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Abstract 

Ground-based active-optical (GBAO) crop sensors have become an effective tool to 

improve nitrogen (N) use efficiency and to predict yield early in the growing season, particularly 

for grass crops. Commercially available canopy sensors calculate the normalized difference 

vegetative index (NDVI) by emitting light in the red and near infrared range of the 

electromagnetic spectrum. The NDVI is used to evaluate vigor status and to estimate yield 

potential. However, few studies have been conducted to compare the performance of 

commercially available sensors. Therefore, a study was conducted using the most common crop 

canopy sensors: i) N-Tech's GreenSeeker™ (GS), ii) Holland Scientific's Crop Circle™ (CC), 

and iii) Minolta’s SPAD-502 chlorophyll content meter (CCM). The objective of this study was 

to find the optimum time for sensing and compare the relative performance of the sensors in 

estimating the yield potential of grain sorghum (Sorghum bicolor L. Moench). Treatments 

included six levels of N fertilization (0, 37, 74, 111, 148, and 185 kg N/ ha), applied in a single 

split 20 days after planting (DAP). Treatments were arranged in a randomized complete block 

design with five replications, in four locations in Arkansas, during 2012 and 2013. Sensors 

readings at vegetative growth stages V3, 4, 5 and 6. Results from simple regression analysis 

showed that the V3-V4 growth stage correlated better with grain yield than readings collected 

and any other time. In season estimated yield (INSEY) obtained at V3 captured 41, 57, 78, and 

61% of the variation in grain sorghum yield when red NDVI of GS, red NDVI of CC, red edge 

for CC and CCM, respectively, were used. Results from these studies suggest that the CC sensor 

has a better potential for in-season site-specific N application in Arkansas than the GS sensor. 

The GS reflectance values appear to saturate after the V3 stage, in contrast with CC values that 

allow for discrimination past the V3 Stage. Therefore, the red edge wavebands of CC appear to 



be better suited to develop relationships between spectral vegetation indices and agronomic 

parameters. 

 

 

  



Acknowledgments 

I would like to thank and express my gratitude to Dr. Leo Espinoza for his support through my 

graduate school career. Thank-you Sir (L.M.V), for helping me not just in my academic carrier, 

but also for taking care of me like a father. No words can express my gratitude Dr Leo. 

I would like to express my gratitude to Dr. Richard Norman, for all his academic assistance and 

advising during my time in Fayetteville. All the words of encouragement and attentiveness to 

work hard were essential to the completion of my degree. 

I appreciate the help and support of my remaining committee members Dr. Derrick Oosterhuis 

and Dr. Dharmendra Saraswat for their help to improve this thesis. 

I would also like to express my sincere gratitude to Mr. and Mrs. Claude Kennedy for their 

support during the summers in Marianna. Mr. Kennedy, it was a true honor to have met you Sir. 

The assistance and friendship from Mr. Paul Ballentyne, Dr. Ismanov, and Chris Pruitt is greatly 

appreciated. Big thanks to Ronald Lathrop, for helping me collecting so many samples needed to 

complete my research studies. Your attitude and work ethic will always be an example for me. 

Thank you my friend. 

Thank you to my parents and brothers (specially my brother TONY) in Nicaragua and here for 

their constant words of encouragement. Also, I will like to thanks to the ladies that raise me in 

my childhood my other mother “Mama Criss”. 

Last but not least, thanks to GOD and the Virgin Mary for allowing me to reach this goal. 

 

 



Tables of Contents  

Introduction……………………………………………………………………….………………1  

References………………………………………………………………….................................. 4 

Chapter I: Literature Review 

Crop description and production……………………………………….……...............................6 

Importance of N in Cereal Crops………………………………………………...........................8 

Environmental Concerns…………………………………………………………………………9 

Sorghum N Requirements in Arkansas…………………………………………………….........10 

The N Efficiency in Sorghum………………………………………………….………….……..11 

Spectral reflectance and plants……………………………………………………………...........12 

Remote Sensing and Vegetation indices…………………………………………………............14 

Mid-Season N Fertilization Algorithm …………….....................................................................17 

Chlorophyll Content Meters (CCM)……………………………………………………..............18 

 Limitations of Optical Sensors……………………………………………………….…….........19 

The N Recommendation Systems…………………..….……………………….…..……............19    

The NDVI Saturation………………………………………………………….………................19 

Option for NDVI Saturation (Red edge)………………………………………………………....21 

Procedure and Algorithm for Calculating Spatial and Temporal Varying N Fertilizer 

Rates……………………………………………………………………………………………...22 

References……………………………………………………………………………………......24 

 

 

 

 

 



II.  Potential for Optical Sensor-Based Nitrogen Fertilization in Grain Sorghum  

     (Sorghum bicolor L. Moench) in Arkansas  

 

Abstract…………………………………………………………………………..........................31 

Introduction……………………………………………………………..………………..……....33 

Materials and Methods…………………………………………………..…………….….….......34 

Site Description…………………………………………………………………………………..34  

Study Design……………………………………………………………………………………..34  

Statistical Analysis……………………………………………………………………………….35 

GreenSeeker (GS) Hand Held Optical Sensor (NTech Industries, Inc.)…………………………36  

Holland Scientific‘s Crop Circle (CC) Sensor-470A………………………………………….....36 

SPAD-502 chlorophyll content meter (CCM)…………………………………………………...36 

Data Collection…………………………………………………………………………………..37 

Results and Discussion ……………………………….………………………………………....38 

References………………………………………………………………………………….….....80 

Overall Conclusions……………………………………………………………………………...91 

 

 

 

 

 

 

 

 

 



List of Figures 

Figure 1. Illustration of the amount and efficiency of light-absorbing pigments can be estimated 

from light reflectance……………………………………………………….……………………13 

Figure 2. Average yield response of grain sorghum to varying nitrogen (N) rates across all 

locations and years……………………………………………………………………………….38 

 

Figure 3. Relative yield response to fertilizer nitrogen (N) rates across location and 

years………………………………………………………………………………………...........40 

 

Figure 4. Relationship between GS-Normalized Difference Vegetation Index (NDVI) (A), CC-

NDVI (B), CC-red edge index (C) with nitrogen (N) rates at different days after planting in NE 

AR-2013.........................................................................................................................................44 

Figure 5. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) with relative grain yield at different 

days after planting in NE AR-2013.………………………………………..……….……...........46 

Figure 6. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) and relative grain yield at 23-25days 

after planting in NE AR-13………………………………………………………………...........49 

Figure 7. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) and relative grain yield at 31 days 

after planting in NE AR-13……………………………………..……………….………………50 

Figure 8. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) and relative grain yield at 37 days 

after planting in NE AR-13……………………….……………………………………..............51 

Figure 9. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge (C) index and relative grain yield at 44 days 

after planting in NE AR-13………………………………………….…………………..............52 

Figure 10.  Relationship between Crop Circle-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-red edge index (B) with relative grain yield at 50 days after planting in NE AR-

13………………………………………………………………………………………...............53 

Figure 11.  Relationship between Coefficient of Variation for GreenSeeker-Normalized 

Difference Vegetation Index (NDVI) (A), Crop Circle-NDVI (B), Crop Circle-red edge (C), 

chlorophyll content meter-index (D) and nitrogen (N) rate NE AR-13…………………............56 



Figure 12.Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI), 

Crop Circle-NDVI and Crop Circle-red edge index and nitrogen (N) rates at 32-44 days after 

planting  (V3 stage) in SE AR-2013.……………………………………………………............57 

Fig 13. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI), 

Crop Circle-NDVI and Crop Circle-red edge index and nitrogen (N) rates after 50 days after 

planting (Before boot stage) in SE AR-2013……………………………………………............57 

Figure 14.  Relationship between GreenSeeker-In season estimated yield (INSEY) and relative 

yield at 40 DAP (V3) all sites 2013.………………………….……………..…..……………….59 

 

Figure 15. Relationship between Crop Circle-In season estimated yield (INSEY) and relative 

yield at 40 DAP (V3) all sites 2013.………………………………….………………………….59 

 

Figure 16.  Relationship between Crop Circle-red edge-In season estimated yield (INSEY) and 

relative yield at 40 DAP (V3) for all sites 2013.………………………………………………...60 

 

Figure 17. Relationship between sensors (GreenSeeker and Crop Circle) INSEY indices and 

relative grain yield at NE AR, SE AR and Central AR-2013 at 38 DAP……..............................61 

 

Figure 18. Relationship between sensors (GreenSeeker and Crop Circle) INSEY indices and 

relative grain yield at NE AR, SE AR and Central AR-2013 at 45 DAP………………………..61 

Figure 19. Relationship between the Response index (RI) grain yield and response index for 

GreenSeeker-Normalized Difference Vegetation Index (NDVI) at the V3 stage.………...........62 

 

Figure 20. Relationship between the Response Index (RI) grain yield and RI Crop Circle- 

Normalized Difference Vegetation Index (NDVI) at the V3 stage……………………………...63 

 

Figure 21. Relationship between the Response Index (RI) grain yield and RI Crop Circle- 

red edge at the V3 stage.…………………………………………………..……………………..63 

 

Figure 22. Relationship between average Crop Circle-Normalized Difference Vegetation Index 

(NDVI) and Crop Circle-red edge index collected across SE AR , Central AR and NE AR 

sensing dates and locations in 2013……………………..…….…………………………………65 

 

Figure 23. Relationship between average Crop Circle-Normalized-Difference Vegetation Index 

(NDVI) and Crop Circle-red edge index collected across SE AR, Central AR and NE AR sensing 

dates and locations in 2013………………………….……………….………………..…………65 

 



Figure 24. Relationship between average GreenSeeker-Normalized Difference Vegetation Index 

(NDVI) and Crop Circle-red edge index collected across SE AR , Central AR and NE AR 

sensing dates and location in 2013…………………………..………..………….........................66 

 

Figure 25. Relationship between average GreenSeeker-Normalized Difference Vegetation Index 

(NDVI) and chlorophyll content meter (CCM) index collected across SE AR, Central AR and 

NE AR sensing dates and location in 2013……………………..………………………………..66 

 

Figure 26.  Relationship between average Crop Circle-Normalized Difference Vegetation Index 

(NDVI) and chlorophyll content meter (CCM) index collected across all sensing dates and 

location in 2013………………………………………….……………………………………….67 

 

Figure 27. Relationship between average Crop Circle-red edge index and chlorophyll content 

meter (CCM) index collected across all sensing dates and locations in 2013…….……………..67 

 

Figure 28. Relationship between chlorophyll content meter (CCM) index and nitrogen (N) rates 

at SE AR in 2013………………………………………………..………………….....................70 

Figure 29. Relationship between chlorophyll content meter (CCM) index and relative yield in SE 

AR in 2013.……………………………………….………………………..…………………….71 

 

Figure 30. Relationship between the grain yield and chlorophyll content meter (CCM)-In season 

estimated yield (INSEY) index at the V3 stage..……………………………….…….……….....72 

Figure 31. Relationship between the Response index (RI) grain yield and Response index 

chlorophyll content meter (CCM) at the V3 stage…………………………………………….....72 

 

Figure 32. Relationship between chlorophyll content meter (CCM) index and leaf nitrogen (N) 

percent  in NE AR in 2013…………………………………………………………………….....73 

Figure 33. Relationship between chlorophyll content meter (CCM) index and leaf nitrogen (N) 

percent at 44 DAP (V3 Stage) across all locations in 2012 and 2013 (except SE AR…………..74 

Figure 34. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle NDVI (B), Crop Circle red edge index (C), chlorophyll content meter index (D) 

and dry matter at all vegetative stages at NE AR-2013……………………………………….....75 

 

Figure 35. Relationship between sensors (GreenSeeker, Crop Circle and chlorophyll content 

meter) In season estimated yield (INSEY) indices and relative grain yield at NE AR, SE AR and 

Central AR 2013.……………..……………………………………………………..…………...77 

 



List of Tables 

Table 1. Equations describing the relationship between relative grain yield and nitrogen (N) rate 

for all the sites-years.…………….………………………………………………………..........39 

. 

Table 2. Relationship between relative grain yield and nitrogen (N) rate for all the locations and 

years (n=160)…………………………………………….……………………………..……….39 

. 

Table 3. Selected soil chemical parameters at the study locations for 2012 and 2013 (0 to 15 cm) 

…………………………………………………………………………………………………..40 

Table 4. Regression equations describing the relationship between nitrogen (N) rates and 

GreenSeeker- Normalized Difference Vegetation Index (NDVI) values at different days after 

planting in NE AR during 2012…………………………………………………………………42 

Table 5. Regression equations describing the relationship between GreenSeeker-Normalized 

Difference Vegetation Index (NDVI) values and relative grain yield at the NE AR location 

during 2012………………………………………………………………………….…………...42 

 

Table 6. Equations describing the relationship between nitrogen (N) rates and Normalize 

Difference Vegetation Index (NDVI) values at different days after planting in NE AR-

2013………………………………………………………………………………………............45 

Table 7. Regression equations describing the relationship between sensors indices and relative 

grain yield at the NE AR location during 2013………………………………………………….47 

 

Table 8. Equations describing the relationship between chlorophyll content meter (CCM) 

index and nitrogen (N) rates. ……………………………………………………….…………...70 

 

Table 9. Equations describing the relationship between chlorophyll content meter (CCM) 

index and relative grain yield…………………………………………………………….............71 

Table 10. Equations describing the relationship between chlorophyll content meter (CCM) index 

and leaf nitrogen (N) percent in NE AR in 2013.…………………………………..……............73 

 

Table 11. Equations describing the relationship between sensors (GreenSeeker, Crop Circle and 

chlorophyll content meter) indices and dry matter at NE-AR in 2013……………..……............76 

Table 12. Equations describing the relationship between sensors GreenSeeker, Crop Circle and 

chlorophyll content meter) In season estimated yield (INSEY) indices and relative grain yield at 

NE AR, SE AR and Central AR.…………………………….……………….…………..……...78 

 

 



Appendices 
  

Appendix 1.Regression equations describing the relationship between sensors (GreenSeeker and 

chlorophyll content meter) indices and relative grain yield at the Central AR location during 

2012………………………………………………………………………………………………81 

Appendix 2. Regression equations describing the relationship between sensors (GreenSeeker and 

chlorophyll content meter) indices and relative grain yield at the NE-AR location during 

2012……………………………………………………………………………………………...82 

Appendix 3.Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and relative grain yield at the Central AR 

location during 2013…………………………………………...………………………………...83 

Appendix 4.Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and relative grain yield at the SE AR location 

during 2013………………………………………………………………………………………84 

 

Appendix 5. Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and relative grain yield at the RREC location 

during  2013…………………………………………………………………..………………….85 

 

Appendix 6.  Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and nitrogen (N) leaf percent at the RREC 

location ……………………………………………………………………………………….....86 

 

Appendix 7. Selected soil chemical parameters for soil samples for six nitrogen (N) in grain 

sorghum collected prior to planting during the 2012 season…………………………………….87 

 

Appendix 8. Selected soil chemical parameters for soil samples for six nitrogen (N) rates in grain 

sorghum collected prior to planting during the 2013 season ……………………………………87 

 

Appendix 9. Monthly precipitation (mm) during the 2012 and 2013 growing’s 

seasons……………….…………………………………………………………………………..88 

 

Appendix 10. Temperature (based in Heat Unit) with Days After Planting (DAP) sensing time by 

location in 2012 and 2013growing season……………………………………..….…………….89 

 

Appendix 11. Observation of growth stages according to Grain Sorghum Pioneer 84G62 variety 

adapted under Arkansas conditions 2012-2013……………………………………………….....90 

 

 

 

 



1 
 

Introduction 

The trend for world population growth over the next three decades demand that food 

production doubles to meet minimum requirements for human consumption (FAO, 2008). 

Today’s intensive use of nitrogen (N) fertilizers, besides providing the most vital plant nutrient 

for obtaining high yields, is a key input component in the budget of any agriculture operation. 

Even though N fertilizer consumption and cereal grain production have both increased over the 

last 50 years, N use efficiency in grain crops production has remained low at 33% worldwide 

(Raun and Johnson, 1999). The demand for N fertilizer changes from season to season, even in 

long-term studies where similar N rates are applied to the same plots. Management practices that 

influence N efficiency take into account the rate of N applied, timing, and placement, and use of 

urease inhibitors. Work still needs to be done to more accurately quantify the contribution of N 

mineralization to plant available N, as well as to develop management practices to accurately 

determine the need for N supplementation during the season, so it can be included in the 

development of N recommendations (Espinoza et al., 2005). 

Grain sorghum (S. bicolor) is the third main cereal crop in the United States and the fifth 

cereal crop grown in the world. Acreage for grain sorghum has decreased substantially since 

2007, from 7.7 million acres to 5.5 million in 2011 due to drought conditions in key growing 

states like Kansas and Texas, which in turn lead to subsequent price rationing-related changes in 

its 2012 U.S grain sorghum supply-demand balance and price forecasts (FAS/USDA, 2011). 

According to USDA’s 2012 Crop Production Summary, in Arkansas sorghum yielded an average 

of 84 bu/acre, compared with 56.2 bu/acre in 2006.  

 

 



2 
 

Current N fertilizer applications for grain sorghum in Arkansas are based on the expected 

yield of the crop, irrigation regime and soil type (Espinoza et al., 2005). They represent the 

average grain response to varying N rates across locations and years. The total amounts of N is 

normally applied in a two-way split, with 30-50 % applied pre-plant or at planting and the 

remainder applied 30-35 days after planting (DAP). Timing of N application appears to be 

important in sorghum. Research in Kansas showed no significant grain yield response when N 

was applied beyond 40 DAP (Tucker, 2009). While the same rate of N is typically used each 

year, the probability that lower or higher N rates are required to optimize yield potential during a 

particular season is probably large. Such discrepancy is due in part to the varying weather 

patterns common to the Mid-south Mississippi River Delta region.  

Nitrogen management based on active optical sensors may offer an alternative to fine 

tune nitrogen recommendations and improve N fertilizer use, by providing recommendations 

specific for the growing conditions in a given season and in a particular field. The use of active 

optical sensors has contributed to the development of fertilizer algorithms to be used in a number 

of crops (Raun et al., 2001). Knowing the potential yield of a crop in a given season is 

fundamental for calculating total N demand of cereal crops (Raun et al., 2001). The normalized 

difference vegetative index (NDVI) is the commonly used vegetative index developed and 

implemented in the late 1970’s (Deering, 1975). The pre-plant application of N is essential 

because early-season NDVI readings can be used to predict yield potential (Teal et al. 2006; 

Raun et al., 2001). Mullen et al. (2003), showed that N responsiveness or response index (RI) 

can be estimated from early-season NDVI readings in crops.  
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Estimating yield potential early in the season and identifying the optimum sensing 

window are key factors for success towards judicious management of N, from both, an 

environmental and economic perspective. Raun et al. (2001) demonstrated that estimated yield 

(EY) was an excellent predictor of winter wheat grain yield across locations and seasons. This 

indicator was later adapted as an in-season estimate of yield (INSEY) and quantified as the ratio 

of NDVI readings to number of growing degree-days (GDD) from planting to time of 

measurement greater than zero (GDD>0) (Raun et al., 2002).  
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Literature Review 

Grain Sorghum Production and Importance 

 Crop description and production 

Grain Sorghum is a C4 plant currently classified as S. bicolor, in the past known as S. 

vulgare Pers. It belongs to the genus of grasses graminae with about 30 species (Greenwood et 

al., 1990). Sorghum is in the Poaceae family, and the Panicoideae subfamily (Ayana and Bekele, 

1998). Although, sorghum is commonly used as a forage source, is also used as food in many 

countries (Dover et al., 2004). 

Grain sorghum is an alternative for areas that are likely to dry gradually in the spring and 

require afterward planting dates that are more appropriate to sorghum than other crops. 

According to Kelley et al. (2004), grain sorghum can be planted over a broad range of dates. 

However, it is commonly recommended that it be planted as early in the spring as possible under 

Arkansas conditions. Particularly, planting should be delayed until the soil temperature in the 

early morning reaches 20 °C at 5 cm below the soil surface. Early planting may also help to 

avoid insect pressure and create a broad window for rainfall and the negative effect of high 

temperature later in the season.  Grain sorghum is more adaptable to dry conditions than corn 

(Zea mays L.), making it a practical opportunity for fields that are exposed to drought. Under 

irrigated conditions, a population of 185,000 plants/ha is recommended while, under non- 

irrigated conditions, a plant population of 124,000 plants/ha is normally used (Espinoza et al., 

2005). 
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According to Sarrantonio (1994), grain sorghum would require 22 % less water to 

produce similar corn yield. In Arkansas, the amount of water needed will be around 400 to 610 

mm. The amount of irrigation water required will change depending on the initial soil moisture 

and the amount of rainfall during a particular season (Kelley et al., 2004). 

Grain sorghum requires less N than corn and will achieve similar yields to corn on poor 

soils. Sorghum will adapt well in a wide range of soil types from heavy clays to soils of sandy 

texture (Kramer and Ross, 1970). The optimum soil pH ranges between 5.8 and 6.5, which is the 

where the majority of nutrients are more easily accessible to plant roots.  

According to a report by USDA (2013), grain sorghum’s global production in the last 

decade has increased from 60 to 65 million metric tons. Worldwide, over half of the grain 

sorghum is grown for human consumption. Although the United States, Argentina and Australia 

account for only 20 to 30 % of this production, they remain the top exporters of sorghum 

accounting for around 93% of total world exports. The United States is the major exporter of 

grain sorghum worldwide, exporting around 2.4 million tons in the 2010-2011 trade years. 

Mexico and Japan are the leading importers of sorghum (FAS-USDA, 2011). In the United 

States, 26,242 farms grow grain sorghum designated for industrial products that utilize sorghum 

for industrial purpose including wallboard and biodegradable packaging materials. Arkansas 

ranked as the eight largest grain sorghum producing US state in 2011, with a total value of 

production of over 71 million dollars in 2012 (FAS/USDA, 2013). Under Arkansas conditions, 

grain sorghum may grow well but is not widely grown in the state. St. Francis and Lee counties 

led Arkansas in sorghum acreage planted, and represented nearly half of the sorghum planted in 

2012. In the majority of counties about 75% of the sorghum acreage was irrigated (USDA/ 

NASS, 2012). 
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 Importance of N in Cereal Crops 

The Food and Agricultural Organization (FAO) anticipated that the global trend for 

demand for N fertilizer would increase by 1.5 % each year since 2008, that equals to an increase 

of 7.3 million metric tons (MT) (FAO, 2008). Cereal grains accounted for 54.8 % of the total N 

fertilizer applied globally in 2007 (IFA, 2009). The fact that N plays an important role in protein 

formation, plus economic and environmental reasons demand that agricultural inputs be managed 

efficiently, especially during periods of high production. The amount of N supplied by soil from 

the organic pool has not been well determined because it is very active and unpredictable. If this 

organic fraction and the process of mineralization in season were better understood, significant 

advances in N use efficiency would be possible. 

The amount of N fertilizer needed to produce a given yield is defined as NUE (Nitrogen 

Use Efficiency). A major factor limiting improvements in NUE, in a traditional N management 

schemes, may include incorrect rates of N early in the season before the root system can 

effectively utilize it. This portion of N fertilizer not being absorbed by the plant is a significant 

risk to ecological losses according to a review by Raun and Johnson (1999). They made 

emphasis to earlier research indicating that NUE could be significantly increased by focusing on 

mid-season applications of N fertilizer, and using rates that in fact improve the in-season N status 

of the crop.                                                                                                     

Nitrogen fertilizer recommendations have typically been developed on a state or regional 

scale and are intended to be used as a general guide, so it is debatable if this approach can be 

used for variable-rate N that in theory will consider variability of season and soil properties 

(Ferguson et al., 2002). A number of studies have found significant differences in crop yield and 

crop N response within specifics fields (Carr et al., 1991). Farmers normally use uniform rates 
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for N based on expected yield that could be inconsistent according to location and time. This 

situation requires the development of methods to produce specific N recommendations for each 

particular area (Ferguson et al., 2002). 

According to Pierce and Nowak (1999), there are basic approaches currently being tested 

for variable-rate N application. The first involves determining plant available N status of the soil 

from field sampling and interpreting N rates based on current recommendations. The second 

approach bases N rates on observed crop N responses in reference strips, with different N rates 

across a representative area of the field. The third method involves determining the vigor of the 

plant by monitoring with active optical sensors over the canopy. 

In Arkansas, the development and implementation of a soil N test for rice on silt loams  

(N-STaR) seems to improve N fertilizer management for Midsouth U.S. rice producers (Roberts 

et al., 2009). This soil test relies on the capacity of a soil to supply N. Research results suggest 

that the amino sugars can be correlated and calibrated to quantify the potential N mineralization 

in a given soil, which leads to the development of site-specific N recommendations. The amino 

sugars appear to be a stable pool of plant available N in a soil, which are not susceptible to 

leaching or denitrification losses.  

 Environmental Concerns  

The current hypoxic region affecting the northern Gulf of Mexico, bordering the 

Mississippi River and the states of Louisiana and Texas, is the second largest hypoxic region 

worldwide. Recent reports show an increase in the concentration of N and phosphorus in the 

Lower Mississippi River. The cause of this increase is accredited to the growing use of N and 
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phosphorus fertilizers, and N fixation by leguminous crops. Arkansas is listed as the fifth 

contributor to the hypoxia in the Gulf of Mexico related to N (USGS, 2009).  

According to Battaglin (2010), the average dimension of the Gulf of Mexico’s hypoxic 

zone has significantly increased in a period of 10 years. While the annual loading of total N to 

the Gulf of Mexico has decreased, the nitrate-N fraction of that load has gradually increased 

to15%, in the last 30 years. 

Using adequate N rates in cereal production is one of the keys to succeed in every season 

since N inputs require careful management not only for economic reason, but for environmental 

concerns, as well. Mueller et al. (1995), reported that fertilizer N is the main source of nitrate 

contamination in a significant portion of groundwater in the Midwest.  For such reason, there is a 

significant effort to improve the efficiency of fertilizer N use to reduce the total amount of N that 

can potentially become a contaminant. According to Peterson et al. (1993), factors like weather 

that affect N efficiency are out of a farmer’s control. Fertilizer N price tends to fluctuate 

unpredictably every year, and N deficiencies can result in significant loss of yield potential and 

associated profit. As a result, producers are learning to manage fertilizer N to maximize yield 

potential, while reducing potential contamination.  

Sorghum N Requirements in Arkansas 

In Arkansas, N recommendations for irrigated grain sorghum range between 110 and 200 

kg N/ha, depending on soil texture and yield potential, and between 110 and 150 kg N/ha for 

non-irrigated production. As a rule of thumb, 2 lbs of N are required to produce 45.5 kg of grain 

(Espinoza et al., 2005).  
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It appears that the plant does not take up much N during the first 3 weeks after 

emergence, but by the time the plant is 60 days old, it has taken up close to 60% of its total N. 

”Consequently, a third to one-half of the total N is usually applied pre-plant". The remainder 

should be side dressed around 22-26 DAP (Espinoza et al., 2005). 

Nitrogen fertilizer recommendations represent the average response of grain sorghum to 

varying N rates at different locations, during several years. They are defined by fitting a 

regression model to the relationship between N rates and relative yields, with the maximum N 

rate recommended being that rate which intersects the line at 95% relative yield. While an 

specific N rate is provided, in reality the optimum rate changes from season to season and 

according to location (Espinoza et al., 2005). 

Raun et al. (2001), reported that the N rate required to maximize yields changes every 

single year in wheat production. The chance that the N rate would be the same from one year to 

the next is less than 1%. The variability of the N requirements to maximize yields in wheat 

during a given year can range from 22.5 kg N /ha N to135 kg N/ha fertilizer for a given year. 

According to Peterson et al. (1993), researchers have been studying ways to improve N use 

efficiency. Using a soil test to correct fertilizer N rates for residual nitrate does not work well all 

the time due to the dynamic nature of N. However, the potential exists to fine-tune N 

management decisions during the growing season to react to changing weather and crop 

conditions.  

Nitrogen Efficiency in Sorghum 

Grain sorghum is a C4 plant, which uses N, water and CO2 more efficiently than C3 

species (Greenwood et al., 1990). According to work by Espinoza et al. (2005), N is without 

doubt the most limiting nutrient in grain sorghum production in Arkansas, with almost 50% of 
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the N removed with the grain, in contrast with 67 % and 17 % for phosphorus and potassium, 

respectively. Currently, NUE of grain and forage production ranges from 33% to 45%, 

respectively (Raun and Johnson, 1999). Voss (1998), distinguished improvements in fertilizer 

recommendations in many states through the calibration of a soil nitrate test for corn (Zea mays 

L.) to base fertilizer N recommendations.  In Arkansas, the development of a soil test for rice 

called N-STa-R (Roberts, 2010) has been used successfully to provide site-specific N rates for 

specific fields. The potential exists to implement this methodology for upland crops, including 

grain sorghum. 

 Spectral reflectance and plants 

Color is one of the properties that define plant matter. It is a reflection and absorption of 

specific wavelengths in the electromagnetic spectrum that gives the properties of color (Huete, 

1988). Crop reflectance is defined by the ratio of radiation reflected to total incident radiation on 

an object (Huete, 1988). Plants absorb more of the visible wavelengths (blue and red) and reflect 

more of the green in the visible spectrum. Near infrared is strongly reflected from plant surfaces 

as a function of leaf tissue (Carter, 1991). The Beer-Lambert Law gives details about the 

relationship between the proportion of light penetrating a plant canopy and the leaf area index  

(LAI), measuring the portion of incident photons absorbed by unit of leaf area (Foroutan-pour et 

al., 2001), while the shape or distribution of leaf area appears to affect the capacity of a plant to 

capture light (Duncan, 1971). Work by Thomas and Gausman (1977), showed the coefficient for 

a linear correlation of carotenoid with chlorophyll was highly significant (p=0.01) for grain 

sorghum and other crops. Leaf reflectance values in the range 400 nm to 750 nm showed a strong 

correlation to N status, with a R²= 0.80 in grain sorghum. Furthermore, this interaction showed 

that N deficiency reduced the chlorophyll and carotenoid concentration. Canopies with 
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erectophile leaves (e.g. sorghum) and high leaf angles to the horizontal plane, have a lower foliar 

absorption coefficient and intercept less light per unit of foliage compared to canopies with 

planophile leaves (Lang et al., 1986). Studies in corn have shown that N concentration decreases 

with crop development due to dilution. While 50% of total N is associated with chloroplasts, 

more N supply can increase leaf chlorophyll concentration that results in more light absorbed and 

reduced reflectance of visible wavebands (Dwyeret al., 1995; Heege et al., 2008).  Therefore, 

reflectance data can be used to evaluate a variety of vegetative indices that have good level of 

agreements with agronomic parameters (Adamsen et al., 1999). 

 

 
Figure 1.Typical spectral reflectance pattern for green vegetation  (Killo, 2003). 
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 Remote Sensing and Vegetation indices  

Remote sensing was initially used in natural resources for land cover, biomass estimation, 

and to evaluate changes in land uses (Deering et al., 1975; Sala et al., 2000; Kogan et al., 2004; 

Henebry et al., 2005). Spectral reflectance sensors are classified as passive and active. Passive 

sensors use energy emitted by the sun and then record the amount that is reflected. In contrast, 

active optical sensors (AOS) have their own source of light emitted by diodes over the crop 

canopy, with the amount that is reflected being quantified by the sensor and transformed into 

numerical values called indices (Erdle et al., 2011). The principal advantages of actives sensors 

include using a modified light, the reflectance can be discriminated from natural source of light, 

and allowing collection at any time, regardless of cloud conditions. New sensing technologies 

are constantly being developed to measure plant properties by the reflected light, at specific 

wavelengths. One of the most common applications of AOS is their use to develop indices that 

help fine tune N fertilizer recommendations, with the main objective being the optimization of 

yield potential. The use of this technology has excellent potential in improving profit by reducing 

the cost of N and reducing environmental risk.  

Some of the most common vegetation indices used in grain crops include the normalized 

difference vegetative index (NDVI), the Red edge index (NDRE) and the Chlorophyll Content 

Meter (CCM index) (Li et al., 2014). These indices are calculated from a broad wavelength range 

by directing visible light (VIS) (400–700 nm) as well as near infrared (NIR) (700–1300 nm). 

Where VIS reflectance is dependent on the chlorophyll contained in the palisade layer and NIR 

reflectance depends on the structure of the mesophyll cells (Inman et al., 2005). 

 



15 
 

The NDVI (R760-R730)/(R760+R730) (Rouse et al.,1974), has been correlated with final 

yield and aboveground biomass in different grain crops (Raun et al., 2001). This correlation can 

be improved by normalizing the NDVI through dividing it by the number of GDD from planting 

to time of sensing or commonly referred as INSEY (In Season Estimate of Yield)  (Lukina et al., 

2001). The red edge index (R790 − R720)/ (R790 + R720) (Gitelson, 2004) has been found to be 

linearly related to N supply in grain crops and is less sensitive to biomass accumulation (Heege 

et al., 2008). Chlorophyll Content Meters (Minolta Camera Co., Ltd., Japan) have been used to 

manage crops such as corn, grain sorghum, wheat, cotton, rice, as well as other agricultural 

species (Schlemmer et al., 2005). Research has focused on the application of CCM to 

understanding nutrient content, in particular N, but also phosphorus in a wide range of plant 

species (Markwell et al., 1995; Hawkins et al., 2007). The CCM instrument uses two wavelength 

emitting diodes and receptors to calculate the chlorophyll content index (CCI), which is defined 

as the ratio of percent transmission at 931 nm and 653 nm through a leaf sample. CCI units are 

extrapolated to transmission measurements made with spectroradiometer measurements 

(Richardson et al., 2002). 

N Tech Industries (2007) and Holland Scientific (2004) state that the GreenSeeker® and 

Crop Circle, respectively, measure NDVI by the use of red and NIR light. Red light is absorbed 

by a plant’s chlorophyll as an energy source for the period of photosynthesis. Therefore, 

vigorous plants absorb more red light and reflect larger amounts of NIR than those that are less 

vigorous (Bula et al., 1991). The NDVI is a good indicator of biomass (living plant tissue) 

(Deering et al., 1975). Also, the NDVI combined with GDD>0 or DAP is used to accurately 

project yield potential (Raun et al., 2005). These three active sensors are very convenient since 

they emit and receive a pulsed light source and do not use the passive light source of the sun. 
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This attribute means that the unit can be used under varying conditions, without interference of 

existing light or cloud conditions (NTech Industries, 2007). 

Voss (1998), stated that research approaches using precision agriculture technology could 

provide a large database on which to base nutrient recommendations across a wide range of soils 

and crops. This and other reports (Verhulst et al., 2009), further noted the importance of 

simultaneously using soil and plant productivity indicators to make site-specific crop production 

decisions.  Girma et al. (2006), showed that the mid-season NDVI calculated from optical 

sensors measurement and plant height were good predictors of final winter wheat grain yield. 

According to work by Lukina et al. (2001), NDVI alone was an excellent predictor of total 

winter wheat grain yield. 

The GreenSeeker® sensor unit has its own energy source that emits light in both the red 

(650±10 nm full width half magnitude (FWHM)) and near infra-red (NIR) (770±15 nm FWHM) 

bands. The device measures the portion of the emitted light in the sensed area that is returned to 

the sensor from the canopy reflectance (NTech Industries, 2007). These portions are used within 

the sensor to calculate NDVI, which is equivalent to: NDVI =NIR–VIS/NIR+VIS (N Tech 

Industries, 2007). 

 The NDVI has been the traditional index used to develop in-season N fertilization for 

several crops. However, Gitelson et al. (2004), proposed the use of green normalized difference 

vegetation index (GNDVI) where the green band replace the red band in the NDVI equation, 

which may be more useful to evaluate canopy variation in green biomass. 
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  Mid-Season N Fertilization Algorithm  

According to Raun et al. (2001), when developing an algorithm for a crop, one needs to 

incorporate sensor readings that are transformed into a NDVI and a time/temperature component 

from a particular growth stage that correlates well to yield potential. Typically a “reference strip” 

(an area with non-limiting amount of N) is established in a representative area of a given field. 

Sensor readings, collected at the proper growth stage from the rest of the field, are compared to 

those from the reference strip. The yield potential is then used to back-calculate, based on a 

Response Index (RI), which define how much additional N fertilizer is needed to maximize yield 

potential in that particular season. A fertilizer use efficiency factor is incorporated into the 

algorithm to make the recommendation more robust and reflect the realities of N utilization by 

the crop. According to Raun et al. (2001), the approach to N management has increased NUE by 

15% in initial studies with wheat, by accounting for missing plants, and small-scale differences 

in plant vigor.   

The RI for the NDVI equation also applies to INSEY calculation and is presented below: 

RIAlgorithm = NDVI N plot / NDVI 0 N plot      

Where: NDVI N plot = NDVI readings from N applied plots > 0 

NDVI 0 N plot = NDVI readings from 0 kg N/ha 

According to Inman et al. (2005), the general idea with and algorithm is that a RI can be 

based on N application differences. An RI of 1.0 was used at the 0 kg N/ha application rate 

assuming that if the NDVI reference was divided by the NDVI target and a RI of 1.0 was 

recorded no additional N would be needed because the target area and reference area would have 
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the same N status. When mineralization is large, crop N uptake will be large, and the amount of 

side-dress N is also reduced. 

Chlorophyll Content Meters (CCM) 

The CCM estimates the status of chlorophyll present in a plant leaf by positioning the 

meter over the leaf to receive an indexed chlorophyll content reading (0-99.9) (Konica, 2003). 

This chlorophyll content shows a good correlation with N concentrations in the leaf. This 

concept is an estimate of the “spoon feeding” N to the crop on an “as needed” basis (Schepers et 

al., 1996) with the objective to improve efficiency of N fertilization in a particular crop.  

According to Peterson et al. (1993), the CCM index technique allows improvement in N 

management under field conditions and avoids low yields caused by N deficiencies. The CCM 

used to determine the remained amount of fertilizer needed to reach maximum yield. This device 

enhances the ability to make N management program decisions, but does not replace other 

aspects for a good N management. In corn, it is recommended that at least one-half to three-

quarters of the total fertilizer N be applied to the total field prior to the six-leaf stage to ensure 

the chlorophyll meter technique is effective (Shapiro et al., 2006). Wood et al. (1992), concluded 

that tissue N concentration at the V10 stage and mid-silk were good indicators of corn yield, 

noting that field chlorophyll measurements using a CCM were highly correlated with tissue N 

concentrations at both of these growth stages. Work by Blackmer et al. (1994), indicated that 

readings reflectance close to 550 nm detect N deficiencies in corn leaves. Varvel et al. (1997), 

used CCM readings to calculate a sufficiency index defined as a ratio between needed 

treatment/well-fertilized treatments. Results estimating plant N status concentration in corn 

evaluated with reading of CCM showed a linear relationship with R²= 0.79 (Rorie et al., 2011). 
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Limitations of Optical Sensors  

The N Recommendation Systems 

According to Espinoza et al. (2005), N recommendations for sorghum, as with many 

other systems implemented in the U.S agriculture, includes several components to calculate N 

recommendations. The most common components include an expected yield term to determine 

general N need by the crop and the texture of soil. In Arkansas, farmers commonly rotate 

sorghum with other crops, including soybeans which can provide a substantial amount of N to 

the following sorghum crop. However, N provided through mineralization and biological 

fixation are both strongly affected by in-season weather and the N loss mechanisms such as 

denitrification, ammonia volatilization; and surface runoff. The final issue with the current N 

recommendation systems for grains crops used in the US is that it assumes that sorghum will 

respond like corn does to N fertilization. 

Another component of a recommendation is N fertilizer recovery or N use efficiency 

(NUE). Currently, NUE assumes a fertilizer recovery of 50% in spring barley (Foster et al., 

2012). A Significant amount of studies have shown that NUE change as a function of N rate, 

timing, type of fertilizer, method of application and several other factors. Thus allowing for 

adjustments of the N rate use, which may result in more efficient N management practices (Raun 

et al., 2001). 

 The NDVI Saturation  

 The GS and CC are very good tools for differentiating management zones or prescription 

maps based on NDVI early and late in the growing season. However, NDVI exhibits gradual 

problems especially with canopy cover variations. At mid-season, when the entire field is 

covered by a solid green canopy, NDVI values become “saturated” and are of limited use for 
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creating  plant growth regulators (PGR) management zones in cotton (Vellidis et al., 2009). 

According to Vellidis et al. (2009), at midseason more than 90% of NDVI values exceeded 0.8 

and nearly half were above 0.9 in cotton. Those readings values show that by mid-season plants 

have uniform green canopies across the fields. This close clustering of NDVI values limits this 

vegetation index as a tool for discriminating biomass differences during mid-season in cotton. 

However, the biomass differences were driven primarily by plant size, which NDVI was not able 

to discriminate effectively by mid-season. Despite its extensive use, the main disadvantage of 

NDVI, or similar indices, is the natural nonlinear relationship with such biophysical 

characteristics as vegetation fraction (VF), leaf area index (LAI) and aboveground biomass 

(Sellers, 1985; Huete et al., 2002). The nonlinear relationship between the NDVI and LAI has a 

physical basis as described in Myneni et al. (1995). According to Gitelson (2004), the NDVI 

sensitivity is significantly affected when the Leaf area index (LAI) exceeds about 2. The 

reduction of the ability to capture differences means narrow ranges of NDVI are observable.  

When the LAI is much larger than 2, even a large change in the LAI may be barely 

visible using the NDVI. This has implications for land use change studies and land cover 

classification as well. Leaf area index values less than 1 work best for characterizing differences 

in vegetation. Therefore, the most important feature to improve this index should be "extended 

linearity to the biophysical parameters over a wide range of vegetation conditions" (Huete et al., 

2002). 

Work conducted by Gitelson (2004), showed that green vegetation displays more 

absorption in the red zone of the spectrum (around 670 nm), with red reflectance in this zone 

being between 3–5 %. In the near infrared (NIR) zone of the spectrum, green vegetation reflects 

a larger portion of the incident irradiation; reflectance in this section reaches from 40 to 60 %.  



21 
 

 Option for NDVI Saturation (Red edge) 

To overcome the issue of "saturation" in the NDVI index, research has focused in others 

zones of the spectrum that generate readings essentially independent of chlorophyll content and 

other pigments concentrations, despite variability of cover crop levels or canopy development 

(Girma et al., 2006). There is enough evidence that show the relationship between the biological 

status of plants and their spectral responses, particularly in the red edge zone. This zone is found 

within wavelengths 690 to 740 nm and is less sensitive to vegetation cover (Barber and Horler 

1981; Ferns et al., 1984). The normal ratio use for red edge is (R760-R730)/ (R760+R730) (Rouse et 

al., 1974). This zone, in particular, contains the maximum slope change from the visible to the 

near infrared spectrum. Experiments in corn have showed that red edge readings are sensitive at 

detecting small chlorophyll changes even in dark green leaves, providing good information for 

early detection of stress (Horler et al., 1983). Work by Meer and Jong (2006), showed that red 

edge points situated in that slope are influenced by the concentration of chlorophyll content, LAI 

and leaf mesophyll structure. In contrast, leaf orientation and soil background had only a small 

influence in red edge readings. These researchers found that red edge readings combined with 

plant growth models in sugar cane (Saccharum edule), improved the estimation of the yield 

based on N status of the plant. Similarly, Li et al. (2014) demonstrated the implication of red 

edge vegetation indices for estimating summer maize N status.  
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 Procedure and Algorithm for Calculating Spatial and Temporal N Fertilizer Rates. 

 

Reflectance data is used for the generation of vegetation indices (VIs), such as NDVI. 

The NDVI is calculated from reflectance measurements in the red and NIR portion of the 

spectrum (Stone et al., 1996): 

   NDVI = (NIR-Red) / (NIR+Red) 

A study on winter wheat (Triticum spp.) evaluated the relationship of the coefficients of 

variation (CVs), determined from NDVI readings derived from spectral radiance measurements. 

“Results showed that the CV from NDVI readings was a good predictor of early season plant 

stand.” The relationship between vegetative RI (RINDVI) and harvest RI (RIHarvest) was shown to 

improve with increasing CV values (Arnall et al., 2006; Raun et al., 2002).  RIHarvest  may be a 

good index with RINDVI  for CV of spectral radiance (Tucker, 2009). Work by Raun et al. (2002), 

demonstrated that RI in winter wheat can be used to estimate N application rates. The wider the 

difference in reflectance values from the check  and plots with different N rates, result in a RI 

higher with an N recommendation based on RI's relationship with plant N, grain yield and other 

agronomic factors.  

 

 

 

 

 

http://en.wikipedia.org/wiki/Coefficient_of_variation
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http://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index
http://en.wikipedia.org/wiki/Radiance
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Regression models are used to estimate the correlation between grain yield and NDVI (Raun, 

et al., 2002). In addition, an in-season estimated yield (INSEY) equation for yield potential 

prediction was established, which is comparable to that proposed by Raun et al. (2002). Several 

indices were evaluated, however only two had a high combined R
2
 when compared to the other 

indices tested. The days from planting to sensing (DFP) INSEY (Raun et al., 2002) was 

calculated as: 

DFP INSEY = NDVI/DFP 

Where: DFP - days from planting to sensing  

In addition, the cumulative growing degree days (GDD) INSEY was calculated as: 

GDD INSEY = NDVI/GDD 

Whereas: GDD - cumulative growing degree days (GDD) from planting to sensing and 

calculated using the “optimum day method” (Barger, 1969). 

GDD= T max + T min/2 - Base Temperature 

         Whereas: base temperature for grain sorghum is 7 ºC (Sauer, 2012). 

According to Teal et al. (2006), the equation derived from the best line that explains the 

relationship between actual corn grain yield and INSEY (both DFP INSEY and GDD INSEY) 

was fitted and the equation was used for predicting yield potential for corn. Also, the yield 

potential plus one standard deviation method (Raun et al., 2005) was use to evaluate yield 

potential.   
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Abstract 

Ground-based active-optical (GBAO) crop sensors have become an effective tool to 

improve nitrogen (N) use efficiency and to predict yield early in the growing season, particularly 

for grass crops. Commercially available canopy sensors calculate the normalized difference 

vegetative index (NDVI) by emitting light in the red and near infrared range of the 

electromagnetic spectrum. The NDVI is used to evaluate vigor status and to estimate yield 

potential. However, few studies have been conducted to compare the performance of 

commercially available sensors. Therefore, a study was conducted using the most common crop 

canopy sensors: i) N-Tech's GreenSeeker™ (GS), ii) Holland Scientific's Crop Circle™ (CC), 

and iii) Minolta’s SPAD-502 chlorophyll content meter (CCM). The objective of this study was 

to find the optimum time for sensing and compare the relative performance of the sensors in 

estimating the yield potential of grain sorghum (Sorghum bicolor L. Moench). Treatments 

included six levels of N fertilization (0, 37, 74, 111, 148, and 185 kg N/ ha), applied in a single 

split 20 days after planting (DAP). Treatments were arranged in a randomized complete block 

design with five replications, in four locations in Arkansas, during 2012 and 2013. Sensors 

readings at vegetative growth stages V3, 4, 5 and 6. Results from simple regression analysis 

showed that the V3-V4 growth stage correlated better with grain yield than readings collected 

and any other time. In season estimated yield (INSEY) obtained at V3 captured 41, 57, 78, and 

61% of the variation in grain sorghum yield when red NDVI of GS, red NDVI of CC, red edge 

for CC and CCM, respectively, were used. Results from these studies suggest that the CC sensor 

has a better potential for in-season site-specific N application in Arkansas than the GS sensor. 

The GS reflectance values appear to saturate after the V3 stage, in contrast with CC values that 
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allow for discrimination past the V3 Stage. Therefore, the red edge wavebands of CC appear to 

be better suited to develop relationships between spectral vegetation indices and agronomic 

parameters. 
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Introduction 

Ground-based active-optical (GBAO) crop sensors have become an effective tool to 

improve nitrogen (N) use efficiency and to predict yield early in the growing season, particularly 

for grass crops. Commercially available canopy sensors calculate the normalized difference 

vegetative index (NDVI) by emitting light in the red and near infrared range of the 

electromagnetic spectrum and assessing the nature of the reflected light. The NDVI is used to 

evaluate vigor status and to estimate yield potential. However, a few studies have been 

conducted to evaluate comparative performance of commercially available canopy sensors for 

sorghum. Therefore, a study was conducted using three most common crop canopy sensors 

(NTech's GreenSeeker™ (GS), Holland Scientific's Crop Circle™ (CC), and Minolta Co. Spad-

502 chlorophyll content meter (CCM)) for finding optimum time for sensing and compare the 

relative performance of the sensors and associated vegetation indices in estimating the yield 

potential of grain sorghum (Sorghum bicolor L. Moench). In season supplementation with N, 

when needed, is fundamental for high yield performance, Therefore, the estimation of grain yield 

potential based on NDVI and CCM readings will provide the basis for a N prescription to be 

used in season. The NDVI is a good indicator of biomass (amount of living plant tissue), and is 

used in conjunction with growing degree days greater than zero (GDD>0), or days from planting, 

to accurately project yield potential. Readings at growth stage V3 (growing point differentiation) 

should be highly correlated to final grain yield, and measurements must be carried out at growth 

stages of significant biomass production and nutrient demand. 
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Materials and Methods 

Site Description  

The study was conducted at three different locations the first year (2012): Lon Mann 

Cotton Research Station (Central AR) in a soil mapped as Calloway silt loam Thermic fine silt, 

mixed, active, Aquic Fraglosiudalfs, Rohwer Research Station Center (SE AR) in a soil mapped 

as a Desha silt loam thermic Vertic Hapludolls, and the Northeast Research and Extension 

Center (NE AR) in a soil mapped as a Sharkey clay soil very fine, smectitic, thermic Chromic 

Epiaquert. In 2013, an additional location was included at the Rice Research and Extension 

Center near Stuttgart (RREC) in a soil mapped as Dewitt silt fine, smetic thermic Typic 

Albaqualfs.  

Study Design  

Pioneer 84G62 was the grain sorghum cultivar used for the studies as it is one of the most 

widely used cultivars planted in Arkansas. Seeds were sown at a rate of 220,000 plants/ha at all 

the locations under conventional tillage and irrigated conditions. Test plots consisted of four 

rows wide, each spaced 0.76 m apart and 7.62 m in length. The N fertilizer (Urea coated with 

Agrotain®) was broadcast applied with a spreader distributor 15-20 days after planting.  

Grain sorghum at all location was grown using the same management practices following 

the Grain Sorghum Production Handbook from the Cooperative Extension Service of the 

University of Arkansas (Espinoza and Kelley, 2004). 
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Statistical Analysis 

Treatments were arranged in the field using a randomized complete block design (RCB), 

with six N rate treatments (0, 37, 74, 111, 148, 185 kg N/ ha) and five replications. Final plot 

grain yield was obtained from the two middle rows 7.62 meter long, using a plot combine set 

with an automatic scale and moisture meter. The GS and CC readings consist of a mean between 

40 to 60 readings from each row. The CCM readings were based in a mean of 20 samples by 

plot. In general, means for each N treatment of each sensor were processed in Microsoft Excel-

2007.  Grain yields were adjusted to 15.5 % moisture. Yields at each location were converted to 

relative yield to reduce the variability associated with years and locations. Relative yield (RY) 

was calculated as the ratio of a particular treatment yield divided by the highest yield times 100 

at a given site-year. The optimal N uptake, INSEY, aboveground dry matter and leaf N percent 

were calculate based in N fertilizer rates by fitting a linear, quadratic and exponential regression 

model analysis with intercept for each location and year using JMP Version 11 (SAS Institute 

Inc. 2011, Cary, NC) and Microsoft Excel-2007, choosing the best model as determined by the 

adjusted R², and solving for the N rate in function of the agronomic parameters previous 

mentioned by location and year. Treatments means for total grain yield were calculated across 

five replicates and six N rates for each site-year. Additionally, least square means of relative 

yield for all locations combined were separated using Fisher’s protected LSD and statistical 

significance at the 0.10 probability level was interpreted. These analyses were conducted using 

PROC GLM of SAS 9.1 (SAS Institute Inc. 1999, Cary, NC).  
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GreenSeeker (GS) Hand Held Optical Sensor (NTech Industries, Inc.)  

A GS unit was used to collect sensor measurements within the red zone (660±15nm) and 

near infrared zone (NIR) (770 nm ±15 nm)) light.  The sensor uses a patented technique to 

measure crop reflectance and to calculate NDVI (Raun et al., 2005; Stone et al., 2005). The unit 

senses with a light dimension of 106 x 4 cm area in a linear shape, when held at a distance of 

about 1.0 m from the illuminated surface. Sensors readings were collected manually at an 

approximate speed of 3 km/hr, resulting in approximately fifty to sixty average NDVI readings 

per row.  

Holland Scientific‘s Crop Circle (CC) Sensor-470A. 

The CC emits three bands: visible (670 ± 5.5 nm), red edge (730 ± 10 nm), and near 

infrared (760 ± 10 nm). The CC emitted a light of about 87 x 18 cm area in an oblong shape. 

Around 40 to 50 readings were collected with each pass. The illuminations covered the same 

area for both wavebands the CC provides a number of classic vegetative indices and incorporates 

three wavebands from 420 to 800 nm. Spectral configuration is performed via the use of standard 

12.5 mm interference filters. Crop Circle measured reflectance at 730 nm allows for the 

calculation of a Red Index NDVI. The index R760/R730 is highly correlated with crop N uptake 

(Horler et al., 1983). 

SPAD-502 chlorophyll content meter (CCM) 

The CCM readings were taken from the most recently emerged developed leaf with a 

visible leaf collar with 20 plants sampled from the two middle rows. After selecting the leaf to be 

sampled, it was important to take the reading on about the same location on each leaf (half the  
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distance from the leaf tip to the collar and halfway between the leaf margin and the leaf midrib). 

These readings were averaged by plot.  A sufficing response index was calculated by considering 

the CCM readings of the highest N rate and dividing this by the CCM readings of the lower N 

treatments. Calculation of response index grain yield (RIGY) was done by taking the grain yield 

of the highest treatment N-rate and dividing this by the grain yield of the other lower N 

treatments. 

 Data Collection 

Both single hand sensors (CC and GS) were passed holding the sensor approximately 75 

to 100 cm above the crop canopy. The sensor readings were collected from the two middle rows 

of each plot in a nadir position, beginning at growth stage V2 (appendix 11); at weekly intervals 

in a time frame around 10:30 am to 12 pm to avoid moisture and temperature effects in the 

readings (Heinemann et al., 2002). 

Total biomass accumulation was calculated by harvesting, at ground level, plants in 1 m 

of row from each treatment in 4 of the 5 replications. Plants were collected 70-80 DAP. Plant 

samples were dried (70 ºC for 75 hours) or until the material reached a constant weight and later 

ground to pass a 110-mesh sieve. The N was analyzed following standard Method Kjeldahl 

Nitrogen and Phosphorous (Jones et al., 1991). The N in the soil was analyzed following 

standard procedures for NO 3-N based in the Specific Ion Electrode method (Donahue, 1992). 

Each block was sampled to a 15, 30, and 45 centimeters depth. Other nutrients were applied 

based on soil test results for each year. 

 

.  
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Results and Discussion 

 

Total Grain Yield and N rates 

 

There was a good yield response to N rates at each location in 2012 and 2013, except at 

SE AR in 2012 where 75 mm of rain were recorded in a period of three days that may have 

affected NUE. During 2012, yields were maximized at 148 kg N /ha at all the locations. In 2013 

yields were maximized at 111 kg N/ha at SE AR, while at the NE AR location yield appeared to 

follow a linear trend. Yields at the RREC location were maximized at 148 kg N/ha. Yields at the 

Central AR location reached their maximum potential at 148 kg N/ha (Figure 2). Due to the lack 

of yield response at the SE AR location in 2012 (R²=0.03), this site was removed from further 

analysis (Table 1). To reduce the effect of yield variability across locations and years, grain yield 

was converted to relative yield. When relative yields were combined across locations and years, 

they were statistically maximized at 148 kg N/ha (Table 2).  

 

Figure 2. Average yield response of grain sorghum to varying nitrogen (N) rates across all 

locations and years. 
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Table 1. Equations describing the relationship between relative grain yield and nitrogen (N) rate 

for all the sites-years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Relationship between relative grain yield and nitrogen (N) rate for all the locations and 

years (n=160). 
      
 
 
 
 
 
 
 
 
 
 
 
 
 

 

       * Means not followed by the same letter are significantly different (p≤0.1) 

 

 

Location and Year Equations R square  

NE AR-  12 y =0.2881+ 0.0096x -4E-05x
2
   0.79 

NE AR-  13 y = 0.2366+ 0.0078x -2E-05x
2
   0.82 

Central AR12 y = 0.4998+ 0.0056x -2E-05x
2
       0.58 

Central AR-13 y = 0.5327+0.003x +1E-06x
2
       0.74 

SE AR-12 y = 0.8952+0.0003x -1E-06x
2
       0.03 

SE AR-13 y = 0.3577+ 0.0073x-3E-05x
2
     0.76 

RREC-13 y = 0.6389+ 0.0053x -2E-05x
2
      0.82 

N rate   (kg/ha) Significance* Relative Grain Yield (Mean %) 

        185     A     85.5 

        148     A   B 79.8 

        111          B 77.9 

         74             C 66.9 

          37                 D 57.5 

          0                    E 37.9 

  LSD = 6.43% CV= 17.2% 
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Figure 3. Relative yield response to fertilizer nitrogen (N) rates across location and years. 

 

Table 3. Selected soil chemical parameters at the study locations for 2012 and 2013 (0 to 15 cm) 

____________________________________________________________________________________ 

Year Loc  pH
†
  CEC OM 

(%) 

 NO3-N
‡
         P K  Mg  

       mg/kg   

 SE AR 6.6 18.5 1.1 8       25 83 338 

2012 Central AR 7.3 11.4 0.9 12       23 81 219 

 NE AR 6.8 20.1 0.9 13       20 110 305 

         

 SE AR 7 20 0.9 18 28 111 268 

2013 Central AR 5.9 12 0.9 12 50 90 200 

 NE AR 6.5 26 1.4 16 30 160 516 

 RREC 4.9 11 0.8 71 39 92 219 
  
_________________________________________________________________________________________________________ 
†
Soil pH was measured in a 1:2 (weight: volume) soil-water mixture 

‡
NO3-N was measure with an ion specific electrode, and P, K, and Mg by Mehlich 3. 
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Predicting Grain Sorghum yield and N response in Arkansas from sensor data            

2012 results. 

 

At the Central AR site, reflectance readings were collected at 23, 31, 36, 43, and 50 days 

after planting, while at the NE AR site reflectance readings were collected at 25, 31, 38 and 47 

days after planting. Reflectance values were used to calculate NDVI and then correlated with 

final grain yield, using an exponential equation. The relationships found between NDVI at each 

individual sampling time and grain yield at harvest resulting from the combination of N 

mineralized and applied fertilizer N in this experiment are presented in Figure 5. It is evident 

from the data that correlation between NDVI and yield improves as the plant develops. At NE 

AR, the coefficient of determination was 0.29 at 23 DAP and 0.63 at 33 DAP. After such time R² 

remains relatively constant for the next 10 days and then decreases to a R² of 0.14. NDVI 

calculated from the Central AR site showed a coefficient of 0.32 at 29 days after planting and 

reached a coefficient of 0.65 at 45 days after planting. Both locations showed higher R² in the 

window between 32 to 45 DAP, suggesting this as the best time to collect readings and develop 

yield prediction equations. 
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Table 4. Regression equations describing the relationship between nitrogen (N) rates and 

GreenSeeker- Normalized Difference Vegetation Index (NDVI) values at different days after 

planting in NE AR during 2012. 

____________________________________________________________________________________

GS-NDVI       Days After Planting                         Equations                             R Squares                

                             25 DAP                          y =-0.6447+4.4294x -3.7751x
2
             0.05 

                             31 DAP                          y =-9.3231+29.965x -22.272x
2
             0.29 

                             38 DAP                          y =15.177-45.119x +33.97x
2
                 0.65 

                             47 DAP                          y =-17.853+ 38.235x -18.905x
2
            0.74 

____________________________________________________________________________ 

  

Table 5. Regression equations describing the relationship between GreenSeeker-Normalized 

Difference Vegetation Index (NDVI) values and relative grain yield at the NE AR location 

during 2012. 

________________________________________________________________________ 

GS-NDVI       Days After Planting                         Equations                              R Squares                

                             25 DAP                                      y = 2.52x
5.4477

                            0.14  

                             31 DAP                                      y = 6.6439x
9.4746

                        0.63  

                             38 DAP                                      y = 10.186x
12.874

                        0.77  

                             47 DAP                                      y = 3.4791x
3.6085

                        0.29  

______________________________________________________________________________ 
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2013 Results  

 

The research was expanded by adding the Crop Circle sensor (CC) and an additional site 

(RREC) with the goal of assessing the relative performance of both GS and CC. During the 2013 

season, all locations showed a good yield response to applied N rates. Results from the 2013 

season showed similar trends to those observed in 2012. Reflectance data collection began 

around 25 DAP, with weekly reading taken until plants were midhead (55-60 DAP).  

                

 Time for Sensing in grain sorghum with GS and CC 

 

NDVI readings values showed weak correlation with N rates early in the season for both 

sensors (Figure 3), with the relationship improving with crop age. Early in the season, sensor 

readings are influenced by background soil reflection and low Leaf Area Index (LAI) (Huete, 

1988). Table 6 shows the regression equations and associated R-squares for the relationship 

between N rates and indices values. The R² values range between a low of 0.06 for GS-NDVI to 

a high of 0.58 for CC-red edge based on a quadratic model at 25 DAP. These responses 

improved with readings collected at 31 DAP; with a maximum response for both sensors at 38 

DAP. 
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Figure 4. Relationship between GS-Normalized Difference Vegetation Index (NDVI) (A), CC-

NDVI (B), CC-red edge index (C) with nitrogen (N) rates at different days after planting in NE 

AR-2013. 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 37 74 111 148 185 222

G
S

-N
D

V
I 

N rate (kg/ha) 

22 DAP

31 DAP

38 DAP

44 DAP

A 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 37 74 111 148 185 222

C
C

-N
D

V
I 

N rate (kg/ha) 

25 DAP
31 DAP
38 DAP
44 DAP

B 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 37 74 111 148 185 222

C
C

-r
ed

 e
d
g
e 

N rate (kg/ha) 

25 DAP
31 DAP
38 DAP
44 DAP

  C 



45 
 

Table 6. Equations describing the relationship between nitrogen (N) rates and Normalize 

Difference Vegetation Index (NDVI) values at different days after planting in NE AR-2013. 

SENSOR                     Days after planting                    Equations                                 R Squares 

GS-NDVI 

                                               25 DAP                   y = 0.3864+ 0.0006x -3E-06x
2
             0.06  

                                               31DAP                    y = 0.557+ 0.0024x -9E-06x
2
               0.61 

                                               38 DAP                   y = 0.0015x + 0.7049 -6E-06x
2
            0.80 

                                               44 DAP                   y = 0.6641+ 0.0021x -8E-06x
2
             0.72  

CC-NDVI 

                                               25 DAP                   y = 0.4681+ 0.0023x-8E-06x
2
              0.41                                                                               

                                               31 DAP                   y = 0.6496+ 0.0017x-6E-06x
2
              0.65 

                                               38 DAP                   y = 0.6296+ 0.0018x -6E-06x
2
             0.68 

                                               44 DAP                   y = 0.5405+ 0.0031x -1E-05x
2
             0.74 

CC-red edge  

                                               25 DAP                   y = 0.4313+ 0.0018x-7E-06x
2
              0.58 

                                               31 DAP                   y = 0.4756+ 0.0022x -7E-06x
2
             0.87 

                                               38 DAP                   y = 0.4537+ 0.0025x -9E-06x
2
             0.88 

                                               44 DAP                   y = 0.4811+ 0.0018x -5E-06x
2
             0.79   

 

           This trend was consistent across locations during the 2013 season. Under the conditions of 

this study, it appears that these relationships slightly improved late in the season for CC and 

decreased for GS. This effect has been previously reported and it appears to be related to the 

effect that canopy development has over NDVI values (Li et al., 2014). 
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Figure 5. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) with relative grain yield at different 

days after planting in NE AR-2013.  
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Table 7. Regression equations describing the relationship between sensors indexes and relative 

grain yield at the NE AR location during 2013. 

 

 SENSOR                     Days After planting                 Equations                         R squares 

GS_NDVI 

                                              22 DAP                                    -                                         -                                         

                                              31 DAP                               y = 198.73x
3.1092                            

0.48 

                                              38 DAP                               y = 384.78x
7.7094                            

0.73 

                                              44 DAP                               y = 222.66x
5.072

                      0.67  

CC_NDVI 

                                              25 DAP                               y = 177.51x
2.0715

                     0.41  

                                              31 DAP                               y = 146.45x
2.5919

                     0.57  

                                              38 DAP                               y = 219.46x
4.3259

                     0.69  

                                              44 DAP                               y = 252.65x
4.9087

                     0.62 

CC_red edge 

                                              25 DAP                               y = 343.46x
2.7221

                     0.38  

                                              31 DAP                               y = 355.66x
3.3473

                     0.71  

                                              38 DAP                               y = 459.14x
3.9271

                     0.77  

                                              44 DAP                               y = 325.56x
3.3488

                     0.66  

 

The relative performance of the different indices is shown clearly in Figure 5. These 

relationships agree with results shown in Figure 4, with reference to the optimum dates to collect 

sensor readings in grain sorghum. They confirm that, based simply on the coefficients of 

determination, readings collected between 38-44 DAP more closely correlate with the final yield 

of grain sorghum, independent of the type of sensor used (Table 7). This time frame corresponds 

approximately to the growing point differentiation (V3 stage).  Previously reported results agree 

with our results (Moges et al., 2007; Tucker, 2009). The observed relationship for GS-NDVI  
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beyond 38 DAP losses predictive ability (R²=0.73 to R²=0.67). In contrast with CC readings for 

both indices (NDVI and red edge index) which decrease slightly or remain fairly constant. The 

use of red edge NDVI can be useful to extend the narrow window of conventional sensors 

readings and associated indices calculations. Table 6 shows the equations associated with each 

index and corresponding coefficients of determination. This table underscores the suitability of 

sensing in the time frame of 38-44 DAP. The trends presented in Table 6 are consistent with 

those observed at the other locations. There is a general improvement in predictability with crop 

age to 38-44 DAP, with the relationship later weakening when using GS-NDVI and remaining 

fairly consistent when red edge NDVI is used. 
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Figure 6. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) and relative grain yield at 23-25days 

after planting in NE AR-13. 
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Figure 7. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) and relative grain yield at 31 days 

after planting in NE AR-13. 
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Figure 8. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge index (C) and relative grain yield at 37 days 

after planting in NE AR-13. 
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Figure 9. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-NDVI (B), Crop Circle-red edge (C) index and relative grain yield at 44 days 

after planting in NE AR-13. 
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Figure 10.  Relationship between Crop Circle-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle-red edge index (B) with relative grain yield at 50 days after planting in NE AR-

13. 
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Results from the NE AR Location 

 Results from this location show that GS and CC-NDVI, and CC-red edge index can 

potentially predict yield potential and provide guidance for the need of supplemental N in the 12 

day windows between 33 and 45 DAP (Fig. 8 & 9) based on a single location. At 25 DAP, the 

CC-red edge shows 50% of the variability in relative yield, compared to only 28% and 42% 

showed by the GS-NDVI and CC-NDVI respectively (Figure 7). At 31 DAP, there was an 

improvement in the relationship between GS and relative yield, while such relationship for CC-

NDVI and CC red edge index remained practically unchanged (Figure 7). At 38 DAP, the 

resulting regression models for all sensors and associated vegetation indices showed good yield 

prediction capability (Figure 8). At 44 DAP, the values for the coefficient of determination drop 

drastically for the GS- NDVI, but increased for CC-NDVI and CC-red edge index decreased 

slightly (Figure 9). The main disadvantage of NDVI or similar indices is the reported saturation 

with increasing aboveground biomass. Generally, NDVI approaches saturation asymptotically 

under moderate-to-high biomass conditions and for certain ranges of leaf area index (Huete et al., 

2002). Despite the fact that NDVI values under high biomass tend to saturate, the CC red edge 

remains consistently high at 44 DAP, which means that it is less susceptible to being saturated. 

In summary, in early growth stages, GS-NDVI (Figures 6A & 7A) seems to do a better 

work at discriminating among N treatments, but later in the season CC-NDVI appears to more 

closely correlate to relative yield than GS-NDVI. 
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In contrast, CC-red edge readings produced higher R² values in each of the sensing dates 

than those obtained when using the NDVI index (Figure 9). This means that the CC-red edge 

index, under the conditions of this study, was able to predict final yield better than the NDVI 

index independent of what sensor was used.  Li (2012), compared the red edge index with NDVI 

and CCM-index in corn; his results show significantly higher R² values when using the red edge 

index. Red edge is more sensitive to absorbance related to crop chlorophyll concentration 

because this spectral index penetrates deeper into the crop canopy and produces more reflectance 

of the real  pigment concentration level. Therefore, to a certain level, red edge overcomes 

saturation problems. Figures 10 (A&B) validate those previous reports, showing that the CC-red 

edge waveband readings were not affected as much as CC-NDVI by grain sorghum plants 

reaching full canopy development (boot stage). 

Trends Followed by the Coefficient of Variations.  

Figure 11 shows the trend followed by the coefficient of variations (CV) calculated based 

on average NDVI at different N rate of each one of the indexes. Regardless of the index used, the 

calculated CVs follow similar trends. Also, there were significantly higher CVs for the control 

treatments regardless of sampling date, except sampling date 25 DAP. This is probably due to 

natural soil variability. In general, the CV for the three sensors tended to decrease as a function 

of N rate. Later sensing showed that as the canopy began to close (more crop cover variability) 

the CV declined, independently of the N rate. The variability in biomass accumulation in plots 

with lower N rates was higher than plots where N was non-limiting. Treatments that received an 

N application showed more uniform plant development and that is probably what the sensor was 

reflecting. Less variability was generally observed at 38 DAP or later, possibly due to the plants 

actively taking up N from the fertilizer.  



56 
 

 

 

 

 

Figure 11.  Relationship between Coefficient of Variation for GreenSeeker-Normalized 

Difference Vegetation Index (NDVI) (A), Crop Circle-NDVI (B), Crop Circle-red edge (C), 

chlorophyll content meter-index (D) and nitrogen (N) rate NE AR-13. 

0

5

10

15

20

25

0 37 74 111 148 185

G
S

-C
V

 

N (kg/ha) 

25 DAP

32 DAP

38 DAP

45 DAP

 A 

0

5

10

15

20

25

0 37 74 111 148 185

C
C

-C
V

 

N (kg/ha) 

25 DAP

32 DAP

38 DAP

45 DAP

50 DAP

 B 

0

5

10

15

20

25

0 37 74 111 148 185

C
C

-R
ed

 e
d
g
e-

C
V

 

N (kg/ha) 

25 DAP

32 DAP

38 DAP

45 DAP

50 DAP

 C 

0

5

10

15

0 37 74 111 148 185

C
C

M
-i

n
d
ex

-C
V

 

N (kg/ha) 

25 DAP
31 DAP
38 DAP
44 DAP
50 DAP
56 DAP

D 



57 
 

 
Figure 12.Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI), 

Crop Circle-NDVI and Crop Circle-red edge index and nitrogen (N) rates at 32-44 days after 

planting  (V3 stage) in SE AR-2013. 

 

 

       

 
Fig 13. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI), 

Crop Circle-NDVI and Crop Circle-red edge index and nitrogen (N) rates after 50 days after 

planting (Before boot stage) in SE AR-2013. 
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The readings from both sensors started to show a good relationship based on R² from 32 

to 44 DAP (Fig. 12). Red edge wavelength from CC produced the highest R²=0.91 of all the 

sensor readings. Figure 13 shows the relationship between N rates and calculated values for the 

two sensors 12 days after this "optimum" sensing window had passed showing that CC and GS 

NDVI values remain unchanged due to the quick saturation of the red absorption band, as 

reported by Gitelson (1996).  By 50 DAP the NDVI values are not able to distinguish among N 

rates. The GS-NDVI reaches maximum values at lower N rates more rapidly than CC-NDVI, but 

in general show the same trend towards a lower R² by the time the grain sorghum crop is 

transitioning into the reproductive stage as previously shown (Vanderlip, 1993). In contrast, the 

red edge, NDVI relationship with N rate stays relatively strong, even beyond the optimum 

sensing window. The red edge band look like it is independent or less sensitive of crop cover 

variability based on the observed trend and associated R² during different periods of fertilization. 

Results from all Locations Combined. 

The INSEY concept is useful to predict crop yield across locations and years. It 

standardizes the data to account for variability in weather conditions and agronomic factors 

(Raun, 2001). The INSEY estimates the relationship between NDVI and GDD. The relationship 

between relative yield and GS and CC INSEY at the V3 stage was evaluated across locations. 

Yield prediction equations presented in the Figures 14, 15 and 16 shows the relationship of GS 

and CC INSEY index with RY.   
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Figure 14.  Relationship between GreenSeeker-In season estimated yield (INSEY) and relative 

yield at 40 DAP (V3) all sites 2013. 

 
 

 
Figure 15. Relationship between Crop Circle-In season estimated yield (INSEY) and relative 

yield at 40 DAP (V3) all sites 2013. 
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Figure 16.  Relationship between Crop Circle-red edge-In season estimated yield (INSEY) and 

relative yield at 40 DAP (V3) for all sites 2013. 
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Figure 17. Relationship between sensors (GreenSeeker and Crop Circle) INSEY indices and 

relative grain yield at NE AR, SE AR and Central AR-2013 at 38 DAP. 

 

 

Figure 18. Relationship between sensors (GreenSeeker and Crop Circle) INSEY indices and 

relative grain yield at NE AR, SE AR and Central AR-2013 at 45 DAP. 
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Figure 17 shows regression models for INSEY at early growth stages for GS and CC 

NDVI indexes having similar R² with CC-red edge index better explaining the variability during 

such early stages. Figure 18 shows regression models for INSEY and RY at 45 DAP for all the 

indices. The trend observed is consistent with early growth stages, with red NDVI having the 

highest R square. However, the regression model developed with GS-NDVI and Relative Yield 

(RY) fails to explain the variability in the data, as seen with the resulting low R² values. Again, 

this is related to the early saturation observed by GS sensor that limits the ability of this sensor to 

distinguish among treatments. At RREC and SE AR the canopy developed at a faster rate than at 

the Central AR and NE AR locations, resulting in the GS sensor being saturated earlier.   

 
Figure 19. Relationship between the Response index (RI) grain yield and response index for 

GreenSeeker-Normalized Difference Vegetation Index (NDVI) at the V3 stage. 
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Figure 20. Relationship between the Response Index (RI) grain yield and RI Crop Circle- 

Normalized Difference Vegetation Index (NDVI) at the V3 stage. 

 

 
Figure 21. Relationship between the Response Index (RI) grain yield and RI Crop Circle- 

red edge at the V3 stage. 
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weather conditions, particularly with variability in the heat unit accumulation observed at each 

location and other agronomic factors. The results show that RI at the "optimum" sensing time (40 

DAP) for the GS reduces the relationship based in R² alone (Figure 19) in contrast with the CC 

NDVI that maintains (Figure 20) and improves this relationship in the red edge wavelength. 

These results match the INSEY index with similar values based on R², and confirm the ability of 

red edge NDVI to produce a good relationship with an R²= 0.80 (Figure 21). The data suggest 

that RI based on CC-red edge NDVI still provides useful information even beyond 50 DAP, 

contrary to CC and GS-NDVI based RI. The CC-red edge index is a better predictor of N 

response and yield potential for grain sorghum than CC and GS-NDVI, and can potentially 

increase nitrogen use efficiency. 

Sensor comparison and wavelengths (NDVI, red edge and CCM) 

There are studies that have evaluated the performance of several of the commercially 

available active sensors such GS and CC in cereal crops across all the vegetation stages (Erdle et 

al., 2011; Solari et al., 2008). These sensors provide different values, even when using the same 

indexes and sensing time as reported in Figure 6, 7 and 8. In 2013, we evaluated both sensors, 

side by side, across different locations for both, NDVI and red edge indices. Figure 22 shows a 

1:1 relationship between CC-NDVI and GS-NDVI across growth stages and locations. The graph 

shows that values for GS-NDVI tend to be higher than those of CC-NDVI, because of the 

difference in the red wavelength each sensor uses. GreenSeeker senses at 650 nm, while CC 

senses at 670 nm. However, there is a good level of agreement between both sensors, based in a 

linear relationship with a R²=0.74. It seems that at early growth stages and low N rates values 

from both sensors differ significantly. 
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Figure 22. Relationship between average Crop Circle-Normalized Difference Vegetation Index 

(NDVI) and Crop Circle-red edge index collected across SE AR , Central AR and NE AR 

sensing dates and locations in 2013. 
 

 
Figure 23. Relationship between average Crop Circle-Normalized-Difference Vegetation Index 

(NDVI) and Crop Circle-red edge index collected across SE AR, Central AR and NE AR sensing 

dates and locations in 2013. 
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Figure 24. Relationship between average GreenSeeker-Normalized Difference Vegetation Index 

(NDVI) and Crop Circle-red edge index collected across SE AR , Central AR and NE AR 

sensing dates and location in 2013. 
 

 
Figure 25. Relationship between average GreenSeeker-Normalized Difference Vegetation Index 

(NDVI) and chlorophyll content meter (CCM) index collected across SE AR, Central AR and 

NE AR sensing dates and location in 2013. 
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Figure 26.  Relationship between average Crop Circle-Normalized Difference Vegetation Index 

(NDVI) and chlorophyll content meter (CCM) index collected across all sensing dates and 

location in 2013. 

 

 
Figure 27. Relationship between average Crop Circle-red edge index and chlorophyll content 

meter (CCM) index collected across all sensing dates and locations in 2013. 
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That relationship shift gradually with increasing N rates and growth stages. The NDVI 

readings for CC-NDVI and CC-red edge index are shown in Figure 23. A high coefficient of 

determination (R²=0.81) was observed even at earlier growth stages and lower N rates than those 

shown in Figure 22. A strong correlation was observed with NDVI values of 0.74 or higher when 

comparing GS-NDVI and CC-NDVI index. When CC-NDVI and CC-red edge index were 

compared a R² of 0.5 or higher was observed (Figure 24). The reason for this improvement in 

correlation is a later saturation and smoother line of NDVI readings from CC compared to GS 

(Figure 13). This ability may be based on the narrow difference in the wavelength of visible and 

red edge spectrum. These characteristics have important implications for future algorithm 

development. It is reasonable to consider the development of separate algorithms to improve 

accuracy of in-season N recommendations.  

The CCM index was also correlated with GS and CC indices using a 1:1 relationship of 

the sensor readings (Figure 25, 26 & 27). Highest correlation was observed between CCM 

readings and red edge NDVI, with a coefficient of determination of R²=0.70 based on a linear 

regression model, regardless of N rate and growth stage. However, when comparing CCM index 

with GS and CC NDVI a poor correlation was observed, particularly with GS-NDVI due to the 

early saturation of the sensor (44 DAP) and more vigorous growth (SE AR and RREC). Figure 

25 shows poor correlation for the low N rates treatments during the season, with the relationship 

improving with increasing N rates.  
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Potential Application of the CCM 

The CCM index produces different ranges of values across vegetative stages in grain 

sorghum. The range in CCM index during these studies was 28 to 61, and are similar to those 

reported in grain sorghum in previous studies (Yamamoto et al., 2002). Figure 28 shows the 

regression model explaining the relationship between N rates and CCM index collected in NE 

AR during each of the sensing dates. Table 8 shows simple regression models associated with 

Figure 28 for each of the sensing dates for NE AR. Data obtained with CCM validates the 

previous findings that show an optimum sensing windows at 38-44 DAP with coefficient of 

determinations of 0.72 and 0.83, respectively. Even at 31 DAP, there was a good correlation 

between N rate and CCM index (R²=0.68). The CCM index show a strong relationship with RY 

earlier in the season (5 leaf stage) than similar relationship based on GS and CC NDVI values 

(Fig. 29 & Table 9). This effect is expected as CCM values represent direct single leaf readings, 

contrary to the GS and CC which provide an estimate of the average canopy reflectance readings 

of the whole plot. The coefficient of determination at 31 DAP for CCM is significantly higher 

(0.80) (Table 9), compared to coefficients of determination for CC and GSNDVI of 0.41 and 

0.45, respectively, and close to the R²=0.71 obtained with the CC red edge (Figure 7). However, 

the coefficients are very similar for the models generated from readings collected within the 

optimum sensing window (38-44 DAP). 
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Figure 28. Relationship between chlorophyll content meter (CCM) index and nitrogen (N) rates 

at SE AR in 2013. 

 

 

 

 

Table 8. Equations describing the relationship between chlorophyll content meter (CCM) 

index and nitrogen (N) rates.  
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2
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Figure 29. Relationship between chlorophyll content meter (CCM) index and relative yield in SE 

AR in 2013. 

 

Table 9. Equations describing the relationship between chlorophyll content meter (CCM) 

index and relative grain yield. 

Days after planting                        Equations                                   R squares                                                      
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30. Relationship between the grain yield and chlorophyll content meter (CCM)-In season 

estimated yield (INSEY) index at the V3 stage. 

 

 
Figure 31. Relationship between the Response index (RI) grain yield and Response index 

chlorophyll content meter (CCM) at the V3 stage. 
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Figure 32. Relationship between chlorophyll content meter (CCM) index and leaf nitrogen (N) 

percent  in NE AR in 2013. 

 

Table 10. Equations describing the relationship between chlorophyll content meter (CCM) index 

and leaf nitrogen (N) percent in NE AR in 2013. 
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Figure 33. Relationship between chlorophyll content meter (CCM) index and leaf nitrogen (N) 

percent at 44 DAP (V3 Stage) across all locations in 2012 and 2013 (except SE AR). 

 

Figure 32 shows the regression model for the relationship between Leaf N (%) and CCM 

index for NE AR at different growth stages during 2013. The fitness of the model improves with 

increasing growth stage, and remains constant after 44 DAP (Table 10). 

Figure 33 shows leaf N (%) across locations, except SE AR, at the "optimum" sensing 

stage. Multiple regression models were fitted with CCM index as independent variable and 

percent leaf N as the dependent variable. The resulting regression equation was y = 3.3457 - 

0.1504x+0.0025x². The fitted regression model is able to explain 61% of the total variation in N 

leaf (%).  
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Figure 34. Relationship between GreenSeeker-Normalized Difference Vegetation Index (NDVI) 

(A), Crop Circle NDVI (B), Crop Circle red edge index (C), chlorophyll content meter index (D) 

and dry matter at all vegetative stages at NE AR-2013. 
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Table 11. Equations describing the relationship between sensors (GreenSeeker, Crop Circle and 

chlorophyll content meter) indices and dry matter at NE-AR in 2013. 

Sensor                     Days After Planting                     Equations                        R Squares 

GS-NDVI          

    

                                              25 DAP                             y = 6115.1x + 2615                 0.11 

 

                                              31 DAP                             y = 11601x – 2038                  0.20 

  

                                              38 DAP                             y = 16230x - 5548.5                0.47  

 

                                               44 DAP                            y = 20021x - 9223.2                0.41  

CC-NDVI 

                                         25 DAP                            y = 6644.8x + 2255.6              0.24 

                                         31 DAP                            y = 17409x - 6910.8                0.33     

                                         38 DAP                            y = 38417x – 20788                0.47 

                                         44 DAP                            y = 27342x – 13084                0.33 

CC-red edge  

                                         25 DAP                            y= 13715-1089.1                     0.43 

                                         31 DAP                            y= 28602x-10248                    0.63 

                                         38 DAP                            y= 21769x-6834.3                   0.68 

                                         44 DAP                            y=23893x -7541.1                   0.59 

CCM-index 

                                         25 DAP                            y = 141.55x - 354.7                 0.17
 

                                         31 DAP                            y = 160.13x - 1412.9               0.32 

                                         38 DAP                            y = 136.63x - 620.28               0.47 

                                         44 DAP                            y = 120.86x + 36.722              0.51 

                                         51 DAP                            y=87.916x+1450.6                  0.41 
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The relationship, as described by the linear regression model, between dry matter and 

NDVI for GS and CC did not explain well the variability across sites and dates (Fig. 34 (A & B)) 

(Table 11). Direct comparison was also performed with the CCM sensor with similar results 

(Fig. 34 D). There was better agreement when using CC red edge (Fig. 34 C), particularly at 38 

DAP (Table 11). The coefficients of determination at 38 DAP were 0.47, 0.47, 0.68 and 0.47 for 

GS- NDVI, CC- NDVI, CC-red edge index, and CCM-index respectively. Regardless of sensor 

used, the relationship decreases after 38 DAP. Previous research in grain sorghum has shown 

that once the crop has accumulated about 5000 kg/ha of dry matter this relationship is weak 

(Gitelson et al., 1996; Tucker, 2009). According to data obtained with these studies, the sensing 

time which a best correlates with dry matter production is 38 DAP corresponding to growth stage 

V3. 

 
Figure 35. Relationship between sensors (GreenSeeker, Crop Circle and chlorophyll content 

meter) In season estimated yield (INSEY) indices and relative grain yield at NE AR, SE AR and 

Central AR 2013.  
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Table 12. Equations describing the relationship between sensors GreenSeeker, Crop Circle and 

chlorophyll content meter) In season estimated yield (INSEY) indices and relative grain yield at 

NE AR, SE AR and Central AR. 

 

SENSOR                 Equations R square 

GS-NDVI                        y=1E+09x
3.4493

  0.41 

CC-NDVI                y=4E+07x
2.6917

  0.57 

CC-red edge          y=2E+09x
3.3243

  0.78 

CCM index                      y=7E+09x
2.7881

        0.61 

 

 Figure 35, shows the relationship between GS and CC indices and relative yield under the 

concept of INSEY, with the figure also including the CCM index as well. As expected, the 

coefficient of determination for the INSEY model that includes all site-years was lower than for 

individually (site-year) regressed data (Appendix 1-6). This loss in predictive capability is of 

lower magnitude when using red edge. For example, data from these studies shows that when 

GS-INSEY across locations was used, it explained 30 % less of the variability compared to the 

coefficient obtained when averaging the coefficients for individual years and locations 

(Appendices 1-6).  However, the drop in accuracy was only half (15%), when the CC-red edge 

index was compared under similar conditions. The ability of the CCM index model to explain the 

observed variability also decreased when the data was combined, with such decrease being 

around 20 %, when compared to individual sites. The reason for this observed decrease in model 

accuracy, when the data was pooled across locations (Table 12), is probably due in part to more 

vigorous plants observed at selected locations, independent of N treatment.  

 



79 
 

Residual nitrate-N values for the first 45 cm across locations and years (Appendices 7 & 

8) do not show a trend for higher levels at SE AR and RREC, however, more vigorous plants 

were observed at such locations (Appendix 6). Perhaps a significantly higher N mineralization 

rate at such locations is the reason for the observed difference in plant vigor. This has important 

implications for algorithm development. Estimates of N mineralization at a given location should 

be included as reported by other researchers (Tucker, 2009).The CC-red edge index appears to be 

less sensitive to this variability introduced by increased plant vigor at a particular location.  
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Appendix 1. Regression equations describing the relationship between sensors (GreenSeeker and 

chlorophyll content meter) indices and relative grain yield at the Central-AR location during 

2012. 

 

SENSOR                 Days After planting                 Equations                             R squares 

GS-NDVI  

                                   23 DAP                        y = 24.331- 64.528x + 44.013x
2
            0.16 

                                   31 DAP                        y = - 1.0561+ 6.6729x-5.8869x
2
            0.28  

                                   36 DAP                        y = 0.5043 - 3.1956x +4.6602x
2
            0.47 

                                   43 DAP                        y =  73.859-186.5x +118.57x
2
               0.64 

                                   50 DAP                        y = - 1.8328+ 4.7687x -1.6376x
2
           0.40 

CCM-index  

                                   23 DAP                        y = - 1.5439+ 0.0808x -0.0006x
2
           0.31  

                                   31 DAP                        y = - 11.682+ 0.4739x -0.0045x
2
           0.52  

                                   36 DAP                        y = - 1.1267+ 0.0462x -0.0002x
2
           0.54  

                                   43 DAP                        y = - 1.5162+ 0.0617x -0.0003x
2
           0.55  

                                   50 DAP                        y = - 0.58+ 0.0276x+ 6E-07x
2
                0.53 
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Appendix 2. Regression equations describing the relationship between sensors (GreenSeeker and 

chlorophyll content meter) indices and relative grain yield at the NE-AR location during 2012. 

 

SENSOR             Days After planting                               Equations                         R squares 

GS-NDVI 

                                  25 DAP                         y = - 0.6447+ 4.4294x-3.7751x
2
                0.05 

                                  31 DAP                         y = - 9.3231+ 29.965x -22.272x
2
               0.29  

                                  38   DAP                       y = 15.177 - 45.119x +33.97x
2
                  0.65 

                                  45 DAP                         y = - 17.853+ 38.235x -18.905x
2
               0.74  

                                  52 DAP                         y = - 13.878+ 30.56x -15.436x
2
                 0.58 

CCM-index 

                                  25 DAP                         y = 37.817+ 17.157x-6.5137x
2
                  0.48 

                                  31 DAP                         y = 27.604+ 46.644x -25.837x
2
                 0.78 

                                  38 DAP                         y = 28.428+ 49.863x -24.293x
2
                 0.81  

                                   45 DAP                        y =  21.529+ 68.013x -35.286x
2
                0.84  

                                  52 DAP                         y = 22.162+ 69.597x -39.289x
2
                 0.73  
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Appendix 3. Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and relative grain yield at the Central-AR 

location during 2013. 

 

SENSOR             Days After planting              Equations                               R squares 

GS-NDVI 

                              23 DAP                   y =- 13.818+ 32.857x +18.295x
2
        0.21 

                              31 DAP                   y = 1.9313 - 5.6699x +5.9736x
2
         0.37 

                              36  DAP                  y = 15.769x
2
 - 19.364x + 6.4831        0.64  

                              43 DAP                   y = 24.998- 69.226x +48.931x
2
          0.46  

                              50 DAP                   y = 18.693- 49.963x + 34.4x
2
             0.31  

CC-NDVI 

                                     25  DAP                  y = 0.3544+ 3.1953x -6.4903x
2
           0.05 

                                     31 DAP                   y = 6.9691- 20.694x +16.663x
2
           0.39  

                                     38 DAP                   y = 11.289- 33.186x +25.441x
2
           0.48 

                                     44 DAP                   y = 27.875- 76.541x +53.613x
2
           0.54 

CC- red edge  

                                     25 DAP                   y = 2.86- 15.065x + 26.504x
2
              0.06 

                                     31 DAP                   y = 0.9571- 4.8515x + 7.2488x
2
          0.59  

                                     38 DAP                   y= 7.5564- 27.705x +27.283x
2
            0.60 

                                     44 DAP                   y = 7.1898- 25.835x + +24.952x
2
        0.57 

CCM-index  

                                     23 DAP                   y = 3.1597- 0.1599x +0.0024x
2
           0.40  

                                     31DAP                    y= 0.4847- 0.0194x +0.0005x
2
            0.56 

                                     38 DAP                   y= 2.9547- 0.1252x  +0.0016x
2
           0.58  

                                     44 DAP                   y = 3.6935- 0.1581x+0.002x
2
               0.75  

                                     52 DAP                   y =1.2411- 0.0531x + +0.0009x
2
         0.57 
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Appendix 4. Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and relative grain yield at the SE-AR location 

during 2013. 

SENSOR           Days After planting                       Equations                          R squares_____ 

GS-NDVI 

                                    23 DAP                     y =  0.461- 0.3201x +1.2243x
2
            0.13 

                                    31 DAP                     y = - 0.57+ 1.5109x +0.3993x
2
            0.32  

                                    38 DAP                     y = -2.3231+ 5.0522x -1.2153x
2
          0.54  

                                    43 DAP                     y = 11.916- 35.751x + 27.48x
2
            0.70  

                                    50 DAP                     y = - 2.458+ 6.0522x -1.5653x
2
           0.44  

CC-NDVI 

                                    23 DAP                      y = - 70.438+ 200.54x -141.24x
2
         0.33 

                                    32 DAP                      y = -53.678+ 150.74x -104.34x
2
          0.38  

                                    38 DAP                      y = 11.362- 34.075x +26.431x
2
           0.54 

                                    45 DAP                      y = 1.9423- 6.3831x +7.1853x
2
           0.40 

CC- red edge  

                                    23 DAP                      y = 1.9219- 6.3831x + 6.297x
2
            0.32 

                                    32 DAP                      y=1.9548 -7.58x +9.9304x
2
                 0.39  

                                    38 DAP                      y = - 2.3264+ 5.9695x -1.2x
2
               0.60 

                                    45 DAP                      y = -5.5796+ 17.517x -11.4x
2
              0.72 

CCM-index 

                                    23 DAP                      y = 28.417+ 33.277x -15.736x
2
           0.65 

                                    31 DAP                      y = 27.425+ 35.401x -13.281x
2
           0.79 

                                    38 DAP                      y = 23.204+ 49.849x -20.212x
2
           0.81 

                                    43 DAP                      y = 21.03+ 52.01x -17.97x
2
                 0.85 

                                    50 DAP                      y = 132.722+ 12.503x + 5.34x
2
           0.67  
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Appendix 5. Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indices and relative grain yield at the RREC location 

during 2013. 

 

SENSOR            Days After planting                Equations                                 R squares 

 

GS -NDVI 

                                25 DAP                          y = 1.7986- 3.3679x +2.9922x
2
            0.09  

                                31 DAP                          y = - 42.814+ 120.22x-82.646x
2
           0.14  

                                38 DAP                          y = 15.635- 44.014x +31.635x
2
            0.66 

                                45 DAP                          y = 33.223- 87.632x +58.455x
2
            0.61 

                                51 DAP                          y= - 1.2819+ 1.0907x +2.0236x
2
         0.29 

CC-NDVI 

                                25 DAP                          y = 2.6683- 6.5548x+3.1492x
2
             0.23  

                                31 DAP                          y= - 0.0864+ 2.2603x-1.1831x
2
           0.29 

                                38 DAP                          y = 22.4-60.658x+ 42.247x
2
                 0.63  

                                45 DAP                          y = 43.041-111.67x +73.629x
2
             0.32          

CC-red edge  

                                25 DAP                          y = -5.4783+ 17.726x -12.163x
2
          0.22  

                                31 DAP                          y = -5.1231+ 20.91x -18.122x
2
            0.54  

                                38 DAP                          y = 4.1533 - 14.986x +15.202x
2
          0.75  

                                45 DAP                          y = 2.0856 - 8.1562x + 9.7159x
2
         0.81 

CCM-index  

                                25 DAP                          y = -2.2797+ 0.1141x-0.001x
2
             0.13 

                                31 DAP                          y = 0.0362+ 0.0055x+0.0003x
2
            0.32  

                                38 DAP                          y = 2.3062- 0.095x +0.0014x
2
              0.71  

                                45 DAP                          y = -1.8449+ 0.0978x -0.0009x
2
          0.82  

51 DAP                         y =-2.9866+ 0.1415x -0.0013x
2
            0.66 
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Appendix 6. Regression equations describing the relationship between sensors (GreenSeeker, 

Crop Circle and chlorophyll content meter) indexes and nitrogen (N) leaf percent at the RREC 

location during 2013. 

SENSOR            Days After planting                       Equations                           R squares 

GS-NDVI 

                                  25 DAP                           y = - 8.0271+ 48.994x -60.81x
2
         0.09 

                                  31 DAP                           y =12.833- 78.14x +134.59x
2
             0.14  

                                  38 DAP                           y =- 1.4758 + 5.5464x -1.1174x
2
       0.44  

                                  45 DAP                           y = 29.234- 81.958x +59.762x
2
          0.63  

                                  51 DAP                           y = 12.2- 35.205x +28.005x
2
              0.47  

CC -NDVI 

                                  25 DAP                           y = 3.6196- 9.3059x +9.488x
2
            0.28  

                                  31 DAP                           y = 10.183- 30.831x + 26.164x
2
         0.50 

                                  38 DAP                           y =10.874 - 33.432x + 28.436x
2
         0.72 

                                  45 DAP                           y = 5.9001x
2
 - 4.1789x + 1.8012        0.52  

CC-red edge 

                                  25 DAP                           y = 1.5413- 4.6941x +9.706x
2
            0.46  

                                  31 DAP                           y =2.7326- 8.829x + 12.328x
2
            0.57  

                                  38 DAP                           y = 7.1427 - 26.319x + 28.669x
2
        0.77  

                                  45 DAP                           y = 4.128- 15.1x  +18.791x
2
               0.65  

CCM-index 

                                  25 DAP                           y = 16.129+24.462x-5.9749x
2
           0.46  

 

                                  31 DAP                           y = -4.701+50.086x-12.094x
2
            0.58  

 

                                  38 DAP                           y = -23.467+71.05x-17.407x
2
            0.70 

 

                                  44 DAP                           y = -27.161+72.272x-17.096x
2
          0.75  

 

                                  51 DAP                           y = -12.34+54.27x-11.647x
2
              0.76_______ 
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Appendix 7. Selected soil chemical parameters for soil samples for six nitrogen (N) in grain 

sorghum collected prior to planting during the 2012 season. 
___________________________________________________________________________________ 

Loc (depth )  pH  CEC OM (%)   NO3-N P K  Mg  

     

mg/kg 

  SE AR (15cm) 6.6 18.5 1.1 8 25 83 338 

SE AR (30cm) 6.8 19.2 0.9 7 28 88 235 

SE AR(45cm) 6.7 20.8 0.9 7 50 90 147 

Central AR (15cm) 7.3 11.4 0.9      12 23 81 219 

Central AR (30cm) 5.8 8 0.9 9 39 92 146 

Central AR (45cm) 5.7 8.2 0.8 2 26 92 127 

NE AR (15cm) 6.8 20.1 0.9      13 20 110 305 

NE AR (30cm) 5.3 19.9 0.8 6 14 156 580 

NE AR (45cm) 6.1 22.1 0.9 7 12 173 736 

        ____________________________________________________________________________________ 

NO3-N ion specific electrode; P, K, and Mg Mehlich 3 extraction; pH – 1:1 soil water ratio. 

 
 

Appendix 8. Selected soil chemical parameters for soil samples for six nitrogen (N) rates in grain 

sorghum collected prior to planting during the 2013 season. 

____________________________________________________________________________ 

      Loc (depth )  pH  CEC  OM (%)   NO3-N P K  Mg  

     

mg/kg 

  

        SE AR (30cm) 5.3 19 0.9 6 14 152 531 

SE AR (45cm) 4.7 30 1 8 16 179 707 

Central AR (15cm) 5.9 12 0.9 12 40 90 200 

Central AR (30cm) 5.4 10 0.9 4 50 88 235 

Central AR (45cm) 5.3 7 0.9 4 102 90 147 

NE AR (15cm) 6.5 26 1.4 16 30 160 516 

NE AR (30cm) 6.6 30 1.4 10 32 82 197 

NE AR (45 cm) 6.7 35 1.6 18 31 76 168 

RREC (15 cm) 6.1 8 0.8 3 39 81 219 

RREC (30cm) 5.5 6 0.9 11 23 92 146 

RREC (45 cm) 5.6 6 0.8 18 26 92 127 
 

NO3-N ion specific electrode; P, K, and Mg Mehlich 3 extraction; pH – 1:1 soil water ratio. 
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Appendix 9. Monthly precipitation (mm) during the 2012 and 2013 growing seasons for all the 

locations. 

Precipitation in Millimeters (mm) 
_____________________________________________________________________________________ 

Location 

 

April  May June July  August  Sept. Total 

         

 

2013 141 185 17.5 70 47.5 

 

460 

Central AR Average 127 127.5 98.5 95 65 

 

510 

 

Departure 15.5 58.5 -81 -25 -17.5 

 

-50 

         

 

2013 195 195 120 100 117.5 

 

725 

NE AR Average 120 135 100 100 60 

 

512.5 

 

Departure 77.5 60 22.5 0 60 

 

215 

         

 

2013 152.5 142.5 52.5 47.5 40.5 

 

435 

SE AR Average 120 127.5 95 93 62.5 

 

495 

 

Departure 32.5 15 -42.5 42.5 22.5 

 

60 

         

 

2013 167.5 107.5 37.5 20 37.5 7.5 375 

RREC Average 150 155 90 77.5 77.5 75 627 

 

Departure 17.5 -47.5 -56.5 57.5 -40 -67.5 -253 

         

 

2012 27.5 37.5 20 65 2.5 

 

152.5 

Central AR Average 125 127.5 97.5 95 65 

 

510 

 

Departure -97.5 -90 -77.5 -30 -62.5 

 

-360 

         

 

2012 30 105 62.5 60 30 

 

285 

NE AR Average 120 135 100 100 60 

 

512.5 

 

Departure -90 30 -37.5 -40 -30 

 

-227.5 

         

 

2012 75 17.5 105 65 177.5 

 

437.5 

SE AR Average 120 127.5 95 92.5 62.5 

 

495 

 

Departure -45 -110 12.5 -27.5 115 

 

-57.5 
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Appendix 10. Temperature based in Heat unit (Hu) with Days After Planting (DAP)  sensing 

time by location in 2012and2013growing season Sampling date by location in 2012 and 2013 

growing season. 

Location Year DAP Date  Hu 

Central AR 2013 23 6/19/2013  491 

Central AR 2013 31 6/29/2013  655 

Central AR 2013 38 7/4/2013  760 

Central AR 2013 45 7/10/2013   802 

     SE AR 2013 23 6/11/2013    180 

SE AR 2013 31 6/17/2013    385 

SE AR 2013 38 6/26/2013    535 

SE AR 2013 45 6/30/2013    630 

     NE AR 2013 25 6/20/2013    311 

NE AR 2013 31 6/27/2013    439 

NE AR 2013 38 7/3/2013    557 

NE AR 2013 45 7/8/2013    631 

NE AR 2013 52 7/16/2013    768 

     RREC  2013 24 6/12/2013    370 

RREC  2013 31 6/18/2013    490 

RREC  2013 38 6/28/2013    672 

RREC  2013 46 7/8/2013    758 

 

Central AR 2012   23 5/21/2012      267 

Central AR 2012   31 5/29/2012      389 

Central AR 2012   36 6/4/2012      473 

Central AR 2012   43 6/9/2013      541 

Central AR 2012   50 6/15/2012      612 

     SE AR 2012  25 5/23/2012      389 

SE AR 2012  31 5/30/2012      479 

SE AR 2012  38 6/5/2012      575 

SE AR 2012  48 6/15/2012      708 

SE AR 2012  51 6/22/2012       817 

     NE AR 2012  24 5/30/2012       391 

NE AR 2012  32 6/7/2012       499 

NE AR 2012  38 6/14/2012       602 

NE AR 2012  45 6/21/2012       720 

NE AR 2012  52 6/28/2012       850 
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Appendix 11. Observed days after planting and associated growth stages for grain sorghum 

Pioneer 84G62 cultivar during 2012-2013. 

 

Stages:          Name                                    Days After Planting (DAP)        

                Vegetative Stages                       
V0:          Emergence                                                     4-8 

V1:          Three-Leaf Stage Leaves                             11-20  

V2:          Five-Leaf Stage                                           27-30   

V3:          Growing Point Differentiation                    35-40  

V4:          Flag Leaf Stage                                                 49  

V5:          Boot Stage                                                        58  

               Reproductive Stages 

V6:           Half-bloom                                                      65       

V7:           Soft-Dough Stage                                            78  

               Maturity Stages 

V8:          Hard-Dough Stage                                            84 

V9:          Physiological Maturity                                     90  
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Overall Conclusions 

 According to data from these studies, Ground-Based Active-optical (GBAO) crop sensors 

can be an effective tool to predict yield early in the growing season for grain sorghum in 

Arkansas. The ability of the sensors (GS, CC and CCM) to predict yield is affected, in different 

proportion, by the sensing date and perhaps by varying growing conditions at some locations. 

Early in the season (25 DAP) none of the sensors were able to produce a good correlation for 

yield prediction or other agronomic parameters. The reasons for this lack of relationship can be 

due to the fact that NDVI values are affected by soil reflection during earlier growth stages 

where plants cover less than 30 % of the area sensed, leaving open spaces where soil reflectance 

represents a portion of the NDVI values. The N uptake in grain sorghum before 21 DAP is not 

significant and that is reflected in limited canopy development at such crop age. After 31 DAP 

this relationship improves for all the sensors and indices because grain sorghum at 6 to 7 leaves 

has accumulated significant more biomass and readings are less affected by soil reflection. 

However, the CC-red edge index produces a better correlation across locations at this time, and 

has a better yield predictive capability than the other indices. In general, 38 DAP (V3 stage) was 

the optimum sensing date regardless of the sensor and index used. Readings and the resulting 

indices obtained at 45 DAP lost significant yield prediction capability, particularly when the GS 

or CC-NDVI were the indices of choice.  However, when the red edge NDVI was used, its 

predictive capability remained relatively good (did not improve) when used at 45 DAP.  This 

extension of the "optimum sensing window" is certainly a major advantage, especially when 

implementing this kind of technology in regions with variable weather patterns, logistics 

limitations, and to reduce conflicts with some planned cultural practices. The ability to cover 

more area when using this index is also a major benefit. In the case of GS and CC-NDVI, this 
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sensing "window" is narrower or shorter. This is a result of the "saturation" in the NDVI values 

and the inability of the index to distinguish variations in green biomass or N status. This effect 

was clearly observed at SE AR and RREC, where canopy development or the overlapping of 

leaves occurred earlier due, perhaps, to better growing conditions. At such locations, the NDVI 

indices could not be correlated satisfactorily with grain yield beyond the "optimum" date (38 

DAP). The CCM-index showed the best correlation with grain yield at earlier growth stages, of 

all the indices tested, and was not as affected by biomass accumulation as the other sensors were. 

The reason for the good performance of the CCM index is the fact that the sensor requires direct 

readings of individual plant samples. This situation eliminates the potential implications with 

biomass accumulation, but it requires significantly more time to acquire the data needed. The 

CCM index concept was developed in the 90s, and the time required to complete a task and 

issues with spatial variability has limited its commercial application.    

All the sensors and indices distinguished, relative equal, N variability at 38 DAP that 

coincide with the growing point differentiation (V3) in grain sorghum, which seems to be the 

"optimum" sensing date. Despite the performance of all the indices at 38 DAP, only red edge 

index and CCM index maintain a relatively good correlation with grain yield beyond 38 DAP.  It 

was also noted that the high CVs observed early in the season were followed by high CV’s as 

grain sorghum plants approached the reproductive stage. This was very consistent for all the 

sensors and indices. 

The relative performance of each sensor and indices was evaluated, based in regression 

model parameters calculated for each location (NDVI) and across all locations combined 

(INSEY). Even thought the highest correlation observed for individual sites was produced by 

CC-red edge index (R²=0.88), the R squares values for all the indices used were relatively close 
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to each other, particularly when the variability in canopy development is higher as we observed 

in NE AR and Central AR. Contrary to the SE AR and RREC sites, where the variability was 

lower and the sensors readings and resulting NDVI indices showed lower R squares compared 

with the red edge and CCM index. This seems to be a "huge" impact when all the sites are 

pooled together, where the differences on R squares between indexes increases in different 

proportion. When the GS-NDVI was used for each location, the decrease in the correlation 

coefficient was on average 75 %, compared to 41% when pooling all the data. The decrease in 

predictive capability was of a lower magnitude when using CC-red edge and CCM index. The 

"saturation" effect over the GS-NDVI and CC-NDVI is probably the main cause for this lack of 

ability to correlate with grain yield. GS-NDVI showed no improvements on the relationship with 

grain yield at growth stages beyond 38 DAP. In the case of red edge index, the transition from 

individual site-years to a “pooled” model resulted in less than 10% loss of predictive ability. The 

red edge index produced the highest correlation with grain yield with a R²=0.76 followed by 

CCM index (R²=0.61), CC-NDVI (R²=0.56) and GS-NDVI (0.41). This should have 

implications when developing algorithms using different sensors and crop species, particularly 

those crops that produce a significant amount of biomass.   

           Under the conditions of this study, the CC-red edge index sensor showed better potential 

in the determination of supplemental nitrogen fertilization needs than the other sensors and indices 

tested.  The CC-red edge index and CCM index are better correlated to estimate agronomic 

variables, especially for the estimation of final yield than GS-NDVI and CC-NDVI. Even though the 

correlation of N leaf content and CCM index is the highest for all the sensors, such differences are 

not significantly different than CC-red edge index, but are significantly different when comparing to 

CC and GS NDVI.     
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In summary, the results of these studies show that there is a good potential for the 

development of an algorithm to improve N efficiency in grain sorghum grown under Arkansas 

conditions. The traditional approach of establishing an N-rich strip and compare sensor readings at 

38 DAP, with the rest of the field that has received a base rate of 40 kg N/ha pre plant seems like a 

reasonable approach to continue with performance evaluation under field conditions. If the growing 

conditions during a particular growing season do not allow for the collection of readings at 38 DAP, 

then the CC-red edge should be the index of choice.  

The results presented in this thesis are preliminary in nature, more extensive testing need 

to be carried out to categorically rank the sensors and indices tested. The opportunity exists for more 

adapted indices, using perhaps other bands and indices that can potentially improve the correlation 

with final yield under canopy variability and wide range of weather conditions. The development of 

a grain sorghum algorithm for Arkansas conditions should include more sites, with the differences in 

performance observed in these studies noted and considered. Further research is needed in order to 

estimate the site specific performance of these sensors and to determine if sensor methods and 

settings need to be adjusted depending upon the crop condition. 
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