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A Mathematician Reads Plutarch:

Plato’s Criticism of Geometers of His Time1

John B. Little

Department of Mathematics and Computer Science, College of the Holy Cross,
Worcester, Massachusetts, USA

jlittle@holycross.edu

Synopsis

This essay describes the author’s recent encounter with two well-known passages
in Plutarch that touch on a crucial episode in the history of the Greek mathe-
matics of the fourth century BCE involving various approaches to the problem of
the duplication of the cube. One theme will be the way key sources for under-
standing the history of our subject sometimes come from texts that have much
wider cultural contexts and resonances. Sensitivity to the history, to the mathe-
matics, and to the language is necessary to tease out the meaning of such texts.
However, in the past, historians of mathematics often interpreted these sources
using the mathematics of their own times. Their sometimes anachronistic ac-
counts have often been presented in the mainstream histories of mathematics
to which mathematicians who do not read Greek must turn to learn about that
history. With the original sources, the tidy and inevitable picture of the develop-
ment of mathematics disappears and we are left with a much more interesting,
if ultimately somewhat inconclusive, story.

1. Introduction

Textbook presentations of mathematics itself and histories of the subject
unfortunately tend to suffer from some similar defects. In most mathemat-
ics textbooks, everything is seemingly inevitably and tidily organized. The

1This essay originated as an assignment for Professor Thomas Martin’s Plutarch sem-
inar at Holy Cross in Fall 2016. I want to thank him and the referees for a number of
helpful comments and suggestions.
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270 A Mathematician Reads Plutarch

actual process by which humans discover or invent new mathematics (even
something new only to a student) rarely, if ever, comes through; the focus
is often on acquiring cut-and-dried techniques and mastering well-known al-
gorithms. Analogously, until quite recently, histories have often presented
aspects of the mathematical past as leading inevitably and tidily to our cur-
rent understanding of the subject. However, the mathematics of the past
often starts from completely different assumptions and uses different meth-
ods that may not be captured in modern expositions or reconstructions.

Moreover, in many cases, meeting the past on its own terms can be extremely
difficult because of the paucity of the surviving materials. In addition, key
evidence can come from texts that have much wider cultural contexts and
resonances. Sensitivity to underlying history, to the language of the origi-
nal sources, and to the mathematics involved may be necessary to tease out
the meanings of those texts. Yet, historians of mathematics in the past of-
ten interpreted these sources using the mathematics of their own times and
produced conclusions that are open to question. Unfortunately it is those
sometimes anachronistic accounts that have been presented in mainstream
histories of the subject to which mathematicians who do not read the original
languages must turn to learn about that history. At the same time, some
historians and experts in the original languages lack the mathematical back-
ground knowledge to appreciate that aspect of the content of these sources.
Once one returns to actual source material, questions with no easy answers
often abound and it is amazing to see how much we still do not understand
about critical junctures in the history of our subject. The tidy and inevitable
picture of the development of mathematics disappears and we are left with
a much more interesting, if ultimately somewhat inconclusive, story.

In this essay I will present an extended example illustrating all of the points
touched on in the previous paragraph. This stems from an encounter I have
recently had with two well-known passages from Plutarch. The first comes
from the so-called Moralia, the compendium of occasional essays and miscel-
laneous writings that accompanies the series of parallel Lives of illustrious
Greeks and Romans in Plutarch’s immense output, and the other occurs in
his Life of Marcellus.2 These passages touch on a crucial episode in the

2The occasion for this study was that, motivated by a desire to read works such as
Euclid’s Elements and the Conics of Apollonius (or at least the portions of Apollonius
that survive in Greek) in their original forms, I have been studying ancient Greek for the
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history of the Greek mathematics of the fourth century BCE that stimu-
lated mathematical research into the 19th century CE and whose influence is
still felt at one point in the undergraduate pure mathematics curriculum–the
story of various approaches to the duplication of the cube. This problem is
usually grouped together with two others, the quadrature of the circle (i.e.
the problem of constructing a square or rectangle with the same area as a
given circle), and the trisection of a general angle. Wilbur Knorr examined
this tradition of geometric problems in detail in [4]. These passages from
Plutarch have been seen by some3 as a major contributing factor to the later
notion that in Greek geometric constructions, only the compass and straight-
edge were acceptable tools. In fact constructions using auxiliary curves of
various sorts were developed for all of these problems. Whether these con-
structions could be accomplished using only the Euclidean tools remained an
open question until the work of P. Wantzel and others in the 19th century
CE, completing a line of thought initiated by Descartes in La Géometrie. It
is now known that none of them is possible under those restrictive conditions
and many undergraduate mathematics majors learn proofs of these facts in
abstract algebra courses.

Because this period and the associated questions have been intensively stud-
ied since the 19th century CE, I cannot claim that this essay presents any new
historical scholarship. However, I hope that it may prove useful to instruc-
tors and other readers who are interested in finding more nuanced accounts
of some of the Greek work on the duplication of the cube than are available
in some of the standard histories.

2. The Plutarch Texts

Plutarch of Chaeronea (ca. 45–ca. 120 CE) was a Greek writing for a mixed
Greek and Roman audience during the early empire. He himself records that
he studied philosophy and mathematics in Athens and his writings reveal a
strong connection with Platonic traditions. We would call him an essayist
and biographer, although most of his writing is more devoted to ethical
lessons than to history, per se. The first passage I will discuss comes from

past four years in courses taught by several very kind colleagues in my home institution’s
well-regarded Classics department.

3See [15] for a discussion.
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a section of his Moralia known as the Quaestiones Convivales, or “Table
Talk.” Each section of this work is presented as a record of conversation at
a sumposion, or drinking party, arranged by Plutarch for a group of guests.
Philosophical questions are always debated and it is amusing to see what
Plutarch says about the rationale for this: in “... our entertainments we
should use learned and philosophical discourse ...” so that even if the guests
become drunk, “... every thing that is brutish and outrageous in it [i.e. the
drunkenness] is concealed ...” [12, 716g, Book 8, Chapter 0, Section 2]. In
other words, to keep your next party from degenerating into a drunken brawl,
have your guests converse about Plato!

In Book 8, Chapter 2, Section 1 (classicists refer to this via the so-called
Stephanus page 718ef, from one of the first modern printed versions of the
Greek text), Plutarch presents a conversation between the grammarian Dio-
genianus and the Spartan Tyndares concerning the role of the study of geom-
etry in Plato’s thought. Diogenianus begins this phase of the conversation by
raising the question why Plato asserted that “God always geometrizes.” He
also says he is not aware of any specific text where Plato said precisely that,
though he thinks it sounds like something Plato would have said. Tyndares
replies that there is no great mystery there and asks Diogenianus whether
it was not true that Plato had written that geometry is “... taking us away
from the sensible and turning us back to the eternal nature we can perceive
with our minds, whose contemplation is the goal of philosophy ... .”4 After
some elaboration of these points, Tyndares presents an interesting piece of
evidence concerning this aspect of Plato’s thought: “Therefore even Plato
himself strongly criticized Eudoxus, Archytas, and Menaechmus” (or possi-
bly “those around Eudoxus, Archytas, and Menaechmus”) “for attempting
to reduce the duplication of the cube to tool-based and mechanical construc-
tions ... .”5 Tyndares continues in a technical vein, “... just as though they
were trying, in an unreasoning way, to take two mean proportionals in con-

4In the text, I will present my translations of the Greek. Here: “ἀποσπῶσαν ἡμᾶς
προσισχομένους τῇ αἰσθήσει καὶ ἀποστρέφουσαν ἐπὶ τὴν νοητὴν καὶ ἀίδιον φύσιν, ἧς θέα

τέλος ἐστὶ φιλοσοφίας ... .” All Greek quotations from the Plutarch passage are from the
Loeb Classical Library/Perseus online text of Plutarch’s Quaestiones Convivales, [12].

5“δίο καὶ Πλάτων αὐτὸς ἐμέμψατο τοὺς περὶ Εὔδοξον καὶ Ἀρχύταν καὶ Μέναιχμον εἰς
ὀργανικὰς καὶ μηχανικὰς κατασκευὰς τὸν τοῦ στερεοῦ διπλασιασμὸν ἀπαγεῖν ἐπιχειροῦντας

... ”
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tinued proportion any way that they might ... .”6 It is quite interesting that
Tyndares seems to be assuming that all of his listeners would be familiar with
this terminology and the episode in the history of geometry to which he is
referring. Tyndares concludes his summary of Plato’s criticism by claiming
that in this way (i.e. by using mechanical procedures with tools) “... the
good of geometry is utterly destroyed and it falls back on things of the senses;
it is neither carried above nor apprehends the eternal and immaterial forms,
before which God is always God.”7

It is interesting to note that Plutarch gives a second, partially parallel account
of this criticism in Chapter 14, Sections 5 and 6 of his Life of Marcellus,
in the context of a discussion of the geometrical and mechanical work of
Archimedes and the tradition that King Hiero of Syracuse persuaded him to
take up mechanics to design engines of war in defence of his native city-state.
Marcellus was, of course, the commmander of the Roman forces in the siege
of Syracuse in 212 BCE during which Archimedes was killed. In that passage,
Plutarch says (in the English translation by Bernadotte Perrin from [13]; we
discuss some issues related to word choices in the footnotes):

“For the art of mechanics, now so celebrated and admired,
was first originated by Eudoxus and Archytas, who embellished
geometry with its subtleties, and gave to problems incapable of
proof by word and diagram, a support derived from mechani-
cal illustrations that were patent to the senses. For instance
in solving the problem of finding two mean proportional lines,
a necessary requisite for many geometrical figures, both mathe-
maticians had recourse to mechanical arrangements8 adapting to
their purposes certain intermediate portions of curved lines and
sections.9 But Plato was incensed at this, and inveighed against
them as corrupters and destroyers of the pure excellence of ge-

6“ὥσπερ πειρωμένους δι΄ ἀλόγου δύο μέσας ἀνάλογον, ᾗ παρείκοι, λαβεῖν ... ” The δι΄
ἀλόγου is hard to translate and may not even be what Plutarch originally wrote. This
specific phrase has a rather large number of textual issues as evidenced by the variant
readings discussed in the Loeb Classical Library/Perseus version of the Plutarch text. At
least one editor has suggested that the whole phrase should be omitted from the text!

7“ἀπόλλυσθαι γὰρ οὔτω καί διαφείρεσθαι τὸ γεωμετρίας ἀγαθὸν αὖθις ἐπὶ τὰ αἰσθητὰ
παλινδρομούσης καὶ μὴ φερομένης ἄνω μηδ΄ ἀντιλαμβανομένης τῶν ἀίδιων καὶ ἀσωμάτων

εἰκόνων πρὸς αἶσπερ ὢν ὁ θεὸς ἀεὶ θεός ἐστι.”
8“κατασκευάς” – “constructions” would be another, perhaps better, translation here.
9“μεσογράφους τινὰς ἀπὸ καμπύλων καὶ τμημάτων μεθαρμόζοντες” – I think a better

translation here is “adapting to their purposes mean proportionals found from curved
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ometry, which thus turned her back upon the incorporeal things
of abstract thought and descended to the things of sense, making
use, moreover, of objects which required much mean and man-
ual labor. For this reason, mechanics was made entirely distinct
from geometry, and being for a long time ignored by philosophers,
came to be regarded as one of the military arts.”

One can see the dilemma of a non-mathematician translating technical dis-
cussions! In the passage as a whole, one can also glimpse some of the less
attractive aspects of Plato’s thought. These passages in Plutarch provide a
fascinating, but also ultimately somewhat cryptic, sidelight on a key episode
in the history of Greek mathematics.

3. Just What Was Plato Criticizing?

To understand the import of Plutarch’s account, we need to take a small
detour into Platonic philosophy to start. Tyndares is evidently thinking
of passages like 527b in Book VII of the Republic, where, in the midst of
a discussion of the subjects in which men should be educated, Plato has
Socrates say in reference to geometry that “... it is the knowledge of that
which always is, and not of a something which at some time comes into being
and passes away. ... [I]t would tend to draw the soul to truth, and would be
productive of a philosophical attitude of mind, directing upward the faculties
that are now wrongly turned downward.”10

I would argue that Plato’s supposed objection in our passages refers specifi-
cally to the use of tools within the realm of pure geometry, conceived of as an
exercise of pure thought apprehending properties of an unchanging external

lines and sections.” The meaning of μεσογράφους here is the same as in a passage from a
commentary of Eutocius quoting Eratosthenes that will be discussed below.

10English translation from [10, page 758]. I am indebted to one of the referees for the
observation that Xenophon’s Socrates has a rather different viewpoint on geometry from
Plato’s Socrates. In the Memorabilia, 4.7.2-3, Xenophon has Socrates say that practical
geometry of measurement and apportionment is important and that men should be able
to demonstrate the correctness of their work but that higher geometry is something whose
usefulness he cannot see; see [16]. In Republic, 526de, Plato’s Socrates also acknowledges
the practical uses of geometry, then considers the question of whether “... the greater and
more advanced part of it tends to facilitate the apprehension of the idea of the good.” He
clearly believes that it does do so [10, page 759].
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reality. For the adjective “tool-based”11 to apply, I believe some physical de-
vice manipulated by the geometer and requiring input from the senses of the
geometer must be involved in a construction. Input from the senses might
involve some sort of approximation of a length or an angle or manipulation
of elements of a figure to put them into a special configuration (e.g. moving
elements to make a collection of points collinear). We will see some concrete
examples of this later. While such a process might be sufficient for a practical
application, I think Plato would have objected on principle to any such con-
struction that claimed to be a solution of a geometric problem because the
solution it yields must be an approximation to an exact theoretical solution.

There is a point here that may be subtle for some modern readers of these
works. The Greeks, even though they used physical straightedges to draw
lines and physical compasses to draw circles while constructing diagrams, also
considered those tools in idealized versions that were constructs of the mind
and thus not dependent on the senses. The first three postulates in Book I
of the Elements of Euclid (ca. 300 BCE) describe their uses and properties in
abstract terms. In particular, the idealized straightedge can be used to draw
lines, but not to measure distances; it has no distance scale like a modern
ruler. Similarly, the idealized Euclidean compass can be used to draw circles,
but not to measure or transfer distances. So we should certainly not take
criticisms such as the one ascribed to Plato here to refer to constructions
that involve the Euclidean tools.

Moreover, it is certainly not the case that Plato was opposed in all cases
to the use of tools or mechanical devices to understand the cosmos. For
instance in the Timaeus at 40d he says that trying to explain the motions of
the planets and other astronomical phenomena “... without an inspection of
models of these movements would be labor in vain.”12

I think the statement in the quotation from the Life of Marcellus gives several
additional clues about Plutarch’s understanding of Plato’s supposed objec-
tions. For Plutarch, from the evidence of this statement, it seems that the ad-

11
ὀργανικός

12[10, page 1169]. I thank one of the referees for pointing out this facet of the Platonic
tradition. The word translated as “models” is μιμήματα – literally “imitations.” I would
take this as possibly meaning some sort of orrery or other device representing the motions.
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jective “mechanical”13 referred to the use of mathematics to emulate and/or
design real-world machines, and perhaps machines of war in particular. It is
possible that for him the adjectives “tool-based” and “mechanical” overlap
in meaning to some degree. However, I would suggest that another aspect
that might make a geometrical construction “mechanical,” apart from the
use of actual tools, is that it has some element of motion (real or imagined)
possibly as in a real-world mechanical device. Plutarch says that Archytas in
particular “gave to problems incapable of proof by word and diagram, a sup-
port derived from mechanical illustrations that were patent to the senses.”
Note that any sort of change over time in a figure would by itself seem to
violate Plato’s vision of the eternal and unchanging nature of the world of
the forms.

Even the language used in many Greek mathematical arguments reinforces
this point. The third person perfect imperative verb forms typically used
in Greek to express the steps of geometric constructions (e.g. γεγράφθω –
“let it have been drawn”) seem to emphasize that the figure or diagram has
been constructed as a whole, and thus connote something static rather than
something dynamic.14 This convention seems in fact to agree perfectly with
the Platonic conception of geometry that I would argue forms the basis of
the supposed criticism in our Plutarch passages.

Tyndares is saying that Plato criticized the nature of the solutions proposed
by Eudoxus, Archytas, and Menaechmus because they in effect subverted
what he (i.e. Plato) saw as the true purpose of geometry: its raison d’être
was not merely to solve problems “by any means necessary,”15 but rather to
take us away from the realm of the senses and prepare us for the study of
dialectic.16

13
μηχανικός

14See, for instance, the discussion in [7, page 197].
15that is, the ᾗ παρείκοι in Plutarch’s formulation
16As one of the referees has pointed out, it is important to acknowledge that while Plato

gave geometry a special place in his epistemology, he certainly did not think of it as the
highest form of knowledge, because of its essentially hypothetical nature. At 533c in the
Republic, for instance, he says that “... geometry and the studies that accompany it are,
as we see, dreaming about being, but the clear waking vision of it is impossible for them
as long as they leave the assumptions which they employ undisturbed and cannot give any
account of them.” Dialectic, in which we give an account of our basic assumptions and
reason from them, is even more important to master [10, page 765].
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In his thought-provoking study [4] of the Greek work on construction prob-
lems, Wilbur Knorr has argued in effect that by this period Greek mathe-
matics had distanced itself from the sort of philosophical or religious under-
pinning that Plutarch says Plato claimed for it and was already very close
to a modern research program, in which the goal often is indeed to solve
problems by whatever means are necessary, and then to understand what
methodological restrictions might still allow a solution.17 Needless to say,
this view is not universal among historians of Greek mathematics.

4. The Historical Background

Eudoxus of Cnidus (409–356 BCE), Archytas of Tarentum (428–347 BCE),
and Menaechmus of Alopeconnesus (380–320 BCE) were three of the most
accomplished Greek mathematicians active in the 4th century BCE. Archytas
is often identified as a Pythagorean and there are traditions that Eudoxus
was a pupil of his and Menaechmus was a pupil of Eudoxus. All three were
associated with Plato and his Academy in Athens in some way. We have
much of this from sources such as the commentary on Book I of Euclid’s
Elements by Proclus,18 though the fact that Proclus is writing roughly 800
years after this period raises the question of how reliable his information is.

As almost all mathematicians know, the duplication of the cube was a geomet-
rical problem asking for the construction of the side of a cube whose volume
would be twice the volume of a given cube. Various traditions deal with the
genesis of this problem. One says that seeking direction in order to stem the
progress of a plague on their island (or perhaps political conflicts; different
versions of the story differ on this point), the people of Delos consulted the
oracle at Delphi, whereupon the Pythia replied that they must find a way to
double the size of an cubical altar of Apollo.19 When they were unable to do
this themselves, the Delians supposedly consulted Plato and the geometers at
his Academy to find the required geometric construction; for this reason the
problem of the duplication of the cube is often called the “Delian problem.”

17See the discussions at [4, pages 39–41 and 88] in particular.
18[14, pages 54–56].
19A somewhat parallel story about King Minos seeking how to double the size of a tomb

also appears in a letter of Eratosthenes to King Ptolemy III Euergetes of Egypt that will
be discussed below. See [3, page 245].
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However, this version of the story is almost certainly fanciful (at least as the
origin of the problem–the chronology seems to be wrong, for one thing, since
as we will see presently there was work on the question somewhat before the
time of Plato (428 – 348 BCE)). Plutarch himself, in another section of the
Moralia called The E at Delphi, says that the underlying point of the story
was that the god was commanding the Greeks to apply themselves more as-
siduously to geometry.20 There is no doubt that the duplication of the cube
was one of a series of geometric construction problems that stimulated the
development of Greek mathematics throughout the Classical period.

5. Two Mean Proportionals In Continued Proportion

For a full understanding of our Plutarch passages, and of Plato’s supposed
objection to the work of Eudoxus, Archytas, and Menaechmus, we need to
introduce an important piece of progress that had been made earlier and defi-
nitely before the time of Plato by Hippocrates of Chios (ca. 470–ca. 410 BCE).
None of Hippocrates’ own writings have survived and we know about the fol-
lowing only from sources such as fragments of a history of pre-Euclidean
mathematics by Eudemus of Rhodes (ca. 370–ca. 300 BCE) preserved in
other sources. Given two line segments AB and GH, we say line segments
CD and EF are two mean proportionals in continued proportion21 between
AB and GH if their lengths satisfy:

AB

CD
=

CD

EF
=

EF

GH
. (1)

Hippocrates’ contribution was the realization that if we start with

GH = 2AB,

then the construction of two mean proportionals as in (1) would solve the
problem of the duplication of the cube. The idea is straightforward: If

AB

CD
=

CD

EF
=

EF

2AB
,

20[11, Chapter 6, 386e].
21In the first Plutarch passage above, this appears in the accusative as δύο μέσας
ἀνάλογον. The ἀνάλογον seems to be essentially equivalent to the ἀνὰ λόγον from the
second passage, and that is conventionally translated as “in continued proportion.”
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then some simple algebra (which the Greeks would have emulated with par-
allel manipulation of proportions) shows

CD3 = 2AB3.

In other words, if AB is the side of the original cube, then CD is the side of
the cube with twice the volume.

It is important to realize that Hippocrates in effect only reduced one problem
to another one. Finding a geometric construction of the two mean propor-
tionals in continued proportion was still an open question but this approach
did provide a definite way to attack the duplication of the cube and essen-
tially all later work took this reduction as a starting point.

6. Eutocius’ Catalog of Constructions

Plutarch does not include any discussion of what Eudoxus, Archytas, or
Menaechmus actually did in their work on the duplication of the cube. How-
ever, quite detailed accounts of the contributions of Archytas and Menaech-
mus, as well as the contributions of many others on this problem, have sur-
vived in ancient sources. The most important is a much later commentary on
Archimedes’ On the Sphere and the Cylinder by Eutocius of Ascalon (ca. 480–
ca. 540 CE), in which Eutocius surveys a wide selection of different solutions
to the problem of duplicating a cube by finding two mean proportionals.22

The occasion for the commentary was the fact that Archimedes assumed the
construction was possible in some way in the proof of the first proposition
in Book II of On the Sphere and the Cylinder, but he did not provide any
explanation. Because of the roughly 900 years intervening between the time
of the Platonic geometers and Eutocius’ time, the caveat we made above
about accepting evidence from Proclus’ writings uncritically also applies to
Eutocius’ catalog. Eutocius’ account includes detailed information about
the approaches of Archytas and Menaechmus. Unfortunately, the solution
by Eudoxus, “by means of curved lines,” is not presented in detail by Euto-
cius because he believes his sources for it are corrupt. Hence we do not have

22The Greek original with a Latin translation is included in Volume III of J. Heiberg’s
Archimedis Opera Omnia, [1]. A near-literal English translation is given by Netz in [9,
pages 270–306].
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enough information to draw any firm conclusions about how it connects with
what Plutarch writes.23

Before we turn to what Eutocius says about the work of Archytas and
Menaechmus, we will examine his discussion of a purported letter to King
Ptolemy III of Egypt by Eratosthenes of Cyrene (276–194 BCE) with a sum-
mary of earlier work and Eratosthenes’ own solution making use of an in-
strument he dubbed the mesolabe, or “mean-taker.”24 I include the following
brief description of Eratosthenes’ device to illustrate a construction where
the adjectives “tool-based” and “mechanical” clearly do apply in the senses
we have suggested above.

Let AE > DH be two unequal line segments and suppose it is required to
find two mean proportionals in continued proportion between them. Imagine
the configuration in Figure 1 showing the mesolabe in its original position,
with three rectangular panels whose horizontal sides are all equal: EF =
FG = GH. Hence the diagonals AF, JG,KH are parallel.

Figure 1: The mesolabe in original position.

The three panels are arranged something like a set of sliding screen doors on
separate grooves; the left panel AEFJ can slide to the right, over and par-
tially covering the middle panel JFGK. Meanwhile, the right panel KGHL
can slide to the left behind the middle panel.

23A number of conjectural attempts to reconstruct Eudoxus’ solution have been made,
however. See the discussion in [4, pages 52–57].

24The purpose of the letter is essentially to claim the superiority of Eratosthenes’ tool-
based mechanical method for practical use. It was dismissed as a later forgery by some
19th and early 20th century historians, but more recently, the tide of opinion has seemingly
changed and sources such as [4] and [9] argue that it should be accepted as authentic.
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Using his or her senses with some trial and error, the geometer using the
mesolabe maneuvers the left and right panels until a configuration like the
one in Figure 2 is reached. The labels J, F,K,G, L,H now show the final
positions of the points on the right-hand edges of the three panels.

Figure 2: The mesolabe in final position.

The left-hand edge of the middle panel is shown with the dashed black line;
it lies behind the final position of AEJF . The left-hand edge of the right
panel, which lies behind the middle panel, has been omitted here for legibility.
Here point B is the intersection of JF and the diagonal of the middle panel,
which does not move. Similarly, point C is the intersection of KG, the right-
hand edge of the middle panel and the diagonal of the right panel. The final
configuration is arranged to make the four points A,B,C,D collinear. We
claim that when such a configuration is reached, we have the two required
mean proportionals in continued proportion. This follows easily because
∆AEF , ∆BFG, and ∆CGH are similar triangles, and the same is true for
∆ABF , ∆BCG and ∆CDH. Hence

AE

BF
=

AF

BG
=

BF

CG
.

Similarly, we can see that

BF

CG
=

BG

CH
=

CG

DH
,

and hence
AE

BF
=

BF

CG
=

CG

DH
.
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I will next discuss the main ideas behind what Eutocius says about the
approaches of Archytas and Menaechmus and the ways this evidence has
been interpreted. My goals here are to shed some additional light on the
content of the Plutarch passages and to show how different interpretations
of what Eutocius says have led to quite different understandings of this part
of Greek geometry. Some of these seem more faithful to context of this work
and some seem more anachronistic.

7. The Work of Archytas

In Eutocius’ presentation, the account of the approach by Archytas is specifi-
cally attributed to Eudemus’ history, which means what we have may actually
be a commentary on a commentary.25 The solution is essentially based on a
geometric configuration in which it can be seen that two mean proportionals
in continued proportion have been found. Borrowing from [7], we will call
these Archytas configurations. One of these is shown in Figure 3.

Figure 3: An Archytas configuration.

Here AEB and ADC are two semicircles tangent at A, and BD is tangent
to the smaller semicircle at B.

25The other sections of Eutocius’ commentary are not labeled in this way; they give the
name of the author, and sometimes the title of the work from which Eutocius is quoting.
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It follows from some standard geometric facts that ∆BAE, ∆CAD, ∆DBE,
∆CDB and ∆DAB are all similar. This follows because the angles ∠AEB
and ∠ADC are inscribed in semicircles, hence right angles, and hence the

lines
←→
EB and

←→
DC are parallel. From this we can see immediately that taking

ratios of longer sides to hypotenuses in three of these triangles,

AE

AB
=

AB

AD
=

AD

AC
.

In other words, AB and AD are two mean proportionals in continued pro-
portion between AE and AC.

But now, we must address the question of how such a configuration would
be constructed given the lengths AE < AC. A modern explanation might
run as follows. The issue is that although we can always take the segment
AC as the diameter of the larger semicircle, there is no direct way to find the
smaller semicircle, the perpendicular BD to AC and the point E without
some sort of continuity argument or approximation process. Consider the
situation in Figure 4.

Figure 4: A failed attempted construction of an Archytas configuration.

Given the lengths AE < AC, the possible locations of the point E lie on an
arc of the circle with center at A and radius equal to a specified length. One
such arc is shown in blue in Figure 4. Through each point E on that arc, there
is exactly one semicircle tangent at A to the semicircle with diameter AC,
shown in green in the figure. The line through A,E meets the outer semicircle
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at D and B is the foot of the perpendicular from D to AC. However, note
that with this choice of E, DB does not meet the smaller semicircle at
all. However, by rotating the segment AE about A and increasing the angle
∠CAE, we would eventually find that the corresponding BD cut through the
corresponding smaller semicircle. Hence there must be some point E on the
blue arc that yields an Archytas configuration as in Figure 3, by continuity.
As we have described it, a naive process of finding that point might involve
motion and exactly the sort of resort to “eyeballing” or use of the senses
and approximation that Tyndares says Plato criticized in our passages from
Plutarch! We can also easily locate such a point using modern coordinate
geometry, trigonometry, and numerical root finding. But needless to say, all
of that is well beyond the scope of Greek mathematics.

What Eutocius said that Archytas actually did here has been interpreted in a
number of different ways by different modern scholars. One tradition known
from influential sources such as Heath’s history of Greek mathematics, [3],
interprets Archytas’ solution as a bold foray into solid geometry whereby a
suitable point like our E in Figure 3 is found by the intersection of three
different surfaces in three dimensions (a cylinder, a cone and a degenerate
semi-torus–the surface of revolution generated by rotating the semicircle with
diameter AC about its tangent line at A). Heath characterizes this solution
as “the most remarkable of all” those discussed by Eutocius because of the so-
phisticated use of three-dimensional geometry he sees in it [3, pages 246–249].
Similarly, Knorr calls it a “stunning tour de force of stereometric insight” [4,
page 50].

Very recently, however, a new interpretation based on a close reading of
the Greek text of Eutocius has appeared in the historical literature in [7].
As the author Masià points out, while surfaces in three-dimensional space
are indeed mentioned in Eutocius’ (or perhaps Eudemus’) presentation of
Archytas’ work, it is not easy to see all of the aspects of Heath’s description in
the actual text. While a (semi-)cylinder and a cone are explicitly mentioned,
the semi-torus surface of revolution is not. Moreover, even there, the cone and
its properties are not really used in the proof; it seems to be included more
for the purposes of visualization and to show how an exact solution could
be specified without recourse to approximation [7, page 203]. He also points
out that Heath’s characterization of this solution as the “most remarkable”
does not seem to match the way the solution is presented by Eutocius. It
is not given first or last, or singled out in any other way. Hence Heath’s
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interpretation, while certainly a correct way to describe the geometry, seems
to be a somewhat anachronistic reading because it uses the intersection of
three surfaces in three-dimensional space in such a crucial way.

Instead, Masià suggests that the argument can be understood in a fashion
that seems much closer to the actual text in Eutocius and to what we know
about the state of mathematics at the time of Archytas, in which we think
geometry in three dimensions was essentially still in its infancy.26 Consider
first the configuration in Figure 5, in which we have a semicircle and an
inscribed triangle two of whose sides have the given lengths AE and AC.
The goal is to find two mean proportionals in continued proportion between
these.

Figure 5: Masià’s suggestion, initial configuration.

In Figure 6, imagine a second copy of the semicircle rotating about A (in
the plane). As this rotation occurs, the line AE is extended to meet the
rotated semicircle at E ′ and a perpendicular is dropped from E ′ to B′ on
the diameter AC ′ of the rotated semicircle. The rotation is continued until
B′ lies on CE. When this configuration is reached, we have an Archytas
configuration because it is easy to see that the points A,B′, and E lie on a
semicircle tangent to B′E ′ as in Figure 3.

26One piece of evidence for this is the comments about the state of solid geometry in
Plato, Republic, 528bc, [10, page 760]. How this might relate to Plato’s supposed criticism
of Archytas for this work is yet another mysterious aspect of this episode.
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Figure 6: Masià’s suggestion, final configuration.

Masià suggests that this motion is then emulated in three dimensions by
triangles in two perpendicular planes to produce a construction matching
the Greek text of Eutocius very closely.27 In either our simple presentation,
or the kinematic description of the three surfaces in three dimensions, or
the new reading of Archytas’ construction from [7], there is definitely an
aspect of motion that seems to agree with Plato’s reported characterization
of the construction as “mechanical.” How the adjective “instrument-” or
“tool-based” might apply is not as clear, although one could easily imagine
a device (requiring input from the geometer’s senses and hence yielding an
approximate solution) to carry out the rotation shown in Figure 6.

8. The Work of Menaechmus

The approach attributed by Eutocius to Menaechmus is even more problem-
atic although it was evidently extremely influential for the development of
a key part of Greek geometry. This approach can be described as follows.28

27See [7, pages 188–193]. Masià discusses several other possible ways to interpret Archy-
tas’ solution in two or three dimensions and discusses other interpretations including the
one given in [6, Chapter 5].

28This is essentially the presentation given in [3, pages 252–255], although Heath does
not use coordinate geometry explicitly in this way.
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Given line segments of lengths a, b, finding the two mean proportionals in
continued proportion means finding x, y to satisfy:

a

x
=

x

y
=

y

b
. (2)

Hence, cross-multiplying and interpreting the resulting equations via coor-
dinate geometry (very anachronistically), we see the solution to the Delian
problem will come from the point of intersection of the parabola ay = x2

and the hyperbola xy = ab, or one of the points of intersection of the two
parabolas ay = x2 and bx = y2.

As beautiful as this is, we must ask whether it is likely that Eutocius has pre-
served a historically accurate account of Menaechmus’ work. In particular,
could Menaechmus have recognized that he was dealing with a conic section
from an equation like ay = x2, where in his terms, the a, y, x would have rep-
resented line segments and each side of the equation would have represented
an area? None of Menaechmus’ own writings have survived. Suspiciously,
the discussion of his work in Eutocius uses the terminology for conic sec-
tions introduced much after the time of Menaechmus himself by Apollonius
of Perga (262–190 BCE). Apollonius’ work does provide exactly the point of
view needed to connect sections of a cone with equations such as ay = x2

or xy = ab. Since Apollonius’ terminology and conceptual framework for
conics seems to have been developed by analogy with constructions in the
application of areas (a technique that Menaechmus would have known well),
there is no doubt that some connection between Menaechmus and the later
theory of conics exists. And if Menaechmus already did have a full theory of
conics, as traditions preserved by Proclus29 suggest, there is a favorite can-
didate for what it may have looked like. Earlier terminology, according to
which parabolas are “sections of right-angled cones” (by planes perpendicu-
lar to one of the generating lines of the cone) and hyperbolas are “sections of

29[14, page 91]. Proclus mentions as evidence the epigram of Eratosthenes on the dupli-
cation of the cube that concludes the letter to Ptolemy III mentioned above. This includes
the direction “neither seek to cut the cone in the triads of Menaechmus” to obtain a solu-
tion (μηδὲ Μεναιχμείους κωνοτόμειν τριάδας διζήαι ... ). See [1, page 112]. (The present
middle indicative διζήαι should probably be the aorist middle subjunctive διζήσῃ and other
sources correct it that way.) Exactly what this phrase means is not at all clear. Some
writers have seen in the “triads” the division of conic sections into the three classes of
ellipses, parabolas, and hyperbolas. But note that there aren’t any ellipses here.
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obtuse-angled cones” is preserved in such works as Archimedes’ Quadrature
of the Parabola. This is sometimes used to infer the way Menaechmus may
have approached the definition of the conics as well as the way that theory
may have been presented in the lost Conics of Euclid.30

On the other hand, in [4, pages 61–69], Knorr discusses reasons why it is
at least questionable that Menaechmus possessed such a theory of conics.
He presents an alternative conjectural reconstruction of Menaechmus’ work
that does not rely on curves derived as sections of cones. The idea is that
techniques clearly available to Menaechmus would allow one to construct ar-
bitrarily many pairs x, y of lengths satisfying ay = x2 or bx = y2 and hence
approximate a solution of (2) without a construction of the whole curve de-
fined by one of these equations or deeper understanding of the properties
of parabolas. The interpretation via the curves obtained by intersecting a
cone with a plane in a particular position would have come later. Knorr’s
version is also at least plausible. In any case, it is virtually certain that
either a source Eutocius consulted or Eutocius himself reworked Menaech-
mus’ presentation in the light of later developments. Unfortunately, with
our fragmentary knowledge from the surviving ancient sources, we cannot
really be sure about any of this. I would venture, though, that attributing
a full-blown theory of conic sections (that is, as plane sections of cones) to
Menaechmus may be an instance of the sort of conceptual anachronism that
is unfortunately common in conventional histories of mathematics.31

Another slightly mysterious aspect of the Platonic criticism recounted in our
Plutarch passages is how the adjectives “mechanical” or “instrument-” or
“tool-based” might apply to what is attributed to Menaechmus by Eutocius.
It is true that the conic sections apart from the circle cannot be constructed
as whole curves using only the Euclidean tools and other sorts of devices
would be needed to produce them. Interestingly enough, along these lines,
Eutocius’ discussion does include a final comment that “the parabola is drawn

30See, for instance, the discussions of Menaechmus’ work in [3, pages 251–255] and [2,
pages 84-87].

31This may in fact apply just as much to Eutocius as to modern historians of mathemat-
ics. In my opinion it is not always easy for mathematicians to be good historians because
of the habits of mind we acquire from the study of mathematics. We don’t always preserve
distinctions between logically equivalent forms of statements and we find it too easy to
attribute our own understanding of those statements to mathematicians of the past.
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by the compass invented by our teacher the mechanician Isidore of Miletus
... .”32 Isidore (442–537 CE) was an architect, one of the designers of the
Hagia Sophia in Constantinople, and thus this note is surely an interpolation
from the general period of Eutocius himself, not a part of the older source
Eutocius was using to produce this section of his commentary.33

9. Plato’s Solution?

In a final, decidedly odd, aspect of this story, Eutocius also gives a construc-
tion of the two mean proportionals in continued proportion that he ascribes
to Plato himself. But that is one of the most mechanical and tool-based of
all the solutions he describes.34

Figure 7: The so-called Plato solution.

In Figure 7, let CA and AE be the given lengths, which are laid off along
perpendicular lines to start. The red dashed lines in the figure represent
a frame (like two “t-squares” joined along an edge with a movable slider

32“γράφεται δὲ ἡ παραβολὴ διὰ τοῦ εὑρεθέντος διαβήτου τῷ Μιλησίῶ μηχανικῷ ᾿Ισιδώρῳ
τῷ ἠμετέρῳ διδασκάλῷ ... ”, [1, page 98].

33See [9, page 290, note 130].
34The text discussion is accompanied by a rare perspective drawing of the device. A

possible explanation for the oddness of this attribution is discussed in [8].
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connecting the two parallel edges and forming right angles with them). The
side through C and D in the figure represents the final position of the slider,
parallel to the side through B and E. The device would be used as follows.
Keeping one point fixed at E, the frame would be rotated. For each position,
the slider would be moved until it passed through the point D where the side
BD meets the extension of AE. If the slider passes through the given point
C (as in the final position shown), then the triangles ∆AEB,∆ABD,∆ADC
are similar and it is easy to show that AB and AD are the two required mean
proportionals in continued proportion. Once again, some input from the
senses of the geometer and some trial and error would be needed to find the
required position. The result is an approximation to the ideal configuration
desired. As Knorr says, “one is astounded at the flexibility of the traditions
which on the one hand attribute such a mechanism to Plato, yet on the other
hand portray him as the defender of the purity of geometry and the sharp
critic of his colleagues for their use of mechanical procedures in geometric
studies” [4, page 59].

10. Concluding Remarks

Our study of the passages in question shows that Plutarch has seemingly pre-
served a largely accurate picture of Plato’s thinking, certainly more accurate
than some of the traditions preserved in Eutocius’ commentary. But from
what we know of the work of Archytas and Menaechmus and from the later
work of Archimedes, Apollonius and others, I would argue that if something
like Plato’s criticism of the geometers in his circle actually happened at this
point in history, then its effect on Greek mathematics was rather minimal.

An openness to mechanical techniques can already be seen for instance in the
description of the quadratrix curve ascribed to Hippias of Elis (late 5th cen-
tury CE) and used in the period we have considered in solutions of the angle
trisection and circle quadrature problems. We often find scholars of the Hel-
lenistic and later periods pursuing both mathematical and mechanical work,
sometimes even in combination. Celebrated examples of this trend include
Archimedes’ work on spirals, a portion of his Quadrature of the Parabola, and
most strikingly his Method of Mechanical Theorems, which presents a some-
what systematic procedure, based on mechanics, to discover geometric area
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and volume mensuration results.35 Even later, Heron of Alexandria (ca. 10–
ca. 70 CE) gives another different solution of the problem of the two mean
proportionals in his Βελοποιϊκά, a treatise on the design of siege engines and
artillery(!)

While it drew on philosophy for its norms of logical rigor, I would agree with
Knorr that mathematics had in essence emerged as an independent subject in
its own right by the time of Eudoxus, Archytas, and Menaechmus. Plutarch
was, by training and inclination, a Platonist and this by itself sufficiently
explains his interest in preserving traditions about Plato’s thinking about
mathematics and his criticism of the geometers in his circle. The follow-
ing passage in Republic, 527ab seems to go along with this. There Plato’s
Socrates pokes fun at geometers in these words: “Their language is most
ludicrous, though they cannot help it,36 for they speak as if they were doing
something and as if all their words were directed towards action. For all
their talk is of squaring and applying and adding and the like, whereas in
fact the real object of the entire study is pure knowledge” [10, page 759].
But thinking about the implications of this in connection with what Greek
mathematicians were doing by this time, it seems doubtful that Plato’s ideas
about the proper methods or goals of mathematics carried much real weight
for many of the actual practitioners of the subject.
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