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Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and
have been associated with many adverse human health effects including cancer and respiratory disease.
However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present
study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mix-
tures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical
model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation
of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly
lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling
was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting
larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk
assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate
the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with
PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phos-
phorylation as a biological marker for future analyses of complex mixtures of PAHs.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Particulate matter (PM) in urban air is comprised of a complex
mixture of chemicals. One group of chemicals associated with air
PM are the polycyclic aromatic hydrocarbons (PAHs), ubiquitous en-
vironmental pollutants comprised of two or more fused aromatic
rings that are formed and emitted into the atmosphere as a result of
incomplete pyrolytic processes. Despite their structural similarities,
PAHs vary greatly in their carcinogenic potency, with several classi-
fied as possible or probable human carcinogens (IARC, 2010). In
order to exert their carcinogenic activity, PAHs require activation by
the cytochrome P450 (CYP) enzymes, ultimately producing metabo-
lites that can react with DNA to form mutagenic DNA adducts (IARC,
2010). Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two
of the most mutagenic and carcinogenic PAHs identified to date.
DBP is several orders of magnitude more potent in rodents than BP,
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most likely due to the formation of more persistent DNA adducts
that can escape cellular repair processes (Dreij et al., 2005; Luch,
2009).

To date, few studies have investigated the effects of interactions
betweenmixtures of PAHs either in binary or environmental samples,
such as extracts from soil and air PM. Data from us as well as others
clearly show interactions between PAHs leading to unexpected
effects (Mattsson et al., 2009; Niziolek-Kierecka et al., 2012; Staal
et al., 2007; Tarantini et al., 2009, 2011). We recently showed that
exposing HepG2 cells to PAH-containing soil extracts results in
prolonged activation of DNA damage signaling consistent with persis-
tent DNA damage, whereas BP-induced DNA damage was rapidly
repaired, suggesting a strong synergistic response between mixtures
of PAHs (Mattsson et al., 2009; Niziolek-Kierecka et al., 2012). In ad-
dition, other studies have shown synergistic effects of interactions of
PAHs on cellular DNA adduct levels in HepG2 cells exposed to binary
or complex mixtures (Staal et al., 2007; Tarantini et al., 2009, 2011).
Conversely, other studies have demonstrated antagonistic effects on
the carcinogenic potency of PAHs in complex mixtures attributed to
inhibitory effects on the metabolic activation by the CYP enzymes
(Courter et al., 2008; Mahadevan et al., 2007; Marston et al., 2001).

Importantly, these results have serious implications for the risk as-
sessment of mixtures of PAHs. The current approach which is used by
the Swedish and US EPA and the WHO is based on the use of toxic
equivalency factors (TEFs) or relative potency factors (RPFs) which
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express the carcinogenic potential relative to that of BP (Boström et
al., 2002). This means that the TEF scale assumes additivity of cancer
potency and thus does not take combination effects as a result of
intra-mixture interactions into account. Furthermore, the TEF values
that are quoted for different PAHs vary greatly depending on the
source i.e. in vitro vs. in vivo data, different cancers and endpoints
(California EPA, 2004; Collins et al., 1998; Larsen and Larsen, 1998;
Muller, 1997; Nisbet and LaGoy, 1992). In addition to the results
mentioned above which show that non-additive interactions occur
between PAHs, animal studies have shown that BP as an indicator
may markedly underestimate the cancer potency of PAH mixtures
(Gaylor et al., 2000; Siddens et al., 2012). Together, this clearly
shows that using the TEF approach could consequently lead to an un-
derestimation of the risk.

In the present study we examined the effects of binary mixtures of
BP and DBP and complex mixtures of PAHs in urban air PM extracts
on activation of DNA damage signaling. We observed a more than ad-
ditive response for binary mixtures of BP and DBP on activation of
DNA damage signaling. Exposing cells to air PM extracts caused a per-
sistent activation of DNA damage signaling at concentrations at least
100-fold lower than those for BP alone, which is not in accordance
with results applying TEF scales. Furthermore, we demonstrate that
the composition of PAHs contributed significantly to air PM extract
potency, with stronger activation of DNA damage signaling and
CYP1 induction observed in air PM fractions containing PAHs with
more than 4 aromatic rings. Taken together, our results demonstrate
that interactions between PAHs occur and that the use of BP as a
marker in risk assessment seriously underestimates the risks to
human health of exposure to complex mixtures of PAHs.

Materials and methods

Caution. PAHs are carcinogenic and experimental handling must be
carried out under special safety conditions such as those outlined in
the NCI guidelines.

Reagents and antibodies. Unless otherwise stated all chemicals, in-
cluding BP, were of analytical grade and obtained from Sigma Aldrich.
(Stockholm, Sweden). Hexane, toluene and methanol (HPLC grade)
were obtained from Rathburn Ltd. (Walkerburn, UK). DBP was pur-
chased from AccuStandard Inc. (New Haven, CT, USA). Detailed infor-
mation on manufacturer and purity of the standards used for PAH
analysis have been published previously (Sadiktsis et al., 2012).
Gibco (Invitrogen, Paisley, UK) supplied all cell culture reagents. Elec-
trophoresis reagents were obtained from Bio-Rad (Hercules, CA,
USA). Cell Signaling Technology (Beverly, MA, USA) provided the
following antibodies: Chk1 phosphorylated at Ser317, H2AX phos-
phorylated at Ser139 and p53 phosphorylated at Ser15. Antibodies
against Cdk2 (M2) and secondary anti-rabbit and anti-mouse anti-
bodies were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA).

Air sampling and solvent extraction. Air PM was collected on a Teflon
coated glass fiber filter (Ø149 mm, Pallflex Inc., Putnam, CT, USA) at
the rooftop of the Arrhenius laboratory building situated on the main
campus of Stockholm University. A total of 5205.768 m3 of air were
drawn through the filter with an average flow rate of 509 l min−1.
After sampling the filter was folded, wrapped in aluminum foil and
stored in a freezer. The filter sample was extracted with pressurized
fluid extraction using an ASE 200 accelerated solvent extraction system
(Dionex Corporation, Sunnyvale, CA, USA) following a procedure
developed and validated for analysis of PAHs in air PM using SRM
1649a urban dust (National Institute of Standards and Technology,
Gaithersburg, MA, USA) (Bergvall and Westerholm, 2008). Toluene
was used as an extraction solvent at 200 °C and 3000 psi for five
consecutive 30 min static extraction cycles. An unsampled filter was
extracted in the same manner as the filter sample to serve as a method
blank.

Preparation and fractionation of the air raw extract. Two aliquots were
removed from the crude air PM extract, gently evaporated to dryness
under a stream of nitrogen gas and then reconstituted with dimethyl
sulfoxide (DMSO). An aliquot of the crude extract was evaporated to
approximately 0.5 ml under nitrogen gas and cleaned-up using a
solid phase extraction (SPE) protocol with a silica cartridge as de-
scribed in detail elsewhere (Bergvall and Westerholm, 2006;
Christensen et al., 2005). The SPE eluate was reduced to dryness
using nitrogen gas and re-dissolved with 130 μl of hexane. Fraction-
ation of the extract was achieved using back flush high performance
liquid chromatography (HPLC) on a nitrophenylpropylsilica column
(4.0 mm i.d.×125.0 mm, 5 μmparticle-size) (Phenomenex, Torrance,
CA, USA) with a hexane mobile phase. A Varian 9001 Solvent Delivery
System (Varian Inc., Palo Alto, CA, USA) was used to deliver a mobile
phase flow rate of 1.0 ml min−1. PAH detection was enabled using a
Varian 9050 Variable Wavelength UV−VIS detector (Varian Inc.)
monitoring the HPLC column effluent at 254 nm. The flow direction
of the HPLC column was reversed using an air actuated four port
switching valve (Valco Instruments Inc., Houston, TX, USA). A 50 μl
aliquot of the extract was loaded into the HPLC using a Rheodyne
model 7125 syringe loading injector (Rheodyne Inc., Cotati, CA,
USA) equipped with a 100 μl loop and a model 710 100 μl syringe
(Hamilton, Bonaduz, Switzerland). During the HPLC run the flow di-
rection of the column was reversed prior to elution of BP. The eluate
was collected before and after the back flush yielding two fractions
called F1 and F2, respectively. An aliquot of respective fraction was
taken for PAH analysis as described in more detail in the next section.
The fractions were then gently evaporated to dryness under nitrogen
gas and reconstituted with DMSO. In the fraction where BP was
present at blank concentrations, reconstitution was made to yield a
similar proportion of the original raw extract per μl of DMSO as the
fraction containing BP.

PAH analysis. Aliquots of crude and cleaned-up fractionated extract
were fortified with internal standard solutions. The aliquots of the
crude extract were cleaned-up using silica SPE cartridges in the
same manner as described in the previous section. PAH analysis was
carried out on a hyphenated HPLC–gas chromatography/mass spec-
trometry (HPLC–GC/MS) system. Detailed descriptions on the system
set-up and the method used have been given elsewhere (Bergvall and
Westerholm, 2006; Christensen et al., 2005; Sadiktsis et al., 2012) and
will only be described in brief. The SPE extracts were further
cleaned-up on the HPLC system using back flush on the same type
of column as described in the previous section and with a mobile
phase of hexane with 0.1% dodecane (v/v). The PAH enriched fraction
from the HPLC was transferred to the GC where PAH separation was
performed. Mass selective detection was carried out using a quadru-
pole mass spectrometer.

Cell culture and exposure. Human hepatocellular carcinoma cells
(HepG2) were obtained from the American Type Culture Collection
(Rockville, MD, USA). These cells were ideally suited to this study be-
cause of their metabolic competence and ability to activate PAHs and
other mutagens (Knasmuller et al., 1998). Cells were cultured in min-
imal essential medium supplemented with 10% fetal bovine serum,
sodium pyruvate (1 mM), non-essential amino acids (0.1 mM), pen-
icillin (100 units/ml) and streptomycin (0.1 mg/ml), and maintained
at 37 °C in 5% CO2. For cell proliferation experiments, cells were seed-
ed at 1×104 cells/ml in 96-well plates and cultured for 24 h, whereas
for Western blot, qRT-PCR and Comet assay experiments, cells were
seeded at 3×105 cells/ml in 6-well plates and cultured for 72 h.
Cells were subsequently exposed to BP and DBP, solvent control
(0.1% DMSO) or air PM extracts for up to 48 h. Cells were exposed
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to air PM extracts using a concentration equivalent to a set concentra-
tion of BP.

Cell viability. Cell viability was determined by 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay as described pre-
viously (Mosmann, 1983). Briefly, HepG2 cells were exposed to PAHs
for 48 h followed by incubation in serum- and phenol-red free medium
containing 0.5 mg/ml MTT for 4 h, then washed and solubilized in
DMSO. Optical density was measured at a wavelength of 590 nm.
Data are expressed as percent of control.

Western blotting. Cells were washed with ice-cold PBS and scraped
into IPB-7 buffer (20 mM triethanolamine-HCl pH 7.8, 0.7 M NaCl,
0.5% Igepal CA-630, 0.2% sodiumdeoxycholate)with protease inhibitors
(1 mM phenylmethylsulfonyl fluoride, 1 mg/ml leupeptin, 1 mg/ml
pepstatin, 1 mM sodium fluoride, 1 mM sodium orthovanadate,
0.1 mg/ml trypsin inhibitor and 1 mg/ml aprotinin). Protein content
wasmeasured and subjected to standard SDS–PAGE. Separated proteins
were transferred to a PVDF membrane (Bio-Rad, Hercules, CA, USA) by
wet electro-blotting. Non-specific antibody binding was reduced by in-
cubating membranes in 5% non-fat dry milk. Signals were detected
using enhanced chemiluminescence (Amersham GE Healthcare
Bio-Sciences AB, Uppsala, Sweden). To confirm the signals were in the
linear range of the detection system, blots were performed for all anti-
bodies with increasing concentrations of protein lysate (0–30 μg)
(data not shown). Experiments were performed at least in triplicate
and analyzed separately. Densitometric analysis was performed using
ImageJ software version 1.45 s (National Institute of Health, USA).

RNA purification and real-time RT-PCR. Total RNA was prepared using
the RNeasyMini Kit (Qiagen, Hilden, Germany) and 1 μg used to gener-
ate cDNA with the High Capacity cDNA Reverse Transcription kit
(Applied Biosystems, Foster City, CA, USA) according to protocol. Subse-
quently, quantification of gene expression was performed in duplicates
using Maxima™ SYBR® Green qPCR Master Mix (Fermentas, St.
Leon-Rot, Germany) with detection on an Applied Biosystems 7500
real-time PCR System (Applied Biosystems, Foster City, CA, USA). The
reaction cycles used were 95 °C for 2 min, and then 40 cycles at 95 °C
for 15 s and 60 °C for 1 min followed bymelt curve analysis. Primer se-
quences were as follows: CYP1A1 forward CACCATCCCCCACAGCAC and
reverse ACAAAGACACAACGCCCCTT, CYP1B1 forward AGTGCAGGCA
GAATTGGATCA and reverse AGGACATAGGGCAGGTTGGG, and GAPDH
forward CGAGATCCCTCCAAAATCAA and reverse TTCACACCCATGA
CGAACAT. Relative gene expression quantification was based on the
comparative threshold cycle method (2−ΔΔCt).

Comet assay. The alkaline version of the comet assay was performed
as described previously (Karlsson et al., 2005). In brief, slides
pre-coated with agarose (0.3%) were covered with exposed cells
resuspended in low melting point agarose (0.75% w/v). Following in-
cubation in cold lysis buffer (1% Triton X-100, 2.5 M NaCl, 10 mM
Tris, and 0.1 M EDTA, pH 10) for 1 h on ice, the slides were incubated
in cold alkaline solution (0.3 M NaOH and 1 mM EDTA, pH>13) for
40 min on ice. The comets were separated by electrophoresis using
the alkaline buffer at 29 V (1.15 V/cm) for 30 min. Slides were neu-
tralized in 0.4 M Tris–HCl (pH 7.5), dried overnight and fixed in
methanol for 5 min. After staining with ethidium bromide, at least
50 comets were scored per treatment performed in triplicates using
a Leica DMLB fluorescent microscope and Comet Assay 3 (Perceptive
Instruments Ltd, Haverhill, UK).

Statistical analysis. All data presented are means±SE. One-way
ANOVAwith Bonferroni's t-test correction was used to determine sta-
tistical significance in cell proliferation, Western blot, qRT-PCR and
Comet assay experiments (significance rated as pb0.05). For the
interaction analysis we estimated a generalized linear regression
model with a log link. The potential within-batch correlation of the
values for the outcome variable was taken into account by applying
generalized estimating equations (Zeger and Liang, 1986). This meth-
od provides robust estimates for the standard errors of the regression
coefficients and does not require making any assumptions about the
distribution of the regression residual. We assumed an exchangeable
working correlation structure. The models were estimated separately
for each protein. The level of protein phosphorylation was the depen-
dent variable. The independent variables for all the three proteins
were BP, DBP, a natural cubic spline variable for BP (knots at 1, 2,
and 3), and a natural cubic spline variable for DBP (knots at 0.5, 1,
and 1.5). The interaction between BP and DBP and their respective
spline variables was tested with the Wald test. Number and place-
ment of the knots of the splines were chosen on a 0.5-point grid to
maximize the goodness of fit.

Results

We have previously demonstrated that exposure of cells to
PAH-contaminated soil extracts results in persistent DNA damage
and a prolonged activation of DNA damage signaling that could not
be attributed to nor explained by the concentration of BP in the sam-
ples (Mattsson et al., 2009; Niziolek-Kierecka et al., 2012). In these
studies several key markers of DNA damage and signaling including
phosphorylation of Chk1, Chk2, H2AX and p53 were investigated. In
the present study the effects of BP and DBP in binary mixtures on
DNA damage and DNAdamage response (DDR) have been investigated,
as well as PAH-containing urban air PM extracts using a dose response
approach.We have also applied a statistical model to investigate poten-
tial effects due to interactions between BP and DBP in binary mixtures.

Binary mixtures of BP and DBP induce a stronger activation of DNA
damage signaling than BP or DBP alone

To investigate potential interactions we studied the effect of single
PAHs and binary mixtures on DNA damage signaling. Binary mixtures
were prepared using a dose response approach to include increasing
concentrations of BP with a constant DBP and vice versa. A single ex-
posure time of 48 h was chosen based on previous results showing
persistent DNA damage and prolonged DDR at this time following ex-
posure to complex mixtures (Niziolek-Kierecka et al., 2012).

We have previously shown that the markers used in this study
(Chk1, p53 and H2AX) are key signal transducers of DNA damage sig-
naling in response to PAHs (Mattsson et al., 2009; Niziolek-Kierecka et
al., 2012; Pääjärvi et al., 2008). The results of this study showed that
both BP and DBP were significantly associated with increasing phos-
phorylation levels of Chk1, p53 and H2AX (Figs. 1 and 2). Statistically
significant increases in Chk1 Ser317 (pChk1), p53 Ser15 (pp53) and
H2AX Ser139 (γH2AX) phosphorylation from baseline levels were
observed in cells exposed to 1000 nM (p=0.003), 1000 nM (p=
0.0029) and 3000 nM (pb0.001) BP respectively, whereas for cells
exposed to binary mixtures of BP and DBP, statistically significant
increases were at 300 nM (p=0.046), 3000 nM (pb0.001) and
3000 nM (pb0.001) respectively (Fig. 1). For cells exposed to DBP
alone, statistically significant increases from baseline levels were ob-
served at 10 nM (p=0.001) for pChk1, 30 nM (pb0.001) for pp53
and 100 nM (pb0.001) for γH2AX, whereas for cells exposed to binary
mixtures of DBP and BP, statistically significant increaseswere at 10 nM
(p=0.017), 30 nM (p=0.030) and 30 nM (p=0.010) respectively
(Fig. 2). Significant effects on cell viability was only observed in cells ex-
posed to concentrations of BP and DBP greater than 300 and 30 nM re-
spectively (Supplementary Figs. 1, A and B).

To relate the activation of DNA damage signaling to the levels of
DNA damage, these were measured after 6 and 48 h by Comet
assay. Comparable levels of damage were observed in cells exposed
to BP or DBP alone (Fig. 3), and although both produced higher levels
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of damage than in the control, this was not statistically significant.
Statistically significant levels of DNA damage were observed in cells
exposed to binary mixtures at 6 and 48 h with higher levels at 48 h
(Fig. 3). This increase could either be explained by formation of per-
sistent DNA damage or by a continuous release of reactive oxygen
species causing DNA damage. Together the results show that binary
mixtures of BP and DBP induce a stronger DDR in HepG2 cells than
BP or DBP alone. Furthermore, and in agreement with our previous
data (Niziolek-Kierecka et al., 2012), this data identifies pChk1 as a
potential marker for prolonged DNA damage signaling in response
to PAHs.

In order to investigate if interactions between BP and DBP would
lead to non-additive effects on DDR we applied a statistical model to
the dose–response data shown in Figs. 1 and 2 as described in
Materials and methods. The combination of a robust statistical model
and all four data sets allowed for predicting level of protein phosphory-
lation at different concentrations of binary exposure. A statistically sig-
nificant (pb0.001) interaction was observed between BP and DBP in
binarymixtures compared to the individual chemicals on thephosphor-
ylation of Chk1, with the effects of the binarymixture producing amore
than an additive effect on the level of phosphorylation (Fig. 4). No sta-
tistically significant interactions (i.e. dose addition) were observed for
the activation of pp53 (p=0.9216) or γH2AX (p=0.1371).

Analysis of PAH content in Stockholm air samples

The analytical setup allowed for identification of 42 unique PAHs
present in air PM (Table 1), ranging from three to six aromatic
rings. The raw air PM extract contained a total PAH concentration of
3392.6 pg/m3 including 160 pg/m3 of BP and 1.05 pg/m3 of DBP.
These values could be compared to concentrations of BP and DBP of
248 pg/m3 and 4.8 pg/m3, respectively, determined in PM10 collected
in the street canyon of Hornsgatan (downtown Stockholm) during the
same time period as the PM studied in the present work (Westerholm
et al., 2012). For all fractions used in this study, PAH concentrations
are presented in micromolar (Table 1). Fraction S-1 was prepared
from the raw air PM extract to achieve a concentration of 1 μM BP
(actual 0.91 μM). Fraction S-10 was prepared by concentrating an ali-
quot of fraction S-1, and contained a final concentration of 10.3 μM
BP. Sub-fractions SF1 and SF2 were prepared by separating an aliquot
of S-1 by size to yield a fraction containing 3- and 4-ring PAHs (SF1)
and a fraction containing PAHs with 5 rings and more (SF2) with con-
centrations of BP of 0.004 and 1.14 μM respectively. A blank extract
contained a total PAH content of 40 nM including 0.3 nM BP.

Exposure to air PM extract induces protein phosphorylation consistent
with persistent activation of DNA damage signaling

To investigate DNA damage and DDR after exposure to air PM ex-
tracts, cells were exposed to extracts by using a dose equivalent to
0.1–10 nM BP (BPeq) and levels of pChk1, pp53 and γH2AX were
measured by Western blotting (Figs. 5, A and B). Prolonged activation
of DNA damage signaling was observed in a dose-dependent manner.
Statistically significant increases in pChk1, pp53 and γH2AX from
baseline levels were observed in cells exposed to air fractions
with 6 nM (p=0.009), 1 nM (p=0.007) and 10 nM (pb0.001)
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used as a loading control. Experiments were performed in triplicate and data points represent means±SE. Where not shown, error lies within the data points. Curves were fitted
using the logistic 4 parameter equation in Sigmaplot 12. *pb0.05 as compared with control levels by one way ANOVA.
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BPeq respectively (Figs. 5, A and B). No statistically significant increase
in DNA damage was observed in cells exposed to air PM compared
to either control levels (Fig. 3). No response was observed in
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experiments with the blank sample (data not shown), and no signif-
icant effect on cell viability was observed with either the S-1 or S-10
fractions (Supplementary Fig. 1, C).

Many of the biological effects of PAHs, including oxidative stress
and DNA damage, are believed to be mediated through activation of
the aryl hydrocarbon receptor (AhR) and subsequent induction of cy-
tochrome P450 enzymes (CYP) (Nebert et al., 2000). Activation of the
AhR was assessed by measuring induction of gene expression of
CYP1A1 and 1B1 using qRT-PCR following exposure to BP alone or
the BPeq dilutions described above (Fig. 5, C). Exposure to 1 and
10 nM BP alone did not induce either CYP1A1 or 1B1 (data not
shown). In contrast, an 11- and 118-fold induction of CYP1A1 was ob-
served following exposure to air PM fractions with 1 and 10 nM BPeq
respectively (Fig. 5, C). Statistically significant increases in CYP1A1 in-
duction was observed from 6 nM (p=0.008). Induction of CYP1B1
was less strong compared to CYP1A1, with 3- and 18-fold induction
observed following exposure to air PM fractions with 6 and 10 nM
BPeq respectively (Fig. 5, C). Statistically significant increases in
CYP1B1 induction was observed from 10 nM (pb0.001).

Cellular responses to complex mixtures of PAHs cannot be predicted by
applying TEF-based analyses

The data presented in Figs. 1–5 agree with our previous findings
that PAHs in complex mixtures are more potent than BP alone at in-
ducing DNA damage and subsequent DDR (Mattsson et al., 2009;
Niziolek-Kierecka et al., 2012) and support the idea that BP alone as
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an indicator is not sufficient for assessing effects of exposure to mix-
tures of PAHs on human health. Comparing the dose-dependent
phosphorylation of Chk1, p53 and H2AX in HepG2 cells exposed to
BP, DBP or air PM extracts; we observed persistent phosphorylation
of all three proteins at significantly lower concentrations in cells ex-
posed to the air PM extracts (see Figs. 1, 2 and 5). The concentrations
of BP, DBP and air PM extract (BPeq) required to achieve a certain fold
increase of phosphorylation for all three proteins are given in Table 2.
As can be seen, DBP is up to 80-fold more potent in inducing the same
levels of protein phosphorylation as BP. This number is in agreement
with animal experiments where DBP has been shown to be about
100-fold more potent than BP as a carcinogen (Luch, 2009; Siddens
et al., 2012). Comparing the air PM extract with BP shows an up to
250-fold higher potency in inducing DDR. This is significantly higher
than the TEQ values, ranging from 1.74 to 4.71, calculated for the air
PM extract using different available TEF scales (Table 3). This clearly
demonstrates that complex mixtures are more potent than BP and
that TEF scales are insufficient for predicting DDR in response to com-
plex PAH mixtures.
PAH composition plays a significant role in complex mixture toxicity

Due to the vast array of chemicals in complex mixtures, it is plau-
sible that the contributory potency of each individual chemical varies.
In order to study the impact of mixture composition on the cellular
DDR, time-dependent effects on level of pChk1, pp53 and γH2AX
and CYP induction following exposure to the total air fraction (S-1)
and subfractions SF1 and SF2 were assessed (Figs. 6, A–E). Exposure
to the total and both subfractions induced a time-dependent increase
in pChk1 up to 24 h, and then a decrease at 48 h (Fig. 6, A). Levels of
p53 and γH2AX phosphorylation followed different time-dependent
kinetics, increasing through 48 h (Figs. 6, B and C). Statistically signif-
icant increases were observed for all proteins following exposure to
the S-1 fraction (Figs. 6, A–C) and for pChk1 and pp53 after exposure
the subfraction containing the larger PAHs (SF2, Figs. 5, A and B). No
significant changes were detected for the subfraction with the smaller
PAHs (SF1). Significant increases in CYP1A1 mRNA expression were
observed at all time-points following exposure to the S-1 fraction
and at 6 and 24 h with the subfraction containing the larger PAHs
(SF2, Fig. 6, D), whereas the subfraction containing the smaller PAHs
only induced significant expression at 6 h (SF1, Fig. 6, D). Significant
increases in CYP1B1 mRNA expression were only observed following
exposure to the S-1 fraction (Fig. 6, E). Taken together, these data sug-
gest that larger PAHs with 5 or more aromatic rings contribute more
to the activation of DNA damage signaling and genotoxicity of PAHs
in air PM.

Discussion

The aim of this study was to investigate the effects of low-levels of
PAHs on DNA damage and DDR and to investigate how interactions in
simple and complexmixtures can alter these responses. Persistent ac-
tivation of DNA damage signaling was found for BP and DBP in a
dose-dependent manner, both as individual chemicals and in binary
mixtures. A more than additive effect was observed for binary mix-
tures on pChk1 activation compared to BP and DBP alone. Exposure
to air PM extracts caused persistent activation of DNA damage signal-
ing at significantly lower (BPeq) concentrations than BP alone which
could not be explained by TEF scale analysis, currently used in risk as-
sessment of PAHs. The composition of PAHs in air PM extracts played
a significant role in the effects on DNA damage signaling, with ex-
tracts containing PAHs with more than four aromatic rings demon-
strating increased potency compared to smaller PAHs.

Our first approach to studying the potential interactions between
PAHs was to identify the effects of binary mixtures of BP and DBP
on activation of DNA damage signaling. DBP was chosen as it has
demonstrated the highest carcinogenic potential of the PAHs ana-
lyzed so far (Luch, 2009), and hence, it is plausible that interactions
between BP and DBP would lead to a higher carcinogenic potency
than the individual chemicals. For all proteins analyzed in this study
(Chk1, p53 and H2AX) the level of phosphorylation was higher in
cells exposed to the binary mixtures than BP or DBP alone. The results
were further supported by Comet assay which showed more persis-
tent levels of DNA damage in response to binary BP and DBP expo-
sure. We next applied a statistical model to the data to determine if
any interactions were occurring in the binary mixtures. The applied
model encompassed four unique data sets per protein (BP alone,
DBP alone, BP with DBP and DBP with BP). A more than additive
effect was observed for the activation of pChk1 with the binary
mixtures compared to the individual compounds alone. This is in
agreement with previous studies which have demonstrated synergis-
tic or more than additive effects with mixtures of PAHs on early ver-
tebrae development (reviewed in (Billiard et al., 2008)) and cellular
DNA adduct levels (Staal et al., 2007; Tarantini et al., 2009, 2011). To-
gether, these results confirm that interactions between PAHs can re-
sult in unexpected biological effects with important implications for
human health.

The effect of complex mixtures of PAHs in air PM extracts was
analyzed in comparison to BP alone using a dose response based ap-
proach similar to the experiments with binary mixtures. The presence
of PAHs on air particles is considered to play an important role in the



Table 1
Concentration (μM) of PAHs in extracts of an urban air sample collected over 218 h on the rooftop of Stockholm University as described in Materials and methods. Sample S-1 is the
raw Stockholm extract equivalent to 1 μM BP, which was evaporated to produce a ten-fold more concentrated sample (S-10) and from which fractions were prepared (SF1 and SF2)
based on the number of aromatic rings.

PAH Air PM
(pg/m3)

S-1
(μM)

SF1

(μM)
SF2

(μM)
S-10
(μM)

Blank
(μM)

Phenanthrene 260 2.10 1.47 0.00525 23.6 0.01
Anthracene 22.7 0.183 0.121 0.00377 2.06 0.008
3-Methylphenanthrene 47.4 0.355 0.186 0.00126 3.99 0.002
2-Methylphenanthrene 73.4 0.548 0.263 0.00193 6.17 0.002
2-Methylanthracene 8.38 0.0630 0.0328 0.000627 0.705 0.0004
9-Methylphenanthrene 36.4 0.272 0.137 0.00157 3.06 0.002
1-Methylphenanthrene 69.6 0.520 0.272 0.000763 5.85 0.001
4H-cyclopenta[def]phenanthrene 67.7 0.511 0.233 0.00300 5.76 0.0005
2-Phenylnaphthalene 34.4 0.242 0.225 0.000840 2.73 0.001
3,6-Dimethylphenanthrene 1.68 0.0117 0.0109 0.000524 0.132 0.0002
3,9-Dimethylphenanthrene 8.29 0.0577 0.0541 0.000451 0.650 0.001
Fluoranthene 357 2.54 2.69 0.00390 28.6 0.003
Pyrene 312 2.21 2.47 0.00539 24.9 0.003
1-Methylfluoranthene 47.3 0.314 0.350 0.00194 3.53 0.0004
Benz[a]fluorene 33.0 0.219 0.269 0.000600 2.47 0.0003
Benz[b]fluorene 17.3 0.115 0.144 0.000701 1.29 0.0001
2-Methylpyrene 18.9 0.125 0.149 0.000922 1.41 0.0004
4-Methylpyrene 23.9 0.159 0.197 0.000792 1.79 0.0003
1-Methylpyrene 21.1 0.140 0.174 0.00121 1.58 0.0004
Benzo[ghi]fluoranthene 144 0.917 1.04 0.00202 10.3 0.0004
Benzo[c]phenanthrene 58.7 0.370 0.359 0.000396 4.16 0.0006
Benzo[b]naphto[1,2-d]thiophene 2.42 0.0149 0.0142 0.000329 0.167 0.0002
Benz[a]anthracene 149 0.940 1.06 0.00374 10.6 0.0004
3-Methylchrysene 12.3 0.0731 0.0939 0.00109 0.823 0.0001
2-Methylchrysene 27.6 0.164 0.173 0.00156 1.84 0.0002
6-Methylchrysene 16.1 0.0955 0.114 0.000327 1.08 0.0001
1-Methylchrysene 30.4 0.180 0.194 0.00125 2.03 0.0002
Benzo[b]fluoranthene 335 1.91 0.00142 2.16 21.5 0.0003
Benzo[k]fluoranthene 137 0.780 0.000588 0.926 8.78 0.0002
Benzo[e]pyrene 225 1.28 0.00332 1.42 14.4 0.0003
Benzo[a]pyrene 160 0.910 0.00362 1.14 10.3 0.0003
Perylene 24.3 0.138 0.000726 0.162 1.56 0.0003
Indeno[1,2,3-cd]fluoranthene 27.3 0.142 0.000385 0.163 1.60 0.0002
Indeno[1,2,3-cd]pyrene 164 0.854 0.000800 1.04 9.62 0.0002
Dibenz[a,h]anthracene 26.1 0.135 0.000594 0.144 1.52 0.0002
Picene 31.1 0.161 bLOQa 0.184 1.81 0.0002
Benzo[ghi]perylene 208 1.08 0.000928 1.40 12.2 0.0003
Dibenzo[a,l]pyrene 1.05 0.00497 bLOQ 0.00415 0.0559 0.0001
Dibenzo[a,e]pyrene 21.6 0.103 bLOQ 0.0953 1.16 0.0002
Coronene 126 0.604 0.00125 0.745 6.80 0.0003
Dibenzo[a,i]pyrene 4.39 0.0209 bLOQ 0.0219 0.235 0.0003
Dibenzo[a,h]pyrene 0.817 0.00388 bLOQ 0.00484 0.0437 0.0003
Total 3392.6 21.6 12.5 9.7 242.9 0.04

a LOQ=limit of quantification.
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observed health effects related to exposure to air PM (Lewtas, 2007).
We found that phosphorylation of Chk1, p53 and H2AX and CYP1 in-
duction followed the same dose dependent increase but at signifi-
cantly lower concentrations of air PM extracts (1 nM BPeq) than BP
alone. Assuming a typical human breathing volume of 1.2 m3/h
(ICRP, 1994), 1 nM BPeq of air PM extract correlates to approximately
3.45 h of continuous breathing. These data suggest that the different
PAHs in complex mixtures have a significantly more profound influ-
ence on potency than BP alone. This has important implications for
the current approach of risk assessment of PAHs and is further
discussed below. The data showed that pChk1 was the most sensitive
marker with a 220-fold lower BPeq dose of air PM extract inducing a
2-fold increase in pChk1 as compared to BP alone. This is in agree-
ment with the analysis of the binary mixtures and our previous data
(Niziolek-Kierecka et al., 2012) showing sustained levels of DNA
damage in parallel to persistent activation of Chk1. Together these
data suggests that Chk1 phosphorylation could be an important
marker for future analyses of the effects of complex mixtures of
PAHs on DNA damage signaling. This warrants further investigation
and confirmation using other single and binary PAHs. Earlier studies
have shown that deregulated Chk1 activity sensitizes cells to the BP
diol epoxide metabolite (Chen et al., 2009; Guo et al., 2002). Activa-
tion of Chk1 by phosphorylation at Ser317 is mainly attributed to
ATR signaling pathway in response to single strands breaks
(Jazayeri et al., 2006) and bulky PAH-DNA adducts (Choi et al.,
2007, 2009), suggesting that these are the more prominent types of
DNA damage in cells exposed to mixtures of PAHs. This is in agree-
ment with a recent study showing that a dose of 0.16 μM BP alone
mainly formed DNA adducts in HepG2 cells while BPeq complex
mixtures of PAHs mainly caused strand breaks (Tarantini et al.,
2009). Interestingly, they did not observe any strand breaks in re-
sponse to a reconstituted PAH mixture suggesting the action of
other compounds in the complex mixture sample. The methodology
for preparation and fractionation of the air Pm extract used in the cur-
rent study has previously been shown to exclude polar compounds
such as nitro-PAHs and acridines (Christensen et al., 2005) but prob-
ably includes polychlorinated biphenyls (PCBs) and polychlorinated
dibenzo-dioxins and -furans (PCDD/Fs) (Bandh et al., 1996; Piazza
et al., 2012). Compounds such as PCBs and PCDD/Fs are known to in-
duce the AhR pathway (Schmitz et al., 1995) possibly leading to fur-
ther interaction effects contributing to the biological activity of the
air PM extract.
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Table 2
Concentrations of BP, DBP and air PM extract required to induce 2–5 fold inductions of
Chk1 and p53 phosphorylation and 2–2.6 fold induction of γH2AX in HepG2 cells.

Concentration required (μM) Fold difference

Protein Increase in
phosphorylationa

BP DBP Air PM BP/DBP BP/Air PM

Chk1 2 fold 0.31 0.0048 0.0014 64.6 221.4
3 fold 0.65 0.0109 0.0037 59.6 175.7
4 fold 0.97 0.0188 0.0065 51.6 149.2
5 fold 1.24 0.0289 0.0096 42.9 129.2

p53 2 fold 0.76 0.0143 0.0039 53.1 194.9
3 fold 1.58 0.0259 0.0067 61.0 235.8
4 fold 2.26 0.0359 0.0090 63.0 251.1
5 fold 2.93 0.0445 NDb 65.8 –

H2AX 2 fold 1.71 0.0209 0.0082 81.8 208.5
2.2 fold 2.01 0.0289 0.0090 69.6 233.3
2.4 fold 2.26 0.0378 0.0098 60.0 230.6
2.6 fold 2.45 0.0470 ND 52.1 –

a Increase in phosphorylation is measured from fitted curves in Figs. 1, 2 and 5 and
represents an increase from baseline levels.

b ND=No data available.

Table 3
Toxic equivalence (TEQ) values for PAHs present in the air PM extract according to dif-
ferent toxic equivalency factor (TEF) scales.

Source Nisbet and
LaGoy
(1992)

Muller
(1997)

Larsen and
Larsen
(1998)

Collins
et al.
(1998)

California
EPA
(2004)

Highest
TEF value
from all

TEQ 2.33 2.17 1.74 2.01 2.68 4.71
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In this study we found that fractions of air PM containing larger
PAHs produced significant effects on DNA damage signaling, and in
the case of Chk1 phosphorylation, comparable to levels seen in the
total air fraction. No significant increase in protein phosphorylation
was observed with the fraction containing smaller PAHs. In addition,
induction of CYP1 was more pronounced with the subfraction
containing larger PAHs. Earlier investigations on different effects on
carcinogenicity between size-separated fractions of PAHs identified
mixtures containing >3 aromatic rings as contributing to the majori-
ty of toxicity (reviewed in Jacob, 2008). More recently increased
toxicity has been demonstrated in PAH fractions obtained from coal
tar mixtures with 4 to 6 aromatic rings compared with fractions
containing 2 and 3 rings (Reeves et al., 2001). Our data is also in
line with the majority of PAHs classified by IARC as probably or carci-
nogenic to humans are “larger” PAHs (IARC, 2010). These findings
support the hypothesis that different PAHs contribute to the toxicity
of complex mixtures and that PAHs with≥5 aromatic rings, including
BP and DBP, are likely to provide a larger risk to human health.

For risk assessment of PAHs, potency is often expressed relative to
BP using toxic equivalency factors (TEFs) or relative potency factors
(RPFs) (Boström et al., 2002). In addition, the use of genotoxic poten-
cy factors (GEFs) based on the activation of γH2AX in response to
PAHs has recently been proposed (Audebert et al., 2012). A major
problem with using the TEF/RPF approach is that the quantitative
analysis of risk does not account for differences in mechanisms or
endpoints of the chemicals in the mixtures, and cannot accurately re-
flect the different interactions that can occur. Furthermore, a signifi-
cant inadequacy of using TEF values for assessment is that there are
a number of different scales published and either the values for differ-
ent PAHs are not available or the values in these scales differ signifi-
cantly. For example, DBP is assigned a value of 1 in the TEF scale
published by Larsen and Larsen (1998), whereas other scales have a
value of 10 (Collins et al., 1998) and 100 (WHO/IPCS, 1998). Using
TEF values from five different sources we calculated a TEQ value for
the air PM extract ranging between 1.74 and 2.68. We also calculated
a “maximum” TEQ value of 4.71 by taking the highest available value
for each PAH from the five sources. However, from the experimental
data obtained in this study we observed that the BPeq concentrations
of air PM extracts required achieving fold increases in phosphoryla-
tion of DNA damage signaling proteins was more than 100 times
lower than BP alone. The lack of parity highlights that the TEF/RPF
scheme is insufficient for predicting activation of DNA damage signal-
ing in response to complex mixtures. This is in line with a recent
study by Siddens et al (2012) which concluded that using the current
RPFs led to a highly significant underestimation of the potency of coal
tar extract as skin carcinogen. In addition, the high number of dif-
ferent compounds found in complex mixtures, which might affect
the biological activity as discussed above, further adds to the uncer-
tainty of using TEF scales for complex mixtures. These findings are
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in agreementwith earlier published in vitro and in vivo studies by us and
others (Gaylor et al., 2000;Mattsson et al., 2009; Niziolek-Kierecka et al.,
2012; Siddens et al., 2012; Tarantini et al., 2009) and suggests that the
current approach needs re-evaluation.

A potential alternative to component-based analyses such as the
TEF and RPF scheme, would be to use “mixture assessment factors”
(MAFs) similar to what has been discussed by both US EPA and within
REACH under the EU commission (Backhaus et al., 2010; USEPA,
2000). MAFs do not rely on relative potency values assigned to the
separate mixture components but instead compare the effects of
whole mixtures assessed through a relevant biological endpoint
thus including potential non-additive effects as a result of interac-
tions. Based on the biological significance of DNA damage signaling
in response to complex mixtures of PAHs in air PM extracts in this
study and soil extracts (Niziolek-Kierecka et al., 2012), phosphoryla-
tion of Chk1 could be one candidate as a marker for future risk
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assessment of complex mixtures using MAFs. The results presented
here on Chk1 (see Table 2) showed sustained activation at BPeq con-
centration 100–200-fold lower than BP alone. These results have im-
portant implications for the risk assessment of mixtures of PAHs and
warrant further investigation using environmental PAH samples from
different sources and in different experimental models.

In conclusion, this study addressed the effects of binary mixtures
of PAHs on DNA damage and signaling and showed that interactions
lead to more than additive effects. Effects on activation of DNA dam-
age signaling were also observed at significantly lower concentrations
of PAHs in complex mixtures compared with that of BP alone. Fur-
thermore, these differences could not be correlated with methods
currently used for risk assessment of PAHs. The increasing evidence
highlighting the insufficiencies of using BP as an indicator for PAH
toxicity highlights the need to develop more applicable methods for
risk assessment of the effects of complex mixtures on human health.
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