive the system from state |2) to state |2). The initial torque vector (red arrow) indicates
the first axis of rotation of the pulses. The transfer efficiency, i.e. the population in state |2)
after the pulses, is given next to the Bloch spheres.

2.3. The Bloch vector driven by this CP first performs a /2, rotation around the
Re(p;,)-axis. Due to the pulse area error the Bloch vector stops slightly below the
equatorial plane of the Bloch sphere. Second, a 7y, rotation is applied, i.e. the
direction of the torque vector is shifted by 90°, rotating the Bloch vector around
the Im(p,,)-axis. Note that only the torque vector of the first component of the CP
is depicted. The Bloch vector is now slightly above the equatorial plane. Finally
another 7/2,-pulse is applied, rotating the Bloch vector almost into the z-axis,
i.e. achieving a population transfer of 99.8 %. Hence, we saw that this CP is
able to compensate for pulse area errors, achieving a better population inversion
compared to a single pulse excitation. However, the performance in the case of a
detuning error is not improved by this type of CB compare with Figure 2.3 (bottom
row). Additionally, as an example, the performance of two other CP (A3 and A3)
are depicted in Figure 2.3. Note that these pulses feature only the phases as free
control parameters, i.e. the pulse area of all components of the CP is fixed. We
find that the CP A3 is capable of compensating pulse area errors very efficiently
(99.99 %), while in the case of detuning errors the population transfer drops to
92.3 %. In the other hand detuning errors can be compensated by using the CP
A3. However, this CP is very sensitive to pulse area errors. Most CP are designed
for quite special tasks, driving the system from a defined initial state into a final
state while compensating for one specific type of error. However, we will see in
Section 5.2 that it is possible to design robust CP without any knowledge of the
type of errors involved in the system and pulses. Note that CP can, however not
all do, perform well for any initial state, e.g. a arbitrary coherent superposition.
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2.2 Coherent Interactions in a Three-Level System

We define a three-state quantum system in A-configuration containing two
metastable ground states |1) and |3), and an excited state |2), see Fig-
ure 2.4. The transition frequencies are given by w,;;. Optical driving
fields, in the following labeled as probe (p) and control (c) field, cou-
ple the transitions |1) «> |2) and |3) <> |2) of the system, respectively.
In dipole approximation the probe and control field
can be described by

é'a;(t) — (t) (eiwpt_i_e—iwpt)’

0
F , , (2.15)
éoé)(t) (elwct + e—lwct) ,

NI—= NI=

&(t) =

with the frequencies of probe and control field la-
beled w, and w,, respectively. The single-photon
detunings are given by A, = w, — w;,, and A, =
w. — w,3. Following the arguments of Section 2.1

1)

we write the full RWA Hamiltonian as, Figure 2.4: Three-state system
in A-configuration, with probe

0 Q, O field (p) and control field (c).

Hppys = Q, 27, Q |, (2.16) The system is driven with Rabi

0 Q 26 frequencies 2, and Q, with de-

tunings A, and A.. Population
in state |2) decays with rates I;

with the two-photon detuning 6 = A, — A, and real
and Is.

Rabi frequencies Q,, and Q, of probe, and control
field, respectively. Note that we will no longer explicitly write the time dependance
of the Rabi frequencies. In the following we assume two-photon resonance of
probe and control field with the transition |1) < |3), i.e. A, =A. = A= § =0.
In this case the RWA Hamiltonian of Equation 2.16 can be diagonalized, leading
to a new set of eigenstates, called instantaneous, adiabatic, or dressed eigenstates
[68]:

[Y,) = cosB|1) —sin 0|3)

[Y_) = sinBcos¢|l) —sing|2) +cosHO cos|3) (2.17)

[Y,) = sinOsing|l) +cos¢|2) +cosOsing|3)

The so-called mixing angles 6 and ¢ are calculated by

Q /22 +Q2
tanf = — and tan2¢ = yr o °

) N (2.18)
and define the projection of the bare states of the three-state system onto the
dressed states. The eigenstates |1,) share a contribution of the excited state |2)
with its radiative decay. Thus, these states are usually called bright states. In con-
trast state |v,) has no contribution of the excited state |2), and is hence referred
to as dark state. Therefore, if the system is initially prepared in the dressed dark
state |¢),), it can not be excited to the radiatively decaying state |2). In addition,
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by a proper choice of the mixing angle 0, i.e. the ratio between control and probe
Rabi frequency, the dark state |1,) can hold a superposition of the bare states
|1) and |3). However, variations of control and probe Rabi frequency have to be
sufficiently slow, i.e. adiabatic, to stay completely in the adiabatic states. These
properties allow one to create and store atomic coherences by adiabatic variations
of the control and probe Rabi frequencies.

As described in Section 2.1.2 one can treat a single, idealized quantum system,
as well as macroscopic systems, by using the density matrix formalism. The dy-
namics can be described by the Liouville-von-Neumann Equation 2.11. In the case
of a three-state A-system, we find the dissipator D given by

X 151022 —Y12P12 —Y13P13
D=|—rupa —(To1+T23)P20 —TYa3pP2s |, (2.19)
—Y13P13 —Y32P32 [53022

with the spontaneous decay rates I};, given by the natural lifetime T; = 1/T}; and
. 1 /
the decoherence rates given by v;; = 3 (3, T + 2 T ) + T

2.3 Adiabatic Light Storage in a Three-Level System

Adiabatic light storage is based on the transformation of optical information, i.e.
an optical pulse, into a coherent atomic superposition state. There are a num-
ber of different light storage protocols, which are able to perform this transforma-
tion [5,7]. This present work uses a storage protocol based on electromagnetically
induced transparency (EIT). EIT enables a direct manipulation of the dispersion
properties of a medium. The following sections will give an overview on the basic
EIT theory and the EIT-based light storage protocol. Finally, we discuss the exper-
imental and theoretical limits and constraints, regarding the maximal achievable
storage efficiency.

2.3.1 Electromagnetically Induced Transparency

EIT is based on a quantum interference effect between different excitation path-
ways in an atomic medium. In this way it is possible to eliminate the absorption
and refraction at the resonance frequency of a transition. We will describe the
EIT effect here in a three-state A-type system. Nevertheless, also other coupling
schemes, such as ladder- and V-type systems are possible. Assuming a strong con-
trol and a weak probe field (€2, > Q) and the system initially prepared in state 1),
) if 2, = 0 respectively, we can solve the Liouville-von-Neumann Equation 2.11
using the RWA Hamilton operator, Equation 2.16, and the dissipator D, Equation
2.19, see Appendix D. In the steady-state (5 = 0) and for small changes of the
initial population, i.e. p,; = 1 we find the linear susceptibility y* given by [70]

L0~ w20 (46 (I ? =46 A,) —16A,7v2,) + i (166271, + 4115 (191> + 4715712))
€olt 1912 + (271, + 124, ) (2715 +i26)[

(2.20)
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with the atomic density o. Note the y") given here slightly differs from [70] due
to different definitions of the decoherence rates, see also Appendix D. In order to
connect the linear susceptibility y* to the absorption coefficient a and the index
of refraction n we use the following relations:

a = 2koImy/1+ y® ~ koImy® (2.21)
1
n=Re,/1+x(1m1+§Rex(U (2.22)

Here, k, = 2m/A, is the angular wave number. Thus, it is possible to calculate
absorption and dispersion spectra, with respect to the probe field detuning A,.
Figure 2.5 shows the imaginary part of y"), proportional to the absorption coef-
ficient a, and the real part of ¥, proportional to the index of refraction n, for
different sets of parameters ., 1,3 and A,. If no control field is applied (Q2, = 0),
and the relaxation rate of the coherence p,; is negligible (y;; = 0), we find the
expected absorption and dispersion profile of the homogeneously broadened tran-
sition |1) «> |2), see dashed lines in Figure 2.5 (bottom, center). If the control field
is switched on, i.e. Q. > 0 the absorption on resonance (A,) vanishes, and we find
total transmission (solid red line) for the probe field. The previous single absorp-
tion line splits with a separation A, = Q.. Note that this splitting is not due to a
linear Stark effect, which would result in an Autler-Townes splitting [75], but can
not explain the vanishing absorption on resonance [76]. This zero absorption can
only be explained by the destructive interference of the different excitation path-
ways of the dressed three-state system (Fano interference). The system is initially
prepared in the dark state |1,) =|1). Thus, coupling states |1) and |2) with a res-
onant probe field leads to two possible transitions in the dressed state picture, i.e.
lpo) <= |Y.), ) respectively. The destructive interference of these excitation
pathways results in a vanishing absorption of the probe field on resonance. This
effect is called electromagnetically induced transparency (EIT) [11-13,70,77]. A
strong control field also changes the dispersive behavior (Rey ") of a system, see
Figure 2.5 (center column). Without a control field applied, we find an anoma-
lous dispersion on resonance (black dashed line). With a control field (solid black
line) the system shows a strong normal dispersion. We will see that this changed
dispersive behavior will be of importance for EIT-based light storage (see Section
2.3.2). Figure 2.5 (center column) shows that the width T of the EIT feature
depends on the control Rabi frequency Q.. In order to calculate the dependence
of Iy with respect to Q., we assume an optically thick medium of length L. Thus,
the response of the entire medium, i.e. the transmission T, can be calculated from
the formula

T = e—aL — e—ZkOIm 1+x(1)L. (223)

In order to determine the width I, we further assume y,; = 0 and a resonant
control field, which leads to 6 = A,. We thus can calculate the absorption coeffi-

cient a by a series expansion of y) around A, = 0. We find

4a ,)/2 AZ A4 2k 2
a=—27° Lol 22| with ao:M (2.24)
Q4 Q8 Y1200

C

19



Chapter 2. Coherent Wave Matter Interactions

1.00
= 075}
o
K
N
N 0.50F
&
=~ 025}
=<
£  0.00F
37 o2t
e 0.25
[0}
o -050}
1.00
= 075}
o
RS
N
N 0.50F
&
= 0.25F
=<
£  0.00F
37 o2t
e 0.25
[0}
@ -050}

3 2 1 0 1 2 3 3 2 4 0 1 2 3 3 2 4 0 1 2 3
detuning A [v,,) detuning A [v,,] detuning A [v,,]

Figure 2.5: Absorption (Imy ", red) and dispersion (Rey ", black) versus the single pho-
ton probe field detuning A ,. All values are given in units of y;,. (Center column) The control
field is resonant to the |1) < |2) transition (A, = 0) and the relaxation rate of the ground
state coherence is 73 = 0. From bottom to top the control Rabi frequency increases from
Q. = 1 to 2. (Left column) A control field detuning is added (A. = —0.5). (Right column)
A additional ground state relaxation rate is added (y;3 = 0.25). The dotted lines represent
the case of no control field, i.e. 2, = 0.

the absorption on resonance (A, = 0) without a control field applied. We define
the optical depth of the medium as d = a,L and determine a Gaussian shape of
the EIT window for small probe detunings, using Equation 2.23:

4d }fszﬁ i|

T(a,)=exp [_T (2.25)

We find the width I;; of the EIT window (FWHM) is a quadratic function of the
control Rabi frequency ., given by

Q2 VIn2

 pE—— .
B Y12 /d

Previously we described the effect of EIT without taking into account any detuning
A, of the control field, and coherence decay rate y,5 of the ground states. Figure
2.5 (left column) depicts Imy™® and Rey™ for a control field detuning of A, =
—0.5. The EIT feature becomes asymmetric, with its center shifted towards A, =

(2.26)
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—0.5. However, total transmission is still achieved. An additional coherence decay
rate y;3 = 0.25 is added in Figure 2.5 (right column). This leads to a residual
absorption (Imy ") # 0) in the center of the EIT window (A, =0). We can calculate
the transmission for A, = 0, and non vanishing decay rates y,;, using Equations
2.23, and 2.20. We find the transmission

dy13712 ]

(2.27)
Y13Y12 + Q?

T =exp [—

Thus, we find absorption (T # 0) for values y;; # 0. This residual absorption in the
center of the EIT window can be reduced by using higher control Rabi frequency
Q,, see Figure 2.5. For Qf > v1371, almost total transmission is achieved. A coher-
ence decay rate y,; # 0 also changes the dispersive behavior of the system. With
an increase of y,5 the dispersion becomes less steep, i.e. d%“p is reduced.

So far we discussed EIT and the effects related to it in the context of a homoge-
neously broadened medium. However, as we want to use EIT for light storage
in PrYSO, we can not neglect its inhomogeneous broadenings of the optical and
hyperfine transitions. An inhomogeneous broadening of the hyperfine transition,
i.e. the |1) «> |3) transition, leads to dephasing of the collective coherence, thus
causing a residual absorption in the center of the EIT window. An inhomogeneous
broadening of the optical transition leads to a variety of different single photon
detunings A, . of the probe and control field. In PrYSO the broadening of the hy-
perfine transition is T},;,,,, &~ 30— 70 kHz (here labeled I};), see also Table 1.2. The
effective inhomogeneous broadening of the optical transition I}, (here labeled
I},) strongly depends on the preparation of the medium due to optical pumping.
As the inhomogeneous broadenings in PrYSO are rather large, i.e. T}5 > 715,713
and I35 > 7,5, we find an altered condition for total transmission in the EIT win-
dow [78]. The condition then reads Q? > I';5T},, which means the Rabi frequency
must exceed the inhomogeneous linewidth. Thus, in a medium like PrYSO, the
EIT properties are mainly defined by the inhomogeneous broadenings of its tran-
sitions.

2.3.2 ElT-based Light Storage

In the previous Section 2.3.1 we saw that the control field does not only change

the absorption properties (Imy "), but also the index of refraction n (Rey) and

therefore the dispersion d%” of the medium. EIT-based light storage (EIT-LS) uses
p

this changed dispersion properties of the medium [13,70,79]. Instead of anoma-
lous dispersion in the case of no control field applied, we find with a control field
normal dispersion for the probe field close to the two photon resonance, see also
Figure 2.5. This leads to a modified group velocity v,, of the probe field inside
the medium. For single- and two-photon resonance, i.e. A, = A, = 0, the group
velocity of the probe field reads

4o, “ 0 % (2.28)
v, = = = o] . .
& dk, n+ w, (dn/dwp) 1+coaor12/Q2  agYiy
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Figure 2.6: (Top) Temporal sequence of the EIT-LS protocol. Control write and control read
pulses depicted by red lines. The probe (input) pulse (blue line) is transformed into a co-
herence (green line). After a storage time AT a signal pulse (dashed blue line) is retrieved.
(Bottom) Probe (input) pulse entering a medium (PrYSO crystal) in EIT conditions. The
probe pulse is compressed as it enters the medium and a coherence (green dashed lines)
is created. While the probe pulse travels inside the medium with a reduced group velocity,
the control write pulse is turned off. The probe pulse is fully transformed into a coherence.
After applying a control read pulse this coherence is converted back into a signal pulse.
Figure taken from [58], modified.
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Thus, a large positive dispersion close to the two-photon resonance, i.e., A, ~ A,
leads to a reduced group velocity of the probe field compared to the vacuum speed
of light c,. This effect is called slow light [16,80]. Equation 2.28 holds true if we
assume slowly varying probe and control fields, i.e. in the adiabatic limit, and
no coherence decay, i.e. v;3 = 0. Thus, the group velocity of the probe field (i.e.
probe pulse) can be controlled by the Rabi frequency . of the control field. In
the following the storage and readout process of the EIT-LS protocol is described
(compare also with 2.6):

(a) The medium is initially prepared in state |1). A control write pulse prepares
the medium in EIT configuration before a probe (input) pulse enters, i.e.
Q, = 0 and Q. > 0. Thus, in the dressed state picture the mixing angle is
6 = 0, and we find the dressed state |y,) = |1). Compare with Equations
2.17 and 2.18.

(b) As the probe (input) pulse enters the medium, its group velocity is reduced
and the pulse is compressed. As 2, becomes greater zero the mixing angle
0 increases. Thus, the dressed state |¢),) holds a coherent superposition of
bare states |1) and |3).

(c) While the probe (input) pulse is fully inside the medium the control write
pulse is switched off, fulfilling the condition ©2,/Q, ~ const., thus preserving
the mixing angle 6, i.e. the coherence during the storage process. As the
control Rabi frequency decreases the probe pulse is further compressed. In
the limit of zero control field, the probe pulse is fully transformed into a col-
lective coherent superposition of atomic states. We call this transformation
process stored light. However, the EIT theory in general assumes weak probe
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fields, i.e. Q. > Q,, thus no maximal superposition between states |1) and
|3) is prepared. In fact, under perfect EIT conditions only a weak coherence
can be generated. The spatial distribution of amplitude and phase of the
coherence in the crystal, along the axis of of the probe pulse, is called spin
wave [81,82].

(d) During the storage time AT the information (state) of the probe pulse is
preserved in a collective superposition state, i.e. spin wave in the storage
medium. However, dephasing, decoherence and population relaxation can
lead to a decay of the coherence (see Section 2.3.4).

(e) A control read pulse, equivalent to the write pulse, to achieve an undistorted
transformation, transfers the spin wave back into a light pulse, in the follow-
ing called signal pulse. In the ideal case input probe pulse and signal pulse
are identical, in particular in frequency, phase and pulse shape.

(f) The control read pulse renders the medium transparent again, and the signal
pulse travels with its reduced group velocity.

(g) As the signal pulse leaves the EIT medium, it accelerates and is stretched to
the original pulse width of the input pulse.

The EIT-LS protocol allows the total transformation and storage of optical infor-
mation in an atomic superposition, with the possibility of an on-demand readout.
Thus, this technique can be used as a quantum-memory protocol [5,6,83]. First
experiments on EIT-based light storage were carried out by Phillips et al. [14] and
Liu et al. [15].

2.3.3 Limitations on the Efficiency of the EIT Light Storage Protocol

In this section we discuss the major effects limiting the efficiency of the EIT-LS
protocol. In particular, a rather basic condition for a proper matching of the probe
pulse and EIT window properties to a given optical depth d of a storage medium
is introduced. Afterwards, the pulse propagation through an EIT medium and
the generation of an optimal spin wave is described. Finally, the proper phase
matching of probe and control fields is discussed. We define the total efficiency
ng7 of the EIT-LS protocol as

0

Ner = EL;: (2.29)
m

with the pulse energies of the input probe pulse E? and of the signal pulse E_ .
after a storage time AT = 0. This definition only describes the efficiency of the
EIT-LS protocol, not taking into account any decoherence and relaxation processes
during a storage time AT. Also, losses regarding a specific experimental setup, e.g.
optics, detectors, are not taken into account. We further define the experimental
efficiency of the EIT-LS protocol in our PrYSO crystal after a storage time AT as

E
Nexp(AT) = E‘f“t, (2.30)

m
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taking into account dephasing, decoherence, population relaxation processes, and
the efficiency of rephasing techniques applied. However, for comparability, losses
due to the components of the specific optical setup are not considered.

Spatial and Spectral Condition

Fulfilling the spatial and spectral conditions represents a basic requirement for ef-
ficient EIT-LS, which can be already derived from the simple EIT picture described
in Section 2.3.1. Of course, a storage of a probe pulse of duration 7, is only possi-
ble if the pulse is completely compressed into the medium of length L during the
storage process. If we assume a rectangular probe pulse of 7, with the group ve-
locity v,,, the spatial dimension of the pulse inside the medium is given by 7, v,,.
Using the approximation for the group velocity, see Equation 2.28, we find the
spatial condition for the probe pulse fitting into the medium,

2
Qc

ApY12

Y
L=z7,v,. ~ 1,

(2.31)
Furthermore, for efficient storage the probe pulse has to fit spectrally into the
EIT window Iy, because spectral components outside the EIT window would
be absorbed. The full width at half maximum of the spectrum of a rectangular
probe pulse is given by I, = 5.566/7,. With Equation 2.26 we define the spectral
condition Ty > T, as:

Q> VIn2 _ 5.566
> =T

Lo = —S% (2.32)
B Y12 Vd Tp P

Using d = a,L, we can combine the spatial and spectral conditions, Equations
2.31 and 2.32. In terms of Iy we obtain the following condition necessary to be
fulfilled for an efficient light storage:

VIn2d > Tyy7,vd > 5.566vd (2.33)
For a rough estimation we can write v/d > TgrT, > 1. This condition can be

fulfilled for a high optical depth d only. In terms of the control Rabi frequency Q.
Equation 2.33 reads:

Q*t,  5.566
d>—<2s2°2./4 (2.34)
Y12 VIn2

We find that for a given optical depth d, the combination of control Rabi fre-
quency Q. and probe pulse duration 7, has to be chosen appropriately to fulfill
Equation 2.34. However, for low optical depth it is difficult to fulfill Equation 2.34
at all. Figure 2.7 (left) shows two EIT spectra for different control Rabi frequen-
cies (black dashed and solid lines), and two probe pulse spectra for different pulse
durations (red and green solid lines). The corresponding compression of the probe
pulses in a storage medium are depicted in 2.7 (right). For the higher control Rabi
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Figure 2.7: (Left) EIT absorption spectra for two control Rabi frequencies (solid and dashed
black lines), and the frequency spectra of two rectangular probe pulses (red and green
solid lines). (Right) The corresponding probe pulses propagating through the EIT medium,
prepared with a strong (solids lines) and weak (dashed lines) control Rabi frequency.

frequency the probe pulses fit into the EIT spectrum (solid black line). However,
the probe pulse compression is not strong enough to compress the probe pulse
below the length of the storage medium. If the control Rabi frequency is reduced,
the pulse compression increases. Thus, the spatial condition is fulfilled better (see
dashed red and green lines in Figure 2.7 (right)). However, the corresponding EIT
window width is too small to fully cover the bandwidth of the probe pulses. With
an increase of the optical depth d the condition (Equation 2.34) can be fulfilled
better. The derivation of this basic condition for efficient light storage by EIT is
based on [84,85].

Optimal Spin Wave Generation for Maximum EIT Storage Efficiency

This section summarizes the generation of an optimal spin wave in an EIT medium.
We follow the arguments of Gorshkov et al. [81,82,86]. We derive the Heisenberg
equations of motions given in [82] from the equations of motion calculated for a
weak probe field from the Liouville-von-Neumann Equation 2.11 and the Maxwell-
wave equation. We assume 7,5 = 0, 6 = 0, i.e. two-photon resonance, p;; ~ 1,
and p;; = 0. We thus can write in a rotating frame:

P12 = %Qp + %QCPIS + iApPlz —Y12P12>

P13 = QP12 (2.35)
E/ = i%%ePlZ:

with the particle density o = N/V. Gorshkov considers a single-photon probe
field. We calculate the single-photon electric field to E = \/ (2fiw,)/(e4V) , yield-
ing a single-photon Rabi frequency of 2, = u,E/h = ,ulz\/(Zcop)/(heOV). For
simplification Gorshkov defines the single-photon Rabi frequency including a fac-

tor 1/2, yielding g = Q,/2 = u;y4/w,/(2ke,V). Further a normalized function
&(z,t) is used to describe the time-dependent shape of the input probe pulse. In
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order to use dimensionless variables we define:

P s Q ) oM
=, =—, —=g& ——>Q, E=—"—gé& (2.36)
=R PRTUR 2 TE 0 T

with the total atom number N. Using the dimensionless variables &, P, S, the
definition of g, and p, we can write the Heisenberg equations of motion as

(3, +cd,)&(z,t) = igvV/NP(z,t)
0,P(z,t) = —(y+iA)P(z,t)+igVN&(z,t)+iQ.(t —2z/c)S(z,t)

0,S(z,t) = iQ(t—z/c)P(z,t).

(2.37)

Here, the first equation describes the propagation of a probe field mode ampli-

tude & through a polarizable medium with the effective coupling constant g+/N.
The second and third equation describe the time-dependent change of the polar-
ization P(z,t) and the spin wave S(z, t). The polarization decays with y. We find
the source of the spin wave S(z, t) to be the polarization P(z, t). However, the spin
wave also depends on the applied control field Rabi frequency Q.. When the stor-
age is performed the normalized probe field mode & is mapped onto the spin wave
S(z,t). The efficiency of the storage process is given by n, = % _f OL |S(z, T)|?>dz, with
T the time when the storage process is finished. Here, S(z, T) gives the shape of the
spin wave in the medium after the storage process. The readout of the spin wave
can be achieved in two schemes. In the forward readout scheme the retrieved
probe field mode will propagate in the same direction as before. In contrast, in
the backward readout scheme, when the direction of the control field is changed,
the retrieved probe field mode will propagate opposite to the ing)ut probe field
mode. The pure retrieval efficiency can be calculated by n, = ¢ I |6(L, t)|2dt if

the spin wave S(z, t) has been normalized before retrieval. Without normalization
the total efficiency of the storage protocol can be calculated by ngr = n,n,. The
storage and retrieval in forward and backward readout scheme is depicted in Fig-
ure 2.8. Gorshkov et al. [81,82] suggest an iterative procedure to determine the

storage process forward readout backward readout

e N aYd )

Ent) SLE=2/0) f}(f—Z/c) S(z,T,) S(z,T,) Q(t—z/c)
-~

6l,leak(L: t)

&(L,t) &(L,t)

Figure 2.8: Storage process of a probe field & into a spin wave S. During an imperfect
storage a part of the probe pulse leaks through the storage medium (&}, ). The retrieval of
the spin wave can be performed in forward readout and backward readout scheme. Figure
modified from [82].
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Figure 2.9: Calculated optimal spin waves S;(z) for backward readout (left), and forward
readout (right) for different optical depth d. Figure modified from [82].

optimal spin wave, hence the optimal input probe pulse shape for a given control
pulse shape. As the readout of the spin wave can be described as a time reversed
storage process, the optimal spin wave is achieved if the signal pulse shape is iden-
tical to the input probe pulse shape. Thus, an iterative procedure using the signal
pulse shape as a new input probe pulse shape can be designed. After a few iter-
ations the pulse shapes converge, and the spin wave which is stored is optimal.
As an important result we find that the optimal spin wave S(z) only depends on
the optical depth d of the medium and is independent of any other parameters
such as Q, or A. The first experimental implementation of this iterative procedure
was performed by Novikova et al. [87, 88] to optimize the EIT-LS in Rb vapor.
Figure 2.9 shows the optimal spin wave
S(z) in a storage medium of normal-
ized length for different optical depths
d in backward readout (left) and for-
ward readout (right). Here, the sig-
nal pulse is read out to the left. The
optimal spin wave strongly depends
on the optical depth of the medium.
At low optical depth the optimal spin el T
wave is almost constant for both read- 30 100 150 200
out schemes. For high optical depth optical depth d

the optimal spin wave in the backward
readout becomes a linear function, and
tends to zero at the end of the storage
medium. In this way the probe (signal)
pulse propagation length through the
medium is minimized. In the forward
readout scheme the optimal spin wave converges towards a symmetric function for
high optical depth, as in this case either the probe input pulse or the signal pulse
has to propagate fully through the medium. The spin wave tends to zero at both
ends of the storage medium, minimizing the leakage. The maximum efficiency
of the EIT-LS protocol is achieved if an optimal spin wave is stored and retrieved
from the medium. As discussed, this process is optimal if the retrieval is a time

1
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Figure 2.10: Theoretical maximum efficiency
of the EIT-LS protocol ngr versus the optical
depth d in the forward readout (red dashed
line) and in backward readout scheme (solid
blue line) as calculated in [82].
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inversion of the storage process. In this optimal case the storage and retrieval effi-
ciencies are equal. Figure 2.10 shows the maximal EIT-LS protocol efficiency g
versus the optical depth d for forward readout (dashed red line) and backward
readout (solid blue line). Note the different definitions of the optical depth, here
d = aL, whereas in [81,82] the optical depth is d = 2aL. The maximal storage
efficiency increases with increasing optical depth. An ideal storage, i.e. 100% ef-
ficiency, can only be achieved in the limit of infinite optical depth. The maximal
storage efficiency in the forward readout scheme is slightly lower because it does
not correspond to full reversal of the storage process. Note that the description
given here is drastically shortened, and holds true only in the adiabatic limit, in
a system of collinear probe and control fields, and nearly degenerate metastable
states |1) and |3). In the case of a non-degeneracy between these states, as in
PrYSO, and a small angle between probe and control pulse, as in our experimen-
tal setup, an additional phase factor e ** is imprinted on the stored spin wave
S(z,T). A full description of weak adiabaticity, and non degenerate states can be
found in [82]. In the following section the necessity of a proper phase matching
of probe and control pulse is discussed in detail.

Phase Matching Condition

In the previous section we assumed (anti-)collinear probe and control pulses,
which  coupled a  A-system  with  degenerate  ground  states.
Thus, phase matching was intrinsically fulfilled, be-
cause probe and control pulses were applied with
the same frequency w. However, usually one can
not assume degenerate states, and a collinear setup.

For example, in the PrYSO crystal used in this Roend Koo

work, the embedded A-system features non de- ’ 4
generate ground states with a splitting of w3 =
21 - 10.191 MHz. In addition, the optical setup
uses an angle of ~ 1° between probe and control
beam. In this case the generated spin wave S(z) fea-

r

general scheme )

-

s k

4

p

S\
k forward readout
c,read

k

c,write

tures an additional phase factor e7**. The readout \ : J

process is optimal only if this phase factor is taken [ . backward readout |
into account, otherwise the readout efficiency isre- |y /3
duced [89] Phase matchmg ina general A-scheme
requires k kc’wme + kc,read k, = 0, with the wave
vectors of probe pulse, control write pulse, control . ) .
read pulse, and signal pulse respectively. We find Feie
for EIT-LS the wave vector K for the spin wave af-
ter the storage process to be K = k kc,wrlte Dur- * /

ing the reading, k, = ® + K, sead> has to be fulfilled. Figure 211: Phase matching
Figure 2.11 (top) depicts a general phase matching gschemes for light storage. Gen-
scheme._} Due to the different length of the wave eral scheme (top), forward read-
vectors k, and k. the phase matching is only ful- out (center) and backward
filled for specific angles between the wave vectors readout (bottom).

of probe, control write and control read. Thus, the
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signal wave vector k, points into a direction which does not correspond to any
wave vector ip, k'c’read, ?C,Write. This leads to a generally difficult detection of the sig-
nal pulse. The only simple case of phase matching is achieved for co-propagating
control write and read pulses, i.e. ﬁc’read = Ec,wme, see Figure 2.11 (center). Then
we find that the signal wave vector is equal to the probe wave vector, i.e. ES = Ep,
i.e. the signal pulse propagates into the same direction as the stored probe pulse.
We call this scheme forward readout. A possible backward readout scheme, with
an easily detectable signal pulse, is depicted in Figure 2.11 (bottom). Here, the
control read wave vector ic,read points opposite to the probe wave vector 7{}. This

results in a signal wave vector k, pointing opposite to the direction of the control
write wave vector %C,Write. However, the readout in this configuration is not opti-
mal, because of the phase mismatch k,, due to the non degenerate ground states.
We find, that in a A-system with non degenerate ground states, an optimal back-
ward readout configuration, reading the spin wave S(z) in a reversed direction, as
described by Gorshkov et al. [82], can not be achieved.

2.3.4 Limitations on the Efficiency due to the Storage Medium

In the previous section effects limiting the EIT-LS protocol efficiency, assuming
an ideal storage medium, were described. However, in a real storage medium
during the storage time AT the created spin wave, i.e. collective atomic coher-
ence, suffers due to decoherence. Thus, the storage is limited by the coherence
lifetime T,. In PrYSO a number of effects contribute to the decoherence, e.g. pop-
ulation relaxation, stochastic spin flips, and the inhomogeneous linewidth. The
population relaxation I' (compare with Section 2.1.2) in PrYSO is mainly given
by radiative decay and phononic interactions. In the ideal case the lifetime T,
of a coherence is limited by the natural linewidth, i.e. T, = 2T;,. However, in
most systems this can not be achieved, and additional decoherence effects (y")
further reduce the lifetime T, of the coherence. In PrYSO the main source of this
additional decoherence are stochastic yttrium spin flips in the host crystal. Since
the Pr ions interact with the surrounding yttrium ions via dipole-dipole interac-
tion, an yttrium spin flip changes the level structure of the nearby Pr ions (see
also Chapter 1). Especially the hyperfine structure is altered, i.e. the transition
frequencies between the hyperfine levels are slightly changed. Thus, a single co-
herence, present between two hyperfine levels in a Pr ion, experiences an ad hoc
change in its phase evolution, i.e. phase velocity. This effect can be understood
as temporally varying stochastic inhomogeneous broadening, also known as spec-
tral diffusion [48,49,66]. Thus, simple rephasing, as described in Chapter 5 can
not be applied. In addition, the Pr ions feature a state dependent, electric dipole
moment. Thus, a Pr ion, excited by an optical field, changes the transition fre-
quency of the surrounding Pr ions. This field induced transition frequency change
is called instantaneous spectral diffusion [67]. To minimize decoherence effects
due to spectral diffusion several techniques exist. All techniques rely on the idea
of decoupling the system from perturbations of the environment. First, dynamic
decoherence control (DDC) [90-93], a technique based on pulse trains applied
on a time scale shorter than the spectral diffusion correlation time, to minimize
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the effect of random phase changes. This technique is also applied in the present
work, compare with Chapter 6. Second, static techniques, which use strong 3D
static magnetic fields to reduce the effects of decoherence [21,53]. Recently in a
combination of both techniques, EIT-based light storage times of up to one minute
in PrYSO [22] and spin coherence times of six hours in Eu®":Y,SiO; [21] were
achieved.

2.4 Raman Heterodyne Detection in a A-System

In order to investigate composite and adiabatic techniques for rephasing of atomic
coherences, we create a coherence in the hyperfine transition | £1/2) <> | +£3/2)
of the ground state *H, of PrYSO. This is either done by the application of a
RF pulse to directly generate a coherence between the hyperfine ground states,
or optically using the EIT-LS protocol, described

in the previous Section 2.3.2. In order to ——r |2)
measure a coherence, induced by a RF pulse, YW

we use a technique based on coherent, stim- . _S> M
ulated Raman scattering [94, 95], called Ra- 3 &

man heterodyne detection (RHD). This tech- \“
nique is well established in REIDS spectroscopy OO! 5
[96,97]. The idea is to use an optical detec- ,* /51'3 A 13)

tion field to convert an RF coherence into a co- 3Qa = |'13 Sghlélr%%%%d
herent, scattered light field. Figure 2.12 shows

the detection realized in the hyperfine structure
of PrYSO. The states |1) and |3) correspond to
the hyperfine levels | +3/2) and | = 1/2) of the
ground state *H,. The state |2) corresponds to any hyperfine level of the excited
state 'D,. Let‘s assume a coherence p,; has already been prepared by an RF pulse.
Then a resonant detection (pump) field of frequency w, = w;, on the optical tran-
sition |1) «— |2) will be Raman scattered on the coherence p,;. In our system this
leads to a coherent, directed Stokes field with a frequency of w; = w, — w;3. In
general, the pump field can also couple off-resonant to the transition |2) < [3),
generating a weak Anti-Stokes field at a frequency w,; = w, + w;3. However, due
to the inhomogeneous broadening of the optical transition, there are ensembles
in the PrYSO crystal in which the pump field couples again resonant transitions,
i.e. w, = w,;. Thereby it generates a notable Anti-Stokes field. The intensity
of the (Anti-)Stokes field strongly depends on the optical coherence p,;. We can
calculate the Stokes field E, using the nonlinear Maxwell wave equation in slowly
varying envelope approximation 9E,/dz = iw,/(2ne,c)P and the time-dependent
polarization of the medium P,;(t) = 093 €xp (iew,t), with the particle number
density p and the transition dipole moment u,; to

L
2neyc

Figure 2.12: RHD scheme realized in
the hyperfine structure of PrYSO.

L,

E(t)= O iy3093 exp(iw;t). (2.38)

Here L is the length of the medium, ¢, the vacuum permittivity, n the refractive
index of the medium. The time evolution of the coherences and the populations
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in the A-system can be described using the Liouville-von-Neumann Equation 2.11
of six coupled differential equations [95]. Note that here optical pumping effects
are not taken into account. After a transformation into the pump field rotating
frame and applying the rotating wave approximation (RWA) the set of differen-
tial equations can be solved analytically [95]. In the case of a pump field with
Rabi frequency 2, and no RF field applied, the set of differential equations fur-
ther simplifies. The equation of motion for the optical coherence p,;, and the RF
coherence p,5 can thus be written as

*

: i : Q, : if. p
P23 =3 (Ap +1Y93) Po3 + — P and p3 = 7 | 13P1s + — P (2.39)

with the detuning of the pump field A,, and the decoherence rates y,; and ;.
Assuming a resonant pump field (A, = 0) and neglecting decoherence effects the
optical coherence yields

(Y i 9 40
Pa3 = Esm(?t)l)w ~ E?Pwt- (2.40)
In PrYSO the assumptions above are valid, as long as the duration t of optical
pump field is shorter than the optical decoherence time, i.e. ~ 100 us. Also, the
Rabi frequency of the pump field should be small such that Q,t < 7. In this case
the optical coherence p,; depends linearly on the RF ground state coherence p,;.
The coherence p,; acts as a source of the Stokes field E;, which can be understood
as a frequency mixing process. The Stokes field E, propagates collinear with the
readout pump field E,. This results in a Raman interference signal

1 1
Inp o< = |E, + E|" = = | |E, >+ |E,)* +E,E* + E,E" |. (2.41)
2 2|~ ~~ ‘,_/p

a b Cc

The terms a and b add a constant offset to the signal. The interference term c
oscillates with the beat frequency |w, — w;|. In the case of a resonant pump field
(w, = wy,) the beat note oscillates with the hyperfine transition frequency w,.
The magnitude R of the interference term c is proportional to the Stokes field E,,
which depends linearly on the coherence p,5. In order to measure the magnitude
R of the beat note, Iy, is demodulated with a demodulation frequency wp = w3.
Thus, the magnitude R, linearly proportional to the coherence amplitude |p,5|, and
a phase ¢ proportional to the coherence phase ¢,5 is produced. See [95] for a full
description taking into account arbitrary fields and coherences between all levels.
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Chapter 3

Experimental Setup

In the previous chapters the theoretical background on EIT-based light storage
(Chapter 2) in a Pr®*:Y,SiO; crystal (Chapter 1.1) were described. In this chapter
a very general experimental setup for conducting light matter interaction exper-
iments in PrYSO is introduced. This setup can be adapted to match the require-
ments of specific experimental tasks, i.e. EIT-based light storage, coherent two
level interactions (optical and RF) and experiments on dynamic decoherence con-
trol (DDC). In the following the generation of the required laser radiation, the
optical setup, the radio-frequency (RF) magnetic field setup and techniques for
signal detection are described.

3.1 Optical Setup

The general experimental setup used in this work is depicted in Figure 3.1. The
laser radiation with a wavelength of 605.98 nm is provided by an all solid state
laser system based on an optical parametric oscillator (OPO) with an additional
intra-cavity sum frequency generation (SFG) [58,98]. This OPO-SFG cavity unit’
is pumped by a fiber amplified? seed laser system® and frequency stabilized by
an home built Pound-Drever-Hall [99] stabilization unit. In this configuration
the laser system provides tunable visible cw radiation between A = 605 nm and
A = 616 nm with an output power of P > 1 W. A frequency jitter of below
Av < 100 kHz on a time scale of 100 ms was determined by using a commercial
linewidth measurement system” based on a low finesse Fabry-Perot cavity. The
laser radiation is guided from the OPO-SFG system to the optical table with the
experimental setup using a single mode optical fiber. The available power after the
fiber is approx. 600 mW with a Gaussian spatial profile. In order to prevent unsta-
ble operation of the OPO-SFG system due to back reflections from the fiber into
the OPO-SFG system, angled ends are used. The polarization is adjusted linearly
by a combination of fiber polarization controller, quarter-wave plate and polar-
izing beam splitter cube (PBSC). The polarization after the single mode fiber is
chosen circular, by adjusting the fiber polarization controller. Therefore, internal
back reflexions from the fiber end, propagating backwards into the direction of the
OPO-SFG system, exhibit in total a change of 90° in linear polarization, and thus

! Aculight Argos Model 2400 Sf-15, Lockheed Martin
2YAR-15K-1064-LP-SE, IPG Photonics

3Koheras AdjustiK Y10 PM PztM, NKT Photonics
“EagleEye, Sirah
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Figure 3.1: Schematic experimental setup used in this work, consisting of the laser source,
the optical setup, the PrYSO crystal in the cryostat and the electronic setup. The optical
setup is either used with a flat-top spatial probe beam shape (green configuration) and the
smaller control beam diameter, or with a Gaussian spatial probe beam shape (red configu-
ration) and a larger control beam diameter.

can be coupled out before entering the laser system using a PBSC. The circular
polarization on the experimental table after the single mode fiber is rotated back
into linear polarization by the quarter-wave plate. The system can be adjusted,
using the fiber polarization controller only, by minimizing the s-polarization out-
put of the PBSC on the experiments optical table. Afterwards the laser radiation
is split, by another PBSC into a weak probe beam (10 %) and a strong control
beam (90 %). Each beam is guided through a setup of an acousto-optic modula-
tor’ (AOM) in double-pass configuration [100] to enable frequency shifting and
amplitude modulation. The center frequency of the AOMs is 80 MHz, and they fea-
ture a maximal frequency modulation bandwidth of £25 MHz. Thus, it is possible
to generate pulses with additional relative frequency shifts from the monochro-
matic, cw laser radiation. The AOMs are controlled using RF-DDS (Direct Digital
Synthesis) drivers. The AOM of the probe beam line is driven by a RF-DDS driver®
with USB frequency control and external analog amplitude modulation driven by
a function generator’. For the AOM of the control beam line a highly flexible RF-
DDS driver®, controlled by a 10 MHz digital IO card® for direct streaming of most

SBRI-TEF-80-50-.606

6AODS 20160-1, Crystal Technology
733220A, Agilent Technologies
8DDSPA-B8b23b-0, AA opto-electronic
°NI PCle-6535, National Instruments
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complex frequency and amplitude waveforms is used [101]. The double-pass con-
figuration of the AOMs prevents beam walkoff due to different AOM frequency
shifts and doubles the frequency bandwidth to 100 MHz. The maximum power
available at the PrYSO crystal is P, ~ 280 mW for the control beam and P, ~# 1 mW
for the probe beam. In order to ensure reliable performance of the AOMs in both
beam lines the optical power is calibrated with respect to the full range of RF driv-
ing frequencies and RF amplitudes. Thus, reproducible experimental conditions
for every measurement are guaranteed and any non-linearities of the AOM or RF-
DDS drivers are corrected. Depending on the performed experiments the probe
beam is used either with a flat-top or Gaussian spatial beam profile. The flat-top
beam profile is generated by a 600 um pinhole and mapped into the crystal us-
ing a 4f-configuration telescope'?, resulting in a diameter of d, ~ 150 um. The
Gaussian beam profile is first adjusted by a telescope and then focused by L2 (here
fi2 =150 mm) to a FWHM diameter of 200 um x 140 um into the crystal. In front
of the cryostat a partially reflective mirror M1 (R = 70 %) is placed to detect the
input probe beam power on the photo diode PD3''. The control beam passes the
crystal collimated, with its diameter adjusted by two telescope systems. The first
telescope system, with lenses L3 and L4 is removable. The second one is fixed, with
L5 (fis = 100 mm) and L6 (fx = 150 mm). Thus, it can be chosen between two
different Gaussian FWHM diameters of 775 um x 740 um and 390 yum x 370 ym.
The peak Rabi frequencies provided by this setup are: Q, ~ 27 - (40 — 250) kHz
for the probe beam and Q, ~ 27 - (0.1 — 1) MHz for the control beam. However,
these values strongly depend on the actual beam diameters and the driven hyper-
fine transition, see also the transition moments of PrYSO in Table 1.1. The two
beam lines are overlapped counter propagating at a small angle of about 1° inside
the crystal. Due to the larger control beam diameter compared to the probe beam
diameter, the power of the control beam, i.e. its Rabi frequency, can be assumed
almost constant over the diameter of the probe beam. After passing the medium
the control beam is either blocked, or detected by a photo diode PD1'%. The probe
beam is collimated by lens L6 and guided through an additional gating AOM to
protect photo diode PD2' from unwanted strong signals, e.g. reflexions of the
control beam from mirrors and lenses.

3.2 Crystal and Cryostat Setup

The praseodymium doped yttrium-orthosilicate crystal'* is fixed in a mount and
cooled to cryogenic temperatures below 4 K in a continuous flow cryostat'® to
suppress phononic excitations. A vacuum system is attached to the cryostat to
evacuate the system to pressures of ~ 10~ mbar before cool down. The cryostat
windows are anti-reflection coated. The crystal has a rather low dopant concen-

10f 1 =400 mm and f;, = 100 mm
UPDA10A-EC, Thorlabs
12PDA10A-EC, Thorlabs
132051-FS, New Focus

14Scientific Materials

158T-100, Janis
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Figure 3.2: (a) Exploded-view drawing of the crystal mount with the copper base plate (1).
The mounts to fix the crystal (2) and the RF coils system (3 and 4) are made of PEEK material
to reduce eddy currents. Only one side of the crystal is connected to the copper base plate
to achieve sufficient thermal contact to the cold finger of the cryostat. (b) View into the
direction of the laser beams with the crystal placed in the center. (c) View perpendicular
to the laser beam directions, with the RF coils closely attached to the crystal.

tration, i.e. only 0.05 at.% of the yttrium ions are replaced by praseodymium ions.
Its dimensions are 5 x 5 x 3 mm. The optical depth in single pass is d ~ 6. Also
the crystal surfaces are anti-reflection coated. We use different crystal mounts, for
simple experiments [60,102], for experiments involving static magnetic fields [22]
and high power RF magnetic fields, described in the following section.

3.3 Radio-frequency Magnetic Field System and Mounts

In addition to the laser radiation to couple the optical transitions, radio-frequency
(RF) fields are required, in order to directly couple the hyperfine transitions within
the ground state of PrYSO. Such a RF magnetic field system enables the ap-
plication of arbitrary RF pulses, to generate and manipulate atomic coherence
and population distributions between the hyperfine levels. For most of the RF
pulse experiments realized in this work the hyperfine ground state transition
| £1/2) <> | £3/2) is used. Thus, for a strong coupling in the diabatic regime,
of the full inhomogeneous broadening of the transition, RF fields with Rabi fre-
quencies Qg > T,;,m ~ 30 kHz and of angular frequencies of w = 27-10.24+2 MHz
are required. The RF magnetic fields are produced by RF coils attached close to
the crystal inside the cryostat. Two different coil systems have been used in this
work. In the first coil system (#1) (see also [58,60]) each RF coil consists of
7 windings of insulated copper wire with a diameter of 200 um. The diameter
of each coil is d = 5 mm, the length is [ ~ 2 mm and the coils are separated
by 3.4 mm. Most parts of this system are built from copper. Thus, high frequency
fields will induce eddy currents in the copper parts of the mount, which will reduce
the effective magnetic field, and thereby limit the maximum Rabi frequency of the
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system. Furthermore these strong eddy currents represent an additional thermal
energy source, which can become larger than the cooling power of the cryostat,
and thus heat up the PrYSO crystal to temperatures > 5 K. In order to generate
higher Rabi frequencies, a second coils system (#2) was developed, see Figure 3.2.
It consists of 11 windings of insulated copper wire with a diameter of 200 um. The
coil dimensions are slightly larger than of coil system (#1). The coil diameter is
d = 5.3 mm, the coil length is [ = 2.2 mm and the coils separation is 3.6 mm. Most
parts of this system are built from polyether ether ketone (PEEK), to reduce the
formation of eddy currents. Both coil systems are driven with RF waves, initially
generated by an arbitrary waveform generator'®. Depending on the experiment,
this AWG produces either a continuous single frequency sinusoidal signal or com-
plex pulse sequences with full control over frequency, amplitude and phase with
a sampling rate of 1.2 GS/s. The continuous sinusoidal signal is gated by an RF
switch!” to produce RF pulses of any desired duration. The RF switch is controlled
with an TTL-I/O card'®. The complex pulse sequences bypass the RF switch. The
RF signals are then amplified by an 10W-RF-amplifier’* or 30W-RF-amplifier*® and
afterwards sent via an impedance matching circuit to the coils in the cryostat.
An impedance matching circuit is necessary
to match the frequency dependent complex
impedance of the coil system Zzz = R+ i(wL —
—) to the impedance of the RF amplifier Zgmp &
50Q. Otherwise, large parts of the RF wave
would be reflected back from the coils into the
RF amplifier and only small magnetic fields
would be generated at the coils. Here, the

impedance matching circuit consists of two tun- — \_/
able capacitors, one parallel and one in series

to the RF coils. The idea is to use a tuning Figure 3.3: Single impedance match-
capacitor C; in parallel to the RF coils to ad- ing circuit with tunable capaci-
just the resonance frequency of the circuit and tors Cr and Cy. The complex
a matching capacitor C,, to adjust the imagi- impedance of RF coils is matched to
nary part of the impedance. The adjustment of the 50% of the RF amplifier.

the circuit to the desired driving frequency of

w ~ 21 - 10.2 MHz is monitored with a vector network analysis tool?!. This single
frequency impedance matching allows to couple the amplifiers with a return loss
of 40 dB to the coils, i.e. more than 99 % of the input RF power is transferred
to the coils. More details on single-frequency impedance matching and a more
general introduction can be found in [103]. With the coil system #1 and the 10W
amplifier the maximum Rabi frequency is Qgp ~ 27 - 140 kHz. The coil system #2
with the 30W amplifier produces a maximal Rabi frequency of Qg ~ 27 - 340 kHz.

vrr = 10.2 MHz
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3.4 Detection of Light Storage Signals

In the case of EIT-based light storage, a input probe pulse, generated by the probe
beam line, is stored. A partially reflective mirror M1 (R = 70 %) and a photo diode
PD3?? are used to monitor the input pulse energy. In forward readout configu-
ration a retrieved signal pulse leaves the crystal, following the probe beam line,
into the direction of the photo diode PD2. This photo diode records the time re-
solved shape of the retrieved signal pulse, which is then integrated using a boxcar
integrator?®. In parallel input probe pulse and signal pulse can be recorded by an
oscilloscope®*. All signals are acquired and integrated by a computer using a data
acquisition card®® with a LabVIEW software.

3.5 Raman Heterodyne Detection

In order to detect a coherence created by an RF magnetic field pulse, we use a Ra-
man heterodyne detection (RHD) scheme which is described in detail in Section
2.4. The control beam is used to read the RF induced coherence by stimulated Ra-
man scattering. Thus the initial control beam with a frequency w, and a scattered
Stokes field with a frequency w; = w, — w3 = w,; interfere and can be detected
using photo diode PD1. To measure the coherence amplitude |p,5| and phase ¢,
the signal of the photo diode is demodulated using a lock-in amplifier®®, with a
local oscillator frequency of w;5. Thus, a magnitude R = vX2+Y2 o< |p15]| and a
phase signal 6 = tan"}(Y /X) o< ¢,5 can be measured. These signals are acquired
by the computer with a data acquisition card®” by a LabVIEW software.

Lock-in amplifier ®

o0 060 0000 (X
Mixer Low pass _
R=VX2+Y2 o< |pyy]
photo 0 =tan ! (Y/X) o< §y3
diode
e 992!—. 13) Y a——S W\
4 pl% ¢ RF induced
—ﬁg—‘ | 1) coherence Phase shifter Local oscillator

Figure 3.4: Detection of a RF pulse induced coherence by stimulated Raman scattering. The
signal of the photo diode is demodulated by a lock-in amplifier which returns the coherence
amplitude |p;3| and phase ¢ 5. Figure adopted from [58].
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Chapter 4

Optimization of the EIT Light Storage Efficiency

The efficient storage of light is of major importance for the realization of a future
realistic quantum information storage device [5,7]. In recent years considerable
efforts on the research of potentially highly efficient quantum memories have been
made. Different combinations of storage media, i.e. REIDS, hot atomic gases,
cold atomic clouds, and storage protocols, i.e. atomic frequency combs (AFC),
gradient echo memories (GEM) and EIT-based memories, have been investigated
in the regime of classical light pulses as well as in the single photon regime. So
far, the highest storage efficiency was determined in a hot atomic gas using the
GEM protocol by Hosseini et al. [10]. A storage efficiency of about 87 % was
achieved. Regarding the class of REIDS memories, classical light was stored in
a PrYSO crystal using the GEM protocol with an efficiency of 69 % by Hedges et
al. [9]. In the few and single photon regime an efficiency of about 25 % was
achieved using an PrYSO crystal in combination with the AFC protocol [104]. The
largest efficiency of an EIT-based light storage protocol was accomplished by Chen
et al. [89] in a cloud of cold rubidium atoms in a magneto optical trap, reaching
an efficiency of 71 % in forward readout configuration and 78 % in backward
readout. However, so far, combinations of EIT-based light storage in REIDS mostly
focused on the prolongation of the storage time [22,97,105]. Thus, the storage
efficiencies obtained in these experiments have been rather low, i.e. a few % only.

In the following chapter we combine different techniques to optimize and in-
crease the EIT light storage efficiency in the PrYSO crystal. As described in Chapter
2 the theoretical efficiency limit of the EIT light storage protocol is set by the opti-
cal depth d. Most rare-earth ion-doped solids in quantum optics, like PrYSO, fea-
ture rather low dopant concentrations to reduce stress induced linewidth broad-
ening mechanisms, which would result in a faster decoherence (see also Chapter
1). Thus, typically optical depths of such media are d < 10.

In the following section an optimized preparation of the storage medium for
EIT light storage is described. We apply this preparation for EIT-based light stor-
age. Then, we optimize the probe pulse duration and control Rabi frequency to
achieve an optimal storage in our PrYSO crystal with a rather low optical depth of
about 6. We further describe the experimental realization of a pulse shaping algo-
rithm, as introduced in Section 2.3.3 to optimize the probe pulse shape. Different
approaches to increase the optical depth of a storage medium are discussed. We
introduce a ring-type optical setup to increase the effective optical depth of our
PrYSO crystal. This setup also allows us to choose the effective optical depth.
Thus, we perform the optimization of the EIT light storage for different effective
optical depth of the PrYSO crystal.
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4.1 Preparation of a A-System for EIT Light Storage

We introduced in Chapter 1 the complex spectroscopic structure of rare-earth ion-
doped crystals. In particular, we found the inhomogeneous broadening of the
optical transition *H, «—'D, in PrYSO of several GHz, to be much larger than the
splitting of the hyperfine transitions, see Section 1.2. Therefore a monochromatic
laser beam couples all nine possible transitions within different ensembles of the
inhomogeneous broadening. However, we also saw that EIT-based light storage
requires a defined initial situation of a A-system with the population in one of the
ground states (see Section 2.3.2). Thus, a preparation of the storage medium is
necessary before the EIT-based light storage protocol can be applied. We prepare
multiple identical A-systems, to maximize the optical depth, with a preparation
scheme based on optical pumping [106]. This preparation is a slightly modified
version of schemes described in [64,107]. A preparation due to optical pumping
is possible, as in PrYSO the population lifetime of the excited hyperfine states
(T} = 164 us) is much smaller than the relaxation time between the ground states
(T, ~ sec), compare with Chapter 1. Therefore, efficient optical pumping within a
few milliseconds can be achieved.

The preparation sequence consisting of three steps is shown in Figure 4.1. The
control beam, compare with the experimental setup described in Chapter 3, is used
for the preparation. The exact values of the optical pumping Rabi frequencies and
durations of the control beam do not affect the quality of the preparation, as long
as the transitions are driven strongly and much longer than the population life-
time of the excited state hyperfine levels. Thus, in the following only the relative
pumping frequencies of the control beam are given. Before the first preparation
step the population is equally distributed within the hyperfine levels of the ground
state *H,. First, a broad spectral hole is prepared by slowly scanning the frequency
of the control beam within a relative frequency range of 0— 16 MHz during a time
of ~ 6 — 15 milliseconds. This step is repeated several times to prepare a fully
transparent spectral hole within the inhomogeneous optical line, as it is depicted
in the absorption spectrum (black line) of Figure 4.1. We call this spectral pit.
This spectral pit is partially repopulated by applying a repump pulse, outside the
spectral pit, at a fixed relative frequency of 29.3 MHz. The frequency is chosen
such that the repump pulse couples the populated ground state to the three dif-
ferent excited states of three different ensembles. Thus, the relative frequency
difference of the repumped ensembles correspond to the hyperfine splitting of the
excited state. The absorption spectrum after the repump pulse is depicted in Fig-
ure 4.1 (blue line). Several absorption lines are prepared and the population is
redistributed into two of the three hyperfine ground states. Thus, in order to pre-
pare A-systems with population in only one ground state, as necessary for EIT, an
additional cleaner pulse is applied at a relative frequency of 1.8 MHz. This pulse
empties state *H,| + %) and for ensembles €, and e, the population mainly relaxes
into *H,| + 3). However, ensemble €, features a rather unfavorable combination
of relative oscillator strengths, which is why most of the population relaxes into
SH,| £ 2). The absorption spectrum after the cleaner pulse is depicted by a red line
in Figure 4.1.
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Figure 4.1: Pulse sequence to prepare three isolated A-systems within the inhomogeneous
broadening of the optical transition of PrYSO. (top left) Optical preparation sequence. (top
right) Absorption spectra after each preparation step. (bottom) Effective optical pumping
processes for each step of the preparation sequence. The population (black circles) decays
approximately with respect to the relative oscillator strength (gray arrows).

Using this preparation scheme, we prepared three isolated A-systems, each
with a different hyperfine excited state, which can be simultaneously coupled by
a monochromatic control pulse on an empty transition |3) «— |2), as required for
EIT (see Figure 4.1). The probe pulse couples a populated transition in ensembles
€, and €5, while in the case of ensemble ¢, the transition is only weakly populated.
Taking into account the relative oscillator strength for each A-system, one finds an
optical depth for the probe beam of 97 %, compared to the optical depth of the
crystal without any preparation. This is a drastic increase compared to previous
preparation schemes [107] with only one ensemble, where only 59 % of the optical
depth of the crystal was prepared in a single A-system.

4.2 Experimental Observation of EIT in PrYSO

We prepare the PrYSO crystal as described in the previous Section 4.1. If we
apply a strong resonant control pulse on the optical transition |3) < |2) the ab-
sorption for the probe field vanishes, on resonance with the |1) « |2) transition.
In order to measure the total EIT feature we simultaneously apply a weak probe
pulse (P, ~ 100 uW, 7, = 20us), whose frequency is gradually scanned across the
two photon resonance of the A-systems by a probe detuning A,. We detect the
transmitted fraction of the probe pulse by using photo diode PD2 (compare with
Chapter 3) and calculate the corresponding optical depth d. Figure 4.2 shows the
optical depth d versus the probe detuning A, for different control powers P,. If
no control pulse (P, = 0 mW) is applied, we measure the expected single absorp-
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Figure 4.2: (left) Optical depth d, i.e. absorption spectra, versus the relative probe detuning
A, and control power P.. (right) Cuts at different control powers P.. We find a single
absorption line if P, = 0 mW, and EIT for P, > 0 mW. The EIT window width increases for
higher control pulse powers. Full transparency is achieved at control powers P. > 40 mW.

tion line. With an increase of the control power a splitting occurs. We achieve
full transparency at control powers larger 40 mW. At a control power of 250 mW
the splitting of the two peaks of the EIT feature is about 450 kHz, which corre-
sponds to a control Rabi frequency of Q. ~ 27 - 450 kHz. We find the two photon
resonance exactly at zero probe pulse detuning, if v, — v, = 10.19 MHz, i.e. the
transition frequency of the ground state hyperfine | + 3/2) «— | + 1/2) transition.
The slight asymmetry of the EIT spec-

tra, i.e. the asymmetric splitting espe- = 59 T T T T T
cially at high control powers, might be é 400k
due to a small detuning of the control %
pulse from the transition frequency of < [
the *H,|+3) «>! D,|+%) transitions, i.e. £ 200}
A. # 0 kHz. A comparison with Figure =
¢ ; S 100}
2.5 shows that already small detunings 0
A, lead to an asymmetric EIT feature. § ofs . . . . .
o 0 50 100 150 200 250

We determined in Chapter 2.3.1, the
peak splitting A, to be proportional
to the control Rabi frequency ., and
thus proportional to the square root of F‘igure 4.3: Splitting of the EIT absorption
the control power \/Fc The experi- line Apeqx Versus the control pu.lse power P..
mentally observed peak spitting is ex- Bla‘ck squ.ares repr(?sent experimental data.
tracted from Figure 4.2 and plotted in "Sohc? red line dep1?t1ng a square root depend-
Figure 4.3 versus the control power P.. ing fit to the experimental data.

We find that the experimental data follows the expected square root behavior. We
saw that we can achieve EIT in our PrYSO crystal and that we can precisely control
the EIT width by the control pulse power. In the following section we will use this
control for optimal storage and retrieval of a probe pulse of given duration as an
atomic coherent superposition of states in the PrYSO crystal.

control power P_[mW]
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4.3 Determination of the Light Storage Efficiency

In general, the pulse energies of the probe input pulse E;, and of the retrieved
signal pulse E,, have to be measured in order to determine the light storage effi-
ciency. We detect the input probe pulse and the signal pulse using standard photo
diodes (see also Chapter 3). Thus, the time-integrated photo diode signals are
proportional to the pulse energies. The photo diode signals are either integrated
using a boxcar integrator or recorded using an oscilloscope and evaluated by a
computer. There have been two experimental methods implemented in our opti-
cal setup to determine the EIT light storage efficiency. These methods are designed
to measure the intrinsic EIT light storage efficiency, neglecting the losses due to
the optical setup.

Method #1 uses the photo diodes PD2 and PD3 as well as an oscilloscope to
measure the light storage efficiency. PD2 is used to detect the signal pulse, while
PD3 detects a fraction of the probe input pulse. Both photo diode signals are
acquired by an oscilloscope and integrated by the computer. In order to calculate
a precise light storage efficiency, a calibration of the photo diodes, taking into
account the transmission of the optical setup, is required. This calibration has to be
done before any light storage experiment is conducted. However, any fluctuations
and changes in the transmission through the optical setup after the calibration,
are not taken into account by this method, and thus will result in a fluctuation of
the measured storage efficiency. Therefore, averaging over several identical light
storage experiments is necessary to determine a precise average storage efficiency.
The fluctuation of the light storage efficiency can give an insight on the stability of
the optical setup. With this method the storage efficiency of a single light storage
process can not be measured. This method is rather slow and thus usually only
used to determine the storage efficiency for constant experimental parameters.

Method #2 uses photo diode PD2 and the boxcar integrator or an oscilloscope.
The input probe pulse energy is measured ~ 15 ms prior to the actual light storage
experiment, by sending a copy of the probe input pulse through the optical setup
and the transparent storage medium directly after the preparation of the spectral
pit. Thus, the recorded boxcar signal, or integrated signal from the oscilloscope,
is proportional to the input probe pulse energy. A second identical probe input
pulse is then used to perform the actual light storage experiment. Afterwards, the
signal pulse energy is also measured using either the boxcar integrator or the os-
cilloscope. As the input pulse energy and signal pulse energy are measured via the
same beam path and optical setup, losses are automatically canceled. However,
variations in losses and fluctuations in pulse energies between the input probe en-
ergy measurement and the actual light storage experiment, i.e. within 15 ms, can
not be taken into account by this method. Nevertheless, this method allows an on
time determination of the light storage efficiency.

Depending on the experimental requirements, the proper method for deter-
mining the light storage efficiency is chosen. Usually method #2 is used if exper-
imental parameters are scanned and the absolute light storage efficiency is not of
major importance. In contrast, method #1 is applied whenever precise average
light storage efficiencies have to be determined.
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4.4 Optimization of the Light Storage Efficiency

In Section 2.3.3 it was shown that for efficient EIT light storage the combination of
probe pulse duration 7, and control Rabi frequency Q. has to be chosen carefully.
In particular, Q7 - 7, has to match Equation 2.34. In this section we introduce a
measurement, to adjust the experimental parameters Q. and 7, in order to fulfill
Equation 2.34, and thus to achieve optimal light storage, i.e. maximal light storage
efficiency. We use the optical setup as it is described in Chapter 3, with the larger of
two possible control beam diameters and a Gaussian spatial probe beam profile.
The storage medium is prepared as described in Section 4.1. A probe pulse of
rectangular temporal shape and duration 7, is stored. We chose a storage time
of AT = 2 us, in this way all dephasing and decoherence effects, occurring in
PrYSO on time scales > 10 us, can be neglected. We thus measure an efficiency
1 = ng, the efficiency of the EIT light storage protocol, as it is defined by Equation
2.29. We determine the storage efficiency by method #2, as it was introduced in
the previous section. Since the control power P, is proportional to 2, we can
measure the light storage efficiency versus the control power P, and the probe
pulse duration 7, to find combinations fulfilling Equation 2.34, thus maximizing
the storage efficiency.
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Figure 4.4: Efficiency 7 versus probe pulse duration 7, and control power P, i.e. the control
Rabi frequency (2., respectively. The control Rabi frequencies given here are approximate
values, extracted from the experimental results on the EIT peak splitting Ay, of the previ-
ous section, see Figure 4.3.

Figure 4.4 depicts the experimentally determined light storage efficiency 7
versus the probe pulse duration 7, and the control power P, i.e. the con-
trol Rabi frequency Q2. A constant storage efficiency is achieved for combina-
tions of P.t, = const., following hyperbolas as expected from Equation 2.34.
We also find maximal storage efficiency following the optimal hyperbola with
Q?- 7, ~ 17-10° s™'. The maximal storage efficiency is n = 33.8 % at a probe
pulse duration of 5.5 us and a control power of 85 mW.
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The storage efficiency strongly reduces for combinations of P, and 7, next to
this optimal hyperbola. Combinations of large probe pulse duration and strong
control powers lead to an inefficient storage, as large fractions of the probe pulse
leak out of the storage medium, due to a insufficient compression of the probe
pulse. On the other hand, also very short probe pulse durations result in an in-
efficient storage, because of a spectral EIT window which is not broad enough to
cover the spectral width of the probe pulse, i.e. Ty < T,,.

Also we find, that the efficiency decreases at the edges of the hyperbola, for
control powers larger 160 mW and smaller 40 mW with their corresponding opti-
mal probe pulse durations. For very strong control powers and short probe pulse
durations the storage process is no longer sufficiently adiabatic. The system is
therefore driven partially via the bright states, this leads to residual absorption
during the storage and readout process, and thus reduces the storage efficiency.
The effect of weak adiabaticity on the storage process and the storage efficiency
is also described theoretically in Gorshkov et al. [82]. For small control powers a
reduced storage efficiency can be explained by a residual absorption in the center
of the EIT window. As described in Section 2.3.1, an inhomogeneous broadening
I}; between the ground states of the A-system leads to residual absorption. We
achieve full transparency only if Q > I};I},. A comparison with Figure 4.2 con-
firms this explanation, as we measure full transparency only for control powers
larger 40 mW.

Note that the pulse shaping algorithm for optimal spin wave storage, intro-
duced in Section 2.3.3, to optimize the probe pulse shape is not applied here.
Nevertheless, we obtain a storage efficiency in the order of 30 % for a large range
of combinations of probe pulse durations and control powers.

4.5 Concepts to Increase the Optical Depth

The maximal storage efficiency in the previous section was only in the order of
30 %. We have seen in Chapter 2 that the theoretical limit for the efficiency of the
EIT light storage protocol is set by the optical depth d. In previous work different
techniques to increase the optical depth were investigated. For example, a higher
doped PrYSO crystal, with a dopant concentration of 1%, was investigated. It was
expected, that the larger number of praseodymium ions, would lead to an increase
of the absorption coefficient a, and thus to a higher optical depth d, as d = aL.
However, it was found that the higher dopant concentration leads to an increase of
the optical inhomogeneous linewidth by a factor of 40. Moreover, the dephasing
and decoherence time had been reduced by a factor of ~ 5 [60]. These spectro-
scopic changes can be attributed to the different atomic radii of the praseodymium
and yttrium ions, which leads to increased stress in the PrYSO crystal matrix for
higher dopant concentrations. However, there are rare-earth materials especially
designed for high dopant concentrations, with matched atomic radii of the dopant
material and the host crystal [61].

Another way to achieve higher optical depth d could be to increase the length
L of the storage medium. However, in our experimental setup a longer crystal
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leads to severe technical problems. It becomes much more difficult to intersect
the control beam and probe beam perfectly along the total length of the crystal.
Furthermore, it will be almost impossible to achieve the homogeneous static and
RF magnetic fields required to obtain long storage times. Therefore, we introduce
here a different technique which allows us to increase the effective length, and
therefore the effective optical depth of the crystal.

The simplest way to increase the effective length, i.e. the effective optical
depth, is to reflect the probe beam after passing through the crystal onto itself.
Thereby, the probe pulse propagates through the crystal a second time and the
effective optical depth is doubled. In general, with N the number of passes through
the storage medium, we write for the effective length of the medium L. = NL,
and for the effective optical depth dy = d,N, with d, the optical depth passing the
crystal once. In the following, a highly flexible concept for increasing the optical
depth of the crystal is described.

4.5.1 Multipass Geometry to Increase the Optical Depth

We discussed in the previous section different ideas to increase the optical depth
of a storage medium. Here, we follow the idea of increasing the optical depth
by passing the probe pulse several times through our PrYSO crystal. As such a
multipass geometry has to be embedded into an already existing optical setup,
several constraints and criteria have to be taken into account.

First, techniques to prolong the storage time by RF and static magnetic fields
should still be possible. In order to achieve these homogeneous magnetic fields,
the storage process has to take place in a rather small interaction region. This
interaction region is defined by the control beam. We can minimize this region by
guiding the control beam through the crystal only once. Thus, the multipass setup
has to be constructed for the probe beam only.

Second, of course, the setup should allow a rather large number N of probe
beam passes through the crystal to enable a high optical depth. In addition, it
should be flexible enough, in a way that the number of passes N can be changed
easily. This would allow us to determine the experimentally maximum storage ef-
ficiency for different optical depths. The setup further has to match the small aper-
ture and tight geometrical constraints of the crystal and cryostat with its closely
attached radio-frequency and optical setup. The maximum acceptance angle of
the cryostat setup is 12° with respect to the optical axis. Thus, all beams have
to propagate at rather small angles through the optical setup. For optimal stor-
age, the control Rabi frequency should be as constant as possible throughout the
probe beam profile. Therefore, the probe beam diameter is chosen much smaller
than the control beam diameter. Moreover, the probe beam diameter has to be
maintained constant for all passes through the multipass setup.

We have developed and implemented such a multipass setup for the probe
beam, which is matched to the small aperture and experimental constraints, and in
addition permits systematic measurements for different optical depth by variation
of the number of passes N by simple adjustment of a single optical element.
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Figure 4.5: Schematic of the multipass setup for a variable number of passes of the probe
beam through the PrYSO crystal in a cryostat, with reflective prisms P1, P2, mirrors M2,
M3, M4, and two telescope systems in 4f-configurations. This setup is added to the existing
optical setup shown in Figure 3.1. Here, the beam path for N = 6 passes is depicted as an
example. A lateral shift of prism P1 in x direction changes the spatial distance Ax between
two passes and the total number of round-trips is varied by shifting mirror M2 in z direction.
Inset shows the reflections on prism P2 for m = 9.

Figure 4.5 shows a schematic of the relevant parts of the multipass setup, de-
picted for N = 6 passes through the PrYSO crystal. The multipass setup was added
to the general optical setup as depicted in Figure 3.1. We used the general optical
setup in red configuration, compare with Figure 3.1, with a larger control beam
diameter and a Gaussian probe beam profile, to achieve a constant control Rabi
frequency throughout the probe beam. Compared to the flat-top profile, the Gaus-
sian probe profile has the advantage that it can be easily mapped by relay imaging,
without taking care of a large diffraction pattern, which would be difficult to guide
through the compact multipass setup. The setup resembles a ring, made of prisms
P1, P2, mirrors M2, M3, M4 and two telescope systems in 4f-configuration. The
collimated Gaussian probe beam with a diameter of 360 um is partially reflected
at mirror M1 and detected with the photo diode PD3, the transmitted part is cou-
pled into the ring. The optical path in the ring is chosen such that the probe beam
is laterally shifted by a distance Ax after each round-trip. In order to be able
to achieve rather small lateral shifts between two consecutive beams, reflective
prisms P1 and P2 are used instead of simple mirrors. This setup already permits
m passes, which are limited by the ratio of the prism dimensions and the probe
beam diameter.

After m passes, the probe beam is retro-reflected by mirror M2 and propagates
back another m passes, until it leaves the setup opposite to the initial input direc-
tion. The telescope systems in 4f-configuration, consisting of lenses L2, L6, L7 and
L8, all with f = 150 mm, serve to focus the beam N = 2m times into the interac-
tion region and maintain the probe beam profile for each pass by relay imaging
with a total length per circulation of 1.2 m. The total number of passes can be var-
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ied by simply shifting the position of mirror M2 in z direction with a translation
stage. The distance Ax between two adjacent passes can be adjusted by shifting
the prism P1 in x direction. With a collimated probe beam diameter of 360 um, we
require Ax > 1 mm in order to be able to separate the beam at mirror M2 without
any diffraction. With the prism dimensions of 10 x 10 mm we thus achieve up to
N = 18 passes through the crystal. Note that, at pulse durations in the regime of
10 us, the optical delays (i.e., optical path outside of the crystal) of roughly 4 ns
per round-trip have a negligible effect on the storage process. Due to the strong
compression the optical path length in the crystal is much larger than the optical
path length of the multipass setup. We can thus neglect the small part of the probe
pulse outside the crystal during the storage process.

The control beam propagates under a small angle of ~ 1° with regard to the
optical axis and passes only once through the crystal. Therefore, the first half of
probe passes (before mirror M2) are stored with an almost counter-propagating
control beam, while the second half of probe passes (after M2) are stored with
an almost co-propagating control beam. Nevertheless, each temporal slice of the
probe beam is retrieved with the control read pulse under the same angle as it was
stored before with the control write pulse, due to the phase matching conditions.
Thus, in this multipass setup all probe passes are retrieved in the EIT forward
readout scheme.

Although all optics of the multipass setup are coated for 606 nm, the overall
transmission losses per pass add up to approximately 13%. The optical elements of
the multipass setup have to be adjusted such that all probe beam passes intersect
with the control beam in the center of the crystal. Because of the rather large
total probe beam path length a very precise alignment of the optics is necessary.
First, the incident probe beam is aligned with the optical axis of L2 and L6. All
subsequent probe passes are then adjusted parallel to this first probe pass. If the
distance Ax between the reflections of all probe passes on all optical elements
of the multipass are the same, we can be sure that all probe passes are focused
by L2 into the same spot inside the crystal. The control beam is then aligned to
intersect with this spot. In the following we will perform the optimization of the
light storage efficiency in this multipass setup.

4.6 EIT Light Storage in a Multipass Setup

We use the multipass setup, introduced in the previous section, to optimize the EIT
light storage efficiency for different number of probe passes N through the crystal.
We saw in Section 4.5 that by increasing the number of passes through the crystal,
we can achieve higher effective optical depths. Thus, we are able to optimize the
EIT light storage efficiency for different optical depths.

In order to optimize the EIT light storage protocol to achieve maximum effi-
ciency, we used in a first step the procedure introduced in Section 4.4. In a second
step we used the pulse shaping algorithm for optimal spin wave storage, as it was
introduced in Section 2.3.3, to further optimize the storage efficiency.

41



Chapter 4. Optimization of the EIT Light Storage Efficiency

O]
n [ /o] 0 10 20 30 40 50 60 70

T 280F
(a)
{240}

200}
160F
120

80}

control power P_ [mW]

a0}

probe pulse duration T [us]

Figure 4.6: EIT light storage efficiency 7 versus control pulse power P. and probe duration
T, of a rectangular pulse. (a) For a single pass (N = 1) of the probe beam through the
crystal. (b) For the multipass setup with N = 10 passes of the probe beam through the
crystal. We note, that the parameter ranges of P, and 7, for N =1 and N = 10 passes are
quite different. The dashed square in (b) indicates the parameter range of (a).

In the first optimization step we systematically measured the light storage ef-
ficiency n for different combinations of control pulse power P. and probe pulse
duration 7,. The results are depicted in Figure 4.6 for a single pass (N = 1) (a)
and with a multipass setup of N = 10 (b) passes through the crystal. Note that the
parameter ranges are quite different. The parameter range of the single pass (a)
is indicated by a dashed square in the experimental data of the multipass (b) for
N = 10. Both measurements exhibit the region of largest efficiency on a hyperbola,
determined by the relation P, 7, o< 9?7, = const., confirming Equation 2.34. For
small control Rabi frequencies (and large probe pulse durations) the efficiency on
the hyperbola is reduced. As already noted in Section 4.4 this can be assigned to
a residual absorption in the center of the EIT window, due to the inhomogeneous
broadening of the hyperfine transition. We find that for N = 10 passes, i.e. a 10
times higher optical depth compared to the single pass, this residual absorption ap-
pears for control powers smaller 120 mW. In the case of a single pass we achieved
full transparency for control powers larger 40 mW. Thus, in media of higher
optical depth stronger control Rabi frequencies are required to suppress residual
absorption. The maximal storage efficiency in the single pass yields 33.8 %. As the
optical depth increases in the multipass setup with N = 10 passes, Equation 2.34,
is fulfilled better and the maximal storage efficiency is higher, reaching 67 %. A
comparison of Figure 4.6 (a) and (b) shows that the optimal combination of probe
pulse duration 7, and control power P, is shifted with an increase of the optical
depth, from N =1: (P, ~ 80 mW/7, ~ 6 us) to N = 10: (P, ~ 180 mW/ 7, ~ 24 us).
This can also be explained using Equation 2.34. With larger optical depths, longer
probe pulses can be compressed in the crystal. However, at the same time the EIT
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Figure 4.7: Probe and signal pulse shapes after each iteration of the pulse shaping algorithm
for N = 14 passes through the multipass setup. A rectangular control pulse shape was used
with a control power of P, = 170 mW. The algorithm started with a rectangular probe pulse
shape with a duration of 7, = 33 us.

bandwidth is reduced. Therefore larger control Rabi frequencies, i.e. control pow-
ers, are required for compensation. Thus, with an increase of the optical depth the
optimal combination of P, shifts towards larger values.

In the second step we varied the probe pulse shape, i.e. its temporal intensity
profile, to optimize the spin wave S(z) for maximal light storage efficiency. We
therefore applied the iterative pulse shaping algorithm developed and first imple-
mented by Novikova et al. [87,88] (see also Section 2.3.3). We conducted this
iterative algorithm for a multipass setup with N = 14, starting with a rectangular
probe pulse shape with duration of 7, = 33 us, a probe power of P, = 350 uW and
a control power of P, = 170 mW, i.e. the optimal combination of P.t, for N = 14.
The storage time was set to 2 us. During the pulse shaping algorithm the light
storage efficiency is measured using method #1. In order to precisely determine
the efficiency, each iteration is averaged about 50 times. The probe and signal
pulse shapes are averaged 128 times and recorded with the oscilloscope.

Figure 4.7 shows the probe and signal pulse shapes after each iteration. The
recorded signal pulse shape of the first iteration is time reversed and normalized
with respect to the input probe energy. In addition, a frequency filtering is applied
to suppress the fast oscillations in the beginning of the signal pulse. This new
pulse is then used as the probe pulse of the second iteration. We note that these
fast oscillations in the signal pulse could be due to residual diabatic couplings,
generated by the fast switching (100 ns) of the control read pulse. We found that
the oscillations are considerably suppressed if the control read pulse is switched
on more slowly. Further investigations showed that the oscillation period scales
with the inverse of the control read Rabi frequency Q.. It is thus very likely that
the control read pulse diabatically couples to a partially populated transition of
the hyperfine levels of PrYSO driving Rabi oscillations, which are then mapped
onto the signal pulse shape. After four iterations the algorithm converges to an
optimal solution, with almost identical shapes of the probe and signal pulses. The
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optimized probe pulse resembles a Gaussian-like shape, which is able to create
the optimal spin wave during the storage process. The efficiency increases by 6 %
from n; = (70.4%3.3) % in the first iteration to 1, = (76.3 £3.5) % after the fourth
iteration.

4.6.1 Maximum Light Storage Efficiency for Variable Optical Depths

In the previous section the optimization of the light storage efficiency in the mul-
tipass setup was described for a fixed number of probe passes N. Here, we repeat
this optimization procedure for different number of passes N through the crystal.
If we assume perfect overlap of all probe passes with the control beam, the optical
depth d scales linearly with the number of passes N, i.e. dy = d,N, with d, the
optical depth of the crystal in a single pass configuration. We can thus optimize
the light storage efficiency for different optical depths.

Figure 4.8 shows the maximal achieved EIT light storage protocol efficiency
ng versus the number of passes N, i.e. the optical depth d,, assuming the optical
depth of a single pass to be d, = 6. We find that, up to N = 10 passes, the maximal
efficiency increases with increasing optical depth dy. Our experimental data fits
the theoretical limit of the storage efficiency for forward readout [82] very well.
This indicates that our optimization procedure determined the almost optimal spin
wave for the storage/retrieval process at given optical depth d. However, for
passes N > 10, the efficiency does not increase any more. We assign this mainly to
technical problems at larger numbers of passes. For N > 10, the probe beam profile
deteriorates due to more then 20 relay imaging processes and passing through 14
optical interfaces with a total beam path length of more than 12 m. In addition,
small vibrations lead to problems in the overlap of the control beam with the
probe beam passes and propagation of the probe beam through the multipass
setup. Also, the total transmission T, through the multipass setup reduces with
an increasing number of passes N, due to losses at all optical components. This
makes it rather difficult to detect the retrieved signal pulse for large numbers N.

We measured the total transmission T, for each number of passes N after
aligning the probe passes and the control beam for optimal storage. The trans-
mission reduces almost exponentially. However for N > 10 it stays constant. This
might be due to the fact that we are optimizing the beam alignment for a maxi-
mal EIT light storage protocol efficiency ngr and not for a optimal transmission
through the multipass setup. With the transmission T, and the protocol effi-
ciency ngr we can calculate an efficiency for the total setup 7Nseryp = Tseruprrr> SE€
also Figure 4.8. We find the largest setup efficiency 7y, = 25.2 % for N = 2,
i.e. in double pass configuration. We note that this results from the rather high
transmission losses per pass of approximately 13 %. It was found that these high
losses are mainly due to high reflections, i.e. of several %, of the PrYSO crystal
surfaces at low temperatures. Optimized anti-reflection coatings could be used to
further increase the setup efficiency.

With the multipass setup, we could increase the optical depth of our storage
medium by a factor of 16 from the single pass d; = 6 to d,, = 96 for N = 16 passes
through the crystal. For N = 14 passes, we achieved a maximal light storage
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Figure 4.8: Maximal efficiency versus the number of probe passes N through the storage
medium, i.e. the optical depth dy. Depicted is the experimentally determined protocol
efficiency 1gr, the corresponding theoretical limit for forward readout by Gorshkov et al.
[82] versus the optical depth d, the measured transmission through the multipass setup
Tsetup and the calculated setup efficiency ngepyp-

efficiency ngr of (76.3+3.5) % in forward retrieval configuration. This is about
5 % higher than the best result for light storage in EIT forward configuration
obtained in a cold atomic gas [89] and by far the largest ever obtained EIT light
storage efficiency in a REIDS memory, setting a new benchmark for solid state
quantum memories.

We note that in principle a backward readout configuration could yield even
higher storage efficiencies, i.e. up to 90 % for an optical depth of 100. We saw
in Section 2.3.3 that perfectly fulfilling the phase matching condition can become
rather difficult in our PrYSO crystal with its non degenerate hyperfine states and
a optical setup with small angles between probe and control beams. However,
combining our multipass setup with the backward readout configuration is almost
impossible. In the case of perfect phase matching for backward readout the signal
pulse would leave the storage medium in a different direction compared to the
input probe pulse, see also Figure 2.11 (general scheme). Thus, the generated
signal pulse would not be able to propagate properly through the multipass setup.

Figure 2.11 (backward readout) depicts another possible, however non-perfect
backward readout configuration. Here, the control read pulse is applied counter-
propagating to the input probe pulse. For a multipass setup, as it is described
here, this phase matching scheme can be fulfilled by coupling the control read
pulse into the probe multipass setup. Note that this concept for backward readout
is only possible in a mirrored multipass, in our case due to M2, compare with Fig-
ure 4.5. In this way the first half of the probe passes are stored with a propagation
approximately in z direction, while the second half of the probe passes is stored
propagating in the —z direction. Thus we find, with a control read pulse applied
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in the direction of the input probe pulse through the multipass setup, for all indi-
vidual probe passes stored, a counter-propagating configuration, i.e. a backward
readout scheme. From the phase matching condition we find, that the generated
signal pulse leaves the storage medium counter-propagating to the control write
pulse, without a propagation through the multipass setup. However, the individ-
ual parts of the signal pulse are read out almost simultaneously, as the control read
pulse propagates through the multipass with the vacuum speed of light. We thus
can measure a signal pulse which is compressed compared to the stored probe
pulse. However, as the individual parts of the stored probe pulse feature different
relative phases with respect to each other, the individual parts of the signal pulse
do not necessarily interfere constructively, which limits the readout efficiency.

4.7 Conclusion

We presented systematic measurements of the EIT light storage efficiency in a
PrYSO crystal. In particular, we optimized the storage efficiency by systematic
variations of the control power, i.e. the control Rabi frequency and the probe pulse
duration. We further optimized the probe pulse shape using an iterative algorithm
to prepare an optimal spin wave in the PrYSO crystal during storage. Due to this
optimization we achieved a protocol efficiency ng of about 36 %, which is close
to the maximal efficiency predicted from theory for the given optical depth d of 6
of our PrYSO crystal. We discussed different ideas to increase the optical depth of
the storage medium. We followed the concept of a ring-like multipass setup for the
probe pulse, which permits simple variation of the number of passes of the probe
pulse through the crystal. We could achieve up to 16 passes, which lead to an
increase of the effective optical depth d from 6 to 96. We performed systematic
optimizations of the EIT light storage efficiency for different number of passes N,
i.e. different optical depths, through the crystal. At N = 14 we achieved a storage
efficiency in forward readout of ngr = (76.3 £ 3.5) %. This is about 5 % higher
than the previously highest EIT storage efficiency in forward readout conducted
in cold atoms [89] and by far the highest EIT storage efficiency ever obtained in a
solid state medium [23].
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Chapter 5

Rephasing of Atomic Coherences by
Composite/Adiabatic Techniques

In Chapter 4 we discussed the storage of optical information as coherent atomic
superpositions driven by EIT-based light storage. The efficiency of the storage
protocol was optimized, and storage efficiencies of up to 76 % were achieved.
However, the storage durations in these experiments was rather short, i.e. only
2 us, to minimize storage medium related reductions of the efficiency.

In inhomogeneously broadened media, such as PrYSO, collective atomic co-
herences usually suffer from losses due to dephasing and decoherence effects, see
Chapter 1. The inhomogeneous broadening leads to a different time evolution of
individual coherence phases, resulting in a destructive interference upon readout,
and thus to reduced readout signals already after a few us. We call this effect
dephasing. As long as the coherence phase evolution is deterministic, i.e. no ran-
dom phase changes occur during the time evolution, dephasing is a fully reversible
effect. The phase evolution can be inverted by the application of a ©-pulse. This
leads to a rephasing of individual coherences. This rephasing technique by a single
n-pulse is well known as Hahn spin echo [108]. However, we already saw in Sec-
tion 2.1.1, that the inversion efficiency of a m-pulse critically depends on a correct
choice of the effective pulse area, which makes it inefficient in inhomogeneous
systems with Rabi frequency and detuning variations, and sensitive to errors and
fluctuations in experimental parameters.

In this Chapter we will present composite and adiabatic techniques which fea-
ture an enhanced robustness with respect to system inhomogeneities and fluc-
tuations in experimental parameters. In NMR, composite pulses (CP) are used
for decades as a well established technique for compensation of different type
of pulse errors and system inhomogeneities [72,74,109]. Since recently CP be-
came of interest to the field of quantum information processing and quantum
optics [31,110-115] for precise and robust qubit rotations. However, most CP are
derived to compensate one, at most two specific types of errors at a time, while
most systems and setups suffer from a collection of different type of errors. Here
we will present universal composite pulses (UCP), which simultaneously compen-
sate any type of systematic error. We apply these UCP for rephasing of atomic
coherences prepared by the EIT-LS protocol.

Beyond CP techniques, also adiabatic passage (AP) techniques for robust popu-
lation manipulation and rephasing of coherent superpositions are frequently used
in NMR [116-118]. Such AP techniques recently became of interest to the quan-
tum optics community. A very basic AP technique known as rapid adiabatic pas-
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sage (RAP) has been investigated for total population inversion [119,120] and for
rephasing of atomic coherences [121-124]. However, in most cases AP techniques
require a very long interaction time and strong couplings to fulfill the adiabaticity
criteria and to achieve a satisfying, mostly still incomplete population inversion,
thus a ultra-high fidelity cannot easily be achieved. Recently, a composite RAP
technique has been proposed, composite adiabatic passage (CAP) [25], which
overcomes the problems arising from weakly fulfilled adiabaticity. We present
an experimental realization of CAB applied for rephasing of atomic coherences
prepared by EIT-LS in PrYSO. We compare RAP and CAP in a situation of weak
adiabaticity. We further demonstrate the advanced robustness of CAP with respect
to variations of experimental parameters.

Another approach to overcome the long interaction times of AP techniques,
while keeping the adiabaticity criteria sufficiently fulfilled, is based on shortcuts
to adiabaticity [125,126]. This technique still drives a system in an adiabatic way,
while minimizing the adiabatic path length to the desired state. This enables oper-
ation, e.g. with shorter interaction times. One version of shortcuts to adiabaticity
are single-shot shaped pulses (SSSP) [26, 127]. We show a first experimental
demonstration of SSSP for rephasing of RF-induced coherences in PrYSO and an-
alyze their performance with respect to variations of experimental parameters.

5.1 Introduction to Rephasing of Atomic Coherences

This section gives a general introduction on dephasing and rephasing of atomic
coherences in an inhomogeneously broadened medium, and shows a compari-
son of the properties of RF-induced and EIT-LS coherences stored in PrYSO. First
the preparation of RF-prepared atomic coherences is described. Afterwards the de-
phasing behavior of RF and EIT-LS coherences are investigated. Diabatic rephasing
experiments are discussed, and pulse phase dependencies are examined.

5.1.1 Generation and Detection of an RF-induced Coherence

In Chapter 4 we discussed the storage of atomic coherences using the EIT-LS pro-
tocol. Alternatively to the preparation of atomic coherences by two optical pulses,
it is also possible to drive a hyperfine coherence in PrYSO directly by a single
RF-pulse resonant to the hyperfine transition. This is experimentally easier to im-
plement and allows further investigations on the coherence properties in PrYSO
and the performance of RF rephasing pulses. In the following we discuss the
generation of RF-induced coherences in PrYSO. In order to generate RF-induced
coherences we apply an RF-7t/2-pulse, resonant between two hyperfine states of
the ground state *H, of PrYSO, preparing a maximal coherent superposition. Be-
fore the generation of such a coherence the storage medium has to be prepared by
optical pumping, as described in Section 4.1. We prepare a spectral pit using the
control beam path. Here the smaller of two control beam diameters is used, com-
pare with Chapter 3. The frequency is chirped across a relative frequency range
of 0 —17.9 MHz during 20 ms with a constant power of 1 mW for six times. Af-

54



Chapter 5. Rephasing of Atomic Coherences by Composite/Adiabatic Techniques

terwards an RF-7t/2-pulse with a angular frequency of w = 27 - 10.2 MHz, almost
resonant to the transition between the ground state *H, hyperfine levels | +1/2)
and | £ 3/2), is applied. An appropriate choice of Rabi frequency and pulse du-
ration is made to achieve an approximate 7t/2-pulse. Note that a perfect RF-7t/2-
pulse can not be achieved for all ensembles of the inhomogeneously broadened
hyperfine transition due to pulse area errors caused by static detunings A, of the
ensembles. This pulse creates a RF-induced coherence on the inhomogeneously
broadened hyperfine transition. In principle the RF-t/2-pulse acts on all ensem-
bles of the inhomogeneous broadening of the optical transition. In order to detect
the RF coherence after a storage time AT we use the Raman heterodyne detec-
tion scheme as introduced in Sections 2.4, and 3.5. The optical detection pulse
of a constant relative frequency of 3.2 MHz and a power of 6.6 mW selects a part
the optical inhomogeneous line, still coupling all nine possible transitions within
different ensembles of the inhomogeneous broadening, compare with Section 4.1.
However, due to the demodulation of the lock-in amplifier, with a demodulation
frequency of ~ 10.2 MHz, a signal proportional only to the coherence between
states | £ 1/2) and | + 3/2) is detected. Possible signals from other transitions are
filtered by the lock-in amplifier.

5.1.2 Atomic Coherences in Inhomogeneous Broadened Transitions

As introduced in Chapter 2, coherences in an inhomogeneous broadened transi-
tion exhibit different phase evolutions in time, see Equation 2.10. This leads to
a reduction of the collective coherence signal due to destructive interference of
the individual coherences, called dephasing. We measured the reduction of the
retrieved signal depending on the total storage time AT for a coherence created
by an RF-7t/2-pulse, and by the EIT-LS protocol.

The RF coherences were created by RF pulses with adjusted pulse areas to
optimally match the condition Qt = 7/2, for Rabi frequencies larger than the
inhomogeneous broadening, to cover the full bandwidth of the transition. The
storage medium was prepared and the RF coherences detected, as described in
Section 5.1.1. In order to store a EIT-LS coherence the PrYSO storage medium
was prepared by optical pumping in a three-state A-system, as shown in Section
4.1. However, here only a single A-system was prepared by choosing a slightly
different repump frequency (24.7 MHz). Afterwards, the EIT-LS protocol was ap-
plied, generating a coherence between the hyperfine levels | +1/2) and | £3/2) of
the ground state *H, of PrYSO.

Figure 5.1 depicts the retrieved, integrated signal S versus the total storage
time AT, for a coherence prepared by a weak RF-7t/2-pulse (black solid squares:
Q = 2m - 50 kHz), a strong RF-7t/2-pulse (black open squares: Q = 27 - 250 kHz),
and for a coherence created by the EIT-LS protocol (red solid dots). In all cases the
integrated signal S decays with increasing total storage time AT due to dephasing
of the collective coherence. Both RF-prepared coherences show a identical decay
behavior. We thus can be sure that already the weak 7/2-pulse, with a Rabi fre-
quency of Q = 27-50 kHz, is able to cover most of the inhomogeneous broadening
of the transition. Comparing RF and EIT-based coherences, we find that the EIT-
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LS coherence shows a similar behavior for short total storage times. However,
at storage times larger AT = 20 us the EIT-LS coherence decays faster than the
RF coherence. A stretched exponential function, called Kohlrausch-William-Watts
(KWW) function, [128,129] of the form

S(f) — SO . e_(t/Tdeph)ﬁ (5.1

is fitted to the experimental data. Here f3 is a stretching exponent. With § =1,
we get the usual exponential function, for 0 < f < 1 the exponential function is
stretched, while for 8 > 1 the exponential function is compressed.

In the case of RF coherences we find the expected single exponential decay with
B =1.03+0.004 and T,,, = (16.9 +0.05) us. From the dephasing time we cal-
culate the inhomogeneous broadening to T},;,,, ~ 18 kHz (FWHM), in the absence
of spectral diffusion. The signal from the EIT-LS coherence dephases faster in a
compressed exponential form, with Ty, = (15+0.02) us and 8 = 1.4+0.004. This
faster non-exponential decay might be attributed to spectral diffusion in the opti-
cal transition, i.e. frequency shifts of the excited state hyperfine levels in PrYSO
due to magnetic dipole-dipole interactions during the storage time [130], see also
Section 1.3 and Section 2.3.4. Thus, a complete readout of the coherence by a
control read pulse is no longer possible, as some of the ensembles in which a co-
herence had been stored can no longer be addressed by the readout pulse. We
note that this effect does not play a role in the case of an RF coherence, as here
coherences are usually created in a broad frequency range inside the inhomoge-
neous optical transition. Spectral diffusion in the optical transition occurs, like in
the EIT-LS coherence case, however it does not affect the retrieved signal from the
RF coherence. We conclude, that the two techniques preparing atomic coherent
superpositions result in a different dephasing dependence. In the future this might
be useful to get a broader insight into the dynamics of the PrYSO crystal.

5.1.3 Diabatic Rephasing of Atomic Coherences

The most common way to deal with the effect of a reduction of the collective
macroscopic coherence signal due to dephasing is the application of resonant rect-
angular diabatic rephasing pulses. In the simplest case, this can be achieved by

56



Chapter 5. Rephasing of Atomic Coherences by Composite/Adiabatic Techniques

— A control write pulse control read pulse
- o
w8 S5 |probe
=8 =5 |pulse | EITLS coherence _
i % &g / ™\ storage time AT _
d 8, N
— U PRSP pRpRPRPY ISR >
0 A RH detection pulse
o ~
§ § é % RF pulse
2o 5 RF coherence .
g8 g4 ™\ storage time AT
By - @ -E- L. \_
5 @ —_——_— = >
o time t [arb. units]
o @ 2 A — cycling time 7, —N
Zh % g = signal
£x fs| 3 N\ pulse
8 E£8
= A 1 \ \
£ F e N
@ |pal—lpul / \

Re(p; %212)

Figure 5.2: Pulse sequences for the preparation of atomic coherences by the EIT-LS protocol
or by an RF-7t/2-pulse in an inhomogeneous broadened transition. Here the dephasing and
rephasing process by a single m-pulse during a cycle time 7, is depicted. In general this
process can be repeated, leading to a total storage time given by AT = N7.. The Bloch
representation shows the evolution of a collective coherence prepared by an RF-1t/2(-pulse,
which is rephased by an RF-rry-pulse. We will see that this representation only holds true
for RF-induced coherences.

a single rectangular pulse with a pulse area 7, applied symmetric during a stor-
age time AT, i.e. the so called Hahn spin echo (HSE) sequence [108] known from
NMR. Figure 5.2 depicts the general timing sequence of the dephasing and rephas-
ing process. The initial coherence can either be prepared by the EIT-based light
storage protocol (top row), or by an RF-rt/2-pulse (center row). After the prepa-
ration the collective macroscopic coherence starts to dephase, because of different
phase factors exp(iA.t) of the individual coherences p$,, compare with Equation
2.10. These individual phase evolutions are depicted in Figure 5.2 (bottom row)
and on the Bloch sphere. The Bloch vectors correspond to a coherence prepara-
tion with an RF-rt/2,-pulse, i.e. with a driving phase ¢ = 0°, driving the Bloch
vectors into the Im(p,,)-axis of the Bloch sphere, i.e. the phase of the coherence
y = ¢ +90°. Note that in contrast, to the RF-prepared coherence, the collective co-
herence prepared by the EIT-LS protocol is not a maximal coherent superposition
state, i.e. p;; = poy, = 1/2, but rather p,; > p,,, and we will see that a phase y of
the coherence after the preparation can not easily be defined.

If AT > T,,,, no collective macroscopic coherence can be detected, because of
complete destructive interference between the individual coherences. During the
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dephasing, the Bloch vectors, each representing a individual coherence p3,, fan
out on the Bloch sphere, due to their different transition frequencies with respect
to the rotating frame of the Bloch sphere. After a time of free evolution, a 7,-pulse
is applied, centered at 7./2, rotating the Bloch vectors around their individual
torque vectors (not depicted here), pointing approximately into the direction of
the Re(p,,)-axis. Note that for weak Rabi frequencies or far detuned coherences
the torque vector can possess a non negligible component in the population axis
of the Bloch sphere, which lead to a non perfect n-rotation, compare with Section
2.1.1. However, Figure 5.2 depicts the case of a strong driving. Due to the -
pulse the Bloch vectors are rotated by 180° around their torque vector axis. After
the pulse, the free evolution continues and the coherences begin to rephase. After
a cycling time 7., all Bloch vectors point into the -Im(p,,)-axis, sharing the same
instantaneous phase, and hence can interfere constructively, with a total phase
shift of 180° compared to the initial coherence. Note, that the total phase shift
of the rephased coherence can be controlled by the phase ¢ of the rephasing
pulse. For example a mq,-pulse would invert the Bloch vectors with a rotation
around the Im(p,,)-axis. Thus, the collective coherence would not experience a
phase shift compared to the initial coherence. In Figure 5.2 the rephasing process
due to a single m-pulse is shown. In general a number of rephasing cycles N
with cycling times 7., can be applied during the storage time AT, with AT =
Nt.. We find for N = 1 the Hahn spin echo (HSE) [108]. Pulse trains with
N > 2 rephasing cycles are also known as Carr-Purcell or Carr-Purcell-Meiboom-
Gill (CPMG) sequences [131,132]. In general the CPMG sequence is applied with a
phase shift of 90° compared to the initial 7/2-pulse. After the rephasing sequence,
i.e. after a storage time AT = N7, the collective coherence is detected either by
a control read pulse to generate a signal pulse from the EIT-LS coherence, or by a
RH detection pulse to measure the RF-prepared coherence.

5.1.4 Rephasing Efficiency of Imperfect m-Pulses

The best choice for rephasing are obviously perfect m-pulses without any pulse
errors. However, in reality the rephasing process suffers from errors of the applied
pulses. These pulse errors become especially apparent if the rephasing efficiency
is investigated with respect to the phase y of the prepared coherence, i.e. the
phase ¢ of the initial 7t/2-pulse with ¥ = ¢ + 90° and the phases ¢ of the applied
rephasing pulses. Thus, we measured the dependence of the rephasing efficiency,
i.e. the retrieved integrated signal, versus the phase ¢ of the initial 7t/2-pulse
and the rephasing pulses. We performed measurements for RF coherences (see
Section 5.1.1 for details on the preparation) and EIT-LS coherences (prepared as
described in Section 5.1.2). Figure 5.3 (top row) depicts the experimental results
for RF coherences (left) and EIT-LS coherences (right). Both graphs show the
retrieved integrated signal after a total storage time of 600 us versus a pulse phase
¢. The varied pulse phases ¢ and the applied rephasing sequences are indicated
in the figure labels. The rephasing sequences are applied such that N7, = 600 us =
const. The n-pulse duration is T = 3.2 us, corresponding to a Rabi frequency of
Q =2m-156 kHz.
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Figure 5.3: Experimental data (top row) of the retrieved integrated signal versus the pulse
phase ¢ for a RF coherence (left) and a EIT-LS coherence (right) for different rephasing
sequences (see labels in graph). (bottom row) Corresponding simulations modeling the
phase behavior of the rephasing experiments. (left) A collective initial coherence p;,(0)
with a defined initial phase 7 is assumed. (right) The collective initial coherence features a
equal distribution of phases, i.e. y € {0: 27}.

In a first measurements we changed the phase of the initial RF-t/2-pulse (red
solid squares) preparing an RF coherence which is rephased by a ©,—m, sequence,
see Figure 5.3 (top left). We find the largest signal for ¢ = 90°, i.e. y = 180°,
which corresponds to the application of the rephasing pulses along the axis of
the prepared coherence, i.e. the CMPG sequence [132]. In this configuration
we retrieve the largest signal because the pulse area errors of the first rephasing
pulse can be compensated by the second rephasing pulse [132]. On the other
hand for ¢ = 0° and ¢ = 180° the pulse area errors of the two rephasing pulses
add up, compare with the Bloch spheres in Figure 5.2. The same holds true for
the ©/2, — m, — m, sequence (black solid dots). Pulse errors are compensated if
the second rephasing pulse is 7,4,, i.e. when the rotation direction of the Bloch
vectors is reversed by the second rephasing pulse. In the case of four rephasing
pulses applied (green solid triangles) we find a more complex dependence of the
rephasing efficiency with respect to the phase ¢. Still the largest signal is detected
if ¢ = 180°. We conclude that in the case of imperfect pulses applied for rephasing
of RF coherences in a inhomogeneously broadened transition it is favorable to
apply phase shifted rephasing pulses. In this way for some specific phases the
pulse errors can cancel themselves.

In a second experiment, we repeated these phase investigations for a coher-
ence prepared by the EIT-LS protocol, see Figure 5.3 (top right). A quite different
phase dependent rephasing efficiency, compared with the case of a RF-prepared
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coherence, was determined. We found no phase dependent rephasing efficiency
for a two pulse rephasing sequence (black solid dots). In case of the four pulse
rephasing sequence we found largest signal for ¢ = 90° and ¢ = 180°. For a three
pulse rephasing (solid blue diamonds) almost no signal could be detected and also
for a single pulse rephasing sequence (HSE) (not depicted here) no signal could
be retrieved, although in both cases the individual coherences should be in phase
after the rephasing sequences. We can explain this behavior by the special prop-
erties a coherence prepared by the EIT-LS protocol. During the adiabatic storage
only a rather weak coherence is prepared. Thus, most of the population is still in
state |1) after the EIT-LS protocol, As expected a odd number of rephasing pulses
will result in a inverted population distribution, compared to the initial situation.
Thus, the optical control read pulse is applied on a populated transition leading to
improper EIT conditions and a inefficient readout of the coherence (compare with
Section 2.3). In the spin wave picture a odd number of rephasing pulses lead to
a inversion of the spin wave phase, i.e. an inversion of the wave vector & of the
spin wave, compare with the phase matching in Section 2.3.3. Hence, the phase
matching condition can not be fulfilled in the standard forward readout configura-
tion. We thus find that a rephasing of EIT-LS coherences is only possible if a even
number of rephasing pulses are applied.

In order to investigate the different phase behavior of EIT-LS and RF co-
herence we performed extensive simulations of the rephasing process. We as-
sumed a perfect collective initial coherence created by a 7/2,-pulse, i.e. p;,(0) =
> P12€Xp (—i(A.t +7)) with v = ¢ +90°. We let the collective coherence com-
pletely dephase before the rephasing process. We thus calculate the rephased
collective coherence at the rephasing time t; by p,(t;) = Up1,(0)UT with the
propagator U(e, ¢), depending on the individual coherence parameter e and the
phase ¢ of the rephasing pulse. Here U(e, ¢) describes the dephasing, the applica-
tion of the rephasing pulse and the rephasing process. We average over a constant
distribution of detunings with a range of A, = —0.262...0.2652, with a Rabi fre-
quency = 27 - 156 kHz. Thus, we can calculate the average coherence pq,(t;)
depending on the phase ¢ of the pulses. The results are depicted in Figure 5.3
(bottom left). Although this simulation strongly simplifies the actual experiment
conducted, we find a remarkably good agreement of the overall phase dependence
with the experimental data for rephasing of an RF coherence.

We also tried to model the experimental results obtained with a EIT-LS coher-
ence. We found the experimental data to be modeled best, if we assume a initial
collective coherence featuring a equal distribution of all possible initial phases v,

i.e. po(0) = Zizo D P12€Xp (—i(A t 7)), and calculate p,,(t; )2. The results are
depicted in Figure 5.3 (bottom right), modeling the experimental data (top right)
in a proper way. This way of modeling confirms the statements of Section 2.3.3, in
which we found that the generated spin wave S(z) exhibits a position z dependent
phase factor exp (—ikz), if the probe and control field have different frequencies or
are applied with a slight angle between them. Thus, the initial collective coherence
phase y depends on the position z inside the PrYSO crystal. These properties of
EIT-LS coherences will be of relevance when dynamic decoherence control (DDC)
techniques are applied to preserve atomic coherences, see Chapter 6.
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5.2 Universal Composite Pulses

The development of high fidelity state manipulations is an important challenge
towards reliable quantum information processing [31,110-115]. However, even
most simple state manipulations, like a high fidelity total population transfer, can
be rather difficult to achieve under real experimental conditions including inho-
mogeneities. Most techniques provide either high population transfer efficiency,
i.e. inversion efficiency, or robustness against variations of experimental parame-
ters. We saw in Chapter 2, that diabatic resonant techniques can provide perfect
inversion efficiency in an ideal two-state system. However, these techniques are
very sensitive to variations in pulse parameters and usually suffer due to exper-
imental inhomogeneities, compare with Section 5.1.4. On the other hand, adia-
batic techniques [119, 122, 123], can be robust with respect to inhomogeneities
and systematic pulse errors, but in most cases a very long interaction time and
strong interactions are needed to fulfill the adiabaticity criteria in order to achieve
a satisfying, mostly still incomplete transfer efficiency.

The technique of composite pulses (CP) is unique in combining the advantages
of diabatic resonant techniques, i.e. high fidelity, and adiabatic techniques, i.e. ro-
bustness to inhomogeneities and pulse errors. However, the existing CP compen-
sate one, at most two types or errors at a time and are usually designed for rect-
angular temporal pulse shapes. In the following section we describe an advanced
technique based on CP for complete state inversion, which compensates system-
atic deviations in any experimental parameter, works for any system environment
and with any temporal pulse shape. The only assumptions made are those of a
two-state system, coherent evolution and identical pulse areas and shapes of the
individual pulse elements of these universal composite pulses (UCP) [24].

The section is structured as follows: First, we derive the UCP by using a novel
theoretical approach. Second, we apply them for rephasing of atomic coherences
created by the ElT-based light storage protocol. Then we demonstrate the effi-
ciency and universality of these universal composite pulses and show their ro-
bustness with respect to variations of pulse area, static detuning, pulse shape and
additional chirps. In all cases we compare the performance of UCP with standard
diabatic m-pulses.

5.2.1 Theory of Universal Composite Pulses

We assume a coherently driven two-state system as introduced in Section 2.1.
However, we write the RWA Hamilton operator in interaction representation,

A i1 0 Q(t)e 00
Hpwa(t) = 5 (Q*(t)e_ié(t) ( )O ) (5.2)

where the time dependent detuning A(t) is expressed through the phase 6(t) =
f Ot A(t")dt’. We further assume the interaction to be much shorter than relax-
ation and decoherence processes in the system. The time evolution of the sys-
tem is described by the propagator U. It connects the probability amplitudes

61



Chapter 5. Rephasing of Atomic Coherences by Composite/Adiabatic Techniques

c(t) at initial and final time of the interaction, t; and t;. Thus, we can write:
c(ty) = f](tf, t)c(t;). The general propagator U is parametrized with three real
Stiickelberg variables q(0 < g < 1), a, and f,

ia i
~_ [ ge€ pe
U= (_pe—iﬂ qe—ia)- (5.3)

Here, p = 4/1—q2, where p? is the single pulse transition probability from state
|1) to |2), and the probability for no transition is g2. We construct the propagator
of a composite pulse sequence of n pulses as

0" =0(¢,)....U(@:)U0(¢1), (5.4)

where the phases ¢, describe constant phase shifts of the Rabi frequency,
Q(t) — Q(t)e!*. This phase shift is imprinted in the propagator U(¢) by taking
B — B + ¢. The only assumption is that the constituent pulses of the composite
pulse sequence are identical, and the only control parameters are their relative
phases ¢,. All other properties of the driving pulses are unknown, which means
that the constituent pulses can have any arbitrary time dependence of their pulse
parameters, such as Rabi frequency, detuning from the resonance and duration.
Thus, the design of the UCP aims at universal robustness with respect to devia-
tions in any pulse parameter, with the goal to transfer all population from state
|1) to state |2) [24]. A total transfer is achieved if the transition probability is
maximized, i.e. if P® = |0"|> = 1, for any values of ¢, a, 8. This is the case if
Q™ = |U™W}? is minimized, i.e. Q™ = 0. The propagator element U is calcu-
lated to determine the phases ¢, of a UCP sequence of n pulses. [Aff'll) = Z;l:l a,;q’,
where a,; only depends on a and ¢,. The phases ¢, are then chosen such that a,;
is nullified for any a up to a highest possible order. In the case of symmetric UCB
ie. ¢, = ¢ with k =1,2,..,(n —1)/2, a,; automatically nullifies for even j.
For a UCP sequence of n = 5 pulses with phases (0, ¢,, ¢, ¢,,0) the propagator is
given by

0% =[(1+2c0os(2¢, — ¢3)) e +2cos (¢, — d3)e %] q + 0(q°). (5.5)

Here the first term vanishes for two different sets of phases: (¢, = 57/6, ¢5 = 7/3)
and (¢, = 117/6, ¢; = m/3). This leads to a maximal transition probability of
P® =1—|0®2 = 1-0(q°). In Table 5.1, we show the phases of UCP sequences
with up to n = 9 pulses. Even though UCP were originally designed for a total
population transfer in a single two-state system, they can in principle be used for
the inversion of any initial quantum state. In the following we apply UCP for
rephasing of atomic coherences in PrYSO.

5.2.2 Experimental Results on Universal Composite Pulses

We experimentally investigate the performance of universal composite pulse
(UCP) sequences by rephasing of atomic coherences created with the EIT-based
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Table 5.1: Phases of UCP with up to n = 9 pulses in the sequence. The phases of higher
order UCP can be found in [24]. UCP labeled with “a” perform slightly better against vari-
ations in the pulse area, in contrast UCP labeled with “b” perform slightly better against
variations in static detuning.

| UCP sequence | Phases ¢
U3 0,1,0)m/2
USa (0,5,2,5,0)/6
U5b (0,11,2,11,0)/6
U7a (0,11,10,17,10,11,0)/12
U7b (0, 23,10, 5, 10, 23, 0)t/12
U9%a (0, 0.635, 1.35, 0.553, 0.297, 0.553, 1.35, 0.635, 0)
U9 (0, 1.635, 1.35, 1.553, 0.297, 1.553, 1.35, 1.635, 0) &t

light storage protocol. The experimental setup is used with the flat-top probe beam
profile and with the coil system #1, as described in Chapter 3. The PrYSO storage
medium is prepared by optical pumping in a three-state A-system, as shown in
Section 4.1. However, here the repump frequency is chosen slightly different, to
be 24.7 MHz. In this way only a single ensemble of the inhomogeneous broaden-
ing of PrYSO is prepared for EIT. Next, we apply the EIT-LS protocol, and a atomic
coherent superposition is generated between state |1) and state |3), i.e. between
the ground state hyperfine levels | £ 1/2) and | + 3/2) of PrYSO. This collective
coherence suffers from dephasing due to the inhomogeneous broadening of the
hyperfine transition, compare with Section 5.1.2. Thus, rephasing by radio fre-
quency pulses is needed to retrieve a signal pulse after storage times AT larger
than the dephasing time T,,,,. Here, we set the total storage AT = 600 us. During
this storage time two RF rephasing cycles are necessary to rephase a coherence
generated by the EIT-LS protocol, see Section 5.1. We apply them in a symmet-
ric configuration, centered at 150 us, and 450 us, as defined for CPMG [132].
In order to investigate the performance of UCE and to compare with other dia-
batic rephasing techniques, we keep all parameters of the optical EIT-LS protocol
fixed and vary only the RF rephasing sequences. Hence, the retrieved light storage
signal pulse is a direct measure for the efficiency 7,,,, of the applied rephasing
sequence.

Figure 5.4 depicts the rephasing efficiency 7,,,, versus the single pulse duration
7 and the static detuning A for different diabatic rephasing sequences of a rectan-
gular pulse shape. Note, that the total duration of the rephasing sequence is given
by the number of constituent pulses n of the applied sequence times the single
pulse duration 7, and A is the static detuning from the hyperfine transition |+1/2)
and |+£3/2) with its (angular) transition frequency of «w = 27 -10.2 MHz. The Rabi
frequency is fixed for all constituent pulses at 2 ~ 27 - 156 kHz. The experimen-
tally determined rephasing efficiency (top row), and corresponding simulations
(bottom row) are shown for a single rectangular diabatic pulse, i.e. a m-pulse if
the appropriate single pulse duration 7 is chosen, a low order area compensat-
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Figure 5.4: Rephasing efficiency of a EIT-LS coherence versus the single pulse duration
7, and the static detuning A. (top row) Experimental data for a single diabatic pulse, a
low order area compensating pulse A3 with phases (0,27/3,0), a low order static detuning
compensating pulse A3 with phases (0, t/3,0) and the UCP U3 (0, /2, 0). All pulses are of
rectangular temporal shape. The Rabi frequency is fixed for all pulses at Q2 ~ 27 - 156 kHz,
thus a m-pulse is achieved at a single pulse duration of T = 3.2 us. (bottom row) Corre-
sponding simulations depict the transition probability IUS{)I“, i.e. the rephasing efficiency
after two rephasing cycles. For a better comparison we calculated the area of high effi-

ciency, i.e. 1., > 0.9, see labels in figure.

ing pulse A3 with phases (0,27/3,0), a low order static detuning compensating
pulse A3 with phases (0, 7/3,0) and the lowest order UCP U3. The rephasing ef-
ficiency 7,,, is normalized with respect to the maximal achieved efficiency by a
single pulse, i.e. a m-pulse. For the single pulse, we find that a high rephasing ef-
ficiency is only achieved in a tiny area at almost resonant coupling, and for single
pulse durations 7, such that Q7 ~ ©. A maximal rephasing efficiency is reached
at T = 3.2 us. For the pulse area compensating pulse A3, we find the expected
high and almost constant rephasing efficiency for a broad variety of single pulse
durations 7, i.e. from 2—4.2 us, a variation of more than £30 % from the optimal
value of 3.2 us. However, the robustness against variations in the static detun-
ing is rather small. For the CP A3, originally designed to compensate variations
in the static detuning, experimental data shows a profile of high rephasing effi-
ciency for a large variation static detunings A. However, the maximal rephasing
efficiency is about 10 % lower compared to the m-pulse rephasing. In addition
the profile seems to be slightly asymmetric with higher rephasing efficiencies at
positive static detunings A. We assign the overall lower rephasing efficiency to the
experimental coil system #1 which features a intrinsic RF field inhomogeneity of
approximately 10 %. Thus, also the Rabi frequency of the applied pulses is inho-
mogeneous. As the CP A3, is not designed to compensate such a inhomogeneity
the maximal rephasing efficiency is reduced. The slight asymmetry and the shift
towards positive static detunings, could be due to additional Stark shifts from
other hyperfine levels. Preliminary investigations have shown that a shift of the
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Figure 5.5: Experimentally determined rephasing efficiency 7,,,, of an EIT-LS coherence
versus the single pulse duration, and the static detuning A for high order UCP. (center
column) UCP applied with a rectangular temporal pulse shape. (right column) UCP applied
with a Gaussian temporal pulse shape. The depicted UCP are U5b (top row), UTb (center
row), and U9 (bottom row). The Rabi frequency is fixed for all pulses at Q2 ~ 27 - 156 kHz.
Hence, for a rectangular pulse shape the optimal duration for a m-pulse is 7 ~ 3.2 us, and
for a Gaussian pulse shape, it is 2.8 us (FWHM). (left column) Corresponding numerical
simulations with a rectangular pulse shape were performed.

rephasing profile towards positive static detunings A depends slightly on the Rabi
frequencies of the applied pulses. For the UCP U3 sequence we find robustness
with respect to single pulse duration 7 and static detuning A for a large variation
of experimental parameters. For a better comparison of the rephasing sequences
we calculated the area of high efficiency, i.e. 71,,,, > 0.9, see labels in Figure 5.4.
For all experimental data, corresponding numerical simulations were performed.
We simulated the transition probability |U§'11)|4, i.e. the rephasing efficiency after
two rephasing cycles, for a single two-state system. Even though this assumption
is a strong simplification of the actual experimental process, the simulation re-
sults, shown in Figure 5.4 (bottom row), agree very well with the experimental
data. Hence, we have seen that UCP can be simultaneously robust with respect to
multiple experimental parameters.

We further investigated higher order universal composite pulses and their ro-
bustness with respect to changes in the temporal pulse shape. The experimen-
tal results are shown in Figure 5.5. The rephasing profiles for rectangular pulse
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shapes are depicted in Figure 5.5 (center column) for U5b, U7b, and U9b. We find
that with higher order UCP the robustness with respect to variations in single pulse
duration 7 and static detuning A increases. Additionally we achieve higher maxi-
mal rephasing efficiencies with all UCP. In the case of U9b the maximal rephasing
efficiency is up to 25 % higher than with optimal conditions for the 7-pulse rephas-
ing. In Figure 5.5 (right column) the experimental rephasing efficiency for UCP
of Gaussian temporal pulse shapes are shown. We replaced each constituent pulse
of the UCP sequence of rectangular shape by a Gaussian pulse shape truncated at
3Tpwum- We scanned the single pulse FWHM duration 7y, While adjusting the
truncation accordingly. We found the maximal rephasing efficiency at FWHM du-
rations of about 2.8 us. From the relation between the pulse area of a rectangular
pulse (27) and a Gaussian pulse (QT gy v27/2.355) one would expect slightly
larger optimal FWHM durations of about 3 us.

Nevertheless, we find a similar behavior for the experimental rephasing effi-
ciency for UCP of Gaussian shapes, and for rectangular pulse shapes. The UCP
with a Gaussian pulse shape feature a slightly lower robustness with respect to
the static detuning, i.e. the rephasing profiles seem to be compressed on the static
detuning axis. This could be due to the lower bandwidth of the Gaussian pulses.
The robustness with respect to the pulse durations are comparable. Numerical
simulations with a rectangular pulse shape were performed for high order UCP
The results are shown in Figure 5.5 (left column). The experimental data agrees
quite well with the simulations, and confirms the superior robustness of UCP in
comparison to a m-pulse. The area of high rephasing efficiency increased from
about 2.5 % for a single pulse, up to 35.9 % for the UCP U9b, compare with labels
in Figures 5.4, and 5.5.

In addition, we investigated the robustness of UCP with respect to residual
frequency chirps, as these may occur in the generation of ultra short laser pulses
[133]. Figure 5.6 shows the comparison of the efficiency 7,,,,, of a rephasing
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by m-pulses and a rephasing by UCP U9b, versus the static detuning A, and an
additional artificial frequency chirp with a total chirp range Avg,. This chirp
is applied linear, and symmetric across the resonance of the transition, on each
constituent pulse. For the m-pulse rephasing, see Figure 5.6 (a), we find that the
rephasing efficiency quickly drops with static detunings larger than +27 - 50 kHz
and total chirp ranges larger than 700 kHz. Hence, the m-pulses show only a
weak robustness with respect to additional frequency chirps. In contrast, the UCP
U9b, depicted in Figure 5.6 (b), shows a remarkable robustness with respect to
variations in both parameters. We find that the UCP can easily compensate errors
due to additional frequency chirps. The corresponding simulations agree very well
with the experimental data, and confirm the robustness of UCP sequences.

5.3 Composite Adiabatic Passage

Adiabatic passage (AP) processes have been investigated and used in NMR [117]
and in coherent optical excitation in the field of quantum optics [119] for many
years. Some of the most popular and well-known adiabatic processes in quantum
optics are rapid adiabatic passage (RAP) [120,134], and stimulated Raman adia-
batic passage (STIRAP) [135, 136] for population transfer in a two-, respectively
three-state quantum system. These processes exhibit a high robustness against
fluctuations, and/or variations of driving field and quantum system parameters.
However, in practice, experimental restrictions often do not allow to satisfy the
adiabaticity conditions sufficiently, which leads to a reduced robustness and inef-
ficient, i.e. incomplete population transfer.

In this section we present a concept proposed by Torosov et al. [25] to opti-
mize the efficiency and operation bandwidth of RAP This concept combines the
techniques of diabatic composite pulses with the RAP processes into a composite
version, i.e. composite adiabatic passage (CAP). We implement CAP pulses exper-
imentally and apply them to rephase atomic coherences prepared by the EIT-LS
protocol in PrYSO. We investigate their performance and compare the results with
RAP The section is structured as follows: First, we give a introduction an AP pro-
cesses and RAP for rephasing of coherences in an inhomogeneously broadened
transition. Second, we give the theoretical derivation of composite adiabatic pas-
sage. Third, we show an experimental implementation of CAP for rephasing of
EIT-LS coherences in PrYSO.

5.3.1 Adiabatic Passage Processes

In Section 2.1 we described the diabatic coherent interactions in a two-state sys-
tem in the bare state basis of the system. Following the arguments from Section
2.2 we diagonalize the RWA Hamiltonian of Equation 2.5, and find the new set of
adiabatic eigenstates:

[Y,.) = sin6|1)+cosb|2),

lY_) = —cosO|1)+sin6]2), (5.6)
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with the mixing angle 0 defined as

Ay A2
tanf = —+ \| 1+ —. (5.7)
Q Q

The energies of the adiabatic states are given by the eigenvalues of the RWA Hamil-
tonian of Equation 2.5, yielding €, = :I:’%\/Q2 + A2, In general, the driving Rabi
frequency Q(t) and the static detuning A(t) can be time dependent. This leads to
a coupling of between the adiabatic eigenstates. The Hamiltonian in the adiabatic

basis thus reads
» [ el(t) —ikb(t)
HAB_(ihé(t) e(t) ) >-8)

The time evolution is termed adiabatic, i.e. there is negligible coupling between
the eigenstates, when the separation between the adiabatic eigenvalues €, is much
larger than the time derivative of the mixing angle 6(t):

le.(6)—e_(D)] > 18(0). (5.9)

If Equation 5.9 is fulfilled the system will stay in its initially prepared adiabatic
eigenstate. Only slow changes of 6(t) are allowed to drive the system in the
adiabatic basis. Condition 5.9 can be re-written in terms of Q and A to

1. .
sla—0il< (22 +a2)", (5.10)

Hence, adiabatic evolution is achieved if QO and A are changing slowly in time,
compared to the effective coupling, i.e. the effective Rabi frequency Q.4. This
requires in general smooth pulses, with a long interaction times, large Rabi fre-
quencies and large detunings.

A special type of an adiabatic passage process in a two-state system is rapid
adiabatic passage (RAP), where the system interacts with a driving pulse with
constant linear change of the detuning A(t), which is symmetric around the reso-
nance frequency of the two-state system. Initially, this most simple adiabatic pas-
sage process was designed for efficient population transfer [119, 120]. Recently,
this technique was also used for rephasing of atomic coherences [121,122,124].
Provided that the adiabaticity criteria are maintained, RAP efficiently inverts the
population distribution, irrespective of the exact values of pulse and system pa-
rameters. In particular, RAP permits a population inversion in strongly inhomoge-
neous broadened media, if the maximal detuning of the RAP pulse, i.e. the total
chirp range, exceeds the inhomogeneous broadening [122,123].

The interaction of a RAP pulse with a single two-state system is depicted in
Figure 5.7 for a Gaussian (top row) and for a rectangular (bottom row) tempo-
ral shape of the Rabi frequency. In both cases A ,, = £7Q,,.,, the duration is
Tewam = 2694, and T = 20w, respectively. The system is initially prepared
in state |1), a RAP pulse is applied and the population is transferred into state |2).
We find that the Gaussian RAP pulse is capable to fully transfer the population,
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Figure 5.7: Two-state system driven by a RAP pulse of Gaussian (top row) and rectangular
(bottom column) temporal shape of the Rabi frequency. (left column) Rabi frequency and
detunings of the applied pulses. (center column) Population dynamics during the interac-
tion. (right column) Corresponding path of the Bloch vector on the Bloch sphere.

while the rectangular RAP pulse shows some residual diabatic oscillations due to
imperfect adiabaticity, see Figure 5.7 (center column). Figure 5.7 (right column)
depicts the RAP process on the Bloch sphere. The Bloch vector is initially pointing
along the (-z)-axis. In the beginning of the interaction the RAP pulse is strongly
negative detuned from the two-state system resonance, and the Rabi frequency
is rather small. Thus, the torque vector also points along the (-z)-axis, see also
Equation 2.14. During the RAP pulse, as the detuning A reduces, and the Rabi
frequency Q larger, the torque vector starts slowly moving into the positive direc-
tion of the z-axis. If the motion of torque vector is slow, compared to the coupling
between torque and Bloch vector, the Bloch vector follows the path of the torque
vector. This is also known as adiabatic following. At the end of the interaction
the RAP pulse is strongly positive detuned. If the adiabaticity condition is fulfilled
during the entire interaction, torque and Bloch vector are pointing into the z-axis,
with the system completely driven into state |2).

In the following we will describe the rephasing of a collective coherent super-
position using RAP [121]. Figure 5.8 depicts this rephasing process in an inho-
mogeneously broadened transition on Bloch sphere. We assume that the system is
initially prepared in a maximum coherent superposition. The free evolution time
before the rephasing RAP pulse is large compared to the dephasing time, thus
the individual coherences are completely dephased in the x-y plane of the Bloch
sphere. At the beginning of the RAP pulse the torque vector is pointing into the
(-z)-axis. Thus, the Bloch vectors of the individual coherences will start rotating
around the z-axis in the x-y-plane (in addition to their rotation due to their de-
tuning from the resonance, i.e. the reference frame of the Bloch sphere) in the
beginning of the RAP pulse, i.e. when it is far detuned from the center of the inho-
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Figure 5.8: Rephasing of a collective coherence prepared in a inhomogeneously broadened
transition using a RAP pulse. After the first RAP rephasing cycle the collective coherence
is not rephased. RAP imprints an additional phase shift, different for each ensemble of the
inhomogeneous line. A second RAP rephasing cycles compensates this phase shift.

mogeneous line. The rotation speed depends on the effective Rabi frequency, i.e.
the detuning of the individual coherences. Note that in principle each individual
coherence features its own torque vector with a individual detuning A depending
on the position in the inhomogeneous line. However, if we assume a initially large
detuning of the RAP pulse, compared to the inhomogeneous linewidth, the torque
vectors are almost identical. In a fully adiabatic limit the torque vector of the
RAP pulse moves slowly into the positive z-axis, with the dephased Bloch vectors
distributed on a disc perpendicular to the torque vector following the motion of
the torque vector. After the RAP pulse the system is inverted, and the Bloch vec-
tors are again in the x-y-plane. The phase evolution of the individual coherences
continues. However, the RAP pulse imprinted an additional, for each ensemble of
the inhomogeneous line different, phase on the individual coherences. Thus, after
a free evolution we find that the Bloch vectors do not point in a same direction
and thus only a imperfect rephasing is achieved, see with Figure 5.8 at t = 307.
Note that the dephasing, i.e. the individual phase accumulated during free evolu-
tion has been reversed, but the RAP pulse added an additional phase shift, which
depends upon the individual detunings of the ensembles. These additional phase
shifts also strongly depend on the pulse area A, and pulse duration 7 of the RAP
pulse [124]. The easiest way to compensate for these phase shifts is to apply a
second identical RAP rephasing process. The second RAP pulse imprints a phase
shift of opposite sign on the individual coherences and hence compensates for all
additional phase shifts accumulated during the first RAP pulse. We thus find the
individual coherences fully in phase after the second RAP rephasing process, see
Figure 5.8 at t = 607. Hence, RAP can be applied not only for efficient population
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transfer, but also for robust rephasing of atomic coherences in strongly inhomoge-
neous broadened systems.

We saw that RAP pulses should feature large detunings, compared to the Rabi
frequency, at start and end of the interaction, i.e. 2rAv/Q > 1. In addition, the
Rabi frequency and the detuning have to change slowly to fulfill the adiabaticity
condition of Equation 5.10. If we assume a resonant pulse, Equation 5.10 reduces
to 1 < Q2/R, with the chirp rate R = 2nd [A(t)]/dt, or in the case of a linear
symmetric chirp, R = Av/t, with the pulse duration 7. As long as these conditions
are fulfilled RAP pulses are rather robust against fluctuations, and variations of
the driving pulse parameters, and inhomogeneities of the two-state system. How-
ever, in order to achieve high fidelities rather long interaction times are required.
Usually the experimental parameters, i.e. the Rabi frequencies Q, chirp ranges
Av, and pulse durations 7, are limited. Thus, in many cases it is not possible to
perfectly satisfy the adiabaticity conditions. RAP suffers under weakly fulfilled adi-
abaticity conditions, and residual diabatic couplings limit the efficiency of RAB i.e.
the population transfer and rephasing efficiency become non-perfect. In order to
reduce the effects of residual diabatic couplings and to improve RAP under weakly
fulfilled adiabaticity conditions Torosov et al. [25] proposed the idea of composite
adiabatic passage (CAP), a combination of RAP and composite pulse sequences.
In the following section we summarize the theoretical idea of CAE and show the
first experimental realization of CAP under weakly fulfilled adiabaticity conditions
for rephasing of atomic coherences in PrYSO.

5.3.2 Theory on Composite Adiabatic Passage

The derivation of composite adiabatic passage (CAP) [25, 137] follows in large
parts the arguments of the theoretical derivation of universal composite pulses, as
described Section 5.2.1. However, in contrast to universal composite pulses, where
the only assumption on the pulses was, that all pulses of a sequence are identical,
we assume here a model in which the Rabi frequency Q(t) is a even function of
time, i.e. Q(t) = Q(—t) and the detuning A(t) is odd, i.e. A(t) = —A(—t). The
propagator of a driving field Q(t) — Q(t)e!* with constant phase ¢ is defined by

. a be'®
U= (_b*e_i¢ a* ) (511)

with the Cayley-Klein parameters a and b. The transition probability is p = |b|* =
1—|al?. Thus, a composite sequence of n identical pulses, each with is constructed
by a total propagator U™ as defined by Equation 5.4. Due to the assumptions
on the driving pulses the Cayley-Klein parameter a is real [138]. As an example,
for a CAP 3 sequence, with phases (0, ¢, 0), the transition probability reads P*® =
1—[UPP, with UP = a® —a|b’(1 + 2cos¢). With ¢ = 21/3 the second term
vanishes, giving U = a®. Thus, U'? and its first derivatives vanish for a = 0. For
a single pulse we only find Uﬂ) = a, thus the composite pulse features a enhanced
robustness, compared to the single pulses, with respect to variations around a = 0.
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Table 5.2: Theoretically calculated phases ¢ [25] for CAP sequences.

| n th CAP sequence | Phases ¢
CAP 3 (0,2,0) /3
CAP 5 (0,4,2,4,0) /5
CAP 7 (0,6,4,8,4,6,0) /7
CAP 9 (0,8,6,12,8,12,6,8,0) /9

For a CAP 5 sequence with phases (0, ¢,, ¢, ¢,,0), we find

Uﬁ) = a®—2a®b|*[1+2cos ¢, + cos(p, — Pp3) + cos ¢, ]

+a|bl*[1+2cos (¢, — p3) +2cos (2¢, — ¢3)]. (5.12)

Choosing phases ¢, = 4n/5, and ¢ = 27/5, nullifies all terms except the first,
thus Uﬁ) = a°. This derivation generalizes for an arbitrary number n of pulses. An
analytic formula describes the phases of the CAP sequence of an arbitrary number
n of pulses, which optimizes RAP against variations in the pulse area and the chirp

rate [25],
o S2E e

where k =1,2,...,n, and qb,((") is the phase of the kth pulse of the sequence. Table
5.2 depicts the theoretical phases for CAP up to n = 9 pulses per CAP sequence.

5.3.3 Experimental Results on Composite Adiabatic Passage

We apply the composite adiabatic passage (CAP) sequences, derived in the previ-
ous section, for rephasing of atomic coherences prepared by the EIT-LS protocol,
see Section 2.3 and Chapter 4. We investigative the performance and robustness
of CAP with respect to variations in experimental parameters, and compare with
RAP in the case of weak adiabaticity. We use the experimental setup as described
in Chapter 3, with the RF coil system #1, providing a maximal Rabi frequency
of Q = 21 - 145 kHz. We use the flat-top probe beam profile, and the smaller of
two control beam diameters. Note that for these experiments the OPO-SFG laser
system was not yet available. Instead a frequency stabilized dye laser system (Ma-
tisse DX, Sirah) provided radiation at 605.98 nm with a frequency jitter of about
100 kHz on a time scale of 100 ms.

Figure 5.9 depicts the schematic pulse sequence for EIT-LS, involving two
rephasing cycles. The storage time is chosen to be AT = 600 us, i.e. larger
than the dephasing time of the hyperfine states of the ground state *H, of PrYSO.
During the storage time the collective coherence, prepared by the EIT-LS protocol,
is rephased twice with RF pulses. These RF pulses directly couple the hyperfine
transition | +3/2) «- | £1/2), in which the collective coherence is prepared. They
are applied symmetric around AT /4 and 3AT /4 of the total storage time AT. Fig-
ure 5.9 shows as an example a CAP 5 sequence. Each pulse element of the CAP
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Figure 5.9: Schematic pulse sequence for EIT-LS, involving two rephasing cycles during
the storage time AT. As an example, the scheme shows a CAP rephasing sequence with
n = 5 pulses elements. Each element features a linear chirp with a total chirp range Av
symmetric around the hyperfine transition | £ 3/2) «<— | £ 1/2) of PrYSO, and a static phase
¢. The rephasing pulses are applied symmetric around AT /4 and 3AT /4.

sequence features a static phase ¢, and a linear chirp with a chirp range Av. The
chirp is applied symmetric around the resonance frequency of the hyperfine tran-
sition. The pulse elements feature a rectangular temporal shape and are applied
right after each other. Other CAP sequences and RAP pulses are applied in the
same way.

We measure the pulse energy of the retrieved signal pulse after the EIT readout,
and calculate the light storage efficiency ngxp, Which includes the efficiency of
the EIT-LS protocol, decoherence during the storage time AT, and the efficiency
of the rephasing techniques applied, compare with Section 2.3.3. In order to
compare the rephasing performance of CAP and RAB we maintain all experimental
parameters of the optical preparation, the EIT storage and readout process fixed,
while we vary the parameters of the rephasing sequences. In this way the light
storage efficiency ngxp depends only on the rephasing efficiency of the RAP and
CAP sequences and serves as a measure to compare the performance of CAP and
RAP Note that in the following experimental results the absolute measured light
storage efficiencies are rather low, because the parameters of the EIT-LS protocol
had not been adjusted for optimal storage. However, this does not affect the
comparison of RAP and CAB because here only the relative difference in the light
storage efficiency matters.

We investigate the performance of CAP and RAP in realistic situations of weakly
fulfilled adiabaticity conditions. In a first experiment we measure the light stor-
age efficiency versus the duration of the driving RF pulses, at a constant maximal
Rabi frequency of Q = 27 - 145 kHz. The RF pulses are applied with a rectan-
gular temporal shape to be able to clearly separate the single pulse elements of
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Figure 5.10: Light storage efficiency ngxp after the rephasing by diabatic resonant pulses,
RAP, and CAP versus the single pulse duration 7. The Rabi frequency was fixed at Q =27 -
145 kHz. Experimental data conducted with a fixed total chirp range of Av = 600 kHz (a)
and Av =900 kHz (b) for RAP and CAP. (c,d) Simulations and corresponding experimental
data for RAP and CAP 3, depicting the calculated inversion efficiency, proportional to ngxp.

the CAP sequences. In general, a rectangular temporal shape is not optimal for
adiabatic processes, compare with Section 5.3.1. We perform the measurement
for two different chirp ranges Av. In both cases the adiabaticity conditions are
fairly fulfilled. Figure 5.10 (a) shows the experimentally determined light stor-
age efficiency mgyp versus the single pulse duration 7 for diabatic resonant pulses
(r-pulses), RAP pulses and different orders of CAP sequences, with a total chirp
range of Av = 600 kHz. The single pulse duration 7 defines the duration of a sin-
gle pulse in the CAP sequence. Hence, the total pulse duration of a CAP sequences
is 7,,, = n- 7. Thus, RAP can be understood as a CAP sequence of order n = 1, with
the total pulse duration equal the single pulse duration. The CAP sequences are
applied with the theoretical phases as calculated in [25] and listed in Table 5.2.

The performance of the adiabatic process is mainly determined by the adia-
baticity of the driving pulses. A fair comparison thus requires the same adiabatic-
ity of the RAP pulses and CAP sequences applied for the rephasing process. We
compare RAP and CAP for the same single pulse durations. This leads to identi-
cal values of adiabaticity for the single pulses of the CAP sequences and the RAP
pulse, i.e. the same interaction time, and chirp rate. One could argue that this
comparison privileges the CAP sequence, because they feature in total a n times
larger interaction duration, compared to the single RAP pulse. However, note that
as we consider an imperfect RAP pulse, a sequence of n identical RAP pulses would
perform even worse. It is thus fair to compare a CAP sequence of n single pulses
each of duration 7, with a single RAP pulse of duration 7.

As Figure 5.10 (a) shows, the largest rephasing efficiency with a diabatic res-
onant pulse (black crosses) is achieved at a single pulse duration of about 3.4 us,
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which corresponds to a m-pulse with Q@ = 27 - 145 kHz. Here, the light storage
efficiency is approximately 1.15 %. As expected from a diabatic resonant coupling
the rephasing efficiency strongly decreases already for small variations in the sin-
gle pulse duration 7. The robustness improves for rephasing by RAP (solid red
square). High rephasing efficiency is achieved for single pulse durations between
4 us and 8 us. Compared to the m-pulse rephasing the maximal efficiency in-
creased by 13 %. However, we also find that rephasing by RAP still features some
pronounced variations of the efficiency with respect to the single pulse duration.
This can be assigned to the fact that the adiabaticity condition are only fairly ful-
filled. For the first adiabaticity condition (as introduced in Section 5.3.1), we find
with a chirp range of Av = 600 kHz and a Rabi frequency of Q = 27t-145 kHz, that
1 < 2nAv/Q = 4.14. Thus, the first adiabaticity condition is only fairly fulfilled.
Moreover the second adiabaticity condition, (/R > 1) varies, as the chirp rate R
depends on the single pulse duration 7. For the single pulse durations depicted in
Figure 5.10 (a), we find Q*/R = 0.11 — 3.74. Hence, also the second adiabaticity
condition is not well fulfilled, especially for small single pulse durations 7. Resid-
ual diabatic couplings render the efficiency of the RAP process dependent on the
actual single pulse duration. This explains the variations of the efficiency with
respect to the single pulse duration.

In a next step we exchange the single RAP pulses by CAP sequences with n
single pulses. All pulses feature the same Rabi frequency Q2 and chirp range A,
however they differ in their relative phases ¢. We find that all CAP sequences
clearly outperform the RAP pulses, see Figure 5.10 (a). The CAP sequences fea-
ture high rephasing efficiencies over a large range of single pulse durations. The
pronounced variations of the rephasing efficiency, observed using RAB completely
vanish in the case of rephasing by CAP sequences. Thus, the appropriately chosen
phases of the CAP sequences reduce the effect of the residual diabatic couplings
due to weakly fulfilled adiabaticity conditions. Already the CAP 3 sequence is
able to compensate the residual diabatic couplings. We find with increasing n,
that high rephasing efficiencies are achieved earlier, i.e. already for shorter single
pulse durations. However, the maximal rephasing efficiency does not significantly
increase for higher orders of CAP sequences. Thus, we have seen that CAP se-
quences can enhance the performance of adiabatic processes in situations of fairly
fulfilled adiabaticity conditions.

We repeated the measurements for a larger chirp range of Av =900 kHz, while
maintaining the Rabi frequency at Q = 27 - 145 kHz. This yields a better adiabatic-
ity, as the first adiabaticity condition now reads 2nAv/Q = 6.21 and should lead
to reduced residual diabatic couplings. Figure 5.10 (b) depicts the experimental
results. RAP still features strong variations in the rephasing efficiency, especially
for short pulse durations. This becomes clear if one checks the second adiabaticity
condition. Q?/R varies between 0.07 and 3.67 for single pulse durations between
0.5 us and 25 us. Thus, for short pulse durations the second adiabaticity condi-
tion is even fulfilled worse, compared to the case of Av = 600 kHz. However, at
longer single pulse durations both adiabaticity conditions are fulfilled better than
for the Av = 600 kHz case and we find reduced oscillations of the RAP rephas-
ing efficiency. The improved adiabaticity of RAP does not affect significantly the
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Figure 5.11: Light storage efficiency ngxp versus the total pulse duration 7, of the RAP and
CAP T sequences. The single pulse duration is given by 7 = n/7,. All pulses feature a
rectangular temporal intensity shape with a fixed Rabi frequency of Q = 27 - 145 kHz. The
experimental data on RAP consists of several measurements each with optimized chirp
ranges, from Ay = 0.6 MHz for short total pulse durations up to Ay = 3.2 MHz for the
longest total pulse durations. In the case of CAP the chirp range was fixed at Av = 0.5 MHz
for all total pulse durations. Corresponding numerical simulations are shown.

maximal rephasing efficiency. Again all CAP sequences outperform RAP in terms
of robustness with regard to variations in single pulse duration. However, we find
that low order CAP sequences can not fully compensate the lack of adiabaticity at
short single pulse durations, especially the CAP 3 sequence still seems to follow
the RAP behavior for short pulse durations in a range of 2 — 10 us. Neverthe-
less, the rephasing efficiency and robustness at short pulse durations improve for
higher order CAP sequences. We thus find that higher order CAP sequences can
compensate a larger lack of adiabaticity.

In order to validate our experimental data, we performed numerical simula-
tions of rephasing in an inhomogeneously broadened two-state system. In partic-
ular, we investigated the population inversion dynamics of the system driven by
RAP and CAB which is proportional to the rephasing efficiency in the case of an
EIT prepared coherence rephased by two rephasing processes. Figures 5.10 (c)
and 5.10 (d) depict the inversion efficiency versus the single pulse duration 7 for
Av = 600 kHz and 900 kHz, respectively. Simulations (solid and dotted lines)
and corresponding experimental data (solid symbols) for RAP and the CAP 3 se-
quence, as an example, are shown. We find the simulations fit the experimental
data very well. All main features, especially the strong variations in the rephasing
efficiency in the case of RAB could be confirmed by this simplified modeling of the
experiment.

So far we compared RAP pulses and CAP sequences under equal adiabaticity
conditions. This required identical Rabi frequencies, chirp rates, and single pulse
durations of the applied pulses. Therefore CAP sequences always exhibited a n
times larger total pulse duration with 7,,, = nt, compared to RAP pulses. We
show in the following a comparison of RAP and CAP from a more practical point
of view, with experimentally limited total interaction duration and limited Rabi
frequency. We thus compare the performance of RAP and CAP at same total pulse
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durations t.,. In addition, we optimize the total chirp ranges Av, in order to
achieve optimal chirp rates R for the given total pulse duration. This optimization
is done independently for RAP and CAP Hence, RAP and CAP might differently
fulfill the adiabaticity conditions.

Figure 5.11 shows the experimentally determined light storage efficiency ngxp
versus the total pulse duration 7, after rephasing by RAP pulses and the CAP 7
sequence. We separated the full range of total pulse durations 7,,, = 11—84 us into
7 intervals. In the center of each interval we optimized the chirp range Av of the
RAP pulses to provide maximal efficiency. With this optimized chirp range we then
measured the light storage efficiency for the total interval. This procedure was
repeated for all 7 intervals. The optimal chirp range varied from Av = 0.6 MHz
for short total pulse durations up to Av = 3.2 MHz for long total pulse durations,
keeping the adiabaticity condition Q%/R in the order of 3.2, depending on the
actual total pulse duration. We optimized the CAP 7 sequence in the same way.
However, for CAP we found that the optimal chirp range is almost independent
from the total pulse duration 7,.,,. We found the optimal value to be Av =500 kHz
over the full range of total pulse durations. This confirms that CAP is far less
sensitive to variations of the adiabaticity, for example due to changes in the total
pulse duration. Note that the CAP 7 sequence with Ay = 500 kHz exhibits a
chirp rate R which is larger than the chirp rates of the RAP pulses for almost the
full range of total pulse durations. Thus, the RAP pulses fulfill the adiabaticity
condition Q2 /R better, which makes this comparison very conservative.

The experimental data in Figure 5.11 confirm the enhanced robustness of CAP
with regard to variations in the total pulse duration. Especially for short total
pulse durations we find that RAP still suffers very much from the low adiabaticity.
Although both adiabaticity conditions yield values in the order of 3—4, RAP shows
pronounced variations of the rephasing efficiency with changes in the total pulse
duration. In contrast CAP exhibits already at short total pulse durations a high and
stable rephasing efficiency. The variations in the rephasing efficiency by RAP are
about a factor of 6 larger, compared to CAP. At long total pulse durations RAP and
CAP essentially yield the same rephasing efficiencies. The adiabaticity conditions
of the RAP pulses are here well enough fulfilled, thus CAP can not further improve
the rephasing process. We performed numerical simulations, as described before,
in order to confirm our experimental data. Figure 5.11 shows the results (solid
lines) for the corresponding experimental data. The simulation confirms the be-
havior of RAP and CAP quite well. We find a strong robustness of CAP over the
full range of total pulse durations. The simulation also confirms the experimental
results from RAB with strong variations in the rephasing efficiency at short pulse
durations, which vanish towards long pulse durations. These results prove the
superior robustness of CAP compared to RAP in situations of fairly fulfilled adia-
baticity conditions for equal total pulse durations 7., i.e. equal total interaction
times.

So far, we only discussed the stability of the applied rephasing pulses with
regard to variations in the pulse duration for a fixed Rabi frequency. However,
there might be also variations or fluctuations of the transition frequency of the
two-state system, as it is the case in inhomogeneously broadened media (also
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Figure 5.12: Light storage efficiency 7n)gxp after rephasing by RAP, and CAP versus the static
detuning A at 7 = 4 us (a) and T = 21 us (b). The Rabi frequency is Q = 27 - 145 kHz,
and the chirp range is fixed at Ay = 900 kHz. All rephasing pulses exhibit a rectangular
temporal shape of intensity. (c,d) Simulations of the inversion efficiency and corresponding
experimental data for RAP and CAP 3 at T =4 us (c) and 7 = 21 us (d).

in PrYSO), or even in the carrier frequency of the driving pulses. Both type of
variations lead to an additional static detuning A of the driving pulse from the
two-state resonance. In order to cope with this, the spectral bandwidth of the
rephasing process has to be larger than the bandwidth of the frequency variations.

In general, adiabatic processes, like RAB will offer robust operation with re-
gard to variations in the static detuning A, especially compared to diabatic -
pulses. However, CAP was initially not meant to compensate for additional static
detunings, as the derivation of CAP assumed a symmetric linear chirp around the
resonance of a two-state system. Thus, it is of interest to understand if the gain
in robustness with regard to the pulse duration (pulse area), leads to a reduced
robustness with regard to a static detuning A. compared to RAP We therefore add
an additional static detuning A to the driving RAP and CAP rephasing pulses. This
leads to an asymmetry of the linear chirp A(t) around the resonance frequency
of the | £3/2) <> |+ 1/2) transition in PrYSO in which the EIT-LS coherence in
prepared.

Figure 5.12 (a-d) shows the experimental results and corresponding simula-
tions for RAP pulses and CAP sequences. Depicted is the light storage efficiency
Nexp, and the inversion efficiency versus the static detuning A. For all measure-
ments the Rabi frequency was fixed at Q = 27 - 145 kHz, and the pulses featured
a rectangular temporal shape of intensity. The chirp range was Av = 900 kHz.
We performed measurements under fairly fulfilled adiabaticity conditions, i.e. at
short single pulse durations, and under slightly better fulfilled adiabaticity at long
single pulse duration. Figure 5.12 (a) shows the experimental results for a single
pulse duration of T = 4 us, when RAP reaches a first maximum in rephasing effi-
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ciency, compare with Figure 5.10 (b). However, RAP does not work very well at
this pulse duration, as the second adiabaticity condition only yields Q%/R = 0.6.
As expected, the rephasing efficiency exhibits a maximum at A ~ 0 kHz, when the
chirp is applied symmetric around the resonance frequency of the transition. Note
that the small shift towards negative static detunings is due to the fact that here
the resonance of the relevant hyperfine transition in PrYSO was assumed to be at
10.2 MHz, while it is actually found at 10.191 MHz. The efficiency quickly reduces
with increasing static detuning A and drops to zero at about A = £27 - 400 kHz.
Here the chirp is applied very asymmetric around the resonance. Thus, the total
chirp range of Ay = 900 kHz is not sufficient to fully cover the inhomogeneous
broadening of the hyperfine transition of PrYSO in which the coherence is pre-
pared. The single pulse duration of T = 4 us is of the order of the n-pulse duration,
which is about 3.4 us. Thus, the RAP couples the transition almost fully diabatic.
This explains the strong reduction of the rephasing efficiency between A = 0 kHz
and A = 27 - 150 kHz, which approximately corresponds to the bandwidth of the
RAP pulse, as Q = 27 - 145 kHz. Figure 5.12 (a) also shows the experimental
results for CAP sequences. All CAP sequences feature a quite complicated, peri-
odic variation of the rephasing efficiency with respect to the static detuning A.
As expected at A ~ 0 kHz all CAP sequences clearly achieve higher rephasing
efficiencies in comparison to the RAP pulses. However, already for rather small
static detunings the efficiency strongly reduces, even faster than it is the case for
RAP All CAP sequences show prominent sidebands for static detuning up to about
A = £27 - 600 kHz. Hence, we find that CAP does not provide a enhanced robust-
ness with respect to static detunings at the short single pulse duration of T = 4 us.

We repeated the experiment at a longer single pulse duration of T = 21 us,
while keeping the Rabi frequency and chirp range as before. Now we find the
second adiabaticity condition to be Q%/R = 3.1. Thus, RAP and CAP will suffer less
from residual diabatic couplings. We see in Figure 5.12 (b) that RAP and CAP yield
high and comparable rephasing efficiencies for A = 0 kHz. The spectral bandwidth
of the RAP pulses increases to roughly £27-300 kHz (FWHM). It is now limited by
the bandwidth of the adiabatic process, due to the chirp range Av, and no longer
by the bandwidth given by the Rabi frequency. For the CAP sequences we see that
the complicated structure found in Figure 5.12 (a) for single pulse durations of
T = 4 us completely vanished for 7 = 21 us in the range of static detunings be-
tween A = 27 - 200 kHz. All CAP sequences feature a stable and almost constant
rephasing efficiency, and perform slightly better than RAP Moreover, higher order
CAP sequences exhibit a larger operation bandwidth with respect to the static de-
tuning. However, the CAP 5 and CAP 9 sequences still show some oscillations of
the rephasing efficiency, especially for static detuning larger +2x - 250 kHz. The
CAP 7 sequence features the largest bandwidth of about 27 - 1000 kHz (FWHM).
Thus, CAP provides an improved spectral bandwidth and robustness compared to
RAB with regard to variations in the static detuning, though it was not originally
derived for this application. We note, that if we would apply CAP with the phases
of the universal composite pulses, introduced in Section 5.2, one might obtain
a even more robust behavior with respect to the static detuning. We again per-
formed numerical simulations of an inhomogeneously broadened two-state sys-
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tem. Figure 5.12 shows the results for a single pulse duration of T = 4 us (c)
and 7 = 21 us (d). Simulations for RAP (solid red line), CAP 3 (dashed green
line), and corresponding experimental data are depicted. The simulations clearly
confirm our experimental results.

5.3.4 Conclusion

In the previous section we demonstrated a experimental implementation of com-
posite adiabatic passage (CAP). CAP was originally proposed as an extension of
RAB i.e. to improve RAP in situations of fairly fulfilled adiabaticity, for an efficient
and robust inversion of the population distribution in a two-state system [25].
CAP is a composite version of RAB consisting of a sequence of RAP pulses with
appropriate chosen relative phases. The ability to precisely control these relative
phases, i.e. within a few degrees, is essential for CAP. It is only these phases which
makes the adiabatic passage driven by a CAP sequence robust in situations of oth-
erwise fairly fulfilled adiabaticity conditions. Thus CAP can only be applied to
enhance RAP if a relative phase control is possible. We used CAP for rephasing of
atomic coherences, prepared by EIT-LS in PrYSO, driven by RF radiation pulses. We
compared the rephasing performance of CAP and RAP at different degrees of adia-
baticity. In particular, we systematically investigated the variation of the rephasing
efficiency with respect to changes in the pulse duration and static detuning. We
found that if the adiabaticity conditions are only fairly fulfilled, CAP is capable
to strongly reduce the residual diabatic couplings visible for RAP pulses, leading
to a high rephasing efficiency, irrespective of the exact choice of the experimental
parameters, i.e. pulse duration and static detuning. These characteristics of CAP
can be of interest, whenever an efficient and robust state manipulation is required,
and full adiabaticity can not be provided due to experimental restrictions.

5.4 Single-Shot Shaped Pulses

We saw in Section 2.1 that diabatic interactions can feature in general a high fi-
delity, i.e. rephasing or inversion efficiency, if the pulse parameters are chosen very
carefully, i.e. appropriately, within a small parameter range. Unfortunately, any
variations from the optimal pulse parameters will substantially reduce the fidelity.
Thus, diabatic interactions exhibit a low robustness with regard to variations or
fluctuation of experimental parameters. We saw in Section 5.2 that composite
pulses, in particular UCB can be used to enhance the robustness of a diabatic inter-
action for any type of experimental fluctuations. However, larger total pulse areas
and a precise phase control are necessary to achieve this stability. In the previous
section we applied the idea of composite pulses on adiabatic passage processes to
compensate for the lack of adiabaticity. In general, adiabatic processes feature a
great robustness as long as the adiabaticity conditions are fulfilled well. However,
often experimental limitations, especially in the long interaction times, required
by the adiabatic processes, inhibit a sufficient fulfillment of the adiabaticity con-
ditions. Recently techniques based on parallel adiabatic passage [139, 140], and
shortcuts to adiabaticity [125, 126], were developed to optimize the speed of the
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adiabatic process, in order to overcome these limitations. The latter also includes
single-shot shaped pulses (SSSP). These types of pulses can be derived by analytic
control techniques for simple tasks like population inversion [26, 127], and can
be combined with numerical optimal control techniques [141, 142] to reach more
complex target states. They yield solutions of pulses with complex time depen-
dent Rabi frequencies and detunings, which are able to drive a system from its
initial state to a desired final state in a fast and robust way. We demonstrate here
the first experimental application of single-shot shaped pulses. We experimen-
tally demonstrate the applicability, efficiency and robustness of SSSP to rephase of
atomic coherences prepared by in PrYSO. Next we give a short introduction on the
derivation of single-shot shaped pulses, which is followed by a description of our
experimental results.

5.4.1 Derivation of Single-Shot Shaped Pulses

We provide here a short derivation of SSSB and would like to refer the inter-
ested reader to [126] for a general introduction on shortcuts to adiabaticity, and
to [26, 127] for a comprehensive review on single-shot shaped pulses. In the
following, we will only describe the general idea of the derivation of SSSP and
present one specific solution. The derivation given here combines the advantages
of analytical and numerical optimal control approaches, i.e. smooth and not too
complex general solutions, which still provide high fidelity. It is based on the idea
to achieve robust pulses in an perturbative expansion of the excitation profile [26].
In a first step, a specific analytic parametrization of the pulse based on continuous
trigonometric functions is derived. This is the key difference to known methods
which usually make use stepwise functions, as it is for example the phases of com-
posite pulses. The parametrization typically leads to a set of about ten parameters
determined by analytical procedure and further optimized by an numerical opti-
mal control procedure, based on the Gradient Ascent Pulse Engineering (GRAPE)
algorithm [143,144]. We consider a two-state system, driven by a coherent field.
The Hamiltonian of the system in rotating-wave approximation reads

Ao H[O Q] A[-6 afQ

where Q (t) = Q(t)e ™" = Q,(t)—ifQ,(¢) is the time-dependent complex Rabi fre-
quency with a real and positive amplitude Q(t) and the phase n(t) = f Ot A(t)dt'.
We define the time dependent (controlled) detuning A(t) = w;,— w(t) in contrast
to Section 2.1. We also assume an additional unknown detuning &, which could
be due to an inhomogeneous broadening, or a detuned driving field. Also we de-
scribe possible variations of the Rabi frequency by a scaling factor a. The idea is
to determine the shape of the complex Rabi frequency Q.(t) of the pulse such that
it is robust with regard to variations of the parameters 6 and a. We parametrize a
general solution |¥,) of the TDSE ih% |W,) = H,|¥,), by a mixing angle 0, a relative
phase y and a global phase y in the form:

e/ cos(0/2) ] —

|“IJO) = |:e—i;(/2 SIH(Q/Z) (515)
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Inserting Equation 5.15 into the TDSE we find,

0 = Q,siny +Q, cosy,
¥ = ycosO, (5.16)
y = ﬁ(ﬂxcosx—ﬂysinx).
From this set of non-linear differential equations one can calculate the components
of the Rabi frequency:

Q,=0siny +7sin6cosy, Q,= 6 cos y —7sin O sin y (5.17)

A NOT-type gate operation can be described by the propagator
. 0 _e—iK‘
UO = |: i 0 ] (518)

with a target phase x, which can be freely chosen, driving the system from
an initial time t; = 0 to a final time t; = T, with the final state given by
|W,(T)) = U,|¥,(0)). For the traceless Hamiltonian I—AIa,é- the elements of a gen-
eral propagator U take the form U, = U,, = a, and U,, = —Uj, = b, with complex
numbers a and b. We thus can reduce the problem to driving the system from an
initial state |¥,(0)) = |1) to the final state [¥,(T)) = e*|2), which means fixing the
boundary conditions to: 6; =0, y; = Xis and y; = —2x — y;. The transfer pr?ﬁle
(Wo(T)IW, 5(T)), where ¥, 5(T)) = U|¥,(0)) is the solution of the TDSE for H, 5,
is expanded in a power series of a and 6. The robust SSSP trajectory is derived,
with the restrictions of low total pulse area, and pulse amplitudes, with regard to
variations in a and 6. To do so, y(6), and 6(t) are expressed as a function by sine
Fourier series:

N M
_erpn ) m ) T
(O =7(0)=z+20 + ) C,sin(2n0), 0(t)= T+ m§:1: 6, sin (Zm?t) (5.19)

n=1

The coefficients C,, and 6,, are then determined via the perturbation expansion.
However, it is rather difficult to identify higher order coefficients. Thus, the ana-
lytic perturbation expansion is only used up to the second order coefficients. In a
second step, the higher order coefficients are determined by the numerical GRAPE
algorithm, maximizing the fidelity J for a defined range of variations of a and &,
with J defined as,

J= %R[Tr(UgU)] =R((¥,(T)¥,5(T))). (5.20)

Table 5.3 shows the resulting coefficients C, and 6,,, derived by the numeri-
cal optimization. The pulse was optimized for variations a = [—0.5...0.5], and
6 = [—0.375Qax---0.375Q .- Here Q... is the peak Rabi frequency of the opti-
mized pulse. Figure 5.13 (right) depicts the fidelity J of a single two-state system
driven by the single-shot shaped pulse, defined by the coefficients in Table 5.3.
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Table 5.3: Resulting coefficients C,, and 0,, from the numerical optimization, defin-
ing the single-shot shaped pulse, optimized for variations a = [—0.5...0.5], and § =
[—0.375Qmax---0.375Q . |, With Q_ .. the peak Rabi frequency of the pulse.

o C, Cs C, Cs pulse area [in units of 7]
2.3347 -1.9450 0.3944 -0.1139 -0.3723 5.06

0, 0, 0, 0, 05 fidelity J
-0.0990 -0.1176 -0.0394 -0.0119 0 0.95

The black dotted box indicates the optimization range in variations of a and &.
The pulse features a high robustness with regard to variations of up to 50 % from
the optimal Rabi frequency, and also with regard to variations in the unknown
detuning 6. The corresponding time-dependent Rabi frequency and detuning A
of the pulse are shown in Figure 5.13 (left). The pulse has a rather smooth sym-
metric shape in the Rabi frequency. From the time-dependent detuning A one
finds that the pulse can be divided into three parts, separated by two steep large
detunings. These features can be interpreted as rapid phase changes, comparable
to the phase changes of composite pulses. In the first part the pulse is positively
detuned, driving the system off resonant, i.e. adding an additional phase factor
to the system. The second part features a almost linear change in the detuning,
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Figure 5.13: (left) Time-dependent shape of the SSSP, i.e. complex Rabi frequency €2, Q,,
real Rabi frequency 2 and detuning A in units of the pulse duration T. (center) Bloch
sphere picture of an SSSP driving a population inversion. (right) Fidelity J of the single-shot
shaped pulse, as defined by coefficients of Table 5.3 with respect to variations in a and 6.
Black dotted box indicates the optimization range.

crossing the resonance of the system, comparable to RAP. The third part is nega-
tively detuned otherwise identical to the first part, compensating the phase factor
of the first part. Figure 5.13 (center) depicts the SSSP driving a population inver-
sion on the Bloch sphere. For an experimental implementation of SSSE the rather
complex shaped Rabi frequency and detuning have to be controlled with a high
precision. In contrast to CB CAB or RAB with their constant relative phases as only
control parameters, SSSP requires a much more delicate control over experimental
parameters.
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5.4.2 Experimental Results on Single-Shot Shaped Pulses

We investigate the performance of the SSSP derived in the previous section. We
apply the pulses for rephasing of a coherence, prepared by an RF-7t/2,-pulse in the
hyperfine transition | +3/2) «— | £1/2) in PrYSO, compare with Section 5.1.1. In
the following measurements the coil system #2, described in Section 3.3, is used.
The rephasing pulse sequence is comparable to the schematic depicted in Figure
5.2, i.e. the standard Hahn spin echo sequence. The storage time AT is 300 us,
larger the dephasing time T,,,,. In contrast to Figure 5.2 where the RHD pulse
for detection is applied after the total storage time AT, with the rephasing pulse
applied symmetric during the storage, we apply here the detection pulse about
75 us earlier, i.e. before the coherence are fully rephased. Note that full rephasing
is achieved after 300 us, as the SSSP pulse is applied 150 us after the coherence
preparation.

We first investigate the rephasing capability, i.e. rephasing efficiency 7,,,, nor-
malized to the maximal rephasing efficiency of the m-pulse, of the SSSP with re-
spect to variations in the pulse duration T and the peak Rabi frequency Q... We
compare the results with the standard Hahn spin echo by a diabatic pulse of rect-
angular temporal shape. Figure 5.14 (1E) show the rephasing efficiency by stan-
dard diabatic pulses. We find regions of high rephasing efficiency for pulse areas
of 7, 37, and 57 following the expected hyperbola, as the pulse area A = Q,,,T.
However, high rephasing efficiency is only achieved for precisely defined combi-
nations of peak Rabi frequency Q,,., and pulse duration T, i.e. a low robustness
with respect to variations of these experimental parameters. We also find that the
maximal rephasing efficiency decreases from the m-pulse towards the 57-pulse,
due to averaging effects by the inhomogeneous broadening of the hyperfine tran-
sition, and inhomogeneities of the applied RF field, i.e. variations in the applied
peak Rabi frequency Q...

Figure 5.14 (2E) depicts the rephasing efficiency 7,.,, for the single-shot
shaped pulse. We find a broad region of almost constant and high rephasing effi-
ciency. As expected from theory, the highest rephasing efficiencies are achieved for
Q< T = const. following a hyperbolic behavior. The maximal rephasing efficien-
cies achieved by n-pulses and single-shot shaped pulses are comparable. However,
the rephasing efficiency of SSSPs depends much less upon small variations in the
experimental parameters. Note the quite different scales of the pulse durations T.
For diabatic rephasing the pulse duration T is changed between 0.2 us and 8 us,
while for the SSSP the pulse durations are a factor of 10 larger. Thus, the SSSP
features much better robustness compared to the rephasing by m-pulses.

In order to compare our experimental results on SSSP with the theory, origi-
nally derived for a single two-state system, we expanded the numerical simulation,
taking into account the inhomogeneous broadening of the hyperfine transition in
PrYSO, and inhomogeneities of the RF coil system. The simulations for the corre-
sponding experimental data are shown in Figure 5.14 (1S) and (2S). Experimental
data and simulations show a good agreement for the diabatic rephasing. However,
the reduced rephasing efficiency for 37, and 57-pulses could not be reproduced
by the simulation. Also in the case of the SSSP the simulation shows the over-
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all hyperbolic behavior of the experimental data, though smaller structures could
not be reproduced. This could be due to the limited frequency bandwidth of the
impedance matching used to match the RF coils to the amplifier, which might
modify the actual SSSP pulse applied at the coil system.

Second, we investigate the rephasing efficiency 7,,,, versus the pulse duration
T and the static detuning 6. For this measurement we kept the Rabi frequency
fixed at Q,,, = 27 - 125 kHz. Figure 5.15 (3E) show the result for rephasing with
the diabatic pulse. We find the highest rephasing efficiency around 6 ~ 0 kHz, and
a pulse duration of T = 4 us, which fits to Q,, = 27 - 125 kHz for a n-pulse. The
efficiency is very sensitive to small deviations from the optimal pulse parameters.
The experimental results for the SSSP is depicted in Figure 5.15 (4E). The highest
rephasing efficiency is achieved at 6 = 0 kHz and a pulse duration of T ~ 30 us.
The SSSP features a better robustness with respect to the pulse duration T, and a
comparable robustness with respect to the static detuning 6, in comparison to the
diabatic rephasing.

Note we found that for static detunings & # 0 kHz the detected RHD signal is
slightly shifted in time. We address this to the effective change of the time depen-
dent detuning of the pulse relative to the transition frequency of the system. Due
to the quite linear chirp in the center of the SSSB a static detuning 6 # 0 kHz shifts
the position in time when the SSSP crosses the transition of the system, which ef-
fectively changes the time the system is rephased. In order to detect the full RHD
signal the optical readout pulse is thus applied earlier compared to the expected
rephasing of the coherence. Note that this is not necessary if N = 2 rephasing
cycles are applied. In this case the time shift introduced by the first off resonant
SSSP rephasing cycle is compensated by the second rephasing cycle. We performed
numerical simulations including the inhomogeneous broadening of the hyperfine
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Figure 5.15: Rephasing efficiency
Nreph Versus the pulse duration T
and the static detuning 6 for a di-
abatic (1) pulse (3) and the single-
shot shaped pulse (4). The peak
Rabi frequency is fixed at Q. =
2m - 125 kHz. Experimental data (E)
on the left column, and correspond-
ing simulations (S) on the right col-
umn. The depicted rephasing effi-
ciency is normalized with respect
to the rephasing efficiency achieved
with a m-pulse.
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transition in PrYSO, and inhomogeneities of the RF coil system. Figure 5.15 (3S)
and (4S) depict the simulation results for the corresponding experimental data
(3E) and (4E). Experimental data and simulations show a very good agreement
for the diabatic pulse, as well as for the SSSP pulse. Also, even the small structures
of the SSSP experimental data could be reproduced by the simulation.

5.4.3 Conclusion

We performed the first experimental demonstration of single-shot shaped pulses,
designed to achieve a robust and high-fidelity NOT-quantum-gate operation. These
pulses emerge from the ideas of shortcuts to adiabaticity, searching for robust and
shorter pathways compared to usual adiabatic passage processes. The derivation
combines the advantages from an analytic parametrization with a numerical op-
timization procedure, which allows a strong reduction of the parameters to be
optimized. Here one possible solution with a smooth time dependent Rabi fre-
quency Q and detuning A, and a optimal pulse area of only 5.06 was presented.
We applied this SSSP for rephasing of atomic coherences directly prepared by an
RF-1t/2-pulse in the inhomogeneously broadened hyperfine transition of PrYSO.
We demonstrated the capability of SSSP to efficiently rephase the prepared atomic
coherences. We investigated the robustness of SSSP with regard to variations of
the pulse duration T, the peak Rabi frequency Q,,., and the static detuning 6 and
compared the experimental results with diabatic rephasing by a single m-pulses.
We found an enhanced robustness especially with regard to variations in pulse
duration T and peak Rabi frequency ,,.,. Thus, single-shot shaped pulses can be
an alternative technique whenever strong fluctuations or variations of experimen-
tal parameters, or experimental restrictions on adiabaticity, prevent the usage of
diabatic and adiabatic techniques.
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Chapter 6

Composite Pulses
for Dynamic Decoherence Control

So far, we showed advanced composite techniques for rephasing of atomic coher-
ences in an inhomogeneous broadened media, where they feature a high robust-
ness with respect to variations in the experimental parameters, e.g. compared
to diabatic n-pulse. As long as the phase evolution of the individual coherences
prepared in the inhomogeneous line is reversible, i.e. pure dephasing, these se-
quences can efficiently rephase the system. However, in many systems the inter-
action with the environment introduce additional stochastic changes in the phase
evolution, compare with Chapter 1 and Section 2.3.4, which lead to irreversible
decoherence. One promising technique to avoid decoherence phenomena is dy-
namic decoherence control (DDC). This technique focuses on the reduction of
decoherence by minimizing the interaction of the system with the noisy environ-
ment. Effectively the system is decoupled from the environment.

In this chapter we investigate the performance of UCP for DDC, and compare
with familiar dynamical decoupling (DD) sequences, e.g. CPMG [131,132], Knill
DD (KDD) [145], UDD [146] and KDD in XY4 [93, 147] sequences. We compare
the performance of these DD sequences in the case of directly prepared coher-
ences, by RF-mt/2-pulses, and coherences generated by the EIT-LS protocol. In
addition we experimentally demonstrate recently derived universal robust (UR)
sequence for DDC. For simplicity we investigate here only CP (not RAP and SSSP)
for DDC. We already saw that CPs perform quite well for rephasing, and are much
easier to implement experimentally than RAP and SSSP. Our aim is to determine
the DD sequence which yields the best performance for EIT-LS, i.e. with regard
to the efficiency. In addition this DD sequence has to works independent of the
coherence phase, i.e. with the same fidelity for any arbitrary coherence phase,
as the phase information is of high relevance for future applications of EIT light
storage.

6.1 Implementation of Dynamical Decoupling Sequences

We use dynamical decoupling (DD) sequences in order to reduce decoherence due
to system-environment interactions. These DD sequences usually are applied in
a series during the total storage time AT. In order to achieve a fair comparison
between different DD sequences, we define three types, with different definitions
of a decoupling cycle, see Figure 6.1. For the well known CPMG sequence the
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decoupling cycle consists of a single 7,-pulse applied centered during the cycling
time 7.. The total storage time is thus given by AT = N7, with N the number
of decoupling cycles applied. In order to compare this CPMG DD sequence with
other DD sequences based on composite pulses, such as UCP or KDD, we first
define time separated DD sequences where the pulses of a CP sequence are applied
time separated, each centered during the cycling time 7.. The duration of a full
decoupling cycle is thus given by the order n of the CP sequence times the cycling
time 7., and the total storage time by AT = Nnt.. This definition allows a fair
comparison of CPMG DD sequences and CP DD sequences, as the only difference
are the phases imprinted on the pulses of the CP sequence. Second, we define
non-time separated sequences, where the full composite pulse is applied without
a time separation during the DD cycle with a cycling time 7, i.e. the usual way CP
are applied. Here, the single pulse of the CPMG DD sequence is just replaced by a
full CP sequence. Thus the total storage time es given again given by AT = N~,.
As an example, Figure 6.1 depicts time separated and non-time separated DD
sequences for a CP sequence consisting of n = 3 pulses. Dynamic decoherence

p— TC — N 1 1
CPMG &2
DD sequence : + _ Figure 6.1: Schematic of different
— I :N' decoupling cycles for CPMG DD
: Ba— : sequences, time separated DD se-
time separated Ty ' T \ T R
DD sequences 1 o 2 quences, and non-time separated
— ' ’ ——> DD sequences, here as an exam-
— T, N : : ple for a CP sequence consisting
non-time separated ™ E E of n = 3 pulses.
DD sequences CP : !

time [arb. units]

control becomes most effective if the cycling time 7, is much shorter than the
correlation time 7., of the system, i.e. the time scale of system-environment
interactions. However, usually one cannot specify a specific time scale of these
interactions, but a distribution of time scales on which these interactions occur.
Thus, the effectivity of the DD sequences depend strongly on the cycling time 7,
with which the pulses can be applied.

6.2 DDC for Coherences prepared by RF-Pulses

In the following section we present experimental results on DDC of atomic co-
herences, which are prepared by RF-7t/2-pulses in PrYSO. The storage medium is
prepared as described in Section 5.1.1. We create a collective coherence by a res-
onant RF-7t/2-pulse with a frequency of w = 27-10.2 MHz, a duration of T =5 us,
and a Rabi frequency of Q ~ 27 - 50 kHz, covering the inhomogeneous linewidth
of the hyperfine transition in PrYSO. Since thermal heating effects arise when we
apply many RF decoupling pulses, we use here the RF coil system #2 (compare
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Figure 6.2: (left) Experimental results on CPMG DD. Depicted is the normalized, integrated
RH signal versus the total storage time AT of an initial coherence prepared by an RF-11/2¢-
pulse (black squares) with a fit of an KWW function (black line), and by an RF-1t/2-pulse
(green squares). As a reference the coherence lifetime was also determined by s simple
HSE experiment (red dots). (right) Integrated RH signal versus the phase ¢ of the initial
RF-7t/2-pulse at a fixed total storage time of AT = 13 ms, i.e. N = 52 decoupling cycles.

with Chapter 3) to minimize eddy currents and apply weaker RF pulses in compar-
ison to Chapter 5 in order to minimize thermal heating effects. The experimental
parameters of the decoupling pulses, i.e. t-pulses, are fixed to a pulse duration of
T = 10 us and a Rabi frequency of Q ~ 27 - 50 kHz. The remaining free experi-
mental parameters are the phases of the decoupling pulses, the type of decoupling
cycle, the number of decoupling cycles N and the cycling time 7.. We detect the
collective coherence after a storage time AT by RH detection, see Section 5.1.1.

In a first measurement we investigate the performance of the CPMG DD se-
quence [132], consisting of a simple train of m,-pulses. We fix the cycling time
to 7, = 250 us, and change the total storage time AT by varying the number of
decoupling cycles N, with AT = Nt.. Figure 6.2 (left) depicts the normalized in-
tegrated RH signal versus the total storage time AT for two different phases ¢ of
the initial RF-7t/2,-pulse. Note that the phase y of the initially prepared collective
coherence is given by y = ¢ + 90°. The coherence decay by a Hahn spin echo is
also depicted (red dots) for comparison, leading to a coherence lifetime of about
580 us confirming previous results [27]. The slight oscillation on the HSE decay
might be attributed to a not fully suppressed dark state beating [148].

We find a large increase of the coherence lifetime for the DD sequences com-
pared to the simple HSE. We thus could effectively decouple the system from the
environment. However, the coherence lifetime strongly depends on the phase y of
the initially prepared coherence [93,132]. If the coherence is prepared by a 7/24,-
pulse (black squares) we observe a single, however stretched exponential decay
of the retrieved RH signal. A fitting of Equation 5.1 yields a stretching factor of
B = 0.56 and an effective coherence lifetime T, = 25.4 ms (black line), an increase
by a factor of about 50, compared to the coherence lifetime determined by the
HSE. If the coherence is prepared by a n/2,-pulse (green squares), i.e. the coher-
ence features a phase y = 90° with respect to the decoupling m,-pulses, we observe
a signal decay on a fast and a slow time scale. The fast decay can be attributed
to pulse area errors of the decoupling pulses, which in this configuration add up,

89



Chapter 6. Composite Pulses for Dynamic Decoherence Control

. LRI S VL S | 45 o S o 151
10 /r\% : : @) . @ 4op o et AT=1.5ms (b) =
E‘ by ! —r 2 - [ ' 35 S :
S 08f | | | N 3 30 w0 LTG . <
8 : | | TI720 -[ LS ]250ps g > I w2 - ]N ()
— 06} | —o—m2 - ]N @, 25} 0 LY * §
o] i ) o0 T LTh basus = e {150 *
c | | 2 N © 20 %
2 o4} ! ! o [T Lzs,e S 1sf o
T | | (%] 10l . 9
o o2} : : I Z
¥ i X o05¢ Icl
| | i G, °
0.0 b Ll L e AR 0.0 L L L L L L L 149 +
0.1 1 10 100 1000 10000 0 100 200 300 400 500 600 700 800
total storage time AT [ms] cycling time t_[ps]

45 r . . —— . r . 4.5 r r . . . . r 101
@ 40k, —r—mw2 -] AT=10ms (c) E @ aof —r—mz -] AT=100ms (d) £

S as)n N S a5 ‘
5 351 ™ WZO-[T%]IE '21 5 3° TV2O-[T[0]1q '21
= 30} ""'_"-..._- o o 30of : o
&, 25) '-,,, £ & 25f, £
< 20} 1% 0 5 20f% 100 g
[ . (o)) c a o
D 15¢ L © o 15} = ]
n =, o n ~ I=]
T 101 5 T Lo 2
@ osf. < X osf e
00 1 1 1 1 1 1 1 9 9 0.0 1 1 1 [—| 0 9

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
cycling time t_[ps] cycling time t_[us]

Figure 6.3: (a) Normalized, integrated RH signal versus the total storage time AT for cycling
times 7. of 250 us (solid squares) and 25 us (open squares) prepared by a m/2,-pulse
(green symbols) and a 7/2¢-pulse (black symbols). (b)-(d) Integrated RH signal versus the
cycling time 7. for fixed total storage times AT of approximately 1.5 ms (b), 10 ms (c), and
100 ms (d). Gray symbol/lines depict the actual total storage time AT.

and thus lead to a fast reduction of the retrieved signal [132]. Due to these pulse
errors, after a few decoupling cycles the phase information of the initial coherence
is lost, and the decoupling pulses have mapped a small fraction of the initial coher-
ence onto the axis of rotation of the decoupling pulses, defined by their phase ¢.
Thus, the second decay features the same decay time as the coherence prepared
by the 7/24,-pulse (black squares), just with a reduced signal. We measured the
dependence of the retrieved signal with respect to the phase ¢ of the n/2-pulse,
i.e. with respect to the phase y of the initial coherence at a fixed storage time of
13 ms, i.e. for N = 52 decoupling cycles, see Figure 6.2 (right). We find that the
retrieved signal strongly depends on the phase of the initial coherence. We can
conclude that the CPMG sequence is not capable to preserve any arbitrary initial
state with equal fidelity [93]. CPMG DD works efficiently for one specific initial
state only. Moreover, all other initial states are strongly modified due to pulse er-
rors, and finally mapped onto the rotation axis of the decoupling pulses, compare
also with Figure 6.7. Thus, the CPMG DD sequence is not suitable to protect an
arbitrary quantum state from unwanted interactions with the environment in the
presence of pulse errors.

So far we performed CPMG DD with a fixed cycling time 7, of 250 us. This
cycling time was already short enough to increase the effective coherence time of
the system, i.e. to partially decouple the system from the environment. However,
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the degree of decoupling strongly depends on the applied cycling time. In the
following, we investigate the effect of the cycling time 7. on the coherence life-
time. Figure 6.3 (a) shows the experimental results for CPMG DD sequences with
cycling times 7, of 250 us (solid squares) and 25 us (open squares), for an initial
1/2,-pulse (green) and a 7/24,-pulse (black). The coherence prepared, by the
1/24y-pulse, i.e. onto the axis of rotation of the decoupling pulses, shows a strong
increase of the coherence lifetime by a factor of more than 8 towards T, = 209 ms,
compared to 7. = 250 us, with a similar stretching factor of f = 0.61. For the
coherence prepared, by the 7/2,-pulse, i.e. perpendicular to the axis rotation of
the decoupling pulses, we find for 7, = 25 us the fast decay to be shifted towards
shorter total storage times AT. For both cycling times the initial coherence is lost
after about N = 15 decoupling cycles, i.e. after a total storage time of AT =157,
with a small fraction of the initial coherence mapped onto the axis of rotation of
the decoupling pulses. This result confirms the origin of the fast decay, arising
from pulse area errors.

In order to further investigate the dependence of the coherence lifetime on the
cycling time, we measure the retrieved RH signal versus the cycling time 7, for
fixed total storage times AT, see Figure 6.3 (b-d). Hence, we choose combina-
tions of decoupling cycles N and cycling times 7, such that AT = const. Due to
experimental limitations it is not possible to use any desired combination of 7,
and N, thus the total storage time still varies in the order of a few %. Figure 6.3
(b-d) shows the experimental results for approximate total storage times AT of
1.5 ms (b), 10 ms (c), and 100 ms (d). For each AT we vary the cycling time 7,
between 15 us and about 800 us. We find for the coherence prepared by a m/24,-
pulse, it is the best to use as small cycling times as possible, for any AT, see Figure
6.3 (b-d) (black solid squares). Because pulse area errors do not affect a coher-
ence on the axis of rotation of the decoupling pulses, best decoupling, i.e. reduced
decoherence, is achieved for extra short 7.. We also investigated a version of con-
tinuous decoupling, i.e. applying a weak, continuous RF field during the whole
storage time AT (not shown here). We found this leads to cooling problems of
the PrYSO crystal, due to thermal energy input induced by eddy currents in the
crystal mount, which results in a reduction of the coherence lifetime. In Figure
6.3 (d), i.e. at AT =100 ms, we find for both phases ¢ of the initial 7/2-pulse an
identical dependence with respect to changes in the cycling time 7., except from
the strong difference in the absolute signal. This confirms the assumption that for
an 7/2,-pulse and N > 15 decoupling cycles the coherence is mapped onto the
axis of rotation of the decoupling pulses, i.e. coherence at AT = 100 ms feature
the same phase y. In Figure 6.3 (b), i.e. at AT = 1.5 ms, we find a quite different
behavior. Up to about 7, = 250 us the retrieved RH signal increases. We attribute
the signal reduction at very short cycling times to the pulse area errors of the de-
coupling sequence, and the reduction towards long cycling times to an insufficient
decoupling, and thus to decoherence. For AT = 1.5 s we find the best compromise
between both effects, i.e. a efficient decoupling of the system without a reduction
due to pulse area errors, at a cycling time of T, = 250 us. Note that the optimal
cycling time strongly depends on the actual total storage time AT.
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In the following, we use UCP [24], see also Section 5.2, for dynamical decou-
pling. We apply UCP as non-time separated sequences, compare with Figure 6.1.
We keep the cycling time fixed at 7, = 250 us. Figure 6.4 depicts the experimental
results for UCP DD. The RH signal is normalized with respect to the maximal sig-
nal retrieved by CPMG DD. In a first step we measured the dependence of the RH
signal with respect to the phase ¢ of the initial /2 ,-pulse at a fixed total storage
time of AT = 13 ms. The results are shown in Figure 6.4 (f). At this storage time
the decoupling efficiency of the UCPs depends on the phase ¢, i.e. the initial phase
y of the coherence, comparable to the situation of CPMG DD, depicted in Figure
6.2 (right).
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Figure 6.4: Integrated RH signal versus the total storage time AT for UCP decoupling
sequences USa (a), U5b (b), UZa (c), UTb (d), and Ul3a (e), for fixed cycling time of
7. = 250 us. (f) RH signal versus the phase ¢ of the initial 7r/2-pulse for UCP sequences
at a fixed total storage time of AT = 13 ms. The resulting best and worst phases from (f),
were used as the phases ¢ of the initial /2 ,-pulse for the measurements (a)-(e).
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In a second step, see Figure 6.4 (a-e), we change the total storage time AT
by changing the number N of applied UCP decoupling cycles for the best and
worst phase ¢, i.e. maximal and minimal retrieved RH signal, obtained from
Figure 6.4 (f). We also show the results for CPMG DD (gray symbols/lines) for a
better comparison. For the optimal phases ¢ of the /2-pulse, we find for all UCP
DD a very similar RH signal decay, which is comparable to CPMG DD. Thus, for
this optimal phase of the initial coherence, UCP DD cannot further enhance the
decoupling of the system from the environment. On the other hand, for the worst
phases ¢, we find that UCP DD performs much better than CPMG DD. This is due
to the improved robustness of UCP with regard to pulse area and static detuning
errors. Thus, a much larger number of DD cycles N can be applied before these
pulse errors start playing a role. Up to a total storage time AT = 5 ms, we find
that UCP Ul3a performs independent from the phase ¢ of the 7/2-pulse. The
first decay is shifted by more than a factor of 6 towards longer total storage times
compared to the CPMG DD. Thus, UCP can be applied for preserving an arbitrary
quantum state, as long as the pulse errors, and the number of applied decoupling
cycles are not too large.

Next, we investigate the effect of time separation on the efficiency of DD se-
quences. We compare UCP DD and KDD [145], applied as time separated se-
quence, as defined in Figure 6.1. Figure 6.5 depicts the result for KDD (top row),
and UCP U5a (bottom row) with a cycling time of 250 us. Note that KDD is

10 T T ] —— T T — T
- Tli276 h [naonongononm]zsops 0.92 - Tl/2(p [rEOTE)T[QOT[OTEO]ZSOMS
Y N o 26 n
£ o8} D\D Tlf2714- [Trso”ongononao]zsous 4 0.90F " TI/Z(p.-_\ [TgonoT[goT[OT[ao]zsous ."\/'/\
S N b . Bl
2 \\ 255~ Mlasos | 0.88] U HARYAY
— 0.6f \ w2 - [_‘T]N 1 /\.-\./ " " _/.r" L
g by o o2s0ps | o ael ] - /'/\. i \-.\. |
2 o4t . o aw [ \
n g 084} 4 /\/ \d
T o n/ =
@ 02f 1 082k * : "
g, 0.16 F muta Senmnanaguueesttemst st otentnn I
0.0 A A A L 015p  *° | A A A A A A .
1 10 100 1000 -180 -135 -90 -45 0 45 90 135 180
10 —'D—ru’2 -[rrrr'rrrr ) | 092-—'—'TI72-'[ I 'T[ ] '
71 0 '150° 60 150 0]250us . ) T% 150T[eo 150T5]250ps
— e _ N N - 26 P
é 0.8} \ Td2—19 [nonlsoneonlsoﬂo]%ous { 0.90}—" NZ:p [T%nlsoneonlsoTE)]ZSOps /".\'h/\
o \ —=—2_-[n] . o ./." \
=3 0.6 ‘“\] %0 0]250us 0.88} J\md "\_,'\ /./' s
or 5 N 4 o
© \ T'/Zo - [Tro]ZSOps 0.86}F .\.('/ -/ \ . o \'/..\- ]
c DD\ . . / h ¥, Y Sy \ - _./\
D 04} by i \ ._/\/ \/ .J_/ o
K 58 0.84f * " .
I EDD]
X 02f 1082 ... e z
015} " - b . .
0.0k s L ; 0.10 . . T \ Saumuns
1 10 100 1000 -180 -135 -90 -45 0 45 90 135 180
total storage time AT [ms] phase o of initial W2 pulse [degree]

Figure 6.5: Experimental results on the time separated KDD (top row) and UCP U5a (bottom
row) sequences. (left column) Normalized, integrated RH signal versus the total storage
time AT of an coherence prepared by an RF-t/2-pulses. Phases ¢ of the RF-7/2-pulses are
determined by an phase measurement (right column) of the initial 7 /2-pulse for N = 1, and
N = 26 DD cycles. See labels in figure for applied phases ¢.
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identical to UCP U5b except a global phase shift of 30°. First, we measure the
integrated RH signal versus the phase ¢ of the initial 7/2,-pulse for a single DD
cycle (N = 1) (black squares), and N = 26, corresponding to total storage times of
AT = 1.25 ms and 32.5 ms, see Figure 6.5 (right column). We find only a small
dependence of the RH signal with respect variations of the phase ¢. Second, we
choose the phases ¢ at which the maximal and minimal RH signal is detected and
measure the integrated RH signal with respect to the total storage time AT, see
Figure 6.5 (left column). KDD and UCP U5a show for both phases (black/green
open squares) a similar decay with respect to the total storage time AT. This is
reasonable, as U5a and KDD feature very similar phases as control parameters,
i.e. the only difference is a 180° phase shift on the second/fourth pulse of the
sequence. Thus, UCP DD sequences in a time separated version might be capable
to preserve arbitrary coherences with equal fidelity. For KDD a fit of a stretched
exponential function yields a effective coherence time of T, = 11.3 ms (8 = 0.64).
The results for CPMG DD sequences are depicted for comparison. We find the
coherence lifetime for these time separated DD sequences to be about a factor of
2 smaller, compared to the best result obtained by the CPMG DD. However, time
separated DD sequences are capable to preserve coherences of any phase y, with
a equal fidelity, i.e. they feature an equal phase sensitivity.

In the following, we introduce a new type of time separated DD sequence,
bases on composite pulses, i.e universal robust (UR) sequences. These UR se-
quences have been especially derived to preserve an arbitrary quantum state of
a two-state system. Additionally, the UR sequences are designed to be robust
with respect to pulse errors. The derivation of the UR sequences is similar to the
derivation of the UCB as described in Section 5.2.1. However, while UCP had been
derived to achieve an optimized transition probability, UR sequence are optimized
with respect to the fidelity. Moreover, in contrast to UCB the UR sequences consist
of a sequence of a even number n of time separated pulses with a time of free
evolution between the pulses. No additional assumption on the pulses are made.
The only control parameter is the relative phase shift ¢ between the pulses. Table
6.1 depicts the phases ¢ for low order symmetric UR sequences, calculated by an
analytic formula. A more detailed description of the derivation of UR sequence,
and systematic investigation on their robustness with respect to pulse errors can
be found in [149].

Table 6.1: Phases ¢ of symmetric UR DD sequences with n time separated pulses.

UR sequence Phases ¢
UR4 0,1, 1, 0)r
UR6 (0,2,0,0,2,0)/3
URS8 0,1,3,2,2,3,1,0)t/2
UR10 (0,4,2,4,0,0,4, 2,4, 0)r/5
UR12 (0,1,3,0,4,3,3,4,0,3,1, 0)/3
UR16 (0,1,3,6,2,7,5,4,4,5/7,2,6,3,1,0)n/4
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Figure 6.6: Normalized integrated RH signal versus the total storage time AT for UR4 DD
(a), and UR10 DD (d) with a fixed cycling time 7, of 250 us. The coherence was prepared
with an 71/29y-pulse (black squares/lines), and an 7/2(-pulse (green symbols/lines).

Figure 6.6 depicts the experimental results for UR4 (a), and UR10 (b) for a
fixed cycling time 7, of 250 us. Note that in these measurements the phases ¢ of
the initial 7/2-pulses are 90° (black symbols/lines) and 0° (green symbols/lines).
The UR DD sequences feature a strong robustness with regard to variations of
the phase y of the coherence, and yield coherence lifetimes comparable to UCP
US5a and KDD. However, even high order UR sequences, e.g. UR10 see Figure
6.6 (b), could not substantially increase the coherence lifetime. Thus, further
investigations on higher order UR sequences are necessary.

In order to confirm the phase, and state sensitivity of the DD sequences in
the presence of pulse errors we performed Bloch simulations, see Figure 6.7. We
assumed initial Bloch vectors uniformly distributed on the Bloch sphere, represent-
ing any possible initial state, and included an additional inhomogeneous broad-
ening of I' = —0.332...0.33Q. For each initial Bloch vector we calculated the final
Bloch vector, averaged over the inhomogeneous broadening. We applied DD se-
quences consisting of 240 pulses. Figure 6.7 depicts the final Bloch vectors, i.e. its
directions (green dots), on the Bloch sphere for different DD sequences. In addi-
tion, the torque vector of the first pulse of the DD sequences is indicated by the red

UR4DD URI10 DD

Figure 6.7: Bloch spheres depicting the final Bloch vectors, i.e. its directions (green dots)
after 240 pulses for CPMG, KDD, UR4 DD and UR10 DD including an inhomogeneous broad-
ening. The initial Bloch vectors had been distributed uniformly on the Bloch sphere. The
torque vector of the first pulse of the DD sequences is indicated by the red arrow.
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arrow. We find the final Bloch vectors in the case of CPMG DD strongly confined
along the axis of the torque vector, i.e. the axis of rotation of the applied pulses,
confirming the projecting behavior of CPMG. Compared to CPMG, KDD shows a
reduced state sensitively without a preferred axis. However, the initial states are
still strongly modified by the DD sequence. In contrast UR10 DD is capable to
preserve the initial states almost perfectly.

To conclude, we find all measurements for time separated DD sequences to
feature coherence lifetimes about a factor of 2 shorter than the best result we
achieved with the CPMG DD. However, CPMG DD is not capable to preserve a full
quantum state. In contrast, time separated DD sequences are favorable whenever
a unknown coherence has to be preserved, or when the phase y of the coherence
is not well defined, as it the case for EIT-LS coherences, compare with Section
5.1.4. We will thus investigate in the following section time separated sequences
for dynamical decoupling of coherences prepared by the EIT-LS protocol.

6.3 DDC for EIT-LS Coherences

In this section we present experimental results on DDC for coherences prepared
by the EIT-LS protocol. We apply the EIT-based light storage protocol in a single
probe pass configuration, for details see Chapters 2.3 and 4. We keep the optical
sequence fixed, and only vary the total storage time AT, while applying differ-
ent DD sequences. We saw in Section 5.1.4, that coherences, i.e. the spin wave
S(z), prepared using the EIT-LS protocol feature a position dependent phase factor
exp(—ikz) along the propagation direction of the optical pulses. In our experimen-
tal setup this phase factor becomes large enough, so that the collective coherence,
i.e. S(z), can have a phase that varies between 0 and 27 along the propagation
axis z. Considering these coherence properties, we apply in the following only
time separated DD sequences which do not feature a significant dependence re-
garding the phase y of the coherences. The RF-rt-pulses used for the DD sequences
feature, like in the previous section, a duration of T = 10 us, a Rabi frequency of
Q ~ 271 - 50 kHz, and are applied resonant to the relevant ground state hyperfine
transition.

Figure 6.8 depicts the EIT-LS efficiency ngyp versus the total storage time AT,
for different DD sequences applied with cycling times 7. of 15 us (a), 25 us
(b), and 50 us (c). The light storage efficiency ngyp, takes into account the
efficiency of the DD sequences and decoherence processes in the system, com-
pare with Section 2.3.3. We perform measurements for several time separated
UR sequences. We compare UR DD with CPMG DD, and a KDD in XY4 se-
quence [147], which is often considered the state of the art DD sequence to pre-
serve an arbitrary quantum state. UR, and KDD in XY4 lead to a higher light
storage efficiency ngyp in comparison to CMPG DD, for storage times AT up to
about 20 — 30 ms depending on the cycling time 7., and the order of the UR
sequence, see Figure 6.8. For 7. = 15 us (a), we find that with higher order
UR sequences longer storage times can be achieved, and the crossing of CPMG
DD and UR DD is shifted from about 10 ms for UR8 towards 30 ms for UR16.

96



Chapter 6. Composite Pulses for Dynamic Decoherence Control

Moreover, we find that UR12 and UR16
show even a better performance than
the KDD in XY4 sequence. For long to-
tal storage times AT > 30 ms CPMG
DD performs best. However, note that
CPMG DD is not for quantum stor-
age in situation including pulse errors,
and might thus not preserve the ini-
tially prepared spin wave S(z) with its
z-dependent phase, compare with Sec-
tions 2.3.3 and 5.1.4. CPMG DD might
modify S(z), and for long total stor-
age times only preserve coherences of
specific phases, i.e. optimal for the
CPMG DD. Thus, the spin wave S(z)
might be only preserved at specific po-
sitions z along the propagation axis of
the probe pulse. In addition, we saw
in the previous section that CPMG DD,
for large number of decoupling cycles
N, partially maps coherence with non-
optimal phases y onto the axis of ro-
tation, i.e. the phase ¢, of the decou-
pling pulses. Thus, the spin wave S(z)
might feature a rendered phase distri-
bution along the z-axis for long storage
times AT, such that upon readout the
individual coherences might partially
interfere destructively, which leads to
a reduced, non-maximal signal pulse.
With an increase of the cycling time
7. we find for CPMG DD, KDD in XY4,
UR12, and UR16 DD slightly faster de-
cays of the light storage efficiency ngxp.
In contrast, the UR4 and UR8 DD fea-
ture a increase of the decay time, for
larger cycling times 7.. This behavior
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Figure 6.8: EIT-LS efficiency ngxp versus the

total storage time AT for cycling times of

15 us (

a), 25 us (b), and 50 us (c), of differ-

ent time separated DD sequences.

might be due to decoherence during a single DD cycle, and pulse errors. For
UR16 with a cycling time of 50 us a single DD cycle features a duration of 800 us,
while UR8 has only a cycle duration of 400 us. Thus, phase fluctuations due
to system-environment interactions effect higher order, i.e. longer DD sequences
much stronger than shorter DD sequences. This especially becomes important
for longer cycling times 7.. For example we find at 7, = 50 us the best result
to be achieved by UR12 DD, instead of UR16 DD. Thus, there is a trade-off be-
tween higher order sequences which compensate pulse errors better, and lower
order sequence that suffer less from decoherence. As there exists an analytic for-
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mula to calculate the phases of any order UR DD sequence it becomes possible
to adjust the order, and the cycling time 7. to the experimental setup and the
system-environment interactions, to achieve an optimal decoupling.

With UR DD we could achieve up to factor of 2 longer total storage times (1/e-
times) compared to KDD in XY4. The light storage efficiency ngyp increased by up
a factor of 4.5, compared to KDD in XY4 at a AT ~ 26 ms. In addition, we found
that at short total storage times of about 1 ms UR DD can achieve about a factor
of 3 higher storage efficiencies. Thus, UR DD clearly outperform CPMG DD, and
KDD in XY4 sequences for dynamic decoherence control. A comparison with [23]
shows that our memory features quite well storage times, taken into account that
no static decoherence control techniques, like ZEFOZ [22] were applied.

6.4 Conclusion

In this chapter we investigated composite pulses for robust dynamic decoherence
control in PrYSO. In particular, we investigated the performance of universal com-
posite pulses (UCP), and universal robust (UR) sequences applied as dynamical
decoupling sequences. We further compared with well known DD sequences, such
as the CPMG DD, KDD, and KDD in XY4. First, we performed systematic mea-
surements on CPMG DD for different RF prepared coherences. We found a strong
dependence of coherence lifetime with respect to the phase y of the prepared co-
herence. We investigated the influence of different cycling times 7.. As expected,
we found for shorter cycling times 7, longer coherence lifetimes, i.e. a better
decoupling of the system from the environment. However, we also found that
pulse errors can strongly reduce the coherence lifetime if the phase y of the co-
herence is chosen such that pulse errors can accumulate. Second, we applied UCP
as non-time separated DD sequences, and compared with CPMG DD at equal cy-
cling times. We found UCP to be able to compensate for pulse area errors. Up to
about N = 20 DD cycles UCP do not show a phase sensitivity. At long total storage
times UCP sequences also depend on the phase y of the coherence. Third, we per-
formed measurements of time separated DD sequences such as KDD, and UR DD.
We found that with a time separation the phase dependence is reduced, however
also the coherence lifetime becomes about a factor of 2 shorter compared to the
best results achieved by CPMG DD.

Finally we applied time separated sequences for DD of coherences prepared by
the EIT-LS protocol. Time separated UR DD, and KDD in XY4 for dynamical de-
coupling of EIT-LS coherences for different cycling times 7, were investigated. We
achieved about a factor of 3 higher storage efficiencies at short storage times of
about 1 ms compared to the best results by CPMG DD. In addition, we found that
high order UR DD perform better than the state of the art KDD in XY4 sequence.
Overall, we could achieve about a factor of 4.5 higher storage efficiencies at long
storage times, and about a factor of 2 longer coherence lifetimes. Future investi-
gations will focus on higher order DD sequences, in combination with ZEFOZ, also
applied in other storage media, e.g. EuYSO.
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Conclusion and Prospects for Future Work

The present work deals with techniques to improve the EIT-based light storage
in an all solid-state memory, i.e. a rare-earth ion-doped PrYSO crystal. The per-
formance of such a memory can be defined by its capability to store light pulses
with high efficiency and for long storage durations. In general, the storage effi-
ciency is theoretically limited by the EIT-LS protocol efficiency, while the storage
duration is limited by decoherence processes in the solid-state memory. Thus, we
first optimized the EIT-LS efficiency at short storage durations. We then inves-
tigated the performance of composite and adiabatic techniques for efficient and
robust rephasing and finally applied composite techniques for DDC to extend the
coherence lifetime in our storage medium.

Optimization of the EIT Light Storage Efficiency: In order to optimize the
EIT-LS protocol we performed systematic measurements of the EIT-LS efficiency
in a PrYSO crystal featuring an optical depth d of 6. The optical depth sets the
theoretical limit of the EIT-LS protocol efficiency. We experimentally optimized the
efficiency by systematic variations of the control pulse power and the probe pulse
duration. Furthermore, we applied an iterative algorithm, to optimize the tempo-
ral shape of the probe pulse. We found a maximal protocol efficiency ngr = 36 %,
comparable to the theoretical limit. In order to increase the optical depth d, we
developed a multipass setup for the probe beam, consisting of a ringlike arrange-
ment, which is compatible with the geometrical constraints given by the existing
setup. This multipass setup allows the simple variation of the number of probe
passes N through the crystal and thus enables a flexible change of the effective op-
tical depth dy = d - N. With this setup we achieved up to 16 probe passes through
the PrYSO crystal, which corresponds to an increase of the effective optical depth
dy from 6 to 96. We experimentally optimized the EIT-LS efficiency at variable op-
tical depths. At N = 14, i.e. an effective optical depth of about 84, we achieved an
EIT-LS efficiency of ngr = (76.3 £3.5) % in forward retrieval configuration, reach-
ing previous values in an EIT-driven memory of cold atoms [89] and achieving the
highest ever obtained EIT-LS efficiency in a solid-state memory [23]. However,
due to losses at the optical components, the setup efficiency 7),, was limited to
about 25.2 % at N = 2. As future work will focus on the storage of few photons,
it will thus be necessary to improve the optical components, to achieve adequate
detection efficiencies. It might also be useful, to further investigate possibilities
for backward readout configurations combined with a multipass probe setup.

Composite and Adiabatic Rephasing of Atomic Coherences: In order to ex-
tend the EIT-LS duration of our memory towards the coherence lifetime, we imple-
mented composite and adiabatic rephasing techniques, exhibiting an improved ro-
bustness regarding variations and fluctuations of experimental parameters. We in-
vestigated their performance regarding experimental variations, in an application
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for rephasing of atomic coherences in the inhomogeneously broadened hyperfine
transition of PrYSO. First, we applied universal composite pulses (UCP). UCP were
originally designed for robust and high-fidelity population inversion in a two-state
system, compensating simultaneous variations in any type of experimental param-
eter. We have experimentally shown that UCP exhibit an enhanced robustness
to variations in several experimental parameters. Using UCP we could increase
the higher rephasing efficiency about 25 %, compared to diabatic 7 pulses. UCP
can be useful whenever significant unknown experimental variations or fluctu-
ations prevent the application of diabatic © pulses. Second, we demonstrated
a first experimental implementation of composite adiabatic passage (CAP) [25].
Essentially, CAP is a composite version of RABE consisting of a sequence of RAP
pulses with appropriately chosen relative phases. CAP was proposed to improve
RAP in situations of fairly fulfilled adiabaticity. We compared the performance
of CAP and RAP at different degrees of adiabaticity. In particular, we systemati-
cally investigated their performance with respect to variations in pulse duration
and static detuning. We found CAP to be able to compensate for weak adiabatic-
ity, leading to constant and high rephasing efficiency, irrespectively of the exact
choice of the experimental parameters. These properties of CAP can be of inter-
est whenever robust state manipulations are required, while sufficient adiabaticity
cannot be provided, e.g. due to experimental restrictions. Third, we performed
a first experimental demonstration of single-shot shaped pulses (SSSP), derived
from techniques on shortcuts to adiabaticity. We demonstrated the capability of
SSSP for efficient and robust rephasing and compared our results with diabatic
7 pulses. A further comparison with other adiabatic techniques might be neces-
sary to provide a broader insight on SSSP. All three presented techniques can be
used to improve the robustness of an population inversion or rephasing process.
However, different requirements on the control of the experimental parameters
have to be fulfilled. UCB and CAP rely on identical pulses and a precise relative
phase control, i.e. within a few degrees. CAP in addition needs a simple control
of the time-dependent detuning. The complex time-dependent Rabi frequency
and detuning of SSSP require a much more sophisticate control of experimental
parameters. Thus, the choice of an adequate technique strongly depends on the
actual experimental situation, i.e. on the experimentally controllable parameters.

Composite Pulses for Dynamic Decoherence Control: We investigated the
performance of UCP and universal robust (UR) sequences for DDC of directly RF-
prepared coherences. We compared our results with well known CPMG DD and
KDD sequences. We performed systematic measurements with respect to the cy-
cling time, the phase of the coherence and the order of UCP and UR DD sequence.
We found time separated UR DD sequences to be robust with respect to the phase
of the coherence. We applied these DD sequences on EIT-LS coherences and com-
pared with CPMG DD and KDD in XY4 [147]. Our experiments showed that our
UR DD sequences can outperform the often considered state-of-the-art KDD in XY4
sequence, yielding about a factor of 2 longer coherence lifetimes. Combining our
results on optimized EIT-LS with advanced composite DD sequences and static de-
coherence control by ZEFOZ might provide a major step towards the development
of an all solid-state quantum memory.
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Zusammenfassung

Diese Dissertation ist Teil eines Projektes, mit dem Ziel der Entwicklung eines
zuverldssigen und effizienten Quantendatenspeichers zur optischen Quantenin-
formationsverarbeitung [1]. Die Verarbeitung von Quanteninformationen bietet
die Chance die klassische Datenverarbeitung und moderne Kommunikationsnet-
zwerke, mit ihren beschrankten Moglichkeiten zur Steigerung von Rechenleistung
und Speicherkapazitit, ablosen zu konnen. Ein haufig diskutierter Ansatz stellt
die Wechselwirkung von Photonen als Informationstrédger mit atomaren Systemen
dar, deren Eigenschaften durch quantenmechanische Gesetze bestimmt sind und
damit die Fahigkeit besitzen quantenmechanische Superpositionszustidnde tragen
zu konnen. Zur Realisierung einer vollstindig quanten-optischen Informationsver-
arbeitung wird daher ein optischer Quanten-Datenspeicher benotigt.

Die vorliegende Arbeit beschaftigt sich mit der Entwicklung und Optimierung
eines solchen optischen Quanten-Datenspeichers, auf Basis eines seltenerd-
dotierten Kristalls. Als Speichermedien besitzen seltenerd-dotierte Kristalle
vorteilhafte spektroskopische Eigenschaften, insbesondere geringe Wechsel-
wirkungen und damit schmale homogene Linienbreiten, dhnlich kalter atomarer
Gase. Sie zeichnen sich dariiber hinaus durch ihre einfache Handhabung und
ihre Skalierbarkeit aus und eignen sich daher gut fiir den Einsatz in Anwendun-
gen aulserhalb der Grundlagenforschung. In den letzten Jahrzehnten wurde eine
Vielzahl unterschiedlicher Protokolle zur Speicherung quanten-optischer Informa-
tion [5-7] entwickelt. In dieser Arbeit kommt ein Protokoll, basierend auf dem
Effekt der elektromagnetisch induzierten Transparenz (EIT), zum Einsatz. Dieses
ermoOglicht es einen Informationen tragenden Lichtpuls (Speicherpuls) in eine
kollektive atomare Kohédrenz des Speichermediums zu iibertragen. Speicheref-
fizienz und maximale Speicherzeit werden im Allgemeinen durch das verwendete
Speicherprotokoll und das Speichermedium definiert. Das Ziel dieser Arbeit war
die Optimierung eines solchen EIlT-basierten quanten-optischen Datenspeichers
realisiert in einem Praseodym-dotierten Yttrium-ortho-Silikat (PrYSO) Kristall.

Zunichst wurde die Speichereffizienz des EIT Lichtspeicherprotokolls opti-
miert. Hierzu wurden systematische Untersuchungen der EIT Speichereffizienz
durchgefiihrt. Die EIT Speichereffizienz wird im Allgemeinen durch die optische
Dichte des Speichermediums begrenzt. Seltenerd-dotierte Kristalle zur Daten-
speicherung besitzen in der Regel relativ geringe Dotierungsgrade und damit
geringe optische Dichten um spannungsinduzierte Linienverbreiterungen zu min-
imieren. Der hier verwendete PrYSO Kristall wies eine optische Dichte von 6 auf.
Bei gegebener optischer Dichte wird die Speichereffizienz durch die Parameter
von Kontroll- und Speicherpuls bestimmt. Es wurden daher zunéchst die exper-
imentellen Parameter von Kontroll- und Speicherpuls systematisch variiert und
die Lichtspeichereffizienz optimiert. Die maximal erreichte EIT Speichereffizienz
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betrug ngr = 36 % und ist vergleichbar mit theoretisch ermittelten maximalen
Speichereffizienzen bei optischen Dichten ~ 6. Um die Speichereffizienz weiter
steigern zu konnen wurden verschiedene Ansétze zur Erhohung der optischen
Dichte diskutiert. Es wurde ein optischer Ring entwickelt um den Speicherpuls
mehrfach durch den PrYSO Kristall leiten zu konnen. Dieser erlaubt eine variable
Einstellung der Anzahl der Durchlaufe N des Speicherpulses durch den PrYSO
Kristall. Es ergibt sich eine effektive optische Dichte dy = d - N. Die EIT Speicher-
effizienz wurde fiir verschiedene effektive optische Dichten optimiert. Fiir N = 14
und einer effektiven optischen Dichte von 84 wurde eine EIT Speichereffizienz
von ngr = (76.3 £3.5) % erreicht. Dies entspricht aktuell der hochsten Speicher-
effizienz realisiert mittels EIT in einem Festkorper [23].

Im zweiten Teil dieser Arbeit wurden komposite und adiabatische Techniken
zur Verldngerung der Speicherzeit untersucht. In PrYSO wird die maximale Spe-
icherzeit durch die Lebensdauer der atomaren Kohdrenzen bestimmt. In der
Regel liegen die erreichbaren Speicherzeiten einige Grolenordnungen unter
dem theoretischen Maximum. Die atomaren Kohdrenzen werden in einem
inhomogen verbreiterten Hyperfeiniibergang prapariert. Dies fiihrt zu unter-
schiedlicher Phasenevolution der einzelnen Kohédrenzen. Dieser Effekt ist als
Dephasierung bekannt und verhindert ein effektives Auslesen der Information
fiir Speicherzeiten lidnger als die Dephasierungszeit. Haufig werden diabatische
n-Pulse zur Rephasierung eingesetzt. Diese bendtigen jedoch fiir eine effiziente
Rephasierung prazise definierte Pulsparameter und verfiigen lediglich iiber eine
geringe Stabilitdt gegeniiber Variationen experimenteller Parameter. In der Kern-
Spin-Resonanz werden komposite Pulse seit langem eingesetzt um Pulsfehler und
Inhomogenititen zu kompensieren [72]. Allerdings konnen die meisten kompos-
iten Pulse lediglich spezielle Formen von Pulsfehlern kompensieren.

In dieser Arbeit wurden zundchst univeral composite pulses (UCP) zur
Rephasierung atomarer Kohirenzen untersucht. UCP zeichnen sich dadurch aus,
dass sie in der Lage sind jede Art von Inhomogenitédt oder Variation von Pulspa-
rametern kompensieren zu konnen. In systematischen Messungen konnte gezeigt
werden, dass UCB im Vergleich zu n-Pulsen, eine deutlich hohere Stabilitit gegen
Variationen von experimentellen Parametern aufweisen. Insbesondere konnte
gezeigt werden, dass UCP zur gleichzeitigen Kompensation verschiedener Arten
von Pulsfehlern eingesetzt werden konnen. Die Rephasierungseffizienz konnte im
Vergleich zu einfachen 7-Pulsen um bis zu 25 % gesteigert werden.

Weiterhin wurden zwei adiabatische Techniken zur Rephasierung atomarer Ko-
hédrenzen untersucht. Diese weisen, solange die Adiabasiebedingung ausreichend
erfiillt ist, eine hohe Stabilitiat gegeniiber Schwankungen von experimentellen Pa-
rametern auf. Allerdings werden dazu haufig relativ lange Wechselwirkungszeiten
benotigt. Kann die Adiabasiebedingung nur unzureichend erfiillt werden, nimmt
ihre Stabilitit gegeniiber experimentellen Schwankungen deutlich ab. Um adia-
batische Prozesse unter solchen Bedingungen verwenden zu kénnen wurde von
Torosov et al. [25] die Verwendung eines kompositen adiabatischen Prozesses,
composite adiabatic passage (CAP), vorgeschlagen. CAP ist eine komposite Er-
weiterung von rapid adiabatic passage (RAP) und wurde zur Optimierung un-
zureichend adiabatischer Prozesse entwickelt. In dieser Arbeit wurde eine erste
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experimentelle Impementierung von CAP vorgestellt. Es wurden systematische
Messungen zur Rephasierungseffizienz von RAP und CAP bei unterschiedlich er-
fiillter Adiabasiebedingung durchgefiihrt. Es konnte gezeigt werden, dass CAP
auch bei unzureichender Adiabasie eine hohe und stabile Rephasierungseffizienz
liefert, unabhéngig von der genauen Wahl der Pulsparameter. Des Weiteren wur-
den single-shot shaped pulses (SSSP) zur Rephasierung eingesetzt. Diese Pulse
basieren auf der Idee, einer Reduzierung der Wechselwirkungsdauer adiabatis-
cher Prozesse. Es konnte gezeigt werden, dass SSSP zur Rephasierung eingesetzt
werden konnen und im Vergleich zu ©-Pulsen, ein robusteres Verhalten aufweisen.
Ein weiterer Vergleich mit RAP und CAP steht noch aus.

Die in dieser Arbeit untersuchten Rephasierungstechniken unterscheiden sich
insbesondere in der benotigten Kontrolle iiber die verschiedenen experimentellen
Parameter. Zur Implementierung von UCP werden lediglich identische Pulse und
eine relative Phasenkontrolle zwischen den Pulsen, mit einer Genauigkeit von
wenigen Grad, vorausgesetzt. Die relativen Phasendnderungen sollten moglichst
instantan umgesetzt werden konnen. Die zeitliche Pulsform spielt hier keine
Rolle. Fiir CAP ist neben der Phasenkontrolle zusatzlich eine zeitlich variable
Verstimmung erforderlich. Fiir SSSP muss ein komplexer zeitlicher Verlauf der
Rabifrequenz und der Verstimmung experimentell umgesetzt werden konnen.
Hierfiir wird eine moglichst exakte und schnelle Kontrolle der experimentellen Pa-
rameter benotigt. Die Wahl einer bestimmten Rephasierungstechnik, wird daher
neben den zu kompensierenden Inhomogenitidten des Systems, entscheidend von
der moglichen Kontrolle der verschiedenen experimentellen Parameter bestimmt.

Neben der reversiblen Dephasierung treten in PrYSO stochastische Phasenén-
derungen einzelner Kohdrenzen auf, die durch eine einfache Rephasierung nicht
kompensiert werden konnen. Diese begrenzen die Kohérenzzeit in der Regel auf
500 us. Solche Phasendnderungen konnen nicht unterdriickt werden, allerdings
ist es moglich statische und dynamische Techniken anzuwenden, die den Einfluss
dieser Phasendnderungen auf die Kohdrenzzeit minimieren [22]. Die dynamis-
che Dekohérenzkontrolle basiert auf der schnellen und haufigen Wechselwirkung
von Invertierungspulsen mit den préparierten Kohdrenzen. Meistens werden dazu
identische m-Pulse verwendet, die mit einer Wiederholrate grof3er als die Zeitskala
der stochastischen Phasendnderungen eingestrahlt werden. Pulsfehler der einges-
trahlten 7-Pulse konnen die Effizienz der dynamischen Dekohédrenzkontrolle re-
duzieren. Es wurden daher in dieser Arbeit komposite Pulse zur dynamischen
Dekoharenzkontrolle eingesetzt. Insbesondere wurden UCP und universal robust
(UR) Sequenzen untersucht und die Ergebnisse mit bekannten Sequenzen zur
dynamischen Entkopplung, wie CPMG, KDD und KDD in XY4, verglichen. Die hier
vorgestellten UR Sequenzen konnten die erreichten Speicherzeiten, im Vergleich
zu KDD in XY4 [147], nochmals um einen Faktor 2 steigern.

Die Kombination, der in dieser Arbeit vorgestellten Ergebnisse, hoher EIT
Lichtspeichereffizienzen und moderner Techniken zur dynamischen Dekohéren-
zkontrolle, mit statischer Dekohédrenzkontrolle soll in Zukunft eingesetzt werden
um Lichtpulse mit wenigen Photonen speichern zu konnen. Die Ergebnisse dieser
Arbeit stellen somit einen wichtigen Schritt zur Entwicklung eines Festkorper-
basierten Quantendatenspeichers dar.
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Additional Experimental Results on SSSP

Figure A.1 shows additional experimental results, regarding the robustness of
SSSE as introduced in Section 5.4, with respect to variations of static detuning
and Rabi frequency. We measured the rephasing efficiency 7,.,,, normalized to
the efficiency of a m pulse rephasing, with respect to the static detuning &6 and
the peak Rabi frequency Q,,,, for a diabatic pulse (a) with a duration of T =4 us
and the SSSP (b) defined by the coefficients of Table 5.3 with a pulse duration of
T = 48 us. The SSSP features a enhanced robustness with respect to variations of
peak Rabi frequency Q,,,,, compared to the diabatic pulse. We find a slight shift, of
both the rephasing profiles, towards positive static detunings for high peak Rabi
frequencies, which might be due to a small Stark shift induced by the driving
fields. However, further investigations are needed in order to determine the origin
of this shift.

T T ‘\ reph
,X: 175 ,X: | W 000
& 150 oL | M o3
3 3
GE 125 GE 0.27
0.40
? 100 ? Fos3
] 3] '
g 75 g 0.67
g 50 f—_” 0.80
‘S 'S 0.93
2 25 (a) 2 I1.00
o -200 -100 0 100 200 o -200 -100 0 100 200

static detuning & [2tkHZz] static detuning & [2mtkHZz]
Figure A.l: Rephasing efficiency 7,.,, versus static detuning 6 and peak Rabi frequency

Qnax for a diabatic pulse of duration 7 = 4 us (a) and the SSSP (b) as defined by the
coefficients of Table 5.3.
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Table A.1: Coefficients C, and 6,, from the numerical optimization, defining the single-shot
shaped pulse, optimized for variations @ = [—0.5...0.5], and 6 = [—0.375Q4x-.-0.375Qmax s
with Q... the peak Rabi frequency of the pulse.

(o C, Cs C, Cs | pulse area [in units of 7]
2.0624 -1.7585 0 0 0 4.06

0, 0, 0, 0, 05 fidelity J
-0.1074 -0.0991 -0.0129 -0.0389 O 0.88

Besides the measurements on the SSSP defined by the coefficients of Table
5.3, we also performed experiments on an SSSP with an even lower pulse area
of only 4n. This SSSP was derived by the optimization procedure introduced in
Section 5.4, with an additional constraint on the peak Rabi frequency Q,,,,. Table
A.1 depicts the coefficients defining this SSSP. Figure A.2 depicts the obtained
experimental results for this SSSE We measured the rephasing efficiency 7,,,, with
regard to the peak Rabi frequency .., the pulse duration T (a), and the static
detuning 6 (b). The pulse features a comparable rephasing profile as the SSSP
investigated in Section 5.4.2. However, we find a slightly reduced robustness
regarding variations of the experimental parameters.
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Figure A.2: Rephasing efficiency 7., versus pulse duration T and peak Rabi frequency
Qax (2), and versus static detuning 6 and peak Rabi frequency Q. with T =48 us (b) for
the SSSP defined by the coefficients of Table A.1.
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Investigations on Stimulated Photon Echos

Most diabatic m-pulses suffer due to pulse area errors. If these errors become
large, for example in a strongly inhomogeneous broadened transition, it might be
that an applied m-pulse actually acts as a 7t/2-pulse for far detuned ensembles. For
a HSE sequences with N > 2 rephasing cycles, the retrieved RHD signal can thus
feature contributions from an stimulated photon echo (SPE) process [150]. SPE
maps the prepared coherence by an 7/2- pulse onto an population distribution.
After a storage time another 7t/2-pulse maps this population distribution back into
a coherence which then rephases and produces an simulated photon echo signal.
For N = 2 rephasing cycles it is possible to distinguish between HSE and SPE.
Figure B.1 depicts the schematic timing sequences for N = 2 rephasing cycles,
with an additional time shift of the initial z/2-pulse. This asymmetric sequence
allows us to distinguish between HSE and SPE signal. We used this asymmetric

A /2
@ /20 R R Spg HSE
< E l]l L S N 1 L N >
g :’ A71/2
ESA n/2
3, 8 R R™ Hse
£ e T SPE
4_- ' P}
@ | e ’ S TN
1 R4 N Nl e
1 1 :
N SRS VO S s = tmer
Te Te [arb. units]

Figure B.1: Schematic pulse timing sequences to distinguish between HSE and SPE, with R
the rephasing m-pulses for HSE, and the mapping 7t/2-pulses for SPE. (Top) The initial 7t/2-
pulse is applied with a time shift of A/, compared to a symmetric HSE sequence. Thus
the HSE signal is also shifted by A /,, while the SPE signal is shifted by —A,,,. (Bottom)
Here the initial 7/2-pulse is applied with a time shift of —A /2- The retrieved SPE signal is
smaller, due to a stronger dephasing before the mapping 7t/2-pulse. Signals are depicted
in arbitrary units.

echo sequence to measure the contribution of stimulated photon echo (SPE) to
the Hahn spin echo (HSE) signal measured in a symmetric rephasing sequence.
HSE and SPE signals are detected by RH detection, see Section 2.4. We applied all
pulses with a rectangular temporal shape and a Rabi frequency of Q = 27 -50 kHz,
which corresponds to a m/2-pulse duration of 5 us, and a m-pulse duration of
10 us. The cycling time 7. was 350 us. Figure B.2 shows the time dependent
RH signal versus a static detuning A of the R-pulses, see Figure B.1, for different
timings A/, of the initial 7/2-pulse. Note that the initial 7/2-pulse is always
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Figure B.2: Time dependent RH signal versus a static detuning of the rephasing pulses for
different timings A/, of the initial 7t/2-pulse, and three different types of rephasing pulses,
i.e. m, UCP UBb, and UCP U5a. See also labels on Figure. Color code in arbitrary units.

applied with A = 0 kHz, i.e. on resonance with the transition. For A, =75 us
we find strong SPE signals at about —75 us if the R-pulses are applied detuned by
about +£50 kHz. Here the R-pulses act as 7t/2-pulses, thus mapping the coherence
onto a population an generating the SPE signal. However, also for A = 0 kHz we
find a small SPE contribution in the case of m-pulse rephasing. In contrast UCP
U5b and U5a suppress the SPE signal on resonance, and feature a good robustness
of the HSE signal with respect the variations of the static detuning A. Especially
with UCP U5b the SPE signal in fully suppressed for static detunings in range
of £25 kHz. For A, = 0 us, i.e. a symmetric sequence, HSE and SPE signals
coincide at t = 0 us. The SPE signal is reduced compared to the HSE signal, due
to a longer dephasing duration before the mapping process. This becomes even
more pronounced for A, ,, =—75 us. We find the ratio of the integrated SPE to the
integrated HSE signals at A = 0 kHz to drop from 26 % to 1.8 % for the m-pulse,
and from 3.2 % to 0 % for the UCP U5b pulse., if A, becomes —75 us.

107



Appendix C. Determination of HF Transition Frequencies

Appendix C
Determination of HF Transition Frequencies

Figure C.1 depicts the time dependent magnitude R and the phase 6 determined
by the lock-in amplifier of a RF prepared coherence after two HSE rephasing cycles
with a cycling time 7, = 250 us. The RF pulse parameters are: Q = 27 x 50 kHz,
T, =10 us, 7,/, = 5 us. The driving frequencies are 10.2 MHz (a) and 10.191 MHz
(b) for all applied RF pulses. These frequencies are also used as demodulation
frequencies of the lock-in amplifier. In both cases we find strong HSE signals at
t = 0 us, with their origin from the two times rephased coherence prepared by the
initial /2 pulse. We further find smaller echo signals at about t = 115 us. These
arise from a coherence prepared due to the imperfect first rephasing © pulse,
which is then rephased by the second 7 pulse. The time where this small echo
signal appears fits very well to the expected time of t = 120 us. In Figure C.1
(a) we find a strong linear change of the phase 6 during the HSE signal, which
origins from a constant difference between HSE and demodulation frequency of
the lock-in amplifier. Thus, although the coherence is prepared and rephased
by pulses of a driving frequency of 10.2 MHz, we find that the generated HSE
signal features a frequency which is different and independent from this driving
frequency. From the demodulation frequency and the linear change of the phase 6
we can determine the frequency of the HSE, i.e. the transition frequency of the |+
3/2) <> | £1/2) transition of the ground state *H, of PrYSO. Figure C.1 (b) depicts
the experimental results with the driving frequency adjusted to 10.191 MHz. We
find a almost constant phase close to the center of the HSE signal, which indicates
that the driving frequency matches the transition frequency of the hyperfine (HF)
states. Note, the second HSE signal is phase shifted by ©= compared to the first
HSE signal, which confirms its origin from imperfect rephasing pulses.
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Figure C.1: Time dependent magnitude R and the phase 0 of an RF coherence after two HSE
cycles with driving frequencies of the applied pulses of 10.2 MHz (a), and 10.191 MHz.
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Appendix D

Derivation of the Linear Susceptibility y (%

The derivation of the linear susceptibility y* (Equation 2.20) is structured as
follows: First, we solve the equations of motion for the three-state system density
operator. Second, we calculate the polarization P, and determine y™.

We calculate the equations of motion for the density operator using the
Liouville-von-Neumann Equation 2.11, the three state RWA Hamiltonian (see
Equation 2.16), and the dissipator D, as given by Equation 2.19, neglecting spon-
taneous decay (T}; = 0). We find for the diagonal elements of p:

pn= %Qp (12— P21)
P22 :_%Qp (Plz_P21)_§Qc (P32 —P23) (D.1)
P33 = %Qc (P32 —P23)

The off-diagonal elements are given by:
P31 = P12 ="Y12P12— %Qp (P22 —P11) + 52 P13+ 1ApP12
P31 = P13 ="Y13P13 — %QPPZB + %Qcplz +16013 (D.2)
P35 = P23 = ~TV23P23 %Qppl?) - %Qc (P33 = P22) = 1A, P23+ 16003

If we assume the population initially in state |1), i.e. p;; =1, and py, = p33 =0,
a strong control field, and a weak probe field the population will primarily stay in
state |1), with only minor population excited into states |2), and |3). We thus can
assume p;; = 0. These approximations simplify the equations of motion to:

P;l = P12 = (_le + iAp)pIZ + %Qp + %QCPIS
P31 =P13=(—r13+16)p13— %QppZB + %QcPu (D.3)
P32 = P23 = (Y23 +18) P23 — 52,013 — 14,025

With the weak probe field assumption we further drop any terms proportional to

Qf). We find that p,; is proportional to Q,, thus the term ;9,0,; can be neglected,

and the equations of motion reduces to a coupled pair of differential equations:
Pr =pr=(—1p+iA,)pL+i0 +i0p
'21 ' 12 ( 12 . p) 12 i 2%4p 2%8c1F13 (D4)
P35 =P13=(r13+i6)p13+ 50012
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Solving this system of equations we find the steady state solution:

4(Y12Y13 — 17156 — 17134, — 5Ap) + Q?
Q.Q,

4(Y12Y13 —1y126 — Y134, — 5Ap) +Q2

P12 =—
(D.5)

P13 =—

The expectation value of the atomic polarization on the probe transition is given
by P = pu.p1,. The linear susceptibility ¥ can thus be calculated using P =
eoxMé, = egx V&) /2, compare with Equation 2.15. We find:

20 = 2|0 2iy,3+26

. : (D.6)
€fl 4 (Y12Y13 —0A,—iy156 — lYlsAp) + Q2

We note, that this definition of ¥ ( slightly differs from the definition given in [70].
We here used for the decoherence rates y; = 5 (35, Tie + 2 i) + 7;; With v, =0,
while in [70], y;; =T, with T} the total decay from state j.
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