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ABSTRACT 
 

 Two trials were performed using one-day-old male Cobb x Cobb 500 broilers to 

determine how dietary phytate and phytase levels as well as phytase phase feeding impacted bird 

performance parameters, tibia characteristics, and malonaldehyde (MDA) content of the liver, 

breast and thigh tissues.  The first experiment consisted of 1,008 birds randomly placed in 48 

floor pens within two commercial broiler houses at the Applied Broiler Research Farm (ABRF; 

21 birds per pen; 0.76 ft2 per bird).  A 2 X 3 factorial design was used with two levels of dietary 

phytate (0.21 and 0.31 %) and three levels of phytase supplementation (0, 500 and 1,500 

FTU/kg).  Main effect phytase improved (P < 0.05) feed intake, body weight at 17 d, body 

weight gain and tibia ash weight and percentage.  In addition, phytase and phytate interacted (P ≤ 

0.011) for FCR and FCR corrected to the overall experimental mean for body weight (AFCR).    

The second trial consisted of 1,056 total birds randomly placed in 48 floor pens within 

two commercial broiler houses at ABRF (22 birds per pen; 0.72 ft2 per bird).  Treatments 

consisted of a positive control, a negative control (NC; less 0.16 % Ca, 0.15 % avP and 0.04 % 

Na), and four additional treatments based on the negative control.  Treatments 3 and 4 consisted 

of the NC diet supplemented with 500 FTU/kg of phytase in the starter phase that was either 

continued through the grower diet (treatment 3) or increased to 1,500 FTU/kg (treatment 4).  

Treatment 5 and 6 were also the NC diet supplemented with 1,500 FTU/kg of phytase for the 

starter diet and either decreased to 500 FTU/kg in the grower diet (treatment 5) or maintained at 

1,500 FTU/kg (treatment 6).  A random complete block design was employed and analyzed 

using SAS GLM.  At 35 d of age, phytase regimen did not affect (P > 0.05) feed intake, BW 

gain, FCR, AFCR or mortality.  However, increasing phytase concentration from 500 FTU/kg in 

the starter diet to 1,500 FTU/kg in grower diet increased (P < 0.05) proximal and total tibia ash 



 

 

percentages when compared to broilers fed diets with 500 FTU/kg of phytase for the duration of 

the study.      
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Chapter 1:  Literature Review 
 

Introduction 
 

 Phosphorus (P) is an essential nutrient for poultry, which is needed for bone 

development, growth, and metabolic functions, however, P rock reserves are finite (Gilbert, 

2009) and P is one of the costliest items in poultry feed.  However, poultry diets contain a large 

percentage of plant feedstuffs that contain a large P reserve present as phytate.  Phytate offers an 

abundant source of P, unfortunately, birds are not effective at hydrolyzing phosphate from 

phytate present in plants and it is excreted from the digestive tract (Ravindran et al., 1995).  

Phytic acid binds P, rendering it indigestible in the gastrointestinal tract of the bird, and then is 

excreted into the litter.  Undigested P can enter the environment and cause ecological effects.  

For instance, P is known to contribute to eutrophication of freshwater sources due to algal 

bloom, causing implications for aquatic wildlife and effecting drinking water quality.  Chicken 

litter is considered to be an environmental burden in certain areas.  This is due to the high P 

concentration of litter, and litter is considered to be one of the main sources of P run off (Nahm, 

2003).  Poultry litter is nutrient rich and a valuable organic fertilizer.  Edwards and Daniel (1992) 

demonstrated that broiler litter has an average P concentration of 1.43 %, with a range of 0.8-

2.58 %.  Over use of poultry litter in land application can have negative implications on the 

environment.  It is primarily due to these environmental issues with P that exogenous phytase 

supplementation began in poultry and swine diets.         

Poultry research with phytase has resulted in improved P availability by as much as 60 % 

and decrease P in excreta by as much as 50 % (Simons et al., 1990).  The improvement in P 

availability resulted in a reduction in the need to supply inorganic P.  Through the hydrolysis of 
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phytate, phytase has also demonstrated the ability to improve utilization of other divalent cation 

minerals (e.g. calcium, zinc and copper).  It is also thought to enhance protein and energy 

utilization.  These are considered ‘extra-phosphoric’ effects and are discussed in greater detail 

later in this review.     

As mentioned above, phytase supplementation decreases the phosphate load on the 

environment; however, the phytase market will continue to expand for other reasons as well.  

Firstly, the supply of feed-phosphorus supplements, inorganic P rock and meat and bone meals, 

are supplies are becoming limited or prohibited.  Supplementation of inorganic P has become 

increasingly expensive over the past decade, making it less cost effective for poultry production.  

In addition, the feed application of inorganic P at the current rate will hasten the exhaustion of 

the nonrenewable resource (Lei et al., 2013).  The EU has also limited the use of meat and bone 

meal as cheap means for P supplementation.  Secondly, the expansion of biofuel and industrial 

productions will provide large volumes of high-phytate cereal by-products as new feed sources 

(Liu, 2011).  With these continuing pressures and the ability of phytase to enhance efficiency in 

the bird via growth and feed intake and lower feed costs will most likely continue to push the 

demand for phytase in the future.   

Phytate  
 

 Phytate (myo-inositol hexakisphosphate with mixed salts, IP6) was first reported in 1855 

(Hartig, 1855) and is the mixed calcium-magnesium-potassium salt of phytic acid.  Phytate bears 

six phosphate groups on each of the six carbons comprising a myo-inositol ring.  Phytate is an 

abundant plant constituent, 1-5 % by weight in certain plants, and is a rich source of P for the 

plant during germination (Reddy et al., 1982).  Approximately 50 -75 % of the total phosphorous 

found in feed ingredients of plant origin is found as phytate-phosphorous (Mollgaard, 1946).     
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 Phytate has a clear nutritional impact on P availability and phytate-P contains the major 

portion of total P in plant feed ingredients.  Simons et al. (1990) demonstrated that two-thirds of 

P in these ingredients is present in the phytate form.  However, the phytate-P concentration in 

feedstuffs depends upon the plant of origin and meal and cereal by-products typically contain the 

highest amounts (Table 1; Ravindran et al., 1995; Nelson et al., 1968).  Phytate levels can also 

have large variations within a single feedstuff.  For example, 73 wheat samples from Australia 

varied from 0.12 to 0.33 % phytate-P (Kim et al., 2002; Selle et al., 2003).  Due to this 

potentially large variability, there could be altered responses to added phytase. 

 The location of phytate within feedstuffs varies among cereal grains.  For wheat and rice, 

the largest concentration of phytate is present in the aleurone layers of the kernel and bran, but 

the endosperm is nearly devoid.  Furthermore, about 80 % of the phytate in rice is located in the 

outer bran (O’Dell, et al., 1972).  Alternatively, about 90 % of the phytate in corn is concentrated 

in the germ portion.  It appears that many factors can affect phytate concentration in plant 

materials including maturity, processing, climate and location (Reddy et al., 1982).     

Phytate and mineral digestion 
 

Phytate, due to negatively charged phosphate groups, has a potent chelating ability for 

other divalent mineral cations.  As phytate passes through the digestive tract of birds, it 

encounters a gradually increasing level of pH.  As pH increases from the acidic stomach/gizzard 

to the more neutral intestine, phytate becomes more negatively charged due to the dissociation of 

the bound phosphate groups.  At neutral pH, the bound phosphate groups can contain one or two 

negatively charged oxygen atoms, giving it the ability to chelate strongly between two phosphate 

groups or weakly with a single phosphate group (Sebastian et al., 1998).  Consequently, phytate 

more strongly attracts and binds divalent cations like calcium (Ca), zinc (Zn), iron (Fe) and 
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copper (Cu) as the pH increases.  As a result, stable salts are formed and precipitate out of the 

solution, creating indigestible complexes.  Utilizing titration curves, Vohra et al. (1965) reported 

that phytate forms complexes with cations in the following descending order of strength: Cu2+ > 

Zn2+ > Co2+ > Mn2+ > Fe3+ > Ca2+.  Maddaiah et al. (1964) performed a similar study at a 

physiological pH, with Zn forming the strongest insoluble salt with phytic acid.  Phytate lowers 

the bioavailability of vital minerals, thus increasing the dietary requirement in animals.  Nelson 

and Kirby (1987) demonstrated that although Ca has the lowest binding efficiency with phytate, 

the greatest impact of phytate on mineral nutrition is on Ca availability.  In a study using White 

Leghorn chicks, Nelson et al. (1968a) demonstrated in a purified diet, with no phytate, the 

dietary Ca requirement was 0.50 %, but the requirement was increased to 0.95 % in the presence 

of 1.25 % phytate.  These findings were also supported by Harms et al. (1962), Nahapetian and 

Young (1980), Tamim and Angel (2003), and Tamim et al. (2004).  From this study, it was 

suggested that Ca requirements for poultry be expressed in terms of available rather that total Ca.  

Therefore, if a diet contains ingredients with high phytate-P concentrations, the Ca requirement 

would have to be increased to offset the portion of insoluble Ca-phytate complexes.  These 

findings demonstrate that phytate-P can be digested by poultry if it remains soluble in the small 

intestine.  However, Ca requirements must be met to maintain animal health and efficiency, even 

though higher dietary Ca puts added pressure on the efficiency of digestible P.         

Dietary Ca has also been shown to influence phytate-P utilization (Edwards and Veltman, 

1983; Scheirdelerm and Sell, 1987; Mohammed et al., 1991).  Despite not exhibiting the 

strongest affinity for chelation with phytate, Ca forms precipitate with phytate in the 

gastrointestinal tract due to the high concentration in diets.  Thus, dietary Ca is important in 

determining phytase efficacy.  In an in vitro system, Tamim and Angel (2003) investigated the 
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impact of Ca on phytate hydrolysis by A. niger phytase.  These workers found that Ca addition 

reduced the liberation of P from sodium phytate from 350 to 175 µg P unit-1 phytase at pH 6.5.  

In addition, they also found at pH 2.5 Ca addition caused a similar reduction of P release from 

1,250 to 625 µg P unit-1 phytase.  Ballam et al. (1984) demonstrated that chicks hydrolyzed less 

phytate when fed a diet containing 1.0 % Ca versus those fed a diet containing 0.85 % Ca.  

Furthermore, about a 15 % increase in phytate-P utilization was seen when dietary Ca was 

reduced from 1.0 % to 0.5 % (Mohammed et al., 1991).  There are currently three mechanisms 

that attempt to explain the interaction between dietary Ca and phytase activity.  The first, Ca may 

form insoluble complexes with phytase (Wise, 1983).  The second thought is that Ca negatively 

affects gastro-intestinal pH, which may decrease microbial phytase activity (Nelson, 1967) or 

decrease phytate solubility.  This mechanism is supported by findings by Shafey et al. (1991) 

where Ca increased (P < 0.05) crop pH, the site of the highest exogenous phytase activity 

(Liebert et al., 1993; Takemasa et al., 1996).  Finally, extra Ca may suppress phytase activity by 

competing for the active sites on phytate (Qian et al., 1996).  Consequently, exogenous phytase 

supplementation is more advantageous in broiler diets with lower dietary Ca concentrations. 

The Ca to total P ratio has also been shown to play a role in phytate P utilization (Wise, 

1983).  A high Ca or Ca:total P ratio of 2:1 has shown to hinder phytate degradation due to 

insoluble complexes formed in the intestine (Nelson, 1967).  Research shows that chicks fed a 

diet with a Ca:total P ratio of 1:1 performed better than chicks fed a 2:1 ratio (Vandepopuliere et 

al., 1961).  Harms et al. (1962) also demonstrated that increasing the Ca:P ratio in the diets from 

1:1 to 2:1 decreased the availability of phytate-P to a greater extent than inorganic P sources.   

At pH 6.0, Zn becomes a limiting mineral in high phytate diets as it forms highly 

insoluble complexes (Maddaiah et al., 1964; Reddy et al., 1982).  Phytate has been shown to 
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increase fecal Zn excretion (Savage et al., 1964), and due to the affinity of phytate and Zn, it was 

thought that phytate might be a causative factor of parakeratosis in swine (Oberleas et al., 1962).  

Sebastian et al. (1996) observed that exogenous phytase supplementation increased the relative 

Zn retention in broilers from -27.6 % to 34.7 %.  Phytase supplementation was also shown to be 

effective in improving Zn retention and tibia ash concentration in broilers fed a low Zn corn-

soybean meal diet (Yi et al., 1996).  They determined that approximately 0.9 mg of Zn was 

released per 100 units of phytase, up to 600 FTU.  With the addition of microbial phytase, the 

ability to reduce dietary Zn is possible, which was demonstrated by Mohanna and Nys (1999) 

where the use of 800 FTU in a corn-soybean meal diet allowed the lowering of dietary Zn by 14 

ppm.  Evaluating the sparing effect of phytase on dietary Zn, Jondreville et al. (2007) determined 

that 100 FTU of phytase was equivalent to 1 mg of Zn as Zn sulphate and Zn excretion may be 

reduced about 10 % in a corn-soybean meal diet with 500 FTU/kg.  However, contradicting 

findings have been reported.  Roberson and Edwards (1994) found that phytase supplementation 

alone had no effect on Zn retention in chicks, but improved retention in conjunction with vitamin 

D3.       

Phytate and digestive enzymes 
 

 In vitro studies have demonstrated the ability of phytate to inhibit the activity of digestive 

enzymes like pepsin, α-amylase (Deshpande and Cheryan, 1984) and trypsin (Singh and 

Krikorian, 1982; Caldwell, 1992).  Thus, has been suggested that phytate may inhibit proteolysis 

by altering digestive enzymes (Singh and Krikorian, 1982).  It was considered that phytate might 

bind trypsin via a Ca tertiary complex, therefore inhibiting activity (Singh and Krikorian, 1982).  

However, phytate inhibition of trypsin may also occur by the chelation of Ca, which is essential 
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to trypsin and α-amylase activity.  Also reported, Cawley and Mitchell (1968) documented that 

phytate suppressed α-amylase in wheat meal by complexing Ca required for enzyme activity.             

Phytase 
 

Phytase is produced by fungi (e.g. Aspergillus niger, Aspergillus ficcum and Aspergillus 

oryzae), bacteria (e.g. E. coli and B. subtilis) and yeast (e.g. S.cervisiae).  Wodzinski and Ullah 

(1996) demonstrated that microbial phytases have a wide optimum pH (2.5-7.5) and temperature 

range (35-63oC), making them more effective in the gastrointestinal tract than plant phytases.  A 

number of cultured phytase enzyme supplements are available commercially, and with 

recombinant DNA technology the functional properties of these supplements continue to 

improve (e. g. thermo-stability).  The activity of phytase is measured in terms of inorganic P 

released from phytate.  This is known as Phytase Unit (FYT or FTU).  One Phytase Unit is 

defined as the amount of enzyme needed to release 1 µmol inorganic phosphate per minute from 

5.1 mM sodium phytate at pH 5.5 and 37oC (Engelen et al., 1994).   

From catalytic mechanisms, phytases can be grouped into histidine acid phytases 

(HisPhy), β-propeller phytases (BPPhy), cysteine phytases (CysPhy) and purple acid phytases 

(PAPhy; Mullaney and Ullah, 2003; Greiner, 2006).  However, the majority of phytases to date 

belongs to the group HisPhy and do not require a cofactor for optimal activity.  Histidine acid 

phosphatases have been recognized in microorganisms, plants and animals (Wodzinski and 

Ullah, 1996; Mullaney et al., 2000; Konietzny and Greiner, 2002; Lei and Porres, 2003).  The 

structure of histidine acid phytases contains a α/β-domain and a variable α-domain (Kostrewa et 

al., 1997; Lim et al. 2000).  The active site of HisPhy is located at the interface between the two 

domains.  Differences in substrate binding have been attributed to differences in the α-domain.  

Histidine acid phytases share a sequence motif of Arginine-Histidine-(Glycine/Glutamine)-X-
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Arginine-X-Proline.  This site is considered to be the phosphate acceptor near the N-terminus 

(van Etten et al., 1991; Ostanin et al., 1992; Lindqvist et al., 1994).  Furthermore, HisPhy 

contain a Histidine-Aspartic acid motif near the C-terminus where the aspartic acid is proposed 

to be the proton donor for the substrate leaving group (Lindqvist et al, 1994; Porvari et al., 

1994).  Histidine acid phosphatases have potent inhibitors, including Zn2+, fluoride, molybdate, 

and the hydrolysis product of orthophosphate (Konietzny and Greiner, 2002).  Interestingly, β-

propeller phytases are active at neutral and alkaline pH (Greiner et al., 2007), making them 

possibly very useful in the small intestine.  In addition, β-propeller phytases also target calcium-

phytate complexes (Fu et al., 2008).  However, there are currently no commercially available β-

propeller phytases, despite their potential promise.  

  Besides phytase addition to feed, there are sources of naturally occurring phytase present 

in certain feed ingredients, the brush border of the intestinal mucosa and within the gut 

microflora.  Naturally occurring phytase in feed stuffs, especially wheat and wheat by-products, 

have been reported (Peers, 1953).  This intrinsic plant phytase is present to access the abundant 

storage of phytate bound P present within the plant.  Unfortunately, plant phytase may have little 

impact on P release in feed due to the high heat processing of feed, especially steam pelleting.  

Plant phytases are heat labile and Konietzny and Greiner (2002) reported that, in purified form, 

most are destroyed at temperatures above 70°C within minutes.  Additionally, a steam pelleted 

diet of wheat, corn and soybean meal at 80°C reduced wheat phytase activity, reducing total-tract 

P digestibility by 37 % in pigs.   

 Endogenous phytase activity in the intestine was first reported by Patwardhan (1937) in 

rats, and later was also identified in pigs (Hu et al., 1996) and poultry (Maenz and Classen, 

1998).  It appears that mucosal phytase activity is managed by dietary non-phytate P as well as 
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dietary Ca.  Before the two latter studies, it was largely believed that the small intestine of 

monogastrics had a very limited ability to hydrolyze phytate due to the limited presence of 

endogenous phytase activity and a low microbial population in the upper digestive tract.     

   

Phytases in animal feed 
 

 The bioavailability of phytate phosphorous is considered to be very low for monogastrics, 

mostly because they lack the ability to efficiently hydrolyze phytate and utilize P in the phytate 

form.  Phytases represent the sub-group of phosphomonoesterases that initiate a stepwise 

dephosphorylation of phytate.   Phytase is a valuable enzyme that is able to free phytate-bound P 

from the inositol ring and make it readily available to monogastrics.  In theory, phytase has the 

ability to degrade IP6 phytate completely to six phosphate moieties and inositol.  However, this 

depends greatly on feed retention time in the digestive tract and the P moiety at C2 of the inositol 

ring is not readily released.  Thus, complete breakdown of phytate most likely does not occur in 

pigs or poultry. 

Commercially available phytases require considerably low pH for optimal activity; 

therefore, the main site of phytate hydrolysis by exogenous phytase is the stomach of pigs and 

the crop, proventriculus and gizzard in poultry.  Liebert et al. (1993) found that following a 

1,000 FTU/kg phytase activity 45 % of phytase activity was recovered in the crop and 21 % in 

the proventriculus, but no activity was recovered in the small intestine.  Takemasa et al. (1996) 

also concluded that exogenous phytase was mainly active in the crop.  Therefore, the limitation 

of phytase activity in the proximal digestive tract means there is limited time to degrade phytate.  

In order to reduce the antinutritive effects of phytate, dephosphorylation of higher molecular 

weight phytate esters (IP6 and IP5) must occur as quickly as possible in the proximal digestive 
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tract.  This allows a release of P from phytate and systematically reduces the IP6/5 

concentrations that have lower solubility in the small intestine, thus reducing the antinutritive 

effect of phytate in the small intestine.  The solubility of multiple IP esters in the small and large 

intestine in pigs was assessed by Schlemmer et al. (2001; Table 2), and demonstrated that 

solubility of phytate decreases as the number of phosphate groups bound to the myo-inositol ring 

increases.  The solubility of IP6, IP5, IP4, IP3, and IP2 in the intestinal chyme of pigs (pH 6.6) 

was 2 %, 7 %, 8 %, 31 % and 75 %, respectively (Schlemmer et al., 2001).  Additionally, the 

lower esters of phytate display a reduced capacity to chelate divalent cations.  Cowieson et al. 

(2011) states that the primary responsibility of phytase added in feed is not to completely 

dephosphorylate phytate into inositol and free phosphate, but to reduce the concentrations of 

high phytate esters released into the duodenum.  Thus, endogenous phytases would be able to 

further hydrolyze the more soluble phytate esters.  The ability to increase feed retention time in 

the crop should enhance phytase efficacy and increase phytate degradation.  Intermittent lighting 

programs have been shown to increase retention time of the feed in the crop (Hooppaw and 

Goodman, 1976).  Hence, phytase and lighting duration she be a focal point for future research.   

Crop pH may also have an impact on the efficacy of supplemented phytase.  

Supplemented glutamic acid and other organic acids have shown the ability to reduce crop pH.  

Murai et al. (2001) found a reduced crop pH (6.0 to 5.4) was associated with enhanced phytase 

efficacy through femur mineral deposition. Furthermore, citric acid has also been shown to 

increase phytate-P utilization in broiler chicks (Boling et al., 2000; Snow et al., 2004).  The 

reduction in pH could increase the solubility of phytate and may be advantageous for phytases 

with lower optimal pH activity; future research is warranted. 
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Cowieson et al. (2011), report that there is a common misconception that phytate is 

poorly digested by the chick due to the lack of endogenous phytase.  There are supporting studies 

that indicate that poultry posses an effective endogenous phytase activity in the intestinal 

mucosa, blood and liver.  Therefore, chicks can readily dephosphorylate phytate into inositol and 

free phosphate (Oshima et al., 1964; Maenz and Classen, 1998).  It has been shown that a rapid 

increase in the blood concentration of IP6 was detected in the first 3 weeks post-hatch (Oshima 

et al., 1964), indicating that chicks have the ability to metabolize IP6 to an absorbable phytate 

ester.  In addition, Moore and Veum (1983) showed that IP6 is digestible and the digestibility of 

IP6 can be inflated when the growing animal is deprived of available P.  Other studies have also 

reported phytase activity in animal tissue (McCollum and Hart, 1908; Nelson, 1967).   Ergo, the 

major problem with phytate digestion within the chick is not due to the complete lack of 

endogenous enzymes but instead due to poor substrate solubility in the small intestine.  It is 

important to note that individual feed ingredients appear to affect phytase efficiency.  Utilizing 

total tract assessment of phytate degradation, Leske and Coon (1999) demonstrated that 

degradation ranged from 14.8 % (rice bran) to 39.1 % (barley) at 6,000 FTU/kg phytase activity.  

Two broiler studies investigating the dephosphorylation of phytate at the ileal level determined 

that phytate degradation by 500 FTU A. niger phytase kg-1 does not exceed 35 % (Camden et al., 

2001; Tamim et al., 2004).  However, Van der Klis et al. (1997) showed a 58 % increase in 

phytate degradation in laying hens by 500 FTU A. niger phytase kg-1.  This may be an effect of 

endogenous phytase or increased retention times in the forestomach.    

 Commercially available phytases can be divided into 3- and 6-phytases, depending on the 

initial phosphate group released.  It is thought that including a combination of phytases with 

different hydrolysis initiation sites would create a synergistic, linear additive response regarding 
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phosphate release.  It has been shown that growing pigs feed with intrinsic cereal phytase (rye, 

wheat) and supplemental A. niger phytase exhibited a linear increase on apparent P absorption 

(Zimmermann et al., 2003).  However, no synergistic effects have been observed by combining 

phytases with different initiation sites (Augspurger et al., 2003; Stahl et al., 2004). 

Phytate is well established to reduce the bioavailability of P, Ca, Zn and other divalent 

cations.  However, there are a number of documented factors that can affect phytate degradation.  

Genotype of birds may have an effect on phytate-P utilization.  Edwards et al. (1989) 

demonstrated that the average retention of phytate-P was greater for Leghorn chickens than meat 

type broilers.  There were also differences in phytate-P utilization for different broiler strains 

(Sebastian et al., 1998).  The age of the bird also was shown to affect phytate-P utilization 

because it is generally agreed that endogenous phytase activity in the intestinal tract increases 

with the age of the birds (Edwards et al., 1989).  Additionally, Nelson (1967) showed that mature 

hens utilize phytate-P better than chicks.  

Diets marginal or deficient in Vitamin D3 have been shown to depress phytate-P 

utilization (Ewing, 1963).  Vitamin D3 and its metabolites (1, 25 (OH)2 D3) enhance phytate-P 

utilization in chicks and may be attributed to either increased production or activity of 

endogenous phytase (Edwards et al., 1989; Shafey et al., 1991; Biehl et al., 1995; Mitchell and 

Edwards, 1996), increased phytate hydrolysis (Mohammed et al., 1991) or enhanced absorption 

of P (Wasserman and Taylor, 1973). 

Nutritional benefits of phytase 
 

  Numerous studies have shown that microbial phytase addition to diets increases body 

weight gain, feed intake and feed efficiency in broilers (Simons et al., 1990; Broz et al., 1994; 

Denbow et al., 1995; Mitchell and Edwards, 1996; Sebastian et al., 1996; Singh and Khatta, 
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2002; Singh et al., 2003).  Nelson et al., (1971) were the first to supplement 0.4 % phytase (A. 

ficcum) in corn and soybean meal based broiler diets that contained 0.24 % phytate-P.  In this 

study, there was a 33.3 % improvement in body weight gain.  Furthermore, the addition of 

phytase to low P broiler diets showed significantly improved body weight gain, feed intake and 

feed efficiency, but this level of improvement was dependent on the level of phytase 

supplemented (Simons et al., 1990).  Utilizing graded levels of phytase supplementation (125, 

250 and 500 FTU/kg diet) resulted in an increase in growth of broilers by 4.6, 6.4 and 8.5 %, 

respectively when compared to a control (0 FTU/kg addition; Broz et al., 1994).   

 Employing varying levels of non-phytate P (NPP) in broiler diets, numerous studies have 

shown that the greatest response was observed in low NPP diets (Denbow et al., 1995; Rama 

Rao et al., 1999; Lim et al., 2000), mostly attributed to phytate hydrolysis and better nutrient 

utilization.  This response has allowed for the economic replacement of inorganic P 

supplementation and ultimately reducing feed cost (Singh et al., 2003; Singh and Khatta 2003).  

In semi-purified broiler diets with 0.20, 0.27 and 0.34 % NPP and seven levels of supplemental 

phytase (0, 200, 400, 600, 800, 1,000 and 1,200 FTU/kg diet), Denbow et al. (1995) showed an 

increase in body weight gain and feed intake at all NPP levels.  Alternatively, Lim et al. (2000) 

only found an enhancement in body weight gain in a low NPP diet when utilizing 500 FTU/kg in 

a corn-soy diet with 0.25, 0.35 and 0.45 % NPP.   Further studies have also demonstrated the 

positive responses of phytase in low NPP wheat-soybean meal diets (Cabahug et al., 1999).  

Improvements seen in growth in broilers fed low NPP diets may be due to the increase in feed 

intake and improved feed efficiency by the utilization of P from phytate (Qian et al., 1996; 

Sebastian et al., 1996), inositol formation and utilization (Simons et al., 1990), increased starch 
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digestibility (Knuckles and Betschart, 1987), increased amino acid utilization (Ravindran et al., 

2000), or improved overall utilization of nutrients (Miles and Nelson, 1974).  

Phytase supplementation has been shown to increase the bioavailability of P and Ca, with 

positive responses to bone ash.  Bone ash is considered to be a more useful criterion for 

evaluating the availability of dietary P than body weight (Nelson and Walker, 1964).  Using a 

corn-soy diet containing 0.18-0.24 % phytate-P supplemented with phytase, Nelson et al. (1971), 

found an increase in tibia bone ash in broilers.  The ash percentage of the tibia and toe was 

significantly (P < 0.01) improved by phytase addition, suggesting the liberation of inorganic 

phosphate and Ca by phytase improves bone mineralization (Perney et al., 1993).  Broz et al. 

(1994) also reported 4.17, 4.87 and 7.79 % increases in tibia bone ash for diets supplemented 

with 125, 250 and 500 FTU/kg feed, respectively, when compared to a control diet without 

phytase supplementation.  Utilizing different dietary Ca levels (0.60, 1.0 and 1.25 %) and 

phytase supplementation, Sebastian et al. (1996) found that phytase supplementation increased 

tibia ash regardless of Ca level.  However, maximum ash content was determined for diets with 1 

% Ca.  Cabahug et al. (1999) also found that toe ash response was the greatest with phytase 

supplementation in diets with higher phytate-P concentrations, resulting in a significant phytate-

P x phytase interaction.          

Protein effect of phytate and phytase 
 

Phytase is also considered to impact the availability of protein and amino acids.  The 

possibility that phytate had a negative impact on protein utilization was first suggested by Rojas 

and Scott (1969). Officer and Batterham (1992), utilizing grower pigs with diets based on linola 

meal as the major protein source.  In this trial, phytase significantly increased ileal digestibility 

of nitrogen (22.6 %) and lysine (20.3 %).  These responses led to the belief that phytase may 
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release amino acids bound in phytate linkages.  Phytate has been established to bind protein to 

form protein-phytate complexes (Cosgrove, 1966; Anderson, 1985), and with hydrolysis of 

phytate by phytase in the stomach would reduce the amount of de novo protein-phytate complex 

formation in the higher pH intestine (Selle et al., 2000).  It was demonstrated that phytate is 

capable of binding up to ten times its weight of protein under in vitro conditions (Kies et al., 

2006).  This would entail that a diet with 10 g phytate kg-1 and 250 g protein kg-1, nearly half of 

the protein in diet could be complexed by phytate.  Therefore, the thought that phytase enhances 

amino acid digestibility in monogastrics through protein-phytate complex formation reduction 

was conceived. 

 It appears that pH is the driving force for de novo formation of protein-phytate complexes 

in the digestive tract.  Cosgrove (1980) and Anderson (1985) determined that phytate interacts 

with protein to form two different types of complexes; one in acidic and another in alkaline pH.  

Binary protein-phytate complexes are present at the acidic pH found in the gastric phase.  At 

extremely low pH (pH 2), phytate carries a strong negative charge whereas proteins are 

positively charged.  Hence, the formation of protein-phytate complexes (Cheryan, 1980).  Binary 

protein-phytate complexes are formed below the isoelectric point of protein (pH < 5-6).  At the 

physiological pH found in the crop (4.5) and gizzard (3), a partial protonation occurs but phytate 

still maintains a net negative charge (Costello et al., 1976).  Thus, phytate will interact with α-

NH2 groups and NH3
+ groups of basic amino acids that include arginine (PI 10.8), histidine (PI 

7.6) and lysine (PI 9.7; Cosgrove, 1966).  Ultimately, this would affect protein solubility and 

would cause an increase in the production of pepsinogen, HCl, mucin and NaHCO3 (Selle and 

Ravindran, 2007).  This response can have a detrimental effect on the animal efficiency and 

increase the nutrient requirements.  Due to the refractory nature of these complexes in the 
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forestomach, the hyper-secretion of HCl must be neutralized once gastric emptying occurs.  

Thus, extra secretion of mucin and sodium bicarbonate may arise (Munster et al., 1987; Allen 

and Flemstrom, 2005), causing an increase in the presence of endogenous amino acids and 

sodium in the lumen.      

 Tertiary protein-phytate complexes are considered to be formed in the small intestine 

where dietary nutrients encounter a more neutral pH environment.  At this higher pH, both 

phytate and proteins are negatively charged, therefore, the direct electrostatic effect between the 

two molecules are minimal.  Instead, chelated divalent cations are thought to mediate what can 

be considered phytate-mineral-protein complexes (O’Dell and de Boland, 1976).  Either of the 

complexes that occur between phytate and protein led to decreased protein solubility (Saio et al., 

1967).    

 Besides the negative impact on dietary proteins, research has suggested that phytate also 

has negative implications on endogenous amino acid losses (Cowieson et al., 2004; Cowieson 

and Ravindran, 2007).  Endogenous proteins and amino acids originate primarily from digestive 

secretions, mucoproteins and sloughed epithelial cells.  Multiple studies have shown that the 

amount of endogenous protein recovered in the ileum is increased by numerous anti-nutritive 

factors, including trypsin inhibitors, tannins, lectins (Nyachoti et al., 1997) and phytate 

(Cowieson et al., 2007).  It is possible that improvements seen in nutrient digestibility 

coefficients seen with the addition of exogenous phytase may occur because of a reduction in the 

loss of endogenous materials (Bedford, 1996; Bedford and Morgan, 1996; Ravindran et al., 

1999; Cowieson et al., 2004).  The production and loss of endogenous proteins is nutritionally 

expensive for animals (Fan et al., 1997).  Phytate may increase endogenous losses due to 

interactions with endogenous enzymes or mucin.  Furthermore, a positive feedback for extra 
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endogenous enzyme secretion may occur when a decrease occurs in enzyme activity or 

availability, similarly seen with protease inhibitors (Clarke and Wiseman, 2003).   

 Utilizing the peptide alimentation method on 26-day old male broilers (Ross 308), 

Cowieson et al. (2007) demonstrated that phytic acid concentration had a significant (P < 0.05) 

impact on nitrogen and some amino acids (aspartic acid, threonine, serine, glutamic acid, 

glycine, isoleucine, leucine, cysteine and methionine) ileal endogenous flow, with endogenous 

loss increasing with increasing phytate concentration.  In addition, phytase addition (500 FTU/kg 

E. coli phytase) reduced (P < 0.05) nitrogen and most amino acid (aspartic acid, threonine, 

serine, proline, glycine, valine, isoleucine, leucine, histidine, lysine, arginine, and cysteine) ileal 

endogenous flow.  Furthermore, endogenous flows of Asp, Ser, Thr and Tyr were increased with 

phytic acid concentration increases, suggesting that phytate may selectively increase the flow of 

some endogenous proteins more than others.  The amino acid composition of mucin and pepsin 

is highly related to these phytase prompted increases in ileal amino acid flow.          

Energy effect of phytate and phytase 
 

 Many nutritionists now are utilizing an energy release component in the ingredient matrix 

for phytase.  This is due to research consistently demonstrating an enhancement in metabolizable 

energy (ME) in broiler diets.  

 It has been suggested that the positive impact of phytase on energy may arise due to a 

collective increase in the digestibility of protein, fat and starch.  The increase of digestibility of 

amino acids would increase the energy derived from proteins (discussed above).  Furthermore, 

there is evidence demonstrating the ability of phytate to interact with lipids through complexes of 

Ca-/Mg-phytate, lipids and proteins (Cosgrove, 1966).  The interaction of phytate and lipids 

likely leads to the formation of metallic soaps in the intestinal lumen, causing decreased energy 
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derivation from lipids; especially saturated fats (Atteh and Leeson, 1984).  A study by Matyka et 

al. (1990) found that beef tallow reduced phytate-P utilization in young chicks and there was a 

subsequent increase in the percentage of fat excreted as soap fatty acids.  If metallic soap 

formation in the gut is due to Ca-phytate complexes, it seems reasonable that phytase would 

alleviate some of the metallic soap formation by prior phytate hydrolysis in proximal digestive 

tract.   

 Phytate may also impact starch digestion, either by directly binding starch through 

hydrogen bonds or by binding proteins associated with starch (Thompson, 1988).  However, 

there is limited in vitro evidence to support the existence of phytate-starch complexes (Selle et 

al., 2000).  Alternatively, phytate may impact starch digestion through another channel.  

Thompson et al. (1987) has demonstrated that phytate reduced the blood glycemic indices in 

humans.  Thus, phytate may depress intestinal uptake of glucose rather than impair starch 

digestion in the intestinal lumen.     

Super-dosing phytase 
 

 Super-dosing phytase is defined as the addition of 1,500 FTU/kg or more of microbial 

phytase with either a partial or no nutrient matrix applied (Cowieson et al., 2013).  By using 

1,500 FTU/ kg inclusion in feed while utilizing a 500 FTU/kg nutrient matrix allows the 

nutritionists to reduce the nutrient requirements for P and Ca and improve feed conversion and 

body weight gain.  Thus, maximizing profitability through bird performance rather than 

decreasing diet cost.   

 The unfortunate reality of phytase feed addition is that all phytases follow a quadratic 

dose response curve, rather than a linear response.  Therefore, by doubling phytase addition in 

feed, we do not expect to double the amount available P released.  Instead, for example, if the 
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addition of 500 FTU/kg phytase releases 0.10 % available P, then doubling the dose to 1,000 

FTU/kg will increase the available P release to 0.13 %.  In fact, it may take up to as much as 

5,000 FTU/kg to double the effect of that seen with 500 FTU/kg (Cowieson et al., 2013). 

 The majority of poultry diets contain between 0.20 % and 0.30 % phytate-P 

concentration, but can get as low as 0.15-0.18 % with the use of low phytate grain varieties 

and/or animal protein meals are utilized.  With a diet containing 0.25 % phytate-P and 500 

FTU/kg inclusion, the expected available phosphorous release would be 0.13 %, thus, 

approximately 50 % hydrolysis of phytate-P.  Using the laws of log curves we expect that as 

much as 60-70 % hydrolysis of phytate-P would occur in the first 500-750 FTU/kg.  Therefore, 

super-dosing phytase is only expected to yield small incremental advantages.  However, high 

doses of phytase improve growth performance much beyond that of 500-750 FTU/kg phytase 

inclusion (Cowieson et al., 2013). 

 The earliest research in phytase super-dosing is most likely Nelson et al. (1971), where 

950-7,600 FTU/kg of Aspergillus ficuum derived phytase was used in a broiler chick experiment 

to 21 days.  Nelson and colleagues found that apparent phytate-P disappearance increased from 

38.9 % (950 FTU/kg) to 94.4 % (7600 FTU/kg), with a response to phytase on 21-day weight 

gain and bone ash percentage.  The response found for weight gain and bone ash was log-linear 

and maximized at 7,600 FTU/kg where gain was increased 131 % compared to the phytase free 

negative control chicks and the bone ash was also 59 % greater.   

 It has been exhibited that bacterial phytases prefer to target high molecular weight 

inositol phosphate esters in the initial reaction phase (IP6/5; Wyss et al., 1999; Greiner and 

Farouk, 2007).  Thus, proportionally more IP6 and IP5 molecules are destroyed than that of IP4 

and IP3.  With this in mind, it has been shown that IP6 and IP5 have a greater chelating capacity 
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for Ca than seen with IP4 and IP3 (Luttrell, 1992; Persson et al., 1998).  Demonstrating that Ca 

release by phytase is most likely not a linear response and the rate of Ca release occurs much 

more rapid than that of phosphate release (Cowieson et al., 2011).  It was initially believed that 

super-dosing phytase may lead to a Ca:P imbalance, potentially causing issues with skeletal 

growth and wet litter.  However, super-dosing may actually benefit in balancing the Ca:P ratio.  

The Ca:P utilized in most phytase nutrient matrices ranges between 1.1:1 and 1:1.  But this is 

likely inaccurate at some points along the dose response curve.  The Ca:P ratio may actually be 

very high at low-phytase levels and gradually declines with the addition of phytase.  In vitro 

work by Walk et al. (2012) demonstrated an initial flurry of Ca release but the Ca:P ratio 

gradually decreased to less than 1.5:1 over time.  Therefore, as increased phytase doses are used, 

the assumed and actual Ca:P ratios continue to converge.  This may be one important reason why 

super-dose levels of phytase may provide greater responses than that of lower phytase doses.     

Myo-Inositol 
 

 One of the beneficial effects of exogenous phytase addition in poultry feed is thought to 

be the generation of myo-inositol through complete enzymatic dephosphorylation of dietary 

phytate (Jozefiak et al., 2010; Cowieson et al., 2011).  The known main function of myo-inositol 

is its involvement in the structure of phospholipids and lipoproteins, as well as 

phosphatidylinositol, which serves as a cell mediator that regulates metabolism and growth 

(Michell, 2008).   

 The first article to demonstrate a growth promoting effect of inositol in chickens was 

Hegstedt et al. (1941).  Other studies have also suggested that inositol may alleviate tocopherol 

deficiency in chicks (Dam, 1944), improve leukocyte number in turkeys (Lance and Hogan, 

1948) and depress fatty liver syndrome (Gavin and McHenry, 1941).  
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 Walk et al. (2014) measured gizzard phytate, phytate-P esters and inositol concentrations 

of 21-day old broilers.  They found that phytase addition significantly (P < 0.05) reduced IP6 and 

IP5 and increased inositol when compared to a control diet without exogenous phytase.  In 

addition, it they determined that inositol, IP6 and IP5 gizzard concentrations were highly 

correlated to growth performance.  IP6 and IP5 were negatively correlated to body weight gain 

and positively correlated to feed conversion.  Alternatively, inositol concentrations were 

positively correlated to body weight gain and negatively correlated to feed conversion.            

Phytase and phytate effect on antioxidants 
  

Relatively little research has been done in the way of determining the potential impact of 

phytase supplementation may have on the antioxidant status of varying tissues, however, 

Karadas et al. (2010) demonstrated that phytase inclusion was shown to increase the hepatic 

tissue levels of ascorbic acid, coenzyme Q10 and β-carotene.  Coenzyme Q10 supplementation 

has been shown to improve liver mitochondrial function, increase anti-reactive oxygen species 

proficiency and decrease malonaldehyde content (Geng and Guo, 2005).  Graf et al. (1987) also 

demonstrated that phytic acid acts as a natural antioxidant, inhibiting the generation of iron-

induced radicals and lipid peroxidation.  Even though limited research has occurred with the 

tissue associated phytic acid levels, Sakamoto et al. (1993) has shown that increasing tissue 

phytic acid level within tissues is possible.  

   The ability to improve the antioxidant capacity of certain tissues could provide an 

insight on how high phytase levels provide such positive results.  Bottje et al. (2002) has shown 

that broilers within the same genetic line have fundamental differences in feed efficiency.  Bottje 

et al. (2002) stated that variations in broiler growth performance and phenotypic expression of 

feed efficiency may be due to differences in mitochondrial function.  It was believed that 
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inadequacies in mitochondrial function may be to blame because mitochondria are responsible 

for producing the majority of cellular ATP.   Through the study of mitochondrial function, it has 

been demonstrated that a key difference observed between and high and low feed efficient 

broilers within the same genetic line is oxidative stress (Iqbal et al., 2004).  In addition, using 

gene expression, Bottje and Kong (2012) indicated that high feed efficient birds had an increased 

expression of genes associated with signal transduction pathways, anabolic activities and energy-

sensing/coordination activities; all of which would be advantageous for cell growth.  On the 

other hand, low feed efficient birds had an increased expression of genes associated with actin-

myosin filaments, cytoskeleton structure and stress-related/responsive genes.       
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Chapter 2:  Dietary phytate and phytase level interactions on bird performance, bone ash 
and mineral, and antioxidant status of broilers to 18 days of age 
 

Abstract 
 

 A total of 1,008 one-day-old male Cobb 500 broilers were randomly placed in 48 floor 

pens (21 birds per pen; 0.76 ft2 per bird) within two commercial broiler houses at ABRF 

(Fayetteville, AR) to evaluate the interactions of dietary phytate and phytase levels related to 

bird performance, bone ash and mineral content, thiobarbituric acid-reactive substances of the 

liver, breast and thigh tissues as well as the content of phytate, phytate esters and inositol in the 

gizzard of young broilers.  The floor pens were equipped with a feed pan with a 30-pound feed 

hopper, a nipple drinker line and a supplemental feeder for the first 10 days.  Birds were group 

weighed prior to placement and at the end of the 18 day evaluation period.  At the conclusion of 

the trial, 3 birds per pen were euthanized via rapid cervical dislocation to obtain the left tibia, 

gizzard contents and tissue samples of the liver, breast and thigh.  A 2 X 3 factorial design in a 

SAS GLM model was used, two levels of dietary phytate (0.21 and 0.31 %) and three levels of 

phytase supplementation (0, 500 and 1,500 FTU/kg), to evaluate variables.  A significant phytase 

x phytate interaction was observed for FCR (P < 0.001) and BW corrected FC (AFCR; P = 

0.011).  Furthermore, a positive linear effect for phytase level was significant (P < 0.001) for 

feed intake, body weight and body weight gain.  Tibia ash mass and percentage for both the 

proximal and distal tibia was also positively impacted (P = 0.05) by phytase level.  In the 

proximal tibia, however, only phytate level was found to affect Mg level.  In the distal tibia, 

phytase level impacted Zn, Mn, Na and S.  Phytase also decreased (P < 0.001) the level of IP6 

and IP5 in gizzard digesta and increased (P < 0.001) inositol generation.  Finally, phytase level 



 24

also decreased (P = 0.020) malonaldehyde content of the thigh.  These results support the use of 

higher doses of phytase in young growing broilers.           

Introduction 
 

The anti-nutritive effects of dietary phytate in broiler diets have been well documented, 

including mineral chelation (Vohra, 1965; Nelson & Kirby, 1987; Maddaiah, 1964; Tamim, 

2003; Tamim, 2004), protein binding (Kies et al., 2006; Selle et al., 2000; Selle et al, 2012) and 

the impact of inefficient overproduction of pepsin, HCl, NaHCO3 and mucin (Cowieson et al., 

2004).  Therefore, the addition of exogenous phytase has been shown to increase nutrient 

digestibility and growth performance in broilers.  Conventionally, phytase is supplemented at 

concentrations between 300 and 600 FTU/kg to release P from phytate (Cowieson et al., 2006).  

This conventional level eliminates the phytate esters inositol hexa-phosphate (IP6) and inositol 

penta-phosphate (IP5), thus improving phytate solubility (Schlemmer, 2001) and limiting the 

anti-nutritive effect of phytate so broilers can utilize more nutrients (Cowieson, 2011).  However, 

recent research has demonstrated inositol tetra-phosphate (IP4) and inositol tri-phosphate (IP3) 

still maintain a potent chelating ability for nutrients such as Fe3+ as well as  limit pepsin 

catalyzed protein hydrolysis (Yu et al., 2012).  Therefore, higher levels of exogenous phytase 

supplementation have been shown to reduce IP4 and IP3 and also generate more inositol, which 

was positively correlated with BW gain and negatively correlated to FCR.  However, these 

results were not associated with a subsequent increase in tibia ash, demonstrating that Super-

dosing benefits may be associated with phytate destruction and inositol generation, rather than 

excess P and Ca (Walk et al., 2014).   
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Super-dosing phytase is described as the addition of 1,500 FTU/kg or more of microbial 

phytase with either a partial or no nutrient matrix applied (Cowieson et a., 2013).  By using 

1,500 FTU/ kg phytase inclusion while utilizing a 500 FTU/kg nutrient matrix allows the 

nutritionists to relax the nutrient requirements and improve feed conversion and body weight 

gain.  Thus, maximizing profitability through bird performance rather than decreasing diet cost.  

Phytase supplementation to broiler diets produces curvilinear growth performance and nutrient 

digestibility responses.  However, when super-dosing levels are utilized, bird performance is 

typically better than anticipated, suggesting the impact of extra-phosphoric effects (Cabahug et 

al., 1999; Cowieson et al., 2006).  Gehring et al. (2013), suggests that the magnitude of extra-

phosphoric effects may be dependent on the concentrations of substrate and enzyme present.  

Thus, it would be useful to determine how the phytate profile in the gizzard is affected by 

differing levels of phytate-P % and how conventional and super-dose levels of phytase affect this 

phytate ester profile.  Therefore, the objectives of this study were to evaluate how dietary 

phytate-P % impacts early chick performance and how conventional and super-dose levels of 

exogenous phytase over differing phytate-P % levels alter performance, tibia ash and gizzard 

phytate ester profile. 

Materials and Methods 
 

All procedures relating to the use of live birds were approved by the University of 

Arkansas Institutional Animal Care and Use Committee through protocol #11056. 

Birds and Housing 
 

 A total of 1,008 one-day-old Cobb 500 male broiler chicks were obtained from a 

commercial hatchery and randomly distributed to floor pens (21 birds per pen; 0.76 ft2 per bird) 
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within two commercial broiler houses (40’ x 400’)  at the University of Arkansas Applied 

Broiler Research Farm (ABRF; Fayetteville, AR).  Broilers were vaccinated for Marek’s disease, 

infectious bronchitis and Newcastle disease at the hatchery.  This study occurred from January, 

16 – February, 3 2014.  The mini-pens (4’ x 4’) were placed in the brood chamber (half-house) 

and their position was maintained for the duration of the study.  Treatments were blocked from 

the tunnel inlet to the middle of the house.  The two commercial broiler houses used were solid-

sided, tunnel-ventilated houses equipped with four 32” side-wall exhaust fans, eight 48” tunnel 

fans, 18 radiant pancake brooders and two forced air furnaces.  Mini-pens were equipped with a 

Choretime feed pan with a 30-pound feed hopper, a supplemental feeder for the first 10 days of 

grow-out and a nipple drinker line.  Feed and water were available ad libitum.    

The lighting intensity and lighting curve used in this study were utilized according to a 

commercial integrator.  Light emitting diodes (LED) and compact fluorescent (CFL) bulbs were 

used in each house on full brightness during the first 7 days of grow-out.  On day 8, CFL bulbs 

were turned off and the LED bulbs remained on at full intensity.  On day 16, LED bulbs were 

dimmed to 0.3 FC and maintained for the remaining duration of the project.  During the first 

week, the birds received 24 hours of light.  At day 8, the light:dark period was changed to 18 

hours light and 6 hours of dark.  Furthermore, on day 16 the light:dark periods were changed to 

20 hours light and 4 hours of dark.  

 The temperature and minimum ventilation curves utilized for this study are summarized 

in Table 3.  Both the temperature and ventilation standards used for this study were run 

according to a local commercial broiler integrator.  The houses were pre-heated two days prior to 

chick placement.  On day -2, the house was pre-heated to 80o F, to begin heating the litter.  The 

day prior to placement (day -1), the house was then heated to 90o F.  The 90o F house 
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temperature was maintained through day 3 of grow-out.  After day 3, the temperature began 

ramping down to 85o F on day 7, 83o F on day 14 and 80.7o F on day 18.   

 For the minimum ventilation, the on:off time (seconds) for day 1 began at 30:330 using 

two exhaust fans.  The on time continually increased while the off time for the fans gradually 

declined until a 3 minute timer was used.  On day 7 the on:off time was 60:120, which gradually 

changed to 78:102 and 91:89 on:off times for days 14 and 18, respectively.  

Dietary Treatments 
 

 All diets (Table 4) were based on corn-soybean meal and fed in crumbled form (77oC 

conditioning temperature).  Dietary treatments consisted of two levels of phytate-P (0.21and 0.31 

%) and 3 levels of exogenous phytase supplementation (0, 500 and 1,500 FTU/kg), creating a 2 

X 3 factorial design.  Energy, protein, amino acids, available Ca and phosphorous, Ca:P ratios, 

and divalent cation minerals were formulated to be as close to identical in each ration 

formulation as possible.  Each treatment was replicated by 8 pens with 21 chicks/pen.  Corn was 

exchanged with phytase where appropriate to take the diets to 100 %.  The phytase was a 

modified E. coli 6-phytase expressed in Trichoderma reesei with an expected activity of 5,000 

FTU/g (Quantum Blue, AB Vista Feed Ingredients, Marlborough, UK).     

All feed ingredients were analyzed prior to mixing for a total mineral analysis and 

proximate analysis (Table 5).  Feed samples were taken at the University of Arkansas Feed Mill 

post-pelleting.  Samples were analyzed for phytate level and phytase activity by AB Vista (Table 

6).   

Response Variables 
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 Birds were weighed by pen prior to placement and on day 18 to determine BW and 

calculate average BW gain.  Feed intake was also measured from day 1 to day 18 and used to 

calculate FCR.  Mortality was recorded daily, and any mortality was weighed.  Thus, FCR was 

adjusted according to mortality.  Furthermore, feed conversion ratios were also corrected to the 

overall experimental average body weight and adjusted using 27 g = 0.01 FCR (AFCR). Birds 

for sampling were euthanized via rapid cervical dislocation on day 18 for collection of tibias, 

liver, breast, thigh and gizzard digesta. 

Bone Ash and Mineral Analysis   
 

 The left tibia was removed from each of 3 euthanized birds from each pen.  All muscle 

and adhering tissues was removed using cheese cloth.  Following bone cleaning, the tibias were 

divided into approximately a 30/70 division, with the proximal tibia representing the 30 % and 

the remaining distal bone representing the other 70 %.  Tibias were pooled by pen and the 

proximal and distal sections were kept separate for each step.  Bone weights were taken for 

pooled proximal and distal tibia sections prior to drying. 

 All bone sections were then dried in an oven at 100o C for 24 hours, along with crucibles.  

After drying, a dry weight for each crucible and pooled proximal and distal bone sections were 

recorded.  Dried tibias were then ashed in a muffle furnace for 24 hours at 600oC to determine 

bone ash.         

Gizzard Phytate, Phytate Esters and Inositol Analysis 
 

 Digesta from the gizzard was obtained from the same 3 birds euthanized for bone ash and 

pooled per pen.  Digesta was stored at -80oC until it was freeze-dried at -55oC and < 100 mTorr.  
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The freeze-dried digesta was then ground to pass a 1-mm screen.  The freeze-dried and ground 

digesta was then analyzed for phytate [inositol hexa-phosphate (IP6)], phytate esters [inositol 

penta-phosphate (IP5), inositol tetra-phosphate (IP4) and inositol tri-phosphate (IP3)], and 

inositol using high-performance ion chromatography and methods of Blaabjerg et al. (2010).    

Thiobarbituric Acid-Reactive Substances (TBARS) Assay  
 

 Frozen breast, thigh and liver samples were stored at -20o C until the analysis was 

performed.  Samples were removed from the freezer and set on a room temperature surface for 1 

hour and covered with a cotton towel.  Once samples displayed some slack (not thawed) they 

were placed in the refrigerator and the analysis was promptly performed. 

 Duplicates from each pooled liver, breast (Pectoralis major) and thigh (Iliotibialis ) were 

run and duplicates from each sample were run for absorbance.  Two grams from each pooled 

sample was weighed out and placed in a labeled 50 mL disposable polypropylene centrifuge 

tube.   Next, 8 mL of prepared phosphate buffer (Appendix 1) and 2 mL of TCA reagent 

(Appendix 2) was added to the tube and the contents were homogenized for 20 to 30 seconds.  

The homogenate was then filtered using Whatman (No. 4) filter paper into labeled 15 mL 

disposable polypropylene centrifuge tubes.  Next, 2 mL of the sample filtrate was pipette into a 

labeled 16 x 100 mm borosilicate glass culture tubes in duplicates.  Two mL of the prepared 

TBA reagent (Appendix 3) was added to each sample tube, blanks and standards.  The tubes 

were then covered with aluminum foil and placed into a hot water bath (100oC) for 20 minutes.  

Afterwards, the sample tubes were removed from the water bath and placed on ice for 15 

minutes.  Absorbance was then read at 533 nm with a UV-1201 sip spectrophotometer.      

Statistical Analysis 
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 The six treatments of the factorial arrangement of two dietary phytate levels and three 

phytase supplementation level treatments were analyzed by the following model: 

 Yijk = µ + Phytatei + Phytasej + PhytatePhytaseij + eijk 

Where µ is the common mean; Phytatei is the effect of the ith phytate; Phytasej is the effect of the 

j th phytase supplementation level; and eijk is the random error.  This model assesses the main 

effects and interactions of the factorial arrangement.  The pen of broilers served as the 

experimental unit.  In this experiment, treatments were blocked from the tunnel inlet to the 

middle of the house. Statements of significant difference are based on α = 0.05, as obtained from 

Type III Sums of Squares from the Analysis of Variance generated through the General Linear 

Models Procedure of SAS (SAS Institute Inc., Cary, NC), means were separated with repeated t-

test.  PROC CORR was also utilized to determine correlations between gizzard phytate esters 

and other measure variables, statements of significance are based on P ≤ 0.05, which indicate 

correlations significantly differ from zero.     

Results and Discussion 
 

 Analysis confirmed that all diets were within an expected range for phytate-P % and 

phytase recoveries (Table 6).  Analyzed phytate-P % levels in the low-phytate diet were similar 

to formulation and 16 % higher than formulated for the high phytate-P % diet.  The phytate 

analyses confirm that the low- and high-phytate diets varied in phytate concentration by 

approximately 44 % and in phytate-P % by approximately 44 %.    

Bird Performance 
 

 Live performance variables for male broilers fed diets varying in phytate level and 

phytase level supplementation are summarized in Table 7.  Feed intake over the 18-day period 
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was not significantly impacted by a phytase x phytate interaction (P = 0.664) or the main effect 

phytate level (P = 0.273).  However, the main effect phytase was significant (P < 0.001).  Birds 

fed diets with 1,500 FTU/kg phytase consumed 0.817 kg of feed/bird, which was significantly (P 

= 0.015) greater than the 0.771 kg of feed/ bird consumed by broilers fed diets with 500 FTU/kg 

of phytase.  In addition, birds fed diets with 500 FTU/kg of phytase consumed  more (P = 0.005) 

feed/bird than the 0.717 kg of feed/bird consumed by broilers fed diets with 0 FTU/kg of phytase 

addition.  Finally, birds fed diets with 1,500 FTU/kg of phytase consumed significantly (P < 

0.001) more feed/bird than broilers fed diets with 0 FTU/kg of phytase supplementation.      

   For BW and BW gain, phytase x phytate interaction and main effect phytate level were 

insignificant (P ≥ 0.368), whereas phytase level was significant (P < 0.001).  Broilers fed diets 

with 1,500 FTU/kg of phytase gained 0.600 kg, which was greater (P = 0.010) than the 0.562 kg 

of body weight gained by birds fed diets with 500 FTU/kg, leading to a 6.1 % heavier (P = 

0.008) bird at 18 d.  Furthermore, birds fed diets with 500 FTU/kg also gained significantly (P < 

0.001) more body weight by 18 days of age than the 0.509 kg gained by their counterparts that 

received diets with 0 FTU/kg, which also led to a 8.4 % increase (P < 0.001) in body weight.  

Birds fed diets with 1,500 FTU/kg of phytase also a more substantial gain (P < 0.001) than birds 

fed diets with 0 FTU/kg, thus a 13.9 % heavier (P < 0.001) body weight.  Oddly, phytate level 

was not significant for BW or BW gain (P = 0.368), which contradicts other studies, where 

higher phytate diets were shown to depress bird growth to 28 d of age in Cobb 500 broiler (Liu et 

al., 2008), as well as in 21 d Arbor Acre broilers (dos Santos et al., 2014).  This would be 

expected due to phytate’s wide antinutritive effects; however, in this study it appears that non-

phytase supplemented diets, regardless of phytate level, hindered bird growth.  This reinforces 

the negative impact of phytate on broiler performance.            
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Increases in feed intake and body weight gain are typically reported in the literature for 

phytase supplementation; however, improvements in FCR are less commonly reported due to the 

corresponding parameters unless a BW corrected FC is utilized.  Onyango et al. (2005) and 

Rutherford et al. (2012) both demonstrated improvements in BW gain and feed intake but feed 

efficiency was not impacted in broilers fed diets with low avP.  Alternatively, Walk et al. (2013 

and 2014) reported significant improvements in FCR of 49 and 21 d old broilers fed phytase 

compared with broilers fed a nutrient adequate control diet.  In addition, Walk et al. (2014) 

hypothesized that benefits in FCR associated with super-dosing phytase may be associated with 

phytate destruction and the subsequent phytate ester profile, rather than excess P and Ca.  This 

thought may provide insight to the observed interaction (P < 0.001) between exogenous phytase 

level and phytate-P % for FCR (Table 8, Figure 1).  Of the low phytate-P % diets, the broilers 

fed diets with 500 FTU/kg phytase supplementation had a lower FCR (1.23; P ≤ 0.036) than 

broilers fed diets with 0 or 1,500 FTU/kg of exogenous phytase (1.29 and 1.26, respectively).  

Alternatively, of the high phytate-P % diets, the broilers fed diets with 1,500 FTU/kg of phytase 

had a more efficient FCR (1.24; P ≤ 0.015) than birds fed diets with 0 or 500 FTU/kg (1.28 and 

1.29, respectively).  The interaction point appears at the 500 FTU/kg of phytase level, which may 

indicate that the anti-nutritive effect of phytate in the 0.21 % phytate-P diet is overcome by the 

500 FTU/kg level, whereas the high phytate-P % diet requires greater doses of phytase to 

maximize feed efficiency.  

A significant interaction (P = 0.011) between phytase x phytate levels was also observed 

for BW adjusted FCR (AFCR).  Of the low phytate-P % diets, broilers fed diets with either 500 

or 1,500 FTU/kg of phytase had a lower (P ≤ 0.05) AFCR (1.23 and 1.25, respectively) than 

birds fed diets with 0 FTU/kg of phytase (1.30), but were not statistically different from one 
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another.  However, of the high phytate-P % diets, the broilers fed diets with 1,500 FTU/kg of 

phytase were still more efficient (1.23; P) than both other groups, which was similar to the 

results found before the BW adjustment for FCR.      

Bone Ash and Mineral Analysis 
 

 The proximal, distal and total tibia ash percentages and weights are summarized in Table 

9.  The main effect phytase level supplementation was significant for proximal tibia ash weight 

(P < 0.001) and percentage (P = 0.027).  Broilers fed diets with 1,500 FTU/kg had a greater (P = 

0.044) proximal tibia ash weight than the birds fed diets with 500 FTU/kg (0.221 vs. 0.204 g, 

respectively).  Furthermore, broilers on diets with 500 FTU/kg were also observed to have 

greater (P = 0.002) proximal tibia ash weight than the 0.177 g ash weight detected in broilers fed 

diets with 0 FTU/kg.   These differences in proximal tibia ash weight led to differences in bone 

ash percentage.  Birds on diets with 1,500 FTU/kg had higher (P = 0.008) bone ash percentage 

(35.26 %) than the 33.70 % observed in broilers fed diets with 0 FTU/kg.  Phytase level was 

significant for distal tibia ash weight (P < 0.001) and percentage (P < 0.001) where as phytase x 

phytate interaction and phytate level were insignificant (P ≥ 0.327) for both measurements.  

Broilers fed diets with 1,500 FTU/kg had 0.467 g of distal tibia ash which was greater (P = 

0.022) than the 0.427 g of distal tibia ash observed by birds on diets with 500 FTU/kg.  In 

addition, birds fed diets with 500 FTU/kg of phytase also had a greater (P < 0.001) distal tibia 

ash weight than birds on diets with 0 FTU/kg (0.365 g).  Moreover, birds on diets with either 

1,500 or 500 FTU/kg had higher (P ≤ 0.003) distal tibia ash percentages (46.86 and 46.20 %, 

respectively) than their counterparts fed diets without phytase supplementation (44.54 %).   
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 As expected, phytase level was significant for both whole tibia ash (P < 0.001) and tibia 

ash percentage (P < 0.001), but phytase x phytate interaction and phytate level were insignificant 

(P ≥ 0.349).  Broilers fed diets with 1,500 FTU/kg had 0.688 g of total tibia ash which was 

greater (P = 0.022) than the 0.631 g of total tibia ash detected from birds on diets with 500 

FTU/kg.  Likewise, birds fed diets with 500 FTU/kg also had greater (P < 0.001) total tibia ash 

than broilers given diets with 0 FTU/kg (0.542 g).  Similarly, broilers fed diets with either 1,500 

or 500 FTU/kg of phytase supplementation had higher (P ≤ 0.010) total tibia ash percentages 

(42.38 and 41.66 %, respectively) than broilers fed diets with 0 FTU/kg of phytase 

supplementation (40.31 %).  These results demonstrating the improvement in tibia ash based on 

phytase level is in agreement with Nelson et al. (1971), Dos Santos et al. (2014), and Walk et al. 

(2014) where phytase supplementation improved tibia ash when fed a diet with limiting avP 

and/or Ca.  Interestingly, Cabahug et al. (1999) showed that phytate and phytase interacted for 

toe ash.       

 Despite differences seen in tibia ash weight and percentages, minimal differences were 

observed for the mineral content of the ash for the proximal (Table 10) and distal (Table 11) tibia 

portions.  For the proximal tibia ash mineral profile the only statistical difference detected was 

for the main effect phytate (P = 0.034) for Mg level, where birds fed diets with 0.21 % phytate-P 

had a 0.83 % Mg versus the 0.86 % Mg found in the proximal tibia ash for birds fed diets with 

0.31 % calculated phytate-P.  In the distal mineral profile, again, the main effect phytate was 

significant (P = 0.005) for Mg, where birds fed diets with 0.21 % phytate-P contained 0.73 % 

and the birds fed the diets with 0.31 % calculated phytate-P contained 0.76 % Mg.  The main 

effect phytase was also significant for Zn (P = 0.047) and Mg (P = 0.005).  Birds fed diets with 

1,500 FTU/kg of phytase had a greater Zn concentration (421.75 mg/kg) than birds fed diets with 
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500 FTU/kg (407.00 mg/kg) and 0 FTU/kg (404.06 mg/kg).  In addition, phytase 

supplementation increased the Mg concentration of the distal tibia ash above the 0.72 % 

observed in birds fed 0 FTU/kg of phytase, but a decrease (P < 0.05) in Na and S percentages.   

The addition of phytase significantly improved tibia ash percentage and weight, which is 

in agreement with Nelson et al. (1971), Perney et al. (1993), Broz et al. (1994), Walk et al. 

(2014) and Sebastian et al. (1996).  This would indicate that there is increased availability of 

minerals due to the breakdown of phytate-mineral complexes (Sebastian et al., 1996).  The distal 

portion of the tibia contains the shaft, which is a more rigid state of the bone less susceptible to 

variations due to availability of minerals.  On the other hand, the proximal head is the rapidly 

growing portion where it is a more active state of change (Sebastian et al., 1996).  In agreement 

with Broz et al. (1994) and Sebastian et al. (1996), our observations did not indicate any 

significant difference in Ca and P concentrations in the tibia ash.      

Thiobarbituric Acid-Reactive Substances (TBARS) 
 

 Analysis of thiobarbituric acid-reactive substances in 17 d old broilers is summarized in 

Table 12.  The main effect phytate level was significant (P < 0.001) for liver malonaldehyde 

content.  Birds fed diets with 0.21 % phytate-P displayed a reduced level of MDA (1.098 mg/kg) 

when compared to birds fed diets with 0.31 % phytate-P (1.288 mg/kg).  In addition, the main 

effect phytase was significant (P = 0.020) for thigh MDA content, where broilers fed diets with 

1,500 FTU/kg of phytase had a reduced level (1.825 mg/kg) when compared to birds fed diets 

with 0 FTU/kg of phytase.  Phytase level also showed a trend (P = 0.065) for reducing MDA 

content of the liver.  Karadas et al. (2010) demonstrated that phytase inclusion increased the 

hepatic tissue levels of ascorbic acid, coenzyme Q10 and β-carotene.  Coenzyme Q10 
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supplementation has been shown to improve liver mitochondrial function, increase anti-reactive 

oxygen species proficiency and decrease MDA content (Geng and Guo, 2005).  In addition, 

ascorbic acid and β-carotene have strong antioxidant capabilities to limit free radicals.         

Gizzard Phytate, Phytate Esters and Inositol 
 

 Quantification of inositol phosphate esters and inositol in freeze-dried gizzard digesta are 

summarized in Table 13.  The main effect phytase level was significant (P < 0.001) for IP6, IP5 

IP4 and inositol concentrations (log-transformation of nmol/g of dried weight of digesta).  For 

IP6 concentration, broilers fed diets with 1,500 FTU/kg of phytase had 1.292 log nmol/dry 

weight, which was significantly less (P < 0.001) than the 2.082 log nmol/dry weight observed by 

birds fed diets with 500 FTU/kg of phytase.  In addition, birds fed diets with 500 FTU/kg of 

phytase had a reduced (P < 0.001) IP6 concentration than the 2.611 log nmol/dry weight seen in 

broilers fed diets without phytase supplementation.  A similar progression was seen for IP5 

concentrations with the following significant differences: 0 FTU/kg > 500 FTU/kg > 1,500 

FTU/kg.  Furthermore, broilers on diets with 1,500 FTU/kg of phytase had a reduced IP4 (P < 

0.001; 0.820 log nmol/dry weight) concentration than bird on diets with 500 and 0 FTU/kg of 

phytase (1.974 and 1.983 log nmol/dry weight, respectively).  Finally, a greater amount (P < 

0.001) of inositol was generated in the gizzard digesta of birds fed diets with 1,500 FTU/kg 

(3.281 log nmol/dry weight) when compared to birds fed diets without phytase supplementation 

(2.794 log nmol/dry weight). 

 Moreover, in this trial, IP6, IP5, IP4 and inositol concentrations from freeze-dried gizzard 

digesta was correlated to growth performance, tibia ash and TBARS variables (Table 14).  

Similar to Walk et al. (2014), IP6, IP5 and inositol concentrations were significantly correlated 

(P ≤ 0.008) to BW gain, where IP6 and IP5 were negatively correlated and inositol was 
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positively correlated.  In this study, however, no significant correlations were found between 

inositol-phosphate esters or inositol and FCR, which differs from the study by Walk et al. (2014) 

where IP6 and IP5 were strongly negatively correlated to FCR and inositol was strongly 

positively correlated.  Additionally, IP6, IP5 and inositol were also significantly correlated (P ≤ 

0.022) to proximal, distal and total tibia ash weight, with IP6 and IP5 demonstrating a negative 

correlation and inositol a positive correlation.  Inositol has been shown to have key functions in 

the central nervous system, phospholipid structure maintenance and lipid metabolism (Holub, 

1986; Fisher et al., 2002).  Supplementing broilers with inositol has been shown to improve BW 

gain and FCR (Zyla et al., 2004; Cowieson et al., 2013).  In this study, inositol was not added to 

the feed but was instead generated by phytase from phytate destruction.  

Conclusion 
 

 Phytate has long been shown to impact mineral digestion and absorption (Vohra, 1965; 

Nelson, 1987; Maddaiah, 1964; Tamim, 2003; Tamim, 2004), protein digestion (Kies et al., 

2006; Selle et al., 2000; Selle et al., 2012) and interfere with enzyme activity (Liu et al., 2009), 

all of which may impede bird performance.  Phytase has been shown to target higher weight 

inositol phosphate esters (IP6 and IP5; Wyss et al., 1999), thus proportionally more IP6 and IP5 

are destroyed than IP4 and IP3 and the degeneration of IP6 and IP5 leads to the production of 

more IP4 and IP3.  However, at super-dose levels of phytase, the destruction of IP4 and IP3 are 

also pronounced over a conventional phytase dose and produced more inositol.  This study 

supports the use of super-dose levels of phytase in young growing broilers, positively impacting 

feed intake, BW, BW gain, tibia ash measurements, MDA content of the liver and thigh, and the 

gizzard phytate profile.    
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Chapter 3:  Evaluation of phase feeding phytase in broiler starter and grower rations and 
effect on antioxidant and mineral status  
 

Abstract 
 

 A total of 1,056 one-day-old male Cobb 500 broilers were randomly placed in 48 floor 

pens (22 birds per pen; 0.72 ft2 per bird) within two commercial broiler houses at ABRF 

(Fayetteville, AR) to evaluate the effect of phase feeding phytase in the starter (1-17 days) and 

grower (18-35) rations on bird performance, bone ash and mineral content, and TBARS of the 

liver, breast and thigh.  Treatments consisted of a positive control, a negative control (NC; less 

0.16 % Ca, 0.15 % avP and 0.04 % Na), and 4 additional treatments based on the NC 

supplemented with phytase.  Treatments 3 and 4 consisted of the NC diet supplemented with 500 

FTU/kg of phytase in the starter phase that was either continued through the grower diet 

(treatment 3) or increased to 1,500 FTU/kg (treatment 4).  Treatment 5 and 6 were also the NC 

diet supplemented with 1,500 FTU/kg of phytase for the starter diet and either decreased to 500 

FTU/kg in the grower diet (treatment 5) or maintained at 1,500 FTU/kg (treatment 6).  The floor 

pens were equipped with a feed pan with a 30-pound feed hopper, a nipple drinker line and a 

supplemental feeder for the first 10 days.  A random complete block design in a SAS GLM 

model was used to evaluate bird performance, bone ash and mineral content, and TBARS of the 

liver, breast and thigh.  At 35 d of age, phytase regimen did not affect (P > 0.05) feed intake, BW 

gain, FCR or mortality.  However, increasing phytase concentration from 500 FTU/kg in the 

starter diet to 1,500 FTU/kg in grower diet increased (P < 0.05) proximal and total tibia ash 

percentages when compared to broilers fed diets with 500 FTU/kg of phytase for the duration of 

the study.         
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Introduction 
 

Exogenous phytase supplementation in broiler diets has been shown to reduced the 

antinutritive effect of phytate, which includes electrostatic interactions with dietary minerals 

(Vohra, 1965; Nelson and Kirby, 1987; Tamim and Angel, 2003; Tamim et al., 2004) and 

limiting protein digestion (Kies et al., 2006; Selle et al., 2000; Selle et al, 2012).  By mitigating 

the effect of phytate, phytase has been shown to improve nutrient digestibility and growth 

performance of broilers and super-dose concentrations typically provide further extra-phosphoric 

benefits (Cabahug et al., 1999; Ravindran et al., 2000).  Phytase supplementation produces a 

curvilinear response for growth performance and nutrient digestibility, thus, extra-phosphoric 

effects and phytase concentrations do not exhibit a 1:1 relationship.  However, by altering the 

exogenous phytase concentration as broilers advance in age, one may be able to limit the cost per 

unit of gain (Gehring et al., 2014).   

Nelson (1967) demonstrated that birds may become more capable of utilizing phytate-P 

with age.  Therefore, supplementing higher concentrations of phytase during the starter phase 

and reducing the level in subsequent diets may lead to savings in enzyme use, given the smaller 

volume of feed consumed and if the extra-phosphoric effects occur in the starter phase (Gehring 

et al., 2014).  Another thought is that high phytase concentrations may become important during 

the linear portion of the broiler’s growth curve (Gous et al., 1999).  Gehring et al. (2014) 

performed a step-up/step-down regimen for phytase supplementation, demonstrating that 

increasing phytase concentration after the starter phase (14 d) or decreasing concentration after 

the grower phase (28 d) increased FCR, but the phytase regimen did not impact carcass 

variables.  Therefore, the objective of this study was to evaluate the phase feeding of phytase in 
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broiler starter and grower rations and how this would impact bird performance, bone ash and 

mineralization, as well as MDA content of the breast, thigh and liver tissues of broilers. 

Materials and Methods 
 

All procedures relating to the use of live birds were approved by the University of 

Arkansas Institutional Animal Care and Use Committee through protocol # 11056. 

Birds and Housing 
 

 A total of 1,056 one-day-old Cobb 500 male broilers were obtained from a commercial 

hatchery and randomly distributed to floor pens (22 birds per pen; 0.73 ft2 per bird) within two 

commercial broiler houses (40’ x 400’)  at the University of Arkansas Applied Broiler Research 

Farm (ABRF; Fayetteville, AR).  Broilers were vaccinated for Marek’s disease, infectious 

bronchitis and Newcastle disease at the hatchery.  The mini-pens (4’ x 4’) were placed in the 

house (full-house brood) and their position was maintained for the duration of the study.  

Treatments were blocked from the tunnel inlet to the tunnel fans.  The two commercial broiler 

houses used were solid-sided, tunnel-ventilated houses equipped with four 32” side-wall exhaust 

fans, eight 48” tunnel fans, 18 radiant pancake brooders and two forced air furnaces.  Mini-pens 

were equipped with a Choretime feed pan with a 30-pound feed hopper, a nipple drinker line and 

a supplemental feeder for the first 10 days of grow-out.  Feed and water were available ad 

libitum.       

 Light emitting diodes (LED) and compact fluorescents (CFL) bulbs were used in each 

house on full brightness during the first 7 days of grow-out.  On day 8, CFL bulbs were turned 

off and the LED bulbs remained on at full intensity.  On day 15, LED bulbs were dimmed to 0.3 

FC and maintained to end of the study.  During the first week, the birds received 24 hours of 
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light.  At day 8, the light:dark period was changed to 18 hours light and 6 hours of dark and was 

maintained for the duration of the study by recommendations from a local commercial broiler 

integrator. 

 The temperature and minimum ventilation curves utilized for this study are summarized 

in Table 3.  Both the temperature and ventilation standards used for this study were run 

according to a local commercial broiler integrator.  The houses were pre-heated two days prior to 

chick placement.  On day -2, the house was pre-heated to 80o F, to begin heating the litter.  The 

day prior to placement (day -1), the house was then heated to 90o F.  The 90o F house 

temperature was maintained through day 3 of grow-out.  After day 3, the temperature began 

ramping down to 85o F on day 7, 81o F on day 14, 78o F on day 21, 71oF on day 28 and 68oF on 

day 35.   

 For the minimum ventilation, the on:off time for day 1 began at 30:330 using two exhaust 

fans.  The on time continually increased while the off time for the fans gradually declined until a 

3 minute timer was used.  On day 7 the on:off time was 60:120, which gradually changed to 

78:102, 97:83, 107:73 and 125:60 on:off times for days 14, 21, 28 and 35, respectively. 

Experimental Treatments 
 

 Six dietary treatments consisted of a positive control (treatment 1; PC) diet formulated to 

be adequate in Ca and nonphytate-P, a negative control (treatment 2; NC) diet formulated with 

reduced Ca by 0.16 %, nonphytate-P by 0.16 % and Na by 0.03 %; the remaining 4 treatments 

were based on the NC diet but with varying levels of phytase supplementation (Table 15).  

Treatments 3 and 4 were the NC diet with 500 FTU/kg exogenous phytase addition in the starter 

and either continued throughout the study (treatment 3) or increased to 1,500 FTU/kg in the 

grower diet (treatment 4).  Treatments 5 and 6 were also the NC diet, but with 1,500 FTU/kg in 
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the starter diet and continued for the duration of the study (treatment 6) or reduced to 500 

FTU/kg in the grower diet (treatment 5).  All diets were created as pellets (77oC conditioning 

temperature) and fed as crumble form from 1 to 17 days of age and pellet form for the grower 

diets.  Each treatment was replicated by 8 pens with 21 chicks/pen.  Corn was exchanged with 

phytase where appropriate to take the diets to 100 %.  The phytase was a modified E. coli 6-

phytase expressed in Trichoderma reesei with an expected activity of 5,000 FTU/g (Quantum 

Blue, AB Vista Feed Ingredients, Marlborough, UK).     

All feed ingredients were analyzed prior to mixing for a total mineral analysis and 

proximate analysis (Table 5).  Feed samples were taken at the University of Arkansas Feed Mill 

post-pelleting.  Samples were analyzed for phytate level and phytase activity by AB Vista (Table 

16).   

Response Variables 
 

Birds were weighed by pen prior to placement, on day 18 and day 35 to determine body 

weight (BW) and calculate average body weight gain.  Feed intake was also measured from day 

1 to day 17 and day 18 to 35 and used to calculate FCR.  Mortality was recorded daily, and any 

mortality was weighed.  Thus, FCR was adjusted according to mortality.  Furthermore, feed 

conversion ratios were also adjusted to the overall average body weight of the PC group for the 

grower and starter phases and adjusted using 27 g = 0.01 FCR (AFCR). Birds for sampling were 

euthanized via rapid cervical dislocation on days 17 and 35 for collection of tibias, liver, breast, 

thigh and gizzard digesta. 

Bone Ash and Mineral Analysis 
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The left tibia was removed from birds euthanized from each pen on day 17 and day 35.  

All muscle and adhering tissues was removed using cheese cloth.  Following bone cleaning, the 

tibias were cut into approximately a 30/70 division, with the proximal tibia representing the 30 % 

and the remaining distal bone representing the other 70 %.  Tibias were pooled by pen and the 

proximal and distal sections were kept separate for each step.  Bone weights were taken for 

pooled proximal and distal tibia sections prior to drying. 

All bone sections were then dried in an oven at 100o C for 24 hours, along with crucibles.  

After drying, a dry weight for each crucible and pooled proximal and distal bone sections were 

recorded.  Dried tibias were then ashed in a muffle furnace for 24 hours at 600oC to determine 

bone ash.     

Thiobarbituric Acid-Reactive Substances (TBARS) Assay  
 

 Frozen breast, thigh and liver samples were removed from the freezer and set on a room 

temperature surface for 1 hour and covered with a cotton towel.  Once samples displayed some 

slack (not thawed) they were placed in the refrigerator and the analysis was promptly performed. 

 Duplicates from each pooled liver, breast (Pectoralis major) and thigh (Iliotibialis ) were 

run and duplicates from each sample were run for absorbance.  Two grams of minced meat from 

each pooled sample was weighed out and placed in a labeled 50 mL disposable polypropylene 

centrifuge tube.  The exact weight was recorded.  Next, 8 mL of prepared phosphate buffer 

(Appendix 1) and 2 mL of TCA reagent (Appendix 2) was added to the tube and the contents 

were homogenized for 20 to 30 seconds.  The homogenate was then filtered using Whatman (No. 

4) filter paper into labeled 15 mL disposable polypropylene centrifuge tubes.  Next, 2 mL of the 

sample filtrate was pipette into a labeled 16 x 100 mm borosilicate glass culture tubes in 
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duplicates.  Two mL of the prepared TBA reagent (Appendix 3) was added to each sample tube, 

blanks and standards.  The tubes were then covered with aluminum foil and placed into a hot 

water bath (100oC) for 20 minutes.  Afterwards, the sample tubes were removed from the water 

bath and placed on ice for 15 minutes.  Absorbance was then read at 533 nm with a UV-1201 sip 

spectrophotometer. 

Statistical Analysis 
 

Data were analyzed by a one-way treatment structure with a randomized complete block 

design.  The analysis of variance was analyzed by the following model: 

 Yijk = µ + Treatmenti + Blockj + eijk 

Where µ is the common mean; Treatmenti is the effect of the ith dietary treatment; Blockj is the 

effect of the jth block; and eijk is the random error.  Block by treatment interactions were found to 

be insignificant, therefore, the model was reduced.  The pen of broilers served as the 

experimental unit.  In this experiment, treatments were blocked from the tunnel inlet to the 

tunnel fans with each treatment represented by 8 replicate pens. Least square means were 

compared using preplanned orthogonal contrasts and statements of significant difference are 

based on α = 0.05, as generated through the General Linear Models Procedure of SAS (SAS 

Institute Inc., Cary, NC). 

Results and Discussion 
 

 Analysis of phytase recovery confirmed all diets were within an expected range for 

phytase activity (Table 16).   

Bird Performance 
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Male broiler performance from 1-17 days is summarized in Table 17.  Broilers fed the 

NC diet did not display reduced performance or feed intake at day 17 when compared to broilers 

fed the PC diet.  From 1 to 17 days of age, birds fed diets with 1,500 FTU/kg displayed a 

reduced (P ≤ 0.046) FCR (1.24) and AFCR (1.24) than those fed diets with 500 FTU/kg (1.27 

and 1.26, respectively).  Furthermore, broilers fed diets with either 500 or 1,500 FTU/kg of 

phytase had greater (P = 0.004) BW gain and subsequently greater (P = 0.003) BW than birds 

fed diets without phytase supplementation.  In addition, birds fed diets with phytase 

supplementation also displayed a reduced (P ≤ 0.017) FCR and AFCR when compared to 

broilers not supplemented with phytase.  As seen in other studies, reduced FCR with 1,500 

FTU/kg of phytase compared with 500 FTU/kg is indicative of extra-phosphoric effects.     

 Male broiler performance for 1-35 days is summarized in Table 18.  The effects of 

increasing or decreasing exogenous phytase level on growth performance between the starter and 

grower diets were determined at day 35.  A trend for reduced feed intake (P = 0.059) and a 

significant decrease (P = 0.05) BW gain and BW was observed by day 35 for birds on the NC 

diet when compared to broilers on the PC diets.  In addition, supplementing phytase improved (P 

≤ 0.004) BW, BW gain, FCR and AFCR when compared to both the PC and NC birds.  

However, feed intake, BW gain, FCR and AFCR of the broilers was not affected (P > 0.05) by 

increasing or decreasing phytase level between the starter and grower phases.   

Similar to Gehring et al. (2014) an advantage in FCR was seen in the first phase (starter 

diet) for the birds fed 1,500 FTU/kg , but by 35 d of age this advantage was no longer 

statistically significant when compared to birds fed 500 FTU/kg for the duration of the study.  In 

addition, Gehring et al. (2014) also demonstrated that increasing phytase concentration after the 

starter phase (14 d) or decreasing phytase after the grower phase (28 d) increased feed 
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conversion.  The positive impact of higher doses of phytase supplementation through all feeding 

periods has been well documented.  However, it appears that there may be a possible strategy of 

phase-feeding phytase, if desired.  The use of 1,500 FTU/kg during the starter period and 

reduction to 500 FTU/kg around the inflection point of the growth curve did not have a negative 

statistical impact on bird performance when compared to birds fed 1,500 FTU/kg to 35 d of age 

in this study and in the step-up/step-down study performed by Gehring et al. (2014).  This 

strategy should be dependent on the economic impact, market prices and phytase efficacy.  

Nevertheless, additional research should be performed to determine if a more gradual 

decrease/increase in phytase concentration produces similar effects or alleviates the negative 

results of changing phytase concentration.  It would also be advantageous to determine the 

impact of changing phytase concentrations in feeding periods for older birds.               

Bone Ash and Mineral Analysis 
 

 Proximal, distal and total tibia ash weights and percentages for broilers to 17 d of age are 

summarized in Table 19.  Birds fed the NC diet displayed a reduced (P ≤ 0.007) distal and total 

tibia ash percentage (51.99 and 48.94 %, respectively) when compared to birds fed the PC diet 

(53.90 and 50.51 %, respectively).  In addition, birds fed diets with 1,500 FTU/kg of phytase had 

greater (P ≤ 0.008) proximal, distal and total tibia ash weight and percentage when compared to 

that of broilers bed diets with 500 FTU/kg.  Furthermore, broilers fed diets with phytase 

supplementation displayed significantly (P ≤ 0.031) more distal and total tibia ash weight when 

compared to their counterparts on diets without phytase supplementation.      

The effect of increasing or decreasing phytase level on proximal, distal and total tibia ash 

weights and percentages for broiler to 35 d of age are summarized in Table 20.  Birds fed the NC 

diet had depressed (P < 0.001) tibia ash weights and percentages for the proximal, distal and total 
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tibia when compared to birds fed the PC diet.  It was observed that by increasing the phytase 

level from 500 FTU/kg in the starter diet to 1,500 FTU/kg in grower diet showed a subsequent 

increase (P ≤ 0.040) in proximal and total tibia ash percentage (42.45 and 47.33 %, respectively) 

when compared to birds fed diets with 500 FTU/kg of phytase for the duration of the study 

(41.34 and 46.11 %, respectively) without a statistically detectable difference (P > 0.126) in tibia 

ash weight.  On the other hand, birds fed a diet with 500 FTU/kg in the grower diet after being 

fed 1,500 FTU/kg of phytase in the starter diet maintained similar (P ≥ 0.130) tibia ash 

parameters compared to broilers fed 1,500 FTU/kg of phytase for the duration of the study.  

Tibia ash mineral content of male broilers at 17 d of age is summarized by proximal 

(Table 21) and distal (Table 22) portions.  There were no statistically detectable differences 

observed for the proximal or distal tibia ash mineral content between birds fed the PC and NC 

diets (P > 0.05), however, the 42.05 % Ca and 529.38 ppm Zn observed in proximal tibia portion 

of the PC birds displayed a trend (P ≤ 0.096) for increased Ca and Zn when compared to the 

broilers fed the NC diet (38.15 % and 482.13 ppm, respectively).  Oddly, birds fed diets with 

1,500 FTU/kg of phytase showed decreased proximal tibia ash concentrations of P, Zn, Cu, Fe 

and Mg when compared to birds fed diets with 500 FTU/kg of phytase, but when observed on a 

quantitative basis, no differences exist.  However, in the distal tibia ash portion birds on diets 

with 1,500 FTU/kg of phytase had increased (P = 0.017) Mn content (9.95 ppm) when compared 

to birds on diets with 500 FTU/kg (8.51 ppm).  Finally, birds supplemented with phytase showed 

increased (P = 0.001) levels of Mn in the proximal tibia ash portion, as well as increased (P ≤ 

0.001) levels of Zn, Mg and Mn in the distal tibia ash portion when compared to birds that were 

not supplemented with phytase.   
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Tibia ash mineral content of male broilers at 35 d of age is summarized by proximal 

(Table 23) and distal (Table 24) portions.  There were minimal statistically detectable differences 

observed between birds fed the PC and NC diets, with NC birds displaying a greater (P ≤ 0.027) 

concentration of distal tibia ash Fe and K (387.13 ppm and 1.08 %, respectively) content when 

compared to their counterparts on the PC diet (308.38 ppm and 0.86 %, respectively).  By 

increasing the phytase concentration from 500 FTU/kg in the starter diet to 1,500 FTU/kg in the 

grower diet compared to birds fed 500 FTU/kg of phytase for the duration of the study there was 

a subsequent increase (P < 0.05) in proximal tibia ash P (17.24 % vs. 16.97 %, respectively) and 

distal tibia ash Mn (6.11 vs. 4.44 ppm, respectively) concentrations.  Moreover, by decreasing 

the phytase concentration from 1,500 FTU/kg in starter diet to 500 FTU/kg in grower diet 

compared to birds fed 1,500 FTU/kg of phytase for the duration of the study there was a 

subsequent decrease (P ≤ 0.048) in proximal and distal tibia ash Mn concentration; as well as a 

trend for decreased (P ≤ 0.078) distal tibia ash Zn and Mg concentrations.  Finally, birds fed 

diets with phytase supplementation for the duration of the study had greater (P < 0.05) proximal 

and distal tibia ash Mn and Mg concentrations when compared to birds that were not 

supplemented with phytase.   

       Bone tissue is dynamic and can be impacted by numerous factors including 

nutritional, physiological and physical factors (Rath et al., 2000).  In addition, growth has been 

shown to proportionally impact bone mass (Frost, 1997; Seeman, 1999).  Nonetheless, phytate 

has been shown to hinder Ca and P absorption (Vohra, 1965; Nelson and Kirby, 1987; Tamim 

and Angel, 2003; Tamim et al., 2004), which are the primary inorganic nutrients in the bone 

mineral matrices (Rath et al., 2000).  Diets considered low in Ca and avP have been shown to 

negatively affect bone ash, but the addition of phytase alleviates this dilemma by releasing Ca 
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and P from Ca-phytate complexes.  By replacing inorganic Ca and P with phytase is important 

not only from a feed-cost standpoint, but also from a welfare point-of-view.  In fast growing 

broilers, it has been suggested that bone development cannot fully keep pace with weight 

accumulation, causing a predisposition to bone deformations.  Bone ash content has been used as 

an index of bone strength (Rath et al., 2000), which should limit leg lameness and bone breaks 

during processing.       

Thiobarbituric Acid-Reactive Substances (TBARS) 
 

 Thiobarbituric acid-reactive substances analysis for male broilers at 35 d of age is 

summarized in Table 25.  Broilers fed the NC diet actually had a lower (P = 0.003) MDA 

concentration in the hepatic tissue (1.248 mg/kg) when compared to birds fed the PC diet (1.711 

mg/kg).  In addition, birds 500 FTU/kg of phytase for the duration of the study had a lower MDA 

breast content (0.486 mg/kg) when compared to birds fed treatment 4.  Finally, phytase 

supplementation actually increased (P = 0.018) breast MDA content when compared to broilers 

fed diets without phytase supplementation.  These findings contradict the first study where 

phytase supplementation did not impact (P = 0.520) breast MDA but also reduced thigh MDA.  

  Thiobarbituric acid-reactive substances analysis is useful method to determine MDA, 

which is a product of lipid oxidation.  Karadas et al. (2010) demonstrated that phytase 

supplementation increased hepatic levels of ascorbic acid, coenzyme Q10 and β-carotene, all of 

which limit the formation of MDA (Leibovitz et al., 1990).  For this study, phytase 

supplementation did not improve MDA concentrations as expected.  However, TBARS analysis 

is also known to react with other sugars and lactones present in the tissue (Raharjo and Sofos, 

1993).  Further research should be performed to assess phytase supplementation impact on the 

antioxidant status of tissues.  This should include the use of fresh tissue that is flash frozen in 
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liquid NO2 and utilize a complete oxidative stress model measuring antioxidant capacity and 

lipid and protein oxidation.  There are indications that phytase may improve these levels, which 

would ultimately impact the efficiency of growing broilers (Iqbal et al., 2004; Bottje and Kong, 

2012).  

Conclusion 
 

 The use of high doses of phytase supplementation has shown to positively impact growth 

performance for broilers.  However, limiting feed cost is economically important for integrators 

and one method of cost-reduction may be reducing enzyme cost.  However, it is important to 

determine periods of broiler grow-out that this would be useful without negatively affecting 

growth.  Therefore, by supplementing higher concentrations of phytase during the starter period 

then reducing the level in subsequent feeds may lead to saving in enzyme use, given the smaller 

amount of feed consumed in the starter period and if the extra-phosphoric benefits also occur 

during the stage (Gehring et al., 2014).  Alternatively, high phytase concentrations may become 

important during the linear portion of the growth curve for a broiler (Gous et al., 1999).  

However, from this study and Gehring et al. (2014), the most efficacious approach is to 

supplement a high dose of phytase during the starter period and reduce to 500 FTU/kg of phytase 

around 14-17 d of age.  Birds fed with this method of phase-feeding did not experience a 

diminished growth performance to 35 d when compared to birds fed diets with 1,500 FTU/kg of 

phytase.  It appears that cost reduction by phytase inclusion may be possible; however, further 

research should be used to determine if smaller increases and decrease in phytase 

supplementation create similar results or alleviates some changes seen in phytase 

supplementation.  Furthermore, it would also be advantageous to determine the impact of 

changing phytase concentrations in feeding periods for older birds.  
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Table 1:  Phytate-P % of various feed ingredients.       
Feed Ingredients Phytate-P (%) Phytate-P (% of total P) 
Cereals Ravindran et 

al., (1995) 
Nelson et 
al., (1968) 

Ravindran et 
al., (1995) 

Nelson et 
al., (1968) 

Barley (Hordeum vulgare) 0.27 0.19 64 56 
Corn/Maize (Zea mays) 0.23 0.17 74 66 
Oats (Avena sativa) 0.29 0.19 67 56 
Rice (Oryza sativa), polished 0.09 - 51 - 
Rice (Oryza sativa), unpolished 0.27 - 77 - 
Broken rice 0.09 - 60 - 
Sorghum (Sorghum vulgare) 0.24 0.21 66 68 
Wheat (Triticum aestivum) 0.27 0.20 69 67 

Cereal by products     
   Rice bran 1.03 1.44 80 86 
   Rice polish 1.08 - 84 - 
   Wheat bran 0.81 0.96 73 70 
Roots and Tubers     

Cassava (Mannihot esculenta) root 
meal 

0.04 - 28 - 

Potato (Solanum tuberosum) tubers 0.24 - 21 - 
Sweet potato (Ipometa batatas)             
tuber meal 

0.05 - 24 - 

Grain legumes     
Chick peas (Cicer arieticum) 0.21 - 51 - 
Cowpeas (Vigna unguiculata) 0.26 - 79 - 
Lentils (Lens culinaris) 0.31 - 65 - 

Oil seed meals     
   Cotton seed (Gossypium sps.) meal 0.84 0.75 70 70 

Rapeseed meal (Brassica sps.) 
meal 

0.70 - 59 - 

   Soybean (Glycine max) meal 0.39 0.37 60 58 
Sunflower (Helianthus annus) 
meal 

0.89 - 77 - 

Other     
Alfalfa (Medicago sativa) meal 0.02 < 0.01 12 0 

   Corn gluten meal 0.41 0.35 59 60 
   Isolated soy protein 0.48 0.48 60 60 
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Table 2:  Solubility of inositol phosphate esters in the intestinal chyme of pigs (Schlemmer et 
al., 2001) 
IP Ester Small Intestine (pH 6.6) Large Intestine (pH 6.2) 
IP6 2 % 2 % 
IP5 7 % 3 % 
IP4 8 % 0 % 
IP3 31 % 6 % 
IP2 75 % 24 % 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3:  Temperature and ventilation curves utilized during grow-out of Cobb 500 males 
broilers. 

Day Temperature (F) Minimum Ventilation (sec.) 
-2 92 30:330 
1 90 30:330 
3 90 45:280 
7 85 60:120 
14 81 78:102 
18 80.7 91:89 
21 78 97:83 
28 71 107:73 
35 68 125:60 

Minimum ventilation is depicted as on:off time (seconds). 
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Table 4:  Ingredient and calculated nutrient composition of diets provided to Cobb 500 male 
broilers from 1 to 18 d of age. 
 Low Phytate-P Basal High Phytate-P Basal 

Ingredient (%)   
Corn 62.04 52.10  
Soybean Meal 19.55 36.37  
DDGS --- 0.34  
Meat and Bone Meal 1.93 ---  
Poultry Meal 5.00 ---  
Rice Bran --- 5.00  
Corn Starch 5.01 ---  
Isolated Soy Protein 4.00 ---  
Fat 0.50 3.30  
Salt 0.15 0.32  
Sodium Bicarbonate 0.10 0.10  
DL-Methionine 0.30 0.30  
Lysine HCl 0.20 0.15  
L-Threonine 0.02 0.03  
Limestone 0.95 0.98  
Dicalcium Phosphorus --- 0.76  
Nicarb1 0.04 0.04  
Choline Chloride 60 0.05 0.05  
Vitamin Premix2 0.10 0.10  
Mineral Premix3 0.10 0.10  
Xylanase4 0.01 0.01  

    
Calculated nutrient composition   

ME kcal/kg 3095 3085  
Crude Protein % 21.44 21.60  
Digestible Lys 1.19 1.19  
Digestible Met 0.58 0.57  
Digestible TSAA 0.89 0.89  
Digestible Thr 0.77 0.77  
Digestible Val 0.89 0.92  
Digestible Trp 0.23 0.23  
Calcium % 0.75 0.75  
Phosphorus % 0.49 0.62  
Available Phosphorus  0.26 0.26  
Na 0.17 0.17  
Phytate-P % 0.21 0.31  

Analyzed    
Ca % 0.81 0.80  
P % 0.55 0.68  
Na % 0.16 0.17  
Phytate-P % 0.21 0.37  
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1 Nicarb (Phibro Animal Health, Ridgefield Park, NJ) provided 0.01 % nicarbazin 
2Vitamin premix provides per kilogram of diet:  vitamin A (vitamin A acetate) 7715 IU; 
cholecalciferol 5511 IU; vitamin E (dl-alpha-tocopheryl acetate) 16.53 IU; vitamin B12 0.013 
mg; riboflavin 6.6 mg; niacin 39 mg; pantothenic acid 10 mg; menadione 
(menadionedimethylpyrimidinol) 1.5 mg; folic acid 0.9 mg; choline 1000 mg; thiamin (thiamin 
mononitrate 1.54 mg; pyridoxine (pyridoxine HCl) 2.76 mg; d-biotin 0.066 mg; ethoxyquin 125 
mg.   
3Mineral premix provides per kilogram of diet:  calcium (calcium carbonate) 55.5 mg; 
manganese (manganese sulfate) 100 mg; magnesium (magnesium oxide) 27 mg; zinc (zinc 
sulfate) 100 mg; iron (ferrous sulfate) 50 mg; copper (copper sulfate) 10 mg; iodine (calcium 
iodate) 1 mg.   

4Econase XT (AB Vista Feed Ingredients, Marlborough, UK) supplied at 8,000 U/kg. 
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Table 5:  Proximate and mineral analyses for ingredients used in experimental diets for Cobb 500 male broilers. 
 Corn Soybean 

Meal 
DDGS Meat and 

Bone Meal 
Corn Starch Rice Bran Poultry 

Meal 
Isolated 

Soy Protein 
Ash % 1.15 6.45 4.49 22.45 0.13 9.50 13.44 3.84 
Fat % 3.03 1.23 7.65 12.08 0.05 18.46 12.42 1.90 
Moisture % 14.66 13.05 14.77 3.58 11.01 11.59 4.15 4.34 
Protein % 6.99 46.5 27.63 58.29 0.10 13.12 66.17 80.41 
         
Calcium % 0.0183 0.4696 0.0329 6.03 < 0.01 0.05 3.03 0.14 
Copper ppm 1 14.7 6.86 34 < 1 4 28 12 
Iron ppm  167 164 493 < 1 106 268 111 
Magnesium ppm 979 3061.5 3255 1800 < 1 0.74 0.13 0.05 
Manganese ppm 7.02 40.9 19.4 20 < 1 177 15 13 
Phosphorus % 0.293 0.6563 0.92 3.22 0.02 1.60 1.84 0.73 
Potassium % 0.3262 2.2062 1.1907 0.54 < 0.01 1.42 0.73 0.15 
Sodium % 0.0014 0.00192 0.2533 0.69 0.03 <0.01 0.42 0.90 
Zinc ppm 20.9 53.7 72.4 172 < 1 55 100 23 
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Table 6:  Analyzed levels of phytate-P %, total phytate, phytase activity and xylanase activity 
for finished feeds. 
Dietary Variables   
Phytate-P Phytase  Phytate-P Total Phytate Phytase Xylanase 
(%) (FTU/kg)  (%) (%) (FTU/kg) (BXU/kg) 
       
0.21 0  0.205 0.732 <50 12000 
0.21 500  0.205 0.732 788 9500 
0.21 1500  0.205 0.732 2340 10800 
0.31 0  0.368 1.314 <50 11400 
0.31 500  0.368 1.314 600 9500 
0.31 1500  0.368 1.314 2320 10000 
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Table 7:  Male broiler performance1 1-18 days when fed diets varying in dietary phytate-P %2 
level and phytase3 level supplementation. 
Dietary Variables  Live Performance 
Phytate-P Phytase  Feed 

Intake 
BW BW Gain FCR3 AFCR4 Mortality 

(%) (FTU/kg) (kg) (kg) (kg) (kg:kg) (kg:kg) (%) 
        
0.21  0 0.719 0.557 0.507 1.29a 1.30a 8.93  
0.21 500 0.755 0.609 0.562 1.23c 1.23c 3.57  
0.21 1500 0.807 0.634 0.586 1.26ab 1.25bc 4.76  
0.31  0 0.716 0.558 0.512 1.28a 1.30a 2.38  
0.31 500 0.787 0.608 0.561 1.29a 1.29ab 1.78  
0.31 1500 0.828 0.661 0.613 1.24bc 1.22c 4.76  
SEM  0.018 0.014 0.014 0.01 0.01 1.73  
         
0.21  0.760 0.600 0.552 1.26 1.26 5.75  
0.31  0.777 0.609 0.562 1.27 1.27 2.98  
SEM  0.002 0.008 0.008 0.01 0.01 0.10  
         
 0 0.717c 0.557c 0.509c 1.28 1.30 5.65  
 500 0.771b 0.608b 0.562b 1.26 1.26 2.68  
 1500 0.817a 0.647a 0.600a 1.25 1.24 4.76  
 SEM 0.012 0.010 0.010 0.01 0.01 1.22  
         
Probabilities         
Phytase  < 0.001 < 0.001 < 0.001 0.013 < 0.001 0.222  
Phytate    0.273 0.425   0.368 0.265 0.414 0.056  
Phytase x Phytate   0.624 0.533   0.585 < 0.001 0.011 0.160  
1 Values are least square means of 8 replicate pens with 21 broilers per pen at 1 day of age. 
2Dietary phytate-P level represents diets formulated to either 0.21 or 0.31 % dietary phytate-P.  
3Phytase level represents diets containing 0, 500 or 1,500 FTU/kg added Quantum Blue phytase 
(AB Vista, Marlborough, UK). 

4FCR represents feed conversion corrected for the weight of the mortality.   
5AFCR represents feed conversion adjusted to the overall average body weight (27 g = 0.01 
FCR) 

a-c Means with differing superscripts are significantly (P ≤ 0.05) different. 
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Table 8:  Linear regression slope and intercept values of live performance parameters for male 
broiler fed diets varying in dietary phytate-P %1 level and phytase2 level supplementation.  
Regression  Live Performance 
Variables  Feed 

Intake 
BW BW Gain FCR3 AFCR4 Mortality 

 (kg) (kg) (kg) (kg:kg) (kg:kg) (%) 
 

Phytase 0.21 % 
slope 0.06* 0.04744* 0.0487* -0.00001 -0.00002 -0.0022 
intercept 721.55* 567.98* 519.10* 1.27* 1.27* 7.23* 
       
Phytase 0.31 % 
slope 0.07* 0.06686* 0.0657* -0.00002* -0.00005* 0.0018 
intercept 730.03* 564.34* 518.33* 1.29* 1.30* 1.79 
       
Equivalent Slope 
Probabilities 

 
0.615 

 
0.306 0.373 

 
0.254 0.130 

 
0.090 

1Dietary phytate-P level represents diets formulated to either 0.21 or 0.31 % dietary phytate-P.  
2Phytase level represents diets containing 0, 500 or 1,500 FTU/kg added Quantum Blue phytase 
(AB Vista, Marlborough, UK). 

3FCR represents feed conversion corrected for the weight of the mortality.   
4AFCR represents feed conversion adjusted to the overall average body weight (27 g = 0.01 
FCR) 

*Represents slope or intercept that is significantly (P ≤ 0.05) different from zero. 
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Table 9:  Tibia ash1 for male broilers fed diets varying in dietary phytate-P %2 level and phytase3 
level supplementation.   
Dietary Variables  Tibia Ash 
Phytate-P Phytase  Proximal Distal Total 
(%) (FTU/kg)  (g) (%) (g) (%) (g) (%) 
         
0.21 0  0.172 34.26 0.357 44.96 0.529 40.82 
0.21 500  0.209 35.23 0.428 45.85 0.637 41.72 
0.21 1500  0.224 35.39 0.473 46.76 0.697 42.38 
0.31 0  0.183 33.13 0.373 44.12 0.555 39.79 
0.31 500  0.200 33.90 0.426 46.56 0.625 41.60 
0.31 1500  0.218 35.14 0.461 46.95 0.679 42.38 
SEM   0.008   0.56 0.017   0.52 0.024   0.50 
         
0.21   0.202 34.96 0.420 45.86 0.621 41.64 
0.31   0.200 34.06 0.420 45.88 0.620 41.26 
SEM   0.005   0.32 0.010   0.30 0.014   0.29 
         
 0  0.177c 33.70b 0.365c 44.54b 0.542c 40.31b 
 500  0.204b  34.57ab 0.427b 46.20a 0.631b 41.66a 
 1500  0.221a 35.26a 0.467a 46.86a 0.688a 42.38a 
 SEM     0.006  0.40 0.012  0.37    0.017 0.35 
         
Probabilities 
Phytase < 0.001 0.027  < 0.001 < 0.001  < 0.001  < 0.001 
Phytate 0.806 0.056   0.979 0.963   0.948   0.349 
Phytase x Phytate 0.394 0.593   0.712 0.327   0.597   0.536 
1Values are least square means of 3 birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 
2Dietary phytate-P level represents diets formulated to either 0.21 or 0.31 % dietary phytate-P. 
3Phytase level represents diets containing 0, 500 or 1,500 FTU/kg added Quantum Blue phytase 
(AB Vista, Marlborough, UK). 

a-cMeans with differing superscripts are significantly (P ≤ 0.05) different. 
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Table 10:  Proximal tibia ash mineral analysis1 for male broilers fed diets varying in dietary phytate-P2 level and phytase3 level 
supplementation.   
Dietary Variables  Proximal Tibia Ash Mineral Content 
Phytate-P Phytase   Ca P Zn Cu Fe K Mg Mn Na S 

(%) (FTU/kg)  % % ppm ppm ppm % % ppm % % 
             
0.21 0  33.17 17.97 441.00 4.94 346.25 3.65 0.81 6.99 1.46 0.84 
0.21 500  33.19 18.05 440.25 4.40 341.88 3.80 0.83 5.92 1.47 0.86 
0.21 1500  33.31 18.05 436.88 4.20 349.63 3.64 0.84 6.10 1.45 0.85 
0.31 0  33.66 18.22 413.50 5.61 385.38 3.89 0.84 5.52 1.54 0.91 
0.31 500  32.65 18.05 432.00 5.12 349.38 3.83 0.87 5.66 1.44 0.83 
0.31 1500  33.15 18.20 441.75 3.39 342.50 3.85 0.88 6.50 1.41 0.83 
SEM     0.35   0.18   10.87 0.68   21.72 0.14 0.02 0.76 0.05 0.03 
             
0.21   33.22 18.02 439.38 4.52 345.92 3.70 0.83b 6.34 1.46 0.85 
0.31   33.16 18.16 429.08 4.71 359.08 3.86 0.86a 5.89 1.47 0.86 
SEM     0.20   0.11     6.28 0.39   12.54 0.08 0.01 0.44 0.03 0.02 
             
 0  33.42 18.09 427.25 5.28 365.81 3.77 0.83 6.29 1.50 0.88 
 500  32.92 18.05 436.13 4.76 345.63 3.82 0.85 5.79 1.45 0.84 
 1500  33.23 18.13 439.31 3.79 346.06 3.74 0.86 6.30 1.43 0.84 
 SEM    0.25   0.13     7.69 0.48   15.36 0.10 0.01 0.54 0.03 0.02 

 
Probabilities 
Phytase 0.372 0.919 0.522 0.097 0.573 0.881 0.214 0.405 0.346 0.342 
Phytate 0.804 0.371 0.253 0.735 0.462 0.177 0.034 0.200 0.848 0.755 
Phytase x Phytate 0.346 0.807 0.336 0.447 0.558 0.750 0.956 0.089 0.389 0.217 
1Values are least square means of 3 birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 
2Dietary phytate-P level represents diets formulated to either 0.21 or 0.31 % dietary phytate-P. 
3Phytase level represents diets containing 0, 500 or 1500 FTU/kg added Quantum Blue phytase (AB Vista, Marlborough, UK). 
a-cMeans with differing superscripts are significantly (P ≤ 0.05) different. 
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Table 11:  Distal tibia ash mineral analysis1 for male broilers fed diets varying in dietary phytate-P2 level and phytase3 level 
supplementation.   
Dietary Variables  Distal Tibia Ash Mineral Content 
Phytate-P Phytase   Ca P Zn Cu Fe K Mg Mn Na S 

(%) (FTU/kg)  % % ppm ppm ppm % % ppm % % 
             
0.21 0  34.07 17.32 416.13 2.35 219.25 1.72 0.70 3.17 1.25 0.74 
0.21 500  34.04 17.50 405.00 1.76 225.13 1.72 0.73 2.58 1.22 0.70 
0.21 1500  34.24 17.59 423.63 1.34 216.38 1.75 0.75 2.70 1.19 0.71 
0.31 0  34.33 17.56 392.00 2.57 238.25 1.81 0.73 2.16 1.31 0.78 
0.31 500  34.04 17.61 409.00 3.90 202.00 1.69 0.77 2.29 1.21 0.72 
0.31 1500  33.91 17.59 419.88 2.05 224.75 1.78 0.78 3.17 1.23 0.73 
SEM     0.51   0.13     7.39 1.05   13.68 0.05 0.01 0.38 0.03 0.01 
             
0.21   34.12 17.47 414.92 1.82 220.25 1.73   0.73b 2.81 1.22 0.72 
0.31   34.10 17.59 406.96 2.84 221.67 1.76   0.76a 2.54 1.25 0.74 
SEM     0.29   0.08     4.27 0.61     7.90 0.03 0.01 0.22 0.02 0.01 
             
 0  34.20 17.44 404.06b 2.46 228.75 1.76   0.72b 2.66  1.28a  0.76a 
 500  34.04 17.55 407.00b 2.83 213.56 1.70   0.75a 2.43  1.21b  0.71b 
 1500  34.08 17.59 421.75a 1.69 220.56 1.76   0.77a 2.94  1.21b  0.72b 
 SEM    0.36   0.09    5.22 0.74     9.67 0.03  0.01 0.27 0.02 0.01 

 
Probabilities 
Phytase 0.947 0.529 0.047 0.548 0.544 0.348 0.005 0.424 0.024 0.035 
Phytate 0.959 0.279 0.194 0.241 0.900 0.437 0.005 0.382 0.157 0.081 
Phytase x Phytate 0.847 0.665 0.157 0.640 0.288 0.402 0.978 0.161 0.412 0.867 
1Values are least square means of 3birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 
2Dietary phytate-P level represents diets formulated to either 0.21 or 0.31 % dietary phytate-P. 
3Phytase level represents diets containing 0, 500 or 1500 FTU/kg added Quantum Blue phytase (AB Vista, Marlborough, UK). 
a-cMeans with differing superscripts are significantly (P ≤ 0.05) different. 
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Table 12:  Thiobarbituric acid-reactive substances (TBARS) analysis for liver, breast and thigh 
tissues1 of male broilers fed diets varying in dietary phytate-P2 level and phytase3 level 
supplementation.       
Dietary Variables  TBARS 
Phytate-P Phytase  Liver Breast Thigh 
(%) (FTU)  mg malonaldehyde/kg of tissue 
      
0.21 0  1.209 0.595 2.228 
0.21 500  1.059 0.723 2.021 
0.21 1500  1.027 0.686 1.632 
0.31 0  1.332 0.756 2.094 
0.31 500  1.320 0.786 2.094 
0.31 1500  1.213 0.683 2.017 
SEM   0.063 0.077 0.122 
      
0.21   1.098b 0.668 1.960 
0.31   1.288a 0.742 2.068 
SEM   0.037 0.044 0.071 
      
 0  1.271 0.676 2.161a 
 500  1.190 0.755 2.057ab 
 1500  1.120 0.684 1.825b 
 SEM  0.046 0.054 0.086 
      
Probabilities     
Phytase  0.065 0.520 0.020 
Phytate            < 0.001 0.241 0.281 
Phytase x Phytate  0.557 0.562 0.102 
1Values are least square means of 3birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 

2Dietary phytate-P level represents diets containing either 0.21 or 0.31 % dietary phytate-P. 
3Phytase level represents diets containing 0, 500 or 1500 FTU/kg added Quantum Blue phytase 
(AB Vista, Marlborough, UK). 

a-cMeans with differing superscripts are significantly (P ≤ 0.05) different. 
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Table 13:  Gizzard phytate, phytate esters and inositol concentrations1 of male broilers fed diets 
varying in dietary phytate-P2 level and phytase3 level supplementation.       
Dietary Variables   
Phytate Phytase  IP6 IP5 IP4 Inositol 
(%) (FTU)  nmol/g of dry weight 
       
0.21 0  2.436 1.771 1.713 2.801 
0.21 500  2.229 1.275 2.227 3.075 
0.21 1500  1.069 0.203 0.671 3.262 
0.31 0  2.786 2.206 2.253 2.788 
0.31 500  1.934 0.434 1.721 3.306 
0.31 1500  1.514 0.372 0.969 3.300 
SEM   0.246 0.273 0.297 0.073 
       
0.21   1.912 1.083 1.537 3.046 
0.31   2.078 1.004 1.648 3.131 
SEM   0.142 0.158 0.171 0.042 
       
 0  2.611a 1.988a 1.983a 2.794b 
 500  2.082b 0.855b 1.974a 3.191ab 
 1500  1.292c 0.288c 0.820b 3.281a 
 SEM  0.174 0.193 0.210 0.051 
       
Probabilities      
Phytase       < 0.001     < 0.001     < 0.001     < 0.001 
Phytate   0.411 0.725 0.650 0.158 
Phytase x Phytate  0.272 0.058 0.194 0.221 
1Values are least square means of 3birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 

2Dietary phytate-P level represents diets containing either 0.21 or 0.31 % dietary phytate-P. 
3Phytase level represents diets containing 0, 500 or 1500 FTU/kg added Quantum Blue phytase 
(AB Vista, Marlborough, UK). 

a-cMeans with differing superscripts are significantly (P ≤ 0.05) different. 
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Table 14:  Correlation (r) values between gizzard inositol-phosphate ester concentrations and growth performance tibia ash variables. 

 
Feed 

Intake 
(kg) P-Value 

BW 
 (kg) P-Value 

BW Gain 
(kg) P-Value 

FCR 
(kg:kg) P-Value 

AFCR 
(kg:kg) P-Value 

           
IP6 -0.326 0.024 -0.377 0.008 -0.378 0.008 0.161 0.275 0.269 0.064 
IP5 -0.383 0.007 -0.396 0.005 -0.402 0.005 0.100 0.500 0.184 0.212 
IP4 -0.253 0.083 -0.278 0.056 -0.274 0.059 0.031 0.836 0.174 0.236 
Inositol 0.320 0.027 0.325 0.240 0.327 0.023 -0.152 0.304 -0.184 0.210 
 

Table 14 (cont.) 

 
Proximal 

Ash 
 (g) P-Value 

Proximal 
Ash 
 (%) P-Value 

Distal 
Ash  
(g) P-Value 

Distal 
Ash  
(%) P-Value 

Total Ash 
(g) P-Value 

           
IP6 -0.380 0.008 -0.316 0.029 -0.336 0.020 -0.357 0.013 -0.358 0.013 
IP5 -0.436 0.002 -0.243 0.096 -0.406 0.004 -0.407 0.004 -0.425 0.003 
IP4 -0.217 0.138 -0.138 0.349 -0.229 0.118 -0.165 0.262 -0.230 0.115 
Inositol 0.339 0.018 0.119 0.422 0.329 0.022 0.250 0.086 0.340 0.018 
 

Table 14 (cont.) 

 
Total Ash 

(%) P-Value         
           
IP6 -0.355 0.013         
IP5 -0.352 0.014         
IP4 -0.168 0.254         
Inositol 0.203 0.167         
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Table 15:  Ingredient and calculated nutrient composition of diets provided to Cobb 500 male 
broilers from 1 to 35 d of age. 
 Starter (1-17 days of age)  Grower (18-35 days of age) 
 Positive 

Control 
Negative 
Control 

 Positive 
Control 

Negative 
Control 

Ingredient (%)       
Corn 53.03 54.73  57.20 59.06  
Soybean Meal 34.89 34.63  25.65 25.36  
Rice Bran 3.00 3.00  4.00 4.00  
DDGS 2.50 2.50  5.00 5.00  
Poultry Meal --- ---  2.00 2.00  
Fat 2.83 2.22  2.91 2.24  
Salt 0.33 0.25  0.30 0.21  
Sodium Bicarbonate 0.10 0.10  0.10 0.10  
DL-Methionine 0.31 0.30  0.23 0.23  
Lysine HCl 0.20 0.21  0.23 0.23  
L-Threonine 0.04 0.04  0.01 0.01  
Limestone 0.81 0.89  0.76 0.86  
Dicalcium Phosphorus 1.66 0.84  1.32 0.41  
Nicarb1 0.04 0.04  --- ---  
Robenz2 --- ---  0.05 0.05  
BMD3 --- ---  0.05 0.05  
Choline Chloride 60 0.05 0.05  0.05 0.05  
Vitamin Premix4 0.10 0.10  0.10 0.10  
Mineral Premix5 0.10 0.10  0.10 0.10  
Econase  0.01 0.01  0.01 0.01  

      
Calculated nutrient composition      

ME kcal/kg 3050 3050  3110 3110  
Crude Protein % 21.40 21.40  19.50 19.50  
Digestible Lys 1.19 1.19  1.06 1.06  
Digestible Met 0.57 0.57  0.49 0.49  
Digestible TSAA 0.89 0.89  0.78 0.78  
Digestible Thr 0.77 0.77  0.68 0.68  
Digestible Val 0.89 0.89  0.82 0.82  
Digestible Trp 0.23 0.23  0.20 0.20  
Calcium % 0.90 0.74  0.80 0.64  
Phosphorus % 0.78 0.62  0.71 0.55  
Available Phosphorus % 0.43 0.28  0.38 0.23  
Na 0.18 0.14  0.18 0.14  

Analyzed       
Ca % 0.92 0.77  0.85 0.65  
P % 0.81 0.63  0.72 0.57  

1Nicarb (Phibro Animal Health, Ridgefield Park, NJ) provided 0.01 % nicarbazin 
2Robenz (Zoetis, Florham Park, NJ) provided robenidine hydrochloride at 30g per ton  
3BMD (Zoetis, Florham Park, NJ) provided bacitracin methylene disalicylate at 50 g per ton  
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4Vitamin premix provides per kilogram of diet:  vitamin A (vitamin A acetate) 7715 IU; 
cholecalciferol 5511 IU; vitamin E (dl-alpha-tocopheryl acetate) 16.53 IU; vitamin B12 0.013 
mg; riboflavin 6.6 mg; niacin 39 mg; pantothenic acid 10 mg; menadione 
(menadionedimethylpyrimidinol) 1.5 mg; folic acid 0.9 mg; choline 1000 mg; thiamin (thiamin 
mononitrate 1.54 mg; pyridoxine (pyridoxine HCl) 2.76 mg; d-biotin 0.066 mg; ethoxyquin 125 
mg.   

5Mineral premix provides per kilogram of diet:  calcium (calcium carbonate) 55.5 mg; 
manganese (manganese sulfate) 100 mg; magnesium (magnesium oxide) 27 mg; zinc (zinc 
sulfate) 100 mg; iron (ferrous sulfate) 50 mg; copper (copper sulfate) 10 mg; iodine (calcium 
iodate) 1 mg.   
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Table 16:  Phytase and xylanase recovery from starter and grower rations provided to Cobb 500 
male broilers from 1 to 35 d of age. 
 Phytase Activity  Xylanase Activity 
 Starter Grower Starter Grower 
PC <50 <50 14700 13100 
NC <50 <50 12400 10000 
500 387 484 10200 11200 
1500 1290 1660 15100 10800 
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Table 17:  Male broiler performance when fed diets supplemented with phytase from 1-17 d of 
age.1 

  Live Performance 1-17 Days 

Diet 
 Feed 

Intake BW 
BW 
Gain FCR2 AFCR3 Mortality 

  (kg) (kg) (kg) (kg:kg) (kg:kg) (%) 
        

1. Positive Control  0.633 0.494 0.454 1.27 1.27 2.9 
2. Negative Control  0.654 0.503 0.464 1.29 1.29 4.6 
3. 500  0.655 0.516 0.476 1.26 1.25 1.8 
4. 500  0.658 0.516 0.476 1.27 1.27 0.0 
5. 1500  0.649 0.517 0.477 1.25 1.25 2.3 
6. 1500   0.647 0.523 0.483 1.23 1.22 2.3 
SEM  0.0108 0.0073 0.0073 0.012 0.013 0.01 
CV  4.69 4.04 4.39 2.69 2.82 173.97 

        
Pr > F  0.636 0.067 0.081 0.037 0.014 0.365 
        
Orthogonal Contrast         
1 vs. 2  0.180 0.368 0.357 0.381 0.518 0.400 
3 vs. 4  0.876 0.980 0.997 0.499 0.508 0.387 
5 vs. 6  0.890 0.529 0.542 0.207 0.177 0.985 
3 and 4 vs. 5 and 6  0.450 0.610 0.610 0.046 0.044 0.331 
1 and 2 vs. 3, 4, 5 and 6  0.339 0.003 0.004 0.017 0.004 0.084 
1Values are least square means of 8 replicate pens with 22 broilers per pen at 1 day of age. 
2FCR represents feed conversion corrected for the weight of the mortality.   
3AFCR represents feed conversion adjusted to the average body weight of the positive control 
(27 g = 0.01 FCR) 
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Table 18:  Male broiler performance when fed diets supplemented with phytase from 1 to 35 d 
of age.1 
 Live Performance 1-35 Days 

Diet 
 Feed 

Intake BW 
BW 
Gain FCR2 AFCR3 Mortality 

  (kg) (kg) (kg) (kg:kg) (kg:kg) (%) 
        

1. Positive Control  3.293 2.088 2.048 1.58 1.58 2.9 
2. Negative Control  3.213 2.018 1.979 1.59 1.61 5.2 
3. 500/500  3.311 2.123 2.083 1.55 1.53 2.9 
4. 500/1500  3.321 2.134 2.094 1.56 1.54 0.6 
5. 1500/500  3.259 2.098 2.058 1.54 1.54 2.3 
6. 1500 /1500  3.245 2.115 2.075 1.53 1.52 2.9 
SEM  0.0291 0.0243 0.0243 0.0098 0.017 0.01 
CV  2.51 3.28 3.34 1.77 3.02 151.19 

        
Pr > F  0.097 0.026 0.027 0.001 0.003 0.433 
        
Orthogonal Contrast        
1 vs. 2  0.059 0.051 0.051 0.447 0.130 0.284 
3 vs. 4  0.816 0.766 0.761 0.572 0.859 0.276 
5 vs. 6  0.735 0.619 0.622 0.330 0.401 0.804 
3 and 4 vs. 5 and 6  0.036 0.376 0.375 0.196 0.775 0.577 
1 and 2 vs. 3, 4, 5 and 6  0.231 0.004 0.004 < 0.001 < 0.001 0.146 
1Values are least square means of 8 replicate pens with 22 broilers per pen at 1 day of age. 
2FCR represents feed conversion corrected for the weight of the mortality. 
3AFCR represents feed conversion adjusted to the average body weight of the positive control 
(27 g = 0.01 FCR)   
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Table 19:  Tibia ash of male broilers fed diets supplemented with phytase from 1 to 17 d of age.1  
 Tibia Ash 
Diet Proximal Distal Total 
 (g) (%) (g) (%) (g) (%) 
       

1. Positive Control 0.159 45.14 0.299 53.90 0.458 50.51 
2. Negative Control 0.152 44.07 0.285 51.99 0.436 48.94 
3. 500 0.150 43.65 0.289 52.49 0.439 49.09 
4. 500 0.156 43.84 0.311 53.48 0.467 49.82 
5. 1500 0.169 45.70 0.339 54.03 0.508 50.94 
6. 1500  0.166 45.76 0.317 54.25 0.483 51.00 
SEM 0.0049 0.452 0.0097 0.412 0.0139 0.385 
CV 8.82 2.86 8.99 2.19 8.47 2.18 

       
Pr > F 0.053 0.003 0.004 0.002 0.007 < 0.001 
       
Probability       
1 vs. 2 0.300 0.102 0.302 0.002 0.276 0.007 
3 vs. 4 0.437 0.765 0.106 0.099 0.159 0.188 
5 vs. 6 0.624 0.929 0.128 0.704 0.214 0.909 
3 and 4 vs. 5 and 6 0.005 < 0.001 0.007 0.008 0.004  < 0.001 
1 and 2 vs. 3, 4, 5 and 6 0.237 0.741 0.014 0.095 0.031 0.150 
1Values are least square means of 2 birds pooled/pen and 8 replicate pens (16 chicks)/treatment. 
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Table 20:  Tibia ash of male broilers fed diets supplemented with phytase from 1 to 35 d of age.1  
 Tibia Ash 
Diet Proximal Distal Total 
 (g) (%) (g) (%) (g) (%) 
       

1. Positive Control 0.798 43.37 1.542 50.90 2.339 48.05 
2. Negative Control 0.615 40.77 1.170 48.17 1.785 45.33 
3. 500/500 0.703 41.34 1.395 48.97 2.098 46.11 
4. 500/1500 0.760 42.45 1.465 50.31 2.225 47.33 
5. 1500/500 0.714 42.18 1.405 49.64 2.119 46.85 
6. 1500 /1500 0.771 42.51 1.446 50.04 2.217 47.15 
SEM 0.0257 0.353 0.0476 0.490 0.0698 0.404 
CV 10.01 2.37 9.60 2.79 9.27 2.44 

       
Pr > F < 0.001 < 0.001 < 0.001 0.006 < 0.001 < 0.001 
       
Orthogonal Contrast       
1 vs. 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
3 vs. 4 0.126 0.034 0.305 0.061 0.207 0.040 
5 vs. 6 0.130 0.515 0.546 0.562 0.331 0.593 
3 and 4 vs. 5 and 6 0.684 0.215 0.927 0.684 0.930 0.494 
1 and 2 vs. 3, 4, 5 and 6 0.178 0.871 0.090 0.634 0.099 0.633 
1Values are least square means of 3 birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 
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Table 21:  Proximal tibia ash mineral content1 of male broilers fed diets supplemented with phytase from 1 to 17 d of age.   
 Proximal Tibia Ash Mineral Content 

Diet Ca P Zn Cu Fe K Mg Mn Na S 
Response Criteria2 % % ppm ppm ppm % % ppm % % 
            

1. Positive Control 42.05 20.81 529.38 5.11 537.25 3.46 0.95 9.46 1.35 1.11 
2. Negative Control 38.15 19.50 482.13 5.36 448.25 3.37 0.88 9.61 1.26 1.09 
3. 500 40.61 20.71 533.63 6.81 579.13 3.74 0.98 12.24 1.37 1.12 
4. 500 38.30 19.61 517.25 5.34 528.00 3.35 0.94 10.91 1.31 1.08 
5. 1500 36.52 18.56 483.00 4.82 420.25 3.06 0.86 11.46 1.26 1.07 
6. 1500  36.17 18.67 493.00 4.82 438.13 3.03 0.87 11.20 1.22 1.03 
SEM 1.609 0.076 17.697 0.602 39.281 0.195 0.040 0.619 0.045 0.039 
CV 11.78 10.88 9.88 31.71 22.59 16.58 12.41 16.20 10.00 10.36 

           
Pr > F 0.096 0.178 0.154 0.211 0.036 0.133 0.248 0.021 0.223 0.717 
           
Orthogonal Contrast           
1 vs. 2 0.096 0.227 0.067 0.765 0.118 0.757 0.265 0.863 0.184 0.734 
3 vs. 4 0.317 0.309 0.517 0.093 0.364 0.167 0.527 0.137 0.371 0.497 
5 vs. 6 0.881 0.921 0.692 0.997 0.750 0.910 0.966 0.763 0.540 0.469 
3 and 4 vs. 5 and 6 0.061 0.049 0.042 0.045 0.003 0.015 0.027 0.694 0.048 0.243 
1 and 2 vs. 3, 4, 5 and 6 0.123 0.247 0.950 0.688 0.968 0.496 0.899 0.001 0.704 0.556 
1Values are least square means of 2 birds pooled/pen and 8 replicate pens (16 chicks)/treatment. 
2Phytase units per kilogram of feed during the starter phase. 
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Table 22:  Distal tibia ash mineral content1 of male broilers fed diets supplemented with phytase from 1 to 17 d of age.   
 Distal Tibia Ash Mineral Content 

Diet Ca P Zn Cu Fe K Mg Mn Na S 
Response Criteria2 % % ppm ppm ppm % % ppm % % 
            

1. Positive Control 36.60 17.95 438.88 0.82 214.75 1.10 0.75 6.34 0.95 0.69 
2. Negative Control 36.06 17.73 420.00 1.63 214.25 1.15 0.75 7.09 0.96 0.70 
3. 500 36.07 18.00 443.88 1.22 240.50 1.25 0.78 8.94 0.99 0.70 
4. 500 36.09 17.82 459.63 1.53 218.00 1.10 0.80 8.08 0.93 0.68 
5. 1500 36.78 18.13 461.75 2.38 202.13 1.09 0.79 10.67 0.94 0.70 
6. 1500  36.24 17.85 462.25 0.74 204.63 1.13 0.79 9.23 0.96 0.70 
SEM 0.279 0.015 9.087 0.458 14.087 0.048 0.013 0.573 0.021 0.013 
CV 2.17 2.44 5.74 93.77 18.47 11.97 4.61 19.33 6.27 5.14 

           
Pr > F 0.322 0.525 0.013 0.153 0.469 0.173 0.024 < 0.001 0.597 0.838 
           
Orthogonal Contrast           
1 vs. 2 0.185 0.325 0.151 0.222 0.980 0.473 0.967 0.363 0.711 0.816 
3 vs. 4 0.948 0.402 0.229 0.644 0.266 0.029 0.393 0.298 0.095 0.334 
5 vs. 6 0.184 0.217 0.969 0.016 0.901 0.577 0.787 0.086 0.511 0.720 
3 and 4 vs. 5 and 6 0.131 0.624 0.267 0.692 0.075 0.170 0.906 0.017 0.748 0.348 
1 and 2 vs. 3, 4, 5 and 6 0.891 0.408 0.001 0.544 0.883 0.604 < 0.001 < 0.001 0.785 0.972 
1Values are least square means of 2 birds pooled/pen and 8 replicate pens (16 chicks)/treatment. 
2Phytase units per kilogram of feed during the starter phase. 
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Table 23:  Proximal tibia ash mineral content1 of male broilers fed diets supplemented with phytase from 1 to 35 d of age.   
 Proximal Tibia Ash Mineral Content 
Diet Ca P Zn Cu Fe K Mg Mn Na S 

Response Criteria2 % % ppm ppm ppm % % ppm % % 
            

1. Positive Control 33.81 17.14 374.38 2.69 585.38 2.08 0.81 3.34 1.32 0.74 
2. Negative Control 34.11 17.26 411.50 2.57 636.38 2.11 0.80 3.74 1.35 0.74 
3. 500/500 33.25 16.97 381.38 2.30 684.00 2.16 0.85 4.72 1.40 0.76 
4. 500/1500 33.54 17.24 390.88 2.47 645.38 2.16 0.86 5.62 1.32 0.73 
5. 1500/500 33.73 17.12 374.13 1.87 659.63 2.08 0.83 5.01 1.36 0.73 
6. 1500/1500 33.68 17.29 415.13 2.38 677.13 2.08 0.86 6.02 1.44 0.76 
SEM 0.248 0.088 17.969 0.589 37.177 0.092 0.010 0.348 0.031 0.019 
CV 2.08 1.46 12.99 70.89 16.23 12.36 3.48 20.74 6.45 7.51 

           
Pr > F 0.270 0.138 0.412 0.948 0.481 0.974 < 0.001 < 0.001 0.086 0.719 
           
Orthogonal Contrast           
1 vs. 2 0.385 0.348 0.153 0.889 0.339 0.812 0.406 0.416 0.542 0.978 
3 vs. 4 0.401 0.040 0.711 0.843 0.467 0.999 0.601 0.075 0.076 0.331 
5 vs. 6 0.900 0.167 0.116 0.543 0.741 0.999 0.106 0.048 0.105 0.194 
3 and 4 vs. 5 and 6 0.220 0.262 0.639 0.661 0.922 0.412 0.418 0.337 0.264 0.833 
1 and 2 vs. 3, 4, 5 and 6 0.065 0.607 0.870 0.476 0.093 0.792 < 0.001 < 0.001 0.102 0.758 
1Values are least square means of 3 birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 
2Phytase units per kilogram of feed during the starter phase. 
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Table 24:  Distal tibia ash mineral content1 of male broilers fed diets supplemented with phytase from 1 to 35 d of age.   
 Distal Tibia Ash Mineral Content 
Diet Ca P Zn Cu Fe K Mg Mn Na S 

Response Criteria2 % % ppm ppm ppm % % ppm % % 
            

1. Positive Control 37.20 17.42 379.75 1.14 308.38 0.86 0.79 3.56 0.99 0.60 
2. Negative Control 37.36 17.59 389.63 2.25 387.13 1.08 0.77 3.58 1.03 0.63 
3. 500/500 37.16 17.47 394.00 1.46 326.13 0.89 0.83 4.44 0.98 0.58 
4. 500/1500 37.13 17.60 402.38 1.26 309.38 0.85 0.83 6.11 0.96 0.59 
5. 1500/500 37.17 17.38 372.50 1.81 313.50 0.85 0.80 4.56 0.97 0.58 
6. 1500/1500  36.88 17.49 418.25 1.54 343.50 0.86 0.84 5.67 1.01 0.60 
SEM 0.332 0.113 17.798 0.550 20.161 0.069 0.012 0.311 0.018 0.012 
CV 2.53 1.83 12.82 75.80 17.21 21.76 4.03 18.90 5.04 5.52 

           
Pr > F 0.951 0.683 0.529 0.715 0.069 0.147 < 0.001 < 0.001 0.059 0.083 
           
Orthogonal Contrast           
1 vs. 2 0.726 0.303 0.697 0.145 0.009 0.027 0.405 0.973 0.128 0.194 
3 vs. 4 0.953 0.421 0.741 0.786 0.561 0.739 0.892 < 0.001 0.544 0.272 
5 vs. 6 0.547 0.466 0.078 0.740 0.300 0.892 0.058 0.017 0.107 0.338 
3 and 4 vs. 5 and 6 0.718 0.387 0.875 0.551 0.597 0.824 0.300 0.614 0.158 0.542 
1 and 2 vs. 3, 4, 5 and 6 0.495 0.835 0.438 0.691 0.167 0.079 < 0.001 < 0.001 0.047 0.016 
1Values are least square means of 3 birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 
2Phytase units per kilogram of feed during the starter phase. 
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Table 25:  Thiobarbituric acid-reactive substances analysis of male broilers fed diets 
supplemented with phytase from 1 to 35 days of age.1  
  TBARS 
Diet  Liver Breast Thigh 
Response Criteria2  mg malonaldehyde/kg of tissue 
     

1. Positive Control  1.711 0.508 1.163 
2. Negative Control  1.248 0.396 0.988 
3. 500/500  1.213 0.486 1.125 
4. 500/1500  1.379 0.608 1.124 
5. 1500/500  1.520 0.555 1.172 
6. 1500/1500   1.476 0.506 0.976 
SEM  0.1066 0.0422 0.0746 
CV  41.929 45.114 38.102 

     
Pr > F  0.014 0.018 0.246 
     
Orthogonal Contrast     
1 vs. 2  0.003 0.060 0.097 
3 vs. 4  0.269 0.036 0.991 
5 vs. 6  0.769 0.398 0.068 
3 and 4 vs. 5 and 6  0.059 0.716 0.502 
1 and 2 vs. 3, 4, 5 and 6  0.373 0.018 0.710 
1Values are least square means of 3birds pooled/pen and 8 replicate pens (24 chicks)/treatment. 

2Phytase units per kilogram of feed during starter and grower phase.  
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Figure 1:  Interaction plot for phytase x phytate interaction on FCR analysis for male broilers fed 
diets varying in dietary phytate1 level and phytase2 level supplementation.   
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Appendix 1.  50 mM phosphate buffer, pH 7.0 preparation 
 

1. Prepare a 50 mM potassium phosphate monobasic (KH2PO4) solution 

a. 3.40 g of KH2PO4 was weighed out and transferred to a 500 mL volumetric 

flask. 

b. Diluted to volume with distilled-deionized water (pH 4.5) 

2. Prepare a 50 mM potassium phosphate dibasic (K2HPO4) solution 

a. 8.71 g of K2HPO4 was weighed out and transferred to a 1 L volumetric flask. 

b. Diluted to volume with distilled-deionized water (pH 8.5) 

3. Transfer 100 mL of the 50 mM potassium phosphate monobasic solution and 500 mL 

of the potassium phosphate dibasic solution to a 2 L beaker.  Mix and monitor the pH 

of the combined solution as continually more of each solution is added until the 

volume is in excess of 1 L and the pH is near 7.0. 

4. Add about 500 mL of mixed solution to a 1000 mL volumetric flask and add 1 g 

ethylenediamine tetracetic acid (EDTA) and 1 g n-propyl gallate (PG).  Allow 

solution to mix for one hour, or until PG is fully dissolved. 

5. Bring to volume. 
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Appendix 2.  30 % trichloroacetic acid (TCA) reagent preparation  

1. Weigh 300 g TCA in a 2 L beaker. 

2. Add 1 L of distilled-deionized water and mix until dissolved. 
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Appendix 3.  0.02 M 2-thiobarbuturic acid (TBA) reagent preparation 

1. Weigh 0.7208 g TBA and transfer to a 250 mL volumetric flask. 

2. Dilute to volume with distilled-deionized water.  Mix for one hour or until fully 

dissolved. 
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