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TOPOLOGICAL ANDDYNAMICAL COMPLEXITY IN EPIDEMIOLOGICAL AND
ECOLOGICAL DYNAMICAL SYSTEMS

ABSTRACT

In this work, we address a contribution for the rigorous analysis of the dynamical
complexity arising in epidemiological and ecological models under different types of inter-
actions.

Firstly, we study the dynamics of a tumor growth model, governing tumor cells in-
teracting with healthy tissue cells and effector cells of the immune system. By using the
theory of symbolic dynamics, we characterize the topological entropy from one-dimensional
iterated maps identified in the dynamics. This analysis is complemented with the com-
putation of the Lyapunov exponents, the fractal dimension and the predictability of the
chaotic dynamics.

Secondly, we provide the analytical solutions of the mentioned tumor growth model.
We apply a method for solving strongly nonlinear systems - the Homotopy Analysis
Method (HAM) - which allows us to obtain a one-parameter family of explicit series
solutions.

Due to the importance of chaos generating mechanisms, we analyze a mathematical eco-
logical model mainly focusing on the impact of species rates of evolution in the dynamics.
We analytically proof the boundedness of the trajectories of the attractor. The complexity
of the coupling between the dynamical variables is quantified using observability indices.
The topological entropy of existing one-dimensional iterated maps is characterized using
symbolic dynamics. To extend the previous analysis, we study the predictability and the
likeliness of finding chaos in a given region of the parameter space.

We conclude our research work with the analysis of a HIV-1 cancer epidemiological
model. We construct the explicit series solution of the model. An optimal homotopy
analysis approach is used to improve the computational efficiency of HAM by means of
appropriate values for the convergence control parameter.

We end up this dissertation presenting some final considerations.

KEY-WORDS: life science models, dynamical systems theory, differential equations,
homotopy analysis method, analytical solutions.
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COMPLEXIDADE DINÂMICA E TOPOLÓGICA EM SISTEMAS DINÂMICOS EPI-
DEMIOLÓGICOS E ECOLÓGICOS

RESUMO

Este trabalho constitui um contributo para a análise rigorosa da complexidade dinâmica
de modelos epidemiológicos e ecológicos submetidos a diferentes tipos de interações.

Primeiramente, estudamos a dinâmica de um modelo de crescimento tumoral, repre-
sentando a interacção de células tumorais com tecidos saudáveis e células efectoras do
sistema imunitário. Usando a teoria da dinâmica simbólica, caracterizamos a entropia
topológica de aplicações unidimensionais identificadas na dinâmica. Esta análise é com-
plementada com o cálculo dos expoentes de Lyapunov, dimensão fractal e o cálculo da
previsibilidade dos atractores caóticos.

Seguidamente, apresentamos soluções anaĺıticas do modelo de crescimento tumoral
mencionado. Aplicamos um método para resolver sistemas fortemente não lineares - o
Método de Análise Homotópica (HAM) - o qual nos permite obter uma famı́lia a um
parâmetro de soluções expĺıcitas em forma de série.

Devido à importância dos mecanismos geradores de caos, analisamos um modelo
matemático em ecologia, centrando-nos no impacto das taxas de evolução das espécies na
dinâmica. Provamos analiticamente a compacticidade das trajectórias do atractor. A com-
plexidade do acoplamento entre as variáveis dinâmicas é quantificada utilizando ı́ndices de
observabilidade. A entropia topológica de aplicações unidimensionais é
caracterizada usando a dinâmica simbólica. Para estender a análise anterior, estudamos a
previsibilidade e a probabilidade de encontrar comportamento caótico numa determinada
região do espaço de parâmetros.

Conclúımos o nosso trabalho de investigação com a análise de ummodelo epidemiológico
tumoral HIV-1. Constrúımos uma solução expĺıcita do modelo. Usamos uma análise ho-
motópica optimal para melhorar a eficiência computacional do HAM através de valores
apropriados para o parâmetro de controlo da convergência.

Terminamos esta dissertação com a apresentação de algumas considerações finais.

PALAVRAS-CHAVE: modelos das ciências da vida, teoria dos sistemas dinâmicos,
equações diferenciais, método de análise homotópica, soluções anaĺıticas.



iv



v

Ao meu Pai

“– Non, dit le petit prince. Je cherche des amis. Qu’est-ce que signifie “apprivoiser”?
– C’est une chose trop oubliée, dit le renard. Ça signifie “créer des liens. . . ”
– Créer des liens ?
– Bien sûr, dit le renard.
Tu n’es encore pour moi qu’un petit garçon tout semblable à cent mille petits garçons.
Et je n’ai pas besoin de toi. Et tu n’as pas besoin de moi non plus.
Je ne suis pour toi qu’un renard semblable à cent mille renards.
Mais, si tu m’apprivoises, nous aurons besoin l’un de l’autre.
Tu seras pour moi unique au monde. Je serai pour toi unique au monde...
...
Le renard se tut et regarda longtemps le petit prince:
– S’il te plâıt. . . apprivoise-moi! dit-il.
– Je veux bien, répondit le petit prince, mais je n’ai pas beaucoup de temps.
J’ai des amis à découvrir et beaucoup de choses à connâıtre.
– On ne connâıt que les choses que l’on apprivoise, dit le renard
Les hommes n’ont plus le temps de rien connâıtre.
Ils achètent des choses toutes faites chez les marchands.
Mais comme il n’existe point de marchands d’amis, les hommes n’ont plus d’amis.
Si tu veux un ami, apprivoise-moi!
– Que faut-il faire ? dit le petit prince.
– Il faut être très patient, répondit le renard.”

Antoine de Saint-Exupéry - Le Petit Prince
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Chapter 1

Introduction and Preliminaries

The application of mathematical concepts and methods is considered fundamental in the

progress of various areas of knowledge, such as engineering, chemistry, physics, economics,

biology, ecology, among others. The issues raised by these areas turn out to be truly excit-

ing, playing a decisive role in the development of theories and new branches of mathematics

itself.

A special field of mathematics, regarding its concept richness and applicability, is the

theory of dynamical systems (discrete and continuous), in particular the so-called nonlinear

science. The theory of dynamical systems involves in a harmonious and indispensable

way three major areas of mathematics: analysis, algebra and geometry. The nonlinear

dynamics is related with the study of systems where a small change in a parameter can lead

to sudden and drastic changes in the quantitative and qualitative behavior. The analysis

of nonlinear interactions reveals how qualitatively new structures arise and how they relate

to the theory already established. The use of computer techniques is usually identified

as the primary catalyst for the development of nonlinear science, revealing a structured

character behind the complexity. Surprisingly, the models constructed in various areas

of knowledge, considering the fundamental principles of complexity, reveal to share a

1
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number of important properties. The remarkable applicability of nonlinear science in

areas as diverse as seemingly unrelated, gives it the special status of a possible factor of

methodological unification in various areas of knowledge. In an interdisciplinary context,

and by exploring common structures in different systems, scientists study and model the

complexity of nature and society. The new techniques and concepts provide effective

methods for modeling and simulation of sudden and irreversible changes in the natural

and social systems.

The concepts and methodologies of dynamical systems theory have their origins in New-

tonian mechanics. There, as in other fields of natural sciences and engineering disciplines,

the evolution rule of dynamical systems is given implicitly by a relation that gives the

state of the system only in a short time into the future. The French mathematician Henri

Poincaré (1854-1912) is considered one of the founders of dynamical systems. Poincaré

published two classical monographs, “New Methods of Celestial Mechanics” (1892–1899)

and “Lectures on Celestial Mechanics” (1905–1910). In these works, he successfully ap-

plied the results of their research to the problem of the motion of three bodies and studied

in detail the behavior of solutions (frequency, stability, asymptotic, etc). These papers

included the Poincaré recurrence theorem, which states that certain systems will, after a

sufficiently long but finite time, return to a state very close to the initial state. In 1898

Jacques Hadamard published an influential study of the chaotic motion of a free particle

gliding frictionlessly on a surface of constant negative curvature, called “Hadamard’s bil-

liards”. Hadamard was able to show that all trajectories are unstable, that all particle

trajectories diverge exponentially from one another with a positive Lyapunov exponent.

In the years that followed, the study of dynamical systems has been greatly enriched by
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the contributions of others mathematicians, namely, Aleksandr Lyapunov (1857-1918), a

Russian mathematician who developed important approximation methods. This meth-

ods, which Lyapunov developed arround 1899, made it possible to define the stability

of sets of ordinary differential equations. He created the modern theory of stability dy-

namical systems. George David Birkhoff (1884–1944), an American mathematician, is a

reference in ergodic theory. In 1913, Birkhoff proved Poincaré’s “Last Geometric Theo-

rem” a special case of the three-body problem, a result that made him world famous. In

1927, he published his “Dynamical Systems”. In 1936, Kolmogorov (1903-1987), a Rus-

sian mathematician contributed to the field of ecology and generalized the Lotka–Volterra

model of predator-prey systems. Stephen Smale (1930- ) made significant advances as

well. After having made great strides in topology, he then turned to the study of dy-

namical systems, where he made significant advances as well. His first contribution was

the so-called Smale horseshoe that gave rise significant research in dynamical systems.

Oleksandr Mykolaiovych Sharkovsky (1936- ), an Ukrainian mathematician developed in

1964 the Sharkovsky’s Theorem on the periods of discrete dynamical systems. One of the

implications of the theorem is that if a discrete dynamical system on the real line has a

periodic point of period 3, then it must have periodic points of every other period.

By 1975, some scientists around the world were aware of the existence of a new type

of movement in dynamic systems - called chaos. James Yorke and T.Y. Li coined the

mathematical term chaos in a paper they published in 1975 entitled “Period three implies

chaos”. This term has been introduced to denote an aperiodic dynamic behavior that

occurs in a deterministic system which exhibits sensitivity to initial conditions. What is

truly amazing is that this type of behavior can occur in systems apparently very simple.
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In applications, chaos theory uses concepts as catastrophes, bifurcations, strange attrac-

tors, periodicities and applications on the interval. All these threads cannot be effectively

studied by traditional analytical methods, which are mainly related to linearity and sta-

bility. Before the advent of fast computing machines, solving a dynamical system required

sophisticated mathematical techniques and could only be accomplished for a small class of

dynamical systems. The main catalyst for the development of chaos theory was the elec-

tronic computer. Much of the mathematics of chaos theory involves repeated iterations of

simple mathematical formulas, which would be impractical of doing by hand. Electronic

computers made these repeated calculations practical, while figures and images made it

possible to visualize these systems. Chaos theory got its start in the field of ergodic

theory. Later studies, also on the topic of nonlinear differential equations, were carried

out by George David Birkhoff, Andrey Nikolaevich Kolmogorov, Mary Lucy Cartwright,

John Edensor Littlewood and Stephen Smale. Except for Smale, these studies were all

directly inspired by physics: the three-body problem in the case of Birkhoff, turbulence

and astronomical problems in the case of Kolmogorov, and radio engineering in the case

of Cartwright and Littlewood.

The theory of nonlinear dynamical systems (chaos theory) ened up to be an interdisci-

plinary area of research and has affected almost every field of science in the last 30 years.

Given the complexity of biological systems, the concepts and methods of chaos theory are

widely applied, and particularly appreciated, in the context of physiology. This is sug-

gested by experimental studies and has also been encouraged by very successful modeling.

A plausible and compelling reason to apply chaos theory to these areas of science is due

to the fact that the chaotic behavior is not at all a rare or pathological occurrence. In
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addition, the results may be relevant both from a mathematical point of view and from

the point of view of the life sciences.

The research work that has been carried out, in a truly interdisciplinary environment,

is closely related with the analysis and characterization of biological dynamical models

in realistic parameter spaces using effective and efficient methods to obtain analytical

solutions, which represents a significant effort that opens the opportunity to deeply ex-

plore the dynamics – this represents a milestone, only possible now with the very recent

introduction of new analytical methods for highly nonlinear problems.

In addition, numerical techniques are used to compute different measures of complex-

ity, such as observability indices (which indicate the most significant dynamical variable

that must be studied), Lyapunov exponents, entropy, predictability (which is particularly

important in the epidemiological context), among others. These tools are applied with

the purpose of contributing to a rigorous analysis of models and they can help to predict

the dynamical behavior of biological systems and to improve/create more realistic math-

ematical modeling. In the context of epidemiology, the extensions of some mathematical

models should lead to better understanding of infections and treatment processes, allowing

computer simulation of mechanisms which are difficult to monitor in vivo.

All the research work is inherently highly collaborative, where the close interaction

between scientists of different disciplines is crucial for realism and significance of the

obtained theoretical results. The work is an incursion of mathematics - using analytical,

numerical and computational methods - into biology, carried out by a research team with

mathematicians and biologists.

It is important to note that the underlying research involves a comprehensive computer
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programming work and the numerical simulations were carried out entirely by the partic-

ipants in this dissertation. The software used corresponds to Mathematica 9.0 program of

Wolfram Research.

In the following paragraph we present definitions and results that will be instrumental

in characterizing the dynamics of the models within the theory of discrete and continuous

dynamical systems.

1.1 Elements of the theory of discrete dynamical systems:

symbolic dynamics and topological entropy

Time is a continuous variable, nevertheless, we sometimes find it helpful to treat time as

if it were discrete. This is particularly true for systems that are affected by conditions

that vary periodically with the time. Many important properties of linear systems with

periodic conditions could be obtained by considering only a sequence of states at times

differing by multiples of the period. This is equivalent of treating the time as a discrete

variable. The same applies to nonlinear systems with periodic conditions. For example:

biological, social and economic systems are affected by the seasons and these vary approx-

imately periodically with a period of one year; for some insects a more appropriate period

is the day; many mechanical, electrical and electronic systems are subject to determinate

periodic conditions. Sometimes the use of a discrete time variable is not a mere matter

of convenience, it becomes compulsory since the data, upon which the laws of motion are

based, may only be available once in a period, because it is too difficult to obtain them

at all times (as it is common for some economical and medical data). The approxima-

tion of treating differential equations, with time as the independent variable as difference

equations also requires the time to be treated as discrete.
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Any physical systems, whose state evolves with time is a dynamical system. Dynamical

systems originally arose in the study of systems of differential equations used to model

physical phenomena. The motions of the planets, or of mechanical systems, or of molecules

in a gas, can be modeled by such systems.

A dynamical system is a tuple (T,M, f) where T is a monoid, M is a set and f is a

function

f : X ⊂ T ×M →M.

The function f (x, t) is called the evolution function of the dynamical system: it associates

to every point in the setM a unique image, depending on the variable t, called the evolution

parameter. In other words f specifies how the state evolves with time. M is called phase

space or state space, while the variable x represents an initial state of the system.

Two main types of dynamical systems are encountered in applications: those for which

the time variable is discrete (t ∈ Z or N) and those for which it is continuous (t ∈ R). A

discrete dynamical system, is a tuple (T,M, f) where T is the set of integers, M is a

manifold locally diffeomorphic to a Banach space, and f is a function. Discrete dynamical

systems can be represented as the iteration of a function, i.e.

xt+1 = f (xt) t ∈ Z or N. (1.1)

A real dynamical system, real-time dynamical system, continuous time dynamical system,

or flow is a tuple (T,M, f) with T an open interval in the real numbers R, M a man-

ifold locally diffeomorphic to a Banach space, and f a continuous function. When t is

continuous, the dynamics are usually described by a differential equation

dx

dt
= X (x) . (1.2)
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In this work we have restricted T to the non-negative integers.

As pointed out previously, the evolution rule of dynamical systems is an implicit rela-

tion that gives the state of the system for only a short time into the future. The relation is

either a differential equation, difference equation or other time scale. The determination

of the state for all future times requires iterating the relation many times. The iteration

procedure is referred to as solving the system or integrating the system. If the system

can be solved, given an initial point it is possible to determine all its future positions, a

collection of points known as a trajectory or orbit. One of the fundamental questions of

dynamics concerns the behavior of the sequence x, f (x) , f2 (x) , . . . , fn (x) , . . . of a given

map or a class of maps. For discrete-time dynamical systems, the orbits are sequences

while for real dynamical systems, the orbits are curves. In the language of difference

equations we are interested in investigating the behavior of solutions of Eq. (1.1).

Let X ⊆ R
n be a compact metric space and f : X → X a continuous map. For each

x0 ∈ X, the iteration of (1.1) generates a sequence, which defines the orbit or trajectory

of x0 under f.

Definition 1 Starting from an initial point x0 ∈ X, the set of all iterates of the point x0

is called the (positive) orbit of x0

O (x0) =
{
x0, f (x0) , f

2 (x0) , . . . , f
n (x0) , . . .

}
= {fn (x0)}

∞

n=0 (1.3)

where for n ∈ N, fn is the composition of f with itself n times

fn (x0) = (f ◦ f ◦ · · · ◦ f)
︸ ︷︷ ︸

n times

(x0)

Many parts of the qualitative theory of differential equations and dynamical systems

deal with asymptotic properties of solutions and with what happens with the system after
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a long period of time. The simplest kind of behavior is exhibited by equilibrium points,

or fixed points, and by periodic orbits. Of particular importance is finding orbits that

consist of one point. Such points are called fixed points, or equilibrium points.

Definition 2 A point x0 ∈ X is said to be a fixed point of the map f if f (x0) = x0.

Closely related to fixed points are the eventually fixed points. These are the points

that reach a fixed point after finitely many iterations.

Definition 3 A point x0 ∈ X is an eventually fixed point if there exists N such that

fn+1 (x0) = fn (x0) whenever n ≥ N.

One of the main objectives in the theory of dynamical systems is the study of the

behavior of orbits near fixed points, i.e, the behavior of solutions of a differential equation

near equilibrium points.

Definition 4 Let f : X → X be a map and x0 be a fixed point of f , where X is an

interval in the set of real numbers R. Then:

1. x0 is said to be stable if ∀ǫ>0 ∃δ>0 : |x− x0| < ǫ⇒ |fn (x)− x0| < δ for all n ∈ N,

and all x ∈ X. Otherwise, the fixed point x0 will be called unstable.

2. x0 is said to be attracting if ∃η>0 : |x− x0| < η ⇒ limn→+∞ fn (x) = x0.

3. x0 is said to be asymptotically stable if it is both stable and attracting.

Fixed points may be divided into two types: hyperbolic and nonhyperbolic. A fixed

point x0 of a map f is said to be hyperbolic if |f ′ (x0)| 6= 1. Otherwise, it is nonhyper-

bolic.
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Theorem 1 Let x0 be a hyperbolic fixed point of a map f , where f is continuously differ-

entiable at x0.

1. If |f ′ (x0)| < 1, then x0 is asymptotically stable.

2. If |f ′ (x0)| > 1, then x0 is unstable.

The stability criteria for nonhyperbolic fixed points is more complex to analise. We

have to consider the two cases, f ′ (x0) = 1 and f ′ (x0) = −1, separately.

Theorem 2 Let x0 be a fixed point of a map f such that f ′ (x0) = 1. If f
′′′

(x0) 6= 0 and

continuous, then the following statements hold:

1. If f
′′

(x0) 6= 0, then x0 is unstable.

2. If f
′′

(x0) = 0 and f
′′′

(x0) > 0, then x0 is unstable.

3. If f
′′

(x0) = 0 and f
′′′

(x0) < 0, then x0 is asymptotically stable.

To establish the stability criteria for the case when f ′ (x0) = −1, we need to introduce

the notion of the Schwarzian derivative

Definition 5 The Schwarzian derivative of f at x is defined by

Sf (x) =
f ′′′ (x)

f ′ (x)
−

3

2

(
f ′′ (x)

f ′ (x)

)2

.

Theorem 3 Let x0 be a fixed point of a map f such that f ′ (x0) = −1. If f
′′′

(x0) is

continuous, then the following statements hold:

1. If Sf (x0) < 0, then x0 is asymptotically stable.
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2. If Sf (x0) > 0, then x0 is unstable.

The notion of periodicity is an important concept in the field of dynamical systems.

Its importance stems from the fact that many physical phenomena have certain patterns

that repeat themselves. These patterns produce cycles or periodic cycles, where a cycle is

the orbit of a periodic point.

Definition 6 The point x0 ∈ X is a periodic point of f with period k if fk (x0) = x0,

for some integer k ≥ 1. The periodic point x0 has prime period k0 if

fk0 (x0) = x0 and fn (x0) 6= x0 whenever 0 < n < k0. (1.4)

The least value of k satisfying (1.4) is called the period of the point x0 and the orbit of x0,

i.e.
{

x0, f (x0) , f
2 (x0) , . . . , f

k−1 (x0)
}

, (1.5)

is said to be a periodic orbit of period k or a k−cycle of f .

Definition 7 Let f be a function. The point x0 is eventually periodic with period k if

there exists N such that fn+k (x0) = fn (x0) whenever n ≥ N.

Theorem 4 Let O (x0) =
{
x0, f (x0) , f

2 (x0) , . . . , f
k−1 (x0)

}
be the orbit of the k-periodic

point x0, where f is a continuously differentiable function at x0. Then the following

statements hold true:

1. x0 is asymptotically stable if
∣
∣f ′ (x0) f

′ (f (x0)) . . . f
′
(
fk−1 (x0)

)∣
∣ < 1.

2. x0 is unstable if
∣
∣f ′ (x0) f

′ (f (x0)) . . . f
′
(
fk−1 (x0)

)∣
∣ > 1.

Remark 1 f ′ (x0) f
′ (f (x0)) . . . f

′
(
fk−1 (x0)

)
= d

dx
fk (x0) .
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It is reasonable to ask how many other periodic points a continuous map f has, suppos-

ing that f has a orbit with period three, and what prime periods are represented. These

questions are answered, at least in part, by the Li-Yorke theorem and by the Sharkovsky

theorem. In 1975 James Yorke and Tien-Yien Li published the article “Period Three

Implies Chaos” where they proved that not only does the existence of a period-3 cycle

imply the existence of cycles of all periods, but in addition it implies the existence of an

uncountable infinitude of points that never map to any cycle (chaotic points), a property

known as period three implies chaos.

Theorem 5 (Li-Yorke) Let X ⊆ R be an interval. If a continuous function f : X → X

has a point of period 3, then it has a point of period k for every k ≥ 1.

Li and Yorke’s paper was responsible for introducing the word “chaos” into the math-

ematical vocabulary. Soon afterward, it was found that Li-Yorke’s theorem is only a

special case of the Sharkovsky theorem [1]. In 1964, the Ukranian mathematician Olek-

sandr Sharkovsky introduced a new ordering ≺ on the positive integers in which 3 appears

first.

Definition 8 (Sharkovsky order) Sharkovsky’s ordering of the natural numbers is

3 ≺ 5 ≺ 7 ≺ . . . ≺ 3× 2 ≺ 5× 2 ≺ 7× 2 ≺ . . . ≺ 3× 22 ≺ 5× 22 ≺ 7× 22 ≺ . . .

. . . ≺ 3× 2n ≺ 5× 2n ≺ 7× 2n ≺ . . . ≺ 23 ≺ 22 ≺ 2 ≺ 1

The relation p ≺ q indicates p precedes q in the order. When writing the order, all odd

numbers except one are listed in ascending order, then two times every odd numbers, then

22 times each odd number, and so on. When all of these values are taken, the ordering
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is completed by listing the powers of 2 in descending order. Every natural number can be

found exactly once in Sharkovsky’s ordering.

Note that this ordering is not a well-ordering, we write p ≺ q or q ≻ p whenever p is

to the left of q. The Sharkovsky ordering has the following doubling property:

p ≺ q if and only if 2p ≺ 2q.

This is because the odd numbers greater than 1 appear at the left-hand side of the list,

the number 1 appears at the right-hand side, and the rest of N is included by successively

doubling these remaining pieces, and inserting these doubled strings inward. Sharkovsky

showed that this ordering describes which numbers can be periods for a continuous map

of an interval. Sharkovsky’s theorem says the following:

Theorem 6 (Sharkovsky Theorem) Let X ⊆ R be an interval. If a continuous func-

tion f : X → X has a periodic point of period p, then it has a point of period q for every

q with p ≺ q.

Notice that the first term in the Sharkovsky ordering is 3. Thus, if we apply Sharkovsky’s

theorem with n = 3 we get the Li-Yorke theorem. But clearly, Sharkovsky’s theorem is

much deeper. Sharkovsky’s theorem states that if f has a periodic point of least period m

and m precedes n in the above ordering, then f has also a periodic point of least period

n. As a consequence, we see that if f has only finitely many periodic points, then they

must all have periods which are powers of two. Furthermore, if there is a periodic point

of period three, then there are periodic points of all other periods. Sharkovsky’s theorem

does not state that there are stable cycles of those periods, just that there are cycles of
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those periods. For systems such as the logistic map, the bifurcation diagram shows a

range of parameter values for which apparently the only cycle has period 3. In fact, there

must be cycles of all periods there, but they are not stable and therefore not visible on

the computer generated picture.

In maps, there can be (and generally are) sets of points which are left unchanged by

the dynamics. More precisely, for any point in the set, there is always some point in the

set which maps into its place, so the set doesn’t change. The set is its own image. These

sets are called invariant. A point is attracted to an invariant set if, when we follow its

trajectory for long enough, it always gets closer to the set. If all points sufficiently close

to the invariant set are attracted to it, then the set is an attractor. An attractor’s basin

of attraction consists in all the points which are attracted to it. The reasons for thinking

about attractors, basins of attraction, are that, first, they control the long-run behavior

of the system, and, second, they let us think about dynamics, about change over time.

An asymptotically stable fixed point or a cycle is called an attractor. The orbits off all

nearby points tend to the attractor. The maximal set that is attracted to an attractor M

is called the basin of attraction of M.

Definition 9 Let x0 be an asymptotically stable fixed point of a map f . Then the basin

of attraction W s (x0) of x0 is defined as the maximal interval J containing x0 such that

if x0 ∈ J , then fn (x0) → x0 as n→ +∞.

How many periodic attractors can a differentiable map have? In 1978, David Singer

more or less answered the above question. The main tool used in Singer’s theorem is the

Schwarzian derivative. He observed that this property is preserved under iteration and

that it has important consequences in unimodal and multimodal dynamics.
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Definition 10 Let I be the compact interval [a, b] and f : I → I a piecewise strictly

monotone continuous map. This means that f has a finite number of turning points

a < c1 < c2 < . . . < cm < b,

points where f has a local extremum, and f is strictly monotone on each of the m + 1

intervals

I1 = [a, c1[ , I2 = ]c1, c2[ , . . . , Im+1 = ]cm, b] .

Such a map is called m−modal if f (∂I) ⊆ I. If m = 1 then f is called unimodal. Each

such maximal interval on which f is monotone is called a lap of f , and the total number

of distinct laps is called the lap number of f and it is usually denoted by ℓ = ℓ (f).

If f is a m−modal map, let us denote by Critf the set of turning points or critical

points

Critf = {c1, c2, . . . , cm}

Schwarzian derivative plays an important role in characterizing some metric properties

of maps. Maps with a negative Schwarzian derivative on the whole interval may have at

most m+2 attracting periodic orbits, where m is the number of extremes in f . Most maps

of physical interest have negative Schwarzian derivative on the whole interval of definition.

Definition 11 Let f : I → I be a C3 (third derivatives exist and are continuous)

m−modal map. The Schwarzian derivative of f at x is defined as

Sf (x) =
f ′′′ (x)

f ′ (x)
−

3

2

(
f ′′ (x)

f ′ (x)

)2

for all x ∈ I \ {c1, c2, . . . , cm} .



16 Introduction and Preliminaries

We may compute the Schwarzian derivative of a composition

S (f ◦ g) (x) = Sf (g (x)) ·
[
g′ (x)

]2
+ Sg (x) .

There are very important consequences of negative Schwarzian derivative for the dy-

namics of the map [2]:

1. If Sf < 0 and Sg < 0 then S (f ◦ g) < 0. So, negative Schwarzian derivative is

preserved under iteration, i.e., if Sf < 0 then Sfn < 0 for all n ∈ N.

2. If Sf < 0 then for every periodic attracting orbit there is a critical point of f or an

endpoint of I, which is attracted by this orbit

Theorem 7 (Singer’s Theorem) Let f be a continuous piecewise monotone map, de-

fined on the closed interval I, such that Sf (x) < 0 for all x ∈ I. If f has m critical points

in I, then for every k ∈ Z
+, the map f has at most (m+ 2) attracting k−cycles. The

immediate basin of any attracting periodic orbit contains either a critical point of f or a

boundary point of the interval I.

1.1.1 Symbolic dynamics

Symbolic dynamics is a rapidly growing part of dynamical systems. Originally arose as

an attempt to study such systems by means of discretizing space as well as time. The

basic idea is to divide up the set of possible states into a finite number of pieces, and keep

track of which piece the state of the system lies in at every tick of the clock. Each piece is

associated with a “symbol”, and in this way the evolution of the system is described by an

infinite sequence of symbols. This leads to a “symbolic” dynamical system that mirrors

and helps us to understand the dynamical behavior of the original system.
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The beginnings of symbolic dynamics are often traced back to Jacques Hadamard when

he applied this idea in 1898 to more complicated systems called geodesic flows on surfaces

of negative curvature. The main point of his work is that there is a simple description

of the possible sequences that can arise this way. He showed that there is a finite set of

forbidden pairs of symbols, and that the possible sequences are exactly those that do not

contain any forbidden pair. This is an example of one of the fundamental objects to study

in symbolic dynamics called a shift of finite type. Later discoveries of Morse, Hedlund

[3] and others in the 1920’s, 1930’s, and 1940’s showed that in many circumstances such

a finite description of the dynamical systems is possible. These ideas led in the 1960’s

and 1970’s to the development of powerful mathematical tools to investigate a class of

extremely interesting mappings called hyperbolic diffeomorphisms.

The symbolic coding of the intervals of a piecewise monotonic map and the study of

these symbolic sequences allows us to analyze qualitative aspects of the dynamical system

in two perspectives: the kneading theory and the theory of Markov partitions. In this

work we mainly follow the results concerning Markov partitions ([4], [5] and [6]).

The kneading theory

Kneading theory, introduced by John Milnor and William Thurston [4] provides an effec-

tive calculus for describing the qualitative behavior of the iterates of a piecewise monotone

mapping f of a closed interval I of the real line into itself. Applications of the theory in-

clude piecewise linear models, counting of fixed points, computing the total variation,

and constructing an invariant measure with maximal entropy. Some important topolog-

ical invariants, such as topological entropy, can be computed in terms of the kneading

determinant.
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Consider that the map f : I → I, where I = [a, b] is a compact interval of the

real line, is a m− modal map and denote by cj , j = 1, 2, . . . ,m the m critical points of

f . This map has m+ 1 monotone branches, defined on m+ 1 subintervals Ii = [ci−1, ci],

1 ≤ i ≤ m+1, ( consider c0 = a and cm+1 = b).We compute the images by f, f2, . . . , fn, . . .

of a critical point cj , 1 ≤ j ≤ m, and we obtain its orbit (1.3). So, any numerical trajectory

x1x2 . . . xi . . . in this map corresponds to a symbolic sequence
∑

= S1S2 . . . Sk . . . where

the symbols Sk belongs to the m-modal alphabet, with 2m + 1 symbols, depending on

where the point xi falls in.

If fn (cj) belongs to an open interval Ii = ]ci−1, ci[, then we associate to it a symbol

Li with 1 ≤ i ≤ m + 1. If fn (cj) = ck, 1 ≤ k ≤ m, then we associate to it a symbol

Ck. So, to each critical points cj , we associate a symbolic sequence, called the address

of fn (cj) , denoted by S0S1S2 . . . Sn . . . , where the symbols Sk belongs to the m-modal

alphabet, with 2m+ 1 symbols.

The set

A = {L1, C1, L2, C2, . . . , Lm, Cm, Lm+1}

will be the alphabet of the m-modal map f and the collection of all infinite symbol

sequences of A will be defined by the set

AN =
{
x = (xi)i∈N : xi ∈ A for all i ∈ N

}
.

Without lack of generality we assume that the first critical point of the multimodal

map f is maxima.

Definition 12 Let f : I → I be a m−modal map. We define the address of x ∈ I,

written ad (x), to be one of the symbols Li, 1 ≤ i ≤ m + 1, or Cj, 1 ≤ j ≤ m, according



1.1 Elements of the theory of discrete dynamical systems: symbolic dynamics and topological entropy19

to:

ad (x) =







Li, if x ∈ int(Ii)

Cj , if x = cj

.

For a given map, each point x in the interval may serve as a seed that starts an iteration

to yield a symbolic sequence, this sequence is called the itinerary of x.

Definition 13 Let f : I → I be a m−modal map. The itinerary of a point x ∈ I is the

sequence of addresses

Itf (x) = ad (x) , ad (f (x)) , ad
(
f2 (x)

)
, . . . , ad (fn (x)) , . . . , (1.6)

or equivalently, the (possibly infinite) word in the symbols Li and Cj formed by concate-

nating the elements of the sequence (1.6). This infinite sequence is the symbolic itinerary

of x. We will say that the itinerary It (x) is eventually periodic if there exists an integer

p ≥ 1 so that the address ad (fn (x)) is equal to ad (fn+p (x)) for all large n. The smallest

of such p will be called the eventual period.

The itineraries of the critical points play a special role in the admissibility conditions

of the symbolic sequence. They are also called kneading sequences.

Definition 14 Let f : I → I be a m−modal map. The itineraries of the critical points of

f , f (cj) , j = 1, 2, . . . ,m are called the kneading sequences of f

Kj (f) = Itf (f (cj)) , j = 1, . . .m

and the ordered set of the kneading sequences K (f) = (K1 (f) ,K2 (f) , . . . ,Km (f)) we

call the kneading invariant of the map f.
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Notice that It (x) and It (f (x)) are related in a very simple way. If It (x) = S1S2S3....

so It (f (x)) = S2S3...., because f
n (f (x)) = fn+1 (x). This motivates the definition of the

shift map σ on sequences.

Definition 15 The shift map σ : AN → AN is defined by

σ (S0S1S2S3....) = S1S2S3....

If we have a finite sequence S = S0S1S2 · · ·Sn the shift operator acts

σ (S0S1S2 · · ·Sn) = S1S2 · · ·SnS0

In other words, the shift map forgets the first symbol of the sequence. The shift

operator acts on admissible sequences of length greater than one.

Many numerical orbits may corrrespond to one and the same symbolic sequence. On

the other hand, different symbolic sequences must correspond to different initial points in

the phase space. However, an arbitrarily given symbolic sequence, may not be generated

in a m−modal map. A symbolic sequence is called an admissible sequence at a given

parameter, if one can choose an initial point to produce a numerical orbit of the map

which leads to the given symbolic sequence, using a given partition of the interval. The

admissibility condition is based on the ordering rule of symbolic sequences.

First, we need the notion of parity. To each symbol Li ∈ A, with i ∈ {1, 2, . . . ,m+ 1},

let us define a sign ε : A → {−1, 0, 1} where

ε (Li) =







1, f is increasing on the lap Ii

−1, f is decreasing on the lap Ii
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and ε (Cj) = 0 for all j = 1, 2, . . .m, and adopt the multiplication rule for the signals. For

any finite symbolic sequence, S = S0S1S2 . . . Sn, we define the parity of S, denoted by

P (S), as

P (S) = ε (S0) · . . . · ε (Sn)

so that, if S represents the beginning of the itinerary of x, then:

1. S is even, i.e, P (S) = +, if fn is sense-preserving near x,

2. S is odd, i.e, P (S) = −, if fn is sense-reversing near x.

Second, the ordering of symbolic sequences is based on the natural order of real num-

bers on the interval. Defining the order on the symbols, one can extend it to an order on

the sequences. Let A denote the set of possible addresses under f. We endow A with the

order in the real axis

L1 ≺ C1 ≺ L2 ≺ C2 ≺ . . . ≺ Lm ≺ Cm ≺ Lm+1 (1.7)

so that

ad (x) ≺ ad (y) ⇒ x < y.

Third, an even common leading string preserves the order of subsequences following it,

while an odd common leading string reverses the order. Let AN be the set of all sequences

written with the alphabet A.

Definition 16 We define an ordering ≺ on the set AN such that: given two symbolic

sequences P 6= Q with a common leading string Σ, where Σ is a finite word in AN, and

the next symbol P0 6= Q0, the order of P0 and Q0 in the sense of the natural order (1.7)
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is the order of P and Q if Σ is even; the order of P0 and Q0 is opposite to that of P and

Q if Σ is odd. This is P ≺ Q if P0 ≺ Q0 and P (Σ) = +1 or Q0 ≺ P0 if P (Σ) = −1.

This order is originated by the fact that when x < y then Itf (x) � Itf (y) and

Itf (x) ≺ Itf (y) then x < y.

Denoting the kneading sequences of the critical points cj by Kcj , the admissibility

conditions for a symbolic sequence Σ read

Kcj−1
≤ Lj (Σ) ≤ Kcj where cj is a maximal point

or

Kcj ≤ Lj (Σ) ≤ Kcj−1
where cj is a minimal point

Given an arbitrary sequence Σ, we denote Lj (Σ) the set of all subsequences that follow a

letter Lj in the given sequence, the sets Lj (Σ) contains all the shifts of Σ.

Example 1 Let f be a unimodal map on the interval I = [a, b]. The map f has a single

critical point c in I, and is monotone increasing on the left of c and decreasing on the

right.To set up the symbolic sequence of this system we must first separate the phase space

into disjoint regions. By creating this partition we can go from a continuous description

of a physical process to a discrete description composed of a finite symbols. We define

IL = [a, c[, Ic = {c} and IR = ]c, b] . Computing the images f, f2, . . . , fn, . . . of the critical

point c we obtain its numerical orbit O (c)

O (c) =
{
xi : xi = f i (c) , i ∈ N

0
}

We partition the phase space, i.e, the interval I, into a left part L and a right part

R. We care only about on which side of c a point f i (c) falls. If f i (c) < c we record a
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letter L, while if f i (c) > c a letter R. If f i (c) = c we record the letter C. In this way,

from the numerical orbit O (c) we get a symbolic sequence S = CS1S2 . . . Sk . . . where

Sk ∈ {L,C,R},

Sk = ad
(
f i (c)

)
=







L , f i (c) < c
C , f i (c) = c
R , f i (c) > c

We define the kneading sequence K (f) of the unimodal map f to be the itinerary of f (c),

i.e, K (f) = Itf (f (c)) . If O (c) is a k−cycle the kneading invariant is

K (f) = S1S2 . . . SkC.

For the unimodal map, considering A = {L,C,R} we have a natural order L < C < R

which reflects the order of real numbers on the interval I. The parity is inherited in the

symbols of applied dynamics, as we always partition the interval in accordance with the

monotonicity of the mapping function, so ε (L) = +1, ε (R) = −1 and ε (C) = 0. Given

two symbolic sequences P = Σµ . . . and Q = Σν . . . with a common leading string Σ and

the next symbol µ 6= ν. We say P ≺ Q if µ ≺ ν and P (Σ) = +1 or P ≺ Q and µ ≻ ν if

P (Σ) = −1.

The admissibility condition is based on the ordering of symbolic sequences and follows

from the fact that the kneading sequence K (f) is the largest sequence starting from a point

in the dynamical invariant range. Given an arbitrary sequence Σ, we denote L (Σ) the set

of all subsequences that follow a letter L in the given sequence, and by R (Σ) the set of

all subsequences that follow a letter R in the given sequence. The sets L (Σ) and R (Σ)

contains all the shifts of Σ. A symbolic sequence Σ is admissible if and only if:

L (Σ) ≤ K and R (Σ) ≤ K

Let AL = {L1, L2, . . . , Lm, Lm+1} and AC = {C1, C2, . . . , Cm} be two alphabets
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and A = AL ∪ AC . Let V be a vector space of dimension m + 1 defined over the in-

tegers having the formal symbols in AL as a basis, then to each sequence of symbols

S = S0S1S2 . . . Sk . . . = Itf (x), x ∈ I, we can associate a sequence

θ (x) = θ0 (x) θ1 (x) θ2 (x) . . . θk (x) . . . of vectors from V by setting

θk (x) =
k−1∏

i=0

ε (Si)Sk

where k > 0 and

θ0 = S0, ε (L2j+1) = +1, ε (L2j) = −1 and ε (Ci) = 0.

Choosing a linear order in the vector space V in such a way that the base vectors satisfy

L1 < L2 < . . . < Lm < Lm+1

we are able to lexicographically order the sequences θ, that is

θ ≺ θ∗ iff θ0 = θ∗0, . . . , θi−1 = θ∗i−1 and θi ≺ θ∗i for some integer i ≥ 0.

Introducing t as an undetermined variable and taking θk as the coefficients of a formal

power series in θ, we obtain

θ = θ0 + θ1t+ θ2t
2 + . . . =

+∞∑

k=0

θkt
k.

Milnor and Thurston introduced basic invariants called kneading increments, kneading

matrices and kneading determinants.

The kneading increments are formal power series that measure the discontinuity eval-

uated at the critical points cj . For the case of a m-modal map we have m− kneading

increments, one for each critical point cj , defined by
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υj = θc+j
(t)− θc−j

(t) , j ∈ 1, 2, . . . ,m (1.8)

where θ (x) is the invariant coordinate of each symbolic sequence associated to the itinerary

of each point cj , and

θc±j
(t) = lim

x→c±j

θx (t) .

After separating the terms associated with the symbols L1, L2, . . . , Lm, Lm+1 of the

alphabet AL, the kneading increments υj are written in the form

υj = Nj1L1 +Nj2L2 + . . .+Njm+1Lm+1 , j = 1, 2, . . . ,m

Using this we define the kneading matrix Nf (t) by

Nf (t) = [Nji] =






N11 (t) · · · N1m+1 (t)
...

. . .
...

Nm1 (t) · · · Nmm+1 (t)






This is an m × (m+ 1) matrix, with entries in the ring Z [[t]] of integer formal power

series. From this matrix, we compute the kneading determinant which is defined from the

kneading matrix by

D (t) = (−1)j+1 Dj (t)

1− ε (Lj) t
, j = 1, 2, . . . ,m

where Dj (t) is the determinant of the m ×m matrix which is obtained by deleting the

j − th column of the kneading matrix Nf (t) .

Example 2 The symbolic orbit of the turning point c, determine the period-5 kneading

sequence (CRLLL)∞ . So we have

c+ → (RRLLL)∞ and c− → (LRLLL)∞
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The invariant coordinates of the sequence (CRLLL)∞ associated with the critical point c

are:

θc+ =
t2 + t3 + t4

1− t5
L+

1− t

1− t5
R

θc− =
1− t2 − t3 − t4

1 + t5
L+

t

1 + t5
R

The kneading increment of the critical point, υc = θc+ − θc− is

υc =
−1 + 2t2 + 2t3 + 2t4 + t5

1− t10
L+

1− 2t+ t5

1− t10
R

So, the kneading matrix Nf (t) =
[
N11 (t) N12 (t)

]
, is

Nf (t) =
[

−1+2t2+2t3+2t4+t5

1−t10
1−2t+t5

1−t10

]

and the kneading determinant is

D (t) =
1− 2t+ t5

(1− t10) (1− t)
.

The smallest positive real root of D (t) determines the topological entropy, i.e,

htop = − log tmin . As the smallest positive root is t = 0.518 79 the topological entropy

is htop = 0.656 26 (see subsection 1.1.2).

Markov partitions theory

When O(c) is a k-periodic orbit, we obtain a sequence of symbols that can be characterized

by a block of length k, the kneading sequence S(k) = S1S2...Sk−1C. The orbit O (c), which

is made of k ordered points xi, determines a partition P(k−1) of the dynamical invariant

range I =
[
f2(c), f(c)

]
= [x2, x1] into k − 1 subintervals labeled by I1, I2,..., Ik−1. The

subintervals Ii do not overlap with each other. At most they may only have common end

points. This partition is associated to a (k − 1) × (k − 1) transition matrix M = [mij ],
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where the rows and columns are labeled by the subscript of subintervals and the matrix

elements are defined as

mij =

{
1 , f (Ii) ∩ Ij 6= 0
0 , f (Ii) ∩ Ij = 0

Let λ1, λ2, . . . , λk−1 be the eigenvalues of the transition matrix M, then its spectral

radius ρ (M) is defined as

ρ (M) = max {|λ1| , |λ2| , . . . , |λk−1|} .

1.1.2 Topological Entropy

Dynamical systems generated by iterated maps are used to describe the chaotic behavior

of physical and other natural phenomena. The topological entropy of a map is one of the

quantitative measures of the complexity of these dynamical systems. It was first introduced

in 1965 by Adler, Konheim and McAndrew. Essentially, it is associated with counting the

number of monotone branches in fn (x), or the number of maxima and minima of fn (x),

or the number of orbital points of periodic orbits with period not exceeding n. These three

numbers do not differ much from each other.

The topological entropy describes in a suggestive way the exponential complexity of

the orbit structure with a single nonnegative real number [7]. For a system given by an

iterated function, the topological entropy represents the exponential growth rate of the

number of distinguishable orbits of the iterates.

Definition 17 The growth rate of the lap number of fn (fn denotes the nth iterate of

f) is

s (f) = lim
n→∞

n
√

ℓ(fn)
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Definition 18 The topological entropy of a map f , denoted by htop (f), is given by

htop (f) = log s (f) .

For a piecewise linear Markov map, f , the topological entropy is given by

htop (f) = log λmax(M (f)),

where λmax(M (f)) is the spectral radius of the transition matrix M (f) ([4], [5] and [8]).

Example 3 Consider the period 5 kneading sequence (RLLRC)∞ . Its successive orbital

points are obtained by shifting the periodic sequence by one letter at a time, i.e

x0 = CRLLRCRLLR . . .

x1 = RLLRCRLLRC . . .

x2 = LLRCRLLRCR . . .

x3 = LRCRLLRCRL . . .

x4 = RCRLLRCRLL . . .

x5 = x0

These points are ordered in the following way:

x2 < x3 < x0 < x4 < x1

The dynamical invariant U = [x2, x1] is now divided into four subintervals I1 = [x2, x3],

I2 = [x3, x0], I3 = [x0, x4] and I4 = [x4, x1] . It follows from monotonicity and continuity

consideration that these subintervals map into each other:

f (I1) = I2 ∪ I3, f (I2) = I4, f (I3) = I3 ∪ I4 and f (I4) = I1 ∪ I2
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This result may be represented by a transfer matrix

M =







0 1 1 0
0 0 0 1
0 0 1 1
1 1 0 0







The characteristic polynomial associated with the transition matrix is

PM (t) = 1− t− t2 − t3 + t4

and consequently the spectral radius of M,ρ (M) = 1.7221 and consequently the topological

entropy of the map is given by htop = log 1.722 1 = 0.54354.

1.2 Lyapunov exponents, Kaplan-Yorke dimension and pre-

dictability

Lyapunov exponents, dimensions and entropies are different ways of characterizing prop-

erties for chaotic attractors. How closely dynamics and geometry are related is expressed

by theoretical results which relate Lyapunov exponents (dynamics) and dimensions (geom-

etry). In this section, we measure the Lyapunov exponents, the Kaplan-Yorke dimension

and the predictability.

1.2.1 Lyapunov exponents

A convenient indicator of the exponential divergence of initially close points, characteristic

of the chaotic attractors, are the Lyapunov exponents. In a complete data analysis we

would like to determine all the Lyapunov exponents ([9], [10], [11]). A discussion about

the Lyapunov exponents as a quantitative measure of the rate of separation of infinitesi-

mally closed trajectories, as well as a computation method, can be found in [12]. In the

next lines, we will briefly explain the procedure used to compute the Lyapunov exponents.
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This mathematical derivation of the Lyapunov characteristic exponents is followed by its

interpretation with respect to the determination of the Kaplan-Yorke dimension and the

predictability. The characteristic Lyapunov exponents measure the typical rate of expo-

nential divergence of nearby trajectories in the phase space, i. e., they give us information

on the rate of growth of a very small error on the initial state of the system.

Let us consider a set of nonlinear evolution equations of the form

·

x = F (x, t) (1.9)

where x = (x1, x2, ..., xn) ∈ R
n (n ≥ 3) and F = (F1, F2, ..., Fn) is a differentiable function.

Assuming that the motion takes place in a bounded region of the phase space, we study

the infinitesimal distance between two trajectories, δx(t) = x(t)−x∗(t), which is regarded

as a vector, η(t) = (η1(t), η2(t), ..., ηn(t))
T , satisfying the linear equation

·

η = J η. Solving

this linear law over the time range t0 ≤ t ≤ tf , we obtain a solution of vectors νi(t) ∈ R
n

(i = 1, 2, ..., n). Now, let us consider orthogonal vectors to νi(t), with norm represented

by Ni(j), for every time step τ = tj+1 − tj , j = 0, 1, ...,m and m =
tf−t0

τ
. The Lyapunov

exponents for the nonlinear system of differential equations are given by

λi = lim
m−→+∞

m∑

j=1
lnNi(j)

mτ
(i = 1, 2, ..., n) . (1.10)

The Lyapunov exponents and the topological entropy are both suitable tools for the

description of chaotic behavior. In the literature, the positive topological entropy and the

positivity of the leading Lyapunov exponent are introduced as two important definitions of

chaos. These two definitions are not equivalent but they share the same nature, i. e., the

sensitive dependence on initial conditions. This sensitivity is very suitable for qualitative

analysis, however it is not particularly fit for quantitative computation [13].
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The numerical results presented in the literature indicate that any map that is strictly

hyperbolic, i. e., a map for which the absolute value of the first derivative is everywhere

greater than 1, displays rapid convergence of the topological and metrical entropies to

the maximum Lyapunov exponent. These type of maps have no infinite singularities

in their asymptotic invariant probability distributions. In contrast to these systems, if

the underlying dynamics has singularities in its asymptotic distribution, then one might

expect an overestimation (or slow convergence) of the topological entropy to the maximum

Lyapunov exponent. This is precisely the typical discrepancy that occurs in logistic-type

maps, like the ones we have studied ([13], [14], [15]).

1.2.2 Kaplan-Yorke dimension

The Kaplan-Yorke dimension (commonly called Lyapunov dimension) is elegantly related

to the Lyapunov exponents. By ordering the Lyapunov exponents from the largest (most

positive) to the smallest (most negative), it is a simple matter to count the maximum

number of exponents whose cumulative sum is positive. Let λ1 > λ2 > ... > λn be the

Lyapunov exponents of an attractor of a continuos-time dynamical system. Let k be the

largest integer such that λ1 + λ2 + ...+ λk > 0. The Kaplan-Yorke dimension is given by

DL = k +
λ1 + λ2 + ...+ λk

|λk+1|
.

If no such k exists, as is the case for a stable hyperbolic equilibrium point, DL is defined

to be 0. If the attractor is chaotic, the Kaplan-Yorke dimension is almost always a non-

integer (please see [12], for more details about the computation method of the Lyapunov

dimension). This illustrates the relationship between dynamics (Lyapunov exponents) and

attractor geometry. The Lyapunov dimension DL represents the upper bound for the
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information dimension of the system [16]. This consideration motivates the study of

another important dynamical measure related with the Lyapunov exponents - dynamics

predictability.

1.2.3 Predictability

The ability to predict the future state of a dynamical system, given the present one, turns

out to be particularly relevant with major implications in applied biology.

The development of studies with the purpose of quantitatively characterizing and for-

malizing the sensitivity to initial conditions have had special importance on the theory

of dynamical systems. Two tightly linked indicators for measuring the rate of the error

growth and information produced by a dynamical system are: the Lyapunov exponents

and the Kolmogorov-Sinai (or metric) entropy [15]. In this context, the special connec-

tion between these two indicators allows us to characterize fine-grained properties of the

system. The maximal Lyapunov exponent, λ1, gives us a first quantitative information on

how fast we lose the ability of predicting the system evolution. The sum of the all positive

Lyapunov characteristic exponents gives us an estimate of a more physical quantity called

Kolmogorov-Sinai (or metric) entropy ([15], [17], [18], [19], [20]),

hKS =
∑

λi>0

λi.

This intrinsic invariant quantity of the system has a singular relevance for the characteri-

zation of the predictability. Dynamically, the inverse of the Kolmogorov-Sinai entropy,

P =
1

hKS
, (1.11)

characterizes the predictability of the system. The predictability denotes a mean time
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scale up to which predictions may be possible [16]. Naturally, higher values of hKS imply

lower values of the predictability 1/hKS , that is, the more chaotic, the less predictable.

1.3 The homotopy analysis method

Given the remarkable importance of models in applied mathematics, particularly in biology

and life sciences, a great deal of numerical algorithms for approximating solutions have

been used in diverse computational studies. Without doubt the numerical algorithms have

been extremely important in the study of complex dynamical systems. However, they allow

us to analyze the dynamics at discrete points only, thereby making it impossible to obtain

continuous solutions.

In general, exact, closed-form solutions of nonlinear equations are extremely difficult

to obtain. Perturbation techniques have been successfully used to solve many nonlinear

equations. Indeed, the use of perturbation methods represents a considerable contribution

to the understanding and development of nonlinear science. Usually based on small/large

physical parameters (called perturbation quantities), perturbation methods transform a

nonlinear equation into sub-problems that are mostly linear. However, a great deal of

nonlinear equations do not contain such kind of perturbation quantities at all. Unfor-

tunately, the analytic approximations gained with perturbation techniques often become

invalid when the perturbation quantities enlarge. In addition, given the strong depen-

dence of perturbation methods upon physical small parameters, we have nearly no freedom

to choose equation-type and solution expression of high-order approximation equations,

which are often very difficult to solve. Due to these restrictions, perturbation methods are

mostly valid in the context of weakly nonlinear problems.
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One the other hand, some non-perturbation methods, such as Lyapunov’s Artificial

Small Parameter Method [21], the δ-expansion method [22, 23] and the Adomian’s de-

composition method [24, 25, 26, 27], were proposed in the literature. Essentially, both of

these two methods transform a nonlinear problem into linear sub-problems without small

physical parameters. Nevertheless, they have two main restrictions, namely: there is no

freedom and flexibility to choose the nonlinear operators involved in the methodology and

there is no way to guarantee the convergence of the approximation series solutions. There-

fore, like perturbation methods, the traditional non-perturbation methods are often valid

for weakly nonlinear problems.

As a consequence, it turns out to be extremely valuable to develop a new kind of

analytic approximation methodology which should have three fundamental characteristics:

(i) It is independent of any small/large physical parameters; (ii) It gives us freedom and

flexibility to choose equation-type and solution expression of high-order approximation

series; (iii) It provides us a convenient way to guarantee the convergence of approximation

series.

One such general analytic technique, which has the three advantages mentioned above,

used to get convergent series solutions of strongly nonlinear problems is the so-called

Homotopy Analysis Method (HAM), developed by Shijun Liao (see, for instance, [28], [29]

and [30]), with contributions of other researchers in theory and applications.

In this context, nearly all limitations and restrictions of the traditional methods (such

as the Lyapunov’s Artificial Small Parameter Method [21], the Adomian Decomposition

Method ([24], [25] and [31]), among others) can be overcome by means of HAM. In addi-

tion, it has been generally proved in the literature ([29], [32] and [33]) that the Lyapunov’s
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Artificial Small Parameter Method [21], the Adomian Decomposition Method ([24], [25]

and [31]) and the so-called Homotopy Perturbation Method are special cases of the HAM,

for some convenient choice of an auxiliary operator and a particular value of a convergence

control parameter h. In particular the Homotopy Perturbation Method, that appeared in

the literature after the early work of Liao, was only a special case of the HAM for h = −1.

Based on homotopy, a fundamental concept in topology and differential geometry [34],

the HAM allows us to construct a continuous mapping of an initial guess approximation

to the exact solutions of the considered equations, using a chosen linear operator. Indeed,

the method enjoys considerable freedom in choosing auxiliary linear operators. The HAM

represents a truly significant milestone that converts a complicated nonlinear problem

into an infinite number of simpler linear sub-problems [30]. Since Liao’s work [29], the

HAM has been successfully employed in fluid dynamics [35], in the Fitzhugh-Nagumo

model [36], as well as to obtain soliton solutions also for the Fitzhugh-Nagumo system

[37]. This analytical technique has been also used in complex systems in ecology [38, 39],

in epidemiology [40], as well as in models of interactions between tumors and oncolytic

viruses [41].

Frequently, in order to have an effective analytical approach of strongly nonlinear

equations for higher values of time t, the simple idea is to apply the HAM in a sequence

of subintervals of time with a certain step, giving rise to the so-called Step Homotopy

Analysis Method (SHAM). In fact, the homotopy analysis methodology is more general in

theory and widely valid in practice for the study of nonlinear problems than other analytic

approximation procedures. Indeed, this methodology has been successfully applied to solve

a wide variety of nonlinear problems (please see for instance, [42], [43], [44] references
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therein), particularly, there has been a growing interest in applying HAM to biological

models (please see some illustrative examples in [40]).

In this thesis, based on the notations and definitions of the HAM, we investigate the

applicability and effectiveness of the SHAM for finding accurate analytical solutions. This

newly developed analytical technique was lately applied to the fractional Lorenz system

[45].

1.3.1 Explicit series solution

For the sake of clarity, we outline in this section a brief description of the HAM (please see

[29], [40], [42] and references therein). The analytical approach will be used in a sequence

of intervals, giving rise to the step homotopy analysis method. In the context of HAM,

each equation of a system of ordinary differential equations

.
xi = fi (t, x1, ..., xn) , xi(t0) = xi,0, i = 1, 2, ..., n, (1.12)

can be written in the form

Ni [x1(t), x2(t)..., xn(t)] = 0, i = 1, 2, ..., n,

where N1,N2, ...,Nn are nonlinear operators, x1(t), x2(t)..., xn(t) are unknown functions

and t denotes the independent variable. The analytical procedure starts with a construc-

tion of the so-called zeroth-order deformation equation

(1− q)L [φi (t; q)− xi,0(t)] = qhNi [φ1 (t; q) , ..., φn (t; q)] , (1.13)

where q ∈ [0, 1] is called the homotopy embedding parameter, h is the convergence control

parameter, L is an auxiliary linear operator, xi,0(t) are initial guesses for the solutions and
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φi (t; q) are unknown functions. It is clear that when q = 0 and q = 1, it holds

φi (t; 0) = xi,0(t) and φi (t; 1) = xi(t).

Following (1.13), when q increases from 0 to 1, the function φi (t; q) varies from the initial

guess xi,0(t) to the solution xi(t). Expanding φi (t; q) in MacLaurin series with respect to

q at q = 0, we get

φi (t; q) = xi,0(t) +
+∞∑

m=1

xi,m(t)qm, (1.14)

where the series coefficients xi are defined by

xi,m(t) =
1

m!

∂mφi (t; q)

∂qm

∣
∣
∣
∣
q=0

. (1.15)

Considering the convergence of the homotopy series (1.14) and using the relation

xi(t) = φi (t; 1) we obtain the so-called homotopy series solutions

xi(t) = xi,0(t) +
+∞∑

m=1

xi,m(t), i = 1, 2, ..., n,

which are precisely the solutions of the original nonlinear equations. Differentiating the

zeroth-order deformation Eqs. (1.13) m times with respect to the homotopy parameter q,

we obtain the mth-order deformation equations

L [xi,m(t)− χmxi,m−1(t)] = hRi,m [x1,m−1(t), ..., xn,m−1 (t)] , i = 1, 2, ..., n, (1.16)

where

Ri,m [x1,m−1(t), ..., xn,m−1 (t)] =
1

(m− 1)!

∂m−1Ni [φ1 (t; q) , ..., φn (t; q)]

∂qm−1

∣
∣
∣
∣
q=0

and

χm =

{
0, m ≤ 1
1, m > 1

.
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A one-parameter family of explicit series solutions is obtained by solving the linear equa-

tions (1.16). In the presence of some strongly nonlinear problems, it is usually appropriate

to apply the HAM in a sequence of subintervals giving rise to the so-called Step Homotopy

Analysis Method (SHAM).

1.3.2 Interval of convergence and optimum value from an appropriate

ratio

Following [46], let us consider k + 1 homotopy terms x0(t), x1(t), x2(t), ..., xk(t) of an

homotopy series

x(t) = x0(t) +
+∞∑

m=1

xm(t). (1.17)

For a preassigned value of parameter h, the convergence of the homotopy series is not

affected by a finite number of terms. Therefore, it is sufficient to keep track of magnitudes

of the ratio defined by

∣
∣
∣
∣

xk(t)

xk−1(t)

∣
∣
∣
∣

(1.18)

and whether it remains less than unity for increasing values of k. Taking (1.18), and

requiring this ratio to be as close to zero as possible, we can determine an optimal value

for the convergence control parameter h. For such a value, the rate of convergence of

the homotopy series (1.17) will be the fastest (and as a consequence, the remainder of

the series will rapidly decay). For a prescribed h, if the ratio is less than unity, then the

convergence of HAM is guaranteed. In other words, this is a sufficient condition for the

convergence of the homotopy analysis method. This implies that in the cases where the

limit for the ratio in (1.18) cannot be reached or tends to unity, the method may still
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converge or fail to do so. It is appropriate to search for an optimum value of h, i.e., a

value of h that gives rise to a ratio (1.18) as small as possible. Taking a time interval Ω,

the ratio

β =

∫

Ω
[xk(t)]

2 dt
∫

Ω
[xk−1(t)]

2 dt

represents a more convenient way of evaluating the convergence control parameter h. In

fact, given an order of approximation, the curves of ratio β versus h indicate not only the

effective region for the convergence control parameter h, but also the optimal value of h

that corresponds to the minimum of β. Now, plotting β versus h, as well as by solving

∫

Ω
[xk(t)]

2 dt
∫

Ω
[xk−1(t)]

2 dt

< 1 and
dβ

dh
= 0,

the interval of convergence and the optimum value for parameter h can be simultaneously

achieved.

1.4 Positively invariant sets

A significant preliminary question to answer before doing any further analysis of the long-

term behavior of chaotic attractors is to find conditions for which trajectories will not

“escape to infinity”, so that they will remain confined to a compact set [47]. Taking a

system of three ordinary differential equations of the form







dx1

dt
= fx1

(x1, x2, x3)

dx2

dt
= fx2

(x1, x2, x3)

dx3

dt
= fx3

(x1, x2, x3)

,
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let us consider a new function Ψ = x1 + x2 + x3, i.e., the sum of the dynamical variables

involved in the 3D system. The temporal derivative of Ψ is

dΨ

dt
=
dx1
dt

+
dx2
dt

+
dx3
dt

.

Adding εΨ to dΨ
dt
, gives dΨ

dt
+ εΨ = χ (~x), for ε > 0. An upper bound of χ (~x) is

given by χ (~x) ≤ L. It follows that dΨ/dt ≤ −εΨ + L. Using the differential form of the

Gronwall’s inequality [48], we find

Ψ(t) ≤ Ψ(0)e−εt +
L

ε

(
1− e−εt

)
≤ max

(
L

ε
,Ψ(0)

)

.

Therefore, we can conclude that the trajectories starting from any arbitrary initial condi-

tion will remain confined to a compact set.

1.5 Observability analysis

When a dynamical system is investigated, there are usually some variables that provide a

better representation of the underlying dynamics. More precisely, in a number of practical

situations, the choice of the observable does influence our ability to extract dynamical

information of a given attractor. This fact results, in a considerable degree, from the

complexity of the coupling between the dynamical variables. With the computation of

observability indices, this coupling complexity can be estimated and the variables can be

ranked [49, 50, 51]. In the context of nonlinear dynamics, the choice of the observable

has a direct relation with problems such as control, model building and synchronization

(see [50] and references therein). It is important to notice that, despite the potential

practical importance of this concept, observability has not been commonly addressed by

the research community in theoretical biology. The following method thus provides an
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illustration of how our understanding of nonlinear problems can be enhanced by the theory

of observability. In the next lines we perform an observability analysis which involves a

mathematical structure provided by the theory of observability - the definition of the

observability matrix [49, 50, 51]. Let us consider a dynamical system

dx

dt
(t) = f(x(t)),

where t is the time, x ∈ R
m is the state vector and f is the nonlinear vector field. This

system is called the original system. The observable variable is obtained using a measure-

ment function h : Rm → R, such that s(t) = h(x(t)). In this work our system has three

ordinary differential equations (m = 3) of the form







dx1

dt
= fx1

(x1, x2, x3)

dx2

dt
= fx2

(x1, x2, x3)

dx3

dt
= fx3

(x1, x2, x3)

,

which can be reconstructed in a three-dimensional space. More precisely, using a variable

s, the reconstructed portrait is spanned by the derivative coordinates according to







X1 = s

X2 =
ds
dt

X3 =
d2s
dt2

.

The successive temporal derivatives of s constitute a derivative vector. The dynamics of

this space defined by the three derivative coordinates is expected to be equivalent, in a

certain sense, to the dynamics of the system defined by the original coordinates. In order

to analyze the quality of the reconstructed space, we study the properties of a coordinate
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transformation Φs between the original dynamical variables and the derivative coordinates,

(x1, x2, x3)
Φs→ (X1, X2, X3) ,

where the subscript s indicates the dynamical variable from which the reconstruction

is undertaken. For the observable variable s, the transformation Φs reads

Φs =







X1 = s

X2 =
ds
dt

= fs

X3 =
d2s
dt2

= ∂fs
∂x1

fx1
+ ∂fs

∂x2
fx2

+ ∂fs
∂x3

fx3

,

where fs can either represent fx1
, fx2

, or fx3
, which are the three components of the

vector field f . The coordinate transformation contains information on the nature of the

coupling between the dynamical variables “seen from one observable point of view”. In

our study, we are going to consider three coordinate transformations Φx1
, Φx2

and Φx3
.

In the context of the observability theory, it is critical to investigate in what conditions

a dynamical state can be constructed from a single variable and how the nature of the

couplings may effect the observability of a given system.

Theoretically, in order to reconstruct a dynamical state from s, the striking case occurs

when the transformation Φs defines a diffeomorphism, i. e., Φs is a continuous invertible

function whose inverse is differentiable. In other words, the coordinate transformation Φs

defines a diffeomorphism from the original phase in the reconstructed one if the determi-

nant of its jacobian matrix, J (Φs), never vanishes for each point of the phase space.

Therefore, the study of the jacobian matrix J (Φs) is critical and gives us relevant

information for the characterization of the coordinate transformation Φs. In particular,

the map Φs is locally invertible at a given point x0 if the Jacobian matrix has full rank,
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i.e., if rank
(

∂Φs

∂x

∣
∣
x=x0

)

= m. As a consequence, the original dynamical system is locally

observable if the previous sufficient condition for local invertibility holds. A central result

of the observability theory establishes that the Jacobian matrix J (Φs) can be interpreted

as the observability matrix, Os, defined for nonlinear systems [50]. This definition for Os

provides a clear link between the observability of a dynamical system, from an observable

s, and the existence of singularities in Φs, which seemed to be lacking in the literature. In

the context of nonlinear systems, there are regions in phase space that are naturally less

observable than others. Following [50], the degree of observability attained from a given

variable is quantified with the respective observability index using a value average along

an orbit

δs =
1

tf

tf∑

t=0

∣
∣λmin[O

T
s Os,x(t)]

∣
∣

|λmax[OT
s Os,x(t)]|

, (1.19)

where tf is the final time considered (without loss of generality the initial time was set

to be t = 0) and T represents the transposition of matrices. The term λmin[O
T
s Os,x(t)]

indicates the minimum eigenvalue of matrix OT
s Os estimated at a point x(t) (likewise for

λmax[O
T
s Os,x(t)]). Hence, 0 ≤ δs ≤ 1, and the lower bound of δs(x) is reached when the

system is unobservable at point x(t). It is important to emphasize that the observability

indices are local quantities interpreted as relative values and the established average is

particularly useful in order to portray an overall picture of the coupling complexity be-

tween the dynamical variables. Each time series arises from a given set of parameters of

a particular system. In this sense, being a function of a dynamical state x(t), the ob-

servability indices are considered local quantities in terms of the parameter values. Given

the orbit x(t), the observability value results from a time average over that orbit. In this
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sense, the observability indices are considered averaged values along an orbit.

Our present application of the outlined formalism, where the observability matrix is

interpreted as the Jacobian matrix of the coordinate transformation in study, Os = J (Φs),

leads to the computation of the observability indices of x1, x2 and x3. From the previous

values, the variables can be ranked in descending degree of observability.



Chapter 2

Topological complexity and

predictability in the dynamics of a

tumor growth model with

Shilnikov’s chaos1

Cancer is a generic term which designates a large class of diseases with a common pattern:

the normal mechanism of cells proliferation and programmed death breaks down, giving

place to a rapid creation of abnormal cells, which can grow beyond their usual boundaries

and invade other organs. Due to the considerable medical, scientific and technological

improvements over the last years, several cancers can be detected early and effective

treatments exist. However, despite these remarkable advances, our understanding of cancer

is far from complete and an established cure for this disease remains elusive, extremely

difficult to discover [53].

The analysis of cancer growth systems is, without doubt, critical to any attempt to

study important phenomena involved in tumor growth and to predict its future behavior.

Tumor growth systems represent a web of complex interactions among different body

1This study has been published in [52].
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cells, depending upon many key factors such as tumor severity, patient age, sex and

immune system state, or treatment strategy, among other factors. The analysis and the

understanding of this physiological complexity, historically studied through experimental

and clinical observations, can be complemented with the study of mathematical models

that incorporate critical interactions between tumor cells, healthy tissue cells and activated

immune cells. It has been shown in the literature that these interactions are the main

components of these models which may yield a variety of dynamical outcomes ([53], [54],

[55], [56], [57] and [58]).

The interest of applying chaos theory to biological systems, more specifically to chaotic

tumor dynamics, relies in that chaos can give place to recognizable, repeatable structures

at different scales, such as fractals, and both topological and dynamical properties can be

studied to determine important and practical measures like predictability. In this context,

chaotic behavior was recently reported in the Itik-Banks cancer model [59]. Itik and Banks

showed, by applying Shilnikov’s theorem, that system Eqs. (2.1)-(2.3) has Shilnikov-like

connections [59]. Roughly, such a theorem states that a dynamical system contains (an

infinite number of) Smale horseshoes, if it has a Shilnikov connection (i.e., homoclinic or

near homoclinic connection) consisting of a hyperbolic fixed point with a two-dimensional

stable (spiral) and a one-dimensional unstable manifold. Together with the application of

Shilnikov’s theorem, the authors computed the Lyapunov exponents (hereafter LE) for a

single parameter combination, obtaining one positive LE, thus numerically characterizing

chaos. They finally computed the Lyapunov dimension also for the same single parameter

combination, obtaining a fractal dimension near to the dimension of the Rössler attrac-

tor [60]. The analyses of Itik and Banks identified a new chaotic attractor and left open
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a collection of questions pertaining to chaotic tumor behavior in terms of symbolic dy-

namics, chaos generating mechanisms and measurements of complexity corresponding to

physiological relevant parameter regions.

In the present chapter we analyze both topological and dynamical properties of the

strange attractor found in the Itik-Banks model. This chapter is organized as follows. In

Section 2.1 we explain the mathematical model analyzed. Section 2.2, which includes the

analyses of the chaotic attractor, is divided into two subsections. In the first subsection we

study the iterated maps in terms of symbolic dynamics theory, computing the topological

entropy focusing on two key parameters determining inactivation of effector and tumor

cells. Here we also compute codimension-two bifurcation diagrams showing the ordering

periods for the same parameters. The second subsection includes the computation of

the spectrum of Lyapunov exponents, the fractal dimension, and the predictability of the

dynamics. In short, we numerically prove the existence of chaotic scenarios described

by Itik and Banks which are characterized by positive topological entropy and positive

maximal Lyapunov exponent of the three-dimensional cancer model. We find that the

dynamics is eminently sensitive to the effector cells inactivation rate by the tumor cells,

given by parameter a31. We also found that the dynamics in the chaotic attractor is highly

unpredictable at low inactivation rates of effector cells by tumor cells. In the Conclusions

Section we interpret the identified properties of the chaotic attractor in terms of cancer

cells viability.
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2.1 Mathematical model of tumor growth

We analyze the Itik-Banks cancer model [59], which considers three interacting cell pop-

ulations: tumor cells, healthy host cells and effector immune cells. Effector cells are the

relative short-lived activated cells of the immune system that defend the body in an im-

mune response. This model describes important aspects of the growth cancer dynamics

in a well-mixed system (e.g., liquid cancers such as leukemia, lymphoma or myeloma). In

order to simplify the mathematical analysis, the initial model was non-dimensionalized by

Itik and Banks [59]. The scaled resulting system of differential equations is given by

dx1
dt

= x1 (1− x1)− a12x1x2 − a13x1x3, (2.1)

dx2
dt

= r2x2 (1− x2)− a21x1x2, (2.2)

dx3
dt

=
r3x1x3
x1 + k3

− a31x1x3 − d3x3. (2.3)

The variables x1, x2 and x3 denote, respectively, the fraction of tumor cells, healthy

host cells and effector immune cells against their specific maxima carrying capacities k1,

k2 and k3 (see Section 2 in [59]). In the context of biology, the dimensionless parameters

have the meaning and values (or range) presented in the Table 2.1.

We use the same parameter values of [59], focusing our work on the study of parameters

a13 and a31. These parameters are chosen to analyze the effect of the inactivation inter-

actions between tumor and effector immune cells in the outcome of the overall population

dynamics of the three cell types. Of special interest is parameter a31, since tumor-induced

immunosuppression in cancer has strong implications in growth, expansion and differen-

tiation of cancer stem cells [61]. For the sake of clarity, we briefly explain the biological

meaning of such parameters, which are given by a13 = ã13k3/r1 (i.e., inactivation of tumor
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Variables and parameters Meaning

x1 fraction of tumor cells
Dependent variables x2 fraction of healthy host cells

x3 fraction of effector immune cells

a12 tumor cells inactivation rate by the healthy cells: a12 = 1.0
Parameters a21 healthy cells inactivation rate by the tumor cells: a21 = 1.5

a13 tumor cells inactivation rate by the effector cells: 0.05 ≤ a13 ≤ 10
a31 effector cells inactivation rate by the tumor cells: 0.9 ≤ a31 ≤ 1.5
r2 intrinsic growth rate of the healthy tissue cells: r2 = 0.6
r3 proliferation rate of the effector cells: r3 = 4.5
d3 density-dependent death rate of the effector cells: d3 = 0.5
k3 maximum carrying capacity of effector cells: k3 = 1.0

Table 2.1: List of variables and parameters.

cells by effector cells) and a31 = ã31k1/r1 (inactivation of effector cells by tumor cells).

Here ã13 and ã31 are the values of the parameters before the non-dimensionalization of the

original model presented in [59]. The parameter k1 denotes the maximum carrying capac-

ity of tumor cells that grow logistically. Parameter r1 corresponds to the proliferation rate

of tumor cells while r3 denotes the proliferation rate of the immune system effector cells,

which depends on the density-dependent interaction between effector and tumor cells and

the constant k3, included in the first saturating term of Eq.(2.3) (see [59] for a detailed

description of the model and the parameters). We will hereafter use as initial conditions:

x1(0) = 0.22459..., x2(0) = 0.48945... and x3(0) = 0.13534....

2.2 Chaos in tumor growth: Topological and dynamical

properties

In this section we study numerically the dynamical behavior of the Itik-Banks model,

paying special attention to the regime of chaos. Using numerical integration and after

discarding the initial transient, we show the strange attractor governing the dynamics of
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Figure 2.1: Strange attractor obtained from Eqs. (2.1)-(2.3) visualized in three-
dimensional (left) and two-dimensional (right) phase space (with a13 = 5.0 and a31 =
0.9435).

the system Eqs. (2.1)-(2.3) in the (x1(t), x2(t), x3(t)) phase space (Fig. 2.1 left) as well as

a projection in the (x1, x2) phase space (Fig. 2.1 right). To start with, we present a family

of one-dimensional iterated maps we identified studying the intrinsic properties of the

dynamics. These maps are used to compute the topological entropy and to characterize

special orbits in the parameter space in terms of symbolic dynamics theory. Furthermore,

taking advantage of the computation of the whole spectrum of Lyapunov exponents, we

measure the fractal dimension of the chaotic sets also determining how predictability

changes under the influence of inactivation rates between tumor and effector cells. It

is worth mentioning that Itik and Banks already studied the Lyapunov exponents and

the Lyapunov dimension [59], but their analyses were restricted to a single parameter

combination and thus the possible array of dynamics and the changes in the properties of

the attractors were not investigated in detail.
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2.2.1 Symbolic dynamics and topological entropy

We here introduce a family of one-dimensional maps identified in the Itik-Banks model

for the chaotic regime, which are studied in terms of symbolic dynamics theory. For

numerical investigation we will take the values of the parameters a13, (0.05 ≤ a13 ≤ 10):

the tumor cell inactivation rate (i.e., killing rate) by the effector cells; and parameter a31,

(0.9 ≤ a31 ≤ 1.5): inactivation of effector cells by the tumor cells. We can study the

dynamics of the strange attractor constructing one-dimensional maps that reproduce the

behavior of the temporal dynamics of the tumor cells corresponding to their successive

local maxima (as an example of a time series corresponding to x1, see Fig. 2.2(a)).

These iterated maps consist of pairs (x
(n)
1 , x

(n+1)
1 ), where x

(n)
1 denotes the nth relative

maximum. As shown in Fig. 2.2(b), the obtained discrete map takes the form of a logistic

map. The obtained iterated maps dynamically behave like a continuous map with a single

critical point, c, which maps an interval I = [a, b] into itself.

The following example illustrates the computation of the topological entropy, in the

context of symbolic dynamics theory, using the procedure established in Chapter 1,

Section 1.1.

Example 4 Let us consider the map of Fig. 2.2(b). The symbolic orbit of the turning

point, c, determines the period-5 kneading sequence (RLLLC)∞. After ordering the orbital

points, we obtain

x2 < x3 < x4 < x0 < x1 .
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Figure 2.2: (a) Chaotic time series of the tumor cells population, x1(t), using a13 = 5.0 and
a31 = 0.9435. (b) Iterated unimodal map obtained from plotting successive local maxima
of the time dynamics of tumor cells, x1, on the strange attractor, also using the previous
parameter values. (c) Codimension-two bifurcation diagram showing the period orbits
(n ≤ 5) of the turning point C in the parameter regions a13 ∈[0.05,10] and a31 ∈[0.9,1.5].
From left to right, the corresponding kneading sequences are: (RLLLC)∞, (RLLC)∞,
(RLLRC)∞, (RLC)∞, (RLRRC)∞, (RLRC)∞, (RC)∞and C∞. (d) Variation of the
topological entropy, htop, in the same parameter regions.

The associated transition matrix is

M(f) =







0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1







which has the characteristic polynomial

p(λ) = det(M(f)−λI) = −1− λ− λ2 − λ3 + λ4.

The growth number s(f) (the spectral radius of matrix M(f)) is 1.92756.... Therefore, the
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value of the topological entropy is given by

htop (f) = log s (f) = 0.65625... .

Figure 2.2(d) shows the variation of the topological entropy in the parameter region.

As we can observe, the dynamics of the Itik-Banks system is associated with positive

topological entropy, highlighting a large region of the parameter space where chaos oc-

curs. As we will characterize in the following lines, the dynamics is very sensitive to the

inactivation rate of effector cells by tumor cells. Our analyses reveal that when tumor

cells do not exert a strong inactivation of effector cells, the topological entropy takes val-

ues 0.609378... . htop . 0.656255.... However, the complexity of chaos decreases as this

inactivation rate becomes more important, and the topological entropy decreases finally

becoming non-positive at a31 & 1.24, where chaos is not found.

The study of the kneading sequences allows us to identify pairs of values (a13, a31)

corresponding to symbolic periodic orbits. In Fig. 2.2(c) we show the locations of these

points in the parameter space associated to the kneading sequences, with periods n ≤ 5,

from left to right: 5-period - (RLLLC)∞, 4-period - (RLLC)∞, 5-period - (RLLRC)∞,

3-period - (RLC)∞, 5-period - (RLRRC)∞, 4-period - (RLRC)∞, 2-period - (RC)∞

and 1-period - C∞. The identified kneading sequences correspond to logistic-type maps

with different levels of complexity reflected in different values of the topological entropy.

Therefore, we are able to find different pairs of values a13 (tumor cell killing rate by the

effector cells) and of values a31 (effector cells inactivation rate by the tumor cells) localized

in the same isentropic curve. The next table gives us information about the nuclear

kneading sequences studied in terms of its characteristic polynomial and its topological

entropy.
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Kneading sequences Characteristic polynomial Topological entropy

RC 1− t 0
RLRC −1 + t+ t2 − t3 0
RLRRC −1 + t− t2 − t3 + t4 0.414013...
RLC −1− t+ t2 0.481212...

RLLRC 1− t− t2 − t3 + t4 0.543535...
RLLC 1 + t+ t2 − t3 0.609378...
RLLLC −1− t− t2 − t3 + t4 0.656255...

Figure 2.2(d) shows the variation of the topological entropy computed for the system

in the parameter ranges 0.05 ≤ a13 ≤ 10 and 0.9 ≤ a31 ≤ 1.5. Our results show that the

inactivation rate of effector cells by the tumor cells, a31, has a profound and marked effect

on the dynamics. Higher values of this control parameter tend to stabilize the dynamics

from chaos to order. The chaotic behavior occurs when the ratio of the effector cells

inactivated by the tumor cells is lower (which means that for lower values of a31 the tumor

cells are not particularly aggressive towards the activated immune system cells (effector

cells)). As far as the control parameter a13 is concerned, our analysis reveals that this

parameter seems to have a modest effect on the dynamical behavior in the Itik-Banks

cancer model. The variation of the tumor cells inactivation rate by the effector cells

doesn’t provoke a sharp reaction of the dynamics. The positive topological entropy, which

decreases for growing a31, allows us to identify the parameter region corresponding to

0.05 ≤ a13 ≤ 10 and 0.9 ≤ a31 ≤ 1.24 where the regimes of chaos occur. As a consequence,

the feature of the original model that we are studying - the temporal dynamical behavior

of the successive local maxima of the tumor cells, x1 - is associated with regimes of chaotic

behavior. We point out that a more regular and organized temporal behavior of x1 occurs

when the tumor cells are more aggressive, in the sense that effector cells inactivation rate

by the tumor cells is higher, and the dynamics under this parametric regime is completely

predictable (see next section).



2.2 Chaos in tumor growth: Topological and dynamical properties 55

2.2.2 Lyapunov exponents, Kaplan-Yorke dimension and predictability

As stated in Chapter 1, Section 1.2, Lyapunov exponents, dimensions and entropies are

different ways of characterizing properties for chaotic attractors. In this section, we mea-

sure the Lyapunov exponents, the Kaplan-Yorke dimension and the predictability of the

Itik-Banks model of cancer growth.

3λ

1x

0.3

0.5

0.7

0.9 1. 1.1 1.2 1.3 1.4 1.5

-0.52

-0.48

-0.44

-0.4

-0.05

-0.025

0

0.025

a
31

13a

1λ

a
31

1,2λ

max

Figure 2.3: (Left) Bifurcation diagram obtained from xmax
1 showing the period-halving

(i.e., inverse Feigenbaum) scenario occuring as the inactivation of effector cells by tumor
cells increases (here with a13 = 5.0 and 0.9 ≤ a31 ≤ 1.5). Below we show the three
Lyapunov exponents computed within the same parameter range. (Right) Variation of
the first (i. e., maximum) Lyapunov exponent computed in the same parameter space
used in the previous figure.

A positive maximal Lyapunov exponent (MLE) is commonly taken as an indicator

of chaotic behavior. In the left hand-side of Fig. 2.3 we present a bifurcation diagram

and the variation of the three Lyapunov exponents with a31 as a control parameter for

a13 = 5.0. This figure shows clearly the three possible signs of the values for the Lyapunov

exponents in the chaotic regime, (+, 0,−) , and in the non-chaotic regime. In agreement

with the represented bifurcation diagram, the maximal Lyapunov exponent is positive
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in the chaotic regime and λ1 = 0 in the periodic windows. The 3D−plot of the same

figure shows the variation of the maximal Lyapunov exponent λ1 in all the parameter

region 0.05 ≤ a13 ≤ 10 and 0.9 ≤ a31 ≤ 1.5. The positiveness of this Lyapunov exponent

indicates the region where the system is chaotic. We notice the existence of pairs (a13, a31)

corresponding to λ1 = 0 (signature of periodic behavior). The increase of the effector

cells inactivation rate by the tumor cells, a31, involves an inverse Feigenbaum bifurcation

scenario, which results in the stabilization of the dynamics at higher values.

Our results, in agreement with classical numerical results displayed in the literature

[14], show that for certain periodic windows there is a discrepancy between the topological

entropy and the first (i. e., maximum) Lyapunov exponent. Within these periodic regimes,

the topological entropy diverges from the maximum Lyapunov exponent, which decreases

rapidly to zero, although initial conditions may wander chaotically in portions of the

system. The surface representing the topological entropy (Fig. 2.2 (d)) upper bounds

the surface that represents the variation of the maximum Lyapunov exponent (Fig. 2.3

(right)). The positive values of the topological entropy shape the variation tendency of

λ1. The variation of the Kaplan-Yorke dimension in the parameter space is depicted in

Fig. 2.4. With the previous procedures, we have confirmed the chaotic dynamics by

estimating the Lyapunov exponents and the Lyapunov dimension which is obtained to be

fractal.

As mentioned in Chapter 1, Section 1.2, the ability to predict the future state of

a dynamical system, given the present one, turns out to be particularly relevant with

major implications in applied biology. Dynamically, the inverse of the Kolmogorov-Sinai

entropy, 1/hKS , characterizes the predictability of the system. Naturally, as pointed out in
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Figure 2.4: Variation of the Kaplan-Yorke (or Lyapunov) dimension, DL (left); and the
predictability, P (right), in the parameter space (a31, a13). The color gradient of the
right panel shows the regions of chaotic dynamics and their corresponding predictability
measures: increased inactivation of effector cells by tumor cells (i.e., increased a31) gives
place to a more predictability dynamics.

Chapter 1, Subsection 1.2.3, higher values of hKS imply lower values of the predictability

1/hKS , that is, the more chaotic, the less predictable. This fact is made clear in the

gradient diagram of Fig. 2.4, where higher values of the predictability correspond to

higher values of the effector cells inactivation rate by the tumor cells, a31.

2.3 Conclusions

Competitive interactions among cells, which are the basis of many biological processes,

have been used to design several mathematical models developed in cancer research. A

particularly important domain of research is the mathematical modeling of tumor growth

which uses the ecosystem framework to study tumors as dynamic evolving systems, con-

sidering, not only the time change of cancer cells, but also the host components. In this

context, cancer is regarded as a complex network of interactions and not merely as a

disorganized growth of a certain population of cells ([62], [63]). In this chapter, we have

quantitatively studied topological and dynamical properties of chaotic attractors arising
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in the Itik-Banks cancer model [59]. This model aims to explain prominent features of

the growth cancer dynamics for non-solid tumors, in particular the competition and the

interactions among three cell populations: tumor cells, host tissue healthy cells and effec-

tor immune cells. The extremely rich and complex behavior of this model shows how the

nonlinear interactions between the involved cells are able to generate a number of different

kind of dynamical responses.

We analyzed the model using symbolic dynamics also computing local stability mea-

sures with the Lyapunov exponents. Specifically, we developed a rigorous study of iterated

one-dimensional maps related to the fraction of tumor cells x1, that incorporate the salient

dynamical properties of the system. We found a Feigenbaum bifurcation scenario, and we

quantified the decrease of the complexity of the dynamics by the variation of the topo-

logical entropy with the two control parameters a13 and a31, describing the inactivation

rates of tumor and effector cells, respectively. The representation of isentropic curves in

the (a13, a31)-parameter space allowed us to introduce the parameter space ordering of the

dynamics. The previous results concerning chaotic scenarios have been confirmed with the

computation of the Lyapunov exponents, used to estimate the Lyapunov dimension and

the predictability of the cancer model. The variation of the maximal Lyapunov exponent

and the fractal dimension further confirmed the chaoticity of the system.

Interestingly, we found that the dynamics is particularly sensitive to the variation of

the effector cells inactivation rate by the tumor cells, given by parameter a31, having a very

important effect on the overall dynamics of the system. In this sense, our theoretical results

match the established idea that tumor-induced immunosuppression in cancer has strong

implications in growth, expansion and differentiation of cancer stem cells [61]. Increasing
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values of this parameter tend to stabilize the dynamics, inducing less complexity to the

model, also increasing predictability and weakening chaos (i.e., the positive Lyapunov

exponent diminishes at increasing a31 values). As far as the control parameter a13 is

concerned, our analyses reveal that this parameter has a minimal effect on the dynamical

behavior of the model. The chaotic behavior, which is characterized by positive topological

entropy, occurs for low values of a31, which means that in the chaotic state the tumor cells

are not particularly aggressive towards the effector cells. This particular result suggests

that the possible manipulation of this parameter from a medical point of view could have

an important role in the fate of the tumor cell populations. In a hypothetical case that

chaos was real in tumor cells dynamics in vivo, and that, the strength of the inactivation

of effector cells by tumor cells could qualitatively change the dynamics from strong chaos

to weak chaos via the period-doubling scenario, one could take advantage of this property

and artificially decrease the inactivation of effector cells by the tumoral ones with drugs.

As our model shows, if tumor cells perform a strong inactivation on the effector cells,

some important phenomena take place. For instance, the local minima of the tumor

cells populations within the attractor increase their values, and strong chaos changes to

weak chaos and to quasi periodic or periodic motions. In this sense, drugs diminishing

the inactivation rates of effector cells by tumor cells could involve (beyond the increased

availability of activated effector cells) tumor cells visiting lower population values because

of strong fluctuations being much more sensitive to the effect of other sources of variation

such as demographic noise. Such a noise could force tumor cell populations to achieve

zero population values. This extinction effect has been previously discussed using discrete

theoretical models in the context of single-species survival in ecosystems [64]. Such a
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phenomenon would be especially important at the initial stages of tumorigenesis, when

few tumor cells are found within the body and thus finite population sizes introduce

strong demographic noise. Our hypothesis should be tested using a stochastic version of

the model studied in this chapter.

Further research should also investigate our conclusions for solid tumors (such as

throat or stomach cancer), using spatially-extended versions of the Itik-Banks model (e.g.,

reaction-diffusion equations or cellular automata models). Such model approaches would

be useful to check if our results keep general for different tumor classes. Despite spatial

interactions are known to introduce novel phenomena in nonlinear systems [65], if the spa-

tial versions of the Itik-Banks model further confirmed our results concerning parameter

a31, blocking mechanisms of effector cells inactivation by tumor cells should be considered

as a key target for the development of drugs against tumor cells progression.



Chapter 3

Activation of effector immune cells

promotes tumor stochastic

extinction: A homotopy analysis

approach2

The nature of the interactions in biological systems gives place to nonlinear dynamics

that can generate, for some parameter values, very complicated dynamics e.g. chaos.

Hence, advances to better characterize the dynamics for nonlinear systems turn out to be

extremely useful to analyze and understand such systems.

In the present chapter we apply the Homotopy Analysis Method (HAM) to obtain

solutions of the cancer growth model proposed by Itik and Banks [59]. Such a model,

based on Volterra-Lotka predator-prey dynamics, describes the interactions between tu-

mor, healthy, and effector immune cells (CD8 T cells i.e., cytotoxic lymphocytes, CTLS).

Predator-prey or competition Volterra-Lotka systems are known to display deterministic

chaos for systems with three or more dimensions [67, 68, 69, 70]. Together with the model

by Itik and Banks, several other theoretical models have addressed the dynamics of cancer

2This study has been published in [66].

61
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and tumor cells [54, 56, 71]. Interestingly, the model by Itik and Banks can be considered

as being qualitatively validated with experimental data, because its parameter values were

chosen to match with some biological evidences. This model could be thus considered as

being qualitatively validated with experimental data [51, 71]. Motivated by the character-

ization of chaos provided by Itik and Banks, a collection of questions pertaining to chaotic

tumor behavior in terms of symbolic dynamics and predictability as well as to the con-

trol of healthy cells behavior corresponding to physiological relevant parameter regions,

have been recently addressed in Refs. [72] and [73], respectively. In fact, chaos in tumor

dynamics and its property of sensitivity to initial conditions have been suggested to have

numerous analogies to clinical evidences [74, 75].

As stated in Chapter 1, Section 1.3, numerical algorithms have been extremely im-

portant to investigate complex dynamical systems such as cancer. However, they allow

us to analyze the dynamics at discrete points only, thereby making impossible to obtain

continuous solutions. By means of the HAM, accurate approximations allow a good semi-

analytical description of the time variables, making also possible to use the homotopy

solutions to explore the model dynamics, as well as to investigate possible scenarios of

tumor clearance, either deterministic or stochastic. This is the aim that we pursue in this

contribution. Specifically, we will calculate the homotopy solutions of the cancer model by

means of the Step Homotopy Analysis Method (SHAM) (see [45]). Then, the homotopy

solutions will be used to explore the effect of a key parameter in the population dynam-

ics: the activation of the immune system cells due to tumor antigen recognition, given

by parameter r3 (see next Section). As we will show, the system is very sensitive to this

parameter, and its change can involve the shift from order to chaos. This key parameter
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is especially interesting because modulates the response of the immune system against

tumor cells and, as we will show, the dynamics is especially sensitive to r3. Despite its

importance, the dependence of the dynamics of the model under investigation on r3 re-

mains poorly explored (see [73] for the analysis of a narrow range of r3 values within the

framework of chaotic crises and chaos control). Moreover, the impact of this parameter on

possible extinction scenarios of tumor cells due to demographic fluctuations has, as far as

we know, not being investigated. Interestingly, several therapeutic methods, that will be

discussed in this chapter are currently available to clinically manipulate this parameter,

thus being a realistic candidate to fight against tumor progression.

Finally, we will use the homotopy solutions to investigate the role of demographic

stochasticity in the dynamics of the model, paying special attention to the role of noise in

potential scenarios of tumor clearance and persistence of healthy cells due to changes in

the activation levels of effector immune cells.

3.1 Cancer mathematical model

In this chapter we analyze a cancer mathematical model initially studied by Itik and Banks

[59]. The model describes the dynamics of three interacting cell populations: tumor cells,

healthy cells and effector immune cells i.e., CD8 cytotoxic T-cells, CTLs. Effector cells

are the relative short-lived activated cells of the immune system that defend the body

in an immune response. Similarly to previous cancer models [54, 55, 56, 71, 76, 77, 78],

this model describes the competition dynamics of these three interacting cell types in a

well-mixed system (e.g., liquid cancers such as leukemias or multiple lymphomas). Among

several biologically-meaningful assumptions (see [59]), the model assumes that the antitu-
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mor effect of the immune system response is carried out by cytotoxic T-cells i.e., mediated

by the T-cell based adaptive arm. Alpha-beta T-cells are activated upon recognition of

their cognate tumor specific antigens by the cell surface T-Cell Receptor (TCR) in the

form of small peptides presented in the context of the major histocompatibility complex

(MHC) molecules. CD8 T-cells are responsible for direct cell mediated cytotoxicity fol-

lowing activation by antigen presenting cells (APCs) and are thought to be central players

in the anti-tumor immune response. To achieve full activation, the signal emanating from

the TCR has to be enhanced by messages sent by costimulatory molecules such as CD28

also present in the surface of the T-cell. Failure of the engagement of costimulatory pro-

teins, activation of coinhibitory receptors such as CTLA-4 or PD-1 or the presence of CD4

regulatory (Treg) T cells may lead to the failure of the activation of the T-cell or to the

downregulation of the immune response. Disarming these inhibitory mechanisms off may

lead to the reactivation of the antitumor immune response and to supraphysiological levels

of T-cell activation useful in the clinical setting (see Section 3.4).

For a self-contained presentation, we restate in the next lines the eye-catching and note-

worthy features of the Itik and Banks cancer model. As mentioned in the previous chapter,

in order to simplify the mathematical analysis, the initial model was non-dimensionalized

[59]. The scaled resulting system of differential equations is given by

dx1
dt

= x1 (1− x1)− a12x1x2 − a13x1x3, (3.1)

dx2
dt

= r2x2 (1− x2)− a21x1x2, (3.2)

dx3
dt

=
r3x1x3
x1 + k3

− a31x1x3 − d3x3. (3.3)

The variables x1, x2 and x3 denote, respectively, the population numbers of tumor cells,
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healthy cells and effector immune cells against their specific maxima carrying capacities

k1, k2 and k3 (see Section 4 in [59]). Parameter a12 is the tumor cells inactivation rate

by the healthy cells; a13 is the tumor cells inactivation rate by the effector cells; r2 is the

intrinsic growth rate of the healthy tissue cells; a21 is the healthy cells inactivation rate by

the tumor cells; r3 corresponds to the activation rate of effector cells due to tumor cells’

antigen recognition; a31 is the effector cells inactivation rate by the tumor cells. Finally, d3

is the density-dependent death rate of the effector cells (see [59] for a detailed description

of the model parameters).

We want to notice that the inactivation rate (or the elimination rate) of tumor cells

by the action of the effector immune cells (modeled with the last term in Eq.(3.1) is as-

sumed to be proportional to the number of effector immune cells, and no saturation is

considered. A mechanism of elimination of tumor cells is given by the release of cytotoxic

granules by the effector cells that impair or destroy tumor cells. Effector cells can clonally

expand after antigen recognition, so the model assumes that they can be present in excess

if needed. Hence, no saturation is considered for this term. The activation of effector

immune cells due to antigen recognition used in the first term of Eq.(3.3) can be viewed

as a Holling-II functional response, typically used to model predator feeding saturation

in ecological dynamical systems. For our system, it is assumed a decelerating activation

rate at increasing number of tumor cells since the activation of effector immune cells is

limited by their requirement to recognize the tumor antigens in the context of the Anti-

gen Presenting Cells (APCs). In this case, a process of cell-cell interaction and receptor

recognition is required between APCs and tumor cells prior to activation, and thus an

increasing number of tumor cells does not necessarily involve an increasing activation of
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effector cells.

The dynamics of this model is very rich, and both ordered (e.g., stable points or

periodic orbits) and disordered (i.e., chaos) dynamics can be found for different parameter

values [59, 72].

The model parameters will be fixed, if not otherwise specified, following [59], i.e.,

a12 = 1; a21 = 1.5; d3 = 0.5; k3 = 1; r2 = 0.6; a13 = 2.5; a31 = 0.2. This set of parameter

values can involve chaos for a wide range of r3 values (see below).

3.2 Homotopy analysis method

At this moment, following the procedure presented in Chapter 1, Section 1.3, we are able

to apply the homotopy analysis approach for solving analytically the Itik-Banks cancer

growth model.

Let us consider the Eqs. (3.1)-(3.3) subject to the initial conditions

x1(0) = IC1, x2(0) = IC2, x3(0) = IC3.

Following the HAM, it is straightforward to choose

x1,0(t) = IC1, x2,0(t) = IC2, x3,0(t) = IC3,

as our initial approximations of x1(t), x2 (t) and x3 (t), respectively. In this work we will

use IC1 = 0.13858..., IC2 = 0.69568..., IC3 = 0.01380.... We choose the auxiliary linear

operators

L [φi (t; q)] =
∂φi (t; q)

∂t
+ φi (t; q) ,

with the property L
[
Cie

−t
]
= 0, where Ci are integral constants (hereafter i = 1, 2, 3).
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The Eqs. (3.1)-(3.3) suggest the definition of the nonlinear operators N1, N2 and N3 as

N1 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ1 (t; q)

∂t
− φ1 (t; q) + φ21 (t; q) + a12φ1 (t; q)φ2 (t; q) +

+a13φ1 (t; q)φ3 (t; q) ,

N2 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ2 (t; q)

∂t
− r2φ2 (t; q) + r2φ

2
2 (t; q) + a21φ1 (t; q)φ2 (t; q) ,

N3 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] = φ1 (t; q)
∂φ3 (t; q)

∂t
+ k3

∂φ3 (t; q)

∂t
− r3φ1 (t; q)φ3 (t; q) +

+a31φ
2
1 (t; q)φ3 (t; q) + a31k3φ1 (t; q)φ3 (t; q) +

+d3φ1 (t; q)φ3 (t; q) + d3k3φ3 (t; q) .

If q ∈ [0, 1] and h0 the non-zero auxiliary parameter, the zeroth-order deformation equa-

tions are of the following form

(1− q)L [φi (t; q)− xi,0(t)] = qh0Ni [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] , (3.4)

subject to the initial conditions

φ1 (0; q) = 0.13858..., φ2 (0; q) = 0.69568..., φ3 (0; q) = 0.01380....

For q = 0 and q = 1, the above zeroth-order equations (3.4) have the solutions

φ1 (t; 0) = x1,0(t), φ2 (t; 0) = x2,0(t), φ3 (t; 0) = x3,0(t) (3.5)

and

φ1 (t; 1) = x1(t), φ2 (t; 1) = x2(t), φ3 (t; 1) = x3(t). (3.6)
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When q increases from 0 to 1, the functions φ1 (t; q), φ2 (t; q) and φ3 (t; q) vary from x1,0(t),

x2,0(t) and x3,0(t) to x1(t), x2(t) and x3(t), respectively. Expanding φ1 (t; q), φ2 (t; q) and

φ3 (t; q) in Taylor series with respect to q, we have the homotopy-Maclaurin series

φi (t; q) = xi,0(t) +

+∞∑

m=1

xi,m(t)qm, (3.7)

in which

xi,m(t) =
1

m!

∂mφi (t; q)

∂qm

∣
∣
∣
∣
q=0

, (3.8)

where h0 is chosen in such a way that these series are convergent at q = 1. Thus, through

Eqs (3.5)-(3.8), we have the homotopy series solutions

xi(t) = xi,0(t) +
+∞∑

m=1

xi,m(t), (3.9)

Taking the mth-order homotopy derivative of zeroth-order Eq.(3.4), and using the prop-

erties

Dm (φi) = xi,m,

Dm

(

qkφi

)

= Dm−k (φi) =







xi,m−k , 0 ≤ k ≤ m

0 , otherwise
,

Dm

(
φ2i
)

=
m∑

k=0

xi,m−k xi,k,

and

Dm (φiψi) =
m∑

k=0

Dk (φi) Dm−k (ψi) =
m∑

k=0

xi,k yi,m−k,

where Dm means the mth-order derivative in order to q, we obtain the mth-order defor-

mation equations

L [xi,m(t)− χmxi,m−1(t)] = h0Ri,m [x1,m−1(t), x2,m−1(t), x3,m−1(t)] , (3.10)
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with

χm =







0, m ≤ 1

1, m > 1

and the following initial conditions

x1,m(0) = 0, x2,m(0) = 0, x3,m(0) = 0. (3.11)

Defining the vector −→x m−1 = (x1,m−1(t), x2,m−1(t), x3,m−1(t)) ,

R1,m [−→x m−1] =
.
x1,m−1(t)− x1,m−1(t) +

m−1∑

k=0

x1,m−1−k(t) x1,k(t) + (3.12)

+a12

m−1∑

k=0

x1,k(t) x2,m−1−k(t) + a13

m−1∑

k=0

x1,k(t) x3,m−1−k(t),

R2,m [−→x m−1] =
.
x2,m−1(t)− r2x2,m−1(t) + r2

m−1∑

k=0

x2,m−1−k(t) x2,k(t) + (3.13)

+a21

m−1∑

k=0

x1,k(t) x2,m−1−k(t),

and

R3,m [−→x m−1] =
m−1∑

k=0

(
x1,k(t)

.
x3,m−1−k(t)

)
+ k3

.
x3,m−1(t)− (3.14)

−r3

m−1∑

k=0

(x1,k(t) x3,m−1−k(t)) +

+a31

m−1∑

k=0









k∑

j=0

x1,k−j(t) x1,j(t)



x3,m−1−k



+

+a31k3

m−1∑

k=0

(x1,k(t) x3,m−1−k(t)) + d3

m−1∑

k=0

(x1,k(t) x3,m−1−k(t)) +

+d3k3x3,m−1(t).

Proceeding in this way, it is easy to solve the linear non-homogeneous Eqs.(3.10) at initial
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conditions (3.11) for all m ≥ 1, obtaining

xi,m(t) = χm xi,m−1(t) + h0 e
−t

t∫

0

eτRi,m [−→x m−1] dτ, (3.15)

As an example, for m = 1, we have:

x1,1(t) = 0.13858− 0.119376h0 + 0.0964073a12h0 + 0.0019124a13h0 + 0.119376e−th0 −

−0.0964073a12e
−th0 − 0.0019124a13e

−th0,

x2,1(t) = 0.69568 + 0.0964073a21h0 − 0.0964073a21e
−th0 − 0.211709h0r2 + 0.211709e−th0r2,

x3,1(t) = 0.0138 + 0.000265021a31h0 + 0.0019124d3h0 − 0.000265021a31e
−th0 −

−0.0019124d3e
−th0 + 0.0019124a31h0k3 + 0.0138d3h0k3 −

−0.0019124a31e
−th0k3 − 0.0138d3e

−th0k3 − 0.0019124h0r3 +

+0.0019124e−th0r3.

It is straightforward to obtain terms for other values of m. In order to have an effective

analytical approach of Eqs. (3.1)-(3.3) for higher values of t, we use the Step Homotopy

Analysis Method (SHAM), in a sequence of subintervals of time step ∆t and the 12th-order

HAM approximate solutions of the form

xi(t) = xi,0(t) +
11∑

m=1

xi,m(t), with i = 1, 2, 3, (3.16)

at each subinterval. With the purpose of determining the value of h0 for each subinterval,

we plot the h0-curves for Eqs. (3.1)-(3.3) (see an example for t = 0 in Fig. 3.1).

Accordingly to SHAM, the initial values x1,0, x2,0 and x3,0 will be changed at each

subinterval, i.e., x1(t
∗) = IC∗

1 = x1,0, x2(t
∗) = IC∗

2 = x2,0 and x3(t
∗) = IC∗

3 = x3,0 and
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Figure 3.1: Samples of h0-curves for the Itik-Banks system under 12th-order approximation

for t = 0, a13 = 5.0, a31 = 1.3 and r3 = 4.5 (red -
·

x1 (h0), green -
·

x2 (h0) and blue -
·

x3 (h0)).

we should satisfy the initial conditions x1,m(t∗) = 0, x2,m(t∗) = 0 and x3,m(t∗) = 0 for all

m ≥ 1. So, the terms x1,1, x2,1 and x3,1, presented before as an example for m = 1, take

the form

x1,1(t) = 0.13858− 0.119376h0 + 0.0964073a12h0 + 0.0019124a13h0 + 0.119376e−(t−t∗)h0 −

−0.0964073a12e
−(t−t∗)h0 − 0.0019124a13e

−(t−t∗)h0,

x2,1(t) = 0.69568 + 0.0964073a21h0 − 0.0964073a21e
−(t−t∗)h0 − 0.211709h0r2 +

+0.211709e−(t−t∗)h0r2,

x3,1(t) = 0.0138 + 0.000265021a31h0 + 0.0019124d3h0 − 0.000265021a31e
−(t−t∗)h0 −

−0.0019124d3e
−(t−t∗)h0 + 0.0019124a31h0k3 + 0.0138d3h0k3 −

−0.0019124a31e
−(t−t∗)h0k3 − 0.0138d3e

−(t−t∗)h0k3 − 0.0019124h0r3 +

+0.0019124e−(t−t∗)h0r3.

Identical changes occur naturally for the other terms. As a consequence, the analytical
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solutions are

xi(t) = xi(t
∗) +

11∑

m=1

xi,m(t− t∗), with i = 1, 2, 3. (3.17)

In general, we only have information about the values of x1(t
∗), x2(t

∗) and x3(t
∗) at t∗ = 0,

but we can obtain these values by assuming that the new initial conditions is given by

the solutions in the previous interval. Our previous calculations are in perfect agreement

with numerical simulations (computed with an adaptive Runge-Kutta-Fehlberg method of

order 7 − 8). In Fig. 3.2 we show the comparison of the SHAM analytical solutions and

the numerical solutions of the system under study, considering two dynamical regimes:

period-2 dynamics (Fig. 3.2(a) and (b)) and chaos (Fig. 3.2(c) and (d)).

3.3 Impact of effector immune cells activation in the dy-

namics

The calculations developed in the previous section allow us to provide analytical approx-

imations to the solutions of the cancer model given by Eqs. (3.1)-(3.3). In this section

we will use the homotopy solutions to explore the role of a key parameter of the model:

the stimulation and activation of the immune system cells (cytotoxic lymphocytes, CTLs)

via the recognition of tumor cells antigens. This recognition process is parametrized in

the model by means of r3 and k3. We will here focus on parameter r3, which can be

interpreted as the density-dependent activation rate of effector cells due to the recogni-

tion of the antigens present in the surface of tumor cells. The constant k3 is a saturation

parameter, and will be fixed following [59]. By using the time trajectories obtained from

Eq.(3.16), we will first investigate the effect of increasing the activation rate of effector

cells in the deterministic dynamics. Then, we will add stochasticity to the homotopy so-
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Figure 3.2: Comparison between the homotopy solutions (solid lines) obtained with the
Step Homotopy Analysis Method (SHAM) developed in Section 3.2, and the numerical
simulations (black dots) for Eqs. (3.1)-(3.3). Time series of the dynamical variables [x1
(red), x2 (green) and x3 (blue)], and the corresponding attractors, represented in the
phase space (x1, x2, x3). In (a) and (b) we display the period 2 dynamics, using a13 = 5,
a31 = 1.3, and r3 = 4. In (c) and (d) we show the chaotic attractor obtained setting
(a13, a31, r3) = (5, 0.9435, 4.5).
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Figure 3.3: Bifurcation diagrams obtained from the deterministic homotopy solutions,
using the activation rate of efector immune cells (within the range 2.4 ≤ r3 ≤ 7) as the
control parameter. We plot the local maxima and minima of the homotopy solutions for
the three model variables: (a) tumor cells: x1, (b) healthy cells: x2, and (c) effector
immune cells: x3. Panel (d) shows the maximum Lyapunov exponent, Λ, for the same
range 2.4 ≤ r3 ≤ 7. The first red dashed line indicates a Hopf bifurcation, while the
second one indicates the lowest value of r3 where Λ > 0 i.e., chaos. Further increase of
parameter r3 involves other bifurcations e.g., r3 ∼ 4.21 or r3 ∼ 5.35.

lutions in order to explore the impact of demographic fluctuations in the overall dynamics

of the system under investigation.

The deterministic dynamics tuning r3 are displayed in Fig. 3.3 by means of bifurca-

tion diagrams built with the homotopy solutions. To build the bifurcation diagrams we

computed a time series using the homotopy solutions for each value of r3, and we recorded

the local maxima and minima after discarding some transient. By using this approach

it is shown that the increase of r3 involves a period-doubling bifurcation scenario i.e.,

Feigenbaum cascade, that causes the entry of the cell populations into chaotic dynamics.

For r3 & 2.6 the dynamics suffers the first bifurcation which switches the dynamics from
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a stable equilibrium towards a periodic orbit (dashed red line at the left in Fig. 3.3(d)).

Further increase of r3 involves period-doubling bifurcations, and, for r3 & 3.5 the dynam-

ics undergo irregular fluctuations, which are confirmed to be chaotic with the computation

of the maximal Lyapunov exponent, Λ (Fig. 3.3(d)). Λ has been computed within the

range 2.4 ≤ r3 ≤ 7 from the model Eqs.(3.1)-(3.3) using a standard method [12]. The

bifurcation diagrams reveal that the population of cells undergoes larger fluctuations at

increasing r3, and populations can, at a given time point, be close to zero population val-

ues (extinction), as discussed for single-species chaotic dynamics [64]. That is, one might

expect extinctions at increasing values of r3.

In order to analyze extinction scenarios for the populations of cells in our model, we

will use the homotopy solutions developed in Section 3.2, including a noise term simulating

demographic stochasticity. Demographic stochasticity may play an important role at the

initial stages of tumor progression, where the number of tumor cells is low compared to the

population of healthy cells. Hence, we will assume that noise in tumor cells populations

and in effector cells populations is larger than in healthy cells populations. Hence, we will

include an additive stochastic term, ξi(t), to the homotopy solutions, now given by:

xi(t) = xi(t
∗) +

11∑

m=1

xi,m(t− t∗) + ξi(t) · (t− t∗), i = 1, 2, 3. (3.18)

Here ξi(t) is a time-dependent random variable with uniform distribution i.e.,

ξi=1,2,3(t) ∈ U(−σi, σi) that simulates demographic fluctuations, where parameter σi cor-

responds to the amplitude of the fluctuations. Previous works followed this approach to

simulate decorrelating demographic noise in metapopulations [79] and host-parasitoid [80]

dynamics. Notice that the noise term is scaled by the time-step used to compute the

homotopy solutions. As mentioned, in our model approach we will assume that the popu-
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lation of healthy cells is much larger than the populations of tumor and effector immune

cells, setting σ2 = 0. Hence, noise terms will be introduced to tumor and effector cells

populations by means of σ1,3 > σ2 = 0. We notice that we can analyze the deterministic

dynamics setting σ1,2,3 = 0. Furthermore, the initial population numbers (initial condi-

tions) for healthy cells populations are fixed to their carrying capacity x2(0) = k2 = 1,

using x1,3(0) < x2(0).

Using the homotopy solutions, we compute the extinction probabilities, P ext
i=1,2,3, for

each of the cell populations at increasing values of activation rates of effector immune cells,

r3. The extinction probabilities are computed as follows: for each value of r3 analyzed,

we built 200 different time series with the homotopy solutions using t = 104. Over these

200 time series, we calculated the number of time series for each variable fulfilling the

extinction condition of variable i, assumed to occur when xi(t) ≤ 10−30, normalizing

the number of extinction events over 200. Then, we repeated the same process 10 times

(replicas), and we computed the mean (±SD) of the normalized extinction events over

these 10 replicas. Following the previous procedure, we consider random initial conditions

for tumor and effector cells, setting x2(0) = 1 and x1,3(0) < x2(0), instead of using a

single initial condition for each variable for all time series. Specifically, we will consider

random initial populations of tumor and effector cells following a uniform distribution

within the range ]0, 0.2]. The results are displayed in Fig. 3.4 using parameter values from

[59], except for the tuned parameter r3. The deterministic simulations (solid triangles in

Fig. 3.4(a)) reveal that extinction probabilities for tumor cells is zero within the range

analyzed i.e., 2.4 ≤ r3 ≤ 15.5. For low values of r3, the extinction probabilities for healthy

and effector cells remain close and low (P ext
2,3 ∼ 0.05).
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Figure 3.4: Extinction probabilities, P ext
i , of tumor (i = 1, red), healthy (i = 2, green),

and effector immune (i = 3, blue) cells at increasing activation rates of the immune cells
(parameter r3), fixing all other model parameters following [59]. (a) Extinction proba-
bilities for the deterministic dynamics (solid triangles), and for the stochastic dynamics
using σ1,3 = 0.1 > σ2 = 0 (open circles). (b) Extinction probabilities using σ1,3 = 0.05
(open circles) and σ1,3 = 0.01 (solid circles), both also with σ2 = 0. Each data point is the
mean (±SD) computed over 10 replicas. Each of these replicas was obtained computing
the extinction probability for each variable over 200 time series of length t = 104, starting
from random low initial conditions for effector and tumor cells, x1,3(0) < x2(0) = 1 (see
Section 3.3). In the lower panels we display the deterministic and stochastic dynamics for
different values of r3, with: r3 = 3.7 (c); r3 = 9 (d); and r3 = 12.5. For the stochastic
dynamics we display two different runs represented with thin and thick trajectories for
each variable, with: (c) σ1,3 = 0.1; (d) σ1,3 = 0.01; and (e) σ1,3 = 0.05, all with σ2 = 0.
(f) Dynamics projected in the phase space (x2, x1) using r3 = 4. We display 10 stochastic
trajectories using σ1,3 = 0.05. The inset in (f) displays the chaotic attractor for the same
initial conditions and parameter values with σ1...3 = 0 (i.e., deterministic dynamics).
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Beyond r3 & 6, P ext
2,3 drastically increases and extinctions take place with probability

1. Such extinction value is maintained for effector cells at increasing r3. The extinction

probability of healthy cells diminishes beyond r3 & 9.8 to P ext
2 ∼ 0.6. In a counterintuitive

way, these results indicate that increasing activation of effector immune cells (using the

parameter values from [59]) does not involve tumor cells extinction or low extinction

probabilities for healthy cells, due to the complexity of the dynamics in the chaotic or

fluctuating regimes.

Now, we focus on the effect of demographic stochasticity in the overall dynamics of

the system. Figure 3.4(a) displays the same analyses performed with the deterministic

approach, but now using σ1,3 = 0.1 (recall σ2 = 0). The observed extinctions patterns

drastically change. For instance, the extinction probability of tumor cells, P ext
1 , ranges

from P ext
1 ∼ 0.3 to P ext

1 ∼ 0.97 within the range 2.4 ≤ r3 ≤ 15.5. Moreover, the extinc-

tion probability of healthy cells significantly decreases at increasing r3, having values of

P ext
2 ∼ 0.05 for r3 & 12.2. These results clearly indicate that when demographic noise is

high (e.g., at initial tumor progression stages) stochastic fluctuations can involve increas-

ing extinction probabilities of tumor cells and increasing survival probabilities of healthy

cells when r3 grows. In the stochastic simulations, effector immune cells always reached

extinction, except for the cases with small r3 and low noise amplitudes (Fig. 3.3(b)). Sim-

ilar results were obtained by using σ1,3 = 0.05 (open circles in Fig. 3.4(b)) and σ1,3 = 0.01

(solid circles in Fig. 3.4(b)). As expected, the decrease of the noise levels involves lower

extinction probabilities for both tumor and healthy cells, although the same tendencies

are preserved i.e., increasing r3 enlarges tumor cells extinctions and decreases host cells

extinctions. Figure 3.4(c)-(d) displays several time series for different values of r3 and
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noise intensities, also representing the deterministic dynamics. For instance, in Fig. 3.4(c)

(setting r3 = 3.7) the deterministic dynamics is chaotic and no extinctions are found.

However, the stochastic dynamics (here using σ1,3 = 0.1) can cause extinction or survival

of tumor and healthy cells also with r3 = 3.7. In Fig. 3.4(d) we use r3 = 9. The determin-

istic dynamics for this case involves outcompetition of healthy and effector cells by tumor

cells. However, the stochastic dynamics (σ1,3 = 0.01) can involve either the extinction or

survival of tumor cells. Finally, Fig. 3.4(e) displays the dynamics using r3 = 12.5. For this

case, the deterministic dynamics also involves dominance of tumor cells, but the stochastic

dynamics (with σ1,3 = 0.05) involves an extinction probability of tumor cells of P ext
1 ∼ 0.8.

In Fig. 3.4(f) we display the trajectories projected in the phase space (x2(t), x1(t)) using

r3 = 4 and σ1,3 = 0.05. The main plot shows ten stochastic trajectories that reach the

(0, 1, 0) attractor (solid black circle) that involves the survival of healthy cells and the

extinction of both effector and tumor cells. The inset displays the deterministic dynamics

also for r3 = 4, which is governed by the chaotic attractor.

Finally, we want to note that the same qualitative extinction patterns were obtained

using parameter values explored in [72], setting: a31 = 0.9435 and a13 = 5. Moreover, all

the previous simulations (using parameter values from Refs. [59] and [72]) were repeated

using different extinction thresholds i.e., xi(t) ≤ 10−10 and xi(t) ≤ 10−20, and the ex-

tinction probabilities remained qualitatively equal for both deterministic and stochastic

dynamics (results not shown).
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3.4 Conclusions

In this chapter, a semi-analytic method to find approximate solutions for nonlinear differ-

ential equations - the step homotopy analysis method (SHAM) - is applied to solve a cancer

nonlinear model initially proposed by Itik and Banks [59]. With this algorithm, based on a

modification of the homotopy analysis method (HAM) proposed by Liao [28, 29, 30], three

coupled nonlinear differential equations are replaced by an infinite number of linear sub-

problems. This modified method has the advantage of giving continuous solutions within

each time interval, which is not possible by purely numerical techniques. Associated to

the explicit series solutions there is an auxiliary parameter, called convergence-control pa-

rameter, that represents a convenient way of controlling the convergence of approximation

series, which is a critical qualitative difference in the analysis between HAM/SHAM and

other methods.

The model by Itik and Banks [59] considers the dynamics of three interacting cell types:

healthy cells, tumor cells, and effector immune cells (i.e., CD8 T cells, also named cytotoxic

lymphocytes, CTLs). Our analytical results are found to be in excellent agreement with

the numerical simulations. To the best of our knowledge, such kind of explicit series

solutions, corresponding to each of the dynamical variables, have never been reported for

the Itik-Banks cancer model. The results presented in this chapter suggest that SHAM

is readily applicable to more complex chaotic systems such as Volterra-Lotka type models

applied to cancer dynamics. In this work we used the homotopy solutions to investigate

the impact of a key parameter in the dynamics of tumor growth: the activation of effector

immune cells due to recognition of tumor antigens (parameter r3). Previous research has

focused on other key parameters of the model by Itik and Banks. For instance, the active
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suppression of the immune response by the tumor cells has been recently explored in [72].

Interestingly, the dynamics were shown to be very sensitive to the suppression of the

immune cells, involving an inverse period-doubling bifurcation scenario at increasing the

suppression rate of immune cells [72]. For this case, strong chaos and low predictability was

found at small suppression rates, and the chaotic dynamics became more predictable at

increasing suppression values. The selective shutdown of the antitumor immune response

can also be achieved by the escape of the recognition of the cancer cells by the immune

system by selection of non-immunogenic tumor cell variants and in influencing immune

cells with a negative regulatory function, such as regulatory T cells and myeloid-derived

suppressor cells Thus, the cell-killing activity of the cytotoxic CD8 T cells can be inhibited

by the presence within the tumor tissue of immunosuppressive CD4+ regulatory T cells

(Treg cells). The function of Treg cells is essential for inducing tolerance to “self” antigens,

preventing autoimmune reactions and for the downregulation of the immune response after

the elimination of the antigenic source (such as pathogens, allogenic cells or cancer cells).

However, their capacity to inhibit the innate and adaptive anti-tumor immune response

also constitute a major obstacle to cancer immunotherapy.

We have used the homotopy solutions to characterize changes in the dynamics at in-

creasing activation rates of the immune cells. Such a parameter is especially important

since several clinical therapies are currently available to boost immune responses (see

next paragraph). The increase of the immune cells activation rate is shown to cause a

period-doubling bifurcation scenario that makes the system to enter into chaotic dynam-

ics. Interestingly, the populations of tumor cells, although undergoing large fluctuations,

are able to survive for all the range of r3 analyzed. In order to simulate demographic
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stochasticity that might be found at early stages of tumorigenesis, we added noise terms

to the homotopy solutions for tumor and effector immune cells populations. As a difference

from the deterministic dynamics, we found that an increase of r3 increases the extinction

probabilities for tumor cells, also diminishing the extinction probabilities of healthy cells.

These results suggest that possible therapies enhancing the activation of effector immune

cells (see next paragraph) at early stages of tumor progression could result in higher prob-

abilities of stochastic tumor clearance. lt is worth to note that the model proposed by

Itik and Banks does not explicitly model the clonal expansion of immune cells after tumor

antigen recognition that could make the noise in CTLs populations to be even smaller or

negligible. It is known that after being activated, the population of CTLs is expanded

in order to exert strong cytotoxic effects. Then, the CD8 response is downregulated by

programmed cell death mechanisms to avoid over-activation of the immune system [81].

Due to the complexity of the dynamics found at increasing r3, it is not clear if clonal

expansion would favor the extinction of tumor cells, as we would expect. In this sense,

the effect of immune system activation together with production of large populations of

effector immune cells due to clonal expansion (burst in the population of effector immune

cells) should be modeled to determine if our observed results remain the same or change

the probabilities of tumor cells extinction in response to increases in r3.

Our results could be clinically relevant since several therapies to stimulate and activate

immune cells are currently available. A foundational property of the immune system is

its capacity to distinguish between the “self” and “non-self” antigens. In the context of

an evolving tumor, it is likely that the tumoral cells will present to the immune cells a

number of new antigens product of the genetic aberrations present in their genome. This
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mechanism is probably involved in the control of early tumors. However, it is known that

cancer cells escape innate and adaptive immune responses by selection of non-immunogenic

tumor cell variants (immunoediting) or by active suppression of the immune response (im-

munosubversion) (see [81] for a review). Tumor antigens often elicit poor adaptive immune

responses because they are recognized as “self-antigens” that induce tolerance, the natu-

ral mechanism of the body to prevent autoimmunity. The enhancement of the antitumor

T cell responses by triggering TCR costimulatory molecules to break tolerance has been

envisaged as a way to potentiate the antitumor immune functions. Agonists of the costim-

ulatory tumor necrosis factor receptor (TNFR) family members, which include proteins

involved in B and T cell development, survival, and immune activation, have been proven

to enhance the antitumor immune responses. Preclinical and early clinical data of the use

of agonists of 4-1BB (CD137) or OX40 (CD134) support further studies of these costimu-

latory molecules as potentiators of the antitumor response [82]. An increasingly successful

anticancer strategy that aims to boost immune responses against tumor cells consists in

enhancing the cell-killing activity of the cytotoxic CD8 T cells by the use of antibodies that

block negative regulators of T-cell activation (“checkpoint inhibitors”). Fully humanized

monoclonal antibodies blocking the inhibitory molecules Cytotoxic T-Lymphocyte anti-

gen 4 (CTLL4, Ipilimumab, Tremelimumab) or Programmed Death Receptor-1 (PD-1,

Nivolumab, MK-3475) have been proven to be useful in solid tumors such as melanoma,

renal cell carcinoma, non small cell lung cancer or colorectal cancer (reviewed in [83]).

More recently, the p110δ isoform of phosphoinositide-3-OH kinase (PI(3)K) activity has

been shown to be required for the proliferation and differentiation of suppressive Treg cells

induced by tumor cells. PI(3)K δ inhibitors have been proven to be able to preferen-
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tially inhibit CD4 Treg cells over effector CTLs, opening new ways to unleash the power

of dormant anti-tumor immune cells [84]. More recent and novel approaches suggest the

possibility to increase CTLs activation by means of artificial APCs (see [85] for further

details).

Summarizing, our results suggest that potential therapies increasing activation rates of

effector immune cells might be much more effective at early stages of tumor progression,

when demographic noise becomes important in tumor cells populations. Our results also

suggest that the stimulation of immune cells may not facilitate tumor clearance in cancers

with large population numbers of tumor cells, as the deterministic approach is considering.

Further research should also analyze the robustness and generality of our results to changes

in the other model parameters. As discussed in [72], it would be also interesting to explore

the effect of increasing the activation of effector immune cells in solid tumors by means of

a spatial version of the cancer model analyzed in this chapter.



Chapter 4

How complex, probable, and

predictable is genetically driven

Red Queen chaos?3

Coevolution pervades evolutionary change on multiple scales. The complexity of coevolu-

tion has been addressed by means of experimental research [87, 88, 89, 90] and a multitude

of theoretical models have been also developed to characterize the dynamics of coevolving

systems [91, 92] (see also [93] and references therein). Antagonistic coevolution describes

the reciprocal evolutionary dynamics between exploiter-victim systems (e.g., predator or

parasite interactions with prey or hosts). Coevolution involves changes in the genetic

make-up of one population in response to a genetic change in the antagonistic popula-

tion [94]. Antagonistic interactions can give rise to different dynamical outcomes, among

them, a fluctuating selection labeled as Red Queen dynamics, which involves continuous

reciprocal changes in the coevolving traits [95, 96, 97, 98, 99, 100].

The Red Queen theory has deep implications in the evolutionary biology of species. It

has been suggested that coevolving pathogens may facilitate the persistence of outcrossing

despite its costs. Coevolutionary interactions between hosts and pathogens might generate

3This study has been published in [86].
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ever-changing conditions and thus favor the long-term maintenance of outcrossing relative

to self-fertilization [101] or asexual reproduction [102, 103] (see also [104] for a review).

Moreover, the Red Queen may be also behind the huge diversity of genes related to immune

functions, virulence and resistance [105], as well as behind spatial diversity and local

adaptation of coevolving species [106].

It is important to differentiate between two main types of Red Queen dynamics [107,

108, 109], both of them having a genetic basis. This distinction is important because

these two types of coevolution differ on their mechanisms, on their underlying genetic

architecture, and on the time scales on which they develop [108]. On one hand, ecolog-

ically driven dynamics characterized by negative frequency-dependent selection. On the

other hand, genetically driven dynamics due to beneficial mutations. In the first type,

variants of the exploiter genotype that benefit the most from the numerically dominant

victim genotypes are favoured. Similarly, victim genotypes that better resist the numerical

dominant exploiter genotpyes are favoured [110]. This pattern results in selection against

common exploiter and victim genotypes in a time-lagged negative frequency dependent

fashion (so-called ecological instability). Such a fluctuating selection ensures genetic poly-

morphisms for long periods (balanced selection) and alleles frequencies can oscillate over

short periods of time [110]. Genetically driven Red Queen involves the repeated inci-

dence, spread and fixation of new beneficial mutations that are stabilized in ecological

populations by directional selection. Hence, genetic polymorphism is transitory only, and

the evolutionary dynamics are slow because: (i) new mutations causing variation in the

adaptive traits involved are rare events; (ii) new mutant starts with a very low frequency

(i.e., 1/N , where N is the number of wild-type alleles in the population), thus empirically
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it can take hundreds of generations until the mutant becomes recognizable (e.g., 1%) at

the population level [111]. The previous phenomenon involves that genetically driven Red

Queen dynamics develop on an asymmetric time scale, which can be several orders of

magnitude slower than the ecological time scale. This is of special importance in those

coevolving organisms with low reproduction times, such as metazoan, or, in a more general

sense, for those organisms with ecological K-strategies (i.e., K-selected species typically

invest more heavily in fewer offspring, each of which has a relatively high probability of

surviving to adulthood). Although for viruses, bacteria or protozoa there might also exist

such an asymmetry in time scales, their fast reproduction cycles would make possible to fix

beneficial mutations faster. Despite this observation, it is known that RNA viruses such

as Tobacco etch virus does not produce beneficial mutations in a short time scale [112],

and, for example, Vesicular stomatitis virus has a spontaneous fraction of new beneficial

mutations of about 4.2% [113].

The slow time scale involved makes difficult to address genetically driven Red Queen

dynamics experimentally. In this sense, mathematical models offer a unique tool to ex-

plore the conditions that could favour the Red Queen over escalation or specialization.

The majority of the available models have focused on two coevolving species, ignoring the

multispecies ecological context in which coevolution takes place. In this setting, geneti-

cally driven Red Queen dynamics develop as regular, predictable cycles in the adaptive

traits space. More recently, Dercole and colleagues proposed a mathematical model de-

scribing genetically driven coevolution in a food chain formed by a prey, a predator and

a superpredator [110]. They found that conditions leading to genetically driven periodic

cycles in the two traits of coevolving predator and prey promoted chaos in the coevolution
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between the three-species forming the food chain, similarly to previous works showing that

the addition of a third species in a two-species system usually involves the possibility of

chaos [67, 114].

In this chapter we investigate the model proposed by Dercole et al. [110], focusing on

the analysis of the complexity and predictability of genetically driven Red Queen chaos.

The predictability horizons in evolution are a matter of debate [115, 116]. Indeed, some

authors pointed out the existence of an inherent limit on the predictability of evolution

by establishing connections between evolutionary theory, computability, and logics [117].

Several works have recently addressed this subject exploring evolutionary trajectories in

fitness landscapes [118]. Moreover, evolution experiments with microbes have begun to

address predictability of adaptation on a microevolutionary scale [119, 120, 121, 122, 123].

In particular, strong signatures of parallel evolution have been observed in the context of

the evolution of antibiotic resistance in pathogens, a finding that is of direct relevance to

strategies of drug design and deployment [124, 125, 126, 127]. In the context of coevolution,

as far as we know, predictability in genetically driven Red Queen dynamics still remains

completely unexplored. In this chapter we aimed to cover this gap, providing a detailed

analysis of the dynamical complexity and the predictability of this coevolutionary complex

dynamics.

The chapter is organized as follows. In Section 4.1 we briefly introduce the mathe-

matical model for genetically driven Red Queen dynamics. Section 4.2, which is divided

in five subsections, contains all our results. In Subsection 4.2.1 we analytically show that

the chaotic attractor is positively invariant. In Subsection 4.2.2, we compute the cou-

pling complexity by means of observability indices, which allow us to rank the dynamical
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variables from more to less observable. Then, in Subsection 4.2.3 we analyze a family of

one-dimensional iterated maps identified in the chaotic dynamics for the state variable

with the highest observability index. Different symbolic orbits associated with these maps

are used to compute the topological entropy using mutation rates as control parameters.

Subsection 4.2.4 contains the computation of the spectrum of Lyapunov exponents and of

the predictability of coevolutionary chaos also focusing on the impact of mutation rates.

In Subsection 4.2.5 we will perform a systematic sampling of a given region of the param-

eter space to estimate how probable is chaotic dynamics. Finally, Section 4.3 is devoted

to some conclusions.

4.1 Three-species coevolutionary model

The mathematical model investigated in this chapter was recently introduced by Dercole

and colleagues [110] as an extension of a simple two-species predator-prey system [91],

including another species forming a food chain. The function of each species in the food

chain is determined by a continuous character subject to rare and small genetic muta-

tions. The model focuses on a single adaptive trait for each species, which determines the

competitive ability of the prey and foraging success in the predator and superpredator.

On the evolutionary time scale, de novo trait variation is caused by rare genetic mutation.

The current phenotypes determine the ecological equilibrium of the food chain, and hence

the selective pressures acting on variants of the traits. Each species is characterized by

one genetic trait for the prey (x1), the predator (x2) and the superpredator (x3), respec-

tively. The long-term coevolution of traits x1, x2, and x3 on the evolutionary time scales

obeys the canonical equation of adaptive dynamics [92], given by the next set of nonlinear
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differential equations:
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The model under investigation is here presented in its extended version. We refer the

reader to Section Model construction in Ref. [110] (see also Refs. [91, 92]) for a detailed
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description of all the steps followed to built the mathematical model.

Parameter r is the prey intrinsic per capita growth rate; c is the sensitivity to intraspe-

cific competition; ai=2,3 are the attack rates in the predator (i = 2) and the superpredator

(i = 3). Parameter ei=2,3 are the efficiencies in the predator and the superpredator; while

di=2,3 are the intrinsic death rates of both predators and superpredators. Parameters

µi=1,2,3 are mutation rates of preys (i = 1), predators (i = 2) and superpredators (i = 3).

Parameters σ2i and n̄i are, respectively, mutational step variances and equilibrium densi-

ties for species i = 1, 2, 3 (i.e., prey, predator and superpredator). Attack rates a2 and

a3 are bidimensional Gaussian functions with elliptic contour lines centered at (a24, a25)

and (a34, a35), respectively, and controlled in amplitude and orientation by parameters

a21 − a23 and a31 − a33 (see [110] for further details on the other terms and parameters of

the model above). In our work we will first consider as control parameters the mutation

rates µi, to analyze the impact of the rates of evolution on the dynamics of the model.

For these analyses we will fix the values of the remaining parameters following [110]:

σ21 = 0.3, σ22 = 2 and σ23 = 2,

r = 0.5,

d2 = 0.05 and d3 = 0.02,

e2 = 0.14 and e3 = 0.14,

a21 = 0.22, a22 = 0.25, a23 = 0.6 and a25 = 0.04,

a31 = 0.22, a32 = 0.25, a33 = 0.6, a34 = 0 and a35 = −0.04,

c0 = 0.5, c1 = 0 and c2 = 3.

Then, in Subsection 4.2.5 we will use some of the previous parameters also as control
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parameters. In all our analysis we will use as initial conditions (if not otherwise specified):

x1(0) = −0.11, x2(0) = 0.11 and x3(0) = 0.012.

For numerical integrations of the differential equations we used the StiffnessSwitching

NDSolve method from Mathematica 9.0.
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Figure 4.1: The chaotic attractor, with maximum Lyapunov exponent (MLE) λ1 =
0.016868, arising in the model of Dercole and colleagues [110], given by Eqs. (4.1)-(4.3).
The trajectories are displayed in the traits phase space (x1, x2, x3), using µ1 = 4.325 and
µ2 = µ3 = 1.

4.2 Results

4.2.1 Positively invariant sets

In the following Sections we will examine the long-term behavior of the three-dimensional

chaotic attractors arising in the coevolutionary system modeled by Eqs. (4.1)-(4.3). The

chaotic attractor, which is displayed in Fig. 4.1, can govern the dynamics of the genetic

traits of the three species of the food chain, given by x1 (prey), x2 (predator) and x3 (super
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predator). As mentioned in Chapter 1, Section 1.4, a significant preliminary question to

answer before doing any further analysis is to find conditions for which trajectories will not

“escape to infinity”, so that they will remain confined to a compact set. In biological terms,

this boundedness means that no trait grows without limit and thus the model captures

correctly the coevolutionary dynamics. Let us consider a new function Ψ = x1 + x2 + x3,

i.e., the sum of the traits involved in the 3D system. The temporal derivative of Ψ is

dΨ

dt
=
dx1
dt

+
dx2
dt

+
dx3
dt

.

Adding εΨ to dΨ
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, gives dΨ
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We obtain χ (~x) ≤ |χ∗ (x∗1, x
∗

2, x
∗

3)| = L, being χ∗ (x∗1, x
∗

2, x
∗

3) the maximum of χ∗ and

taking 0 < ε ≤ 0.8. It follows that dΨ/dt ≤ −εΨ + L. Using the differential form of the

Gronwall’s inequality [48], we find

Ψ(t) ≤ Ψ(0)e−εt +
L

ε

(
1− e−εt

)
≤ max

(
L

ε
,Ψ(0)

)

.

Therefore, we can conclude that the trajectories starting from any arbitrary initial condi-

tion will remain confined to a compact set.

4.2.2 Observability analysis

Our present application of the outlined formalism concerning the observability concept,

where the observability matrix is interpreted as the Jacobian matrix of the coordinate

transformation in study, Os = J (Φs), leads to the computation of the observability indices

of the traits x1, x2 and x3. In particular, for µ1 = 4.325, µ2 = 1 and µ3 = 1, the

observability indices averaged over a trajectory are δx1
= 0.005447..., δx2

= 0.002449...

and δx3
= 0.000037... From the previous values, the variables can be ranked in descending

degree of observability according to

x1 ⊲ x2 ⊲ x3,

where ⊲ means “provides better observability index of the underlying dynamics than”.

We notice that the previous ordering of the observability indices holds for all the muta-

tion rates analyzed in this chapter (results not shown). The three induced phase por-

traits from the coevolutionary system using the derivative coordinates are displayed in

Fig. 4.2. The computation of the observability indices indicates that variable x1 is the

best observable, while x3 is the poorest. The important message of this analysis is that
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the dynamics of the three-species coevolutionary model is observed with higher reliability

from the genetic trait of the prey (variable x1), rather than from the genetic traits of

predator and superpredator (variables x2 and x3, respectively). Genetic trait x2 provides

an observability of the dynamics that is slightly less than the one provided by the genetic

trait x1, but genetic trait x3 is associated with a clearly poor observability (δx3
is smaller

than δx1
and δx2

by two orders of magnitude).
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Figure 4.2: Projections of the dynamics on the (x1,
·

x1), (x2,
·

x2) and (x3,
·

x3) planes used
to compute observability indices in Subsection 4.2.2. We here use µ1 = 4.325 and µ2 =
µ3 = 1.

A 3D-reconstructed attractor would be the result of the representation of the points

(X1, X2, X3), with coordinates given by the transformation Φs. Only this 3D-representation

can be directly compared with the original 3D attractor. The 2D-representations of

(X1, X2) are different entities, they are just phase portraits, and not necessarily simi-

lar to the 3D attractor. In the observability theory, the dynamical states (X1, X2) are

used to provide the first brief glances over the complexity of the orbits.

In the next paragraphs, we devote a special attention to the dynamical variable x1.

Actually, we could choose also x2 because the observability index is of the same order of

magnitude than x1. However, for concreteness we will hereafter focus on x1.
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4.2.3 Topological entropy

Taking the state variable with the highest index, x1, previously characterized, we present

a family of one-dimensional iterated maps identified in the studied model [128]. In our

analyses, we will take the following values of mutation rates

3.9 ≤ µ1 ≤ 4.325, 1 ≤ µ2 ≤ 1.08 and 0.85 ≤ µ3 ≤ 1.0047.

The one-dimensional maps that we are analyzing have been obtained by recording the

successive local maxima of a trajectory within the chaotic attractor for the genetic trait

x1 (see Fig. 4.3). Hence, these iterated maps consist of pairs (x
(n)
1 , x

(n+1)
1 ), where x

(n)
1

denotes the nth relative maximum. As shown in Fig. 4.3(Right), the obtained discrete

map dynamically behaves like a continuous map with a single critical point, c, which maps

an interval I = [a, b] into itself.

x1
HnL x1

Hn+1L

50 100 150 200 250
t

-0.1

0

0.1

x1

0.13 0.132 0.134 0.136 0.138
0.13

0.132

0.134

0.136

0.138

x1
HnL

x1
Hn+1L

Figure 4.3: (Left) Chaotic time series of the genetic trait x1(t), using µ1 = 4.325, µ2 = 1
and µ3 = 1. (Right) Iterated unimodal map obtained from plotting successive local
maxima of the temporal dynamics of x1, also using the previous parameter values.

In order to illustrate the outlined formalism about the computation of the topological

entropy, we discuss the following example. Let us consider the map of Fig. 4.3(Right).

The symbolic orbit of the turning point, c, determines the period-12 kneading sequence
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(RLRRRRLRRRRC)∞. After ordering the orbital points, we obtain:

x2 < x7 < x0 < x5 < x10 < x3 < x8 < x9 < x4 < x11 < x6 < x1.

The associated transition matrix is

M(f) =






















0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0






















which has the characteristic polynomial

p(λ) = det(M(f)−λI) = −1− λ− λ2 − λ3 + λ4 + λ5 − λ6 + λ7 − λ8 + λ9 + λ10 − λ11.

The growth number s(f) (the spectral radius of matrixM(f)) is 1.50771.... Therefore,

the value of the topological entropy is given by: htop (f) = log s (f) = 0.410591... . The

study of the kneading sequences allows us to identify pairs of values (µ1, µ2), (µ1, µ3)

and (µ2, µ3) corresponding to symbolic periodic orbits (Figure 4.4 (Upper panel)). We

show the locations of these points in the parameter space associated with small periods:

2-period - (RC)∞, 4-period - (RLLC)∞, and 8-period - (RLRRRLRC)∞, which indicates

the beginning of the chaotic region. The identified kneading sequences correspond to

logistic-type maps with different levels of complexity. Figure 4.4 (Lower panel) shows

the variation of the topological entropy computed for the system in the parameter ranges
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Figure 4.4: (Upper panel) Representation of the periods-2,4,8 and the chaotic region
(displayed in red), which correspond to positive topological entropy for 3.9 ≤ µ1 ≤ 4.325,
1 ≤ µ2 ≤ 1.08 and 0.85 ≤ µ3 ≤ 1.0047. (Lower panel) Variation of the topological entropy
focusing on the chaotic regions.

corresponding to the chaotic scenarios. Bifurcation diagrams, obtained from xmax
1 , are

exhibited in Fig. 4.5. The dynamics is sensitive to the mutation rates µi (i = 1, 2, 3)

and the chaotic scenarios occur for high values of µ1 and µ3 as well as for small values

of µ2. As a consequence of the positiveness of the topological entropy, the feature of the

original model that we are studying - the temporal dynamical behavior of the successive

local maxima of the genetic trait, x1 - is associated with regimes of chaos. Notice that

the regions of mutation rates where chaos is found are very narrow (see Subsection 4.2.5),

while most of the mutation values correspond to periodic and quasiperiodic dynamics

(white regions).

4.2.4 Lyapunov exponents and predictability

As mentioned previously, Lyapunov exponents and entropies are examples of ways of

characterizing dynamical local properties for chaotic attractors.
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Figure 4.5: Bifurcation diagrams obtained from xmax
1 for: µ2 = µ3 = 1 and 3.9 ≤ µ1 ≤

4.325; µ1 = 4.325, µ3 = 1 and 1 ≤ µ2 ≤ 1.08; µ1 = 4.325, µ2 = 1 and 0.8 ≤ µ3 ≤ 1.0047.
For the three mutation rates analyzed the system undergoes the Feigenbaum scenario, i.e.,
period-doubling route to chaos.

A positive maximal Lyapunov exponent (MLE) is commonly taken as an indicator of

chaos. In the left-hand side column of Fig. 4.6, we present 3D−plots showing the variation

of the maximal Lyapunov exponent λ1 in the parameter regions where chaos occurs. We

notice the existence of pairs (µj , µj+1), j = 1, 2 corresponding to λ1 = 0 (signature of

periodic behavior). Our results, in agreement with classical numerical results displayed

in the literature, show that for certain periodic windows there is a discrepancy between

the topological entropy and the MLE. Within these periodic regimes, the topological

entropy diverges from the maximum Lyapunov exponent, which decreases rapidly to zero,

although initial conditions may wander chaotically in portions of the system. The surfaces

representing the topological entropy (Fig. 4.4 (Lower panel)) upper bounds the surfaces

that represents the variation of the maximum Lyapunov exponent (Fig. 4.6 (Left hand-

side column)). The positive values of the topological entropy shape the variation tendency

of λ1.
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Figure 4.6: (Left hand-side column) Variation of the maximal Lyapunov exponent λ1 in
the mutational parameter spaces. (Right hand-side column) Predictability, P , computed
from Eq. (1.11) for the chaotic dynamics shown at the three-dimensional plots on the left.
In (a), (b) and (c) we used, respectively µ3 = 1, µ2 = 1, and µ1 = 4.325.
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The ability to predict the future state of a dynamical system, given the present one,

turns out to be particularly relevant with major implications in applied biology. As estab-

lished previously, two tightly linked indicators for measuring the rate of the error growth

and information produced by a dynamical system are: the Lyapunov exponents and the

Kolmogorov-Sinai (or metric) entropy. In this context, the special connection between

these two indicators allows us to characterize fine-grained properties of the system. The

maximal Lyapunov exponent, λ1, gives us a first quantitative information on how fast

we lose the ability of predicting the system evolution. The sum of all positive Lyapunov

characteristic exponents gives us an estimate of the Kolmogorov-Sinai (or metric) entropy.

Dynamically, the inverse of the Kolmogorov-Sinai entropy characterizes the predictability

of the system. Higher values of the predictability correspond to lower complexity of the

dynamics. This fact is made clear in the gradient diagram of Fig. 4.6 (right hand-side col-

umn). More specifically, we found that most of the predictability values obtained within

the explored regions of the mutation rates are close to zero, especially in the analysis

projected onto the parameter spaces (µ1, µ3) and (µ2, µ3).

4.2.5 Chaos in parameter space

In this Section, we perform a simple numerical experiment to estimate how likely is the

occurrence of chaos in a given region of the parameter space of the model. Since the model

contains a lot of parameters, we will focus on the role of mutation rates in the overall

dynamics, together with the prey’s growth rates (r), the efficiencies of the predators in

catching the preys (ei) as well as in the sensitivity of intraspecific competition for the

preys (ci). Specifically, we will explore 8 different parameters within the following ranges:

4.23 ≤ µ1 ≤ 4.325; 1 ≤ µ2 ≤ 1.01; 0.972 ≤ µ3 ≤ 1.0047; 0.49999 ≤ r ≤ 0.50004;



102 How complex, probable, and predictable is genetically driven Red Queen chaos?3

0.1398 ≤ e2 ≤ 0.141; 0.14 ≤ e3 ≤ 0.14001; 0.49995 ≤ c0 ≤ 0.500015 and 3 ≤ c2 ≤ 3.0004

(recall c1 = 0).
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Figure 4.7: Two-dimensional projections of parameter spaces where the MLE is positive.
The black dots indicate the pairs of parameters generating chaotic dynamics in the pa-
rameter subspaces (µ1, r), (e2, µ2), (e3, µ3), and (µ1, c). Constant r is the prey intrinsic
per capita growth rate. Parameters µi are the mutation rates for the prey (i = 1), the
predator (i = 2), and the superpredator (i = 3); e2 and e3 are, respectively, the efficiencies
of the predator and the superpredator. Finally, c is a competition function.

Notice that instead of using parameters c0,1,2, we will represent them together using the

formula c = c0+ c2(x1− c1)2, which corresponds to the sensitivity of preys to intraspecific

competition [110]. The remaining parameters are fixed following the values presented

at the end of Section 4.1. All the previous ranges contain the dynamics ranging from

period-1 to chaos. To systematically explore this region of the parameter space, we use

a MonteCarlo (MC) algorithm, which works as follows: at each algorithm generation, m,

we generate random values with uniform distribution for the ranges of all the parameters



4.2 Results 103

previously listed (specifically, we usedm = 150, 775 iterations). For each set of parameters,

we numerically compute the full spectrum of Lyapunov exponents following the method

described in Section 1.2. Then, by considering the MLE for each set of parameters we can

separate the dynamics into two types: ordered (non-positive MLE) or chaotic (positive

MLE). This process was repeated at each iteration m. Figure 4.7 displays two-dimensional

projections of the parameter space where the chaotic dynamics are found. Specifically,

those pairs of parameters giving place to chaotic dynamics are indicated with a black dot.

The MC algorithm also allowed us to compute three other interesting measures.

We first computed the probability of finding chaos, πc, in the sampled parameter

space, using πc = mc/m, where mc is the number of parameters sets generated with

the MC algorithm producing a positive MLE. We specifically obtained πc ∼ 0.0306. We

also computed the mean value (± SEM) of the MLE in the chaotic regions, given by

λ̂1 = 0.00222177 ± 0.0000316; and the mean predictability (± SEM), given by

P̂ = 148.685± 0.6847. These computations revealed that the probability of finding chaos

in the explored parameter region of the model was extremely small, suggesting that geneti-

cally driven coevolution may be driven by ordered dynamics (e.g., periodic or quasiperiodic

attractors). However, the analyses presented in Fig. 4.6 indicate that the system can be

highly unpredictable in the parameter regions in the chaotic regime.
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4.3 Conclusions

Although the inherent complexity tied to evolutionary and coevolutionary processes makes

difficult their prediction, several works have attempted to explore predictability in evo-

lutionary processes [118, 119, 120, 121, 122, 123]. However, the degree of predictability

in biological coevolution remains poorly explored. Predictability measures for genetically

driven Red Queen chaotic dynamics are still lacking in the literature. The difficulty to

obtain experimental data for genetically driven Red Queen dynamics make mathematical

models a unique tool to understand and quantify the dynamics of such systems as well

as their degree of predictability. Recently, Dercole and colleagues [110] presented a model

for genetically driven Red Queen dynamics, providing mathematical evidences for the ex-

istence of chaos. Here we develop several analyses providing measures quantifying the

complexity of genetically driven Red Queen chaos. We specifically computed the topolog-

ical entropy of this system, also computing the full spectrum of Lyapunov exponents used

to characterize the predictability using the rates of evolution as control parameters. These

analyses, together with the exploration of some other model parameters, reveal that the

parameter ranges leading to chaotic behavior in this deterministic model are very narrow.

For the identified chaotic regions predictability was found to be very low, indicating that

genetically driven Red Queen chaos may be highly unpredictable.

The model under investigation undergoes the period-doubling route to chaos (i.e.,

Feigenbaum scenario), which is a typical route to chaos in three-species predator-prey

dynamical systems [110]. Hence, the investigated system is also governed by periodic and

quasiperiodic attractors. Moreover, we found wide regions of the parameter space with

zero MLE, meaning that oscillatory behavior is a very likely outcome of the investigated
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system. In this sense, we notice that the presence of genetic noise, such as random drift

or stochastic gene flow, as well as demographic noise could increase the regions of the

parameter space displaying chaos due to the phenomenon of noise-induced chaos [129,

130, 131]. Future research should quantify the predictability for genetically driven Red

Queen chaos considering such sources of noise.
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Chapter 5

An optimal homotopy analysis of a

HIV-1 model incorporating

AIDS-related cancer cells4

Nowadays, over 60 million people worldwide have been infected with HIV, more than

80% of whom live in developing countries. For HIV-infected individuals, cancer remains a

significant burden. In particular, the Kaposi’s sarcoma (KS) is the most common neoplasm

that occurs in patients with AIDS (AIDS-KS).

Gaining insight into the epidemiology and mechanisms that underlie AIDS-related can-

cers can provide us with a better understanding of cancer immunity and viral oncogenesis.

How can the combination of immunosuppression and activation of inflammation promote

cancer development? Our purpose is to try to give a glancing analysis using a simple

dynamical model.

The use of mathematical models as an aid in understanding features of HIV-1 and

virus infection dynamics has been substantial in the past 20 years. It has been shown in

the studies [133], [134] and [135] that there are two ways for HIV-1 to disseminate in vivo:

(i) circulating free viral particles to T cells directly, or (ii) through HIV-infected T cells to

4This study has been submitted for publication in [132].

107
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healthy T cells (please, see also [136], [137] and [138]). Most of these models focus on cell-

free virus spread in the bloodstream ([139] and [140]). A model concerning the cell-to-cell

spread of HIV-1 is relevant, since understanding the dynamics of the HIV infection within

lymphatic tissues is vital to uncovering information regarding cellular infection and viral

production.

The model studied here appeared in [141] as a cell-to-cell spread of HIV-1 together

with cancer cells in tissue cultures (in vitro). This model is aimed at explaining some

quantitative features concerning cancer occurring during HIV-1 infection that are unusual

and, in the absence of a model, perplexing. The basic starting point of this model has

three parts. First, the cancer cells are caused by the changes of the normal cells in the

individual due to some physical, chemical or biological factor (for instance, a virus such as

human papilloma virus (HPV)) - under normal conditions, the healthy cells in our body

can mutate into cancer cells with probability of 10−6. Second, the cancer cells have some

special genes and so they proliferate in a special way which is different from normal cells.

Third, the immune system can recognize the difference between cancer cells and normal

cells, so it can survey them and then carry out its killing function.

As pointed out in [141], the studied HIV-1 model has a number of steady states whose

existence and stability properties are quite consistent with their biological meanings. Pe-

riodic solutions and chaos appear alternately along with the changing of the bifurcation

parameters. With this HIV-1 model it is possible to investigate the cancer situation in an

individual who is invaded by HIV-1.

The chapter is organized as follows. We give in Section 5.1 a brief description of the

HIV-1 model presented in [141]. In Section 5.2, we analytically show that the chaotic
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attractor is positively invariant. In Section 5.3, we compute the coupling complexity by

means of observability indices, which allow us to rank the dynamical variables from more to

less observable. An analytical study, using the homotopy analysis methodology, is carried

out in Section 5.4. This section contains the explicit series solution (Subsection 5.4.1)

and an optimal homotopy analysis approach of solutions to improve the computational

efficiency of HAM (Subsection 5.4.2). In particular, we obtain for each dynamical variable

an optimal value of the HAM convergence-control h using an appropriate ratio and using

the exact squared residual error. Finally, Section 5.5 is devoted to significative conclusions.

5.1 The HIV-1 cancer model

Due to the immune response caused by HIV-1 in tissue culture in vivo, the HIV-1 cancer

model presented in [141] is given by the following ordinary differential equations

dC

dt
= C

[

r1

(

1−
C + T + I

m

)

− k1 T

]

, (5.1)

dT

dt
= T

[

r2

(

1−
C + T + I

m

)

− pk1C − k2I

]

, (5.2)

dI

dt
= I (k2T − µI) . (5.3)

Table 5.1 summarizes the meanings of variables and parameters. We will consider

throughout our study r2 = 0.3, k2 = 0.0005, m = 1500, p = 0.1, µI = 0.3 and take the

uncontrolled proliferation rate of the cancer cell r1 and the immune system’s killing rate of

cancer cells k1 as control parameters (0.1775 ≤ r1 ≤ 0.18425 and 0.0001 ≤ k1 ≤ 0.000107).

According to the literature ([135], [142] and [143]), the probability that a healthy

cell will become a cancer cell is very small, even if there some factors that urge the
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Variables and parameters Meaning

C Concentration of cancer cells
Dependent variables T Concentration of healthy cells

I Concentration of infected cells

r1 Uncontrolled proliferation rate of the cancer cell
r2 Intrinsic growth rate of healthy cells

Parameters k1 Immune system’s killing rate of cancer cells
k2 Infection rate coefficient
m Effective carrying capacity of the system
p Losing rate of the immune cells
µI Immune system’s killing effect on the infected cells

Table 5.1: List of variables and parameters.

transformation. We assume that the cancer is caused by just one cell because of gene

mutation.

5.2 Positively invariant sets

In the following sections we will examine the long-term behavior of the three-dimensional

chaotic attractors arising in the HIV-1 system modeled by Eqs. (5.1)-(5.3). The chaotic

attractor, displayed in Fig. 5.1, governs the concentration dynamics of the cancer cells,

healthy CD4+ T lymphocytes and infected CD4+ T lymphocytes, given by C, T and I,

respectively.

In biological terms, the boundedness of the attractors means that no concentration

grows without limit and thus the model captures correctly the dynamics.

According to the theory established in Chapter 1, Section 1.4, let us consider a new

function

Ψ = C + T + I,

i.e., the sum of the concentrations involved in the 3D system. The temporal derivative of
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Figure 5.1: Chaotic attractor corresponding to the HIV-1 system of Eqs. (5.1)-(5.3), for
r1 = 0.1842 and k1 = 0.0001.

Ψ is

dΨ

dt
=
dC

dt
+
dT

dt
+
dI

dt
.

Adding εΨ to dΨ
dt
, we consider dΨ

dt
+ εΨ = χ (C, T, I), for ε > 0. An upper bound of

χ (C, T, I) is given by

χ (C, T, I) ≤
1

m
|(r1m+ εm− r1C)C + (r2m+ εm− r2T )T + (−mµI + εm− r1I)I|

≤ H1 +H2 +H3.

with

H1 =
(r1m+ εm)2

4r1
, H2 =

(r2m+ εm)2

4r2
and H3 =

(−mµI + εm)2

4r1
.

We obtain χ (C, T, I) ≤ H1 + H2 + H3 = H. It follows that dΨ
dt

≤ −εΨ + H. Using the
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differential form of the Gronwall’s inequality [48], we find

Ψ(t) ≤ Ψ(0)e−εt +
H

ε

(
1− e−εt

)
≤ max

(
H

ε
,Ψ(0)

)

.

As a consequence, the trajectories starting from any arbitrary initial condition will remain

confined to a compact set.

5.3 Observability analysis

Our present application of the outlined formalism of Chapter 1, Section 1.5, where the

observability matrix is interpreted as the Jacobian matrix of the coordinate transfor-

mation in study, Os = J (Φs), leads to the computation of the observability indices of

the concentrations C = x1, T = x2 and I = x3. In particular, for r1 = 0.1842 and

k1 = 0.0001, the observability indices averaged over a trajectory are δx1
= 0.000634602...,

δx2
= 0.0000124925... and δx3

= 0.000000107349...

From the previous values, the original variables can be ranked in descending degree of

observability according to

C ⊲ T ⊲ I,

where ⊲ means “provides better observability index of the underlying dynamics than”. As

illustrated in Fig. 5.2, the previous ordering of the observability indices holds for all the

concentrations analyzed in this chapter. More details about the behavior of the highest

observability index, δC , in the parameter space are given in Fig. 5.3.

The three induced phase portraits from the system using the derivative coordinates are

displayed in Fig. 5.4. The computation of the observability indices indicates that variable

C is the best observable, while I is the poorest. The important message of this analysis

is that the dynamics of the three-variable HIV-1 model is observed with higher reliability
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Figure 5.2: Variation of the three observability indices, δxi
(i = 1, 2, 3), with C = x1,

T = x2 and I = x3, where δC > δT > δI . (a) k1 = 0.0001 and 0.1775 ≤ r1 ≤ 0.18425; (b)
r1 = 0.1842 and 0.0001 ≤ k1 ≤ 0.000107.

from the concentration of cancer cells (variable C), rather than from the concentrations

of healthy and infected cells (variables T and I, respectively). Concentration of healthy

cells T provides an observability of the dynamics that is less than the one provided by the

concentration of cancer cells C, but concentrations of infected cells I is associated with a

clearly poor observability (δI is smaller than δC by three orders of magnitude).

Figure 5.3: Variation of the highest observability index, δC considering 0.1775 ≤ r1 ≤
0.18425 and 0.0001 ≤ k1 ≤ 0.000107.

A 3D-reconstructed attractor would be the result of the representation of the points

(X1, X2, X3), with coordinates given by the transformation Φs (result not shown). Only

this 3D-representation can be directly compared with the original 3D attractor. The

2D-representations of (X1, X2) are different entities, they are just phase portraits, and not
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Figure 5.4: Projections of the dynamics on the (C,
·

C), (T,
·

T ) and (I,
·

I) planes used to
compute observability indices. Here, we use r1 = 0.1842 and k1 = 0.0001.

necessarily similar to the 3D attractor. In the observability theory, the dynamical states

(X1, X2) are used to provide the first brief glances over the complexity of the orbits.

In the next paragraphs, we devote a special attention to the dynamical variable C. In

order to gain insights about the long time behavior of variable C, we display in Fig. 5.5

bifurcation diagrams as a result of the variation of the control parameters r1 and k1.

Figure 5.5: Bifurcation diagrams obtained from the successive Cmax. In the Upper panel
- left, k1 = 0.0001 and 0.1775 ≤ r1 ≤ 0.18425; in the Upper panel - right, r1 = 0.1842 and
0.0001 ≤ k1 ≤ 0.000107. A amplification of the boxes B1 and B2 is exhibited in the Lower
panel.
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5.4 The homotopy analysis methodology and the analytic

solutions

At this moment, we are able to carry out an analytical study, using the homotopy analysis

methodology. This section contains the explicit series solution and an optimal homotopy

analysis approach of solutions to improve the computational efficiency of HAM. More

precisely, we obtain for each dynamical variable an optimal value of the HAM convergence-

control h using an appropriate ratio and using the exact squared residual error.

5.4.1 Explicit series solution

Following the previous considerations presented in Chapter 1, Section 1.3, we are able

now to perform an analytical approach of the HIV-1 model by using SHAM. Our goal is

to obtain the explicit series solution for C, T , I and focus our analysis on the analytic

solution of the dynamical variable C, which represents the concentration of cancer cells.

Let us consider the Eqs. (5.1)-(5.3) subject to the initial conditions

C(0) = IC1, T (0) = IC2, I(0) = IC3,

which are taken in the form

C0(t) = IC1, T0(t) = IC2, I0(t) = IC3,

as our initial approximations of C(t), T (t) and I (t), respectively. In our analysis, we will

consider

IC1 = 678, IC2 = 452, IC3 = 0.25

As auxiliary linear operators, we choose
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L [φi (t; q)] =
∂φi (t; q)

∂t
, i = 1, 2, 3,

with the property L [Ci] = 0, where Ci (i = 1, 2, 3) are integral constants. The equa-

tions of the HIV-1 model lead to the following nonlinear operators N1, N2 and N3

N1 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ1 (t; q)

∂t
− r1φ1 (t; q) +

+
r1
m

(
φ21 (t; q) + φ1 (t; q)φ2 (t; q)+

+ φ1 (t; q)φ3 (t; q)) + k1φ1 (t; q)φ2 (t; q) ,

N2 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ2 (t; q)

∂t
− r2φ2 (t; q) +

+
r2
m

(
φ1 (t; q)φ2 (t; q) + φ22 (t; q)+

+ φ2 (t; q)φ3 (t; q)) + pk1φ1 (t; q)φ2 (t; q) +

+k2φ2 (t; q)φ3 (t; q)

N3 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] =
∂φ3 (t; q)

∂t
− k2φ3 (t; q)φ2 (t; q) + µIφ3 (t; q) .

Considering q ∈ [0, 1] and h the non-zero auxiliary parameter, the zeroth-order deformation

equations are

(1− q)L [φ1 (t; q)− C0(t)] = qhN1 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] , (5.4)

(1− q)L [φ2 (t; q)− T0(t)] = qhN2 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] , (5.5)

(1− q)L [φ3 (t; q)− I0(t)] = qhN3 [φ1 (t; q) , φ2 (t; q) , φ3 (t; q)] (5.6)

and subject to the initial conditions

φ1 (0; q) = 678, φ2 (0; q) = 452, φ3 (0; q) = 0.25.
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Obviously, for q = 0 and q = 1, the above zeroth-order equations (5.4)-(5.6) have the

solutions

φ1 (t; 0) = C0(t), φ2 (t; 0) = T0(t), φ3 (t; 0) = I0(t) (5.7)

and

φ1 (t; 1) = C(t), φ2 (t; 1) = T (t), φ3 (t; 1) = I(t), respectively. (5.8)

When q increases from 0 to 1, the functions φ1 (t; q), φ2 (t; q) and φ3 (t; q) vary from C0(t),

T0(t) and I0(t) to C(t), T (t) and I(t). As a result of expanding φ1 (t; q), φ2 (t; q) and

φ3 (t; q) in MacLaurin series with respect to q, we obtain the homotopy series

φ1 (t; q) = C0(t) +
+∞∑

m=1

Cm(t)qm, (5.9)

φ2 (t; q) = T0(t) +
+∞∑

m=1

Tm(t)qm, (5.10)

φ3 (t; q) = I0(t) +
+∞∑

m=1

Im(t)qm, (5.11)

in which
Cm(t) = 1

m!
∂mφ1(t;q)

∂qm

∣
∣
∣
q=0

,

Tm(t) = 1
m!

∂mφ2(t;q)
∂qm

∣
∣
∣
q=0

,

Im(t) = 1
m!

∂mφ3(t;q)
∂qm

∣
∣
∣
q=0

,

(5.12)

and where h is chosen in such a way that these series are convergent at q = 1. Therefore,

considering Eqs. (5.7)-(5.12), we end up obtaining the homotopy series solutions

C(t) = C0(t) +
+∞∑

m=1

Cm(t), (5.13)

T (t) = T0(t) +
+∞∑

m=1

Tm(t), (5.14)

I(t) = I0(t) +
+∞∑

m=1

Im(t). (5.15)
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Differentiating the zeroth-order Eqs. (5.4)-(5.6) m times and using the properties, where

Dm is the mth-order derivative in order to the homotopy parameter q,

Dm (φi) = xi,m,

Dm

(

qkφi

)

= Dm−k (φi) =

{
xi,m−k , 0 ≤ k ≤ m

0 , otherwise
,

Dm

(
φ2i
)

=
m∑

k=0

xi,m−k xi,k,

and

Dm (φiψi) =
m∑

k=0

Dk (φi)Dm−k (ψi) =
m∑

k=0

xi,k yi,m−k,

we obtain the mth-order deformation equations

L [Cm(t)− χmCm−1(t)] = hR1,m [Cm−1(t), Tm−1(t), Im−1(t)] , (5.16)

L [Tm(t)− χmTm−1(t)] = hR2,m [Cm−1(t), Tm−1(t), Im−1(t))] , (5.17)

L [Im(t)− χmIm−1(t)] = hR3,m [Cm−1(t), Tm−1(t), Im−1(t)] , (5.18)

with the following initial conditions

Cm(0) = 0, Tm(0) = 0, Im(0) = 0. (5.19)
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Defining the vector −→u m−1 = (Cm−1(t), Tm−1(t), Im−1(t)) , we derive

R1,m [−→u m−1] =
dCm−1(t)

dt
− r1Cm−1(t) +

+
r1
m

(
m−1∑

k=0

Cm−1−k(t)Ck(t) +
m−1∑

k=0

Ck(t)Tm−1−k(t)+

+
m−1∑

k=0

Ck(t)Im−1−k(t)

)

+ k1

m−1∑

k=0

Ck(t)Tm−1−k(t)

R2,m [−→u m−1] =
dTm−1(t)

dt
− r2Tm−1(t) +

+
r2
m

(
m−1∑

k=0

Cm−1−k(t)Tk(t) +
m−1∑

k=0

Tk(t)Tm−1−k(t)+

+

m−1∑

k=0

Tk(t)Im−1−k(t)

)

+ pk1

m−1∑

k=0

Cm−1−k(t)Tk(t) +

+k2

m−1∑

k=0

Tk(t)Im−1−k(t)

and

R3,m [−→u m−1] =
dIm−1(t)

dt
− k2

m−1∑

k=0

Tm−1−k(t)Ik(t) + µIIm−1(t).

According to the notations and definitions provided above, the solution of the linear

mth-order deformation equations (5.16)-(5.18) at initial conditions (5.19), for all m ≥ 1,
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becomes

Cm(t) = χm Cm−1(t) + h

t∫

0

R1,m [−→u m−1] dτ, (5.20)

Tm(t) = χm Tm−1(t) + h

t∫

0

R2,m [−→u m−1] dτ, (5.21)

and

Im(t) = χm Im−1(t) + h

t∫

0

R3,m [−→u m−1] dτ. (5.22)

As an example, we present some initial terms of the series solutions (corresponding to

m = 1 and m = 2)

C1(t) = 678 + h(306456(k1 + r1/1500)− 371.431r1)t

T1(t) = 452 + h(−9.41516 + 306456(0.00002 + 0.1k1))t

I1(t) = 0.25 + 0.0185ht

and
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C2(t) = 678 + 2h(306456(k1 + r1/1500)− 371.431r1)t+

+h(306456hk1t− 167.127hr1t− 1113.97hk1t
2 +

+643.558hk1r1t
2 − 17.1723hr21t

2)

T2(t) = 452 + 2h(−9.41516 + 306456(0.00002 + 0.1k1))t+

+h(−3.28604ht+ 30645.6hk1t− 0.000734025ht2 +

+1300.91hk1t
2 + 7.96479× 106hk21t

2 −

−0.755414hr1t
2 − 3777.07hk1r1t

2)

I2(t) = 0.25 + 0.037ht+ h(0.000889877ht2 − 1.91535hk1t
2)

where h is the convergence control parameter, r1 is the uncontrolled proliferation rate

of the cancer cells and k1 is the immune system’s killing rate of cancer cells. At this

moment, it is easy to obtain terms for other values of m. In particular, truncating the

homotopy series (5.13)-(5.15) we get the M th-order approximate analytic solution (which

corresponds to a series solution with M + 1 terms)

CM (t) = C0(t) +
M∑

m=1

Cm(t), (5.23)

TM (t) = T0(t) +
M∑

m=1

Tm(t), (5.24)

IM (t) = I0(t) +
M∑

m=1

Im(t). (5.25)
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The exact solutions are given by the limits

C(t) = lim
M→+∞

CM (t), T (t) = lim
M→+∞

TM (t), I(t) = lim
M→+∞

IM (t).

Within the purpose of having an effective analytical approach of Eqs. (5.1)-(5.3) for

higher values of t, we use the step homotopy analysis method, in a sequence of subintervals

of time step ∆t and the 9-term HAM series solutions (8th-order approximations)

C(t) = C0(t) +
8∑

m=1

Cm(t), (5.26)

T (t) = T0(t) +
8∑

m=1

Tm(t), (5.27)

I(t) = I0(t) +
8∑

m=1

Im(t), (5.28)

at each subinterval. Accordingly to SHAM, the initial values C0, T0 and I0 change at

each subinterval, i.e., C(t∗) = IC∗

1 = C0, T (t
∗) = IC∗

2 = T0 and I(t∗) = IC∗

3 = I0 and

the initial conditions Cm(t∗) = Tm(t∗) = Im(t∗) = 0 should be satisfied for all m ≥ 1.

Therefore, the terms Cm, Tm and Im, exhibited before as an example for m = 1, 2, take

now the form

C1(t) = 678 + h(306456(k1 + r1/1500)− 371.431r1)(t− t∗),

T1(t) = 452 + h(−9.41516 + 306456(0.00002 + 0.1k1))(t− t∗),

I1(t) = 0.25 + 0.0185h(t− t∗)
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and

C2(t) = 678 + 2h(306456(k1 + r1/1500)− 371.431r1)(t− t∗) +

+h(306456hk1(t− t∗)− 167.127hr1(t− t∗)− 1113.97hk1(t− t∗)2 +

+643.558hk1r1(t− t∗)2 − 17.1723hr21(t− t∗)2),

T2(t) = 452 + 2h(−9.41516 + 306456(0.00002 + 0.1k1))(t− t∗) +

+h(−3.28604h(t− t∗) + 30645.6hk1(t− t∗)− 0.000734025h(t− t∗)2 +

+1300.91hk1(t− t∗)2 + 7.96479× 106hk21(t− t∗)2 −

−0.755414hr1(t− t∗)2 − 3777.07hk1r1(t− t∗)2),

I2(t) = 0.25 + 0.037h(t− t∗) + h(0.000889877h(t− t∗)2 − 1.91535hk1(t− t∗)2).

In a similar way, identical changes occur for the other terms. As a consequence, the

analytical approximate solution for each dynamical variable is given by

C(t) = C(t∗) +

8∑

m=1

Cm(t− t∗), (5.29)

T (t) = T (t∗) +
8∑

m=1

Tm(t− t∗), (5.30)

I(t) = I(t∗) +
8∑

m=1

Im(t− t∗). (5.31)

In general, we only have information about the values of C(t), T (t) and I(t) at t = 0, but

we can obtain the values of C(t), T (t) and I(t) at t = t∗ by assuming that the new initial



124 An optimal homotopy analysis of a HIV-1 model incorporating AIDS-related cancer cells4

conditions are given by the solutions in the previous interval. Another illustration of the

use of SHAM can be seen in [45].

The homotopy terms depend on both the physical variable t and the convergence

control parameter h. The artificial parameter h can be freely chosen to adjust and control

the interval of convergence, and even more, to increase the convergence at a reasonable

rate, fortunately at the quickest rate. This concept plays a key role in the HAM and

is generally used to gain sufficiently accurate approximations with the smallest number

of homotopy terms in the homotopy series (5.23)-(5.25). In fact, the use of such an

auxiliary parameter clearly distinguishes the HAM from other perturbation-like analytical

techniques.

How to find a proper convergence control parameter h to get a convergent series solution

or, even better, to get a faster convergent one? In the following subsection, an optimal

homotopy analysis approach is described to improve the computational efficiency of the

homotopy analysis method for nonlinear problems.

5.4.2 An optimal homotopy analysis approach of solutions

Using an optimal approach, the homotopy analysis method might be applied to solve

complicated differential equations with strong nonlinearity. Firstly, with the purpose of

determining an interval of convergence and the optimum value of h, corresponding to each

dynamical variable, we state a recent convergence criterion addressed in [46]. Finally,

an exact Squared Residual Error (SRE) is defined and efficiently used to find optimal

convergence values for the convergence control parameter h.

It is found that all optimal homotopy analysis approaches greatly accelerate the con-

vergence of series solution.
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Interval of convergence and optimal value from an appropriate ratio

Following the procedure established in Chapter 1, Section 1.3, and as an illustration at the

order of approximation M = 8, the curves of ratio β versus h, corresponding to C(t), T (t)

and I(t) (βC vs hC , βT vs hT and βI vs hI , respectively), are displayed in Fig. 5.6. In

Table 5.2, we exhibit the intervals of convergence of h and the respective optimum values

h∗ corresponding to the dynamical regime presented in Fig. 5.6.

β-Curves Intervals of convergence and optimal values of h

βC
−1.55274 < hC < −1.09974

h∗C = −1.18485

βT
−1.66625 < hT < 0
h∗T = −1.28944

βI
−0.190914 < hI < 0
h∗I = −0.122441

Table 5.2: Intervals of convergence of h and the respective optimum values h∗, correspond-
ing to the dynamical regimes presented in Fig. 5.6 (for r1 = 0.1842 and k1 = 0.0001).

Indeed, the use of such ratio, by solving the inequality mentioned above, allows us to

obtain the exact interval of convergence for the artificial parameter h and, in addition, it

yields an optimal value. This represents a central advantage in the study of the convergence

of HAM.

In Fig. 5.7 we show the comparison of the SHAM analytical solutions for C, T and I

with the numerical results using precisely the optimum values presented in Table 5.2.

Squared residual error and different orders of approximation

A procedure to check the convergence of a homotopy-series solution is to substitute this

series into the original governing equations and initial conditions, and then to evaluate the

corresponding squared residual errors - the more quickly the residual error decays to zero,
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Figure 5.6: The curves of ratios βC , βT and βI versus hC , hT and hI , respectively,
corresponding to a 8th-order approximation of solutions C(t), T (t) and I(t) for r1 = 0.1842
and k1 = 0.0001. The optimum value of h, h∗, gives rise to the minimum value of β.
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Figure 5.7: Comparison of the SHAM analytical solutions (5.29)-(5.31) of C, T and I
(solid lines) with the respective numerical solutions (dotted lines) of the HIV-1 cancer
model. The value of the control parameters are r1 = 0.1842 and k1 = 0.0001.
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the faster the homotopy-series converges. In this context, an error analysis is performed

in the following lines.

Taking the expressions (5.23)-(5.25), let us consider

ϕC (t, hC) = CM (t), ϕT (t, hT ) = TM (t), ϕI (t, hI) = IM (t).

With the substitution of these solutions into Eqs. (5.1)-(5.3), we are able to construct

Residual Error (RE) functions as follows:

REC (hC , t) =
∂ϕC (t, hC)

∂t
− r1ϕC (t, hC) + (5.32)

+
r1
m

(
ϕ2
C (t, hC) + ϕC (t, hC)ϕT (t, hT )+

+ ϕC (t, hC)ϕI (t, hI)) + k1ϕC (t, hC)ϕT (t, hT ) ,

RET (hT , t) =
∂ϕT (t, hT )

∂t
− r2ϕT (t, hT ) + (5.33)

+
r2
m

(
ϕC (t, hC)ϕT (t, hT ) + ϕ2

T (t, hT )+

+ ϕT (t, hT )ϕI (t, hI)) + pk1ϕC (t, hC)ϕT (t, hT ) +

+k2ϕT (t, hT )ϕI (t, hI) ,

REI (hI , t) =
∂ϕI (t, hI)

∂t
− k2ϕI (t, hI)ϕT (t, hT ) + µIϕI (t, hI) . (5.34)

In 2007, Yabushita et al. [144] suggested an optimization method for convergence

control parameters. Their work is based on the Squared Residual Error. Inspired by this

approach, and following the studies carried out in [145] and in [146], we consider the exact

Squared Residual Error (SRE) for the M th-order approximations to be
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SREC (hC) =

1∫

0

[REC (hC , t)]
2 dt, (5.35)

SRET (hT ) =

1∫

0

[RET (hT , t)]
2 dt, (5.36)

SREI (hI) =

1∫

0

[REI (hI , t)]
2 dt. (5.37)

Values of hC , hT and hI for which SREC (hC), SRET (hT ) and SREI (hI) are mini-

mum can be obtained. For a given M th-order of approximation, the optimal value of hC ,

hT and hI are given by the nonlinear algebraic equations

d [SREC (hC)]

dhC
= 0,

d [SRET (hT )]

dhT
= 0 and

d [SREI (hI)]

dhI
= 0.

The optimal values for all of these considered cases are h∗C , h
∗

T and h∗I . The curves of

SREC , SRET and SREI regarding different orders of approximation, namely M = 6,

M = 8 and M = 10, are show in Fig. 5.8. Central information regarding the orders of

approximation, optimal values of hC , hT , hI and minima of the respective squared residual

error functions is summarized in Table 5.3.

This analysis provides an illustration of how our understanding of a model arising in

the context of biology can be directly enhanced by the use of numerical and analytical

techniques, for different combinations of control parameters and time.

5.5 Conclusions

In this chapter we have provided new insights into the study of a HIV-1 model, which

mimics the concentrations of cancer cells, healthy CD4+ T lymphocytes and infected
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Figure 5.8: Exact Squared Residual Error functions, SREC , SRET and SREI , versus hC ,
hT and hI , respectively. These functions correspond to different orders of approximation
for the solutions C(t), T (t) and I(t). Solid line: 6th-order approximation; Dashed line:
8th-order approximation; Dotted line: 10th-order approximation (r1 = 0.1842 and k1 =
0.0001). Each optimum value h∗ gives rise to the minimum value of the SRE.
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M , order of approximation of C(t) Optimal value h∗C Minimum value of SREC

6 −1.08697 3.76497× 10−7

8 −1.18485 3.15689× 10−7

10 −1.26551 2.5934× 10−7

M , order of approximation of T (t) Optimal value h∗T Minimum value of SRET

6 −1.17838 4.46271× 10−6

8 −1.28944 3.70809× 10−6

10 −1.37576 3.02756× 10−6

M , order of approximation of I(t) Optimal value h∗I Minimum value of SREI

6 −0.163095 5.14312× 10−8

8 −0.122441 4.78534× 10−8

10 −0.0979792 4.57679× 10−8

Table 5.3: Orders of approximation, optimal values of hC , hT , hI and minima of the re-
spective squared residual error functions, corresponding to the dynamical regime presented
in Fig. 5.8 (r1 = 0.1842 and k1 = 0.0001).

CD4+ T lymphocytes. The rich and complex behavior of this model allowed us to apply

different theoretical approaches.

After analytically proving the boundedness of the trajectories in the system’s attractor,

we have studied the complexity of the coupling between the dynamical variables with

the quantification of the observability indices. We have identified different dynamical

behaviors of the system varying two biologically meaningful parameters: r1, representing

the uncontrolled proliferation rate of cancer cells and k1, representing the immune system’s

killing rate of cancer cells.

Nonlinear equations are significantly more difficult to solve than linear ones, especially

in terms of analytical methods. In general, there are two standards for a satisfactory ap-

proach of nonlinear equations: (i) it can always give approximation expressions efficiently ;

(ii) it can guarantee that approximation expressions are accurate enough in the studied
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region of biophysical parameters. Using these two standards as a criterion, we have suc-

cessfully applied the homotopy analysis method (HAM) to construct the explicit series

solution of the HIV-1 model incorporating AIDS-related cancer cells. The HAM solution

contains the auxiliary parameter h, which gives a simple way to adjust and control the

convergence region of the resulting series solution. In order to increase the computational

efficiency, an optimal homotopy analysis approach was developed to obtain optimal values

for the convergence-control parameter h by means of an appropriate ratio and the defini-

tion of an exact Squared Residual Error. This analysis provided a fast convergence of the

homotopy series solution and illustrated that the homotopy analysis method indeed satis-

fies the two standard aspects, (i) and (ii), mentioned previously. The results presented in

this chapter are likely to inspire applications of the HAM analytical procedure for solving

highly nonlinear problems in theoretical biology.



Final considerations

The complexity of biological sciences makes the interdisciplinary involvement essential.

Indeed, there is a sustained effort to include mathematical precision in the new approaches

of the physiological mechanisms, in the development and evaluation of new techniques to

support the diagnosis and in the optimization of conventional methods. The mathematical

tools can describe, explain, predict and decide in different situations. They allow us to

reveal quantitatively as well as qualitatively the behavior of physiological systems. The

use of an integrated approach, involving numerical evidences and theoretical reasoning,

emerges as a methodological unifying factor within the theory of dynamical systems, gives

a surprisingly structured character, revealing hidden dynamical features and properties of

life sciences motivated models.

The research work presented throughout the previous chapters motivates new and

enthusiastic developments. In fact, certain branches of mathematics are a result of inter-

disciplinary experiences that arouse curiosity, placing new questions, which contribute to

the development of the theory.
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