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ABSTRACT 

The fast development of LED and its applications has enabled a new generation of lighting 

device with higher efficiency and long lifespan. By employing a primary-side sensing flyback 

converter and the PIC18F micro-controller series, an LED driver could achieve two important 

features: (1) the compatibility with the available lighting fixtures, and (2) reducing unit price. 

The flyback converter was chosen for its simplicity, competitive low cost, and its ability to 

provide a constant output current, a necessarily important factor to an LED driver. Meanwhile, 

the PIC18F micro-controller series offer numerous advanced features which include but not 

limited to pulse-width modulation (PWM), 10-bit 13-channel Analog-to-Digital Converter 

(ADC) etc., which suitably meet the requirements for regulating a primary-side sensing flyback 

converter. The design process was first conducted in simulation stage with aid from Matlab®-

Simulink and Cadence OrCAD Capture CIS (PSpice). By using PI based control scheme and 

making full use of built-in Analog Behavioral Modelling (ABM) blocks, the simulation-relevant 

difficulties due to lacking of appropriate model for the PIC18F series micro-controller were 

completely solved. The simulation results matched well with the intended design specifications: 

the output voltage is 32 VDC while the load current is 350 mA. More importantly, the simulation 

results demonstrated the feasibility of deploying a primary-side sensing flyback converter in 

conjunction with a PIC18F micro-controller as an LED driver. Next, a demo printed-circuit 

board (PCB) was layout by using OrCAD PCB Editor. Finally, the PIC18F4550 micro-controller 

was programmed to undertake control tasks of the LED driver. The experimental results reflect 

the project’s success with all the parts of the driver harmoniously work as expected. 
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Chapter 1 

Introduction 

 

 

 

1.1 Overview 

When it comes to electrical energy consumption, there is a truth that may make a lot of people to 

be amazed. According to the International Energy Agency, lighting accounts for 20 percent of 

energy consuming all over the world [1]. In fact, the omnipresence of incandescent bulb is the 

reason for such a high energy consuming percentile. The obsolete incandescent bulb normally 

converts only 5% of input energy to light and dissipates the rest to the outside environment in the 

form of heat. This means that one of the most popular electric device in the world is also the 

most inefficient electric device. Despite the introduction of some new lighting devices, likes the 

compact fluorescent lamp (CFL), the relatively low price and the shopping habit of most 

consumers make the incandescent bulb to be an indispensable one in lighting market. Consumers 

just do not want to buy a new lighting product and then have to replace the whole lighting fixture 

too. From the customer’s perspective, they want to buy a new product with a low price but it 

must also easy to use. This is a very important thing that all designers must consider during the 

design process. 
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A solution for replacement of inefficient lighting device is using new generation light-emitting 

diode (LED) bulb. The development of semiconductor technology improves the lighting ability 

of LED significantly year over year. An LED is basically a semiconductor diode except the 

ability for light emitting when it is forward biased. An LED bulb is going to provide more 

lighting while consumes less energy. More importantly, its price will drop continuously in the 

near future. The latter is one of two main factors that prevent LED bulb to be welcomed on the 

lighting device market since the price range of an LED bulb is still relatively high compared to 

two of its opponent: the CFL and the incandescent bulb. Spending the same amount of money for 

an LED bulb, consumer could buy three CFLs, or even twenty incandescent bulbs with the same 

wattage. However, this correlation is being changed continuously. 

Despite having an unattractive price, LED bulb is invincible when it comes to efficacy, which 

means that LED bulb can achieve an impressively high light output per watt. Along this 

outstanding feature, the durability of an LED bulb is another great advantage that is normally 

ignored by consumers. Many manufacturers claim that the average lifespan of an LED bulb is 

more than 20 years, which will possibly be the last survivor among all the appliances you buy on 

the same day. In addition, the long-term benefit of an LED bulb will demonstrate its uniquely 

high efficacy mentioned above when the total running cost is considered [2]. A research that was 

done by Men’s Journal magazine shows that the total cost for running a lighting system of an 

American family with 40 bulbs of incandescent type in 20 years (three hours of daily use with 

national average electricity price) is more than 4 times ($6,300) the cost for the same system but 

using LED bulbs ($1,431). Even with the CFL bulb, which is advertised as a very economical 

one, the total cost for that lighting system is one-and-half higher ($2,106) than the LED system. 

The complete comparison is shown in Fig. 1.1. It should be noted that the total cost did not 
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include the expense for replacing new bulb. Since the lifespan of an LED is over 20 years, no 

LED bulb is expected to be replaced the whole interval. Meanwhile, each incandescent bulb 

could hardly work more than a year. Thus, consumers with incandescent lighting system may 

have to replace at least 19×40 = 760 times during 20 years (in case no more than one bulb stops 

working at the same time). The situation is somehow improved with CFL bulb with each of this 

type can last for up to 6 years but this replacement cost will undermine its ability to attract 

customer. 

 

Figure 1.1 – The total cost for using Incandescent, CFL, and LED bulbs for 20 years. 

 

As mentioned above, the prohibitively expensive price, which will soon to be reduced, is one of 

two main barriers that prevent LED bulb from becoming a popular lighting product. The other 

factor is the compatibility of the new generation LED bulbs. In spite of having the long term 

benefits likes long lifespan, cost saving, and environmentally friendly product, LED bulbs would 
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not able to persuade customers if it required them to purchase additional accessories. From 

design perspective, it is better to have LED bulb that works perfectly with current available 

fixtures. Buying a new lighting product with a little bit higher price, customers should be 

satisfied with their decision for many long term benefits and how easily it mounted on the 

available fixture at home. 

1.2 Purpose and organization of this thesis 

The main purpose of this thesis is to design a micro-controller based flyback converter for 

driving the LED lighting load. The design process starts with simulation task in Matlab/Simulink 

and Cadence’ PSpice (OrCAD Capture CIS). After successfully obtaining design-matched 

results, a demo board will be designed in OrCAD PCB Editor. The artworks is then transferred to 

a PCB manufacturer to fabricate. Finally, the micro-controller will be programmed for driver’s 

control purpose. A brief introduction about design specifications and considerations will be 

presented in Chapter 2 (Design specifications and considerations). Details about simulation 

works and hardware implementations will be discussed in Chapter 3 (Simulation of a micro-

controller based primary-side sensing flyback converter for LED driver), and Chapter 4 

(Hardware implementation), respectively. Chapter 5 is about experimental results and Chapter 6 

will concludes the thesis. 
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Chapter 2 

Design specifications and considerations 

 

 

 

 

2.1 Design specifications 

In order to design a driver for an LED that provides all advantages as in the previous chapter, 

design engineers should meticulously consider all the dimensions. Its form should be small 

enough to fit within the available commercial fixture, and that small driver should meet all the 

required technical specifications (power factor (PF), brightness, etc.). Building an LED driver 

based on a DC-DC switching converter with control task is undertaken by micro-controllers has 

recently attracted designers for various reasons. The modern micro-controllers are not only 

extremely powerful but also small enough to be integrated in an LED driver. They offer great a 
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flexibility with numerous built-in functions like pulse-width modulation (PWM), Analog-to-

Digital converter (ADC), timer etc., which allow designers to do many tasks without equipping 

dedicated circuits. More importantly, benefiting from the development of semiconductor 

industry, micro-controller is becoming cheaper, greatly contributes on the effort of lowering an 

LED driver’s price. 

The work of selecting the DC-DC switching converter candidate for an LED should take into 

account some features like topology, performance, and implemented cost. Flyback converter 

emerges as an optimized choice for its simplicity, excellent input voltage-input current 

relationship, and low cost. The simplicity of the whole driver circuit will be greatly enhanced by 

regulating the output from the primary side of transformer. Using primary side sensing and 

regulating not only helps to save the board size by getting rid of unnecessary component like 

optocoupler but also eliminates its unwanted instability effects. Therefore, the LED driver’s price 

would be further decreased while the performance is also improved. 

The design specifications of a micro-controller based primary-side sensing flyback converter for 

LED driver is tabulated in Table 2.1. The schematic for this driver is illustrated in Fig. 2.1. 

Table 2.1 – Design specifications 

Input voltage (RMS) 120 VAC, 60Hz 

Output voltage 32 VDC 

Output current 350 mA 

Switching Frequency 100 ± 10 kHz 

DC-DC converter type Flyback 

Primary-Side Sensing & Regulating Yes 

Magnetizing inductance 40 µH 

Secondary winding inductance 8 µH 

Transformer’s turn ratio 2.23/1 

Micro-controller PIC18F4550 
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Figure 2.1 – Schematic of the LED driver with micro-controller and primary-side sensing 

flyback converter. 

 

The design process of an LED driver will start with simulation, using Matlab-Simulink and 

Cadence’s PSpice (OrCAD Capture CIS). Next, the prototyped printed circuit board (PCB) will 

be designed using OrCAD PCB Editor Lite, which includes in the same free package from 

Cadence. The artwork files then will be transferred to a PCB manufacturer to fabricate. For 

demonstration purpose, the components of PCB are selected based on technical specifications 

only. Therefore, many of components are through-hole devices, which have larger footprint. The 

board size should be shrunken considerably by using surface-mount devices (SMD) if the 

prototyped board worked flawlessly and was ready to be commercialized. 

2.2 Micro-controller as a driver’s controller 

Dedicated mixed-signal switching controllers used to be a regular choice for flyback converter 

regulating work. However, it is not as flexible as most of the modern micro-controller and is 

gradually being replaced by numerous modern, powerful, and multi-function micro-controller 

families [3]. Having a lot of built-in functions, micro-controllers allow designers to add more 

features to the same current board by simply changing control algorithms. No circuit is required 
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to be added, therefore the current board would not become more complicated. It means that 

designers will be able to provide their customers with more utilities on the same product with not 

too much cost for upgrading. 

Selecting an appropriate micro-controller is not an easy task. Each manufacturer likes Atmel or 

Microchip Technology has various families of chip that can meet every control purposes. Even 

in each family, there are hundreds of type which different from each other by package, amount of 

memory, speed etc. In general, the task of selecting a micro-controller for a specific project 

should be based on the following criteria [4]: (1) The ability of micro-controller to provide 

enough strength with a reasonable price to meet all the design requirements, (2) How easy is it to 

program, load, and test with the micro-controller?, and (3) The supply source of micro-

controller. 

The selected micro-controller for this current project is Microchip Technology’s PIC18F4550 

(Fig. 2.2). First of all, this 8-bit controller is equipped with 2 Capture/Compare/PWM (CCP) 

modules, which is suitable for controlling a flyback converter. With 4 timer modules (3 16-bit 

type and 1 8-bit type), 35 I/Os with 10-bit 13-channel Analog-to-Digital Converter, signal 

acquisition task becomes a less burdensome work [5]. The PIC18F4550’s 32Kbytes of Program 

Memory and 2048 bytes of Data Memory are abundant for this small LED driver circuit. In 

addition, the price for one unit is relatively cheap, just less than $5 for 10 units [6] and it will be 

decreased dramatically if the order quantity exceeds 100 units. Its programmer, PicKit 3 provides 

us with a friendly software kit, includes C compiler for free. This product also has a stable 

supplying source from its manufacturer Microchip Technology or from other electronic 

component distributors like Digikey or Mouser. In conclusion, the PIC18F4550 micro-controller 

suitably meets all the requirements for this LED driver project. 
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Table 2.2 – Main characteristics of the micro-controller PIC18F4550 

Package DIP 

Number of pin/Number of IO 40/35 

Internal Oscillator Up to 8 MHz 

Timer Module 4 (Timer0 – Timer3) 

CCP Module 2 (1 CCP/1 ECCP) 

ADC Module 10-bit, up to 13 channel 

Operating Voltage Range 2.2 – 5 V 

Program Memory 24 Kbytes Flash 

Data Memory 2048 bytes SRAM  

Programmer PicKit3 

Integrated Development Environment MPLAB X 

Programming Language/Compiler C/MPLAB XC 8 Compiler 

 

 

Figure 2.2 – PIC18F4550 micro-controller and PicKit3 Programmer. 

 

2.3 The Flyback Converter 

Flyback converter was selected among many DC-DC switching converter topologies for a lot of 

its advantages compared to the other. The absence of output inductor greatly contributes to the 

competitive low cost for flyback converter since the board size could be shrunken while the 
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budget does not have to include the inductor’s price (Fig. 2.3). It is replaced by a transformer, 

which will be able to provide an isolation between the load and the source side [7]. With no 

direct connection between the two sides, safety is no longer a concern for a flyback-based circuit. 

This transformer also stores and releases magnetic energy, each operation respectively 

corresponds to the non-conducting and conducting interval of the secondary side’s diode. 

Q
From PWM

Load

+

-

+

Vin

Np Ns
D

C

Ip(t) Is(t)

 

Figure 2.3 – A Flyback converter. 

One characteristic that makes flyback topology to become the apparent choice for the LED driver 

is its ability to provide a constant output current or voltage, depends upon discontinuous current 

mode (DCM) or continuous current mode (CCM) operations. In the case of LED bulb, its 

brightness heavily depends on the forward current flowing through [8]. Thus, an LED driver 

should be designed with a constant current output in order to obtain the required performance. 

For those reasons, a flyback converter which works in DCM operation mode is the exact answer 

for this project. In addition, the flyback topology has an excellent linear relationship between the 

average input current iin,avg(t) and voltage vin(t) as 

    
2

,
2

in avg in

p

D T
i t v t

L
  (2.1) 

which results in a very high power factor. In the above formula, D is the duty cycle, T is the 

switching period, and Lp is the magnetizing inductance of the primary winding. This superb 
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relationship makes flyback converter to be one of the most favorite choices when it comes to 

power factor correction. The lowest allowable power factor is an important requirement for new 

household appliances and must comply with specific regulations, depend on whether it uses for 

residential or commercial purpose. 

Apart from conventional flyback converter, one distinctive feature of the converter in this project 

is the primary side regulation. Primary side sensing and regulating is the preferred method for 

this isolated converter since it makes the circuit to be less complicated and also makes full use of 

the PCB space more efficiently. This helps to save some cost and contribute to the effort of 

reducing price for the whole circuit. In this project, there is no need for the traditional isolated 

feedback circuit since the secondary side’s operation can be monitored by using an auxiliary 

winding of transformer in companion with micro-controller’s counter. The elimination of the 

optocoupler in the feedback circuit not only lessens the complex of circuit but also completely 

eradicates unwanted effects from the optocoupler due to temperature change. 

Input voltage for the flyback converter in this project is a DC voltage with Vin,max = 120√2  ≈

169 V, which is rectified directly from the AC source. When the switching transistor Q is ON, 

the primary side current is increased linearly until it reaches the maximum value of: 

 
,max 6

max 6

169
0.83 10 3.5 A

40 10

in

p on

p

V
I t

L




    


 (2.2) 

with ton is the conducting interval of the switching transistor. This on-time can be chosen from 

0.5 µs to 5 µs. The on-time value selected here is 0.83 µs, which is equivalent to 0.005% of one 

full cycle of 60-Hz AC source (approximately 16.6 ms). During ton, the secondary side’s diode 
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will be reverse biased due to inversed polarity and the load current is supplied by the output 

capacitor. 

At ton, the switching transistor is OFF and the polarity of the transformer’s primary winding 

immediately inverses. The secondary side’s diode is now forward biased, conducts current from 

the secondary winding to load. This current will decrease linearly, starts from its peak value 

Ismax, which has the following relationship with primary side peak current: 

 

max max max max

40
3.5 7.83 A

8

p p

s p p p

s s

N L
I N I I I

N L
     

  

 (2.3) 

If this current is designed to completely diminish before the switching transistor switches ON 

again, this mode is called discontinuous current mode. The expected average load current for 

driving a 1W LED is 0.35 A. The secondary side’s diode conducting interval can be known if the 

moment at which the secondary side’s current goes to zero (t2) is identified. The value of t2 may 

be obtained from: 

 2
max max 2

1 1

2 2
avg s s

t
I I I t f

T
     (2.4) 
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 (2.5) 

This calculated value demonstrates that the operating mode is DCM because t2 < T = 1/f. The 

DCM operating mode assures a desired constant output current, delivers an excellent transient 

response, and also will be able to provide power factor correction feature for the flyback 

converter. The DCM operating mode, however, requires some components with larger ratings. 
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As mentioned above, the flyback converter in this project will deploy primary-side sensing and 

regulating feature. An auxiliary winding of the transformer will be used to monitor the secondary 

side operations. Assume the inductance of auxiliary winding is 1 µH, its voltage will be: 

 
1

169 26.7 V
40

a a
a p p

p p

N L
V V V

N L
     (2.6) 

A voltage sense is formed by a zener diode and a resistor. This voltage level will be acquired and 

then compared with a pre-defined threshold voltage, which is stored by the micro-controller, in 

order to detect the conducting interval of the secondary side’s diode. The secondary side’s diode 

conducting interval will be combined with signal from peak current detector, sample signal of 

input rectified voltage and the primary side switching current as four inputs of the micro-

controller. The micro-controller’s PWM feature processes data, then compares with an in-

register stored preset value before making decision. If mismatch between the calculated and 

preset value is not within allowable tolerance, the duty cycle will be adjusted. Otherwise, no 

action will be triggered from the micro-controller. 

2.4 Simulation 

Simulation is vitally an important stage at the beginning of any design process. Unfortunately, it 

is impossible to set up a straightforward environment for PIC18F4550 micro-controller’s 

behaviors with available tools. By exploiting the first order mathematical model for the flyback 

converter and using Matlab-Simulink, Cadence’s PSpice (OrCAD Capture CIS) and a PID based 

control scheme, several critical features of the micro-controller (PWM, counter etc.) can be 

simulated. The simulation process will be discussed in Chapter 3. 

2.5 Demo board design 
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In order to minimize any potential mismatch in design, the PCB design process will start with 

OrCAD Capture CIS for schematic drawing and then export to OrCAD PCB Editor for layout. 

The two parts from the same Cadence’s Suite helps the design process to be proceeded 

seamlessly. 

Most passive components have defined footprints. However, some components like transformer 

and micro-controller, whose footprints are not supplied by manufacturers, require manual 

footprint design. This work becomes less difficult with OrCAD PCB Editor’s Footprint Wizard 

feature. In fact, this feature allows designer to draw any type of footprint, as long as the 

component’s datasheet is available. 

Since the design board here is just a demo version, the component selection was not optimized. 

Some parts might have large footprint and do not follow the board-shrinking spirit due to 

employing through-hole technology one. The board size can be enhanced by replacing through-

hole devices with the same-specification, equivalent SMD parts. This task will be done if: (1) the 

demo board works properly, and (2) the driver is commercialized. 

The PCB design task is finalized by comparing the generated artworks with their predecessor 

layout. Although the generated artworks can be investigated by PCB Editor itself, the design 

results should be viewed in a completely independent tool. If the different softwares bring out the 

same results, the artworks’ verification is justified. 

2.6 Programming 

The official programming language that will be used for PIC18F4550 micro-controller is C. The 

Integrated Development Environment and Compiler are free to download from the 



15 
 

manufacturer’s website (www.microchip.com). Code will be conveniently loaded to the micro-

controller using PicKit3 programmer through USB interface. 

http://www.microchip.com/
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Chapter 3 

Simulation of a micro-controller based primary-side sensing flyback converter for LED 

driver 

 

 

 

 

 
3.1 Introduction 

Simulation plays a vital role in electrical engineering design process. As the electronic circuits 

and systems have become more complicated, computer simulation has demonstrated its 

usefulness in comparing the traditional design verification with breadboard [9]. With the 

development of modern computer technology and algorithms, the results of simulation can 

perfectly reflect behaviors of electrical components. Simulation helps design engineer to save not 

only the cost but also a lot of time since it provides useful information about every component 

effects on the overall result. Therefore, the LED driver design process in this project started with 

simulation task. 

When it comes to simulation in electrical engineering, Cadence’s PSpice (OrCAD Capture CIS) 

emerges as one of the most favorite choices for designer engineers. It is convenient, powerful, 
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and has very friendly user interface. PSpice not only provides a tremendous amount of parts but 

also motivates the designer's creativity by developing new components on his own. Because of 

this feature, there are thousands of self-made libraries distributed on the Internet, including both 

free and paid packages. In addition, many electronic vendors consider PSpice as an industrial 

standard and publicly supply their own product’s libraries for free of charge. 

Despite the fact that there are numerous ready-to-use PSpice-compatible libraries of micro-

controller, it was hard to find a library which contains our chosen one, PIC18F family. The 

reason originated from the fact that this microchip’s product series offers too many advanced 

features to represent in just only one mathematical model. This means that at the very first step 

of the simulation task, we have to find a solution to overcome the absence of PIC18F family 

library. 

Two solutions were proposed. The first one is to construct a mathematical model for 

PIC18F4550 micro-controller that presents exactly all behaviors we need from this chip (PWM, 

counter, etc.). This solution seems to be an overwhelming as well as time-consuming work with 

low feasibility. The second one is to make use of Cadence’s built-in Analog Behavioral Model 

(ABM) libraries in conjunction with PID-based control algorithm in order to present necessary 

features of PIC18F4550. This plan promises to provide the same equivalent results but requires a 

significantly smaller amount of time. 

3.2 PID-based control scheme 

PID is one of the most widely used controllers in industry since it provides not only good output 

performance in a wide range of working conditions but also the simplicity, ready-to-use tuning 
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strategy [10]. In this simulation, the popular three-term PID transfer function in frequency 

domain will be used as follows: 

   I
P D

K
G s K K s

s
    (3.1) 

in which KP, KI, and KD are proportional, integral, and derivative coefficients that represent the 

correspondent terms, respectively. In fact, the derivative term has the following transfer function: 
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with 𝜏𝐷 is small enough compared to the time constant of the process itself and usually can be 

neglected. In Simulink, there is a built-in block PID with the following transfer function: 
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 (3.3) 

in which N is defined as the “Filter Coefficient”, which has a default value of 100. With P, I, and 

D play role of KP, KI, and KD, we can see the relationship: 𝜏𝐷 = 1/N. Therefore, the value of 100 

for N could be left unchanged or set as large as possible while working with this built-in PID 

block in Simulink. 

 

3.3 Modeling the flyback converter 

A mathematical model for the primary-side sensing flyback converter is necessary for control 

design procedure. As the flyback converter operated in discontinuous current mode (DCM), a 

very high power factor will be achieved [11]. Because of this reason, the expected input 
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characteristics of LED are similar to a pure resistor that we use as a load in this simulation. With 

such resistor-like load, the control target is achieving and maintaining the output voltage of the 

flyback converter as close to 32 V as possible so that the current flowing through 1W LEDs is 

about 350 mA while the settling time and rising time should be small enough to guarantee the 

fast response of an LED bulb. The percent overshoot is also expected to be small as an LED is 

basically a diode, so that a small change above the forward biased voltage could make a 

significant change in current. A first-order model for the flyback converter is suitable for this 

research because it provides not only the simplicity but also the reasonable accuracy. 

For the current flyback converter, its mathematical model was built based on the following 

parameters and formulae using Matlab: 

 L_PRI=40*10^-6: Inductance of the transformer’s primary coil (40 µH). 

 L_SEC=8*10^-6: Inductance of the transformer’s secondary coil (8 µH). 

 Vin=1.414*120: Amplitude value of input voltage (120√2  ≈ 169 V). 

 Np=2.25: Number of turns for the transformer’s primary coil. 

 Ns=1: Number of turns for the transformer’s secondary coil. 

 Naux=0.83: Number of turns for the transformer’s auxiliary coil. An auxiliary coil will be 

used to detect the conducting time of the secondary side’s diode without using a feedback 

system directly from the secondary side. The advantages of this primary-side sensing 

technique was introduced in Chapter 2. 

 f=100*10^3: Switching frequency of the flyback converter (100 kHz). 

 Vout=32: The expected value of output voltage (32 VDC). 

 Iout=0.350: The expected value of output current (350 mA). 
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 Rout=Vout/Iout: Ohm’s law used to calculate equivalent resistance of the LED with 

assumption that flyback converter was operated in DCM. 

 Caux=100*10^-9: Capacitance of load capacitor on the auxiliary side (100 nF). 

 Csec=100*10^-6: Capacitance of load capacitor on the secondary side (100 µF). 

The first order transfer function of the flyback converter has a form of [12]: 

  
Gain

1
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T s
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 (3.4) 

in which Re and Ce are the equivalent resistance and capacitance of the flyback converter. They 

are calculated for the simulated model as follow: 

 Re=(Vout)^2/(Vout*Iout): Equivalent resistance is exactly the calculated resistance of the 

LED above. 

 Ce=Caux+Ns/Naux*Csec: Equivalent capacitance of the model is calculated as a sum of 

load capacitance on the auxiliary side and the load capacitance on the secondary side 

referred to the auxiliary side. The factor ½ on the denominator of the transfer function 

accounts for those two load capacitors. 

The “Gain” value depends on the mode of operation. With the intended mode being selected as 

DCM, formula to calculate the value for “Gain” is: Gain=Vin*Ns/Np*sqrt((Re)/(2*L_SEC*f)). 

Finally, the first order transfer function in frequency domain of the flyback converter is: 

  
570.1
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T s

s



 (3.5) 
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Having the mathematical model for the flyback converter means the object control has been 

identified. We proceed to the next step: design the controller and the feedback system. 

3.4 Controller and feedback system design 

The chosen controller is PID-based scheme for various advantages as mentioned in Section 2 of 

this Chapter. For this type of controller, several ways to determine gains, called PID tuning, were 

introduced. 

The first approach is manual tuning in which all three parameters KP, KI, and KD are acquired 

manually with no math required [13]. Since there is no explicit mathematical formula to obtain 

PID’s parameters, this method may bring some confusions to inexperienced designers due to 

complicated relationships between the adjustments of gain and design specifications. For 

example, the increase of KP helps lower the steady-state error, but equally makes the percent 

overshoot increase with a very little impact on the settling time. Meanwhile changing KI on the 

same manner brings 0 for steady-state error with the improvement for both the percent overshoot 

and the settling time. In addition, determining gains without a mathematical formula means the 

design process will be done with testing and detecting. This method might be a very time-

consuming and tedious task for people with no deep insight about PID. 

A widely used rule of thumb for manual tuning is to first set both KI and KD to 0. KP will be 

adjusted increasingly until the system becomes oscillated using root locus method. The value of 

KP that makes the system oscillated will be divided by 2 to obtain the proportional gain. Next, KI 

will be incremented in order to achieve a reasonable rise time. The integral gain should not be 

too big to avoid instability for the system. Next, the derivative gain will be adjusted to meet the 
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design specifications of the percent overshoot and the settling time. This process seems simple at 

first but it requires a lot of experiments and does not guarantee the convergence. 

The Ziegler-Nichols tuning method was introduced in the 1940s. It is a proven method with 

explicit mathematical formula for each P, PI, and PID controllers. It is useful for the case that 

requires an ability of disturbance rejection and a fast closed-loop step response with no excessive 

oscillation. The process of identifying gains establishes in the same manner with manual tuning 

by setting both the integral and derivative gains to zero, and then increasing the proportional gain 

until the system reaches its boundary of oscillation. The value of KP that makes the system 

become oscillated was denoted as KU – the ultimate gain. Measuring the period of system 

oscillation, we acquire TU – the ultimate period. 

From the ultimate gain KU and the ultimate period TU, the proportional, integral and derivative 

gains of P, PI, and PID controllers will be determined, depending on the type of the controller 

being considered. If a proportional controller is enough, its proportional gain will be set as 

0.5KU. In case a proportional-integral controller is necessary, the proportional gain and integral 

gain are 0.45KU and 0.54KU/TU, respectively. If a full three-term PID controller is required, the 

proportional, integral, and derivative gains are 0.6KU, 1.2KU/TU, and 0.6KUTU/8, respectively. 

Design with aid from software has emerged as the first choice for engineers in the recent two 

decades. With the rapid development of computer technology and algorithm, CAD/CAM tools 

guarantee optimized, highly reliable, consistent results in acceptable running time. The 

disadvantage of using tuning software is the relevant cost for purchasing and training might be 

relatively high. In this project, we will use a low-level aided tool, named SISO Tool for design 

purpose. This software, which is a built-in part of MATLAB [14], was used in companion with 

Simulink to design the PID controller for the flyback converter. 
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SISO Tool is a powerful software which supports designer in real-time tuning controllers. It is 

easy to use with friendly graphic user interface (GUI) and does not require any pre-course 

training. Being integrated in MATLAB, there is no need to pay any additional cost. Any 

adjustment done during the design process will be immediately demonstrated on selected graphs 

with almost no delay. After establishing SISO Tool in MATLAB, by default, two windows pop 

out as shown by Figs. 3.1 and 3.2: “Control and Estimation Tools Manager” window for setting 

and tuning tasks, and “SISO Design for SISO Design Task” window for presenting real-time 

update design results. 

 

Figure 3.1 - User interface of SISO Tool. A new design can be created or a previous work can 

be loaded. 

 

In “Control and Estimation Tools Manager” window, under “Architecture” tab, the software 

provides us with several common controls architecture in “Control Architecture” option. Because 

there is no special requirement for control architecture, we leave it as default with the most 
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common form, as shown in Fig. 3.1. The mathematical model for the flyback converter, which 

was found in the previous section by using numerous MATLAB commands, could be imported 

here to “G” block by “System Data” option. The work now is to design the compensator “C”, 

and the feedback gain, if necessary. 

 

Figure 3.2 - Real-time update designed graphs. Up to 6 graphs can be shown at the same time. 

 

As shown in Fig. 3.2, SISO Tool provides us with several graphs, which includes but is not 

limited to root locus, Bode plot for closed-loop, and open-loop system. However, we can add up 

to 6 figures to this window in order to monitor the results of tuning. This task is done by using 

tab “Graphical Tuning” on the “Control and Estimation Tools Manager” window. From “SISO 

Design” window, we are able to investigate every change of graphs by relatively adding to the 

controller either a pole/pair of poles, or a zero/a pair of zeros. These added poles and/or zeros 

will be immediately updated on the “Control and Estimation Tools Manager” window, under 
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“Compensator Editor” tab. The position of poles and/or zeros could also be precisely selected 

here and then compare with the results at “SISO Design” window. 

After doing some preliminary calculations, it was found out that by putting two zeros at s1 = -

1250 and s2 = -22700 on the left-hand plane as shown in Fig. 3.3, all design requirements can be 

totally satisfied. An input reference of 1.5 and a feedback gain of 0.046875 (1.5/32) were also 

added in order to achieve the value of 32 VDC as a result of step response. By the time two zeros 

were added, the system root locus graph was also updated as illustrated in Fig. 3.4. 

By adding two zeros as stated above, the transfer function of designed PID controller now is: 
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 (3.6) 

 

Figure 3.3 - Adding two zeros at -1250 and -22700 to the compensator. SISO Tool also shows 

the function of equivalent controller. 



26 
 

 

Figure 3.4 - The system’s Root Locus graph was updated with two added zeros and one pole (at 

s = 0). 

 

 

Figure 3.5 - Bode plot of the closed loop system with demonstration of stability. The closed loop 

system is stable and the phase margin is 47.8º. 
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With this PID controller, the system’s stability is guaranteed with 47.8º phase margin as 

indicated in Fig. 3.5. This stability feature was investigated one more time by using Nyquist 

criterion and the same result was achieved since the system’s contour does not encircle the (-1, 

0) point and the number of pole for loop gain transfer function is zero [15]. Fig. 3.6 illustrates the 

Nyquist plot for the current system. Fig. 3.7 zoom in (-1, 0) point to show the relative position of 

(-1, 0) point with the contour. With such a stable system, the step response is shown in Fig. 3.8. 

The settling time is merely 0.00767 sec while the rising time is more impressive with just less 

than 0.0001 sec. The output of the model is 32 V as expected. 

In order to check the design results, a simulation in Simulink was employed. The PID controller 

block was built as in Fig. 3.9, and the whole closed loop system was constructed as in Fig. 3.10.  

 

Figure 3.6 - Contour of the system loop gain demonstrated on Nyquist plot. It does not encircle 

the (-1, 0) point any time, showing us the credit of a stability system. 
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Figure 3.7 - A closer view at the (-1, 0) point. 

 

 

Figure 3.8 - Step response of the controlled system. The Settling Time is 0.00767 sec, The Rise 

Time is less than 0.0001 sec, and the Steady-State value of system’s output is 32 (VDC). 
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After running the simulation, then comparing the responses of Simulink simulation (Fig. 3.11) 

with the designed result from SISO Tool (Fig. 3.8), there was almost no difference. Therefore, 

the designed PID controller is now ready to be implemented in PSpice simulation. 

 

Figure 3.9 - The PID controller in Simulink. 

 

Figure 3.10 - Simulation of the closed loop system in Simulink. 
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Figure 3.11 - Simulation result from Simulink. This result matched perfectly with the designed 

result from SISO Tool. 

 

3.5. Simulation with Cadence’s PSpice 

The next step in the design process is simulating with full converter using Cadence’s PSpice 

software. There are a lot of reasons for choosing PSpice, among them are two highlight features 

that make this software the most favorite one for many design engineers: (1) providing high 

reliable results with significantly fast running time, and (2) having a diversified library of 

component which seamlessly supports designer not only on stage of simulation but also on task 

of printed circuit board (PCB) design. The PCB design process was also implemented using 

several parts from Cadence Product Suite, as will be demonstrated in Chapter 4. 

The schematic for full converter simulation is shown in Fig. 3.12. It can be divided into four 

main parts. The first part, which denoted “1” in Fig. 3.12, is the main circuit of the LED driver. It 
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consists of: a rectified circuit which converts 120 rms-value AC source into a DC source, a 

snubber circuit with function of reducing voltage stress on transistor due to switching action, a 

flyback topology, and a peak current detector. The second one, “2” is the PID controller which 

works essentially as a PI controller since the derivative gain is significantly small compared to 

the proportional gain and integral gain, and its impact can be neglected. The main purpose of 

using the third part, “3” is illustrated the function of PWM feature of PIC18F series micro-

controller. The fourth part, “4”, named Zero Current Detector, has its function of detecting and 

calculating the conducting time of the diode on the secondary side. In practice, except the part 1 

has its real, physical circuit, the other three parts were implemented by the micro-controller. 

 

Figure 3.12 - Schematic for full converter simulation in Cadence’s PSpice. 

 

Part “1” will connect directly to the standard household120 rms-value AC source, and then 

rectifying it to a DC source with its peak value of approximately 170 V. A sample waveform of 

rectified voltage will be extracted and feed through to the micro-controller for control purpose. 
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The introduction of the snubber circuit (Fig. 3.13) helps to solve the problem of an excessive 

voltage might be induced on the switching transistor during turn-off process due to the 

transformer leakage inductance [16]. It keeps the transient oscillation voltage in safe boundaries, 

thus lowering the power dissipation of the switching transistor. 

 

Figure 3.13 - The Snubber Dissipative Circuit. 

 

When the switching transistor is switched off, diode D21 is forward biased. The energy from the 

transformer’s leakage inductance due to inductive kick phenomenon will be discharged to 

capacitor C10 [17]. Therefore, capacitor C10 should be able to store its initial charged energy 

plus the energy transferred from transformer inductance. According to [16], the minimum value 

for C10 can be calculated from: 
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where LL is the leakage inductance of the transformer. With the intended EFD-20 transformer, 

from its datasheet: LL = 4×0.24 = 0.96 µH. ΔVC is the acceptable change of voltage across 

capacitor C10, that has range from 40 V to 60 V. We can choose a value of 50 V for this 

calculation. V is the secondary side voltage reflected to the primary side, which is calculated as N 

(= NP/NS) times of forward biased voltage of the secondary side diode (choose the value of 0.8 

V) and the output voltage (32 V). Thus, V = 2.23×(32 + 0.8) = 73.14 V. 

The minimum value for capacitor C10 of the snubber circuit is: 
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The value for resistor R17 should be chosen so that the time constant of R17-C10 circuit is much 

larger than the switching period (1/100 kHz = 10-5 s). In addition, this resistor should be able to 

dissipate the total transferred energy from transformer’s leakage inductance as well as stored 

energy in capacitor C10. Also according to [16], the formula to calculate power for this resistor 

is: 
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The value of C10 and R17 are tested and adjusted, if necessary, in order to minimize their 

impacts on the transient response. Finally, with C10 = 47 nF and R17 = 100 kΩ all the required 

specifications are justified. The circuit’s time constant is (47×10-9)×(100×103) = 470×10-5 s, 

which is much larger than the switching period of 10-5 s. The minimum dissipative power for 

resistor R17 is calculated as: 
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The intention of using the primary-side sensing and control is attained by using a peak-current-

detector circuit for obtaining secondary side’s peak current with no device connected to the 

secondary side at all. The peak current detector, which is shown in Fig. 3.14, receives the 

waveform of switching current to its port 3 and outputs the maximum value of the primary side 

current. This value is just the value of maximum secondary side current referred to the primary 

side. The actual secondary side’s current is proportional to the primary side’s quantity by a factor 

of Np/Ns – the turn ratio of transformer [18]. This peak value, along with the waveform of the 

primary side current will be delivered to the micro-controller to calculate and compare. In 

simulation, the peak current value is a factor of feedback signal calculation process while the 

waveform of the primary side current will be compared with the calculated quantity in order to 

control the PWM mechanism. 

 

Figure 3.14 - The Peak Current Detector, a mechanism of primary side sensing for detecting the 

peak current of secondary side circuit without any contact. 
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Figure 3.15 - Demonstrating the PWM mechanism in the micro-controller based LED driver 

simulation. 

 

Part 3 illustrates the PWM mechanism of providing the driving signal for switching transistor 

M2. The post-processed signal from PID controller (IN1), which is chosen as the reference 

signal, will be compared with signal that represents the primary-side current which flows through 

the switching transistor (IN2) as shown in Fig. 3.15. If IN2 signal is greater than or equal to IN1 

signal, a logic “1” will be send to “R” port on S-R latch. It means that the output of the latch will 

be forced to low, Q = 0 and the switching transistor M2 is OFF. The S-R latch’s output will stay 

low as long as IN1 signal is smaller than IN2 signal. When IN2 signal is smaller than IN1 signal, 

a logic “0” exists at “R” port and the output of the S-R latch will be forced high, making the 

switching transistor to be conducted. Because the output of the S-R latch is just about 3.5 V, a 
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gain block of 1.43 was used to achieve 5V value to the gate of M2 as shown in Fig. 3.15. Those 

sequences of action describe exactly the PWM mechanism of PIC18F micro-controller, which 

will be implemented through programming with algorithm as in Fig. 3.16. In this simulation, 

ABM (analog behavioral modelling) blocks are used to demonstrate these operations. As will be 

shown later, ABM blocks will also be employed in parts 2 and 4 which function as the zero 

current detector as well as to transfer the model of PID controller from Matlab-Simulink to 

PSpice. 

 

Figure 3.16 - Flowchart of PIC18F based LED driver’s algorithm. 

 

The zero current detector (Fig. 3.17) is actually a virtual circuit whose function is to monitor and 

calculate the conducting period of the secondary side’s diode. The main advantage of the 

“primary-side sensing” circuit, is the absence of optocoupler, which makes it a more stable 

sensing circuit. In application, a multi-winding transformer is required. Therefore, along with 

primary and secondary windings, the third winding’s voltage can be used to detect the 

conducting operation of the secondary side’s diode. In Cadence’s PSpice, however, there is no 
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model for multi-winding transformer [19]. Despite the fact that we can design and then use a 

new 3-winding transformer model, it is more convenient to use an auxiliary transformer instead. 

Two terminals of the main transformer’s primary winding will be connected to another 

transformer, and a similar-secondary-side circuit will be constructed in order to investigate the 

secondary side’s diode conducting operation. Using a voltage divider which was constructed by a 

resistor in series with a Zener diode, the status of the secondary side’s diode can be obtained 

through the voltage level of Zener’s cathode. After several times of running and measuring, the 

threshold value of voltage level of Zener’s cathode at which the conducting state of secondary 

side’s diode reversed is found to be 4 V. An ABM block with “one input, V out” was used to do 

that logic expression. Whenever the voltage at Zener’s cathode (reflects the anode voltage at the 

secondary side’s diode) is greater than or equal to 4V (i.e., anode voltage of the secondary side’s 

diode is greater than 5 V), the output of the conditional ABM block is 5 V. It means that the 

secondary side’s diode starts to conduct. Meanwhile, the dropping of voltage at Zener’s cathode 

below the threshold of 4 V is the sign that conducting activity of the secondary side’s diode is 

halted. The output signal from ABM block will be fed through a low-pass filter and then 

contributed to the calculation of output, which was used as feedback signal for PID controller. In 

application, all is needed to do is just monitoring the voltage of Zener’s cathode (which reflects 

the voltage of the auxiliary winding) and using a counter of micro-controller to achieve the 

conducting time of the secondary side’s diode. 

As stated above, the derivative gain value is just KD = 6.3164×10-5 which is less than 0.01 

percent of either the proportional gain KP = 1.51 or the integral gain KI = 1795. Thus, its effect 

was just minuscule.  In practice, the derivative gain should be as small as possible to mitigate the 

effects of noise.  Hence, the designed PID controller (in reality, a PI controller) from Matlab-
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Simulink was transferred to Cadence’s PSpice in a form of PI controller using ABM blocks as 

shown in Fig. 3.18. This PI controller has a reference input 1.5 as in SISO Tool/Simulink design 

and the feedback signal is the combination of the peak current detector and the zero current 

detector’s outputs. The specific formula of this feedback signal is [20]: 

 
_

, max

1

2

on s

avg p p

t
I I

T
  (3.11) 

in which Ipmax is obtained from the peak current detector, and the ratio between the secondary 

side’s diode “on” time ton_s and the switching period T is obtained from the zero current detector. 

 

Figure 3.17 - Visualizing the Zero Current Detector by employing ABM blocks. 

The output of PID controller will be multiplied with the sampled waveform of rectified voltage 

to make the reference signal for PWM mechanism. The signal to be compared is the switching 

current measured at the gate of MOSFET M2, which is converted to voltage by a 0.25Ω resistor. 

The flowchart of receiving, combining, processing, and comparing is illustrated in Fig. 3.19. 
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Figure 3.18 – PID controller in PSpice. 
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Figure 3.19 – Flowchart of control PWM mechanism in PSpice simulation. 

 

3.6 Simulation results 

After setting the simulation profile, the simulation was run several times so all the results were 

investigated carefully. Fig. 3.20 shows the input and output signals of the zero current detector. 
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The threshold voltage at which the output is high is 4V. Fig. 3.21 demonstrates the PWM 

mechanism which will be implemented by the micro-controller. The signal from PID (black 

line), which is chosen as the reference will be compared with MOSFET M2’s source signal 

(solid purple) in order to generate PWM signal (solid pink), which will be fed to a PWM latch 

for full simulation of the PWM mechanism. As can be seen from Fig. 3.21, the PWM signal 

exists whenever the MOSFET M2’s signal is at least equal to the reference. Fig. 3.22 shows the 

voltage at the gate of M2, the output voltage and the output current through the LED load. The 

average output voltage on LED load is approximately 32V while the average output current is 

approximately 350 mA. Under the operating of PWM mechanism, the gate voltage of M2 is 5V 

at intervals that correspond to the existing interval of PWM signal. 

 

Figure 3.20 – Input and output signal of the zero current detector. 
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Figure 3.21 – Illustrating of PWM mechanism: comparing signal from PID to MOSFET M2’s 

source signal and generating of PWM signal. 

 

 
Figure 3.22 – Voltage at the gate of MOSFET M2 under PWM operation (solid), the output 

voltage (black), and the output current (red). 
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Figure 3.23 – Input Voltage and Input Current (Solid).  

 

Fig. 3.23 shows the input voltage and input current of the converter. As can be seen, the very 

slight out of phase between the input voltage and input current demonstrates a very high power 

factor as expected from a flyback converter operating in the discontinuous current mode (DCM). 

From the above figures, the simulation results closely matched the results of the intended design. 

The input peak current is about 3.5 A, the same value as obtained from theory-based calculations 

in Chapter 2. Meanwhile, Fig. 3.23 is also a useful source to estimate the power factor 

qualitatively. The input voltage leads the input current by approximately 0.4 ms. The 60Hz 

source has its full cycle of 1/60 = 16.6 ms, which is equivalent to 2π, or 360º. Thus, 0.4 ms 

corresponds to 0.4*360/16.6 ≈ 8.67º. Therefore, the lagging angle between the input current and 

the input voltage is 8.67º. By definition, the power factor of this circuit is cos(8.67º) = 0.988. 

This value is significantly high when compared to the ideal case since the theoretical flyback 
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converter is among the most favorite choice for its ability of self-power factor correction under 

discontinuous current mode of operation [21]. The achieved result demonstrated the nearly-

perfect relationship between the input voltage and the input current of a flyback converter as 

mentioned in Chapter 2. 

From Fig. 3.22, the average value of output voltage is approximately 32 V, and the average load 

current is about 350 mA. These values matched with the design expectations, and are evidence 

for how well the designed PID controller is. In addition, Fig. 3.22 also illustrates the conducting 

and non-conducting intervals of MOSFET M2. It was continuously switched ON when Vgs has 

switching pulses while being switched OFF at moments where no Vgs pulse exists. The existence 

of Vgs pulse contributed to the operation of PWM mechanism which is explained in Fig. 3.12. It 

clearly shows how signals were compared and then the PWM signal was generated. 

3.7 Conclusion 

By simulation and comparing the obtained results with the expected design specifications, all 

necessary functions of PIC18F micro-controller series for the flyback converter LED driver were 

examined. The design process, which was done by using both SISO Tool of Matlab and 

Simulink, was successful. Its design product, which was then delicately transferred to PSpice by 

making use of the built-in ABM blocks for full converter simulation, worked perfectly. For these 

reasons, the design process of this micro-controller based LED driver can proceed before the 

hardware implementation. 
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Chapter 4 

Hardware Implementation 

 

 

 
4.1 Overview 

With the achieved simulation results matched well with theoretical calculations, the design 

process can now step up to the hardware implementation stage. There are two tasks that needed 

to be done: (1) Design a printed-circuit board (PCB) for the driver, and (2) Programming for the 

PIC18F4550 micro-controller. 

Before starting a PCB design, the inventory for available components should first be checked. 

The top priority on selecting a component is to guarantee the system performance. It means that 

components must be able to provide the same technical parameters as expected. Then, the 

component’s footprint should be as small as possible so that the board size can be reasonable. 

The board size is not just a cost-saving problem, it is also relevant to aesthetic consideration. For 

example: Apple Inc. revamped their powerhouse product MacPro in 2012 by a surprisingly way: 

breaking the motherboard into 3 pieces so every space inside the case is completely exploited. It 

results in a significant small yet beautiful workstation with extreme power, which attracts a lot of 

consumer’s attention for its unique design [22]. In the current project, the board size plays a very 

important role in mission of price reducing. There are two ways to optimize the PCB size: (1) 
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Deploying components on both sides of the PCB, and (2) Replacing through-hole devices (THD) 

parts by surface-mount devices (SMD), which normally have smaller land pattern. However, the 

current project at first mainly concentrates on circuit performance and the easiness of 

implementation a demo board, so that problems relevant to board size optimizing and aesthetic 

consideration are temporarily ignored. 

The PCB design process can be summarized as a workflow in Fig. 4.1. The details about 

“Checking Components” and “Preparing Footprint” stages are illustrated in Fig. 4.2 [23]-[24]. 

Start Checking Components Preparing Footprint

Drawing Schematic in CaptureExport Netlist to PCB Editor

Design the PCB: Drawing Outline, 

Placing Parts and Routing the PCB
Creating Artworks

Checking all the created Artworks 

with a Gerber Viewer
Done

 

Figure 4.1 – PCB design process with OrCAD CIS Capture and OrCAD PCB Editor Lite 

Version [25]. 

 

The programming task for PIC18F4550 micro-controller was first executed in MPLAB X, then 

the resulted HEX file would be loaded into memory using a PicKit3 Programmer. There are two 

ways to connect the micro-controller to the PicKit3 Programmer. The first method uses 
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breadboard as a mediate environment to connect the micro-controller with the programmer. This 

method is easy to implement, however, it requires additional components (breadboard, power 

source for the micro-controller, wires etc.) and the micro-controller must be detached from PCB 

whenever to be re-programmed. The other way is designing a programmer socket right on PCB. 

It will make the PCB surface to be more complicated since the programmer needs at least 5 pins 

to connect. It is not necessary to provide power source since we can supply energy to the micro-

controller directly from the PCB. However, a protection must be equipped in order to avoid 

unwanted phenomena during code-loading process. 

Start

Component 

Availability

Searching & 

Ordering

Capture Part 

Availability

Designing a 

new part

Footprint 

Availability

Designing a 

new 

Footprint

Done

YES

YES

YES

NO

NO

NO

 

Figure 4.2 – Flowchart of Component Preparation. 
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4.2 Component Preparation 

When it comes to a PCB design process, component preparation plays an extremely important 

role. A designer should be able to keep track of available component and check if it is suitable 

enough for the project before searching from other sources. Having the list of available 

components, the next step is investigating their footprints. If one part is adequate in term of 

technical parameters but has unapproved footprint, it must be replaced by a same-specification 

one with appropriate footprint. In order to design a PCB with OrCAD Capture CIS and PCB 

Editor, each component must have two mandatory elements: (1) a Capture part to represent in 

schematic, and (2) the footprint to represent in layout. Lacking of one element could result in a 

temporary halt in the design process. 

Not all components satisfies both required elements for Capture CIS and PCB Editor as 

mentioned above. Except common passive parts like resistor, capacitor, and diode etc., which 

their Capture symbols and footprints hardly have special characteristic, component likes 

PIC18F4550 micro-controller or IXDN604SIA gate driver have neither compatible Capture 

symbol nor footprint. Some manufacturers provide their customer with either product’s Capture-

compatible libraries of symbol or footprint (*.dra files), some even supply both but it is not the 

case for this project. After searching thoroughly the Internet, we found out that the better way is 

to design both Capture symbol and footprint for: the PIC18F4550 micro-controller, the 

IXDN604SIA gate driver, and the EFD20 transformer. Fortunately, designing a new Capture 

symbol takes very small amount of time while PCB Editor has a greatly useful wizard tool for 

footprint design. All we need to find is datasheet for each component. 

4.3 The PIC18F4550 micro-controller 
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Neither Capture symbol nor footprint is available for the PIC18F4550. However, designing 

Capture symbol for any component is not a difficult task. Basically, we just need to know how 

many pins the component has, and what sort of pin (power, passive etc.) as well as function 

(name) of each pin. More delicately, one can carefully draw symbol’s shape so that it is similar 

to the real one but this work is optional. In general, we can draw any component’s body in 

rectangular shape for simplicity. 

The PIC18F4550 micro-controller in this project is a DIP-package with 40 pins, includes 35 

I/Os. The designed Capture symbol for a 40-pin DIP-type PIC18F4550 micro-controller is 

shown in Fig. 4.3. All pins were labeled as in manufacturer’s datasheet. 

 

Figure 4.3 – Designed Capture symbol for a 40-pin DIP-type PIC18F4550 micro-controller. 

 

Before establishing footprint design for the PIC18F4550 micro-controller, its packaging 

information must be carefully investigated. We have to prepare, at least, all the required 

information for the Package Symbol Wizard of PCB Editor. Table 4.1 lists all necessary package 

information in this case. 
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Table 4.1 – Packaging information for PIC18F4550 micro-controller’s footprint. 

Package DIP 

Number of pin/Number of IO 40 

Lead pitch 100 mils 

Terminal row spacing 650 mils 

Package width 545 mils 

Package length 2058 mils 

Pad type PAD50CIR32D.pad 

 

When the Package Symbol Wizard is first opened, it provides an option to select various package 

type (Fig. 4.4). In this case, DIP is the selection. Next, a default template is loaded for the 

selected package and the dimension unit of the package is chosen. Almost all datasheets provide 

the packaging information in “inch”, therefore, “mils” conversion is needed (1 inch = 1000 mils) 

(Fig. 4.5). The wizard process continues with “DIP Parameters” window, where all necessary 

dimensions are entered (Fig. 4.6). Some datasheets present package information with 3 values for 

each: nominal, maximum, and minimum dimension. It is recommended to input at this stage with 

nominal value in order to avoid any possible mismatch later. Finally, a padstack must be selected 

(Fig. 4.7). 

 

Figure 4.4 – Selecting the type of package. 
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Figure 4.5 – Selecting the dimension unit. “Mils” is much convenient compared to “mm” since 

almost datasheets show packaging dimension in “inch”, which is thousand times of “mils.” 

 

 

Figure 4.6 – DIP Parameters window. 
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Figure 4.7 – Choosing a padstack for symbol pins. A padstack must be prepared in advanced, 

based on package information of datasheet. 

The footprint design result for the 40-pin DIP-type PIC18F4550 micro-controller is shown in 

Fig. 4.8. It is named as “PIC18F4550PDIP.dra”. Another important step is checking if this new 

footprint is compatible with the above Capture symbol. If the designed footprint can be 

successfully added to PCB Editor after netlist is exported from Capture, the new footprint works 

faultlessly with its Capture symbol. Otherwise, designer should check if any mismatch existed 

between the two models. 

 

Figure 4.8 – Designed footprint for the 40-pin DIP-type PIC18F4550 micro-controller 

(PIC18F4550PDIP.dra). 
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4.4 Power supply solution for the micro-controller and other ICs 

The PIC18F4550 micro-controller, the IXDN604SIA gate driver, and the TLC272 operational 

amplifier, all require a 5-V power supply for operation. In this project, a separate power supply is 

not planned. Therefore, a voltage divider will be deployed to obtain an approximately 25 VDC 

voltage after the bridge rectifier. Using the LM78M05 voltage regulator, a stable 5 VDC source 

can be achieved. Input voltage of the LM78M05 must not be smaller than 8V and the two power 

resistors which forms the voltage divider should be able to dissipate the maximum current 

flowing through. The circuit schematic for resistors’ calculation is shown in Fig. 4.9. 

The maximum input voltage to LM78M05 happens when there is no load and the minimum input 

voltage comes if the load is maximum. The maximum input voltage should be about 25 V while 

the minimum input voltage must be greater than 8V for the output of LM78M05 has stable value 

of 5 V. Assume the maximum cumulative current load for the PIC18F4550 micro-controller, the 

IXDN604SIA gate driver, and the TLC272 operational amplifier is 30 mA (10mA for each 

device). The calculation for power resistors should take into account of rated dissipative power, 

standard values of resistor, availability of product, footprints etc. 

 

 

Figure 4.9 – Circuit Schematic for calculating of voltage divider’s power resistors. 

LM78M05

Vin

+5 V

I1

I2

I

10 µF 10 µF
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After doing calculation then checking with above mentioned factors, two power resistors with 

relevant parameters are tabulated in Table 4.2. The checking process for those two power 

resistors are demonstrated next. 

Table 4.2 – Parameters of the selected resistors. 

Parameter 
Resistor 

R1 R2 

Resistance (Ω) 1000 180 

Footprint to220aa.dra res400.dra 

Power (W) 25 4 

 

The maximum current flows through two resistors if there is no load connected to 5V source: 

 1 2

169V
0.143A

1000 180
I I  

 
 (4.1) 

Thus, the maximum drop voltage on R2 is: 

    max 0.143A 180 25.74VV      (4.2) 

With an assumption that the maximum load current is 30 mA, the minimum current flows 

through resistor R2 is: 

 2min 2 0.03 0.143 0.03 0.113AI I      (4.3) 

Therefore, the minimum input voltage is: 

    min 0.113A 180 20.34V 8VV       (4.4) 

The maximum dissipative powers on each resistor are: 

 

2 2

1max 1 1

2 2

2max 1 2

0.143 1000 20.45W

0.143 180 3.68W

P I R

P I R

    

    
 (4.5) 
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4.5 Capture symbol and footprint preparation for the gate driver and the transformer 

Both the gate driver and the transformer have neither Capture symbol nor footprint available. 

The same design procedure was applied for the Gate driver and the Transformer’s preparations. 

Two new padstacks were also designed for each component, based on the recommended land 

patterns from their manufacturers [26]-[27]. The new designed padstack for transformer named 

“SMD138REC89.pad” and the gate driver’s one is “SMD62_24.pad.” The package type for two 

components was considered to be in SOIC group. Followed the same steps as illustrated in 

Section 4.3 of this chapter, two footprints were designed successfully. The testing process shown 

that they works perfectly with designed Capture symbol. The Capture symbols for the EFD20 

transformer and the IXDN604SIA gate driver are shown in Fig. 4.10 and Fig. 4.11, respectively. 

The designed footprint for the gate driver was named “IXDN604SIA.dra” (Fig. 4.12) while the 

corresponding one for the transformer is “EFD20.dra” (Fig. 4.13). 

 

Figure 4.10 – Capture symbol for the EFD20 transformer. 
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Figure 4.11 – Capture symbol for the IXDN604SIA gate driver. 

 

Figure 4.12 – The Gate driver IXDN604SIA’s designed footprint (IXDN604SIA.dra). 
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Figure 4.13 – The EFD20 transformer’s designed footprint (EFD20.dra). 

4.6 PCB Design 

After finishing all preparations, the PCB is now ready to be layout. First of all, a schematic must 

be drawn in Capture CIS. At this stage of design process, the Capture part in schematic can be in 

any shape, as long as its number of pin matches with number of pin on the corresponding 

footprint. It means that any Capture part with 12 pins can be arbitrarily chosen to represent the 

transformer and then assign it with the “EFD20.dra” footprint to obtain an appropriate model for 

transformer without suffering from any error message. The most important thing is how 

consistently the Capture symbol matches with the footprint, no matter what it is. 

The Capture schematic for the micro-controller based primary-side sensing flyback converter 

driver for LED is shown in Fig. 4.14. Three off-board connectors “T Point R” are added in order 

to directly connect the board with standard AC socket. A 10-µF capacitor is installed across the 
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input and output of the LM78M05 voltage regulator according to manufacturer’s datasheet for 

this application [28]. The 10 µF output capacitor helps to improve the transient performance of 

the voltage regulator. 

Four micro-controller’s pins are employed as input to collect data. Sample of rectified voltage 

will be fed through pin 2 (RA0/AN0) while the voltage signal represents primary side switching 

current will be collected at pin 3 (RA1/AN1). Output signals of the zero current detector and the 

peak current detector are acquired at pin 7 (RA5/AN4) and pin 8 (RE0/AN5), respectively. All 

input signals are fed through pins that associated with the (Analog-to-Digital Converter) ADC 

channels. However, it should be noted that two channels AN2 and AN3 are reserved for 

VREF+/VREF- connecting in case another reference voltage signal than VDD is used for ADC 

converting operations. Driving signal for the MOSFET will be obtained from pin 17 

(RC2/CCP1/P1A), which belongs to Capture/Compare/PWM (CCP) module no.1. This driving 

signal needs to be fed through the IXDN604SIA gate driver to ensure the success of switching 

operation. 

One important design aspect about the compatibility of Capture symbol with its corresponding 

footprint may happen here. It is the case of diode D9, a BAT54 type, which has 3 pins. Only pin 

1 and pin 3 are used to form a diode. However, if a normal Capture symbol with only two pins is 

employed to represent D9 in associated with an available footprint “sot23.dra” (as recommended 

from manufacturer’s datasheet), an error will happen during layout process. The reason is 

“sot23.dra” has 3 pins, so that any associated Capture symbol must have the same number of pin 

in order to work properly. 
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Finishing with the schematic drawing, checking procedures before laying out are employed. 

Firstly, every components’ footprint must be filled up. The exporting netlist process still works if 

several footprints are missed but those parts without footprint will not be able to be added to the 

layout. Therefore, the layout process may be interrupted just because of missing one footprint. 

Next, a DRC (Design Rules Check) should be conducted to see if any design rule violation 

exists. Meanwhile, during the checking process, a Bill of Material (BOM) should be created as a 

reference for future work. BOM for the current project is tabulated in Table 4.3. 

Table 4.3 – Bill of Material (BOM) for the current project. 

Item Quantity Reference Part Footprint 

1 2 C1,C8 100nF cap400 

2 1 C2 47nF ck15-10pf 

3 1 C3 47nF ck15-10pf 

4 1 C4 100u cap400 

5 1 C5 100pF cap400 

6 1 C6 10uF cap400 

7 1 C7 10u cap1000 

8 2 C9,C10 2.2uF cap400 

9 1 C11 0.1uF cap400 

10 5 D1,D2,D3,D4,D6 DIODE do41 

11 1 D5 DIODE do35 

12 1 D8 DIODE ZENER sod80 

13 1 D9 BAT54/SOT sot23 

14 1 E1 EFD20 EFD20 

15 1 I1 IXDN604SIA IXDN604SIA 

16 1 L1 78M05 to220ab 

17 1 Q1 MOSFET N to220ab 

18 1 R1 1k to220aa 

19 1 R2 180 res400 

20 2 R3,R11 1Meg res400 

21 1 R4 10k res400 

22 1 R5 100k res400 

23 1 R6 0.25 res400 

24 1 R7 LED res400 

25 2 R8,R9 1k res400 

26 1 R10 4.99k res1000 
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Item Quantity Reference Part Footprint 

27 1 R12 10Meg res400 

28 3 TP1,TP2,TP3 T POINT R tp4xx 

29 1 U1 Value soic8 

30 1 U2 Value PIC18F4550PDIP 

 

After the netlist was successfully exported to PCB Editor, the layout process starts with setting 

board’s parameters. The board outline could be created immediately or right after placing and 

routing. One convenient way to manually place parts is using “Cross-probing” feature [29]. It 

allows the selected component in PCB Editor to be highlighted in Capture window if the two 

programs are on at the same time. This feature helps designer to easily monitor and visualize the 

corresponding place of component on the board. 

 

Figure 4.15 – Defining layer stack-up for the PCB. Two layers are enough for this project. 
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Components could be placed on both sides of the board, so that the board size might be smaller. 

Therefore the cost for PCB would be dramatically reduced. This type of board requires 

experienced designer and highly skilled soldering technique. In this project, however, only a 

demo board is needed for experimental purpose, thus all the components will be soldered on one 

side only. For the same reason, only two layers: top and bottom will be used for routing (Fig. 

4.15). It is not necessary for defining more layer stack-up at this stage of the project. 

 

Figure 4.16 – Arrangement of Components and Routing on the PCB. 
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With only two layers, the routing work becomes a less complicated work even the Lite version of 

PCB Editor does not have “Auto Routing” feature. In order to ensure the integrity of signal, all 

traces must have at least 30 mils in width, except some traces come to IC’s legs, which has 

smaller pad area. The complete-routing board is shown in Fig. 4.16. 

4.7 Artwork Generating 

Design results of the layout process are not workable files with fabricating machine [30]. They 

must be converted into a compatible form under a process named “Artwork Generating.” With 

PCB Editor, set of resulted artwork files includes: 

 Top.art (Fig. 4.17 (a)): Showing all routes and pads of component on the top side. 

 Bottom.art (Fig. 4.17 (b)): Showing all routes and pads of component on the bottom side. 

 SoldermaskTop.art (Fig. 4.17 (c)): Showing all Footprint’s Soldermasks on the top side. 

 SoldermaskBottom.art (Fig. 4.17 (d)): Showing all Footprint’s Soldermasks on the 

bottom side. 

 SilkscreenTop.art (Fig. 4.17 (e)): Showing component’s silkscreen on the top side, 

includes the board’s outline. Since all the components will be soldered on the top side 

only, there is no need to generate “SilkscreenBottom.art” file. 

 LEDFLYBDRVR-1-2.drl (Fig. 4.17 (f)): Contains information about all the board’s 

drills. 

 LEDFLYBDRVR.rou: Route file, contains information about ways to cut the board. This 

cutting trace is shown in Fig. 4.16 with four grey corner marks. 
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(a) Top.art (b) Bottom.art 

  
(c) SoldermaskTop.art (d) SoldermaskBottom.art 

  
(e) SilkscreenTop.art  (f) LEDFLYBDRVR-1-2.drl 

Figure 4.17 – Generated Artwork files as seen from GerberLogix Viewer. 

 

After comparing with the intended design on PCB Editor, all the artworks are verified and ready 

for fabrication. The fabricated board is shown in Fig. 18 and the board with all soldered 

components (except the PIC18F4550 micro-controller, which is on programming process) is 

shown in Fig. 4.19. 
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(a) Top view (b) Bottom view 

Figure 4.18 – Designed PCB after fabricating by Sunstone PCB Vendor. 

 

 

Figure 4.19 – The complete PCB with soldered components as seen from top view. 

4.8 PIC18F4550 Programming 



65 
 

The PCB was designed with no programming socket. Therefore, the PIC18F4550 must be 

connected to the PicKit3 Programmer via a breadboard as in Fig. 4.20. The HEX file, which is 

programming’s result, will be written to the micro-controller’s memory when PicKit3 is 

connected to the computer. This section discusses all relevant programming aspects in the 

current project. 

The Integrated Development Environment (IDE) for PIC18F4550 programming is MPLAB X 

v2.15 with compiler XC8. This genuine compiler from Microchip Technology offer various 

advantages like code-efficient benefit, auto-suggest and auto-complete writing etc. MPLAB X 

also supports auto-generating compiler directives (#pragma config) [31], a feature which 

determines a lot of micro-controller’s operations, like Watchdog Timer, Voltage Regulator USB 

etc. The resulted HEX file as an output of MPLAB X-XC8 compiler is also smaller when 

compares to the previous MPLAB 8.xx version. This point is very important because it means 

that the code was optimized at a higher level, guarantee a higher working efficiency and memory 

saving. 

 

Figure 4.20 – Connecting the PIC18F4550 with PicKit3 programmer via a breadboard. 
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Firstly, the directives or configuration bits must be established appropriately. Even the code is 

compiled and properly burned to the chip, it is an inappropriate configuration bit might prevent 

the chip to work. Fortunately, many of default auto-setting configurations are applicable for 

almost every case. There is only some parameters that needed to be adjusted in order to achieve 

desired performance. The following settings show which configuration bits are subjected to be 

change from its default auto-setting value: 

 #pragma config FOSC = INTOSC_EC: This directive is relevant to selecting the 

oscillator source. In this project, the internal oscillator 8MHz is used, therefore, the 

directive’s value is “INTOSC_EC.” 

 #pragma config IESO = OFF: The “ON” value allows the oscillator source to be 

switchable from internal to external source and vice versa. The value now is OFF since 

switching to an external oscillator source is temporarily not planned. 

 #pragma config WDT = OFF: This selection will turn off Watchdog Timer feature. 

 #pragma config LVP = OFF: Turning off the “Single-Supply ICSP.” 

Next, all necessary signals must be acquired and converted using ADC channels and counters. 

Three input signals will be fed through analog pins and then be converted by ADC: sample of 

rectified voltage to AN0, signal of primary switching current to AN1, and peak current signal to 

AN5. Signal from zero current detector will be acquired by a timer, which is configured to work 

as a counter in this case. The sample codes for using ADC and counter to obtain signal are 

following. 

 Sample code for using ADC: 

TRISAbits.TRISA0 = 1;    //A0 is analog input 
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ADCON0 = 0b00000000;    //Channel 0, AD is OFF 

ADCON1 = 0b00000000;    //VREF+ = VDD, VREF- = VSS, all analog input 

ADCON2 = 0b10001000;    //Right justified, Fosc/2, 2TAD 

ADCON0bits.ADON = 0x01;    //Enable A/D Module 

__delay_ms(1);    //Time for sampling 

ADCON0bits.GO_DONE = 1;    //Start AD conversion 

while (ADCON0bits.GO_DONE != 0); 

vsamp1 = ADRESH*256 + ADRESL;    //Merge data from two registers 

vsamp2 = (vsamp1*5)/1024;    //VDD=5, 10-bit ADC  

__delay_ms(1); 

 Sample code for using timer as a counter: 

TRISAbits.TRISA4 = 1;    //Make RA4/T0CKI an input 

T0CON = 0x68;    //Timer0, 8bit, no prescaler 

while ((zcd2 >= 4.3) && (INTCONbits.TMR0IF == 0)){ 

            T0CONbits.TMR0ON = 1;    //Turn ON Timer0 

            tz = TMR0L; 

 } 

 T0CONbits.TMR0ON = 0;    //Turn OFF Timer 0 

 INTCONbits.TMR0IF = 0;    //Clear flag 

After having and processing signals, a suitable PWM signal must be generated. The following 

sample code will generate a PWM signal with 40% duty cycle. 

TRISCbits.RC2 = 0;    //CCP1 pin is an output 

PORTCbits.RC2 = 0; 

PR2 = 19;    //PWM frequency is 100 kHz 

T2CON = 0b00000000;    //Timer2, no prescaler or postscaler, initially OFF 

CCPR1L = 7;    //40% duty cycle 

CCP1CON = 0b00101100;    //Timer2 is used for PWM 

T2CONbits.TMR2ON = 1;    //Turn ON Timer2 
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The value of PR2 register is calculated from the formula: 

 OSC

PWM

F
PR2 1

4 F N
 

 
 (4.6) 

where FOSC is the operating frequency of  micro-controller (8 MHz for a PIC18F4550 with 

internal oscillator), FPWM is the expected frequency of PWM (100 kHz), and N is the prescaler. 

By choosing N = 1, PR2 = 19. With 40% duty cycle, 0.4*19 = 7.6. Thus, the value of CCPR1L 

register is 7 and <bit 5:bit 4> of CCP1CON register is <1:0> as shown in the sample code above. 

The illustrated waveform for the 100-kHz PWM with 40% duty cycle is on Fig. 4.21. 

 

Figure 4.21 – The waveform of 100-kHz PWM with 40% duty cycle. 

In the application, the duty cycle is a variable and will be adjusted in order to achieve the desired 

performance. The sample code for auto-adjusted PWM is shown below: 

        dc = 5;    //Start with 30% duty cycle 

        TRISCbits.RC2 = 0;    //CCP1 pin as an output 

        PORTCbits.RC2 = 0; 

        PR2 = 19;    //PWM frequency is 100kHz 

        T2CON = 0b00000000;    //Timer2 is OFF, no Prescaler or Postscaler 
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        CCPR1L = dc; 

        CCP1CON = 0b00101100;    //PWM mode 

        T2CONbits.TMR2ON = 1;    //Turn ON Timer2 

        while ((isw2 > 1.1*iref)||(isw2 < 0.9*iref)){    //Compare 

            while (isw2 > 1.1*iref){    //10% tolerance 

                dc = dc + 1;    //Adjust the duty cycle 

                if (dc > 9) break;    //The duty cycle must be less than 50% 

                else { 

                    CCPR1L = dc; 

                    CCP1CON = 0b00101100;    //PWM mode 

                    T2CONbits.TMR2ON = 1;    //Turn ON Timer2 

                } 

            } 

            while (isw2 < 0.9*iref){ 

                dc = dc - 1; 

                if (dc < 2) break; 

                else { 

                    CCPR1L = dc; 

                    CCP1CON = 0b00101100;    //PWM mode 

                    T2CONbits.TMR2ON = 1;    //Turn ON Timer2 

                } 

            } 

        } 

The complete code which includes all the above excerpt will be compiled and then burned to the 

PIC18F4550. Chapter 5 discusses the experimental results of the actual system. 
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Chapter 5 

Experimental results  

 

 

 

 

5.1 Overview 

In this chapter, the important functionalities of the PIC18F4550 micro-controller in responding 

to the four analog input signals from the flyback converter are first investigated. The ability of 

the micro-controller to automatically provide PWM signals with different duty cycles and 

convert analog input signals to equivalent digital signal are two key features to the operation of 

the driver. Then, the open-loop performance of the flyback converter is examined. Finally, the 

closed-loop flyback converter is characterized for full converter performance. 

 

5.2 The characteristics of PIC18F4550 micro-controller 

The ability to provide expected performance of the PIC18F4550 micro-controller is critically 

important to the project. Several key features of the PIC18F4550 must be investigated before 

being implemented on the actual closed-loop flyback converter. 



71 
 

The main purpose of the micro-controller is to generate the PWM signal with different duty 

cycles to drive the MOSFET switch, depending on the feedback. A micro-controller as the 

controller for a flyback converter should be able to provide PWM signal with various duty cycle, 

from 20% to 40%. By changing the content of CCPR1L register and bits <5:4> of CCP1CON 

register, the duty cycle of PWM signal can be adjusted. The PIC18F4550 PWM feature will be 

tested from 20% to 40% duty cycle with increment step of 5%. Testing the micro-controller this 

way also helps to detect the relationship between the varying of duty cycle with the varying of 

CCPR1L and CCP1CON registers’ content, thus obtaining the control algorithms for the 

feedback PWM function. 

In the previous Chapter 4, the waveform of PWM signal with 40% duty cycle was shown. In Fig. 

5.1, the waveforms of PWM signal with 20%, 25%, 30%, and 35% duty cycle are revealed, 

which demonstrate for the ability of the micro-controller to generate various PWM signals as 

expected. 

  
(a) PWM 100 kHz, 20% duty cycle (b) PWM 100 kHz, 25% duty cycle 

Figure 5.1 – Various PWM signal with different duty cycles: 20%, 25%, 30%, and 35%. 
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(c) PWM 100kHz, 30% duty cycle (d) PWM 100 kHz, 35% duty cycle 

Figure 5.1 – Various PWM signal with different duty cycles: 20%, 25%, 30%, and 35% (cont.). 

Next, the ADC function of the PIC18F4550 micro-controller is tested. This experiment evaluates 

the micro-controller’s ability to convert an analog input signal to digital signal. The ADC 

function in the PIC18F4550 is 10-bit type with 13 independent channels. The schematic for 

testing ADC is shown in Fig. 5.2. The physical circuit for testing ADC is shown in Fig. 5.3. 

+5V

VDD

VSS

PIC18F4550

AN1

PORTD

PORTB

10µF
27kΩ

 

Figure 5.2 – Circuit schematic for ADC testing. 
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Figure 5.3 – Implementing a testing circuit for PIC18F4550’s ADC function. 

A variable resistor is used to create various input voltages to the channel 1 (AN1) of ADC as in 

the schematic. The power supply of the micro-controller is also the voltage source for the 

variable resistor while the ground is common. The ADC results are left justified and then fed 

through PORTD (ADRESH: 8 MSB bits) and PORTB (ADRESL: 2 LSB bits). By measuring the 

voltage level of each pin of PORTD and PORTB, the ADC results are obtained. Then, the ADC 

results will be compared to the input voltage to evaluate the differences. 

The same code as in Chapter 4 was used for ADC function. The ADC results were forwarded to 

PORTD and PORTB by using simple assign instructions: “PORTD = ADRESH” and “PORTB = 

ADRESL.” The reference voltage VREF+ for ADC function is chosen as VDD (+5V), while 

VREF- is VSS (ground). With 10-bit resolution, the step size is: 

 
10

5
Step size 4.888 mV

2 1
 


 (5.1) 
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The meaning of the step size is the smallest difference between two input voltage’s levels that 

the micro-controller can discern. Therefore, with input voltage of 5V, the result is: 

 
5V

Result 1023
Step size 4.888mV

inV
    (5.2) 

The equivalent binary value for the above result is 1111 1111 11. This is an expected logic value 

from the 8 pins of PORTD and 2 pins (RB7 and RB6) of PORTB. Table 5.1 presents the 

converted results for various input voltages, the percentile of difference and the corresponding 

duty cycles of PWM signal. 

Table 5.1 – ADC testing’s results. 

Input 

Voltage (V) 

PORTD 

(RD7-RD0) 

PORTB 

(RB7-RB6) 

Decimal 

Value 

Expected 

Value 

Difference 

(%) 

Duty cycle 

(%) 

5 1111 1111 01 1021 1023 0.195 40 

2.498 0111 1101 11 503 511 1.566 30 

3.98 1100 0111 11 799 814 1.843 35 

2.027 0110 0110 11 410 414 0.966 20 

 

The relatively small differences (all are less than 2%) exhibit how accurate the ADC function of 

the PIC18F4550 micro-controller is. With such tiny mismatches between the expected value and 

the achieved value, the results from ADC function of PIC18F4550 micro-controller is reliable 

and ready to be processed.  

 

5.3 Open-loop performance 

The open-loop performance is measured by operating the flyback converter without the micro-

controller while a driving signal is fed through the MOSFET’s gate. Observing the waveform of 
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the switching transistor’s drain voltage and the waveform of driving signal (Fig. 5.4), a 

conclusion about the system’s workability could be drawn. As can be seen from Fig. 5.4, 

whenever the driving signal (yellow) is high, the drain voltage of the switching transistor (blue) 

is dropped, which can be interpreted as the switch is being switched on. Fig. 5.5 shows a 

captured image on the actual converter when the switching transistor is switching with the 

driving gate signal. The LED load of 240mA, which comprises a matrix of LEDs with 12 

columns and 12 rows, is lighted up then. The high-frequency ringing (about 400kHz) after the 

turn-off of the power MOSFET is due to the large flyback transformer inductance as well as its 

leakage inductance, the large drain-to-source capacitance of the power MOSFETs, and the light 

load current of the LED load.   Optimization of the snubber circuit components can reduce this 

high-frequency ringing. 

 

Figure 5.4 – The waveforms of the switching transistor’s gate voltage (yellow) and drain voltage 

(blue). The droppings of the switching transistor’s drain voltage are evidences for switching 

operation. 

 

5.4 Closed-loop performance 
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With the micro-controller’s necessary functionalities were scrutinizingly tested while the open-

loop performance of the flyback converter was also reached the design expectation, the full 

closed-loop converter performance is now examined. Instead of using an external driving signal 

from a function generator, the PWM function of the PIC18F4550 micro-controller is now the 

source for switching signal. The feedback is formed with four input signals from the sample of 

input voltage, the primary-side switching current, the peak current detector and the zero current 

detector. 

 

 

Figure 5.5 – A matrix of LEDs is lighted up by the designed driver working in open-loop mode. 

The introduction of the PIC18F4550 micro-controller as a controller for the flyback converter 

also lighted up the LED load as in Fig. 5.5. Monitoring waveforms of the gate and drain of the 

switching transistor, an image likes in Fig 5.6 was captured. As can be seen from Fig. 5.6, the 

switching operation is successful despite some unwanted noise. Again, the high-frequency 
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ringing after turning-off of the power MOSFET originated from the transformer leakage 

inductance and the drain-to-source capacitance of the power MOSFET. The dissipative snubber 

circuit can be redesigned to mitigate this problem. 

 

Figure 5.6 – Waveforms of switching transistor’s gate (yellow) and drain (blue) in closed-loop 

mode. 

 

Despite the introduction of some problem: ringing after switching off of the power MOSFET, 

noise, spikes etc., the flyback converter worked perfectly as the intended design. The 

combination of performances from the PIC18F4550 micro-controller and the open-loop flyback 

converter turned out to the performance of the full closed-loop converter as expected. 
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Chapter 6 

Conclusions 

 

 

 

6.1 Conclusion 

The micro-controller based primary-side sensing flyback converter for LED driver was designed, 

simulated and implemented successfully. First, the simulation demonstrated the feasibility of the 

intended design by mimicking all necessary characteristics of the PIC18F4550 micro-controller 

that includes PWM and counter. The absence of a compatible model for PIC18F4550 micro-

controller in simulation was completely compensated by using a PID based control scheme in 

companion with analog behavioral modelling blocks. Simulation results were matched well with 

the preliminary calculations. Then, a prototype board of the driver was designed and fabricated. 

Due to testing and verification only, the prototype PCB board’s size was not restricted as well as 

optimized. On the next step, the micro-controller was programmed in C programming language. 

Before deploying the micro-controller on the board for observing the closed-loop performance, 

key features of the micro-controller were carefully checked. This process also helps to detect 

bugs and debug the programmed code. After demonstrating the micro-controller’s ability to 

properly conduct ADC and PWM functions, the next task was investigating the open-loop 
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performance of the flyback converter. The successful testing results pointed out that the 

prototype board was ready for the closed-loop full converter operation. Because both the test on 

the micro-controller and the open-loop system gave appropriate results, the closed-loop 

converter’s performance is predictably good. 

6.2 Future works 

The driver in this project was designed with work-oriented purpose only and has not been 

optimized yet. The next mission is to reduce the board size by replacing some through-hole 

devices (THDs) by surface-mounted devices (SMDs). The layout of the board can also be 

changed so that components could be deployed on its both sides. This new layout promised to 

dramatically decrease the board area, a target that this project has not accomplished. The 

dissipative snubber circuit should be also redesigned in order to minimize the ringing at 

switching offs. 

The PIC18F4550 micro-controller in this project used its internal oscillator as a clock source. 

This 8 MHz clock source somehow limited the working efficiency since there are four ADC 

tasks needed to be processed. In addition, the operating frequency of the micro-controller is 

FOSC/4, or 2 MHz, that is not a significant number compared to the switching frequency of 100 

kHz. This is the reason why the adjusting step of PWM was only 5%. If an external oscillator 

with frequency up to 48MHz is equipped, the PWM adjustment should be smoother, and the 

ADCs tasks could work faster, therefore will improve the precision of the feedback. 
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