Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-13-2017

SCLOrk 2.0

Juan Miguel Baluyut
Santa Clara University, jbaluyut@scu.edu

Jowy Curameng

Santa Clara University, jcurameng@scu.edu

Follow this and additional works at: http://scholarcommons.scu.edu/cseng_senior

b Part of the Computer Engineering Commons

Recommended Citation

Baluyut, Juan Miguel and Curameng, Jowy, "SCLOrk 2.0" (2017). Computer Engineering Senior Theses. 90.
http://scholarcommons.scu.edu/cseng_senior/90

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in

Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/cseng_senior/90?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Santa Clara University
DEPARTMENT of COMPUTER ENGINEERING

Date: 6/13/2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

Juan Miguel Baluyut & Jowy Curameng

ENTITLED

SCLOrk 2.0

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

W)

THESIS ADVISOR
/// [’('t.’ . g// L {/7(A
DEPARTMENTCHAIR

SCLOrk 2.0

Juan Miguel Baluyut & Jowy Curameng

SENIOR DESIGN PROJECT REPORT

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California

June 13, 2017

Abstract

For the past 10 years, the Laptop Orchestra is an emerging interdisciplinary field
that involves Computer Science, Engineering, and music. In the past 4 years, Santa
Clara University has developed it’s own Laptop Orchestra ensemble called SCLork. For
this project, we will be making improvements to the Laptop Orchestra by incorporating
a mobile phone element for audience participation. In addition, we will be designing
an original composition using computer science sound synthesis techniques.

Our mobile element is implemented as a mobile-friendly website that will be ac-
cessed by audience members. This website will be used in tandem by both audience and
performers. Data received by the website will be sent to a program called SuperCollider
to sort data and to play a musical melodies.

Acknowledgements

This project is for the laptop orchestra community. We would like to dedicate our work
to our family and friends. Thank you for supporting us through all the ups and down
of our college journey. We want to thank both of our advisors: Bruno Ruviaro for the
inspiration and direction for this project, and Dan Lewis for organizing and assisting in
our documentation. To Danny Hernandez, our senior design mentor, thank you for your
assistance and recommendations for project implementations. We would lastly like to
thank Paul Ahrens, Miles Elliot, and the rest of the Santa Clara Laptop Orchestra Class
of 2017! The help and feed back from you all help us create the fun and interactive final
product that we have today.

J

8

9

Table of Contents

Introduction

Requirements

2.1 Functional Requirements oL
2.2 Non-Functional Requirements
2.3 Design Constraints L

Use Cases
3.1 Use Case 1: s
3.2 Use Case 2: e

Architectural Diagram
Technologies Used
Design Rationale
Testing Procedure
Risk Analysis

Development Time-line

10 Social Implications

11 Conclusion

12 References

13 Appendix

w N NN

=

10

11

13

15

16

17

© 00 J O U i W N~

el e el e
S U W N~ O

List of Figures

Diagram of data travel from users to conductor computer 6
Risk Analysis 10
Timeline for Project 12
Website landing page part 1 oo 17
Website landing page part 2 18
Display of vote counting from node.js server 19
README for project implementation 20
NodeJS server code part 1 21
NodeJS server code part 2 22
HTML index code partl 23
HTML index code part 2 24
Package.JSON code 25
SuperCollider conductor filecode 26
SuperCollider instrument file code 27
SuperCollider function file code part 1 28
SuperCollider function file code part 2 29

ii

1 Introduction

Collaboration is a powerful tool and resource for all people. Its an educational approach
to teaching and learning that helps a group of people collectively solve a problem, create
something new or complete a task. Collaboration is a very useful resource for engagement,
learning, and growth. Within the last ten years, there has been a new sort of collaboration.
Laptop orchestra is a newer collaboration of music that is driven purely through electronic
sound and technology.

Laptop orchestras helps solve two problems: accessibility of instruments and lack of col-
laborations in electronic music. Access to creating music can be limited for users because
regular musical instruments are hard. It can come from a lack of musicality or limited
available time to develop music skills. Creating electronic music is perceived as an lonely
process. This notion is from images of a DJ playing music all by their lonesome on a stage.
Laptop orchestra addresses both of these issues. Any level of musical background can be
involved, and laptop orchestra can involve multiple disciplines like computer science and
music.

With all the issues already addressed by laptop orchestra, we want to take laptop orchestra
one step further. Our proposal is a program that will involve more audience participation.
Currently the participation between laptop orchestra and audience is non-existent. We
will be designing a way to allow audience members to be more actively participatory in
the musical experience. Audience participation enhances the experience and makes it more
attentive. The improvisational element also keeps the performers can add a new dynamic
to the overall performance.

We will be working with Santa Claras laptop orchestra, also known as SCLOrk.

2 Requirements

The following requirements define the goals of the project outlined in the introduction. The
functional requirements define features that must be done for the project to be considered a
success, while the non-functional requirements define how the functional requirements are
achieved. Requirements are categorized into critical, recommended, and suggested. Critical
requirements are absolutely necessary, recommended are highly desirable, and suggested
requirements are not necessary but would be very nice to add.

Design constraints are criteria that the solution must adhere to. The constraints are set by
our goals of what we want the audience to do with the players on stage. The technologies we
are using will also place constraints on our project. Users in this paper are referring to both
audience and orchestra performers, as they are participating in performance together.

2.1 Functional Requirements

Critical:
1. Must work with iOS and android devices.
2. The network must handle data input from one user
3. Must work in real time during performance
Recommended: 1. Can handle all types of mobile devices

2. Network can handle data

2.2 Non-Functional Requirements

Critical:
1. A simple user interface for audience members
2. System has good performance for users
3. System maintains good reliability for users

Suggested: 1. Maintainable so future groups can add new performance features
to the app

2.3 Design Constraints

Design goals are to create an easy-to-access website with an easily navigable UL
Constraint
1. Design must be user-friendly

2. Design must be compatible with at least iOS devices

3 Use Cases

The following outlines anticipated uses of the system. Use cases below describes actions by the
conductor and users. Users are referring to both audience and orchestra players. They play the
music together.

3.1 Use Case 1:

Conductor prepares musical components that will be used for performance

Name: Upload Music
Goal: Upload for performance
Actors: Conductor

Pre-conditions:

e Conductor know data he is uploading

Post-conditions:

e Conductor knows when to stop recording data

Steps:

Conductor choose data to upload
Upload music score

Upload SuperCollider functions
Upload instrument files

Send initial start value for performance

A A e

Run server to receive data from website

7. Stop server when performance is over

Exceptions:
1. Wrong file is uploaded
2. Server does not run and receive data
e Wrong music is played during performance

e No music is played

3.2 Use Case 2:

Actions done by both the audience and performers for music performance.

Name: Website interaction

Goal: Send data from website to server
Actors: Audience

Pre-conditions:

e Audience is instructed by conductor to access website

Post-conditions:

e Users successfully participate in music performance

Steps:
1. Log on to website
2. Vote on music and tempo options

3. See and hear results of voting

4 Architectural Diagram

We have chosen to use an architecture based on the client/server model. In our architecture,
the conductor will work with the central server. The central server will store all the necessary
information such as sounds to be played. The server will communicate with both the orchestra
player and the audience. All mobile devices from audience and all player laptops will be connected
to central server computer.

The users will be sending voting information via website to webs server. Web server receives all data
and tallies with counter to record all user-input data. Data is then send to conductor computer.
Conductor computer receives data and sends various music melodies according to winner of vote.
Orchestra computers receives melodies and send sound to speakers for all parties to listen.

| l\.lﬁé._ﬁiri
- 3

\
Conductor computer E

‘Web Server Orchestra computers
Mobile Phones

Figure 1: Diagram of data travel from users to conductor computer

5 Technologies Used

Below are a list of technologies we plan to use for our project:

HTML

Java Script
CSS

NodeJS
SuperCollider

Digital Ocean
NameCheap

GitHub

Organized web page and buttons

Used to created interactive actions on website

Made website and interactions pretty and visually appealing

Web server to receive data from many devices to its final destination ins a timely manner

Open source platform for audio synthesis and algorithmic composition. Used to create music
score and to handle server operations between conductor and orchestra computers

Cloud infrastructure provider. Used to host nodeJS server on the World Wide Web

Domain name provider. Used to mask IP of website hosted by digital ocean. Allowed user
to access website via URL instead of typing in an IP address

Hosting service for project code

6 Design Rationale

We chose to use SuperCollider as our primary programming language. The main reason we chose
this is because of our familiarity with it. In addition, SuperCollider can handle with synthesizing
new types of sounds necessary to

Due to technologies available, our design was limited to the laptops and hardware provided by the
Music Department.

GitHub is a very strong documentation and collaboration tool, as it allows us to be able to not
only store previous versions of our code, in case they are needed, but also allow us to be able to
make our own individual changes while still being able to quickly rollback to previous versions. For
example, the final version relied heavily on a much earlier version of the project.

Our group decided to use GitHub as it offered a configuration management system that allowed
team members to coordinate our progress with our application. GitHub also acts as our repository
for our artifacts for the project.

7 Testing Procedure

As part of our testing plan, we allocated time during the Winter Quarter to get most of our testing
done. Spring quarter was used for some additional testing and debugging as well.

During our Alpha tests, we ran Shellscript simulations to check if our web application could handle
the load of multiple users. The first test we ran a simulation of 500 users, which S.C.L.O.R.K. 2.0
handled satisfactorily.

The main method of testing were our Beta Tests, which involved simulating a live performance.
First, we would tell the audience a little bit of our product. We would give them the URL to access
the application and give them a short demonstration on how to navigate the web application. We
would tell them how each button corresponded to different melody.

Our Beta Tests consisted of three trials: a dress rehearsal, a scheduled concert, and an art exhibit
show at Anno Domini. The dress rehearsal consisted of the Santa Clara University Laptop Orchestra
as they got familiar with the interface. This group consists mostly of musicians and engineers. These
people have more experience with the difference intersections of music and engineering. In addition
to the Santa Clara University Laptop Orchestra, the concert involved a live audience as well. This
group ranged from regular students to parents who all had different levels of expertise with music
and technology.

We did receive some constructive criticism and feedback as well as part of our testing plan. After
each of our performances, we purposefully asked the audience for some feedback on the product.
One feedback was to register an actual URL for our product. During our performances, we used
only a local IP Address for them to access. The long string of numbers was cumbersome for people
to type out and took away from the experience. Another area our product could have improved was
an explanation of the buttons. The people with less experience were not familiar with the musical
jargon that we used, so a lot of them resorted to button mashing rather than having a thoughtful
and immersing experience. Overall though, our product was well received.

8 Risk Analysis

For our risk analysis table, as seen in Figure 2, it is broken down into six different categories.

Risk Consequence P S I=PxS Mitigation
(Probability) (Severity) (Impact) Strategy

Time Not finishing our 0.4 6 24 Prioritize tasks
work

Group members Delayed 0.25 6 1.5 Share workload for

becoming ill completion each task

Unexpected Change design 0.4 4 1.6 Frequent testing of

design changes and impletation application

Server issues Connection 0.4 6 2.4 Check server
between connections

orchestra fails

Group Lack of cohesion 0.15 4 0.6 Use project
Miscommunication = with group and management
task software

Figure 2: Risk Analysis

Each risk has consequences for what happens if the risk actualizes. It also carries the probability
of occurring, along with the severity of the risk. Probability and severity factor into the impact the
risk has on the project. Finally, the table outlines mitigation strategies our team has prepared to
help lessen either the probability or severity of the risk. This helps lessen the impact of the risk
should it still happen.

The largest risk to our project is our team failing to deliver an application that the audience can
use. The other major risks all involve issues that impact our schedule for completing our project,
such as team members becoming ill, or bugs in the system. While this is a relatively small project,
it is still possible that the final deliverable will not be ready by the due date.

One large risk for this project is the server failing to connect each of the players during a perfor-
mance. The server synchronizes all the laptops during the performance and it is suppose to connect
the audience with the performers. Our main goal is to connect the audience with the performers.
Without a working server, we do not achieve our goal.

10

9 Development Time-line

Below is brief overview of our project time-line follow by a figure that shows how work will be
divided

Fall Initial planing of project.
Design documentation of project will begin.
Determine ”What audience will do to interact with players”
Determine how to determine establish server

Winter Testing of server and music composition
Alpha testing Week 2-7
Beta testing Week 8-10
Compose musical piece week 1-7
Laptop Performance Thursday Week 10

Spring Post performance documentation
Finish documentation of project
Establish what can be improved for project for future senior design groups
Senior Design Conference

Most of our time-line was built over Spring Quarter 2016 and Summer Quarter 2016 with the help
of our advisor Bruno Ruviaro. In this time-line, we divided up components into Fall Quarter 2016,
Winter Quarter 2017, and Spring Quarter 2017.

In Fall Quarter 2016, we hoped to finished three components. These components were the initial
planning of the project (i.e. how to establish the server and other technical components), the initial
draft of the design document, determination of the scope of the project (i.e. How the audience
will interact with the Laptop Orchestra). We allocated time for the planning stages of the design
process to ensure a higher probability of success for our project.

In Winter Quarter 2017, we hoped to finish two components. These components were the imple-
mentation of the composition with the web application and the testing during live performances.
We allocated time for testing and implementation for this whole quarter because we wanted to get
feedback as early as possible. This way we could possibly implement new changes by the end of
the project.

In Spring Quarter 2017, we hope to finished the documentation and the Senior Design Conference.
By planning our time this way, we give us time to ensure that we can handle any roadblocks that
come our way.

11

UoRed0T Juaiaylq SdusIpny JabieT /m g bunsal eeg| L /v

USOUGOAONPOI [BUIS EASaURI0 dojde [€2/E

4oJ0 dojdeT /m Bunsa) ejeg/xog %oelg[€z/E-1/E

Bupsal xoqapumeydiv |22

WL [eay [9HLZ

B0BpBIU| JoSN €42

(spunos puag) Ajijeuonound|ez/k
{ealg JajUIM) uonisodwod JapijloDJedns | |/}

SIIGON Uy eads 1api0Iedns [6/z)

1eAnjeg [andi uen
e Uer
SIAQUIBA IV

Uoneluasald [eul:

i605Y [eur:

MaIASY UBISAC

WBWH0Q VB
WBWAIES Walq0k

7 BunsaL ejg

T sl e1st

ODAPaM| 6aM| BXM[LFaM| 9aM| SHIIM[vAsIM| £XoaM| Z¥eM| TAeeM

OYaM | 6X99M| 8A9oM| L9M| 9X9M| SAPOM| pNIM| EXeM| ZAeem

THM|

‘Fupsa eqdiy

1A135 310M32U dn BUMa

1PU3 0013) ddv SO

UonISodwo) Japijo3Iadnt

NOLVINIWIdW
3oy

OTfeIM| &M | 8 XM

PU{OeG/4IOMIIN HHO1¢

MaInE
UI3U1ES JuBWaIm

Figure 3: Timeline for Project

12

10 Social Implications

Ethical

We believe that no ethical issues can be brought by our project because of the simplicity of our
interface. A choice of right or wrong would be to difficult to make using a musical web applica-
tion.

Social

The main societal issue that project addresses is the social aspect of human interaction. One of
the problems we hoped to address was the need of involving people of various musical skill levels
to have a rewarding musical experience. We believe that music is an activity that can be enjoyed
by everybody.

In addition we would like to be able to bridge the gap between the Arts and S.T.E.M. education.
Through our project, we hope to create a theme of connection and inclusiveness.

Political

We believe that no political issues can be brought by our project unless a political regime is against
the use of musical web applications.

Economic
We do not believe that economic issues apply to our product.
Health and Safety

A possible health concern is the strain on eyes and ears as people use the web application. We hope
to limit the risk with this by mentioning safe volume limits and limiting screen usage to health
amount sof time.

Manufacturability
We do not believe that that manufacturability issues apply to our product.
Sustainability

Our project can be considered sustainable as it can last a long time. The code is reusable and can
be accessed by different Operating Systems, laptops, and mobile phones. This way more people
can experience S.C.L.O.R.K 2.0

Environmental Impact

As our project involves different networks of phones and laptops, we require lots of energy. We
hope to find a way to minimize the energy usage in order to better preserve the world

Usability

From our testing, we have come to a general consensus that our product is easy to learn and
understand for the most part. In the future, we hope to keep the user-friendliness as we scale to
integrate new features.

13

Lifelong Learning

This project did help prepare us for future products that we have to develop. It also inspired us to
understand the design process fully. Finally, we hope to continue our learning of music, engineering,
and the intersection between the two.

Compassion

Through our project we hope to be more aware of the suffering of other people. We hope that our
project alleviates that suffering through the enjoyment of music. Music is a social piece that has
been shown to alleviate suffering.

14

11 Conclusion

In the future, we hope to be able to implement three main features for our system that we believe
would add to the experience of S.C.L.O.R.K 2.0. The first feature is to implement more audience
and orchestra options. At this point, our system only contains four different melodies and the
ability to change tempo, which is the speed of the song. In the future, we hope to be able to
incorporate different instrument sounds, different key, changes, and more melodies. We hope that
by implementing more features that our product does not become to overwhelming for the average
user. Another way of adding more audience and orchestra options would be mapping a melody to
accelerometer motions. We feel that body motions would be more rewarding than just pressing a
button. Everybody would feel more involved in the process of making a piece this way.

Another feature that wed like to implement is data distribution within the orchestra. Wed like our
conductor laptops to be able to send information to the player laptops. At this point in time, our
system is not able to handle this feature, so we had to play some of our melodies manually rather
than having the system handling it.

Lastly, we would like to add data visualization on the web application. During the performances,
we had to stream our own screens to prove to the audience that their votes were being tallied. We
would like to implement a way to have the audience know how their activity is changing the musical
piece (e.g. a tally screen on the phone).

This project taught us many things about the design process of engineering. We learned the
importance of implementing early and testing. We realized that a lot of our time was spent on
learning. If given another chance, we would like to be able to learn by doing.

Another lesson that we learned was the importance of outside help and feedback. Many times
during this process, we realized that we had a hard time finding a certain bug. We wasted lots of
time on simple features. This process taught us to not be afraid to ask for help, especially from our
industry mentors.

Finally, we learned the importance of designing early and outline technologies. We did not realize
the importance of limiting the scope of a project. Our goals were very open-ended and our initial
designs reflected it. In the future, we would have liked to spent more time actually implementing
a project rather than thinking about the possibilities.

15

12

References

repository.cmu.edu/cgi/viewcontent.cgi?article=1511&context=compsci. Accessed: Dec. 02,

2016.

[2] N. Bowen, "4Quarters,". [Online]. Available: https://ccrma.stanford.edu/~ruviaro/texts/
SLEO 2012 Proceedings.pdf. Accessed: Dec. 01, 2016.

[3] SuperCollider, "SuperCollider,". [Online]. Available: http://supercollider.github.io/. Accessed:
Dec. 3, 2016.

[4] L. Jiang, "Sensor-Based Music Controller,". [Online]. Available: http://
scholarworks.wmich.edu/cgi/viewcontent.cgi?article=1009&context=engineer design projects.

Accessed: Dec. 3, 2016.

[5] M. Knewston and A. Stratton, "Baton,". [Online]. Available: https://wmich.edu/sites/default/
files/attachments/u593/2015/SEDP%2051.pdf.
Accessed: Dec. 02, 2016.

[6] D. Lafond, "Hemispherical Speaker Array for Live Electro-Acoustic Performance,". [Online].
Available: http://scholarworks.wmich.edu/cgi/viewcontent.cgi?

article=1019&context=engineer design projects. Accessed: Dec. 01, 2016.

16

13 Appendix

00000 Verizon 19:27 4 74% @)

sclork.live C

Laptop orchestra

Style 1

Style 2

< M M O

Figure 4: Website landing page part 1

ee000 Verizon 19:27 4 74% @)
sclork.live

= Laptop orchestra

Style 1

Style 2

Style 3

Style 4

Tempo up

Tempo down

Figure 5: Website landing page part 2

18

Style 1: 0
Style 2: 4
Style 3: 1
Style 4: 10
Tempo up: ©
Tempo down: ©

Style WINNER: 3
Tempo WINNER: tie

Figure 6: Display of vote counting from node.js server

19

README.md

laptop-orchestra

Instructions

1. Make sure you have Node.js installed on your computer
2. Run <code>npm install</code> to install all of the dependencies
3. Start the server by running <code>npm start</code>

Figure 7: README for project implementation

20

server.js

var osc = require("osc");

var express = require('express');

var http = require("http");

var app = express();

var server = http.createServer(app);

var io = require('socket.io').listen(server);
var fs = require("fs");

var path = require("path");

var exec = require("child_process").exec

app.set('port', (5000));
server. listen(5001) ;

app.use(express.static(__dirname + '/public'));

// views is directory for all template files
app.set('views', __dirname + '/views');
app.set('view engine', 'ejs');

app.get('/', function (request, response) {
response. render('index');

H;

app. listen(app.get('port'), function () {
console. log('Node app is running on port', app.get('port'));
H;

var getIPAddresses = function () {
var os = require("os"),
interfaces = os.networkInterfaces(),
ipAddresses = [1;

for (var deviceName in interfaces) {
var addresses = interfaces[deviceName];

for (var i = 0; i < addresses.length; i++) {
var addressInfo = addresses[il;

if (addressInfo.family === "IPv4" && !addressInfo.internal) {

ipAddresses.push(addressInfo.address);

}
}

return ipAddresses;
b H

var udpPort = new osc.UDPPort({
localAddress: "0.0.0.0",
localPort: 7400,
remoteAddress: "127.0.0.1",
remotePort: 7500

E Line 110, Column 9

Figure 8: NodelJS server code part 1

21

server.js

remotePort: 7500
H;

udpPort.on("ready", function () {

var ipAddresses = getIPAddresses();

console. log("Listening for 0SC over UDP.");

ipAddresses. forEach(function (address) {

console.log("Host:", address + ", Port:", udpPort.options.localPort);

H;

console. log("Broadcasting 0SC over UDP to", udpPort.options.remoteAddress + ", Port:", udpPort.options.remotePort);
H;

// Open the socket.
udpPort.open();

var bttnl = 0;
var bttn2 = 0;
var bttn3

var bttn4 = 0;
var bttn5 = 0;
var bttné = 0;

io.sockets.on("connect", function (socket) {

console. log("A user has connected");

socket.emit("connection_made");

socket.on("button_click_1", function () {
++bttnl;

};

socket.on("button_click_2", function () {
++bttn2;

b;

socket.on("button_click_3", function
++bttn3;

};

socket.on("button_cli
++bttn4;

H;

socket.on("button_click_5", function
++bttn5;

};

socket.on("button_click_6", function () {
++bttn6;

b;

socket.on("disconnect"”, function () {
console.log("A user has disconnected");

};

function

};

// Every five seconds, send an 0SC message to SuperCollider
setInterval(function () {
var msg = {
address: "/new/button/values/",
args: [bttnl, bttn2, bttn3, bttn4, bttn5, bttné]

E Line 110, Column 9 Spaces: 4

Figure 9: NodelJS server code part 2

22

index.ejs

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>RAD</title>
<link rel="icon" href="favicon.png" type="image/png"/>
<meta name
<link rel="stylesheet" type="text/css" href="http://students.engr.scu.edu/~pahrens/styles.min.css"/>
</head>

<div id="menu">
<div class="author">SCLOrk2.0</div>
<div class="copyright">
<i class="icon-inner menu-icon material-icons">copyright</i>
<div class="copyright-text">2017 SCLOrk
All Rights Reserved</div>
</div>
</div>
<div id="cover"></div>
<div id="menu-button" class="icon">
<i class="icon-inner material-icons md-light" title="Website directory"></i>
</div>
<div class="title-large"></div>
<div id="top-shadow"></div>
<div id="top-bar"></div>
<div id="bottom-bar"></div>
<div id="bottom-filler"></div>
<div i container">
<div class="row">
<div i connection-status" class="col-12">Not connected</div>
<div i song-button-1" class="col-4 card primary-color song-button">Style 1</div>
<div i song-button-2" col-4 card primary-color song-button">Style 2</div>
<div i song-button-3" col-4 card primary-color song-button">Style 3</div>
<div i song-button-4" col-4 card primary-color song-button">Style 4</div>
<div i song-button-5" col-4 card primary-color song-button">Tempo up</div>
<div i song-button-6" class="col-4 card primary-color song-button">Tempo down</div>
</div>

c="https://cdnjs.cloudflare.com/ajax/libs/socket.io/1.7.3/socket.io.min. js"></script>
ttps://ajax.googleapis.com/ajax/1libs/jquery/3.1.1/jquery.min. js"></script>
http://students.engr.scu.edu/~pahrens/scripts.min.js"></script>

Figure 10: HTML index code partl

23

index.ejs

https://cdnjs.cloudflare.com/ajax/libs/socket.io/1.7.3/socket.io.min.js"></script>
https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min. js"></script>
"http://students.engr.scu.edu/~pahrens/scripts.min.js"></script>

$(function () {
startup("laptop-orchestra", "RAD");
var bttnl
var bttn2
var bttn3
var bttn4
var bttn5
var bttn6

var socket = io(window.location.hostname + ":5001");

socket.on("connect”, function () {
document.getElementById("song-button-1").onclick = function
socket.emit("button_click_1");

document.getElementById("song-button-2").0 « = function
socket.emit("button_click_2");
}

document.getElementById("song-button-3").onclic function
socket.emit("button_click_3");

document.getElementById("song-button-4").onclick = function
socket.emit("button_click_4");

document.getElementById("song-button-5").onclick = function
socket.emit("button_click_5");

document.getElementById("song-button-6").0 « = function
socket.emit("button_click_6");

socket.on("connection_made", function () {
document.getElementById("connection-status").style.backgroundColor = "#4CAF50";
document.getElementById("connection-status").textContent = "Connected";

s

socket.on('disconnect', function () {
document.getElementById("connection-status").style.backgroundColor = "#F4433
document.getElementById("connection-status").textContent = "Not connected";

s

</html>

Figure 11: HTML index code part 2

24

package.json
"name": "laptop-orchestra",
"4.15.x"

’
"socket.io": "1.7.x",
"yuicompressor": "2.4.x",

"ejs": "2.5.x
},

"license

ode server.js"

Figure 12: Package.JSON code

25

© SDP_CONDUCTOR.scd
// 57120
// NetAddr.langPort;
(

s.waitForBoot({
"SDP_conductor_functions.scd".loadRelative;
"SDP_IPs.scd".loadRelative;

)

);

// player stuff
(

"SDP_score.scd".loadRelative;
"SDP_functions.scd".loadRelative;
"SDP_instruments.scd".loadRelative;

);

// run the player file first if you want to play locally

//do this first
~sendTempoStart.value;

//second
~sendStart.value;

//Do this to stop
~sendStop.value;

// GUI for tallying results
"SDP_conductor_GUl.scd".loadRelative;

Figure 13: SuperCollider conductor file code

26

|SynthDef("fm2", {arg freq = 440, modindex = 10, amp =
0.1, pos = 0, gate = 1, att = 0.01, rel = 0.3;
var carrier, modulator, freqdev, env, modfreq;
//i=d/m,sod=m*
modindex = Line.kr(modindex, 1, att);
modfreq = freq / 2;
freqdev = modfreq * modindex;
modulator = SinOsc.ar(freq: modfreq, mul: freqdev);
carrier = SinOsc.ar(freq: freq + modulator);
env = Env.asr(
attackTime: att,
sustainLevel: amp,
releaseTime: rel
).kr(doneAction: 2, gate: gate);
carrier = Pan2.ar(in: carrier, pos: pos, level: env);
Out.ar(0, carrier * 0.5);
D.add;

Figure 14: SuperCollider instrument file code

27

// _—==s=s=m=s=
// (incoming messages from conductor)
/] These OSCdefs allow remote conductor to:

~winner = 0;
~measureLetterNumber = 0; // 0 is measure A, 1is B, 2 is C, 3 is D.

// start local clock at any BPM
OSCdef(
key: \tempoStart,
func: { arg msg;
var bpm = msg[1];
t = TempoClock.new(bpm/60);
(“TempoClock started at " ++ bpm ++ " BPM").postln;
|3
path: '/tempo/start’
);

// change BPM
OSCdef(
key: \tempoChange,
func: { arg msg;
var bpm = msg[1];
t.tempo = bpm/60;
(“TempoClock changed to " ++ bpm ++ " BPM").postin;
13
path: '/tempo/change’
);

// start continuous playback
OSCdef(
key: \startPlay,
func: {
t.sched(0, {
~playMeasure.value(~measureLetterNumber);
~measureLetterNumber = ~measurelLetterNumber + 1;
if(~measureLetterNumber > 3){
~measurelLetterNumber = 0;
%
4;
s
|3
path: '/start’
);

// STOP playback (receive conductor command).

Figure 15: SuperCollideggfunction file code part 1

// STOP playback (receive conductor command).

OSCdef(
key: \stopPlay,
func: {
"Done!".postln;
TempoClock.clear;
s.freeAll;
p.stop; q.stop; t.clear;

r;ath: '/stop’
);

// incoming winner candidate ("dice") and optional letterMeasure
OSCdef(
key: \incomingStyle,
func: { arg msg;
msg.postin;
~winner = msg[1];
(“Incoming style: " ++ ~winner).postln;
2
path: '/style/change’

~playMeasure = {arg measure = 1;
case
{~winner == 0} {~score=~scorel}
{~winner == 1} {~score=~score2}
{~winner == 2} {~score=~score3}
{~winner == 3} {~score=~score4};
~currentMeasure = ~score[measure];
p = Pbind(
\instrument, "fm2",
\midinote, Pseq(~currentMeasure[0][0]),
\dur, Pseq(~currentMeasure[0][1], inf),
\ctranspose, [0, 12],
).play(t, quant: 4);

q = Pbind(
\instrument, "fm2",
\midinote, Pseq(~currentMeasure[1][0]),
\dur, Pseq(~currentMeasure[1][1], inf),
\ctranspose, [12, 24],

).play(t, quant: 4);

//drums go here

29
Figure 16: SuperCollider function file code part 2

	Santa Clara University
	Scholar Commons
	6-13-2017

	SCLOrk 2.0
	Juan Miguel Baluyut
	Jowy Curameng
	Recommended Citation

	tmp.1499795076.pdf.73SEV

